US 20150301967A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0301967 A1

ARROYO et al.

43) Pub. Date: Oct. 22, 2015

(54)

(71)

(72)

(73)

@

(22)

(63)

SHARING MESSAGE-SIGNALED
INTERRUPTS BETWEEN PERIPHERAL
COMPONENT INTERCONNECT (PCI) I/O
DEVICES

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: Jesse P. ARROYO, Rochester, MN
(US); Anjan Kumar GUTTAHALLI
KRISHNA, Hyderabad (IN)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Appl. No.: 14/264,272

Filed: Apr. 29, 2014

Related U.S. Application Data

Continuation of application No. 14/254,995, filed on
Apr. 17, 2014.

Publication Classification

(51) Int.CL
GOGF 13/32 (2006.01)
GOGF 13/42 (2006.01)
(52) US.CL
CPC ... GOGF 13/32 (2013.01); GOGF 13/4221
(2013.01)
(57) ABSTRACT

A PCI function, such as a device driver, may request that
additional MSI resources be allocated to an I/O device
coupled to a PCI Host Bridge (PHB). However, there may not
be any unallocated MSI resource remaining in the PHB.
Instead, a hypervisor may request to borrow MSI resources
assigned to other PCI functions in the system. For example,
the PCI function requesting the additional MSI resources may
ask for a certain number of MSI resources for a certain period
of time—e.g., a lease. The hypervisor then determines which
of'the other PCI functions (referred to as a loaning PCI func-
tions) are willing to lend or loan their MSI resources. Once the
MSI resources available for lease are known, the hypervisor
informs the requesting PCI function of these resources which,
in turn, binds the additional MSI resources to the I/O device.

100
/—

HOST COMPUTING DEVICE 105
MEMORY 110
HYPERVISOR 115

VIRTUALMACHINE 117
OPERATING SYSTEM 120
| DEVICEDRVER 122 m

| PROCESSOR 125
PCI HOST 130
BRIDGE
| wsivECTORs 135 |

| poisor 140 m

145
| 170 DEVICES 150 m

Patent Application Publication Oct. 22,2015 Sheet 1 of 6 US 2015/0301967 A1

100
,/

HOST COMPUTING DEVICE 105
MEMORY 110
HYPERVISOR 115

VIRTUAL MACHINE 117

OPERATING SYSTEM 120

DEVICE DRIVER 122 H

PROCESSOR 125 H
PCI HOST 130
BRIDGE

MS| VECTORS 135

PCI SLOT 140 H
~— 145
|10 DEVICES 150 J

FIG. 1

Patent Application Publication

Oct. 22,2015 Sheet 2 of 6

US 2015/0301967 A1

200
,/

VIRTUAL MACHINE 117A VIRTUAL MACHINE 117B
DEVICE DRIVER 122A H DEVICE DRIVER 122B H
HYPERVISOR 115
PClI HOST 130A PCI HOST 130B
BRIDGE BRIDGE
MSI VECTORS 135A MSI VECTORS 135B
MSI GROUP 205A MSI GROUP 205C
MSI GROUP 205B MSI GROUP 205D
21
PCI SLOT PCI SLOT SRIOV CARD 210
S g VIRTUAL 215A
1/ O DEVICE
140A 140B
VIRTUAL 215B
1/O DEVICE ~—
PCIl SLOT 140C

FIG. 2

Patent Application Publication Oct. 22,2015 Sheet 3 of 6 US 2015/0301967 A1

300
,/

BINDING RESPECTIVE MSI GROUPS TO A PLURALITY

OF 1/0 DEVICES 305

Y

TRANSMITTING A REQUEST TO THE HYPERVISOR FROM A
DEVICE DRIVER TO REQUEST ADDITIONAL MSI VECTORS

~—310

Y

DETERMINING WHETHER OTHER DEVICE DRIVERS CAN
LEASE MSI VECTORS FROM THEIR MSI GROUPS TO ~— 315
THE REQUESTING DEVICE DRIVER

Y

PROVIDING THE AVAILABLE MSI VECTORS TO THE
REQUESTING DEVICE DRIVER BASED ON LEASE TERMS

~— 320

FIG. 3

HYO1D03A ISN aamoddosa - [0

US 2015/0301967 A1

(110)4

HOL23A IS LNO daNVo1 - & 7 Old
HOLD3A IS A3LVI0TIVY - 0
AT HOL1O3A ISW
SLL HOSIAYIdAH
o A
[
(=]
T _—Gle GlLE —~_
3
K-
7 g50
v _—Gle 02€ —~_ |_—o0lg J
-
>
o
o 00000 | |_
3 822V yaama 301A30
asoy 0507
VS0P
£) ! - N
=
[*)
k= _ g0000 [000]000 _ ge000
E - . _
g deey yaama 3o1A3a %Y \anma 301A3a Veer yaama 301A3a
.m
= \\ 31y INIHOVN TVNLYIA a1y INIHOVIN TYNLHIA Vilb INIHOVIN TVNLYIA
(=9
-
=
[P
=
=W

Patent Application Publication Oct. 22,2015 Sheet S of 6 US 2015/0301967 A1

500
,/

TRANSMITTING A REQUEST TO THE HYPERVISOR FROM A
DEVICE DRIVER TO REQUEST ADDITIONAL MSI VECTORS

—~— 505

510

ARE

MSI VECTORS AVAILABLE IN THE
FREE POOL ?

YES

NO

520 \

PROVIDE ADDITIONAL MSI
MAINTAIN OLD VECTORS FROM THE FREE
MSI GROUP POOL TO THE REQUESTING
\ DISPLAY DRIVER
525

\515

ARE
ANY COOPERATIVE
DEVICE DRIVERS
PRESENT?

DETERMINE AVAILABLE MSI VECTORS

BASED ON LEASE TIME NEGOTIATION 530

|

INFORM THE REQUESTING DEVICE DRIVER OF THE
AVAILABLE MSI| VECTORS AND ASSOCIATED LEASE TIMES

—~—535

)

BEGIN TRANSMITTING MSI INTERRUPTS USING THE
BORROWED MSI| VECTORS

~— 540

FIG. 5

Patent Application Publication

Oct. 22,2015 Sheet 6 of 6

US 2015/0301967 A1

600
,/

REQUEST INITIAL ALLOCATION OF MSI VECTORS
FROM HYPERVISOR

—~— 605

MSI| VECTORS
AVAILABLE IN FREE
POOL?

NO

TRANSMIT A REQUEST TO
LEASE MSI VECTORS

~—615

610

INFORM HYPERVISOR WHETHER THE 1/ O DEVICE
WILL PARTICIPATE IN MSI VECTOR SHARING

~— 620

|

BIND THE ALLOCATED MSI VECTORS
TO THE 1/ O DEVICE

—~— 625

FIG. 6

US 2015/0301967 Al

SHARING MESSAGE-SIGNALED
INTERRUPTS BETWEEN PERIPHERAL
COMPONENT INTERCONNECT (PCI) I/O
DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of co-pending
U.S. patent application Ser. No. 14/254,995, filed Apr. 17,
2014. The aforementioned related patent application is herein
incorporated by reference in its entirety.

BACKGROUND

[0002] Interrupts may be used to notify the device driver of
asynchronous events—keyboard presses, incoming data traf-
fic from a network adapter, completion of aread from/write to
a storage device, and to notify the device driver of an error. In
the case of storage and networking, to increase performance,
the work can be divided among different threads, with each
thread notified by one or more interrupts.

[0003] InPeripheral Component Interconnect (PCI) or PCI
Express (PCle) there are mainly two types of interrupt mecha-
nisms: Legacy/Level Signaled Interrupts (L.SIs) and Message
Signaled Interrupts (MSIs). In case of the LSIs, an input/
output (I/O) device has an interrupt pin which it asserts when
the device wants to signal an interrupt to the host processing
environment. This traditional form of interrupt signaling is an
out-of-band form of control signaling since L.SI uses a sepa-
rate dedicated path relative to the main data path to send such
control information. With complex I/O fabrics, however, the
number of dedicated lines or pins that would be required to
provide interrupt functionality for all of the I/O resources
connected to the fabric may be impractical. As a result, more
complex I/O fabrics may implement MSIs by writing data to
specific memory addresses in the system address space.
MSIs, which are in-band method of signaling an interrupt,
allow the device to write a small amount of data to a special
memory-mapped /O address which is then delivered to the
appropriate destination—e.g., a processor.

[0004] As an example of a computer system using MSIs, a
PCl-enabled I/O device may issue MSIs as DMA writes
where the DMA address is a MSI port in a PCI Host Bridge
(PHB) and the DMA write data is an interrupt number
selected from a range of interrupt numbers enabled at the MSI
port. The PHB decodes the MSI port address on the PCI bus
and uses the interrupt number in the DMA write data to
present the PCl interrupt to the appropriate virtual machine or
processor. To configure MSI in the I/O device, a Hypervisor
presents the virtual machine with the MSI properties of the
PHB. These properties consist of the number of MSI ports and
the number of MSI interrupts the PHB provides. When the
PHB supports multiple I/O devices, these MSI resources are
divided amongst the virtual machines that control I/O devices
connected to the PHB.

SUMMARY

[0005] One embodiment provided herein is a method for
sharing MSI resources. The method includes, upon receiving
a first request to increase MSI resources allocated to a first
PCl-enabled I/O device coupled to a PHB, identifying at least
a second PCl-enabled I/O device that is allocated MSI
resources. The method also includes transmitting a second
request to a managing entity corresponding to the second I/O

Oct. 22,2015

device where the second request indicates a desired number
of MSI resources and a desired lease time. The method
includes receiving a confirmation from the managing entity
where the confirmation indicates a number of MSI resources
available for lease from the second I/O device and a negoti-
ated lease time associated with each of the MSI resources
available for lease and allocating at least one of the MSI
resources available for lease to the first I/O device.

[0006] Another embodiment described herein is a com-
puter system that includes a first PCl-enabled I/O device, a
second PCl-enabled I/O device that is allocated MSI
resources, a PHB coupled to the first and second 1/O devices,
and a hypervisor. The hypervisor is configured to, upon
receiving a first request to increase MSI resources allocated to
the first I/O device, transmitting a second request to a man-
aging entity corresponding to the second I/O device where the
second request indicates a desired number of MSI resources
and a desired lease time. The hypervisor is also configured to
receive a confirmation from the managing entity where the
confirmation indicates a number of MSI resources available
for lease from the second I/O device and a negotiated lease
time associated with each of the MSI resources available for
lease where at least one of the MSI resources available for
lease are allocated to the first [/O device based on the nego-
tiated lease time.

[0007] Another embodiment described herein is a com-
puter program product for sharing MSI resources. The com-
puter program product includes computer-readable program
code configured to, upon receiving a first request to increase
MSI resources allocated to a first PCl-enabled I/O device
coupled to a PHB, identify at least a second PCI-enabled /O
device that is allocated MSI resources. The program code is
also configured to transmit a second request to a managing
entity corresponding to the second I/O device where the sec-
ond request indicates a desired number of MSI resources and
a desired lease time. The program code is configured to
receive a confirmation from the managing entity where the
confirmation indicates a number of MSI resources available
for lease from the second I/O device and a negotiated lease
time associated with each of the MSI resources available for
lease and allocate at least one of the MSI resources available
for lease to the first [/O device.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0008] FIG. 1 illustrates a computer system that uses PCI
communication, according to one embodiment described
herein.

[0009] FIG. 2 illustrates a computing system with MSI
vectors allocated to I/O devices, according to one embodi-
ment described herein.

[0010] FIG. 3 illustrates a method for borrowing MSI vec-
tors from other /O devices, according to one embodiment
described herein.

[0011] FIG. 4 illustrates a computer system performing the
method shown in FIG. 3, according to one embodiment
described herein.

[0012] FIG. 5 illustrates a method for borrowing MSI vec-
tors from other /O devices, according to one embodiment
described herein.

[0013] FIG. 6 illustrates a method for binding MSI vectors
to an I/O device, according to one embodiment described
herein.

US 2015/0301967 Al

DETAILED DESCRIPTION

[0014] A MSI vector defines where the interrupt is to be
routed (e.g., what processor core or thread) and the interrupt’s
relative priority. By definition, MSIs vectors are exclusive to
a system and are unshared. Each MSI vector is triggered by an
operation such as a MSI/direct memory address (DMA) write
to a particular address with specific data on the PCI bus
received by a PCI host bridge (PHB). Thus, any I/O device on
the PCI bus can be given the address/data combination to
activate that MSI vector. Each MSI vector assigned to an [/O
device is guaranteed to be a unique in the computing system
and is associated with a unique memory address (e.g., a
special memory-mapped I/O address), either in register space
or system memory. For example, a device driver can request
a certain number of MSI interrupt vectors, but a hypervisor or
BIOS can allocate fewer MSI vectors to the device driver than
the function requested depending upon the various factors
such as the availability of unallocated MSI vectors. In one
embodiment, the total number of MSI vectors assigned to a
PHB caps the number of MSI vectors that can be allocated to
1/0 devices connected to the PHB. For example, if the PHB is
assigned 2048 MSI vectors and connected to five I/O devices,
no one I/O device can be allocated more than 2048 MSI
vectors.

[0015] Even after an I/O device has been allocated a set of
MSI vectors, its needs may change. For example, the /O
device may be part of a payroll application where the 1/O
demands of the application increase when the monthly pay-
roll is calculated. During all other times, the set of MSI
vectors allocated to the I/O devices may be sufficient. To
increase the ability of the application when calculating the
monthly payroll, the device driver associated with the I/O
device may request additional MSI vectors. However, there
may not be any unallocated MSI vectors (i.e., MSI vectors not
allocated to any I/O device) remaining

[0016] In one embodiment, the hypervisor may request to
borrow MSI vectors assigned to other /O devices in the
system. For example, a device driver can ask for additional
MSI vectors by sending a request for a certain number of MSI
vectors for a certain period of time—e.g., a lease. Using the
payroll example above, the device driver may request that the
hypervisor double the amount of its allocated MSI vectors for
a twenty-four hour period. The hypervisor then negotiates
with other device drivers (referred to as loaning device driv-
ers) that are willing to lend or loan their MSI vectors. In one
embodiment, each of the loaning device drivers may have [/O
devices coupled to the same PHB as an /O device corre-
sponding to the requesting device driver.

[0017] Eachloaning device driver may weigh the request to
its own needs (e.g., whether the loaning device driver is
currently using all of its allocated MSI vectors) as well as the
loan period proposed by the requesting device driver (e.g., the
loaning device driver may not currently be using all of its MSI
vectors but may need before the lease expires). The loaning
device driver then indicates how many MSI vectors it is
willing to loan and for how long. The hypervisor returns the
results of the negotiations to the requesting device driver. For
example, the hypervisor may be able to fully satisfy the
request or only able to satisfy a portion of the requested MSI
vectors. Regardless, the requesting device driver may then
bind the additional MSI vectors to the I/O device which can
begin to use the added MSI vectors for transmitting inter-
rupts.

Oct. 22,2015

[0018] The descriptions of the various embodiments of the
present invention are presented for purposes of illustration,
but are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

[0019] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0020] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an opti-
cal storage device, an electromagnetic storage device, a semi-
conductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.
[0021] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.
[0022] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++ or
the like, and conventional procedural programming lan-

US 2015/0301967 Al

guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider). In some embodiments, electronic circuitry including,
for example, programmable logic circuitry, field-program-
mable gate arrays (FPGA), or programmable logic arrays
(PLA) may execute the computer readable program instruc-
tions by utilizing state information of the computer readable
program instructions to personalize the electronic circuitry, in
order to perform aspects of the present invention.

[0023] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer readable program instructions.
[0024] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the instruc-
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

[0025] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0026] FIG. 1 illustrates a computer device that uses PCI
communication, according to one embodiment described
herein. System 100 includes a host computing device 105
coupled to one or more I/O devices 150. As used herein, PCI
refers to conventional PCI, PCI Express, or any variant
thereof. A link 145 represents that the 1/O devices 150 are
communicatively coupled to the host computing device
105—e.g., the devices 150 are coupled to the PCI slots 140.
[0027] Hostcomputing device 105 includes a memory 110,
one or more processors 125, one or more PHBs 130, and one
or more PCI slots 140. Memory 110 may include volatile
memory elements, non-volatile memory elements, or a com-
bination of both. For example, memory 110 may include both

Oct. 22,2015

RAM and a hard disk drive which are used in combination to
store data associated with host computing device 105. Here,
memory 110 stores a hypervisor 115 and at least one virtual
machine 117 executing on the host computing device 105. For
example, host computing device 105 may be a server whose
hardware is used to host a plurality of virtual machines 117. In
one embodiment, the host computing device 105 uses the
hypervisor 115 to manage and configure the various virtual
machines 117. Although the hypervisor 115 is shown as soft-
ware, in other embodiments, hypervisor 115 may be imple-
mented using firmware or hardware.

[0028] In one embodiment, virtual machine 117 is a soft-
ware implemented abstraction of the underlying hardware in
the host computing device 105. As such, each virtual machine
117 may provide a complete system platform which supports
the execution of an operating system 120. However, the
advantages and details of using and implementing virtual
machines 117 will not be discussed in detail here.

[0029] The virtual machine 117 includes an operating sys-
tem 120 which may be any operating system suitable for
performing the functions described herein. The operating
system 120 includes one or more device drivers 122 which
may perform PCI functions. For example, each device driver
122 may be a managing entity responsible for interfacing the
virtual machine 117 with a corresponding /O device or
devices 150. Although a device driver 122 is specifically
shown, any other managing entity may be used that controls,
manages, or configures the /O devices 150. As will be
described in greater detail below, the device driver 122 may
negotiate with the hypervisor 115 in order to determine the
number of MSI vectors 135 allocated to the I/O device 150
managed by the device driver 122. In one example, the device
driver 122 may borrow MSI vectors 135 assigned to other [/O
devices 150 coupled to the same PHB 130.

[0030] The various system resources in the host computing
device 105—e.g., virtual machine 117, operating system 120,
processor 125, and the like—may communicate with the I/O
devices 150 using the PCI slots 140. For example, virtual
machines 117 may use the /O devices 150 to expand their
capabilities such as providing additional storage (e.g.,
memory cards or disk drives), specialized processing (e.g.,
video cards), specialized function (e.g., wireless cards), and
the like. Further still, in one embodiment, the I/O devices 150
may be owned or assigned to a particular system resource and
managed by a particular device driver 150. For example, each
virtual machine 117 may be assigned a specific I/O device
150, or the memory space in an /O device 150 may be
separated into a plurality of partitions where each partition is
assigned to a specific virtual machine 117. Although virtual
machines 117 and processors 125 are examples of system
resources in host computing device 105 that may communi-
cate with the I/O devices 150, the embodiments described
herein are not limited to such.

[0031] To facilitate communication between the system
resources and the [/O devices 150, host computing device 105
includes PHB 130 and one or more PCI switches (not shown).
Generally, PHB 130 provides an interface between PCI com-
munication and a communication method used to transfer
data within host computing device 105. For example, host
computing device 105 may transfer data internally using a
system bus and a parallel data communication method while
some embodiments of PCI use serial communication to trans-
mit data to and received data from the I/O devices 150. PHB
130 serves as an intermediary between these two communi-

US 2015/0301967 Al

cation techniques. Moreover, PHB 130 may perform memory
translations between the memory space in the I/O devices 150
and memory 110 of the host computing device 105. As such,
each PHB 130 may include a first interface that couples to a
bus of the host computing device 105 (e.g., an ASIC inter-
connect bus) and a second interface that couples to the PCI
switch. Having multiple PHBs 130 may be desirable for addi-
tional redundancy or to provide access to a larger variety of
1/O devices 150.

[0032] In one embodiment, PHB 130 is a hardware unit
(e.g., ASICs) mounted in the host computing device 105.
Although not shown, PHB 130 may include firmware or
software that controls and monitors the functions of the PHB
130. Specifically, this firmware or software may include rout-
ing information and/or memory translation information that
permits the PHB 130 to route requests from system resources
in the host computing device 105 to the appropriate I/O device
150, and vice versa.

[0033] FIG.2 illustrates a computing system 200 with MSI
vectors 135 allocated to 1/O devices, according to one
embodiment described herein. Specifically, system 200 illus-
trates communication paths between various elements in
computer system 100 of FIG. 1. As shown, the virtual
machines 117A and 117B and the device drivers 122A and
122B are able to communicate with the hypervisor 115 which
communicates with the PHBs 130A and 130B. The PHBs
130A have respective PCI connections to one or more PCI
slots 140A-D which may be coupled to /O devices.

[0034] In system 200, each PCI host bridge 130A-130B is
assigned a set number of MSI vectors 135. The MSI vectors
135A and 135B illustrate the finite number of MSI vectors
that can be assigned to the I/O devices connected to the PHBs
130 via the slots 140. For example, the hypervisor 115 may
instruct the PHBs 130 to allocate the available MSI vectors
into MSI vector groups 205 that are then allocated to each [/O
device. For instance, MSI vector group 205A may include all
the MSI vectors assigned to the I/O device attached to PCI slot
140A, MSI vector group 205B includes all the MSI vectors
assigned to the I/O device attached to PCI slot 140B, and so
forth. Furthermore, FIG. 2 illustrates that multiple groups of
MSI vectors may be assigned to a single /O device such as a
Single Root I/O Virtualization (SRIOV) adapter/card 210 that
may be partitionable into multiple virtual I/O devices 215. As
shown, the SRIOV adapter 210 is connected to PCI slot 140C
but multiple MSI vector groups (e.g., MSI vector group 205C
and 205D) may be allocated to the SRIOV adapter 210. For
instance, MSI group 205C may be allocated to virtual 1/O
device 215A while MSI group 205D is allocated to virtual I/O
device 215B. MSI vectors can be loaned or moved between
virtual functions on the SRIOV adapter 210 to, for example,
support different protocols on the same SRIOV adapter.
Moreover, the different virtual functions could belong to dif-
ferent virtual machines on the same managed system. In one
embodiment, if the SRIOV adapter 210 adds new virtual
functions or increases traffic across the already configured
virtual functions, MSI vectors may be loaned from other
virtual functions or from other 1/O devices connected to PHB
130B.

[0035] As will be discussed in greater detail below, the
device drivers 122 may negotiate with the hypervisor 115 to
determine how many MSI vectors 135 are allocated to the [/O
device (or devices) managed by the driver 122—i.e., chang-
ing the number of MSI vectors 135 in the /O device’s group
205. The size of the MSI vector groups 205A-D may be

Oct. 22,2015

different depending on, for example, the number of DMA
reads/write performed by the I/O device, priority of the appli-
cations that use the I/O device, number of available MSI
vectors associated with the PHB 130, and the like. Further-
more, after an /O device is assigned a set of MSI vectors 135,
its associated device driver 122 may request additional MSI
vectors 135 be added to its group 205. If no unallocated MSI
vectors 135 are available, the hypervisor 115 contacts other
device drivers 122 to see if they are able to lease MSI vectors
135 in their groups 205 to the requesting device driver 122. In
this manner, the size of the MSI groups 205 may change
dynamically as the device drivers 122 share, or lease out, their
MSI vectors 135.

[0036] FIG. 3 illustrates a method 300 for borrowing MSI
vectors from other I/O devices, according to one embodiment
described herein. Atblock 305, as a computer system boots or
new I/O devices are coupled to a PHB, device drivers that
manage the I/O devices may communicate with the hypervi-
sor for an initial allocation of MSI vectors to assign to the [/O
devices. For example, each PHB may be associated with a
fixed number of MSI vectors. As more I/O devices are con-
nected to the PHB, the hypervisor allocates and binds a por-
tion of the MSI vectors to the new I/O devices, thereby reduc-
ing the number of unallocated MSI vectors that are available
(referred to herein as a free pool of MSI vectors).

[0037] FIG. 4illustrates a computer system 400 performing
the method shown in FIG. 3, according to one embodiment
described herein. For example, the system 400 includes three
virtual machines 417A-C that each include one or more
device drivers 422. In one embodiment, the device drivers
422 A-D all manage I/O devices that are coupled to the same
PHB (not shown). Each device driver 422 includes a MSI
vector group 405 illustrating the number of MSI vectors
allocated to the /O devices managed by the device drivers
422. For example, after the computer system 400 is initial-
ized, the I/O devices for drivers 422A, 422B, and 422D are
each allocated five MSI vectors in their MSI groups 405 while
the I/O device for driver 422C is allocated three MSI vectors
as shown by MSI group 422C. The different symbols in the
MSI groups 405 will be explained below.

[0038] At block 310 in FIG. 3, a device driver transmits a
request to the hypervisor for additional MSI vectors. As
shown in FIG. 4, the device driver 422C (i.e., the requesting
device driver) transmits a request to the hypervisor 115. In
one embodiment, the request is in response to a current or
expected increase in the DMA writes/reads performed using
the I/O device managed by the device driver 422C. That is,
there may be a scheduled or unscheduled event that causes the
1/0O device to want additional MSI vectors. For example, the
computer system 400 may perform a system backup every
night where the files updated during the day are stored in the
1/0O device. As such, either before or during the backup, the
device driver 422C sends a request to the hypervisor for
additional MSI vectors which may reduce the time needed to
complete the system backup.

[0039] In one embodiment, the request to the hypervisor
115 includes a desired number of additional MSI vectors and
a desired lease time. These requests may be based on histori-
cal data, the task being performed, current performance met-
rics, specific user request, and the like. For example, continu-
ing the previous example, if the system backup usually takes
an hour, the device driver 422C may set this as the desired
lease time. In one embodiment, the device driver 422C may
increment the number of MSI vectors that are requested each

US 2015/0301967 Al

time the same task occurs until the device driver 422C iden-
tifies the optimal number of MSI vector to request. This
optimal number may represent the number of MSI vectors
needed to complete the task such that there are enough MSI
vectors to prevent delays (i.e., there is typically at least one
MSI vector that is available to send an interrupt) and without
having too many unused MSI vectors (i.e., too many of the
MSI vectors in the MSI group are available). In this manner,
the device driver 422C may intelligently learn the optimized
number of MSI vectors to request and the lease time using
historical data. In one embodiment, the one or more of the
MSI vectors may be tied to a particular task or thread in the
system to allow for parallel processing on the computer sys-
tem.

[0040] Additionally or alternatively, the device driver 422C
may be preconfigured to request a certain number of addi-
tional MSI vectors and a set lease time based on the task the
1/0 device is performing. For example, when doing a system
backup, the device driver 422C may request a total of 100
MSI vectors for at least fifteen minutes, but when doing
payroll, the driver 422C may request a total of 200 MSI
vectors for one hour.

[0041] Inanother embodiment, the device driver 422C may
monitor performance metrics associated with the I/O device
such as processor or memory utilization, work queue, or the
number of back up requests to determine the number of MSI
vectors to request. For instance, if the processor utilization is
at 80%, the driver 422C requests 25% additional MSI vectors,
but if the processor utilization is at 90%, the driver 422C
requests 50% additional MSI vectors. Moreover, the driver
422C may monitor trends or a rate of change corresponding to
the performance metrics. For instance, if the processor utili-
zation keeps increasing, the device driver 422C may request
more and more MSI vectors for longer lease times until the
utilization begins to fall.

[0042] At block 315 in FIG. 3, the hypervisor determines
whether other device drivers can lease or loan MSI vectors
from their MSI groups to the requesting device driver. As
shown in FIG. 4, the hypervisor 115 sends requests to the
device drivers 422 A, 422B, and 422C (referred to as loaning
device drivers). Once a loaning device driver receives a
request from the hypervisor 115 to loan out its allocated MSI
vectors, the driver may determine whether it is currently
utilizing all of its MSI vectors. For example, the /O device
managed by the loaning device driver may currently be using
all, or a majority of, its allocated MSI vectors, and thus, does
not want to loan out the MSI vectors to prevent its perfor-
mance from decreasing. Additionally, the loaning device
driver may evaluate the desired lease time to see if there are
any upcoming scheduled events that take place during the
lease time. For example, the desired lease time may be an hour
but the loaning device driver may know its /O device is
scheduled to perform a task that requires using the majority
(or all) of its allocated MSI vectors. As such, the loaning
device driver may deny the request. For instance, in FIG. 4,
device driver 422B may have determined not to loan any MSI
vectors to requesting device driver 422C. This is illustrated by
the MSI group 405B remaining the same size since none of
the circles, which each represent an individual MSI vector,
are crossed out.

[0043] In one embodiment, the loaning device driver may
lease only a portion of the additional MSI vectors. For
example, the requesting device drive may request four addi-
tional MSI vectors but the loaning device driver may be

Oct. 22,2015

willing to loan only two MSI vectors. In the example shown
in FI1G. 4, device driver 422 A loans two MSI vectors to device
driver 422C while device driver 422D loans one MSI vector.
The loaned MSI vectors are represented by the crossed out
circles symbolizing that the MSI vectors are unbound from
the I/O devices managed by drivers 422 A and 422D and thus
made available for the /O device associated with device drive
422C.

[0044] In one embodiment, the hypervisor 115 may send
requests to loaning device drivers 422A, 422B, and 422D in
parallel. After receiving replies from the loaning device driv-
ers, if the loaning device drivers offer to share more MSI
vectors than were requested, the hypervisor may determine
which MSI vectors to borrow. For example, if driver 422C
requested three additional MSI vectors and both driver 422A
and 422D offered to lease out three MSI vectors, the hyper-
visor 115 may select to accept all of the MSI vectors from one
of the loaning device drivers or accept a portion of the
requested MSI vectors from each of the device drivers. FIG. 4
is an example of the latter scenario where two of the requested
MSI vectors are borrowed from driver 422A and the other is
borrowed from driver 422D. To determine which offer to
accept, the hypervisor 115 may consider, for example, a pri-
ority associated with the drivers 422 (or their corresponding
1/0O devices or applications), workload on the corresponding
1/0O devices, number of MSI vectors already allocated to the
loaning device drives, and the like.

[0045] Alternatively or additionally, the hypervisor 115
may accept the offer from the loaning device driver with the
most favorable lease terms for the requesting device driver.
For example, if device driver 422C requested three additional
MSI vectors for 1 hour and driver 422B offered to lend three
MSI vectors for 45 minutes (e.g., a first counter-offer) and
driver 422D offered to lend three MSI vectors for only 30
minutes (e.g., a second counter-offer), the hypervisor may
select to borrow the three MSI vectors from driver 422B since
the first counter-offer is closest to the request made by device
driver 422C. Thus, the hypervisor may choose which offers to
accept based on the terms in any counter-offers made by the
loaning device drivers. Continuing the example above,
assume device driver 422 A offers to loan two MSI vectors for
1 hour and a third MSI vector for only 30 minutes. Because
device driver 422 A offers to loan two MSI vectors for the full
hour, the hypervisor 115 may accept these two MSI vectors
from driver 422A and one from driver 422B which is loaned
for only 45 minutes.

[0046] Inanother example, the total number of MSI vectors
the loaning device drivers offer to share may be less than the
number of MSI vectors requested by the device driver 422C.
For example, device driver 422C may have requested four or
more additional MSI vectors but driver 422A was willing to
loan only two, driver 422D was willing to loan only one, and
driver 422B would not loan out any. In this scenario, the
hypervisor 115 may indicate to the requesting device driver
422C that only three additional MSI vectors are available.
[0047] In another embodiment, the hypervisor 115 may
send a request to the loaning device drivers 422 A, 422B, and
422D sequentially. That is, the hypervisor 115 may continue
to query the loaning device drivers until all the requested MSI
vectors are borrowed or until there are no more loading device
drivers remaining to query. In FIG. 4, if device driver 422C
requested three additional MSI vectors, the hypervisor 115
may have queried device driver 422A which loaned out two
MSI vectors and then queried device driver 422D which

US 2015/0301967 Al

provided an additional MSI vector. Thus, device driver 422B
may never have received a request from the hypervisor 115.
Alternatively, the hypervisor 115 may have queried driver
422B but no MSI vectors were available for loan.

[0048] At block 320, the hypervisor informs the requesting
device driver of the available MSI vectors and the negotiated
terms of the lease. For example, there may be only a portion
of the requested MSI vector available for lease or the lease
time periods of some or all of the available MSI vectors may
be less than what was requested. Nonetheless, based on the
information provided by the hypervisor, the requesting device
driver binds the available MSI vectors to its corresponding
1/0 device or devices. The borrowed MSI vectors are repre-
sented in FIG. 4 by the circles encapsulated in the boxes.
Specifically, device driver 422C has borrowed three MSI
vectors—two from device driver 422A and one from device
driver 422D. Once the lease time periods expire, the borrowed
MSI vectors are unbound from the I/O device and allocated
back to the /O devices of the loaning device drivers 422A and
422D.

[0049] Although FIG. 4 illustrates that the MSI vectors in
groups 405 are shown within the device drivers 422 in the
virtual machines 417, this is for ease of explanation. In one
embodiment, the MSI vectors shown in the groups 405A-D
are MSI vectors assigned to a single PHB to which the /O
devices managed by the device drivers 422A-D are coupled.
The device drivers 422 then communicate with the hypervisor
as discussed in method 300 above to reallocate the MSI
vectors assigned to the PHB among the various I/O devices as
shown in FIG. 2.

[0050] FIG. 5 illustrates a method 500 for borrowing MSI
vectors from other I/O devices, according to one embodiment
described herein. Method 500 begins at block 505 where a
device driver transmits a request to the hypervisor for addi-
tional MSI vectors. In one embodiment, block 505 may occur
after MSI vectors have already been allocated to the 1/O
device associated with the requesting device driver. A more
detailed explanation of block 505 was provided at block 310
of FIG. 3 and will not be repeated here.

[0051] At block 510, the hypervisor determines if there
MSI vectors available in the free pool corresponding to the
PHB coupled to the I/O device. That is, the hypervisor deter-
mines which PHB the requesting device drive uses to com-
municate with its corresponding I/O device and whether that
PHB has unallocated MSI vectors (i.e., MSI vectors that are
not yet bound to an I/O device). As discussed above, each
PHB in the computing system may be assigned a set block of
MSI vectors (e.g., 2048 MSI vectors) which can then be
allocated or bound to the 1/O devices coupled to the PHB. If
there are still unallocated MSI vectors in the PHB’s free pool,
at block 515, the hypervisor provides additional MSI vectors
to the vector group assigned to the I/O device of the request-
ing device driver.

[0052] However, if there are no more MSI vectors remain-
ing in the free pool (or not enough to satisty the request), at
block 520, the hypervisor determines if there are any coop-
erative device drivers present. As used herein, cooperative
device drivers are those that indicate to the hypervisor that
they are willing to lease out the MSI vectors allocated to their
1/0 devices to other I/O devices. For example, when 1/O
devices are initially allocated an MSI vector group, they (or
the device drivers) may inform the hypervisor whether they
are willing to share the MSI vectors with other I/O devices.
The hypervisor maintains a list of the cooperative device

Oct. 22,2015

drivers. If there are no cooperative device drivers present, at
block 525, the hypervisor denies the request and the request-
ing device driver maintains its old MSI vector group.

[0053] However, if cooperative device drivers are present,
at block 530, the hypervisor negotiates with these device
drivers to determine how many MSI vectors can be borrowed
and the lease times associated with those MSI vectors. Nego-
tiating with cooperative device drivers, or more generally,
loaning device drivers was discussed in detail in block 315 in
FIG. 3 and will not be discussed here.

[0054] Atblock 535, the hypervisor informs the requesting
device driver of the available MSI vectors and associated
lease times. If the cooperative device drivers were unable to
loan out enough MSI vectors to satisfy the request, the hyper-
visor may nonetheless inform the requesting device driver of
the available MSI vectors. Moreover, the lease times with
some or all of the available MSI vectors may be different than
what was requested by the device driver. For example, the
requesting device driver may have asked to borrow the MSI
vectors for an hour but the cooperative device drivers may be
willing to lend out the MSI vectors for thirty minutes.
[0055] At block 540, the borrowed MSI vectors are bound
to the 1/0 device which can then begin using the MSI vectors
to transmit interrupts to applications and hardware in the
computer system. As the lease times expire, the I/O device
unbinds the borrowed MSI vectors which are returned to the
cooperative device drivers.

[0056] FIG. 6 illustrates a method 600 for binding MSI
vectors to an I/O device, according to one embodiment
described herein. Method 600 begins at block 605 where a
hypervisor receives a request from a 1/O device or a device
driver managing the I/O device to allocate a MSI vector group
to the I/O device. In one embodiment, the [/O device may
request a certain number of MSI vectors, but in another
embodiment, the hypervisor may be configured to provide a
predetermined number of MSI vectors to each I/O device.
However, in one embodiment, the MSI vectors allocated dur-
ing method 600 are not borrowed, and thus, there is no lease
time associated with the MSI vectors. In one embodiment, the
1/0 device is allocated the MSI vectors so long as it remains
communicatively coupled to the PHB.

[0057] Atblock 610, the hypervisor determines if there are
unallocated MSI vectors remaining in the free pool of the
PHB connected to the I/O device. If not, at block 615, the
hypervisor may determine if there are device drivers willing
to lease MSI vectors to 1/O device as described in FIGS. 3 and
5. Moreover, in one embodiment, the computer system may
permit the I/O device to use LSI for transmitting interrupts.
However, if unallocated MSI vectors are available, the hyper-
visor allocates at least some portion of the MSI vectors to the
1/0O device to create its MSI vector group.

[0058] At block 620, the I/O device or its device driver
informs the hypervisor whether the /O device is willing to
participate in MSI vector sharing as described in method 500
in FIG. 5. If so, its device driver is designated as a cooperative
device driver and is queried if, for example, another /O
device coupled to the PHB requests to borrow additional MSI
vectors.

[0059] Atblock 625, the allocated MSI vectors are bound to
the I/O device thereby enabling the I/O device to use the MSI
vectors to transmit interprets to different elements in the
computing system. Moreover, if another /O device requests
via its device driver additional MSI vectors, some or all of the
allocated MSI vectors may be lent to the requesting device

US 2015/0301967 Al

driver for a lease time. Once the lease time expires, the MSI
vectors are returned to the I/O device and again added to its
MSI vector group.
[0060] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos-
sible implementations of systems, methods, and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical function
(s). In some alternative implementations, the functions noted
in the block may occur out of the order noted in the figures.
For example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may some-
times be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi-
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions.
[0061] While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.
What is claimed is:
1. A method comprising:
upon receiving a first request to increase Message Signaled
Interrupt (MSI) resources allocated to a first PCl-en-
abled Input/Output (1/0) device coupled to a PCI Host
Bridge (PHB), identifying at least a second PCl-enabled
I/O device that is allocated MSI resources;
transmitting a second request to a managing entity corre-
sponding to the second /O device, the second request
indicating a desired number of MSI resources and a
desired lease time;

Oct. 22,2015

receiving a confirmation from the managing entity, the
confirmation indicating a number of MSI resources
available for lease from the second I/O device and a
negotiated lease time associated with each of the MSI
resources available for lease; and

allocating at least one of the MSI resources available for

lease to the first I/O device.

2. The method of claim 1, wherein the first and second I/O
devices are both coupled to PCI slots associated with the same
PHB.

3. The method of claim 1, wherein the number of MSI
resource available for lease is less than the desired number of
MSI resources, wherein the managing entity is the device
driver that configures the I/O device.

4. The method of claim 1, further comprising:

transmitting the second request to a plurality of device

drivers that are each associated with at least one PCI-
enabled 1/O device; and

determining a total number of MSI resources the plurality

of device drivers are willing to lend,

wherein allocating the MSI resources to the MSI device

comprises allocating at least two MSI resources to the
first /O device that were previously assigned to at least
two different I/O devices.

5. The method of claim 4, wherein the total number of MSI
resources the plurality of device drivers are willing to lend are
greater than the desired number of MSI resources.

6. The method of claim 1, further comprising, before trans-
mitting the second request to the managing entity and upon
determining the PHB includes unallocated MSI resources in
a free pool, allocating to the first /O device at least one of the
MSI resources in the free pool.

7. The method of claim 1, wherein, before receiving the
first request to increase the MSI resources allocated to the first
1/O device, the first I/O device was previously allocated one or
more MSI resources.

