wo 2023/023430 A1 |0 000 KA1 0 0001 00 000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
23 February 2023 (23.02.2023)

(10) International Publication Number

WO 2023/023430 Al

WIPO I PCT

(51) International Patent Classification:

GO6F 8/34 (2018.01) GO6F 9/455 (2018.01)
GO6F 8/36 (2018.01) G060 10/10(2012.01)
GO6F 9/451 (2018.01) GO6F 40/174 (2020.01)

(21) International Application Number:
PCT/US2022/073909

(22) International Filing Date:

19 July 2022 (19.07.2022)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
17/445,162 16 August 2021 (16.08.2021) UsS

(71) Applicant: GOOGLE LLC [US/US]; 1600 Amphitheatre
Parkway, Mountain view, California 94043 (US).

(72) Inventors: PROCOPIO, Michael Jeffrey, 1600 Am-
phitheatre Parkway, Mountain view, California 94043 (US).
HASHMI, Sarmad; 1600 Amphitheatre Parkway, Moun-
tain view, California 94043 (US).

Agent: KRUEGER, Brett A.; 300 Ottawa Ave. NW, Suite
400, Grand Rapids, Michigan 49503 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE,
KG, KH, KN, KP, KR, KW,KZ, LA, LC,LK,LR, LS, LU,
LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,

(54) Title: CREATING DYNAMIC DATA-BOUND CONTAINER HOSTED VIEWS AND EDITABLE FORMS

1 e
| 120,124
uli122

140

V/-'IOO

Software I
* | Resource(s)

202 206 Form Manager 200
120~ Host .
Container
ol |
Front End - Form Data
124 App T Source 210
12

130

FIG. 1A

(57) Abstract: A method (400) for using a user-fillable form (202) in a host container (120) includes receiving, at a host container, a
user-fillable form bound to dynamic data (206) from an underlying data source (210) where the user-fillable form has a data structure
(222) generated by prepopulated coding. The method further includes translating the user-fillable form into a hostable format (232) for
the host container. The method also includes rendering, using the hostable format for the host container, the user-fillable form in a user
interface (122). The method further includes receiving, at the user interface of the host container, from a user (10) of the host container,
a data entry for input to the user-fillable form and updating, by the host container, the dynamic data from the underlying data source by
persisting data (12) from the data entry in a data store (210) associated with the underlying data source.

[Continued on next page]

WO 2023/023430 A | /100000000 00RO 0 V00 T

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

WO 2023/023430 PCT/US2022/073909

Creating Dynamic Data-Bound Container Hosted Views and
Editable Forms

TECHNICAL FIELD
[0001] This disclosure relates to creating dynamic data-bound container hosted views

and editable forms.

BACKGROUND
[0002] Application designers or design teams generally invest many hours, days, or
weeks perfecting the designs for front-end features for a particular application. The
designers then hand the designs for the front-end features over to developers or computer
software engineers, who again spend hours, days, or weeks writing computer code to
recreate those design features. This designer/developer paradigm common to the
application industry is extremely inefficient, requiring the developers to reinvent the
wheel with respect to each new feature. Moreover, the computer code required to render
each front-end feature or component (e.g., a login feature, a registration feature, a user
profile feature, a content or news feed, a navigation bar, a media upload feature, a map
and location feature, and other common features) is largely the same across different
applications for the same or similar features. Nevertheless, the developers/computer
software engineers are often required to develop these features from scratch each time in

a process that may take several days or weeks.

SUMMARY
[0003] One aspect of the disclosure provides a computer-implemented method for
using a user-fillable form in a host container. The computer-implemented method, when
executed by data processing hardware, causes the data processing hardware to perform
operations. The operations include receiving, at a host container, a user-fillable form
bound to dynamic data from an underlying data source where the user-fillable form has a
data structure generated by prepopulated coding. The operations further include
translating the user-fillable form into a hostable format for the host container. The

operations also include rendering, using the hostable format for the host container, the

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

user-fillable form in a user interface. The operations further include receiving, at the user
interface of the host container, from a user of the host container, a data entry for input to
the user-fillable form and updating, by the host container, the dynamic data from the
underlying data source by persisting data from the data entry in a data store associated
with the underlying data source.

[0004] Another aspect of the disclosure provides a system for using a user-fillable
form in a host container. The system includes data processing hardware and memory
hardware in communication with the data processing hardware. The memory hardware
stores instructions that when executed on data processing hardware cause the data
processing hardware to perform operations. The operations include receiving, at a host
container, a user-fillable form bound to dynamic data from an underlying data source
where the user-fillable form has a data structure generated by prepopulated coding. The
operations further include translating the user-fillable form into a hostable format for the
host container. The operations also include rendering, using the hostable format for the
host container, the user-fillable form in a user interface. The operations further include
receiving, at the user interface of the host container, from a user of the host container, a
data entry for input to the user-fillable form and updating, by the host container, the
dynamic data from the underlying data source by persisting data from the data entry in a
data store associated with the underlying data source.

[0005] Implementations of either aspect of the disclosure may include one or more of
the following optional features. In some implementations, the operations further include
requesting, by the host container, an application associated with the data source to
generate the user-fillable form wherein receiving the user-fillable form comprises
receiving the user-fillable form generated by the application associated with the data
source. In some examples, rendering the user-fillable form in the user interface includes
rendering the user-fillable form in the user interface in response to an indication of a user
action performed in the host container where the user action indicates that the user
intends to communicate with the underlying data source. In some configurations, the
operations also include querying the underlying data source for the dynamic data,

receiving query results comprising current data corresponding to the dynamic data from

10

15

20

25

WO 2023/023430 PCT/US2022/073909

the underlying data source, and populating the current data in the user-fillable form,
wherein the user-fillable form rendered in the user interface comprises the current data.
In some examples, the operations further include determining whether the data entry
received from the user for input to the user-fillable form comprises a valid data entry
wherein updating the dynamic data from the underlying data source by persisting the data
from the data entry in the data store associated with the underlying data source occurs
when the data entry received from the user for input to the user-fillable form comprises
the valid data entry. In these examples, when the data entry received from the user for
input to the user-fillable form comprises an invalid data entry, the operations may
generate an indication that the data entry is invalid and receive a valid form of the data
entry. Here, updating the dynamic data from the underlying data source includes using
the valid form of the data entry to update the dynamic data from the underlying data
source. In some implementations, the operations also include determining that the user is
an authenticated user permitted to access a portion of the dynamic data associated with
the data entry. The user-fillable form may include a read-only field and an editable field
capable of receiving user-generated data. The underlying data source may be hosted by
an application residing outside of the host container. Updating the dynamic data from the
underlying data source may occur as the user interface receives the data entry for input to
the user-fillable form from user.

[0006] In some examples of either aspect of the disclosure, the host container
executes an electronic mail (email) communication application. In these examples, the
user interface may render the user-fillable form comprises a body of an email message.
In some implementations, updating the dynamic data from the underlying data source
occurs responsive to the user sending the email message to an email recipient where the
email message includes the data entry input to the user-fillable form rendered in the body
of the email message.

[0007] The details of one or more implementations of the disclosure are set forth in
the accompanying drawings and the description below. Other aspects, features, and

advantages will be apparent from the description and drawings, and from the claims.

10

15

20

25

WO 2023/023430 PCT/US2022/073909

DESCRIPTION OF DRAWINGS
[0008] FIG. 1A is a schematic view of an example computing environment that
includes a form manager.
[0009] FIG. 1B is a schematic view of an example computing environment that
includes a form manager coordinating multi-party form use.
[0010] FIGS. 2A-2E are schematic views of examples of a form manager.
[0011] FIGS. 3A and 3B are schematic views of example forms generated by a form
manager.
[0012] FIG. 4 is a flow chart of an example arrangement of operations for a method
of using an editable form for a host container.
[0013] FIG. 5 is a schematic view of an example computing device that may be used
to implement the systems and methods described herein.

[0014] Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION
[0015] Today the workload of many people revolves around various computing
applications. That is, in the digital age, the jobs and lifestyles of people tend to center
around a computer. For instance, many people’s jobs rely on email communication, word
processing applications, spreadsheet applications, file generation and modification
applications, database or data collection applications among others.
[0016] With a plethora of different applications, people have become accustomed to
using multiple applications simultaneously or using multiple pages of a single application
as part of their everyday workspace (e.g., multiple tabs in a web-browser). Whether a
user realizes it or not, the user is often transferring the data from one application or page
to be fed or input into another application. For instance, the user is generating a slide
deck for a presentation by obtaining data from a spreadsheet to build a chart or convey
particular information. This type of multitasking is typically referred to as context
switching (or task switching). In other words, the user switches his or her attention
between two or more tasks (e.g., two or more content delivery objects). Unfortunately,

from a human perspective, switching one’s attention between multiple tasks is, not only

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

taxing on the human brain, but also inefficient and may diminish potential productivity
capabilities. Here, each change in attention inherently causes changeover time that can
accumulate to a significant time loss. For example, the simple task of copying data from
one application (e.g. a pdf form reader) to another application (e.g., a spreadsheet or
database) can become quite burdensome and time consuming. Furthermore, the human
mental facilities have to resituate themselves each time the task shifts. This can demand
a high level of continued focus to multi-task effectively over longer periods of time;
increasing the likelihood of mental fatigue. When one or more of these factors
compound, context switching may cause unwanted outcomes such as errors or lower
overall productivity.

[0017] As an example, in the situation where an employee wants to request time off
for a vacation, the employee’ company may have a template form that requests particular
information from the employee about the request for time off. To illustrate, the form may
include fields that prompt information such as dates of the time off, the department of the
employee, the manager of the employee, the manager’s email, the employee’s email,
whether the employee is using vacation time or sick time, etc. Here, the employee’s
company may have a policy to complete and submit the time off request form to the
employee’s manager. In this example, the completed form has to be emailed to the
employee’s manager as an attachment. After completing the form, the employee emails
his or her manager with a summary of the request in the body of the email along with the
completed form as an attachment. In this situation, the employee may use multiple
applications to complete this seemingly simple request. The employee will have to use
an email application to generate the email, a document retrieval application to retrieve the
form, and a form-filling application to complete the form (or some means to print a
hardcopy and then re-digitize the completed hardcopy). This means that the employee’s
workflow may be to create an email to his or her manager, then complete the form using
the document retrieval and form-filling applications, and then return to the email to attach
the completed form and summarize the request in the body of the message to the
manager. This process inherently burdens the employee with several instances of task

switching (e.g., from filling the form to generating the email). Moreover, if the employee

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

is not careful, the completed form and the summary in the email may have discrepancies
that may introduce further burdens (e.g., additional follow-up) on the process.

[0018] Situations like the time off request are often commonplace in work
environments even though these processes are generally not substantive processes related
to an employee’s job function. That is, employees are often required to perform ancillary
processes (e.g., administrative processes) such as time off requests, reitmbursement
requests, travel requests, meeting requests, approval requests, signatory requests, quality
control documentation, process deviation requests, overtime requests, etc., in addition to
their primary job functions. Here, it would be advantageous if these ancillary processes
were more efficient and did not routinely suffer from context switching to enable
employees to focus their time on other job functions (e.g., primary job functions).

[0019] Context switching also tends to manifest today due to the data driven nature of
many workflows. With increased computing power and accessibility, vast amounts of
data is collected and available for various analytics. Yet to perform analysis on such
collected data often requires the data to be transferred or translated into one or more
forms. Returning to the time off request example, the employee’s manager receives the
completed time off request form and may be required to input the information into some
log of employee time off (e.g., for payroll and accounting purposes). Here, this means
that the manager opens the completed form in a document reader application and
transfers the information gathered in the completed form into an employee database (e.g.,
a spreadsheet containing employee information). Additionally, the manager may need to
cross-reference the employee database to determine whether the employee is eligible for
the time off requested or, alternatively, if the employee’s request is feasible with
employee scheduling. For instance, the employee may be one of two people capable of
performing a certain manufacturing process. Here, the other employee capable of
performing the manufacturing process may have already been approved for time off
during the requested dates. In this situation where there is a scheduling conflict, the
manager may then deny the employee’s request or inform the employee of the conflict.
Much like the tasks to generate the time off request by the employee, the managerial side

of the time off request/approval process may also require context switching to enter the

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

data into the employee database and to respond to the employee request (e.g., via a reply
email).

[0020] To address some of the issues with context switching, certain applications
have evolved to function as a centralized workspace or hub. In other words, these
centralized applications may integrate with one or more other applications in some
manner. Some centralized applications may promote efficiency by linking or sheparding
a user to another application with minimal additional user input. For example, an email
communication application opens a calendar or scheduling application when generating a
meeting request. In another example, a file management application renders a static view
or preview of a file for the user. Although this integration may promote some
efficiencies by guiding the user directly to a particular destination, this approach still
inevitably encounters context switching because the user is diverted from their current
location. Stated differently, the user does not remain in-page at the primary application.
Instead, the primary application is configured to transfer the user to another window or
page. In the case of scheduling a meeting request in an email application, the email
application opens a window to a schedule of the invited guests and then the user returns
to the email to complete and send the meeting request. Similarly, when an email includes
an attached document, the document is not embedded live into the body of the email such
that the document is capable of being edited in the email body itself. Rather, the email
application provides access to the document by way of a viewer application coordinating
with the email application.

[0021] To overcome some of these issues, the approach described herein functions to
generate forms that can be rendered in-page at the primary application. Furthermore,
these forms may include editable portions in-page that gather data from the user. These
forms may also be configured such that when the user submits the form with inputted
data (e.g., in-page) or merely inputs data into the form, the data is updated in the
underlying data source (e.g., a data storage associated with the underlying data source).
This means that, in the case of time off request/approval, the employee may open an
email template that loads the time off request in the body of the email. The employee

may then proceed to fill-in the information in the necessary field in the body of the email

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

to complete the time off form. After the employee’s time off request data is input into the
form rendered in the body of the email, the form may function in a few ways. In one
manner, the form is configured such that, when the employee enters data into the form,
the data is automatically updated in the underlying database or data store that includes
employee time off request information. In other manner, the form is configured such
that, when the employee sends the email including the completed form to his or her
manager, the action of sending the email triggers the data entered into the form to be
updated (e.g., persisted) in the underlying database or data store that includes employee
time off request information. In yet another manner, the form is configured with a submit
button separate from the send function that, when the employee selects the submit button,
the submit action triggers the data entered into the form to be updated (e.g., persisted) in
the underlying database or data store that includes employee time off request information.
[0022] Additionally or alternatively, the in-page form rendered in the application may
include live or current data from the underlying source. That is, in the previously
mentioned case of the scheduling conflict, the manager may not have entered the other
employees approved time off into the employee database yet. In a conventional situation
where the employee may be able to see some portion of the employee database to identify
scheduling conflicts at the time of request, the manager’s inability to enter the other
employees request would result in the employee generating the request for the conflicted
dates unbeknownst to the employee. In contrast, if the employee database automatically
updated when the other employee submitted the request, the employee may be able to see
the live version of the employee database for scheduling and avoid consuming time
generating a request that is likely to be denied.

[0023] Unfortunately, rendering an editable form in an application is not without its
difficulties. That is, generating a form that is compatible with a particular portion of an
application (e.g., in-page) can often become a time-consuming coding process. In other
words, a sophisticated coder or programming would need to author the form in a manner
that is compatible with target application (or portion thereof). Yet this may become cost
or time prohibitive, especially for ancillary processes. In other words, to generate a

custom-programmed form that performs an ancillary process may not align with other

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

business interests where, for example, time and resources could be invested to improve
primary processes.

[0024] To avoid custom programming, the form described herein is a result of a no-
code form generator. A no-code form generator refers to an engine or form-authoring
application that includes templatized or pre-populated coding for form elements, form
dependencies, and/or form automation. With templatized or pre-populated coding for
these or other form components, an entity without coding sophistication may use the no-
code form generator to build a custom form for a particular target application. That is,
the entity using the no-code generator will not need to specify or input code to build the
form. This enables users with a wide range of code skills (e.g., ranging from little to no
coding skill to more sophisticated coders) to generate user-fillable forms that operate in-
page or embedded in some particular portion of a target application. Furthermore, the
form may exist or be configured to be embedded in an application hosted (e.g.,
executing) in a host container that does not include the underlying data source of the
form. In this respect, the underlying data source of the form may be hosted or associated
with another application residing outside of the host container where the form is to be
rendered for the user to utilize.

[0025] Referring to FIGS. 1A and 1B, the computing environment 100 includes a
user 10 operating a user device 110 (also referred to as the device 110) to communicate
with a form manager 200. The form manager 200 is configured to generate a form 202
(also referred to as a user-fillable form 202) that is capable of being hosted in a format
that a host container 120 can render as a user interface 122 for the user 10. A host
container 120 generally refers to an abstraction at the application layer that is able to
virtualize an operating system to run an application (e.g., the application 124) as an
independent and self-contained application environment. In this sense, a host container
120 functions as a stand-alone unit with all of the necessary components to operate the
application 124 contained therein (e.g., application binaries, application dependencies,
hardware requirements, etc.).

[0026] As shown in FIG. 1A, as application 124 executes, the application 124 may

generate a user interface 122 that presents the user 10 with the form 202 from the form

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

manager 200. Here, the application 124 is considered a front-end application because it
is a user-facing application that allows the user 10 to enter user data 12 into the form 202.
For instance, the form 202 includes form elements 204, 204a—n such as form fields 1-n
that the user 10 may read data from (e.g., read-only elements) or write data into (e.g.,
write user data 12 to editable elements). Once the form 202 receives the user data 12
(e.g., as form data entry), the form manager 200 communicates the user data 12 to an
underlying data source 210 or a form data source 210. The form data source 210 is
configured to store the user data 12 along with other form data 206 relating to the form
202. Here, the form data source 210 is shown as a data store integrated with the form
manager 200 Yet in other configurations, the form data source 210 is simply associated
with or accessible to the form manager 200 (e.g., another database or database
management application that is in communication with the form manager 200).

[0027] The device 110 may correspond to any computing device associated with the
user 10 and/or author 20. When the device 110 is associated with the user 10, the device
is capable of executing the host container 120 and/or application 124. For instance, FIG.
1A depicts a first user device 110, 110a associated with the user 10 executing the
application 124. When the device 110 is associated with the author 20, the device 110 is
capable of providing the processing resources to coordinate form generation (e.g., the
form manager 200). For example, FIG. 1A illustrates a second user device 110, 110b
associated with the author 20 using the form manager 200 to generate the form 202 for
the application 124. In some examples, user devices 110 include, but are not limited to,
mobile devices (e.g., mobile phones, tablets, laptops, e-book readers, etc.), computers,
wearable devices (e.g., smart watches), smart appliances (e.g., smart televisions) and
internet of things (IoT) devices, remote controls, smart speakers, etc. The device 110
includes data processing hardware 112 and memory hardware 114 in communication
with the data processing hardware 112 and storing instructions, that when executed by the
data processing hardware 112, cause the data processing hardware 112 to perform one or
more operations related to form entry and/or form generation.

[0028] The device 110 may also include a display 116 to display graphical user

interface (GUI) elements (e.g., a form elements 204) and/or graphical content. Some

10

10

15

20

25

WO 2023/023430 PCT/US2022/073909

examples of GUI elements include windows, screens, icons, menus, fields, text, etc. In
this sense, the display 116 is configured to display the user interface 122 including any
form elements 204 associated with the form 202 for the user 10. These form elements
204 may be elements that the user 10 may interact with (e.g., selectable GUI elements or
editable GUI elements) in order to enter the user data 12 into the form 202.

[0029] The author 20 is an entity that uses the form manager 200 to generate the form
202 presented as a user interface 122 in the front-end application 124. Since the form
manager 200 includes a no code form generator (e.g., the form builder 220), the author 20
of the form 202 does not need to be a sophisticated programmer or coder to design and
implement the form 202 for the host container 120. Rather, the author 20 may be an
administrative entity, information technology personnel, or some other entity in charge of
the process being performed at the application 124 that the form 202 is integrated with
(e.g., an approval manager for the time off request/approval process). The author 20 may
be the same entity as the user 10 or a different entity. For instance, the author 20 refers to
the user of the form 202, but at the form generation stage rather than the form entry stage.
In other words, the user 10 designs the form 202 as an author 20 to then later use as the
user 10 during implementation of the form 202.

[0030] As shown in FIG. 1A, the host container 120 and/or the form manager 200
may be software hosted by a remote system 130 (e.g., a distributed computing system
such as a cloud environment) in communication with the user device 110 via a network
140. For example, either the application 124 or the form manager 200 may be provided
to the user 10 and the author 20 (respectively) as software as a service (SaaS) from a
software service provider (e.g., the owners/managers the remote system 130). The
remote system 130 may include scalable remote resources 132, such as remote data
processing hardware 134 (e.g., remote servers or CPUs), remote memory hardware 136
(e.g., remote databases or other storage hardware), and/or remote software 138 (e.g.,
software applications hosted by the remote system 130). The device 110 may utilize the
remote resources 132 to perform various functionality related to form entry and/or form

generation.

11

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

[0031] In some implementations, one or more components of the form manager 200
may reside on the device 110 (referred to as on-device components) or reside remotely
(e.g., reside on the remote system 130), but in communication with the device 110. In
other words, any of these components of the form manager 200 (e.g., the data store 210, a
form builder 220, a form translator 230, and an updater 240) may be local or remote in
any combination. For instance, the form translator 230 may reside on the device 110 to
translate the form 202 to a format that the host container 120 (e.g., the application 124)
can render while the other components (e.g., the data store 210, the form builder 220, and
the updater 240) reside remotely. In some configurations, when a component of the form
manager 200 is rather large in size or processing requirements, the component may reside
in the remote system 130. Yet when the device 110 may support the size or the
processing requirements of one or more components of the form manager 200, the one or
more components of the form manager 200 may reside on the device 110 using the data
processing hardware 112 and/or the memory hardware 114. For instance, the form
manager 200 may be an application that the user 10 downloads and stores in the memory
hardware 114 of the user device 110. Optionally, the one or more components of the
form manager 200 may reside both locally/on-device and remotely. For instance, one or
more components of the form manager 200 may default to execute on the remote system
130 when a connection to the network 140 between the device 110 and remote system
130 is available, but when the connection is lost or the network 140 is unavailable, the
components of the form manager 200 instead execute locally on the device 110.

[0032] The form 202 authored by the author 20 and generated by the form manager
200 generally refers to a user-fillable form. That is, the form 202 includes one or more
fields or form elements 204 that the user 10 may write user data 12 to (e.g., an editable
field) or read data from (e.g., a read-only field). The author 20 may generate the form
202 such that the form 202 is capable of supporting form elements 204 from traditional
form fields, such as text areas, dropdown lists, and/or user action buttons, or even non-
traditional form fields. The form 202 may also include varying degrees of logic such that
a data entry by the user 10 or a user action within the form 202 can trigger different

events to occur (i.e., perform some preconfigured automation). For example, in the case

12

10

15

20

25

WO 2023/023430 PCT/US2022/073909

of the time off request, the form 202 is configured to automatically send the completed
form 202 to the manager of the employee when the user 10 completes a particular set of
fields or the user 10 selects “submit.” For instance, the author 20 configures the form
202 to lookup the manager that corresponds to the requesting employee and to populate
the manager’s email as the destination for the completed form 202 or some portion
thereof. This means that user input and/or user actions in the form 202 can be posted or
communicated to listener endpoints; thus allowing these inputs/actions to tie into other
functionality, such as persisting the entered user data 12 into the underlying data source
210 or communicating the entered user data 12 to a particular destination (e.g., the
manager’s email address).

[0033] Generally speaking, the author 20 designs the form 202 to be associated or
bound to a particular set of data referred to as form data 206. Here, the author 20 may
design the form data 206 to be any type of schema or view definition. When the form
202 is then rendered as the user interface 122 at the application 124, the form 202 is
configured to render the form data 206 that the author 20 has bound to the form 202. For
instance, when the user 10 initiates the form 202 at the application 124, the form 202
queries (e.g., via the form manager 200) the underlying data source 210 for the form data
206 and generates the form 202 for the user 10 with the form data 206 resulting from the
query. Toillustrate, FIG. 1A depicts the application 124 and/or user device 110
generating a form generation request 14 that queries the form manager 200 for the form
data 206. In some examples, the author 20 configures the form data 206 to be data from a
table or data set with a defined schema/definition type. In other words, the author 20
binds the form data 206 to a particular data model (e.g., a custom data model or a
preconfigured data model). For instance, in the time off approval process, the form 202
for the employee (i.e., the user 10) may be bound to data from a table in an employee
database. Here, although the table may be modeled to include many different columns of
data that are pertinent to employees, the author 20 may design the form 202 to be bound
to particular columns of data such that data entered into the form 202 enters data (e.g., as

a new record or data entry) into particular columns of the table. That is, depending on the

13

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

underlying data source 210 and design of the form 202, the form data 206 may
correspond to a subset of columns in a row of a particular reference table.

[0034] Although the form 202 may be bound to the form data 206, the fact that the
form 202 is bound to the form data 206 does not make the form data 206 static in nature.
Rather, the form data 206 may dynamically change (e.g., within a particular set of
constraints). For example, the form data 206 may be bound to the columns of the

29 CC

employee database that include “employee name,” “employee email,” “employee

manager,” “manager email,” “requested dates,” and a column that indicates whether the
request is for paid time off or sick time. In this example, some of these fields of the form
data 206 may be prepopulated with data when the form 202 is rendered (e.g., readable
fields) while others may be blank to allow the user 10 to enter user data 12 into the field
(i.e., writable fields). That is, “employee manager” and “manager email” may be
populated in the form 202, but the field corresponding to the “requested dates” is not
populated (i.e., a blank field with a prompt to enter the requested time off dates). In this
example, if the organization undergoes a restructuring, the employee’s manager may
change in the underlying data source 210, but the form 202 will nonetheless populate the
new approval manager (e.g., without necessarily requiring any further user input). In this
respect, the form 202 can be tied to form data 206 that is fluid and changing such that the
form 202 represents live (i.e., current) form data 206.

[0035] Moreover, the form 202 may pull form data 206 from the underlying data
source 210 (e.g., a table associated with the source 210) to facilitate data constraints on
the user data 12 that may be input into the form 202. In other words, if the author 20
authors the form 202 to include five columns from a table where one of the columns is
constrained to a price or number data type, the form 202 will reflect this data type
constraint at the user interface 122. For instance, if the user 10 attempted to enter user
data 12 that does not satisfy the constraint, the form 202 may not accept the user data 12
or not allow the user data 12 to submit the form 202 without satisfying the constraint.
For example, the form 202 is configured to communicate an indication of whether a user
data entry is a valid data entry (i.e., satisfies any constraints) or is an invalid data entry.

Additionally, when the data entry by the user 10 is an invalid data entry, the form 202

14

10

15

20

25

WO 2023/023430 PCT/US2022/073909

may be configured by the author 20 to provide some indication as to why the data entry is
invalid (e.g., “Invalid data type — Please enter a number”). In this respect, the form 202
may be configured by the author 20 with validation capabilities that ensure that user data
12 satisfies desired constraints. By satisfying such constraints, user data 12 may then be
entered into the underlying data source 210 (e.g., the table) without disrupting or
disturbing the organization of the data source 210.

[0036] Referring further to FIG. 1A, while using the application 124 from the host
container 120, the user device 110 (e.g., via the user 10) may perform some action that
invokes the use of the form 202. For instance, the application 124 is an email
communication application and the user 10 creates a new email that populates the form
202 as a template embedded in the body of the email. Here, for the email communication
application, the form manager 200 may setup the form 202 to be rendered in a particular
format compatible with the body of an email, such as an accelerated mobile page (AMP).
An AMP refers to a particular language format similar to a page of HyperText Markup
Language (HTML), but different in that AMP is configured with a limited set of
allowable functionality (e.g., allowing it to be integrated with email) that promotes
mobile deployment. When the action occurs (e.g., when the user 10 creates an email that
will populate the form 202), the form 202 may be configured upon initiation to request
the form data 206 corresponding to the form 202. For instance, FIG. 1A depicts the user
device 110 and/or application 124 communicating a form generation request 14 to the
form manager 200. In response to the request 14, the form manager 200 may return the
form 202 along with the form data 206 to the source of the request 14. With the form 202
and its corresponding form data 206, the user 10 is able to enter user data 12 into the
form 202 (e.g., enter user data 12 into one or more field elements 204). In the case of the
form 202 being embedded in the body of an email, sending the email that includes the
form 202 may function as the trigger that communicates the user data 12 in the form 202
back to the form manager 200. With the user data 12, the form manager 200 may update
the form data 206 in the underlying data source 210 by persisting the user data 12 to the

form data source 210 (e.g., storing the user data 12 in a data store associated with the data

15

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

[0037] FIG. 1B is similar to FIG. 1A, but illustrates one or more forms 202 being
used in a multi-party scenario. A multi-party form scenario may be a situation where a
first process (e.g., filling-in a first form 202, 202a) can trigger one or more secondary
processes). Returning to the time off request/approval example to describe FIG. 1B, the
first process refers to the employee as the first user 10, 10a filling out the time off request
form 202, 202a. This first process then triggers a secondary process of time off approval
by the employee’s manager shown as the second user 10, 10b. Here, at the first step 1,
the user device 110 generates the request 14 for the form 202 and/or the form data 206
corresponding to the form 202. At step 2, the form manager 200 returns the form 202
along with the form data 206 and coordinates with the application 124 to renders the form
202 as the user interface 122 at the application 124. In some examples, when the form
manager 200 renders the form 202, the form manager 200 is configured to generate a new
record in the form data source 210 for the new or requested instance of the form 202 (i.e.,
the form manager 200 inserts a new row in a table that corresponds to the form data 206).
In other words, the form manager 200 renders the form 202 with form data 206 that
includes one or more empty entries (i.e., blanks) to enable the user 10 to submit user data
12 into these empty entries. In the example of FIG. 1B, the form 202 includes three field
elements 204, 204a-c. The first element 204a is a dropdown list that characterizes the
type of request being made by the request form 202a (e.g., the user 10 may select a
“vacation” request type). The second element 204b is a field where the user 10 enters
user data 12 corresponding to the requested vacation data (e.g., shown as “August 16—
207). The third element 204c is an action element that triggers the submission of the
request form 202a. Here, the user 10 completes the request form 202a and selects the
submit button (i.e., the third element 204b). By selecting the submit button, the submit
button serves as a trigger for the secondary process of time off approval. That is, the
submit button may be configured to generate a subsequent approval form 202 (e.g.,
shown as the second form 202, 202b) following submission of the request form 202a
(e.g., shown as the first form 202, 202a). Moreover, at step 3, the submission of the
request form 202a by the first user 10a sends the user data 12 entered into the request

form 202a to the form manager 200 so that the form manager 202 may persist the user

16

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

data 12 into the data form source 210 (e.g., shown as a table). Step 4 may occur
simultaneously with step 3 or subsequent to step 3. At step 4, the manager 10b receives
the approval form 202b that includes four form elements 204d—f where three of the four
form elements 204d—g are populated with user data 12 from the employee 10a. In this
situation, the form 202 has a fourth element 204g that is blank such that that the manager
10b may select from a dropdown list of whether, for example, the manager 10b approves
or denies (or some alternative response) the time off request from the employee 10a. In
this example of an approval form 202b, the other elements 204d—e identify that the type
of request (e.g., shown as a vacation request), the employee submitting the request (e.g.,
employee X), and the requested vacation dates (e.g., shown as “August 16-207).
Although not shown, the manager 10b, similar to step 3, may communicate the user data
12 entered by the manager 10b (e.g., approve or deny) back to the form manager 200
when the manager 10b completes the fourth element 204g. In this respect, any additional
data generated by the manager, such as the manager’s approval decision, is stored in the
form data source 210.

[0038] Referring to FIGS. 2A-2E, the form manager 200 includes the form data
source 210, an application editor 225, and a runtime server 235. The application editor
225 implements a form builder 220, and the runtime server 235 implements a form
translator 230 and an updater 240. In some implementations, the form manager 200
functions as a backend application that faces the author 20 and the host container 120 or
application 124 rather than being in direct communication with the user 10. The form
builder 220 functions as the no code form generator. That is, the author 20 utilizes the
form builder 220 to build the form 202 that will be rendered for the user 10 as the user
interface 122 (e.g., for the application 124 of the host container 120). In this sense, the
form builder 220 dictates the user experience (i.e., how the form 202 looks and feels).
With the form builder 220, the author 20 may designate the form data 206 from the form
data source 210. For instance, the author 20 designates that the form data 206
corresponds to some portion of one or more tables of data stored at the form data source
210. In addition to simply designating the form data 206, the author 20 uses the form
builder 220 to generate the data structure 222 of the form 202 according to form elements

17

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

206 that are templatized or precoded. In other words, the form builder 220 may tie form
data 206 to form widgets, such as dropdowns, lists, buttons, icons, fields, text, prompts,
titles, headings, or different types of graphical content (e.g., charts, diagrams, graphics, or
other media content). With precoded or templatized elements 204, the author 20 does not
need to input or specify any particular coding for the form 202, but rather can focus on
aspects of the form 202 such as the form’s aesthetics or logic. In this sense, the author 20
does not need to be a developer who often needs to know coding as well as design, but
can instead address the design of the form 202 and how it will function in a particular
workflow. This allows the author 20 to concentrate on how the form 202 will seamlessly
integrate with the application 124 in order to prevent undesirable user actions, such as
context switching. The author 20 may also designate a message or text, such as a body of
an email functioning as a preamble or footnote, to accompany the form 202 when
generated. Thus, other user-specified content may accompany the form data 206 in the
generated structure 222 of the form 202.

[0039] The application editor 225 implements the functionality of the form builder
220. Responsive to an author 20 selecting form widgets and other aspects of the form,
such as form elements 204 for data entry or data display and email recipients for a given
form 202, the application editor 225 links the underlying form data 206 to the chosen
form elements 204 and generates the data structure 222. When appropriate, the
application editor 225 may also provide the activation for subsequent processes triggered
by an action or data entry on a created form 202. For instance, in the time off request
example, the application editor 225 may link data provided in a request form with defined
columns of form data 206 and link the submission of the request form 202a with the
generation of an approval form 202b. Such links may be defined by the author 20 of the
forms via precoded form elements 204 in the form builder 220 and enabled by the
application editor 225. Thus, the structure 222 includes the author selected precoded
elements 204 as provided by the form builder 220 and the underlying links between the
elements 204 and the data source 210 as provided by the application editor 225.

[0040] The form builder 220 then communicates the structure 222 of the form 202 to

the form translator 230. Form translator 230 translates the form 202 into a hostable

18

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

format 232 for the host container 120. For instance, in the case of an email application,
the form translator 230 translates the form 202 into an AMP format 232 that can be
rendered in an email itself (e.g., the body of the email). When form translator 230
translates the form into the hostable format 232, the form translator 230 is then
configured to render the form 202 in a user interface 122 using the hostable format 232.
In some examples, the form translator 230 renders the form 202 in the user interface 122
when the user 10 or the user device 110 requests that the form 202 be loaded as the user
interface 122 in the host container 120. For example, the user 10 performs some action
that triggers the form translator 230 to render the form 202 in the hostable format 232 at
the application 124. Optionally, the host container 120 may detect, when it receives a
communication from the form translator 230, that it has received a form 202 in a hostable
format 232 suitable for an application 124 of the host container 120 and render the form
202 accordingly. In this sense, the form translator 230 may operate in conjunction with
the application 124 and/or host container 120 to understand how the form 202 should be
translated to the hostable format 232 in order to be properly rendered as a user interface
122 in the host container 120.

[0041] The author 20, via use of the form builder 220, may define how the form 202
will render as the user interface 122. In other words, the author 20 may make choices in
creating the form 202 using the form builder 220 that will determine a view of the form
202 and how the form will act and behave at the user interface 122. Similar to other
choices made by the author 20, defining the view and behavior of a given form 202 may
be provided as precoded form elements 204 enabled by the application editor 225 and
defined within the structure 222.

[0042] Thus, the form translator 230 receives the structure 222 of the form 202 from
the form builder 220 and renders the form 202 as the user interface 122 via the
application 124 of the host container 120. As discussed above, the application 124 of the
host container 120 may require a hostable format 232 (e.g., an AMP format) to properly
display the form 202 as a user interface 122. The form translator 230 maps or links the
form data 206 to the appropriate fields at the user interface 122 so that the structure 222

that the author 20 has defined may translate to the hostable format 232. For instance, in

19

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

the example of a form embedded in the body of an email, the form translator 230 may
translate the structure 222 to link defined columns of form data 206 with particular fields
of the form embedded in the email so that user inputs received in the fields or information
displayed to the user in the fields may correspond to the defined form data 206. Thus, the
form translator 230 automatically translates the structure 222 to the appropriate hostable
format 232 and maps the form data 206 to fields at the user interface 122 prior to the host
container 120 receiving the form 202.

[0043] The form translator 230 may also be configured to render the form 202 in the
user interface 122 with the most current form data 206. To render live or current form
data 206, 206C, the form translator 230 may communicate a query 234 to the form data
source 210 for the current form data 206, 206C when rendering the form 202. In
response to the query 234, the form translator 230 receives query results corresponding to
the current form data 206C stored at the form data source 210. With the current form
data 206C, the form translator 230 renders the form 202 such that the form 202 is
populated with the most current form data 206C.

[0044] With the form 202 rendered as the user interface 122, the user 10 may then
proceed to use the device 110 to enter user data 12 into the form 202. When the user 10
inputs user data 12 as a data entry into the form 202, the updater 240 is configured to
obtain the user data 12 entered into the form 202 and to update the form data 206 from
the form data source 210. For instance, the updater 240 updates the form data source 210
with the user data 12 by persisting the user data 12 from the data entry into the form 202
in a data store associated with the form data source 210. The updater 240 may perform
its updating functionality on command or listen for some triggering event to initiate its
data updating process. For instance, the form 202 includes a submit button that, when
selected by the user 10, causes the updater 240 to update the form data 206 from the form
data source 210 with the user data 12. In other instances, the form 202 may be
configured such that a particular action by the user 10, such as a particular data entry, set
of data entries, or some other user input initiates the updater 240 to perform its data
updating process. That is, the form builder 220 may have tied an event to the particular

portion of the form 202 such that, when that event occurs, user data 12 collected by the

20

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

form 202 is sent to the updater 240 to update the form data 206 from the form data source
210. In other words, the updater 240 may transfer user data 12 to the form data source
210 at any suitable interval, such as in real-time (i.e., simultaneous to data entry by the
user 10), field-by-field (i.e., after an individual field is filled with user data 12), or in its
entirety after completion and submission of user data in each field of the form 202. The
interval at which the updater 240 transfers user data 12 may be specific to a given form
202, or a particular field or set of fields of the form 202. The author 20 may determine at
which interval the updater 240 performs its updating function.

[0045] In some examples, a runtime server 235 implements the functionality of the
form translator 230 and the updater 240. The runtime server 235 may host the translation
logic (i.e., the form translator 230) capable of translating the structure 222 to the hostable
format 232 so that the application 124 of the host container 120 may display the user
interface 122 as intended by the author 20. The runtime server 235 may also host
suitable structure for querying the current form data 206, 206C and communicating the
form data 206C to the application 124. In other words, the runtime server 235 may
provide the application programming interface (API) endpoints for communicating the
hostable format 232 and form data 206, 206C to the application 124 of the host container
120. Likewise, the runtime server 235, via the updater 240, may enable the translation of
user data 12 entered by the user 10 at the form 202 to be stored as form data 206 within
the form data source 210. Thus, the runtime server 235 may provide the API that
communicates the form 202 in a hostable format 232 and form data 206 to the application
124 and that may receive and communicate user data 12 to the form data source 210. The
form data source 210, therefore, may be hosted remote from the application 124 of the
host container 120 and the runtime server 235 may operate as a proxy for the application
124 to read and write on the data source 210.

[0046] In some examples, when the updater 240 receives the user data 12 or when the
user 10 is attempting to input user data into the form 202, the updater 240 may provide
authentication or validation services for the form manager 200. For example, when the
user 10 is entering user data 12 as a data entry into the form 202, the updater 240

determines whether the data entry is a valid data entry or an invalid data entry. As

21

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

described previously, portions of the form 202 that receive user data 12 may have
constraints that only permit certain types of data or a certain data format. In this respect,
if the user 10 attempts to enter user data 12 that does not satisfy one or more constraints,
the updater 240 may consider the data entry an invalid data entry. In some examples,
when a data entry is invalid, the updater 240 does not update the form data 206 of the
form data store 210 with the user data 12. Additionally or alternatively, the updater 240
or the built in logic of the form itself may provide the user 10 with an indication that a
data entry is an invalid data entry. Furthermore, this indication may instruct the user 10
how to reconcile the invalid data entry. For example, the user 10 enters text into a field
that includes a number data type constraint and the form 202 generates a message or
other indication that the field is constrained to a number data type.

[0047] In some configurations, one or more data entry fields in the form 202 may
require authentication. That is, the form 202 may be configured that certain fields are
editable only by particular users 10 with permission to edit those fields. In other words,
form elements 204 may be tied to access permission rights that may dictate which users
may be able to read and/or write to a given field. For instance, in the case of the time off
request/approval process, the form 202 may include both fields of the requestor and
field(s) for the manager. Here, if the user 10 does not have the necessary manager
credentials, the user 10 may be unable to access or write to a manager-designated field.
In this sense, the form 202 has functionality that is able to determine whether the user 10
is an authenticated user permitted to access some portion of form data 206 associated
with a data entry. The fields may be selectably readable and/or writable such that a user
10 who is not authorized to write in a given field may still be able to view the field or the
user 10 may only be able to read the field if they are also authorized to write in the field.
Thus, the form elements 204 may be dynamic dependent upon the authorization status of
the user 10. The form elements 204 may also be dynamic dependent upon the form data
206 tied to the form element 204 or otherwise provided via a designation of the author
20. In other words, the form element 204 may be a data-bound field (i.e., it displays or is
configured to receive and provide form data 206) that is readable or writable by the user

10 based upon a factor other than the authorization status of the user 10. For example, in

22

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

the context of the time off request/approval process, the form element 204 may be a chart
of or calendar showing the calendar of various employees for the requested days off of
the user 10 so that the user 10 may read (but not edit) the calendar to gauge whether the
requested days off are likely to be approved or denied prior to submitting the form 202.
The calendar may likewise display as read-only for the manager receiving the form 202
submitted by the user 10. Thus, the displayed calendar is a data-bound field in that it
provides form data 206, but is designated as only a readable form element 204 by the
author 20.

[0048] FIGS. 2B-2E are examples of a various configurations of the form manager
200. The form manager 200 may include different windows and subwindows that allow,
for example, the author 20 to design the form 202 to meet his or her needs based on the
particular host container 120. For instance, the form manager 200 includes a menu 250
with menu options 252, 252a-n that allow the author 20 to configure the form data 206,
the user experience, and/or the automation associated with a form 202. Here, the menu
250 includes menu items 252a—n that the author 20 may select to configure some portion
of the form 202. In these examples, the menu items 252 correspond to information about
the form manager (e.g., “info”), data sources for the form 202 (e.g., “data”), the design of
the user interface (e.g., “UX”), the behavior or configurable automation that may be
configured for the form 202 (e.g., “behavior” and “automation”), security such as
authentication or access permissions that may be associated with the form 202 or who
may author forms 202 for particular sensitive data (e.g., “security”’) among others. Each
of these menu items 252, when selected, can further include one or more windows 260,
260a—n that correspond to further configurable functionality of the selected menu item
252.

[0049] In FIGS. 2B and 2C, the author 20 has selected the menu item 252
corresponding to the user experience (“UX”) to design the look and feel of the form 202.
Here, the author 20 may design one or more views that may be incorporated into the form
202 along with other design-based features for the particular view such as style, format,
typeface, etc. When designing a view, the author 20 may dictate the form data 206 that

may be incorporated into the view as well as the type of view. The author 20 may also be

23

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

able to design how the data should be labeled or titled in a view. Moreover, as shown in
FIG. 2C, the author 20 can design how the form data 206 will be presented in the view.
For instance, FIG. 2C illustrates that the fields associated with the view have been
configured to be region data, representative data (e.g., who the sales representative is),
item data, and unit cost data. As illustrated by FIG. 2C, the author 20 may add or remove
data fields associated with a view and additionally provide any custom data or field
sorting that the author 20 desires.

[0050] Referring to FIGS. 2D and 2E, the author 20 has selected the menu item 252
from the menu 250 corresponding to automation. Here, the automation portion of the
form manager 200 enables the author 20 to generate bots that define a particular
automation function. A bot may be configured to define when something happens (i.e.,
an automation event) and what activity occurs in response to the automation event. That
is, what task or set of tasks should occur in response to an automation event or triggering
event built into the form 202. In the automation menu item 252, the author 20 may
toggle between windows 260, 260a-n that include: “bots,” to generate a bot; “events” to
setup an event; “processes” to configure multiple tasks (i.e., a set or series of tasks) to
occur for a bot; or “tasks” to configure a single task. In the example shown in FIG. 2D,
the author 20 is configuring an AMP email bot that generates an email (i.e., the
designated process) when a new record is created using the form 202 (i.e., the designated
event). The rightmost column also depicts the different actions that may be configured to
occur for a task or process (e.g., run the task, change the data, branch to a condition, wait
for a condition, call a process, or return some type of values). Furthermore, as shown by
the selection of “run task,” the different categories of actions may then be more precisely
configured with more detailed actions, such as “send an email” being the “run task.”
Each of these detailed actions may be precoded or programmed such that the author 20,
for example, only needs to assign tasks to particular data in order to create automation
within a form 202. In FIG. 2E, the author 20 is designing a process (i.e., a set of tasks) to
occur for the form 202. When designing a process, the author 20 may be able to
compound tasks for more sophisticated automation. For instance, the process illustrated

in FIG. 2E is being designed to be a multi-party form 202 that interacts with two different

24

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

email recipients. Furthermore, the process designates particulars about the email being
automatically generated such as the email subject, the email body, and how the form 202
may be displayed in the email itself.

[0051] FIGS. 3A and 3B are examples of two different forms 202 that may be
generated by the author 20 using the form manager 200. FIG. 3A illustrates a form 202
in a form view while FIG. 3B depicts a form 202 in a detailed view. The user 10, when
generating a form 202 may be able to choose between a form view and a detail view for a
form 202. When the user 10 selects a form view, the form manager 200 generates a form
that converts all of the supported columns from the form data source 210 into inputs that
are rendered into the host container 120 (e.g., an email of an email application).
Furthermore, in addition to the inputs, the form view of a form 202 may also include a
“save” button. Here, when the user 10 selects the save button, data entered by the user 10
(i.e., user data 12) may be updated in the form data source 210 (e.g., by the updater 240).
Referring specifically to FIG. 3A, the form 202 is a requestor form that identifies a
purchase request. Here, the requestor form 202 includes four field elements 204a—d that
designate the requestor, the date of the request, the justification for the request, and an
action element (i.e., the submit button). In this example, the submit button functions
similar to a save button where, when selected, data entered into the form 202 is added or
updated in the form data source 210. In contrast, FIG. 3B is an approval form 202 that
corresponds to the requestor form 202 of FIG. 3A. That is, the approval form 202
includes details of the user data 12 that were entered into the requestor form 202 in
addition to other field elements 204. Here, the fields 204 such as the requestor and the
request data are populated from the requestor form while the other field elements 204c—h,
such as the rejected reasons, the approval notes, the decision, and the action, may be
entered by another user, such as a manager with approval authorization.

[0052] FIG. 4 is a flowchart of an example arrangement of operations for a method
400 for using a user-fillable form 202 in a host container 120. At operation 402, the
method 400 receives, at a host container 120, a user-fillable form 202 bound to dynamic
data 206 from an underlying data source 210 where the user-fillable form 202 has a data

structure 222 generated by prepopulated coding. At operation 404, the method 400

25

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

translates the user-fillable form 202 into a hostable format 232 for the host container 120.
At operations 4006, the method 400 renders, using the hostable format 232 for the host
container 120, the user-fillable form 202 in a user interface 122. At operation 408, the
method 400 receives, at the user interface 122 of the host container 120, from a user 10 of
the host container 120, a data entry 12 for input to the user-fillable form 202. At
operation 410, the method 400 updates, by the host container 120, the dynamic data 206
from the underlying data source 210 by persisting data 12 from the data entry in a data
store associated with the underlying data source 210.

[0053] FIG. 5 is a schematic view of an example computing device 500 that may be
used to implement the systems and methods described in this document. The computing
device 500 is intended to represent various forms of digital computers, such as laptops,
desktops, workstations, personal digital assistants, servers, blade servers, mainframes,
and other appropriate computers. The components shown here, their connections and
relationships, and their functions, are meant to be exemplary only, and are not meant to
limit implementations of the inventions described and/or claimed in this document.
[0054] The computing device 500 includes a processor 510 (e.g., data processing
hardware), memory 520 (e.g., memory hardware), a storage device 530, a high-speed
interface/controller 540 connecting to the memory 520 and high-speed expansion ports
550, and a low speed interface/controller S60 connecting to a low speed bus 570 and a
storage device 530. Each of the components 510, 520, 530, 540, 550, and 560, are
interconnected using various busses, and may be mounted on a common motherboard or
in other manners as appropriate. The processor 510 can process instructions for
execution within the computing device 500, including instructions stored in the memory
520 or on the storage device 530 to display graphical information for a graphical user
interface (GUI) on an external input/output device, such as display 580 coupled to high
speed interface 540. In other implementations, multiple processors and/or multiple buses
may be used, as appropriate, along with multiple memories and types of memory. Also,
multiple computing devices 500 may be connected, with each device providing portions
of the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-

processor system).

26

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

[0055] The memory 520 stores information non-transitorily within the computing
device 500. The memory 520 may be a computer-readable medium, a volatile memory
unit(s), or non-volatile memory unit(s). The non-transitory memory 520 may be physical
devices used to store programs (e.g., sequences of instructions) or data (e.g., program
state information) on a temporary or permanent basis for use by the computing device
500. Examples of non-volatile memory include, but are not limited to, flash memory and
read-only memory (ROM) / programmable read-only memory (PROM) / erasable
programmable read-only memory (EPROM) / electronically erasable programmable read-
only memory (EEPROM) (e.g., typically used for firmware, such as boot programs).
Examples of volatile memory include, but are not limited to, random access memory
(RAM), dynamic random access memory (DRAM), static random access memory
(SRAM), phase change memory (PCM) as well as disks or tapes.

[0056] The storage device 530 is capable of providing mass storage for the
computing device 500. In some implementations, the storage device 530 is a computer-
readable medium. In various different implementations, the storage device 530 may be a
floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash
memory or other similar solid state memory device, or an array of devices, including
devices in a storage area network or other configurations. In additional implementations,
a computer program product is tangibly embodied in an information carrier. The
computer program product contains instructions that, when executed, perform one or
more methods, such as those described above. The information carrier is a computer- or
machine-readable medium, such as the memory 520, the storage device 530, or memory
on processor 510.

[0057] The high speed controller 540 manages bandwidth-intensive operations for the
computing device 500, while the low speed controller 560 manages lower bandwidth-
intensive operations. Such allocation of duties is exemplary only. In some
implementations, the high-speed controller 540 is coupled to the memory 520, the display
580 (e.g., through a graphics processor or accelerator), and to the high-speed expansion
ports 550, which may accept various expansion cards (not shown). In some

implementations, the low-speed controller 560 is coupled to the storage device 530 and a

27

10

15

20

25

WO 2023/023430 PCT/US2022/073909

low-speed expansion port 590. The low-speed expansion port 590, which may include
various communication ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet), may be
coupled to one or more input/output devices, such as a keyboard, a pointing device, a
scanner, or a networking device such as a switch or router, e.g., through a network
adapter.

[0058] The computing device 500 may be implemented in a number of different
forms, as shown in the figure. For example, it may be implemented as a standard server
500a or multiple times in a group of such servers 500a, as a laptop computer 500b, or as
part of a rack server system 500c.

[0059] Various implementations of the systems and techniques described herein can
be realized in digital electronic and/or optical circuitry, integrated circuitry, specially
designed ASICs (application specific integrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various implementations can include
implementation in one or more computer programs that are executable and/or
interpretable on a programmable system including at least one programmable processor,
which may be special or general purpose, coupled to receive data and instructions from,
and to transmit data and instructions to, a storage system, at least one input device, and at
least one output device.

[0060] These computer programs (also known as programs, software, software
applications or code) include machine instructions for a programmable processor, and can
be implemented in a high-level procedural and/or object-oriented programming language,
and/or in assembly/machine language. As used herein, the terms “machine-readable
medium” and “computer-readable medium” refer to any computer program product, non-
transitory computer readable medium, apparatus and/or device (e.g., magnetic discs,
optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine
instructions and/or data to a programmable processor, including a machine-readable
medium that receives machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to provide machine instructions

and/or data to a programmable processor.

28

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

[0061] The processes and logic flows described in this specification can be performed
by one or more programmable processors executing one or more computer programs to
perform functions by operating on input data and generating output. The processes and
logic flows can also be performed by special purpose logic circuitry, e.g., an FPGA (field
programmable gate array) or an ASIC (application specific integrated circuit). Processors
suitable for the execution of a computer program include, by way of example, both
general and special purpose microprocessors, and any one or more processors of any kind
of digital computer. Generally, a processor will receive instructions and data from a read
only memory or a random access memory or both. The essential elements of a computer
are a processor for performing instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also include, or be operatively coupled
to receive data from or transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a
computer need not have such devices. Computer readable media suitable for storing
computer program instructions and data include all forms of non-volatile memory, media
and memory devices, including by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks
or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or incorporated in, special purpose
logic circuitry.

[0062] To provide for interaction with a user, one or more aspects of the disclosure
can be implemented on a computer having a display device, e.g., a CRT (cathode ray
tube), LCD (liquid crystal display) monitor, or touch screen for displaying information to
the user and optionally a keyboard and a pointing device, e.g., a mouse or a trackball, by
which the user can provide input to the computer. Other kinds of devices can be used to
provide interaction with a user as well; for example, feedback provided to the user can be
any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any form, including acoustic,
speech, or tactile input. In addition, a computer can interact with a user by sending

documents to and receiving documents from a device that is used by the user; for

29

WO 2023/023430 PCT/US2022/073909

example, by sending web pages to a web browser on a user's client device in response to
requests received from the web browser.

[0063] A number of implementations have been described. Nevertheless, it will be
understood that various modifications may be made without departing from the spirit and
scope of the disclosure. Accordingly, other implementations are within the scope of the

following claims.

30

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

WHAT IS CLAIMED IS:

1. A computer-implemented method (400) when executed by data processing
hardware (510) causes the data processing hardware (510) to perform operations
comprising:

receiving, at a host container (120), a user-fillable form (202) bound to dynamic
data (206) from an underlying data source (210), the user-fillable form (202) having a
data structure (222) generated by prepopulated coding;

translating the user-fillable form (202) into a hostable format (232) for the host
container (120);

rendering, using the hostable format (232) for the host container (120), the user-
fillable form (202) in a user interface (122);

receiving, at the user interface (122) of the host container (120), from a user (10)
of the host container (120), a data entry for input to the user-fillable form (202); and

updating, by the host container (120), the dynamic data (206) from the underlying
data source (210) by persisting data (12) from the data entry in a data store (210)

associated with the underlying data source (210).

2. The method (400) of claim 1, wherein the operations further comprise:
requesting, by the host container (120), an application (124) associated with the
underlying data source (210) to generate the user-fillable form (202),
wherein receiving the user-fillable form (202) comprises receiving the user-
fillable form (202) generated by the application (124) associated with the underlying data
source (210).

3. The method (400) of claim 1 or 2, wherein rendering the user-fillable form (202)
in the user interface (122) comprises rendering the user-fillable form (202) in the user
interface (122) in response to an indication of a user action performed in the host
container (120), the user action indicating that the user (10) intends to communicate with

the underlying data source (210).

31

10

15

20

25

WO 2023/023430 PCT/US2022/073909

4. The method (400) of any of claims 1-3, wherein the operations further comprise:
querying the underlying data source (210) for the dynamic data (206);
receiving query results comprising current data corresponding to the dynamic data
(206) from the underlying data source (210); and
populating the current data in the user-fillable form (202),
wherein the user-fillable form (202) rendered in the user interface (122)

comprises the current data.

5. The method (400) of any of claims 1-4, wherein the operations further comprise:
determining whether the data entry received from the user (10) for input to the
user-fillable form (202) comprises a valid data entry,
wherein updating the dynamic data (206) from the underlying data source (210)
by persisting the data (12) from the data entry in the data store (210) associated with the
underlying data source (210) occurs when the data entry received from the user (10) for

input to the user-fillable form (202) comprises the valid data entry.

6. The method (400) of claim 5, wherein the operations further comprise, when the
data entry received from the user (10) for input to the user-fillable form (202) comprises
an invalid data entry:

generating an indication that the data entry is invalid; and

receiving a valid form of the data entry,

wherein updating the dynamic data (206) from the underlying data source (210)
comprises using the valid form of the data entry to update the dynamic data (206) from
the underlying data source (210).

7. The method (400) of any of claims 1-6, wherein the operations further comprise

determining that the user (10) is an authenticated user permitted to access a portion of the

dynamic data (206) associated with the data entry.

32

10

15

20

25

WO 2023/023430 PCT/US2022/073909

8. The method (400) of any of claims 1-7, wherein the user-fillable form (202)

comprises a read-only field and an editable field capable of receiving user-generated data.

0. The method (400) of any of claims 1-8, wherein the underlying data source (210)
is hosted by an application (124) residing outside of the host container (120).

10. The method (400) of any of claims 1-9, wherein updating the dynamic data (206)
from the underlying data source (210) occurs as the user interface (122) receives the data

entry for input to the user-fillable form (202) from the user (10).

1. The method (400) of any of claims 1-10, wherein the host container (120)

executes an electronic mail (email) communication application.

12. The method (400) of claim 11, wherein the user interface (122) rendering the

user-fillable form (202) comprises a body of an email message.

13. The method (400) of claim 12, wherein updating the dynamic data (206) from the
underlying data source (210) occurs responsive to a trigger associated with the data entry

input to the user-fillable form (202) rendered in the body of the email message.

14. The method (400) of claim 13, wherein the trigger associated with the data entry
input comprises at least one of (i) the data entry input to the user-fillable form (202) of a
specified one of a plurality of fields of dynamic data (206); (i1) the data entry input to the
user-fillable form (202) of a specified group from the plurality of fields of dynamic data
(206); or (iii) a user-selectable action element of the user-fillable form (202), the action

element indicating completion of the data entry input.

15. A system (100) comprising:

data processing hardware (510); and

33

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

memory hardware (520) in communication with the data processing hardware

(510), the memory hardware (520) storing instructions that when executed on the data
processing hardware (510) cause the data processing hardware (510) to perform
operations comprising:

receiving, at a host container (120), a user-fillable form (202) bound to
dynamic data (206) from an underlying data source (210), the user-fillable form (202)
having a data structure (222) generated by prepopulated coding;

translating the user-fillable form (202) into a hostable format (232) for the
host container (120);

rendering, using the hostable format (232) for the host container (120), the
user-fillable form (202) in a user interface (122);

receiving, at the user interface (122) of the host container (120), from a
user (10) of the host container (120), a data entry for input to the user-fillable form (202);
and

updating, by the host container (120), the dynamic data (206) from the
underlying data source (210) by persisting data (12) from the data entry in a data store
(210) associated with the underlying data source (210).

16. The system (100) of claim 15, wherein the operations further comprise:
requesting, by the host container (120), an application (124) associated with the
underlying data source (210) to generate the user-fillable form (202),
wherein receiving the user-fillable form (202) comprises receiving the user-
fillable form (202) generated by the application (124) associated with the underlying data
source (210).

17. The system (100) of claim 15 or 16, wherein rendering the user-fillable form
(202) in the user interface (122) comprises rendering the user-fillable form (202) in the
user interface (122) in response to an indication of a user action performed in the host
container (120), the user action indicating that the user (10) intends to communicate with

the underlying data source (210).

34

10

15

20

25

WO 2023/023430 PCT/US2022/073909

18. The system (100) of any of claims 15-17, wherein the operations further
comprise:

querying the underlying data source (210) for the dynamic data (206);

receiving query results comprising current data corresponding to the dynamic data
(206) from the underlying data source (210); and

populating the current data in the user-fillable form (202),

wherein the user-fillable form (202) rendered in the user interface (122)

comprises the current data.

19. The system (100) of any of claims 15-18, wherein the operations further
comprise:

determining whether the data entry received from the user (10) for input to the
user-fillable form (202) comprises a valid data entry,

wherein updating the dynamic data (206) from the underlying data source (210)
by persisting the data (12) from the data entry in the data store (210) associated with the
underlying data source (210) occurs when the data entry received from the user (10) for

input to the user-fillable form (202) comprises the valid data entry.

20. The system (100) of any of claims 15-19, wherein the operations further
comprise, when the data entry received from the user (10) for input to the user-fillable
form (202) comprises an invalid data entry:

generating an indication that the data entry is invalid; and

receiving a valid form of the data entry,

wherein updating the dynamic data (206) from the underlying data source (210)
comprises using the valid form of the data entry to update the dynamic data (206) from
the underlying data source (210).

35

10

15

20

25

30

WO 2023/023430 PCT/US2022/073909

21. The system (100) of any of claims 15-20, wherein the operations further comprise
determining that the user (10) is an authenticated user permitted to access a portion of the

dynamic data (206) associated with the data entry.

22. The system (100) of any of claims 15-21, wherein the user-fillable form (202)

comprises a read-only field and an editable field capable of receiving user-generated data.

23. The system (100) of any of claims 15-22, wherein the underlying data source
(210) is hosted by an application (124) residing outside of the host container (120).

24. The system (100) of any of claims 15-23, wherein updating the dynamic data
(206) from the underlying data source (210) occurs as the user interface (122) receives

the data entry for input to the user-fillable form (202) from the user (10).

25. The system (100) of any of claims 15-24, wherein the host container (120)

executes an electronic mail (email) communication application.

26. The system (100) of claim 25, wherein the user interface (122) rendering the user-

fillable form (202) comprises a body of an email message.

27. The system (100) of claim 26, wherein updating the dynamic data (206) from the
underlying data source (210) occurs responsive to a trigger associated with the data entry

input to the user-fillable form (202) rendered in the body of the email message.

28. The system (100) of claim 27, wherein the trigger associated with the data entry
input comprises at least one of (i) the data entry input to the user-fillable form (202) of a
specified one of a plurality of fields of dynamic data (206); (i1) the data entry input to the
user-fillable form (202) of a specified group from the plurality of fields of dynamic data
(206); or (iii) a user-selectable action element of the user-fillable form (202), the action

element indicating completion of the data entry input.

36

PCT/US2022/073909
111

WO 2023/023430

ocl

_ Jaulejoy
mu JSOH 02z

]

]

]

]

]

]

]

]

]

: oTz dd
' 0l¢ ®dInog \4
“ eleq Ww.o- = pugjuosg || =2k
]

]

]

]

]

]

]

]

]

]

]

]

(s)eoinosay | .
2IBM)J0S

a U-ep0Z | .
. L ‘Y0Z

rd

~ 9Ll

. ¢0¢ wiod
2zl in
¥Zl 0cl

Wdzzz P

0c vl T 00—
aokl bl { oo

0okl e0Ll ‘0Ll oL

YIOM}SN

oo_\.\>

PCT/US2022/073909
2/11

WO 2023/023430

dl 9Old

aotll ‘oLl

a0l
0l

h 2l 02l

Wd zzz O

90¢ Tl —TH Ferraaaeees |

s|lqel

S —

@O

A

90C¢ ——

&

olg —— L_®.L | |(Z) —~ B20Z
®©

<
-~
N
N
AN
~
-

— /N\ ’ 744
Oc Jebeuey wio g

R0 = 2

BOLL 0L ‘0l

oorl\W

PCT/US2022/073909
3/11

WO 2023/023430

IIIIIIIIIIII |_
I
\\lj
_ cl
I
I a|qeL
I LT —/—/—/————"0IC
| - N
| —
L
M 0902 '90C - o= ———— -
I
LI | |
| Pez | _
0S¢z Joje|suel| wio _ “ 0c¢ Jep|ing wuo “
_ " _
c0e wuod | ! T | |
TN 20T _ — _ _ — _
ZARA? ! £C Joneg swnuny | _ CZ Joyp3 ddy/ |
[/o%ﬂv\ |||||||||||||||||||||||||
oLl —
O¢ Jebeue|y wio

PCT/US2022/073909

4/11

d¢ 9Old

(nuow)(1som yubr)(b yo1)(1som yo1)

ﬁ 18410 um pJed wﬁ wio- w
?moggmmoum veyo um depy w

mam__mw : alqe L um }99Q umhmvcm_mou

ﬁb L 13SV1vd g

ﬁ Z MOIN g

pa1eo0| SI MAIA 8}
$S922E 0] UOJING 9y} SJ8UAA
uoljisod

SI Syl M3IA JO puiy JeUpn
adA] malp

Ae|dsip 0} 901|S/9]dB} YOIUAA
198 ejeq

MBIA JOJ aWeU ahbiun
SWBN MaIA

Z MaIA 1104

® uwnjod JapesH PpY | |@ SMOY dlgeL WoS

Joyusn

=
Buiues

(ebeueny)

([ssesn u@

ﬁ souabi||aiy| u mv

[Awunoss] A

ﬁ uolewoNy u @

h Joineyag u -

ﬁ

L MBIA ==

9ZI[e007 suondp so|ny Jew.o

pueig LSMBIA

fc-mNmNA [A°T4 ’ ﬁ

WO 2023/023430

N v J _ goir4
U-B09Z ‘092 Oc¢ Jebeue|y wio4

PCT/US2022/073909

WO 2023/023430

5/11

Q¢ 9Old

.

SUWIN|OD 9I0W Jejus)d =
oY 10 U0 AQ SMOJ By} MOS Buiules
Aq po0s
PPV (ebeueny)
@ﬁ 1500 ﬁ_:& H
" 4 sJas @
&(woy) & ﬁ)
> <
r@ﬁ amm_u i apl|s ay1 ul a|genps ﬁ souabI|[o] w mv
x@m :o_mmm_u - | ale suwn|od YoIupn i
\ - .y, suwnjod Hp3 }21nO
([Awnoss] A
apl|s yoea Jo doj ay)
PPy 1e bnubly 0} suwnjod
suwnjo) J19pesH ﬁ uohewoiny w @
N apl|s yoeas jo doy ayy 1e ﬁ Joineyag w o
Z MOIA MOUS 01 uwnjo9 abew ay |
.) abewy urepy
swial Japeay
IN0AE| 0] MBIA pIBD 9SN
j1noAe] paed asn
suondQp MaIp
921|220 suondo sa|ny 1ewlo pueiq LSMBIA

J

U-e09¢C ‘09¢

u-egse ‘z2se >/
00z Jebeue wioH

- 0G¢

PCT/US2022/073909

WO 2023/023430

6/11

E dajs 91919

lews ul dde Jnok yum joelajul ued sjusidioay

MaInald

2

dc ©ld

VM3AIA LS3AL M3AN /il

MB3IA & ppY

Jinejaq WwoalsAs

asn 0} [ouueyD abessaw oy

ﬁ llews dINV pusS w
®

$59204d SIY) uny

ps1ealo si plodal
¢ L13IASVIVAMaUY

:8IN200
JUIAZ SIY} USUAA

[auueyo eIp
9|l Mau | | 1soygom
e 3BAID| | EED
(] dl1H
SIS | |uonedynou } - JIBw9
ue puag || e pussg ue puag
O v L
- Jse| MaN w
uni oy ysel
sonjeA | |ssaooud| | uONIPUOD
wniay | | BBD B 10] NlepA
58 o
uonipuod e Blep ysel
uo (ouelg | |abueyo uny
& = | 4

J8Ue —
Buiuies

(ebeuew) HEH

(ssesn u@

m sousbi||eyy| u Q

(Awnoss) A

sjog yoieasg d,

m Jolneyag u -

109 MaN

|_|

‘(5599201 & ale syse] a|dinw aJaym ysel e pojjeo)

)

(eea =

([xn

dals |lew3 4NV puss SOIIANOE JO NOS dwWos op, ‘(suaAg pa|leo) suaddey m oju| u @
sweu da)g Buiyiswos uaym, Jo uonewolne sy} sauysp jog v
A
o] @ 's Bll= syse| S$9S$98204d SJusAg .slog N v N\—05Z
. y hmmmm 4T
- ‘ Oc Jebeuey wio
i W[raws] 2 ¢ = ®© U-e09z ‘092

PCT/US2022/073909

WO 2023/023430

711

E deis a1919Q

¢ 9Old

jse] 01100

(‘pauoddns si 1x81
sp|alf 1eyy a1ejdwa]) "sweu
AeidsiQ wou siyy Ypm |iels puss

Kedsig woaq

7
<0>j1X31 Q109<9> ‘pajeindod aq
1S (oYM Apoq [lews 1s9) si syl

(‘Apoq [1ews ynejep
10} Aildws anea “pauoddns si xo)
splalA 1ey; sjeidwa) “Apoq |lews sy

Apog prew3

7
a3diNo3y
TVYAOHAAY llews dINY

('palgns Jlews

ynejap Jo; Aidwe anea "Aidwa
a9 "pauoddns si xa) spjaiA 1eu)
ajeldwa]) "lews auyy 1o} aul| }o9lgns
1algng rew3

_N>:mano@Nmm>o_aEm_ [|

= LI Il

_N>cmano© me;o_aEm_ [|

~ Jajus
/\ uoneuawngog @c_r._mﬁmu._ <=
7\ soueleaddy
an3 (ebeuew) HEH
T_&w e _o_o<m& (siesn) @

. m sousbi||eyy| u Q

(‘payoddns aie
S9sSsalppe [lews plalA 1By suolssaidxg)
"S9SSaIpPE [IBeWd 9Say] 0} [IBWS puss

vl @ BB

]
2]

O
Anoeg [\
m__mc_m dINY puss w m) &
®
¢01 A|[dde ssao01d
SIY} S90p 3|qe} JeUAA m Joianeysq u oa
A 1138VIV0 == m XN u M
(era =
m oJu| u O
A
syse| .S9Ss800.1d SJUSA] sjog - v N\—05Z
N y , _Ueegse 'zsT
U-e09Z ‘092 Oc¢ Jebeue wio4

PCT/US2022/073909

WO 2023/023430
8/11
v/— 202
Requestor Form
Requestor: [em ployeeX@company.com J)

Requested on:

[7/14/2021 1:24:50 PM]
204,
Justification: r 204a-d
[Need a new chair]
Action:

FIG. 3A

WO 2023/023430 PCT/US2022/073909

9/11
202
* N
Approver View
Requestor: employeeX@company.com)
Requested on: 7/14/2021 1:24:50 PM
Rejected Reasons:
Too Expensive
Replacement already pending
)
L Other: (] > 204,
204a-h

Approval Notes:

[Looks Good!]

Decision:

[Rejected]

Action:

[Send Back]

FIG. 3B

WO 2023/023430 PCT/US2022/073909

10/11
v 400

Receiving, At An Application Container, A User-fillable Form Bound To
Dynamic Data From An Underlying Data Source, The User-fillable
Form Having A Data Structure Generated By Prepopulated Coding

402

Y

Translating The Userfillable Form Into A Hostable Format For The
Application Container
404

Y

Rendering, Using The Hostable Format For The Application Container,
The User-fillable Form In A User Interface 406

Y

Receiving, At The User Interface Of The Application Container, From A
User Of The Application Container, A Data Entry For Input To The
User-fillable Form 408

Updating, By The Application Container, The Dynamic Data From The
Underlying Data Source By Persisting Data From The Data Entry In A
Data Store Associated With The Underlying Data Source

10

FIG. 4

PCT/US2022/073909
11/11

WO 2023/023430

G Old

04G D

20059 = r

0Gg
ovs

J \ ols
095

U 08S

0es

00S .\»

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/073909
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO06rg8/34 G06F8/36 G06F9/451 GO6F9/455 G06010/10
GO06F40/174
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F GO06Q

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the inlernational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages Relevant o claim No.
X US 2016/092176 Al (STRAUB CHRISTIAN DAVID 1-28

[US] ET AL) 31 March 2016 (2016-03-31)
abstract
paragraphs [0003] - [0008], [C010]
paragraphs [0047], [0052], [0053] -
[0o058], [0067]
paragraphs [0068] - [0071], [c076],
[0077], [0086], [0091], [00%2], [0097]
- [0107], [0108] - [0109], [0123] -
[0127]; figure 1
paragraphs [0128], [0130] - [0132],
[0135], [0152] - [0153], [0155] -
[0157], [0161] - [0l162]; figure 2
paragraphs [0170] - [0182]; figure 4
paragraphs [0183], [0186]; figure 5
paragraph [0205] - paragraph [0215];
figure 7
paragraph [0220] - paragraph [0232];
figure 8

-f—

|__K| Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s} or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

3 November 2022

Date of mailing of the international search report

11/11/2022

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Valin, Steven

Form PGTASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/073909

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant fo claim No.

paragraph [0233] - paragraph [0243];
figure 9

paragraph [0244]; figures 10-13
paragraphs [0245] - [0250]; figures
14-19,22

paragraph [0252] - paragraph [0266];
figures 25,26

paragraph [0269] - paragraph [0298];
figures 31,32

EP 1 672 576 A2 (MICROSOFT CORP [US])
21 June 2006 (2006-06-21)

abstract

paragraphs [0006], [0007], [co18] -
[0020]

paragraphs [0021] - [0068]; figures 1-7

11-14,
25-28

Form PGTASA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2022/073909
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2016092176 Al 31-03-2016 CN 107408042 A 28-11-2017
EP 3198416 Al 02-08-2017
JP 6661620 B2 11-03-2020
JP 2017533503 A 09-11-2017
Us 2016092176 Al 31-03-2016
EP 1672576 A2 21-06-2006 CN 1790401 A 21-06-2006
EP 1672576 A2 21-06-2006
JP 5247983 B2 24-07-2013
JP 5302374 B2 02-10-2013
JP 2006172444 A 29-06-2006
JP 2012038343 A 23-02-2012
KR 20060067816 A 20-06-2006
KR 20120031483 A 03-04-2012
uUs 2006129592 Al 15-06-2006
Us 2010205269 Al 12-08-2010
Us 2014245118 Al 28-08-2014

Form PGTASA/210 (patent tamily anniex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report
	Page 51 - wo-search-report
	Page 52 - wo-search-report

