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USE NUOS TECHNOLOGY TO ACQUIRE 
OPTIMIZED 2D DATA 

1 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

1 0 

1 
[ 0001 ] This application is a non - provisional application 
which claims benefit under 35 USC $ 119 ( e ) to U.S. 
Provisional Application Ser . No. 62 / 416,571 filed Nov. 2 , 
2016 , entitled , “ USE NUOS TECHNOLOGY TO 
ACQUIRE OPTIMIZED 2D DATA ” , which is incorporated 
herein in its entirety . 

FIELD OF THE INVENTION 

[ 0002 ] The present invention relates generally to seismic 
imaging . More particularly , but not by way of limitation , 
embodiments of the present invention include tools and 
methods for acquiring and processing seismic data using 
compressive sensing with optimized source and sensor sam 
pling 

apply an k? norm to promote some sparse representation of 
the reconstructed data . The 1. , norm has become of particu 
lar interest due to its relation to the lo norm which is a count 
of the number of non - zero elements . Theorems provide 
conditions for exact recovery of the reconstructed data and 
which , in part , rely on relationship between the li and ! 
norms , and use of the li norm in a convex optimization 
model ( Candes et al . , 2006 ) . At least one theory of com 
pressive sensing indicates that a sparse or compressible 
signal can be recovered from a small number of random 
linear measurements by solving a convex l , optimization 
problem ( e.g. Baraniuk , 2007 ) . 
[ 0006 ] Compressive sensing can also provide new oppor 
tunities for survey design using an irregular sampling grid 
( e.g. Hennenfent and Herrmann , 2008 ; Kaplan et al . , 2012 ) 
instead of a traditional regular grid in order to increase 
bandwidth and reduce cost . Generally , irregular survey 
design based on compressive sensing can be summarized by 
the following steps : 1 ) determine a nominal regular grid for 
survey area , 2 ) choose a subset of locations from this 
nominal grid in a random or randomly jittered ( Hennenfent 
and Herrmann , 2008 ) fashion , 3 ) acquire seismic data based 
on chosen locations , and 4 ) reconstruct the data back to the 
original nominal grid . This approach is applicable to both 
shot and receiver dimensions . 
[ 0007 ] In certain cases , compressive sensing using irregu 
lar acquisition grids can be used to recover significantly 
broader spatial bandwidth than could be obtained using a 
regular sampling grid . Recovered bandwidth is primarily 
determined according to the spacing of nominal grid for 
reconstruction . If a predefined nominal grid is too coarse , the 
reconstructed seismic data may still be aliased ; if the pre 
defined nominal grid is too fine , the time and cost savings of 
irregular versus regular survey design may become insig 
nificant . In general , if there is a lack of prior information 
about a given survey area , then it may not be feasible to 
select a proper nominal grid beforehand . 

BACKGROUND OF THE INVENTION 

BRIEF SUMMARY OF THE DISCLOSURE 

[ 0003 ] Seismic imaging typically involves not only 
acquiring seismic data but processing the acquired seismic 
data . In some cases , processing requires recovering missing 
pieces of information from irregularly acquired seismic data . 
Irregularities may be caused by , for example , dead or 
severely corrupted seismic traces , surface obstacles , acqui 
sition apertures , economic limits , and the like . Certain 
seismic processing techniques may be employed to spatially 
transform irregularly acquired seismic data to regularly 
sampled data that is easier to interpret . This regularization 
can involve a number of processing techniques such as 
interpolation and reconstruction of seismic data . 
[ 0004 ] In recent years , compressive sensing theories have 
gained traction . One application of compressive sensing in 
geophysics involves seismic data reconstruction ( e.g. , Hen 
nenfent and Herrmann , 2008 ) . As an overview , compressive 
sensing provides conditions for when an under - determined 
system of equations has a esirable ution . seismic data 
reconstruction problem ( e.g. Stolt , 2002 ; Trad , 2003 ; Liu 
and Sacchi , 2004 ; Abma and Kabir , 2006 ; Ramirez et al . , 
2006 ; Naghizadeh and Sacchi , 2007 ; Xu et al . , 2010 ; Kaplan 
et al . , 2010 ) provides a coarse set of observed traces along 
with a desired set of fine spatial grid points upon which data 
is reconstructed . Compressive sensing theory can address 
such issues as 1 ) how many observations need to be col 
lected , 2 ) where the observations should be made ( i.e. , 
sampling grid ) with respect to the reconstruction grid , and 3 ) 
what mathematical dictionary ( e.g. , mutual coherence ) 
should be used to represent the reconstructed data . While 
mutual coherence is an important metric in compressive 
sensing theory , it can also be expensive to compute . Descrip 
tions and / or overviews of seismic data reconstruction can 
also be found in Trad , 2003 ; Liu and Sacchi , 2004 ; Abma 
and Kabir , 2006 ; Naghizadeh and Sacchi , 2007 ; Xu et al . , 
2010 , the relevant parts of which are hereby incorporated by 
reference . 
[ 0005 ] Certain data reconstruction techniques have been 
developed , which provide a sparse representation of recon 
structed data . For example , Liu and Sacchi ( 2004 ) promote 
a sparse solution in wave - number domain using a penalty 
function constructed from inverse power spectrum of the 
reconstructed data . In compressive sensing , it is common to 

[ 0008 ] The present invention relates generally to seismic 
imaging . More particularly , but not by way of limitation , 
embodiments of the present invention include tools and 
methods for processing seismic data by compressive sensing 
and non - uniform optimal sampling . 
[ 0009 ] Compressive sensing theory is utilized for seismic 
data reconstruction . Compressive sensing , in part , requires 
an optimization model . Two classes of optimization models , 
synthesis- and analysis - based optimization models , are con 
sidered . For the analysis - based optimization model , a novel 
optimization algorithm ( SeisADM ) is presented . Seis ADM 
adapts the alternating direction method with a variable 
splitting technique , taking advantage of the structure intrin 
sic to the seismic data reconstruction problem to help give 
an efficient and robust algorithm . Seis ADM is demonstrated 
to solve a seismic data reconstruction problem for both 
synthetic and real data examples . In both cases , the Sei 
SADM results are compared to those obtained from using a 
synthesis - based optimization model . Spectral Projected Gra 
dient L1 solver ( SPGL1 ) method can be used to compute the 
synthesis - based results . Through both examples , it is 
observed that data reconstruction results based on the analy 
sis - based optimization model are generally more accurate 
than the results based on the synthesis - based optimization 
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model . In addition , for seismic data reconstruction , the 
Seis ADM method requires less computation time than the 
SPGL1 method . 
[ 0010 ] Compressive sensing can be successfully applied 
to seismic data reconstruction to provide a powerful tool that 
reduces the acquisition cost , and allows for the exploration 
of new seismic acquisition designs . Most seismic data 
reconstruction methods require a predefined nominal grid 
for reconstruction , and the seismic survey must contain 
observations that fall on the corresponding nominal grid 
points . However , the optimal nominal grid depends on many 
factors , such as bandwidth of the seismic data , geology of 
the survey area , and noise level of the acquired data . It is 
understandably difficult to design an optimal nominal grid 
when sufficient prior information is not available . In addi 
tion , it may be that the acquired data contain positioning 
errors with respect to the planned nominal grid . An inter 
polated compressive sensing method is presented which is 
capable of reconstructing the observed data on an irregular 
grid to any specified nominal grid , provided that the prin 
ciples of compressive sensing are satisfied . The interpolated 
compressive sensing method provides an improved data 
reconstruction compared to results obtained from some 
conventional compressive sensing methods . 
[ 0011 ] Compressive sensing is utilized for seismic data 
reconstruction and acquisition design . Compressive sensing 
theory provides conditions for when seismic data recon 
struction can be expected to be successful . Namely , that the 
cardinality of reconstructed data is small under some , pos 
sibly over - complete , dictionary ; that the number of observed 
traces are sufficient ; and that the locations of the observed 
traces relative to that of the reconstructed traces ( i.e. the 
sampling grid ) are suitably chosen . If the number of 
observed traces and the choice of dictionary are fixed , then 
choosing an optimal sampling grid increases the chance of 
a successful data reconstruction . To that end , a mutual 
coherence proxy is considered which is used to measure how 
optimal a sampling grid is . In general , the computation of 
mutual coherence is prohibitively expensive , but one can 
take advantage of the characteristics of the seismic data 
reconstruction problem so that it is computed efficiently . The 
derived result is exact when the dictionary is the discrete 
Fourier transform matrix , but otherwise the result is a proxy 
for mutual coherence . The mutual coherence proxy in a 
randomized greedy optimization algorithm used to find an 
optimal sampling grid , and show results that validate the use 
of the proxy using both synthetic and real data examples . 
[ 0012 ] One example of a computer - implemented method 
for determining optimal sampling grid during seismic data 
reconstruction includes : a ) constructing an optimization 
model , via a computing processor , given by min , || Sulli 
s.t. || Ru - b || 2so wherein S is a discrete transform matrix , b is 
seismic data on an observed grid , u is seismic data on a 
reconstruction grid , and matrix R is a sampling operator ; b ) 
defining mutual coherence as 

reconstruction grid ; c ) deriving a mutual coherence proxy , 
wherein the mutual coherence proxy is a proxy for mutual 
coherence when S is over - complete and wherein the mutual 
coherence proxy is exactly the mutual coherence when S is 
a Fourier transform ; and d ) determining a sample grid r « Farg 
minu ( r ) . 
[ 0013 ] In one nonlimiting embodiment a method for 2D 
seismic data acquisition includes determining source - point 
seismic survey positions for a combined deep profile seismic 
data acquisition with a shallow profile seismic data acqui 
sition wherein the source - point positions are based on non 
uniform optimal sampling . A seismic data set is acquired 
with a first set of air - guns optimized for a deep - data seismic 
profile and the data set is acquired with a second set of 
air - guns optimized for a shallow - data seismic profile . The 
data are de - blended to obtain a deep 2D seismic dataset and 
a shallow 2D seismic dataset . 
[ 0014 ] The method may further comprise using interpo 
lated compressive sensing to reconstruct the acquired dataset 
to a nominal grid . Additionally , the method may provide 
source - point positions based on non - uniform optimal sam 
pling acquired using a Monte Carlo Optimization scheme to 
determine source - point seismic survey positions . 
[ 0015 ] The method of using a Monte Carlo Optimization 
scheme may further comprise a Signal - to - Noise Ratio cost 
function ( SNR cost - function ) defined as the root - mean 
square SNR of the data to be reconstructed minus the SNR 
of an elastic wave synthetic dataset over an area of interest 
using an appropriate velocity model . 
[ 0016 ] The method of using a Monte Carlo Optimization 
scheme may further determine the non - uniform optimal 
sampling using a Monte Carlo Optimization scheme com 
prises a cost - function to determine the optimized locations , 
the cost function selected from the group consisting of : i ) 
diagonal dominance , ii ) a conventional array response , iii ) a 
condition number , iv ) eigenvalue determination , v ) mutual 
coherence , vi ) trace fold , or vii ) azimuth distribution . In 
other embodiments , the nominal grid may be a uniformly 
sampled grid . The method may further comprise recon 
structing the acquired data to obtain one or more receiver 
gathers . 
[ 0017 ] In another nonlimiting embodiment , the first set of 
air - guns has a first encoded source signature and the second 
set of air - guns has a second encoded source signature . 
[ 0018 ] In still another nonlimiting embodiment , determin 
ing the optimized source - point positions is based on non 
uniform optimal sampling which further comprises deter 
mining an underlying uniformly sampled grid . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0019 ] A more complete understanding of the present 
invention and benefits thereof may be acquired by referring 
to the follow description taken in conjunction with the 
accompanying drawings in which : 
[ 0020 ] FIG . 1 illustrates an algorithm as described in 
Example 1 . 
[ 0021 ] FIG . 2 illustrates a plot as described in Example 1 . 
[ 0022 ] FIGS . 3a - 3d illustrate plots as described in 
Example 1 . 
[ 0023 ] FIGS . 4a - 4c illustrate plots as described in 
Example 1 . 
[ 0024 ] FIGS . 5a - 5c illustrate Fourier spectra as described 
in Example 1 . 
[ 0025 ] FIG . 6 illustrates a plot as described in Example 2 . 

C 

S ( log n ) 

wherein C is a constant , S is a cardinality of Su , m is 
proportional to number of seismic traces on the observed 
grid , and n is proportional to number of seismic traces on the 
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[ 0026 ] FIGS . 7a - 7e illustrate plots as described in 
Example 2 . 
[ 0027 ] FIG . 8 illustrates a plot as described in Example 2 . 
[ 0028 ] FIGS . 9a - 9c illustrate plots as described in 
Example 2 . 
[ 0029 ] FIGS . 10a - 10c illustrate plots as described in 
Example 2 . 
[ 0030 ] FIGS . 11a - 11b illustrate plots as described in 
Example 3 . 
[ 0031 ] FIGS . 12a - 12b illustrate plots as described in 
Example 3 . 
[ 0032 ] FIGS . 13a - 13d illustrate plots as described in 
Example 3 . 
[ 0033 ] FIGS . 14a - 14d illustrate plots as described in 
Example 3 . 
[ 0034 ] FIG . 15 illustrates a flow chart as described in 
Example 4 . 
[ 0035 ] FIG . 16 illustrates a schematic diagram of an 
embodiment of a system according to various embodiments 
of the present disclosure . 

coherence which is a function of the irregular acquisition 
grid and windowed Fourier transform basis ( e.g. Elad et al . , 
2007 ) . 
[ 0040 ] Some embodiments provide tools and methods for 
interpolated compressive sensing data reconstruction for 
recovering seismic data to a regular nominal grid that is 
independent of the observed trace locations . Advantages 
include , but are not limited to , 1 ) one can try distinct 
nominal grids for data reconstruction after acquisition , and 
2 ) positioning errors occurring during acquisition can be 
taken into account . Other geophysical methods for seismic 
data reconstruction can rely on the discrete Fourier trans 
form to allow for the arbitrary relation between observed 
trace locations and the nominal grid . By contrast , in the 
present invention , the transform ( Fourier or otherwise ) is 
applied to the nominal grid , and the burden of the mismatch 
between observed trace locations and the nominal grid is 
shifted to a restriction / sampling operator . 
[ 0041 ] Some embodiments provide tools and methods that 
derive a mutual coherence proxy applicable to the seismic 
data reconstruction problem . At least one advantage is that 
this proxy is efficient to compute . More particularly , it is the 
maximum non - d.c . component of the Fourier transform of 
the sampling grid . A greedy optimization algorithm ( e.g. 
Tropp , 2004 ) is used to find an optimal sampling grid , with 
the mutual coherence proxy giving data independent mea 
sure for optimal . The optimization problem is typically 
non - convex , and so the greedy algorithm finds a locally 
optimal solution that depends on how the algorithm is 
initialized . 

DETAILED DESCRIPTION 

Example 1 

Data Reconstruction Model 

[ 0042 ] For data reconstruction , a system is defined , 
wherein ( Herrmann , 2010 ) , 

b = RS * x , x = Su , 

[ 0036 ] Reference will now be made in detail to embodi 
ments of the invention , one or more examples of which are 
illustrated in the accompanying drawings . Each example is 
provided by way of explanation of the invention , not as a 
limitation of the invention . It will be apparent to those 
skilled in the art that various modifications and variations 
can be made in the present invention without departing from 
the scope or spirit of the invention . For instance , features 
illustrated or described as part of one embodiment can be 
used on another embodiment to yield a still further embodi 
ment . Thus , it is intended that the present invention cover 
such modifications and variations that come within the scope 
of the invention . 
[ 0037 ] Some embodiments of the present invention pro 
vide tools and methods for reconstructing seismic data 
utilizing compressive sensing . Convex optimization models 
used for reconstructing seismic data can fall under at least 
two categories : synthesis - based convex optimization model 
and analysis - based convex optimization model ( Candes et 
al . , 2008 ) . As used herein , the term " convex optimization 
problem ” and its related terms such as “ convex optimization 
model ” generally refer to a mathematical programming 
problem of finding solutions when confronted with conflict 
ing requirements ( i.e. , optimizing convex functions over 
convex sets ) . 
[ 0038 ] Some embodiments of the present invention pro 
vides tools and methods for optimizing the analysis - based 
convex optimization model . At least one embodiment adapts 
an alternating direction method ( Yang and Zhang , 2011 ) 
with a variable - splitting technique ( Wang et al . , 2008 ; Li , 
2011 ) . This allows a user to take advantage of the structure 
in the seismic data reconstruction problem to provide a more 
efficient solution . Other advantages will be apparent from 
the disclosure herein . 
[ 0039 ] According to one or more embodiments of the 
present invention , a two - dimensional windowed Fourier 
transform representation of the data ( e.g. Mallat , 2009 ) may 
be provided . In some embodiments , an irregular acquisition 
grid may be provided , which is an additional condition for 
exact recovery given by compressive sensing theory . The 
irregularity in seismic data can be quantified by mutual 

where b is observed seismic data , and u is reconstructed 
seismic data . Matrix R is a restriction ( i.e. sampling ) opera 
tor , mapping from the reconstructed seismic data to the 
observed seismic data . If S is an appropriately chosen 
dictionary , then x is a sparse representation of u . For most 
over - complete dictionaries , such as a wavelet , curvelet and 
windowed Fourier transforms , 

S * S = 1 ( 2 ) 

Optimization Models 
( 0043 ] Given the over - complete linear system in equation 
1 , and observed data b , solution ( s ) to the reconstructed data 
u are computed . A frequently used approach from compres 
sive sensing is to solve either basis pursuit ( BP ) optimization 
model for noise - free observed data , 

ming | ( x | l? s.t. RS * x = b ( 3 ) 

or the basis pursuit de - noising ( BPDN ) optimization model 
for noisy or imperfect observed data , 

minx ] [ $ || 1 s.t. || RS * x - b || 2²50 ( 4 ) 

where o is a representative of the noise level in the observed 
data . For example , if x is the solution to the optimization 
model in equation 3 , then 

ü = S * ( 5 ) 
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mented Lagrangian function in equation 9 with respect to , 
separately , w , u and v , and then updating the Lagrange 
multipliers , y and u . 
[ 0047 ] For constant u and v , the w - subproblem is , 

( 10 ) min , { Ilw | l1 – y * ( Su – w ) + || Su – w / 12 } 

Equation 10 is separable with respect to each wiew and has 
the closed - form solution ( e.g. Li , 2011 ) , 

1 ( 11 ) 
W = max max | s0 – 6 | , - 3. 0 } sen ( su – 

where sgn ( x ) is 1 for x > 0 , 0 for x = 0 , and -1 for x < 0 . 
[ 0048 ] For constant w and v , the u - subproblem is , 

( 12 ) mine { -y * ( Su – W ) + 1su – willë – 2 " ( Ru – b – v ) + l Ru b b = v13 ) 

are reconstructed data . In solving either the BP or BPDN 
model , an assumption may be made that the reconstructed 
data u have a sparse representation under the dictionary S. 
Solving the optimization models in equations 3 and 4 is 
often referred to as synthesis - based li recovery ( Candes et 
al . , 2008 ) . SPGL1 , as proposed by van den Berg and 
Friendlander ( 2008 ) , and based on an analysis of the Pareto 
curve , is one of the most efficient of these methods . 
[ 0044 ] An alternative to the synthesis - based optimization 
models are analysis - based optimization models for both the 
noise - free case , 

min_ || SU || . s.t. Ru = b ( 6 ) 

and the noisy case , 
min | Sull . s.t. || Ru - b || 250 ( 7 ) 

Solving the optimization models in equations 6 and 7 is 
called analysis - based li recovery ( Candes et al . , 2008 ) . 
When the dictionary S is orthonormal , synthesis- and analy 
sis - based models are theoretically equivalent . However , 
according to Candes et al . ( 2008 ) , when S is overcomplete 
analysis based optimization models involve fewer 
unknowns and are computationally easier to solve than their 
synthesis - based counter - parts . Additionally , analysis - based 
reconstruction may give more accurate solutions than those 
obtained from synthesis - based reconstruction ( Elad et al . , 
2007 ) . 
Alternating Direction Algorithm with Variable Splitting 
[ 0045 ] The Seis ADM algorithm performs analysis - based 
ly recovery based on the optimization model in equation 7 . 
SeisADM is based on the alternating direction method ( e.g. 
Gabay and Mercier , 1976 ; Glowinski , 1984 ; Yang and 
Zhang , 2011 ) . The alternating direction method ( ADM ) has 
been widely used to solve inverse problems . It is known as 
a robust and stable iterative algorithm , but is usually very 
costly due to its estimation of the gradient for each iteration . 
Here , a variable splitting technique in combination with 
ADM is introduced , which utilizes the structure of the 
seismic data reconstruction model to find an efficient method 
for solving the optimization model in equation 7. In par 
ticular , the fact that S * S = I , and that R * R is a diagonal matrix 
are utilized . A similar algorithm can be derived for the 
noise - free case ( equation 6 ) as well . 
[ 0046 ] Starting from equation 7 , splitting variables w = Su 
is introduced to separate the operator S from the non 
differentiable l , norm , and v = Ru - b to form a lz - ball 
constrained optimization problem ( we only need to intro 
duce one splitting variable w to solve the noise - free model 
( equation 6 ) ) . Therefore , equation 7 is equivalent to , 

min ,, w , || w | l , s.t. w = Su , v + b = Ru |||| 250 ( 8 ) 

Ignoring the lz - ball constraint ( 1 | vl | 250 ) , equation 8 has the 
corresponding augmented Lagrangian function ( Gabay and 
Mercier , 1976 ) , 

Equation 12 is quadratic , with the corresponding normal 
equations , 

( BS * S + UR * R ) ? = S * ( Bw + y ) + R * ( ub + uv + a ) . ( 13 ) 

Since S * S = I and R * R is a diagonal matrix , one can explic 
itly and efficiently solve equation 13 . 
[ 0049 ] For constant w and u , the v - subproblem is , 

min , ( -1 * ( Ru – b – v ) + || Ru – b – vli? s.t. || vl | 2 so ( 14 ) 

The value of v found from solving equation 14 is equivalent 
to that found from solving , 

( 15 ) min || ( Ru – b v ) - | $ .t . l - ll2 50 
[ 0050 ] Further , if 

1 

( 16 ) a 
0 = Ru - b- 

f 

then it can be shown that the explicit solution of equation 15 
is , 

0 , if || 0 || 2 so ( 16 ) 
V = 

T otherwise LA ( W , u , v ) = 110112 
B || Wlli – y * ( Su – W ) + usu – will3 – 2 * ( Ru – b = v ) + 1 Ru – b = vil 

where y and ì are Lagrange multipliers , and ß and u are 
scalars . Seis ADM finds the minimum of the equivalent 
model in equation 8. It does so by minimizing the aug 

[ 0051 ] The Seis ADM algorithm is iterative , where for 
each iteration y and à are held constant , and the minimum 
( ? , , ñ ) of the three sub - problems described above are found . 
At the end of each iteration , the Lagrange multipliers 
( Glowinski , 1984 ) is updated , 
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? = y - B ( Su – W ) ( 17 ) { i23 
3a - 3d , qualitatively less noise was observed , for example , in 
the central part , in the SeisADM result compared to the 
SPGL1 result . i = . - Šu ( Ru - b - v ) 

Real Data Example 
Provided that 

1 + 5 
0 < $ < 2 

the theoretical convergence of ADM can be guaranteed . 
Putting all the components together , our algorithm for 
solving the analysis - based denoising model ( equation 7 ) is 
summarized in FIG . 1 . 

Numerical Results 

1 

[ 0052 ] Two tests are performed and reported in this sec 
tion to demonstrate the analysis - based li recovery and 
efficiency of SeisADM . Specifically , SeisADM is compared 
with SPGL1 . In an effort to make comparisons fair , an effort 
can be made to optimally tune parameters for both SeisADM 
and SPGL1 . 

[ 0057 ] For a real data example , data that were collected 
with a two - dimensional ocean bottom node acquisition 
geometry was used . The survey was , specifically , designed 
in such a way that the shots are recorded on an irregular 
acquisition grid . The observed data are reconstructed to a 
regular shot grid with 3105 shot points and 6.25 m between 
adjacent shots . The observed data for reconstruction are 
comprised of 564 of these 3105 shot points , giving a set of 
observed shots that is approximately 18 % of the recon 
structed shot points . The results are for a single ocean 
bottom node ( common receiver gather ) . 
[ 0058 ] FIG . 4a - 4c show for a small window of shot points 
and time , common receiver gathers . In particular , FIG . 4a 
plots the observed data on the 6.25 m grid . FIG . 4b is the 
reconstruction result using the synthesis - based optimization 
model and the SPGL1 method , and FIG . 4c is the recon 
struction result using the analysis - based optimization model 
and the Seis ADM method . The seismic event at approxi 
mately 3.9 s is believed to be of higher quality in the 
analysis - based result ( FIG . 4c ) as compared to the synthesis 
based result . In FIGS . 5a - 5c , the corresponding f - k spectra 
of the data and reconstructions are plotted . In particular , 
FIG . 5a is the Fourier spectrum of the data , FIG . 5b is the 
Fourier spectrum of the synthesis - based result , and FIG . 5c 
is the Fourier spectrum of the analysis - based result . The 
run - time for the synthesis - based result using SPGL1 was 
446 s compared to a run - time of 1349 s for the analysis 
based result using SeisADM . The f - k spectrum of the 
SeisADM result appears to contain less aliased energy than 
the f - k spectrum of the SPGL1 result . 

CONCLUSIONS 

Synthetic Data Example 
[ 0053 ] For a synthetic example , data were generated from 
the Sigsbee 2a model ( Bergsma 2001 ) , and a two - dimen 
sional acoustic finite difference simulation . In addition , the 
data were corrupted with random Gaussian noise , such that 
the data have a signal to noise ratio of 12.7 dB . A single shot 
gather is reconstructed to where a set of observed receivers 
are reconstructed to a regular grid with 1300 receivers with 
7:62 m between adjacent receivers . In running 111 data 
reconstruction simulations , for each simulation the size of 
the set of observed traces changed , ranging from 8 % to 50 % 
of the total number of reconstructed traces . 
[ 0054 ] The results are shown in FIG . 2 which plots the 
signal to - noise ratio as a function of the percentage of 
reconstructed traces that are in the observation set . Results 
for both synthesis - based li recovery ( using SPGL1 ) , and 
analysis based l , recovery ( using Seis ADM ) are shown . In 
addition , the horizontal line in FIG . 2 is the signal - to - noise 
ratio in the original data . The signal - to - noise ratio values in 
FIG . 2 are computed as a function of the reconstructed and 
noise - free data , and where the noise - free data are produced 
from the finite difference simulation . 
[ 0055 ] FIGS . 3a - 3d illustrate ( for a small window of time 
and receivers ) reconstruction results for when the number of 
observed traces is 15 % of the number of the reconstructed 
traces . In particular , FIG . 3a is the finite difference simulated 
data on the reconstruction grid ( i.e. the true result ) , FIG . 3b 
is the set of observed traces , FIG . 3c is the synthesis - based 
l , reconstruction result , and FIG . 3d is the analysis - based 
l , reconstruction result . Finally , the computation time to 
produce the synthesis - based result using SPGL1 was 95 s , 
while the computation time to produce the analysis - based 
result using SeisADM was 64 s . 
[ 0056 ] FIG . 2 shows that when the number of observed 
traces is less than 20 % of the number of reconstructed traces , 
analysis - based l , recovery using SeisADM provides sig 
nificantly higher quality ( i.e. higher signal - to - noise ratio ) 
than synthesis - based l , recovery using SPGL1 . From FIGS . 

[ 0059 ] In this Example , the seismic data reconstruction 
problem using compressive sensing was considered . In 
particular , the significance of the choice of the optimization 
model , being either synthesis- or analysis - based was inves 
tigated . The analysis - based l , recovery gave more accurate 
results than synthesis - based by recovery . A new optimiza 
tion method for analysis - based li recovery , Seis ADM was 
introduced . Seis ADM takes advantage of the properties of 
the seismic data reconstruction problem to optimize its 
efficiency . The Seis ADM method ( used for analysis - based 
li recovery ) required less computation time and behaved 
more robust , as compared to the SPGL1 method ( used for 
synthesis based l recovery ) . While the application of 
SeisADM was to the reconstruction of one spatial dimen 
sion , this method may be extended to multi - dimensional 
data reconstruction problems . 

1 

1 Example 2 

[ 0060 ] First , the grids used in this Example are defined : 1 ) 
the observed grid is an irregular grid on which seismic data 
are acquired ( i.e. observed trace locations ) , 2 ) the nominal 
grid is a regular grid on which seismic data are recon 
structed , and 3 ) the initial grid is a regular grid from which 
the observed grid is selected using , for example , a jittered 
sampling scheme . 
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k ( 24 ) lce ( k + 1 ) ( 8j ) | lejl = ||| P ; -1s ; +1 ( k + 1 ) ! i = 0 

for some 1,55 , < ! ejtki This also implies the choice of s ; as 
defined in equation 3 . 
[ 0065 ] Inspired by equation 5 , interpolated restriction 
operator is 

[ 0061 ] Traditionally , it is assumed that the initial grid is 
identical to the nominal grid , and the observed grid lies on 
a random or jittered subset of the nominal grid . Under these 
settings , the model from Herrmann and Hennenfent ( 2008 ) 
may be utilized , 

b = Ru , x = Su ( 18 ) 

where b = [ b ] , ... , b ] are observed or acquired seismic 
data , and u = [ u , ... , un ] * ( m < n ) are data on the nominal grid 
( i.e. , the true data ) . Each of b ; and u represents a seismic 
trace . The operator S is an appropriately chosen dictionary 
which makes Su sparse or approximately sparse , and R is a 
restriction / sampling operator which maps data from the 
nominal grid to the observed grid . Specifically , R is com 
posed by extracting the corresponding rows from an identity 
matrix . One can recover u by solving an analysis - based basis 
pursuit denoising model ( Cand’es et al . , 2008 ) , 

min | Su | l1 s.t. || Ru - b || 250 ( 19 ) 

where s corresponds to the noise level of the observed data . 
Many algorithms have been developed to solve this model or 
its variants , such as SPGL1 ( van den Berg and Friendlander , 
2008 ) , NESTA ( Becker et al . , 2009 ) , and YALL1 ( Yang and 
Zhang , 2011 ) . 

?1,11 ?i , nl ( 25 ) 
? = ... 

?mil im.nl 
where , 

( 26 ) { Lj ; i , if s ; siss ; + k , 
0 , otherwise 

and the size of the identity matrix I is decided by the number 
of time samples . Then equation 22 can be rewritten as , 

be?u ( 27 ) 
Interpolated Compressive Sensing 
[ 0062 ] If the observed grid is independent of the nominal 
grid , then the nominal grid can be determined after data 
acquisition . To generalize the idea of compressive sensing 
seismic data reconstruction , the fact that seismic data can be 
well approximated , locally , using a kth - order polynomial on 
a regular grid is utilized . For example , k = 1 if the seismic 
data are linear in a local sense . For the sake of clarity , 
reconstruction of seismic data is shown along one spatial 
dimension , but the method can be easily extended to higher 
dimensions . 
[ 0063 ] Denoted are the true locations on the observed grid 

Pm and the true locations on the nominal grid as 
11 , 19. For j = 1 , ... , m and k << n , 

sjargminge { 1 ,. „ n - k } II ; = o * | P ; -isti ! ( 20 ) 

This is easy to solve due to the fact that 11 , . In are equally 
spaced . When p , is not close to the boundary of the nominal 
grid , 

15 : + [ 1 / 2-115p ; s ! 5+ [ 22 ] + ( 21 ) 

Based on the assumption made at the beginning of this 
section , given us , for any j = 1 , ... , m , b ; can be 
well approximated using kth - order Lagrange interpolation 
( e.g. Berrut and Trefethen , 2004 ) ; i.e. , 

as P19 2 

[ 0066 ] This demonstrates an embodiment of the interpo 
lated compressive sensing model for seismic data recon 
struction . Analogous to equation 19 , u can be recovered by 
solving the following optimization problem , 

min . , || S4 || . s.t. || Ku - b || 250 ( 28 ) 

[ 0067 ] One should note that the method described above is 
fundamentally different from the method which first inter 
polates the observed data back to nearest points on the 
nominal grid and then reconstructs using traditional com 
pressive sensing . The proposed method utilizes the unknown 
data on the nominal grid as an interpolation basis to match 
the observed data and forms an inverse problem to recover 
the unknown data . Theoretically , the interpolation error is 
O ( Ahk + 1 ) where Ah is the average spacing of the interpola 
tion basis . Since the nominal grid is much finer than the 
observed grid ( i.e. , smaller average spacing ) , interpolated 
compressive sensing is expected to be more accurate than 
first interpolating followed by reconstructing . Moreover , for 
interpolated compressive sensing , the error could be further 
attenuated by solving a BP denoising problem such as in 
equation 28 ( Candes et al . , 2008 ) . 
[ 0068 ] The computational cost is usually dominated by 
evaluating ?T?u and ST Su at each iteration , which is 
approximately O ( kN ) and O ( N log N ) respectively , assum 
ing S has a fast transform ( N is the number of samples ) . 
Therefore , for seismic data reconstruction , the computa 
tional cost for solving the interpolated compressive sensing 
problem in equation 28 is comparable to solving the tradi 
tional compressive sensing problem in equation 19 when 
k << N . As the order k increases , the accuracy of reconstruc 
tion may become higher at the cost of increasing computa 
tional burden . 
[ 0069 ] If k = 1 in equation 22 , then our method is called 
linear - interpolated compressive sensing . Likewise , if k = 3 , 
our method is called cubic - interpolated compressive sens 
ing . In our tests , linear- and cubic - interpolated compressive 
sensing give comparable and satisfactory reconstruction 
results . The case k > 3 may only apply to few extreme cases . 

9 Us ; + k 

b ; - - . Ljs ; tius ; + ( 22 ) 

where , 

( 23 ) 
Lj ; 8j + i = P ; -Is ; + h NE 

h = 0 , hei 

[ 0064 ] Supposing that u ( x ) denotes the continuous seismic 
data in some local window , and u ( x ) is at least k + 1 times 
continuously differentiable . According to the Taylor expan 
sion , the error estimation of Lagrange interpolation is 
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Real Data Example The following data examples focus on the linear- and 
cubic - interpolated compressive sensing data reconstruction . 

Synthetic Data Example 

[ 0070 ] In order to simulate the scenario that the nominal 
grid does not necessarily include the observed grid , and also 
be able to do quantitative analysis , start with a finer initial 
grid for jittered sampling , and select a uniform subset from 
the initial grid as the nominal grid for reconstruction and 
computing signal - to - noise ratios . The k , solver used to 
solve the problem in equation 28 is based on the alternating 
direction method proposed by Yang and Zhang ( 2011 ) . 
Specifically , the results from two special cases linear and 
cubic — of the proposed interpolated compressive sensing 
with the results from traditional compressive sensing are 
compared . In an effort to make fair numerical comparisons , 
the same solver for both traditional and interpolated com 
pressive sensing is used . 
[ 0071 ] For the synthetic example , data generated from the 
Sigsbee 2a model ( Bergsma , 2001 ) and a two - dimensional 
acoustic finite - difference simulation are considered . For 
each common receiver gather , the data are reconstructed to 
a nominal grid with 306 shot points , with a spacing of 22.89 
m between adjacent shot points . The observed shot points 
are selected from a regular shot point grid with 7.62 m 
spacing using a jittered algorithm ( Hennenfent and Her 
rmann , 2008 ) . Experiments were performed where the num 
ber of observed shot points varies from 15 % to 50 % of the 
306 grid points on the nominal grid . There was a mismatch 
between the nominal grid for reconstruction and the initial 
grid used to generate the observations ; therefore , an 
observed shot - point does not necessarily correspond to any 
given point on the reconstruction grid , making the interpo 
lated compressive sensing method applicable . 
[ 0072 ] The signal - to - noise ratios for reconstruction results 
is shown in FIG . 6 for traditional compressive sensing ( with 
nearest neighbor resampling ) , linear - interpolated compres 
sive sensing , and cubic - interpolated compressive sensing . 
For reference , data reconstruction results for linear and cubic 
interpolation are shown , but without the use of compressive 
sensing data reconstruction . For each data point in FIG . 6 , an 
average signal - to - noise ratio computed from performing 20 
data reconstructions , each on a different common receiver 
gather may be used . FIGS . 7a - 7e show data reconstruction 
results for a small window of source points and time of a 
common receiver gather when there are 108 traces in the 
observed common receiver gather ( 35 % of the reconstructed 
traces ) . In particular , FIG . Ta shows data on the nominal 
reconstruction grid , computed using the finite - difference 
simulation , and FIG . 7b shows the observed data used for 
reconstruction . The remaining sections in FIG . 7 show data 
reconstruction results for traditional compressive sensing 
( FIG . 7c ) , linear - interpolated compressive sensing ( FIG . 
7d ) , and cubic - interpolated compressive sensing ( FIG . 7e ) . 
[ 0073 ] A qualitative inspection of FIG . 7 , confirms the 
quantitative results shown in FIG . 6. Namely that linear- and 
cubic - interpolated compressive sensing data reconstruction 
perform similarly , and , for this scenario , provides a large 
uplift in the signal - to - noise ratio as compared to traditional 
compressive sensing data reconstruction . In addition , all 
types of compressive sensing data reconstruction outper 
form data reconstruction using linear and cubic interpola 
tion . 

[ 0074 ] Marine data was used which were collected by 
shooting in an irregular acquisition pattern and recorded 
with a two - dimensional ocean bottom node acquisition 
geometry . Two reconstruction experiments using this dataset 
were utilized . In the first , the observed data are reconstructed 
to a nominal shot grid with 2580 shot points and 7.5 m 
spacing between adjacent shots . In the second , the observed 
data are reconstructed to a nominal shot grid with 2037 shot 
points and 9.5 m spacing between adjacent shots . The 
observed data for reconstruction are comprised of 400 shot 
points that are selected from an initial grid with 6.25 m 
spacing between adjacent shots points , and 3096 grid points . 
Similar to the synthetic example , there is a mismatch 
between the nominal grids for reconstruction , and the initial 
grid used to collect the data . Therefore , as before , an 
observed shot point does not necessarily correspond to any 
given point on the nominal grid . 
[ 0075 ] FIG . 8 shows the acquired data for a small window 
of time and source points . Reconstruction results are shown 
for the 7.5 m nominal grid in FIGS . 9a - 9c for the same 
window of time and source points . In particular , traditional 
( FIG . 9a ) , linear - interpolated ( FIG . 9b ) , and cubic - interpo 
lated ( FIG . 9c ) compressive sensing data reconstruction 
results are shown . Similarly , the results for the 9.5 m 
nominal grid within the same window of time and source 
points are shown in FIG . 10a - 10c , where the traditional , 
linear - interpolated , and cubic - interpolated compressive 
sensing data reconstruction results are shown in FIGS . 10a , 
10b and 10c respectively . 
[ 0076 ] Even though the seismic data are reconstructed to 
different nominal grids with different spacing , the results 
shown in FIGS . 9 and 10 are consistent with each other . In 
both cases , although the effect is subtle , the seismic data 
recovered using interpolated compressive sensing show less 
acquisition footprint . Besides , the expression of the seismic 
events now , for instance , in the lower right hand corner 
seems more geologically plausible than the traditional com 
pressive sensing result might suggest . 

CONCLUSIONS 

[ 0077 ] A novel data reconstruction method , interpolated 
compressive sensing has been developed . The method 
allows for a mismatch between the nominal grid that the data 
are reconstructed to , and the observed grid upon which the 
data are acquired . This method allows for any dictionary , 
used in the compressive sensing data reconstruction model , 
to be applied to the regular nominal grid . The relationship 
between the observed and nominal grids is given by the 
interpolated restriction operator . The interpolated restriction 
operator , in turn , accounts for both the reduced size of the 
observed grid , and for when a point on the observed grid 
does not correspond to a nominal grid point . The latter is 
done by incorporating Lagrange interpolation into the 
restriction operator . The interpolated compressive sensing 
method was applied to both synthetic and real data 
examples , incorporating both 1st and 3rd order Lagrange 
interpolation into the interpolated restriction operator . The 
synthetic results compare linear- and cubic - interpolated 
compressive sensing to traditional compressive sensing , 
showing a significant increase in the signal - to - noise ratio of 
the reconstructed data . Finally , the method was applied to a 
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real data example , and observed an uplift in quality as 
compared to traditional compressive sensing . 

Example 3 
[ 0078 ] This example finds the optimal sampling grid in a 
seismic data reconstruction problem . The seismic data 
reconstruction model can be described as ( e.g. Herrmann , 
2010 ) , 

mic data reconstruction it would be prohibitively expensive 
to compute . However , if S is the discrete Fourier transform 
matrix , then one can find an efficient method to compute 
mutual coherence , and use this as a mutual coherence proxy 
for when S is some over - complete ( but perhaps still Fourier 
derived dictionary such as the windowed Fourier transform . 
[ 0085 ] To derive the mutual coherence proxy , one may 
begin by following Hennenfent and Herrmann ( 2008 ) , and 
note that for the seismic data reconstruction model , R * R is 
a diagonal matrix with its diagonal being the sampling grid , b = Dx , D = RS * , x = Su ( 29 ) 

in ] ( 33 ) 

where b are seismic data on the observed grid , and u are data 
on the reconstruction grid ( i.e. the true data ) . The matrix R 
is a restriction ( i.e. sampling ) operator , and maps data from 
the reconstruction grid to the observed grid . If S is a suitably 
chosen , possibly over - complete , dictionary , then x will have 
small cardinality ( i.e. lo - norm ) . 

r = [ r1 r2 
hence , 

( 34 ) [ P * R $ * ] j = Š [ P * R ] ; { [ S * l_ = r ; [ S ] 
k = 1 

and the Gram matrix is , 

( 35 ) 
[ G1 ,; = [ D * D ) : ; = [ SR * RS “ ) , j = [ S1 : 4 [ S * IX . , Pk 

If S is a discrete Fourier transform matrix , then [ S ] , = 0 " 
where = exp ( -27-1 / n ) , and from equation 35 , 

Compressive Sensing Optimization Model and Mutual 
Coherence 
[ 0079 ] Given the under - determined system in equation 29 
and the data b , the reconstructed seismic data u is found by 
solving an analysis - based basis pursuit denoising optimiza 
tion model ( e.g. Candés et al . , 2008 ) , 

min | Su | l1 s.t. || Ru - b || 250 ( 30 ) 

[ 0080 ] There are many algorithms that can be employed to 
find the solution of the optimization model in equation 30 . 
In this Example , a variant ( Li et al . , 2012 ) of the alternating 
direction method ( e.g. Yang and Zhang , 2011 ) is used . At 
least one goal is to design R ( i.e. the sampling grid ) such that 
for a given b and S , u is more likely to be recovered 
successfully . 
[ 0081 ] Compressive sensing provides theorems that give 
conditions for a successful data reconstruction . For the 
moment , we consider the following scenario : 1 ) SER " * " is 
an orthonormal matrix , 2 ) RER " mxn with n > m , 3 ) D = RS * is 
such that D is a selection of m rows from S * , and 4 ) D = RS * 
is such that the columns of D , di , have unit energy || ( di | l2 = 1 , 
i = 1 ... n ) . Under this scenario , solving the optimization 
program in equation 30 recovers u successfully with over 
whelming probability when ( Candes et al . , 2006 ) , 

( 36 ) [ Cl.j = [ D * D ) : s = Znen na 64 ( 1-1 ) 

Equation 36 shows that off - diagonal elements of the Gram 
matrix are equal to the non - d.c . components of the Fourier 
transform of the sampling grid r . Therefore , 

( 37 ) 
ulr ) = max # 0 [ fi ] = max ( +0 & meste 

( 31 ) m 
us S ( logn ) " 

where f , are Fourier transform coefficients . Equation 37 can 
be computed efficiently using the fast Fourier transform , and 
is our mutual coherence proxy . It is exactly the mutual 
coherence when S is the Fourier transform , and a proxy for 
mutual coherence when S is some over - complete dictionary . 
Greedy Optimization Algorithm for Acquisition Design 

[ 0082 ] In equation 31 , C is a constant , and S is the 
cardinality of Su . Importantly , for our analysis , u is the 
mutual coherence and is a function of S and R. In particular 
( Donoho and Elad , 2002 ) , 

u ( R , S ) = max ; ; Id * ; d ; l , i , j = 1 ... n ( 32 ) 

[ 0083 ] This is equivalent to the absolute maximum off 
diagonal element of the Gram matrix , G = D * D . Within the 
context of the seismic data reconstruction problem , n is 
proportional to the number of seismic traces on the recon 
struction grid , and m is proportional to the number of traces 
on the observed grid . Therefore , if S and C are constant , then 
for a given number of observed traces , decreasing m 
increases the chance of a successful data reconstruction . 
[ 0084 ] The relation between mutual coherence ( equation 
32 ) and the condition for exact recovery ( equation 31 ) , make 
its analysis appealing . Unfortunately , for problems in seis 

ran 

[ 0086 ] Given the mutual coherence in equation 37 , a 
sampling grid r according to the optimization program is 

tx = arg min u ( r ) ( 38 ) 

where u is given by equation 37. The optimization program 
in equation 38 is non - convex . To find its solution , 
domized greedy algorithm is proposed . One can think of it 
as a deterministic alternative to the statistical result found in 
Hennenfent and Herrmann ( 2008 ) . The algorithm will find a 
local minimum , and , therefore , does not guarantee conver 
gence to a global minimum . However , in practice , it has 
been observed that solutions finding a local minimum using 
our randomized greedy algorithm are sufficient . 
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[ 0087 ] The randomized greedy algorithm for solving 
equation 38 is shown in Algorithm 1. The algorithm is 
initialized using a regular sampling grid , where the spacing 
of the regular grid is Ar = n / m , so that for any integer je { 0 , 
1 , ... , m - 1 } , the elements of r ( equation 33 ) are , 

r = { 1 , i = jAr + 1 0 , i + jAr + 1 ( 39 ) 

and where for the sake of simplicity in our description , one 
can assume that n is an integer multiple of m . Dividing the 
reconstruction grid into m disjoint subsets of size Ar grid 
points , and where the jth subset is , 

5 ; = { jar- [ Ar / 2 ] + k \ k = 1 ... Ar } ( 40 ) 

where [ x ] denotes integer component of x . In other words , 
except at the boundaries of the grid , the jth subset is centered 
on the jth grid point of the regular observed grid . The 
ordered sets s ; are stored in I , and we store a corresponding 
random ordering of these sets using J = PI , and where P is a 
random perturbation matrix . The algorithm sequentially 
steps through the sets in J , and uses a jittering technique so 
that for each of the Ar elements in s ;, its corresponding grid 
point is set to 1 while all others are set to 0 , producing a new 
sampling grid rk . Subsequently , the mutual coherence uk = u 
( rx ) is computed using equation 37 , and compared to the 
mutual coherence of r . If a perturbation , 

kx = arg minzu ( ra ) ( 41 ) 

on r is found that reduces the mutual coherence , then ris set 
to before iterating to the next sets s , EJ . Hence , the 
algorithm runs in a fixed number of iterations equal to már , 
and where the expense at each iteration is dominated by the 
computation of the mutual coherence of the sampling grid 
computed via the fast Fourier transform ( equation 37 ) . 
Therefore , the total expense of the algorithm is O ( n² log n ) . 

tion of the randomized greedy algorithm . In total there are 
185 iterations , including its initialization to a regular sam 
pling grid . For comparison , a Monte Carlo simulation gen 
erated 185 realizations of R where for each row of R , its 
non - zero column is selected using a random jitter technique 
with a uniform probability density function . 
[ 0090 ] The Monte Carlo realizations of the restriction 
operator R give , consistently , small values for their mutual 
coherence proxy ( FIG . 11a ) , and correspondingly good 
values for the signal - to - noise ratios of the reconstructed 
data , as shown in FIG . 11b . This is an expected result , and 
is shown in Hennenfent and Herrmann ( 2008 ) . As the greedy 
optimization algorithm iterates , the mutual coherence 
approaches and then surpasses the mutual coherence com 
puted from the Monte Carlo realizations . Likewise , the 
signal - to - noise ratios found from the randomized greedy 
optimization algorithm approach similar values to those 
found from the Monte Carlo method . The optimal sampling 
grid using the greedy algorithm was achieved by jittering 
134 of the 184 observations , a result that is not necessarily 
predicted by the analytic result in Hennenfent and Herrmann 
( 2008 ) . However , both the Monte Carlo and randomized 
greedy algorithms produced sampling grids that result in 
successful seismic data reconstructions . 

Algorithm 1 Randomized greedy algorithm 
?? 

1 

[ So S1 Sm - 1 ] , J 

0 , Ar = n / m 
r ; 1 , for i = jar , j = 0,1 ... , m 
S ; { jar - [ Ar / 2 ] + klk 1 ... Ar } , j = 0,1 , ... , m 
I + PI 
for j ? m - 1 do 

S ; < [ J ] ;, Ho = u ( r ) , r ' r 
for Vk Es ; do 

I { s ; } ' { 0 } , Iz ' < 1 , Hz = u ( r ' ) 
end for 
If min { ux } < llo then 

min { Mx } , r « r ' 
end if 

end for 
r * er 

Real Data Example 
[ 0091 ] For the real data example , data that was collected 
with a two - dimensional ocean bottom node acquisition 
geometry were used . The survey was , specifically , designed 
in such a way that the shots are recorded on an irregular 
acquisition grid . The observed data is reconstructed to a 
regular shot grid with 3105 shot points and 6.25 m between 
adjacent shots . The observed data for reconstruction is 
comprised of 400 of these 3105 shot points , giving a set of 
observed shots that is approximately 13 % of the size of the 
set of reconstructed shot points . The results for a single 
ocean bottom node ( common receiver gather ) is shown . As 
was the case for the synthetic data example , S was allowed 
be a two - dimensional windowed Fourier transform . 
[ 0092 ] Amplitude spectra of the sampling grids ( li , l in 
equation 37 ) are shown in FIGS . 12a - 12b . In particular , FIG . 
12a shows the Fourier spectrum of a sampling grid with a 
large mutual coherence proxy ( u = 176 ) and FIG . 12b shows 
the Fourier spectrum of a sampling grid with a small mutual 
coherence proxy ( u = 99 ) . As expected , the large mutual 
coherence case corresponds to larger non - d.c . components 
than the low mutual coherence case . As shown , the f 
k - spectra of common receiver gathers for the high ( FIGS . 
13a and 13c ) and low ( FIGS . 13b and 13d ) mutual coher 
ence sampling grids . In particular , FIGS . 13a - 13b plot the f 
k - spectra of the observed data , and FIGS . 3c - d plot the f 
k - spectra of the reconstructed data . In the f k - spectra of the 
high mutual coherence case , coherent aliased energy ( FIGS . 
13a and 13c ) was observed . In the low mutual coherence 
case ( FIGS . 13b and 13d ) , this energy is attenuated . 
[ 0093 ] Finally , FIGS . 14a - 14d plot a common receiver 
gather for a small window of time and source points before 
and after data reconstruction for the low and high mutual 
coherence sampling grids . In particular , FIGS . 14a - 14b plot , 
respectively , the observed and reconstructed data for the 
high mutual coherence sampling grid , and FIGS . 14c - 14d 
plot , respectively , the observed and reconstructed data for 
the low mutual coherence sampling grid . Qualitatively , the 
acquisition footprint is easier to see in the high mutual 

Hoa 

Synthetic Data Example 
[ 0088 ] For a synthetic data example , data generated from 
the Sigsbee 2a model ( Bergsma , 2001 ) , and a two - dimen 
sional acoustic finite difference simulation were used . The 
data reconstruction of a single common receiver gather , and 
where 184 observed traces are reconstructed to a regular grid 
with 920 sources and 7.62 m between adjacent sources were 
considered . Hence , the observed data has 20 % as many 
traces as the reconstructed data . In the data reconstruction 
model ( equation 29 ) , S was allowed be a two - dimensional 
windowed Fourier transform . 
[ 0089 ] The results are shown in FIG . 11a - 11b which plot 
the mutual coherence proxy ( equation 38 ) versus the itera 
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coherence case , as compared to the low mutual coherence 
case . These observations are consistent with those made on 
the corresponding f k - spectra ( FIG . 13 ) . 

Example 4 
[ 0094 ) The Non - Uniform Optimal Sampling ( NUOS ) 
technology may be used to fire two different sized gun arrays 
independently in a 2D sense to acquire data that is optimized 
both for the deep geological section and the shallow geo 
logical at the same time . The common problem with deep 
array targeting is that it is geared for low frequencies and 
tends to be sampled relatively sparsely due to seismic record 
lengths . For example , one embodiment may comprise 37.5 
m shot separation on 18 second records . Shallow data on 
these “ deep ' records may be degraded and under - sampled 
spatially . A dataset directed to shallow data may be acquired 
at 12.5 m shots and 5 second records . It would be beneficial 
to be able to obtain both datasets at the same time or obtain 
one dataset that is separable , so that only one pass of the 
acquisition equipment is required in a survey area . 
[ 0095 ] Using NUOS methodology , one embodiment pro 
vides for acquisition of the deep tow gun array on , for 
example , the port guns and use the starboard gun array to 
shoot for shallow targeted acquisition , so that the shallow 
and deep data are simultaneously recording , providing a 
very efficient acquisition that requires one pass over the 
survey area instead of two . Each gun array will have its own 
unique encoding , selected to be has incoherent as practical 
relative the other array . Then the deep and shallow data may 
be acquired independently and then the records separated or 
de - blended after acquisition . Each gun array can fire inde 
pendently of the other and not substantially interfere . The 
method cuts costs of acquisition in half compared to the 
conventional approach . 
[ 0096 ] The two different gun arrays are tuned for different 
objectives in a marine 2D towed streamer survey . Both 
objectives may be acquired independently with a single pass 
of the vessel and the data de - blended into independent 2D 
lines . Embodiments provided allow acquisition of twice as 
much data with optimal sampling for the acquisition costs of 
one 2D line instead of the costs of acquiring two lines . The 
problem of trying to acquire both deep and shallow data with 
one gun array or not getting one or the other dataset is 
avoided . 
[ 0097 ] A long - standing issue in data acquisition and pro 
cessing has been selecting optimal locations for sources and 
receivers . It is understood that random sampling may be able 
to recover broader bandwidth from a fixed set of samples , 
which may be random , than from uniform sampling . As an 
improvement over random sampling , embodiments herein 
provide methodologies for improved means for selecting 
source and receiver locations in seismic surveys . NUOS 
uses concepts from compressive sensing along with optimi 
zation algorithms to identify source or sensor positions that 
satisfy optimization constraints for a particular survey . After 
optimizing source or sensor locations , the NUOS approach 
then uses compressive sensing algorithms to recover sig 
nificantly broader spatial bandwidth from non - uniform sam 
pling than would be obtained using conventional uniform 
sampling . For example , NUOS technology recovers spatial 
bandwidth equivalent to 12.5 m uniform sampling using the 
same number of samples as would be used for a 25 m 
sampled survey , with significant improvements over con 
ventional surveys . The technology may be used to reduce 

costs per area or to survey a larger area with the same 
amount of equipment , or to increase survey resolution . 
[ 0098 ] In NUOS source design for one example embodi 
ment , a nominal 37.5 meter shot spacing from each gun 
position may vary between 25 meters to 50 meters . The can 
provide a reconstructed equivalent spacing of 12.5 meters . 
This increases in - line resolution and improves denoising and 
demultiple workflows . 
[ 0099 ] According to conventional Nyquist sampling 
theory , survey layout design would not be an issue if the 
earth were sampled to two points per wavelength in each 
dimension . Practically , orders of magnitude fewer sampling 
points than Nyquist theory would dictate are obtained in 
conventional or normal surveys . Limited sources and receiv 
ers is a classic " Np - Complete ” problem , in that an optimal 
solution can only be found by investigating every possible 
combination of source and receiver locations . Fold and 
azimuth distribution are examples of cost functions we 
routinely use for seismic survey design . 
[ 0100 ] More advanced cost functions for survey design 
obviously make the optimization problem more complex , as 
the computational cost of evaluating a single solution 
increases . Compressive sensing ( i.e. Baraniuk , 2007 ) and 
convex optimization ( i.e. Friedlander and Martinez , 1994 ) 
provide tools to address the seismic survey design problem . 
Compressive sensing provides for extracting ( or recon 
structing ' ) a uniformly sampled wave - field from non - uni 
formly sampled sensors , and convex optimization provides 
computationally viable solutions for Np - complete problems . 
For these methods , a sparse representation of the seismic 
wave - field must exist in some domain . Algorithms that 
exploit the sparsity of seismic wave - fields make the adop 
tion of Compressive Sensing ( CS ) concepts a natural fit to 
geophysics . 
[ 0101 ] In recent years , random sampling has been pro 
posed as a means for extracting more bandwidth from 
seismic data than Nyquist sampling would predict ( Her 
rman , 2010 , Moldoveanu , 2010 , Milton , et . al . , 2012 ) . Use 
of non - uniform sampling for improving signal bandwidth 
has a long history , having been used in many imaging fields 
such as signal processing ( Shapiro and Silverman , 1960 ) , 
beamforming ( Griffiths and Jim , 1982 ) , synthetic aperture 
radar ( Munson and Sanz , 1984 ) and seismic imaging 
( Mosher and Mason , 1985 ) . Non - uniform sampling requires 
more precise knowledge of sensor positions than is normally 
required for uniform sampling . The advent of the Global 
Positioning System ( GPS ) in combination with advance 
ments in compressive sensing , optimization , and high per 
formance computing makes this NUOS technology practi 
cal . 
[ 0102 ] With NUOS , an optimization loop is used to deter 
mine the locations of sources and receivers for a non 
uniform design , rather than relying solely on decimation , 
jittering , or randomization . Construction of the optimization 
loop requires a cost function that determines the viability of 
a given survey design , and an algorithm for searching the 
very large space of possible solutions . The cost function can 
take many forms , ranging from conventional array response 
to more sophisticated matrix analysis techniques ( i.e. diago 
nal dominance , condition number , eigenvalue ranking , 
mutual coherence , etc ) . Practical implementations of NUOS 
can exploit knowledge of the underlying earth model if 
known , rather than a model independent compressive sens 
ing implementation . 
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[ 0103 ] A cost function is a geophysical attribute of the 
survey to be optimized . At the simplest level may be just the 
fold , ( number of hits ( traces ) in a particular bin ) or the 
offsets ( a hit in a particular unique offset plane in a bin ) or 
the azimuth distribution ( hits in a particular bin coming from 
a particular direction ) are all things to be optimized and keep 
relatively uniform for the best interpretation . More complex 
costs functions may include 5D interpolation ( x , y , z , time , 
distribution ) , or optimize for better offset vector tile ( distri 
butions in the offset vector space per bin per fold tile ) , or 
more for interpretation , ie : optimize for a near trace gradient 
stack ( used for AVO and rock property detection ) where 
each bin could have at least 1 hit per every 200 m offset from 
0 to 800 m offset . These nonlimiting examples of costs 
functions may be either dictated by acquisition theory ( fold , 
offsets and azimuths ) processing ( 5D interpolation , offset 
vector tile distribution ) or interpretation ( gradient stack for 
AVO ) . 
[ 0104 ] A convenient choice for constructing a cost func 
tion is to use a reconstruction algorithm that can produce 
uniformly sampled data from a set of non - uniform sample 
locations . Example algorithms range from simple linear or 
nearest neighbour interpolation to more sophisticated recon 
struction techniques such as MWNI ( Liu and Sacchi , 2004 ) , 
and compressive sensing based reconstruction techniques 
( Hennefent and Herrmann , 2008 , Herrmann , 2010 ) . The cost 
function can be derived independently of the data by matrix 
analysis , or it can be a combined with prior knowledge of the 
underlying earth model if available . 
[ 0105 ] In one nonlimiting embodiment , a compressive 
sensing algorithm for data reconstruction ( e.g. , Herrmann , 
2010 ) may be used for calculation of the cost function . This 
algorithm uses a sampling matrix that extracts a subset of the 
data from an underlying uniformly sampled grid . A com 
pressive sensing algorithm is then used to reconstruct the 
data on the underlying grid . The signal - to - noise ratio of the 
reconstructed data is used as the cost function for the outer 
NUOS optimization loop . The signal - to - noise ratio may be 
approximated by constructing elastic synthetic seismograms 
from a detailed model of the study area . Synthetic records 
may be calculated for very dense spatial sampling , and then 
decimated according to a particular realization of the non 
uniform sampling matrix . The signal - to - noise ratio for a 
particular realization may be defined as the root - mean 
square of the reconstructed data minus the original synthetic 
data over a window corresponding to an area of interest . 
[ 0106 ] Selection of an optimal design based on evalua 
tions of the cost function and associated constraints can be 
cast as a classic optimization problem , for which a wide 
range of potential solutions is available . A Monte - Carlo 
optimization scheme may be used to select the source 
locations for the field trial . 
[ 0107 ] As an example of contrasting a convention acqui 
sition design with a NUOS design , a conventional uniform 
survey may be acquired with a fixed spread of 580 receivers 
spaced at 25 meters , and with a source spacing of 25 meters 
over the same aperture as the receiver spread . A normal 
moveout processing application with a velocity function 
designed for minimizing aliasing between near and far 
offsets applied to the data will likely nevertheless produce 
the result that significant aliasing will occur between 30 and 
60 Hz . 
[ 0108 ] In contrast , a NUOS design may use an underlying 
sampling matrix with 6.25 meter spacing and the number of 

shots identical to that used in the uniform design , and 
covering the same spatial aperture . Several hundred Monte 
Carlo iterations may be used to select optimal source loca 
tions for these parameters . The selection criteria used may 
be based on the signal - to - noise ratio of data reconstructed 
from elastic wave synthetic seismograms using a detailed 
velocity model from the study area . Reconstructed receiver 
gathers using the NUOS criteria and compressive sensing 
algorithm produce seismic records largely free of aliasing 
artifacts . 
[ 0109 ] Non - Uniform Optimal Sampling ( NUOS ) provides 
a methodology for choosing non - uniform sensor locations 
for seismic survey planning . This technique uses compres 
sive sensing along with optimization algorithms to identify 
sensor layouts that satisfy optimization constraints for a 
particular survey . Field trials conducted using NUOS con 
cepts confirms the viability of using compressive sensing 
algorithms to recover significantly broader spatial band 
width from non - uniform sampling than could be obtained 
using uniform sampling . In the 2D field example discussed 
above , data with spatial bandwidth equivalent to 12.5 m 
uniform sampling was obtained using the same number of 
samples as would be used for 25 m survey , or one - half the 
effort of a conventional 2D survey . This demonstrates that 
using NUOS methodology for a given number of sources 
and receivers improvements over convention acquisition 
may be expected that reduce the cost of survey for a fixed 
area , to cover a larger area with the same amount of 
equipment , or to increase the resolution over a given area . 
[ 0110 ] One nonlimiting embodiment is shown in FIG . 15 , 
a method for 2D seismic data acquisition , so that simulta 
neously acquired deep profile data and shallow profile data 
may be acquired with one traverse of a survey area with the 
acquisition equipment . The method comprises determining 
source - point seismic survey positions for a combined deep 
profile seismic data acquisition with a shallow profile seis 
mic data acquisition wherein the source - point positions are 
based on non - uniform optimal sampling 1502. A seismic 
dataset is obtained where the data were acquired with a first 
set of air - guns optimized for a deep - data seismic profile and 
acquired with a second set of air - guns optimized for a 
shallow - data seismic profile 1504. The seismic dataset 
acquired with the first and second set of air - guns is de 
blended to obtain a deep 2D seismic dataset and a shallow 
2D seismic dataset 1506. In one embodiment the first set of 
air - guns has a first encoded source signature and the second 
set of air - guns has a second encoded source signature , which 
may facilitate the de - blending process . 
[ 0111 ] Another nonlimiting embodiment comprises using 
interpolated compressive sensing to reconstruct the acquired 
dataset to a nominal grid . A compressive sensing application 
takes the originally acquired sparse data from an underlying 
acquisition position , data which may be acquired on a 
regular or irregular underlying grid , and moves recon 
structed data to a nominal grid , which may be a uniformly 
sampled grid . After the data are reconstructed using inter 
polated compressive sensing , the data may be used to obtain 
shot - point or source - point gathers ( or common source gath 
ers ) , receiver gathers ( or common detector gathers ) , com 
mon offset gathers or common midpoint gathers . Each of 
these types of gathers may have beneficial utility in different 
aspects when the combined deep - shallow simultaneously 
acquired dataset is deblended into a deep profile dataset and 
shallow profile dataset . De - blending may be accomplished 
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also be used to store programs that are loaded into the RAM 
when such programs are selected for execution . The ROM is 
used to store instructions and perhaps data that are read 
during program execution . The ROM is a non - volatile 
memory device that typically has a small memory capacity 
relative to the larger memory capacity of the secondary 
storage . The RAM is used to store volatile data and perhaps 
to store instructions . 

as disclosed by Mandad et al . , 2011 , which is expressly 
incorporated herein by reference . 
[ 0112 ] In still another nonlimiting embodiment , a non 
uniform optimal sampling method further comprises using a 
Monte Carlo Optimization scheme to determine source 
point seismic survey positions . Determining the non - uni 
form optimal sampling using a Monte Carlo Optimization 
scheme may further comprise a Signal - to - Noise Ratio cost 
function ( SNR cost - function ) defined as the root - mean 
square SNR of the data to be reconstructed minus the SNR 
of an elastic wave synthetic dataset over an area of interest 
using an appropriate velocity model . This is a way of 
exploiting a priori knowledge of the underlying earth model 
to provide for favorable conditions for sparse recovery that 
may improve the wavefield sampling operator , rather than 
relying on randomness or some other non - model related 
parameter . 
[ 0113 ] Additionally , using a Monte Carlo Optimization 
scheme for determining the non - uniform optimal sampling 
may comprise a using cost - function to determine the opti 
mized locations , the cost function may be diagonal domi 
nance , a conventional array response , a condition number , 
eigenvalue determination , mutual coherence , trace fold , or 
azimuth distribution . 
[ 0114 ] Embodiments disclosed herein may be used in 
conjunction with system 1600 as illustrated in FIG . 16. FIG . 
16 illustrates a schematic diagram of an embodiment of a 
system 1600 that may correspond to or may be part of a 
computer and / or any other computing device , such as a 
workstation , server , mainframe , super computer , processing 
graph and / or database wherein NUOS technology may be 
applied . The system 1600 includes a processor 1602 , which 
may be also be referenced as a central processor unit ( CPU ) . 
The processor 1602 may communicate and / or provide 
instructions to other components within the system 1600 , 
such as the input interface 1604 , output interface 1606 , 
and / or memory 1608. In one embodiment , the processor 
1602 may include one or more multi - core processors and / or 
memory ( e.g. , cache memory ) that function as buffers and / or 
storage for data . In alternative embodiments , processor 1602 
may be part of one or more other processing components , 
such as application specific integrated circuits ( ASICs ) , 
field - programmable gate arrays ( FPGAs ) , and / or digital 
signal processors ( DSPs ) . Although FIG . 16 illustrates that 
processor 1602 may be a single processor , it will be under 
stood that processor 802 is not so limited and instead may 
represent a plurality of processors including massively par 
allel implementations and processing graphs comprising 
mathematical operators connected by data streams distrib 
uted across multiple platforms , including cloud - based 
resources . The processor 1602 may be configured to imple 
ment any of the methods described herein . 
[ 0115 ] FIG . 16 illustrates that memory 1608 may be 
operatively coupled to processor 1602. Memory 1608 may 
be a non - transitory medium configured to store various types 
of data . For example , memory 1608 may include one or 
more memory devices that comprise secondary storage , 
read - only memory ( ROM ) , and / or random - access memory 
( RAM ) . The secondary storage is typically comprised of one 
or more disk drives , optical drives , solid - state drives ( SSDs ) , 
and / or tape drives and is used for non - volatile storage of 
data . In certain instances , the secondary storage may be used 
to store overflow data if the allocated RAM is not large 
enough to hold all working data . The secondary storage may 

[ 0116 ] As shown in FIG . 16 , the memory 1608 may be 
used to house the instructions for carrying out various 
embodiments described herein . In an embodiment , the 
memory 1608 may comprise a computer program module 
1610 , which may embody a computer program product , 
which may be accessed and implemented by processor 1602 . 
Computer program module 1610 may be , for example , 
programs to implement NUOS and compressive sensing 
technology . Alternatively , application interface 1612 may be 
stored and accessed within memory by processor 1602 . 
Specifically , the program module or application interface 
may perform signal processing and / or conditioning and 
applying non - uniform optimal sampling and compressive 
sensing as described herein . 
[ 0117 ] Programming and / or loading executable instruc 
tions onto memory 1608 and processor 1602 in order to 
transform the system 1600 into a particular machine or 
apparatus that operates on time series data is well known in 
the art . Implementing instructions , real - time monitoring , and 
other functions by loading executable software into a com 
puter can be converted to a hardware implementation by 
well - known design rules . For example , decisions between 
implementing a concept in software versus hardware may 
depend on a number of design choices that include stability 
of the design and numbers of units to be produced and issues 
involved in translating from the software domain to the 
hardware domain . Often a design may be developed and 
tested in a software form and subsequently transformed , by 
well - known design rules , to an equivalent hardware imple 
mentation in an ASIC or application specific hardware that 
hardwires the instructions of the software . In the same 
manner as a machine controlled by a new ASIC is a 
particular machine or apparatus , likewise a computer that 
has been programmed and / or loaded with executable 
instructions may be viewed as a particular machine or 
apparatus . 

[ 0118 ] In addition , FIG . 16 illustrates that the processor 
1602 may be operatively coupled to an input interface 1604 
configured to obtain data and output interface 1606 config 
ured to output and / or display the results or pass the results 
to other processing . The input interface 1604 may be con 
figured to obtain time series and compressive sensing data 
via sensors , cables , connectors , and / or communication pro 
tocols . In one embodiment , the input interface 1604 may be 
a network interface that comprises a plurality of ports 
configured to receive and / or transmit NUOS technology data 
via a network . In particular , the network may transmit the 
data via wired links , wireless link , and / or logical links . Other 
examples of the input interface 1604 may be universal serial 
bus ( USB ) interfaces , CD - ROM , DVD - ROMs . The output 
interface 1606 may include , but is not limited to one or more 
connections for a graphic display ( e.g. , monitors ) and / or a 
printing device that produces hard - copies of the generated 
results . 
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CONCLUSIONS 

[ 0119 ] The seismic data acquisition design problem was 
considered from the point of view of compressive sensing 
seismic data reconstruction and non - uniform optimal sam 
pling . In particular , mutual coherence and a greedy optimi 
zation algorithm was utilized to design an optimal acquisi 
tion grid . With the synthetic example , the signal - to - noise 
ratio and the mutual coherence are anti - correlated . Addi 
tionally , the synthetic example showed that the randomized 
greedy algorithm gave a mutual coherence that is lower than 
that found from a Monte Carlo simulation . Further , the 
signal - to - noise ratio of the reconstruction result produced 
from the optimal grid found through the greedy algorithm is 
similar to that found from the Monte Carlo simulation , 
which can be predicted from the work of Hennenfent and 
Herrmann ( 2008 ) . Finally , the choice of mutual coherence 
proxy using a real data example was validated , and where a 
qualitative analysis of the reconstruction results was made , 
comparing a low mutual coherence sampling grid and a high 
mutual coherence sampling grid of the same survey area . 
[ 0120 ] Although the systems and processes described 
herein have been described in detail , it should be understood 
that various changes , substitutions , and alterations can be 
made without departing from the spirit and scope of the 
invention as defined by the following claims . Those skilled 
in the art may be able to study the preferred embodiments 
and identify other ways to practice the invention that are not 
exactly as described herein . It is the intent of the inventors 
that variations and equivalents of the invention are within 
the scope of the claims while the description , abstract and 
drawings are not to be used to limit the scope of the 
invention . The invention is specifically intended to be as 
broad as the claims below and their equivalents . 
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What is claimed is : 
1. A method for 2D seismic data acquisition , the method 

comprising : 
a ) determining source - point seismic survey positions for 

a combined deep profile seismic data acquisition with 
a shallow profile seismic data acquisition wherein the 
source - point positions are based on non - uniform opti 
mal sampling ; 

b ) obtaining a seismic dataset acquired with a first set of 
air - guns optimized for a deep - data seismic profile and 
acquired with a second set of air - guns optimized for a 
shallow - data seismic profile ; and 

c ) de - blending the seismic dataset acquired with the first 
and second set of air - guns to obtain a deep 2D seismic 
dataset and a shallow 2D seismic dataset . 

2. The method of claim 1 further comprising using 
interpolated compressive sensing to reconstruct the acquired 
dataset to a nominal grid . 

3. The method of claim 1 wherein the source - point 
positions based on non - uniform optimal sampling further 
comprises using a Monte Carlo Optimization scheme to 
determine source - point seismic survey positions . 

4. The method of claim 3 wherein determining the non 
uniform optimal sampling using a Monte Carlo Optimiza 
tion scheme further comprises a Signal - to - Noise Ratio cost 
function ( SNR cost - function ) defined as the root - mean 
square SNR of the data to be reconstructed minus the SNR 
of an elastic wave synthetic dataset over an area of interest 
using an appropriate velocity model . 

5. The method of claim 3 wherein determining the non 
uniform optimal sampling using a Monte Carlo Optimiza 
tion scheme comprises a cost - function to determine the 
optimized locations , the cost function selected from the 
group consisting of : i ) diagonal dominance , ii ) a conven 
tional array response , iii ) a condition number , iv ) eigenvalue 
determination , v ) mutual coherence , vi ) trace fold , or vii ) 
azimuth distribution . 

6. The method of claim 2 wherein the nominal grid is a 
uniformly sampled grid . 

7. The method of claim 2 further comprising reconstruct 
ing the acquired data to obtain a receiver gather . 
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8. The method of claim 1 wherein the first set of air - guns 
has a first encoded source signature and the second set of 
air - guns has a second encoded source signature . 

9. The method of claim 1 wherein determining the opti 
mized source - point position based on non - uniform optimal 
sampling further comprises determining an underlying uni 
formly sampled grid . 


