US 20230130940A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0130940 A1

Hughes (43) Pub. Date: Apr. 27,2023
(54) EXTRACTING DEFINED OBJECTS FROM (52) US. CL
IMAGES OF DOCUMENTS CPC ... GO6K 9/00463 (2013.01); GO6K 9/628
(2013.01); GO6K 9/6217 (2013.01); GO6K
(71) Applicant: SAP SE, Walldorf (DE) 2209/01 (2013.01)
(72) Inventor: Lance Hughes, Snoqualmie, WA (US) (57) ABSTRACT
(21) Appl. No.: 17/511,456 Some embodiments provide a non-transitory machine-read-
T ’ able medium that stores a program. The program receives an
(22) Filed: Oct. 26. 2021 image of a document. The program further detects a plurality
: . 26,

of text based on the image of the document. The program
also uses a machine learning model to predict whether each

Publication Classification text in the plurality of text is one of a plurality of defined

(51) Int. CL types of text. Based on the predicted types of text for the
GO6K 9/00 (2006.01) plurality of text, the program further determines a set of
GO6K 9/62 (2006.01) defined objects.

200

~

[|
[{12021 [Dinner
Room
Colfee 5.98
17212027 1367
205 210~ 245
17212027 5735
17212021 Room
17312027
| 7372021 i | (352.20)

} "Old

ov
sjopopy Bunies

38
eje(abeuy

st 571
gle(uonesyddy gjeq 09[40

US 2023/0130940 A1

auILoe

3 _
suiBuz 18lgo i
80iAs(] JuslD

Sit
uogedddy

Apr. 27,2023 Sheet 1 of 15

43 0ct
Jobeueyy adhj 1xa 1 ioneeg ey

wasAg Bupndwon

Patent Application Publication
2

00

Yo "
< vZ '9ld
(=]
-t
N
[
e
Yo
(=]
e
o
(=]
o
[99]
=
. (0z7'26¢) yseD 12028/}
5 g sepealg 12026/
i AR wooy \20221
[-P]
= 6¢'1S 10U L2022
o 1961 youny 20212/
o
N 868G 08407 1202121}
m VL ooy L202Ib
25ve souuQ \20Z/1)
Junowy uondioss(ajeq
187 {WooY
v0 ‘0osiourld UeS IS Uil €71
[830H NIV

00¢

Patent Application Publication

Patent Application Publication Apr. 27,2023 Sheet 3 of 15 US 2023/0130940 A1

=]y B I~) S
301 o I o B <&
Sl = e I o N = I
£ { 2 I S)
< 2
L }
i
L
pald
o™~
B4
CD.%
R R
O 5 (28]
®
e o~
e s -
LU i3 O
3 o~
=& i
Q2 =
< & 2
b e a N
& <8 foo nv
& £ 5 & |2 g 3
= = o g {5 PR
(] o (4] B | {£u] .- |
L f §
o
h
o~
@ =] X Sk B haat < X S
= U S T 'S B N B SV T o
= fon B o e o o S e ==
®, KT I AU S S A, S o, B I N N
= 318 I S T o N B o B e, BN e
2 o)] e e~ = A] At
t ‘]
W
&
&

200

Yo "
< o¢ 9Id
(=]
-t
N
[
e
Yo
(=]
e
o
(=]
o
[99]
=
. {0z 25¢) yseD \Z0Z/E)
5 g sepealg 12026/
N RN wooy \ 20221
[-P]
= 6¢'1S 10U L2022
o 1961 youny 20212/
o
e 868G 08407 1202121}
= IRa) ooy L202IM
< 002
25ve souu(L 202/
Junowy uondioss(ajeq
187 {WooY
v0 ‘0osiourld UeS IS Uil €71
[830H NIV

00¢

Patent Application Publication

- "
< ace oid
<>
-
(=)
>
o)
y—
>
A
o
>
o
wn
=
- {0z'z5e yse) L20Zisl)
m rAd]) 1sepjeaig LZ0Z/EI
.m ARA] wooy 120212/
[-?)
= Ge' LG JBuui(A
o 1961 oun L2022}
o
N 86°G 881400 RAVALAD)
= AN wooy RAALTD
« \GET \0€2 522
75 vE Jeuug LZ0Z/414
unoty uondiosa(g aeg
167 (W0OY
¥ ‘00spuei4 Ueg 1§ VB §Z71
[210H JINDY

002

Patent Application Publication

US 2023/0130940 A1

Apr. 27,2023 Sheet 6 of 15

Patent Application Publication

¢ Ol

ol JSepealy Lc0c/elL
elell wooy 1c0c/el)
LAY Jsuud Veoziel)
L9} younT Ve02/ely
86°G 99400 Vc0e/ely
ELeLl ooy +20e/H
¢Sve ssuud Lc0c/iL

s}08[qQ Wiy aurT

00¢

- .
< Vv '9ld
<>
-
(=)
>
o)
y—
>
A
o
>
o
wn
-
- {0z'z5¢e) usen 120218/}
m ol 1sepieaig 1202/
m AR AN pag Bury ~ wooy RAVATAL
[-?)
7 G8'/G Jouuig V202120
o)
= 19°€1 yourry WAVALALY
o
N 86'G 98400 WAVTALAIY
m IAAN) pag Bury - wooy WATAINIY
AR 7S Jsuuig L 2071411
unowy uondiosaq sjeq
L £7 ‘Wo0Y
Y0 ‘0dsjouRl4 UBS IS Ul £71
|210H JNJY

Patent Application Publication

00y

1 1]

< gy 9li4

<>

-

(=)

>

o)

y—

>

A

o

>

o

wn

-

- (0zz58) | Gsey) | L202ET]

m ol 1SEpEaIg RAAD

M STl paglbury - ooy §20z1ZI0

[-?)

7 G575 i YA

e — Sy 0Ly — GOy

a 19E) ToUTT YA

o

e 186Gl ERIN)] AN

m Ay pag Bury] - ooy [Z02ITE
e | | L0ZLY |
funouwry] [ereq

1E21 o0y

[yo) {casouelfues) TiSIueNIcZ 1)
IPIOH|INDY

Patent Application Publication

00y

US 2023/0130940 A1

Apr. 27,2023 Sheet 9 of 15

Patent Application Publication

oy Ol

{0z'z5¢) ysep 1202/8/)
A A jsepieaig 20c/elt
1A peg Buty ~ wooy LCOCIT/
GE' LS Jauug 120e/eh
/9¢) youm XAVATAL
86'G 89400 YAVAras
(AN peg Bury ~ wooy L20Z/L1L
AN Jsuutq YAV41% Pr\. 0
JUnowy uondioseq 3jeq

187 ‘Wooy

V0 ‘oosioues4 UeS IS UiBly €71

1930H JNOV

00y

- "
< ay 'oid
S
<
(=)
S
(o]
v
<
e
o
<
(g\]
wn
-
v {0C¢qe) ysed LCOCIE/INA09Y
s icr gt jsepeaig OIS~ GGY
<
m €L ekl pog DUy — ooy L2OClelh A~ OSY
D
7 9829 10Ul VeQcicinrShv
m iL9¢} youny RV Valti 44
(g\]
aﬂa 869 99400 LCOCICIM A~ GEY
Amn.l £LTL) pag buly - wooy LZ0Z/LI A 08P

iCG e Joutii(] LCOZ/L WA GZY

unowy uonduoss(gjeq

L£7 ‘WooY
Q) ‘00siouRIS UBS “IS Ul £21
1910H NIV

00¥

Patent Application Publication

US 2023/0130940 A1

Apr. 27,2023 Sheet 11 of 15

Patent Application Publication

G "old

ol JSepealy Lc0c/elL
elell pag Bury wooy 1c0c/el)
LAY Jsuud Veoziel)
L9} younT Ve02/ely
86°G 99400 Vc0e/ely
ELeLl peg Bury wooy +20e/H
¢Sve ssuud Lc0c/iL

s}08[qQ Wiy aurT

005

Patent Application Publication Apr. 27,2023 Sheet 12 of 15 US 2023/0130940 A1

600
“~

Receiving an image of a document 610

'

{ Detecting a plurality of text based on the image of the document 620

'

Using a machine learning model to predict whether each text in the plurality L~ 630
of text is one of a plurality of defined types of text

~\

'

Based on the predicted types of text for the plurality of text, determining a
set of defined objects

.. 640

FIG. 6

Yo]
= L Old —
F 012
=S 44 57
- i
= Jepeay
e wnipapy ebeioig 1A
m ajgepeay wesAg Bugeladp
n Jeindwiod
= —
91z
v eleq weiboid
= 027
° wnipsy obeiois ViZ
- sjqepesy swielbolyq uoneaiddy
3 o J/indwo)
= Vel AIoWwap WoIsAg
. LWIBISASONS UOHROIINLILIOD
g wesAsgng abeioig
&
N
R (NN
Ml — 9¢.
0L
g 90Z 902 we wm,qw
£ Hun un . 1ISASANS O/l
2 BuIsSsan0id Buissesoid 904
= N
£ eoo 907 907 Buisse00id
s Hun wun
s Buissanoid Buisseaoid
>
= 507 J0SS9901d T-50Z 40SS8001d
=%
«
- wiaysAsgng Buissasold
> LS
£ 00.

US 2023/0130940 A1

Apr. 27,2023 Sheet 14 of 15

8 'Old

818
LWBISAS UOHEOIUNWILIOYD

908 $08

0c8 KIowsiy (s)10858001d

wolsAg ebeionig

208 weysAg Buissanoly

828
B|NPOJ\ UORBOIUNLLILIOD

9z8 9i8 ¥1i8 218 018
S{NPON O/ OIN Joxeadg (s)iosusg Aejdsiqg

vZ8
(s)uoneonddy

wojsAg inding/nduy

o e
o
0

78
wesAs Buneiado =

Patent Application Publication

008

1 n

« 6 "Old

(=

-

(=)

(=]

er;

Yo

(=

e

o

(=]

(o]

[99]

=)

' g] U

= 506

= Jusio

' g]

Yo

3

7 .

. e 906

o 8i6 L L . usyD

& (s)eseqere(016 vi6 016

aﬂa (s)ooinieg (s)uoneoyddy {shuiomiaN

w

Z Zi6 waysAg Bupndwio) pnojo $06
Tl g)

=

om

=

om

w 206

-~ weiD

=

om

=

om

=y

o

<

g .

z 006

US 2023/0130940 A1

EXTRACTING DEFINED OBJECTS FROM
IMAGES OF DOCUMENTS

BACKGROUND

[0001] The proliferation of cameras and other electronic
image capture devices has led to massive growth in the
availability of images. For instance, cameras can be found
on almost all mobile devices, and such ready access to a
camera allows users to capture an ever increasing number of
electronic images. Interestingly, images often contain data,
and such data can be useful for a wide range of applications.
For example, images of checks can be submitted to banks
and processing based on data extracted from the checks
(e.g., amount, account number, routing number, etc.). As
another example, images of receipts may be submitted to
expense management systems. Data extracted from images
of receipts can be used to populate expense reports.

SUMMARY

[0002] In some embodiments, a non-transitory machine-
readable medium stores a program executable by at least one
processing unit of a device. The program receives an image
of a document. The program further detects a plurality of
text based on the image of the document. The program also
uses a machine learning model to predict whether each text
in the plurality of text is one of a plurality of defined types
of text. Based on the predicted types of text for the plurality
of text, the program further determines a set of defined
objects.

[0003] In some embodiments, the program may further
determining a bounding box for each text in the plurality of
text; determining a particular bounding box that encom-
passes each text having a defined type of text in the plurality
of defined types of text; and ignoring each text in the
plurality of text with a bounding box that is outside of the
particular bounding box. Determining the set of defined
objects may include, upon determining, for each defined
type of text in the plurality of defined types of text, that a
number of text having the defined type of text is the same,
generating the set of defined objects so that each defined
object in the set of defined objects includes one of each
defined type of text in the plurality of defined types of text.
[0004] In some embodiments, determining the set of
defined objects may include determining a bounding box for
each text in the plurality of text; sorting the plurality of text
based on a y-coordinate of the bounding boxes of the
plurality of text; and generating the set of defined objects
based on the sorted plurality of text. Determining the set of
defined objects may include determining, for each defined
type of text in the plurality of defined types of text, a
bounding box that encompasses each text having the defined
type of text; and, for each bounding box, identifying text in
the bounding box that is predicted as not being the defined
type of text and determining whether the identified text is the
defined type of text.

[0005] In some embodiments, each defined object in the
set of defined objects may include one of each defined type
of text in the plurality of defined types of text. The plurality
of defined types of text may include a date type of text, a
description text, and an amount type of text.

[0006] Insome embodiments, a method receives an image
of'a document. The method further detects a plurality of text
based on the image of the document. The method also uses

Apr. 27,2023

a machine learning model to predict whether each text in the
plurality of text is one of a plurality of defined types of text.
Based on the predicted types of text for the plurality of text,
the method further determines a set of defined objects.
[0007] In some embodiments, the method may further
determining a bounding box for each text in the plurality of
text; determining a particular bounding box that encom-
passes each text having a defined type of text in the plurality
of defined types of text; and ignoring each text in the
plurality of text with a bounding box that is outside of the
particular bounding box. Determining the set of defined
objects may include, upon determining, for each defined
type of text in the plurality of defined types of text, that a
number of text having the defined type of text is the same,
generating the set of defined objects so that each defined
object in the set of defined objects includes one of each
defined type of text in the plurality of defined types of text.
[0008] In some embodiments, determining the set of
defined objects may include determining a bounding box for
each text in the plurality of text; sorting the plurality of text
based on a y-coordinate of the bounding boxes of the
plurality of text; and generating the set of defined objects
based on the sorted plurality of text. Determining the set of
defined objects may include determining, for each defined
type of text in the plurality of defined types of text, a
bounding box that encompasses each text having the defined
type of text; and, for each bounding box, identifying text in
the bounding box that is predicted as not being the defined
type of text and determining whether the identified text is the
defined type of text.

[0009] In some embodiments, each defined object in the
set of defined objects may include one of each defined type
of text in the plurality of defined types of text. The plurality
of defined types of text may include a date type of text, a
description text, and an amount type of text.

[0010] In some embodiments, a system includes a set of
processing units and a non-transitory machine-readable
medium that stores instructions. The instructions cause at
least one processing unit to receive an image of a document.
The instructions further cause the at least one processing
unit to detect a plurality of text based on the image of the
document. The instructions also cause the at least one
processing unit to use a machine learning model to predict
whether each text in the plurality of text is one of a plurality
of defined types of text. Based on the predicted types of text
for the plurality of text, the instructions further cause the at
least one processing unit to determine a set of defined
objects.

[0011] In some embodiments, the instructions may further
cause the at least one processing unit to determine a bound-
ing box for each text in the plurality of text; determine a
particular bounding box that encompasses each text having
a defined type of text in the plurality of defined types of text;
and ignore each text in the plurality of text with a bounding
box that is outside of the particular bounding box. Deter-
mining the set of defined objects may include, upon deter-
mining, for each defined type of text in the plurality of
defined types of text, that a number of text having the
defined type of text is the same, generating the set of defined
objects so that each defined object in the set of defined
objects includes one of each defined type of text in the
plurality of defined types of text.

[0012] In some embodiments, determining the set of
defined objects may include determining a bounding box for

US 2023/0130940 A1

each text in the plurality of text; sorting the plurality of text
based on a y-coordinate of the bounding boxes of the
plurality of text; and generating the set of defined objects
based on the sorted plurality of text. Determining the set of
defined objects may include determining, for each defined
type of text in the plurality of defined types of text, a
bounding box that encompasses each text having the defined
type of text; and, for each bounding box, identifying text in
the bounding box that is predicted as not being the defined
type of text and determining whether the identified text is the
defined type of text. Each defined object in the set of defined
objects may include one of each defined type of text in the
plurality of defined types of text.

[0013] The following detailed description and accompa-
nying drawings provide a better understanding of the nature
and advantages of various embodiments of the present
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 illustrates a system for extracting defined
objects from images of documents according to some
embodiments.

[0015] FIGS. 2A-2D illustrate an example processing of
an image of a receipt according to some embodiments.
[0016] FIG. 3 illustrates data objects extracted from the
image of the receipt illustrated in FIGS. 2A-2D according to
some embodiments.

[0017] FIGS. 4A-4D illustrate another example process-
ing of an image of a receipt according to some embodiments.
[0018] FIG. 5 illustrates data objects extracted from the
image of the receipt illustrated in FIGS. 4A-4D according to
some embodiments.

[0019] FIG. 6 illustrates a process for extracting defined
objects from an image of a document according to some
embodiments.

[0020] FIG. 7 illustrates an exemplary computer system,
in which various embodiments may be implemented.
[0021] FIG. 8 illustrates an exemplary computing device,
in which various embodiments may be implemented.
[0022] FIG. 9 illustrates an exemplary system, in which
various embodiments may be implemented.

DETAILED DESCRIPTION

[0023] In the following description, for purposes of expla-
nation, numerous examples and specific details are set forth
in order to provide a thorough understanding of the present
disclosure. It will be evident, however, to one skilled in the
art that various embodiment of the present disclosure as
defined by the claims may include some or all of the features
in these examples alone or in combination with other
features described below, and may further include modifi-
cations and equivalents of the features and concepts
described herein.

[0024] Described herein are techniques for extracting
defined objects from images of receipts. In some embodi-
ments, a computing system receives, from a client device, an
image of a document (e.g., a receipt) captured by a camera
of the client device. Upon receiving the image, the comput-
ing system detects instances of words in the image. Next, for
each detected word, the computing system uses a trained
machine learning model to determine whether the word is
one of several defined types of words (e.g., a date, a
description, an amount, etc.) and assign a corresponding

Apr. 27,2023

label to the word based on the determination. Based on
labels assigned to the detected words in the image, the
computing system then determines a set of line item objects
that includes detected text from the image of the receipt. For
instance, each line item object can include a date, a descrip-
tion, and an amount. The computing system generates an
expense report for a user of the client device and uses the set
of line items to populate fields in the expense report.

[0025] FIG. 1 illustrates a system 100 for extracting
defined objects from images of documents according to
some embodiments. As shown, system 100 includes client
device 105 and computing system 110. Client device 105
may communicate and interact with computing system 110.
For instance, a user of client device 105 can send an image
of a document (e.g., a receipt) to computing system 110
(e.g., via a web browser or an application operating on client
device 105) for processing. The image may be captured by
an image capture device (e.g., a camera) communicatively
coupled to client device 105. In some cases, a user of client
device 105 can access application 115 and request to view
expense reports generated based on images that client device
105 sent to computing system 110 for processing. While
FIG. 1 shows one client device, one of ordinary skill in the
art will appreciate that system 100 can include any number
of additional client devices that are configured the same as
or similar to client device 105.

[0026] As illustrated in FIG. 1, computing system 110
includes application 115, text detector 120, text type man-
ager 125, object engine 130, and storages 135-150. Image
data storage 135 is configured to store images received from
client devices (e.g., client device 105). Machine learning
(ML) models storage 140 stores ML models configured to
predict defined types of data (e.g., types of text) based on
data detected in images. Object data storage 145 is config-
ured to store defined data objects extracted from images of
documents (e.g., line item data objects extracted from
images of receipts). Application data storage 150 stores
application generated and/or utilized by application 115. For
instance, application data storage 150 can store expense
reports generated by application 115. In some embodiments,
storages 135-150 are implemented in a single physical
storage while, in other embodiments, storages 135-150 may
be implemented across several physical storages. While
FIG. 1 shows storages 135-150 as part of computing system
110, one of ordinary skill in the art will appreciate that image
data storage 135, ML models storage 140, object data
storage 145, and/or application data storage 150 may be
external to computing system 110 in some embodiments.

[0027] Application 115 is a software application operating
on computing system 110 configured to manage images of
documents for client device 105. For instance, application
115 can receive from client device 105 an image of a
document that was captured by an image capture device of
client device 105. In response to receiving the image,
application 115 sends the image to text detector 120 along
with a request to process it. In some embodiments, appli-
cation 115 stores also the image of the document in image
data storage 135. In some instances, application 115 may
receive from client device 105 a request for data extracted
from images of documents (e.g., a request for expense
reports that include expenses extracted from images of
receipts) that client device send application 115 for process-

US 2023/0130940 A1

ing. In response, application 115 accesses application data
storage 150 to retrieve the requested data and provides the
data to client device 105.

[0028] Text detector 120 is responsible for processing
images of documents by detecting text in the images. For
example, text detector 120 can receive an image of a
document from application 115 and a request to process the
image. In response to the request, text detector 120 may
perform some pre-processing operations on the image. For
instance, text detector 120 can perform some tilt correction
operations on the image. In some embodiments, text detector
120 performs tilt correction operations on the image of the
document by determining an angle that the image is tilted
and then adjusting the tilt of the image by the determined
angle. In some such embodiments, text detector 120 uses a
Hough transform technique to determine the angle that the
image is tilted.

[0029] After performing pre-processing operations on the
image, text detector 120 detects pieces of text (e.g., words)
in the image of the document. Text detector 120 can deter-
mine, for each piece of detected text, a bounding box that
encompasses the piece of text. In some embodiments, text
detector 120 employs an optical character recognition
(OCR) technique to detect text in the image of the document.
In some such embodiments, text detector 120 sends the
image of the document to a third-party service that performs
OCR on the image to detect text in the image and determines
the bounding boxes of detected text. Text detector 120 sends
text type manager 125 the image of the document, the text
detected in the image of the document, and the bounding
boxes of the detected text.

[0030] Text type manager 125 is configured to determine
types of text for text detected in an image of a document. For
instance, text type manager 125 may receive from text
detector 120 an image of a document, the text detected in the
image of the document, and bounding boxes of the detected
text. In response, text type manager 125 accesses ML
models storage 140 to retrieve a ML, model configured to
predict defined types of text based on text detected in
images. Text type manager 125 provides the image of the
document, the text detected in the image of the document,
and the bounding boxes of the detected text as inputs to the
ML model. Based on the inputs, the ML. model determines,
for each piece of detected text, whether the piece of text is
one of the defined types of text and assigns a corresponding
label to the piece of text. Then, text type manager 125 sends
object engine 130 the image of the document, the text
detected in the image of the document, the bounding boxes
of the detected text, and the assigned labels for the detected
text in the image of the document.

[0031] Additionally, text type manager 125 handles train-
ing of ML models. To train an ML model to perform a
particular task, text type manager 125 provides the ML
model with training data that is the similar to the data on
which the ML, model is expected to perform the particular
task. For example, to train an ML, model to predict whether
a piece of text detected in an image of a document is one of
several defined types of text, text type manage 125 can train
the ML model with images that contain text labeled with the
correct defined type of data. Once the ML model is trained,
text type manager 125 may feed an image of a document,
detected text in the image, etc. to the ML model for the ML
model to predict whether each piece of text detected in the
image is one of several types of text. Different ML, models

Apr. 27,2023

trained to predict different sets of defined types of data can
be trained and later used by text type manager 125.

[0032] Object engine 130 handles the determination of
defined data objects based on text detected in images of
documents. For instance, object engine 130 may receive
may receive from text type manager 125 an image of a
document, the text detected in the image of the document,
the bounding boxes of the detected text, and the assigned
labels for the detected text in the image of the document. To
determine defined data objects, object engine 130 first
determines a bounding box that encompasses all text
detected in the image of the document that is determined to
be one of the defined types of text. Next, object engine 130
ignores any detected text that are outside the bounding box.
Object engine 130 then determines the number of each type
of text detected in the image of the document based on the
assigned labels. If the image of the document includes the
same number of each type of text, then object engine 130
determines a bounding box for each defined type of text that
encompasses all the text having the defined type of text.
Then, object engine 130 generates defined data objects
based on the bounding boxes. Data objects can be defined
differently. For example, in some cases, a data object can be
defined to include one of each defined type of text. This
defined data object will be used to explain how object engine
130 determines data objects. However, one of ordinary skill
in the art will understand that object engine 130 may
perform additional and/or different operations to determine
different defined data objects. Based on the example defined
data object, object engine 130 can determine data objects
based on the bounding boxes by generating a first data object
that includes the highest positioned text in each bounding
box that is the corresponding defined type of text, generating
a second data object that includes the second highest posi-
tioned text in each bounding box that is the corresponding
defined type of text, generating a third data object that
includes the third highest positioned text in each bounding
box that is the corresponding defined type of text, and so on
and so forth.

[0033] If the image of the document does not include the
same number of each type of text, object engine 130 sorts all
the text that are each one of the defined types of text based
on a y-coordinate of the corresponding bounding boxes
(e.g., the y-coordinate of the center of the bounding boxes)
that each encompasses a piece of text. Then, object engine
130 groups the text based on the sorted list of text. In some
embodiments, object engine 130 groups the text by identi-
fying a first piece of text with the highest bounding box
y-coordinate value. Next, object engine 130 identifies a
second piece of text with the second highest bounding box
y-coordinate value and checks whether the bounding box
y-coordinate value of the second piece of text is below the
bottom of the bounding box of the first piece of text. If so,
object engine 130 creates a group of text that includes any
previously processed and ungrouped pieces of text (e.g., the
first piece of text in this example). Otherwise, object engine
130 identifies a third piece of text with the third highest
bounding box y-coordinate value and checks whether the
bounding box y-coordinate value of the third piece of text is
below the bottom of the bounding box of the first piece of
text. If so, object engine 130 creates a group of text that
includes any previously processed and ungrouped pieces of
text (e.g., if the first and second pieces of text are not yet
grouped, then the group would include the first piece of text

US 2023/0130940 A1

and the second piece of text). Object engine 130 processes
the remaining pieces of text in this same manner. If the last
piece of text (i.e., the one with the lowest bounding box
y-coordinate value) is not grouped, object engine 130 cre-
ates a group that includes the last piece of text. Next, object
engine 130 may combine certain types of text in each group
of text. In some embodiments, object engine 130 combines
pieces of text having the same certain type of text from left
to right and top to bottom based on the corresponding
bounding boxes of each piece of text. After combining text,
object engine 130 checks each group of text and determines
whether the group of text includes one of each defined type
of text. If each group of text includes one of each defined
type of text, object engine 130 generates, for each group of
text, a data object that includes text in the group of text.

[0034] If each group of text does not include one of each
defined type of text, object engine 130 checks for unlabeled
text that should have been labeled (e.g., the ML model
determined that a piece of text is not one of the defined types
of text when in fact it is). To do so, object engine 130
determines, for each defined type of text, bounding boxes
that encompasses all the text having the defined type of text.
For each of these bounding boxes, object engine 130 checks
if there are any pieces of text within the bounding box that
is determined to not be one of the defined types of text. If so,
object engine 130 examines the pieces of text and checks
whether they are in fact the defined type of text associated
with the bounding box. For any piece of text that object
engine 130 determines is in fact the defined type of text,
object engine 130 labels it with the corresponding defined
type of text. Once object engine 130 finishes checking for
unlabeled text and object engine 130 determined there are
newly labeled pieces of text, object engine 130 repeats the
grouping process described above. Then, object engine 130
checks each group of text and determines whether the group
of text includes one of each defined type of text. If each
group of text includes one of each defined type of text, object
engine 130 generates, for each group of text, a data object
that includes text in the group of text.

[0035] If each group of text still does not include one of
each defined type of text or if there were not any newly
labeled text, object engine 130 uses the sorted list of all the
text that are each one of the defined types of text based on
the y-coordinate of the corresponding bounding boxes (e.g.,
the y-coordinate of the center of the bounding boxes) of the
pieces of text. Object engine 130 generates a list of current
text, identifies a first piece of text with the highest bounding
box y-coordinate value, and adds the first piece of text to the
list of current text. Then, object engine 130 identifies a
second piece of text with the second highest bounding box
y-coordinate value and checks whether the list of current
text includes a piece of text that is the same type of text as
the type of text of the second piece of text. If so, object
engine 130 discards the list of current text, creates a new list
of current text, and adds the second piece of text to it. If not,
object engine 130 adds the second piece of text to the list of
current text and checks if the list of current text includes one
of each defined type of text to form a defined data object. If
s0, object engine 130 generates a data object that includes
the text in the list of current text and generates a new list of
current text. Object engine 130 repeats this process with the
remaining pieces of text in the sorted list of text.

[0036] An example operation will now be described by
reference to FIGS. 1 and 2A-2D. Specifically, the example

Apr. 27,2023

operation will demonstrate how an image of a receipt is
processed by computing system 110 to extract data objects.
The operation starts by a user of client device 105 sending
application 115 an image of a receipt. FIG. 2A illustrates an
example of an image 200 of a receipt according to some
embodiments. In particular, image 200 is the image that the
user of client device 105 sends to application 115 in this
example. As shown, image 200 is an image of a receipt for
a stay at a hotel. The receipt includes a list of line items for
dinner on Jan. 1, 2021 for 34.52, a room on Jan. 1, 2021 for
112.13, coffee on Jan. 2, 2021 for 5.98, lunch on Jan. 2, 2021
for 13.65, dinner on Jan. 2, 2021 for 57.35, a room on Jan.
2, 2021 for 112.13, breakfast on Jan. 3, 2021 for 16.42, and
a cash payment on Jan. 3, 2021 for 352.20.

[0037] Upon receiving image 200, application 115 sends
text detector 120 image 200 and a request to process image
200. In response to receiving the request and image 200, text
detector 120 performs some pre-processing operations (e.g.,
the tilt correction operations described above) on image 200.
Next, text detector 120 detects words in image 200 of the
receipt (e.g., using an OCR technique), determines, for each
detected word, a bounding box that encompasses the word.
FIG. 2B illustrates image 200 of the receipt with detected
words and associated bounding boxes according to some
embodiments. As shown in FIG. 2B, text detector 120 has
detected words in image 200. In addition, text detector 120
has determined, for each detected word, a bounding box that
encompasses the word (e.g., a set of coordinates specifying
the location of the four corners of the bounding box in image
200). Text detector 120 then sends text type manager 125
image 200 of the receipt, the words detected in image 200
of'the receipt, and the bounding boxes of the detected words.

[0038] When text type manager 125 receives image 200,
the words detected in image 200 of the receipt, and the
bounding boxes of the detected words, text type manager
125 accesses ML models storage 140 to retrieve a ML model
configured to predict date type of words, description type of
words, and amount type of words based on words detected
in images. Text type manager 125 provides image 200 of the
receipt, the words detected in image 200 of the receipt, and
the bounding boxes of the detected words as inputs to the
ML model. Based on the inputs, the ML, model determines,
for each detected word, whether the word is a date type of
word, a description type of word, or an amount type of word
and assigns a corresponding label to the word. For this
example, as shown in FIG. 2B, the ML model determines
that words 205 in image 200 are date type of words, words
210 in image 200 are description type of words, and words
215 in image 200 are amount type of words. The ML model
assigns corresponding labels (e.g., a date label, a description
label, and an amount label) for words 205-215. Then, text
type manager 125 sends object engine 130 image 200 of the
receipt, the words detected in image 200 of the receipt, the
bounding boxes of the detected words, and the assigned
labels for the detected words in image 200 of the receipt.

[0039] Once object engine 130 receives image 200 of the
receipt, the words detected in image 200 of the receipt, the
bounding boxes of the detected words, and the assigned
labels for the detected words in image 200 of the receipt,
object engine 300 determines a bounding box that encom-
passes all words detected in image 200 of the receipt that is
determined to be a date type of word, a description type of
word, or an amount type of word. FIG. 2C illustrates image
200 of the receipt with bounding box 220 that encompasses

US 2023/0130940 A1

all words determined to be a defined type of word according
to some embodiments. In this example, object engine 130
determined bounding box 220. As shown, bounding box 220
encompasses all of the words in words 205-215, which are
the words that are determined to be one of the defined types
of words. Object engine 130 then ignores any detected
words that are outside bounding box 220. Next, object
engine 130 determines the number of each type of word
detected in image 200 of the receipt based on the assigned
labels.

[0040] If image 200 of the receipt includes the same
number of each type of word, object engine 130 determines
a bounding box for each defined type of word that encom-
passes all the words having the defined type of word. Here,
object engine 130 determines that image 200 of the receipt
includes the same number of date words, description words,
and amount words (eight each in this example). Therefore,
object engine 130 determines a bounding box for the date
type of word that encompasses all the words having the date
type of word, a bounding box for the description type of
word that encompasses all the words having the description
type of word, and a bounding box for the amount type of
word that encompasses all the words having the amount type
of word. FIG. 2D illustrates image 200 of the receipt with
bounding boxes 225-235 for each of the defined types of
words according to some embodiments. For this example,
object engine 130 determines bounding boxes 225-235. As
illustrated, bounding box 225 encompasses all of the words
that are date type of words (i.e., words 205), bounding box
230 encompasses all of the words that are description type
of words (i.e., words 210), and bounding box 235 encom-
passes all of the words that are amount type of words (i.e.,
words 215).

[0041] Based on bounding boxes 225-235, object engine
130 generates defined data objects.

[0042] The defined data object in this example is one that
include one of each defined type of word (i.e., one date type
of word, one description type of word, and one amount type
of word). For this defined data object, object engine 130
determines data objects based on bounding boxes 225-235
by generating a first data object that includes the highest
positioned words in each of the bounding boxes 225-235,
generating a second data object that includes the second
highest positioned words in each of the bounding boxes
225-235, generating a third data object that includes the third
highest positioned words in each of the bounding boxes
225-235, and so on and so forth. After object engine 130
determines data objects using the technique described
above, object engine 130 may perform some post-processing
operations. For example, in some embodiments, object
engine 130 can iterate through each data object and check
whether the value of amount of the current data object is
within a defined threshold of the sum of the values of the
amounts of the previous data objects. If so, object engine
130 removes the current data object. FIG. 3 illustrates data
objects 300 extracted from image 200 of the receipt accord-
ing to some embodiments. As shown, data objects 300
includes the data objects generated by object engine 130 in
the manner described above. Here, object engine 130 also
determined that the last generated data object that includes
the date of “Jan. 3, 2021 ,” a description of “Cash,” and an
amount of “(352.20)” has an amount value that is within a
defined threshold of the sum of the amount values of the first

Apr. 27,2023

seven data objects. As such, object engine 130 removed the
last generated data object from data objects 300, as depicted
in FIG. 3.

[0043] Another example operation will now be described
by reference to FIGS. 1 and 4A-4D. In particular, this
example operation will demonstrate how a different image
of a receipt is processed by computing system 110 to extract
data objects. The operation begins by a user of client device
105 sending application 115 an image of a receipt. FIG. 4A
illustrates an example of an image 400 of a receipt according
to some embodiments. Specifically, image 400 is the image
that the user of client device 105 sends to application 115 for
this example. As illustrated, image 400 is an image of a
receipt for a stay at a hotel. The receipt is similar to the
receipt shown in FIGS. 2A-2D except the second and sixth
line items have different descriptions.

[0044] When application 115 receives image 400, appli-
cation 115 sends text it to detector 120 along with a request
to process image 400. In response, text detector 120 per-
forms some pre-processing operations (e.g., the tilt correc-
tion operations described above) on image 400. Text detec-
tor 120 then detects words in image 400 of the receipt (e.g.,
using an OCR technique), determines, for each detected
word, a bounding box that encompasses the word. FIG. 4B
illustrates image 400 of the receipt with detected words and
associated bounding boxes according to some embodiments.
As depicted in FIG. 4B, text detector 120 has detected words
in image 400. Also, text detector 120 has determined, for
each detected word, a bounding box that encompasses the
word (e.g., a set of coordinates specifying the location of the
four corners of the bounding box in image 400). Next, text
detector 120 sends text type manager 125 image 400 of the
receipt, the words detected in image 400 of the receipt, and
the bounding boxes of the detected words.

[0045] In response to receiving image 400, the words
detected in image 400 of the receipt, and the bounding boxes
of the detected words, text type manager 125 accesses ML
models storage 140 to retrieve the same ML model used in
the example operation above (i.e., the ML model configured
to predict date type of words, description type of words, and
amount type of words based on words detected in images).
Text type manager 125 provides image 400 of the receipt,
the words detected in image 400 of the receipt, and the
bounding boxes of the detected words as inputs to the ML
model. Based on the inputs, the M. model determines, for
each detected word, whether the word is a date type of word,
a description type of word, or an amount type of word and
assigns a corresponding label to the word. As illustrated in
FIG. 4B, the ML model determines, in this example, that
words 405 in image 400 are date type of words, words 410
in image 400 are description type of words, and words 415
in image 400 are amount type of words. The ML model
assigns corresponding labels (e.g., a date label, a description
label, and an amount label) for words 405-415. Text type
manager 125 then sends object engine 130 image 400 of the
receipt, the words detected in image 400 of the receipt, the
bounding boxes of the detected words, and the assigned
labels for the detected words in image 400 of the receipt.
[0046] Uponreceiving image 400 of the receipt, the words
detected in image 400 of the receipt, the bounding boxes of
the detected words, and the assigned labels for the detected
words in image 400 of the receipt, object engine 300
determines a bounding box that encompasses all words
detected in image 400 of the receipt that is determined to be

US 2023/0130940 A1

a date type of word, a description type of word, or an amount
type of word. FIG. 4C illustrates image 400 of the receipt
with bounding box 420 that encompasses all words deter-
mined to be a defined type of word according to some
embodiments. Here, object engine 130 determined bounding
box 420. As depicted in FIG. 4C, bounding box 420 encom-
passes all of the words in words 405-415, which are the
words that are determined to be one of the defined types of
words. Next, object engine 130 ignores any detected words
that are outside bounding box 420. Object engine 130 then
determines the number of each type of word detected in
image 400 of the receipt based on the assigned labels.

[0047] If image 400 of the receipt includes the same
number of each type of word, object engine 130 determines
a bounding box for each defined type of word that encom-
passes all the words having the defined type of word. For this
example, object engine 130 determines that image 400 of the
receipt does not include the same number of date words,
description words, and amount words (i.e., there are eight
date type of words, twelve description type of words, and
eight amount type of words). Thus, object engine 130 sorts
all the words that are each a date type of word, a description
type of word, or an amount type of word based on a
y-coordinate of the corresponding bounding boxes (e.g., the
y-coordinate of the center of the bounding boxes) that each
encompasses a word. That is, object engine 130 sorts words
405-415 based on the bounding boxes encompassing each of
the words in words 405-415.

[0048] Next, object engine 130 groups the words based on
the sorted list of words by identifying a first word with the
highest bounding box y-coordinate value. Object engine 130
then identifies a second word with the second highest
bounding box y-coordinate value and checks whether the
bounding box y-coordinate value of the second word is
below the bottom of the bounding box of the first word. If
s0, object engine 130 creates a group of words that includes
any previously processed and ungrouped words. Otherwise,
object engine 130 identifies a third word with the third
highest bounding box y-coordinate value and checks
whether the bounding box y-coordinate value of the third
word is below the bottom of the bounding box of the first
word. If so, object engine 130 creates a group of words that
includes any previously processed and ungrouped words.
Object engine 130 processes the remaining words in this
same manner. If the last word (i.e., the one with the lowest
bounding box y-coordinate value) is not grouped, object
engine 130 creates a group that includes the last word. Next,
object engine 130 may combine certain types of words in
each group of words. In some embodiments, object engine
130 combines words having the same certain type of words
from left to right and top to bottom based on the corre-
sponding bounding boxes of each word. After performing
the combining operations, object engine 130 checks each
group of words and determines whether the group of words
includes one of each defined type of word. If each group of
words includes one of each defined type of word, object
engine 130 generates, for each group of words, a data object
that includes words in the group of words.

[0049] FIG. 4D illustrates image 400 with generated
groups of words 425-460 according to some embodiments.
In this example, object engine 130 uses the technique
described above to generate groups of words 425-460. As
shown in FIG. 4D, object engine 130 combined the descrip-
tion words in each of the group of words 430 and 450 using

Apr. 27,2023

the method explained above into a single instance of a
description type of word. For this reason, object engine 130
determined that each of the group of words 425-460 includes
one of each defined type of word (i.e., one date type of word,
one description type of word, and one amount type of word).
FIG. 5 illustrates data objects 500 extracted from image 400
of the receipt according to some embodiments. As illus-
trated, data objects 500 includes the data objects generated
by object engine 130 in the fashion described above. For this
example, object engine 130 also determined that the last
generated data object that includes the date of “Jan. 3, 2021
,” a description of “Cash,” and an amount of “(352.20)” has
an amount value that is within a defined threshold of the sum
of the amount values of the first seven data objects. Accord-
ingly, object engine 130 removed the last generated data
object from data objects 500, as shown in FIG. 5.

[0050] Now if each group of words does not include one
of each defined type of word, object engine 130 checks for
unlabeled words that should have been labeled (e.g., the ML,
model determined that a word is not one of the defined types
of words when in fact it is). To do so, object engine 130
determines, for each defined type of word, bounding boxes
that encompasses all the words having the defined type of
word (e.g., bounding boxes similar to bounding boxes
225-235). For each of these bounding boxes, object engine
130 checks if there are any words within the bounding box
that is determined to not be one of the defined types of
words. If so, object engine 130 examines the words and
checks whether they are in fact the defined type of word
associated with the bounding box. For any word that object
engine 130 determines is in fact the defined type of word,
object engine 130 labels it with the corresponding defined
type of word. For example, if a bounding box is determined
for a date type of word, object engine 130 can check whether
words within the bounding box is determined to not be a date
type of word by comparing the words to any number of
different defined date formats (e.g., MM/DD/YYYY,
DD/MM/YYYY, MM DD, YYYY, MM-DD-YY, etc.). For
any word that matches a defined date format, object engine
130 labels the word as a date type of word. Object engine
130 can do the same process for description type of words
and amount type of words using appropriate rules for
determining whether unlabeled words are description type of
words or amount type of words. After checking for unla-
beled words and object engine 130 determined there are
newly labeled words, object engine 130 repeats the grouping
process described above. Next, object engine 130 checks
each group of words and determines whether the group of
words includes one of each defined type of word. If each
group of words includes one of each defined type of word,
object engine 130 generates, for each group of words, a data
object that includes words in the group of words.

[0051] If each group of words still does not include one of
each defined type of word or if there were not any newly
labeled words, object engine 130 uses the sorted list of all
the words that are each one of the defined types of word
based on the y-coordinate of the corresponding bounding
boxes (e.g., the y-coordinate of the center of the bounding
boxes) of the words. Then, object engine 130 generates a list
of current words, identifies a first word with the highest
bounding box y-coordinate value, and adds the first word to
the list of current words. Next, object engine 130 identifies
a second word with the second highest bounding box
y-coordinate value and checks whether the list of current

US 2023/0130940 A1

words includes a word that is the same type of word as the
type of word of the second word. If so, object engine 130
discards the list of current words, creates a new list of
current words, and adds the second word to it. If not, object
engine 130 adds the second word to the list of current words
and checks if the list of current words includes one of each
defined type of word to form a defined data object. If so,
object engine 130 generates a data object that includes the
words in the list of current words and generates a new list of
current words. Object engine 130 repeats this process with
the remaining words in the sorted list of words.

[0052] FIG. 6 illustrates a process 600 for configuring a
time processing service according to some embodiments. In
some embodiments, computing system 110 performs pro-
cess 600. Process 600 begins by receiving, at 610, an image
of'a document. Referring to FIGS. 1 and 2A as an example,
application 115 can receive image 400 of a receipt from
client device 105.

[0053] Next, process 600 detects, at 620, a plurality of text
based on the image of the document. Referring to FIGS. 1
and 2B as an example, text detector 120 may detect words
in image 200. In addition, text detector 120 can determine
bounding boxes for each of the detected words, as depicted
in FIG. 2B. Process 600 then, uses, at 630, a machine
learning model to predict whether each text in the plurality
of'text is one of a plurality of defined types of text. Referring
to FIGS. 1 and 2B as an example, text type manager 125 may
accesses ML models storage 140 to retrieve an ML model
configured to predict date type of words, description type of
words, and amount type of words based on words detected
in images. Text type manager 125 can provide image 200 of
the receipt, the words detected in image 200 of the receipt,
and the bounding boxes of the detected words as inputs to
the ML model. Based on the inputs, the ML model deter-
mines, for each detected word, whether the word is a date
type of word, a description type of word, or an amount type
of word and assigns a corresponding label to the word.
[0054] Finally, process 600 determines, at 640, a set of
defined objects based on the predicted types of text for the
plurality of text. Referring to FIGS. 1 and 3 as an example,
object engine 130 may determine data objects 300 based on
the predicted types of words in image 200 using the tech-
niques described above.

[0055] FIG. 7 illustrates an exemplary computer system
700 for implementing various embodiments described
above. For example, computer system 700 may be used to
implement client device 105 and computing system 110.
Computer system 700 may be a desktop computer, a laptop,
a server computer, or any other type of computer system or
combination thereof. Some or all elements of application
115, text detector 120, text type manager 125, object engine
130, or combinations thereof can be included or imple-
mented in computer system 700. In addition, computer
system 700 can implement many of the operations, methods,
and/or processes described above (e.g., process 600). As
shown in FIG. 7, computer system 700 includes processing
subsystem 702, which communicates, via bus subsystem
726, with input/output (I/O) subsystem 708, storage subsys-
tem 710 and communication subsystem 724.

[0056] Bus subsystem 726 is configured to facilitate com-
munication among the various components and subsystems
of computer system 700. While bus subsystem 726 is
illustrated in FIG. 7 as a single bus, one of ordinary skill in
the art will understand that bus subsystem 726 may be

Apr. 27,2023

implemented as multiple buses. Bus subsystem 726 may be
any of several types of bus structures (e.g., a memory bus or
memory controller, a peripheral bus, a local bus, etc.) using
any of a variety of bus architectures. Examples of bus
architectures may include an Industry Standard Architecture
(ISA) bus, a Micro Channel Architecture (MCA) bus, an
Enhanced ISA (EISA) bus, a Video Electronics Standards
Association (VESA) local bus, a Peripheral Component
Interconnect (PCI) bus, a Universal Serial Bus (USB), etc.
[0057] Processing subsystem 702, which can be imple-
mented as one or more integrated circuits (e.g., a conven-
tional microprocessor or microcontroller), controls the
operation of computer system 700. Processing subsystem
702 may include one or more processors 704. Each proces-
sor 704 may include one processing unit 706 (e.g., a single
core processor such as processor 704-1) or several process-
ing units 706 (e.g., a multicore processor such as processor
704-2). In some embodiments, processors 704 of processing
subsystem 702 may be implemented as independent proces-
sors while, in other embodiments, processors 704 of pro-
cessing subsystem 702 may be implemented as multiple
processors integrate into a single chip or multiple chips.
Still, in some embodiments, processors 704 of processing
subsystem 702 may be implemented as a combination of
independent processors and multiple processors integrated
into a single chip or multiple chips.

[0058] In some embodiments, processing subsystem 702
can execute a variety of programs or processes in response
to program code and can maintain multiple concurrently
executing programs or processes. At any given time, some or
all of the program code to be executed can reside in
processing subsystem 702 and/or in storage subsystem 710.
Through suitable programming, processing subsystem 702
can provide various functionalities, such as the functionali-
ties described above by reference to process 600.

[0059] 1/O subsystem 708 may include any number of user
interface input devices and/or user interface output devices.
User interface input devices may include a keyboard, point-
ing devices (e.g., a mouse, a trackball, etc.), a touchpad, a
touch screen incorporated into a display, a scroll wheel, a
click wheel, a dial, a button, a switch, a keypad, audio input
devices with voice recognition systems, microphones,
image/video capture devices (e.g., webcams, image scan-
ners, barcode readers, etc.), motion sensing devices, gesture
recognition devices, eye gesture (e.g., blinking) recognition
devices, biometric input devices, and/or any other types of
input devices.

[0060] User interface output devices may include visual
output devices (e.g., a display subsystem, indicator lights,
etc.), audio output devices (e.g., speakers, headphones, etc.),
etc. Examples of a display subsystem may include a cathode
ray tube (CRT), a flat-panel device (e.g., a liquid crystal
display (LCD), a plasma display, etc.), a projection device,
a touch screen, and/or any other types of devices and
mechanisms for outputting information from computer sys-
tem 700 to a user or another device (e.g., a printer).
[0061] As illustrated in FIG. 7, storage subsystem 710
includes system memory 712, computer-readable storage
medium 720, and computer-readable storage medium reader
722. System memory 712 may be configured to store soft-
ware in the form of program instructions that are loadable
and executable by processing subsystem 702 as well as data
generated during the execution of program instructions. In
some embodiments, system memory 712 may include vola-

US 2023/0130940 A1

tile memory (e.g., random access memory (RAM)) and/or
non-volatile memory (e.g., read-only memory (ROM), pro-
grammable read-only memory (PROM), erasable program-
mable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM), flash
memory, etc.). System memory 712 may include different
types of memory, such as static random access memory
(SRAM) and/or dynamic random access memory (DRAM).
System memory 712 may include a basic input/output
system (BIOS), in some embodiments, that is configured to
store basic routines to facilitate transferring information
between elements within computer system 700 (e.g., during
start-up). Such a BIOS may be stored in ROM (e.g., a ROM
chip), flash memory, or any other type of memory that may
be configured to store the BIOS.

[0062] As shown in FIG. 7, system memory 712 includes
application programs 714 (e.g., application 115), program
data 716, and operating system (OS) 718. OS 718 may be
one of various versions of Microsoft Windows, Apple Mac
OS, Apple OS X, Apple macOS, and/or Linux operating
systems, a variety of commercially-available UNIX or
UNIX-like operating systems (including without limitation
the variety of GNU/Linux operating systems, the Google
Chrome® OS, and the like) and/or mobile operating systems
such as Apple i0S, Windows Phone, Windows Mobile,
Android, BlackBerry OS, Blackberry 10, and Palm OS,
WebOS operating systems.

[0063] Computer-readable storage medium 720 may be a
non-transitory computer-readable medium configured to
store software (e.g., programs, code modules, data con-
structs, instructions, etc.). Many of the components (e.g.,
application 115, text detector 120, text type manager 125,
and object engine 130) and/or processes (e.g., process 600)
described above may be implemented as software that when
executed by a processor or processing unit (e.g., a processor
or processing unit of processing subsystem 702) performs
the operations of such components and/or processes. Storage
subsystem 710 may also store data used for, or generated
during, the execution of the software.

[0064] Storage subsystem 710 may also include computer-
readable storage medium reader 722 that is configured to
communicate with computer-readable storage medium 720.
Together and, optionally, in combination with system
memory 712, computer-readable storage medium 720 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
ily and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable information.

[0065] Computer-readable storage medium 720 may be
any appropriate media known or used in the art, including
storage media such as volatile, non-volatile, removable,
non-removable media implemented in any method or tech-
nology for storage and/or transmission of information.
Examples of such storage media includes RAM, ROM,
EEPROM, flash memory or other memory technology, com-
pact disc read-only memory (CD-ROM), digital versatile
disk (DVD), Blu-ray Disc (BD), magnetic cassettes, mag-
netic tape, magnetic disk storage (e.g., hard disk drives), Zip
drives, solid-state drives (SSD), flash memory card (e.g.,
secure digital (SD) cards, CompactFlash cards, etc.), USB
flash drives, or any other type of computer-readable storage
media or device.

[0066] Communication subsystem 724 serves as an inter-
face for receiving data from, and transmitting data to, other

Apr. 27,2023

devices, computer systems, and networks. For example,
communication subsystem 724 may allow computer system
700 to connect to one or more devices via a network (e.g.,
a personal area network (PAN), a local area network (LAN),
a storage area network (SAN), a campus area network
(CAN), a metropolitan area network (MAN), a wide area
network (WAN), a global area network (GAN), an intranet,
the Internet, a network of any number of different types of
networks, etc.). Communication subsystem 724 can include
any number of different communication components.
Examples of such components may include radio frequency
(RF) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular technologies such
as 2G, 3G, 4G, 5G, etc., wireless data technologies such as
Wi-Fi, Bluetooth, ZigBee, etc., or any combination thereof),
global positioning system (GPS) receiver components, and/
or other components. In some embodiments, communication
subsystem 724 may provide components configured for
wired communication (e.g., Ethernet) in addition to or
instead of components configured for wireless communica-
tion.

[0067] One of ordinary skill in the art will realize that the
architecture shown in FIG. 7 is only an example architecture
of computer system 700, and that computer system 700 may
have additional or fewer components than shown, or a
different configuration of components. The various compo-
nents shown in FIG. 7 may be implemented in hardware,
software, firmware or any combination thereof, including
one or more signal processing and/or application specific
integrated circuits.

[0068] FIG. 8 illustrates an exemplary computing device
800 for implementing various embodiments described
above. For example, computing device 800 may be used to
implement devices client device 105. Computing device 800
may be a cellphone, a smartphone, a wearable device, an
activity tracker or manager, a tablet, a personal digital
assistant (PDA), a media player, or any other type of mobile
computing device or combination thereof. As shown in FIG.
8, computing device 800 includes processing system 802,
input/output (I/O) system 808, communication system 818,
and storage system 820. These components may be coupled
by one or more communication buses or signal lines.
[0069] Processing system 802, which can be implemented
as one or more integrated circuits (e.g., a conventional
microprocessor or microcontroller), controls the operation
of computing device 800. As shown, processing system 802
includes one or more processors 804 and memory 806.
Processors 804 are configured to run or execute various
software and/or sets of instructions stored in memory 806 to
perform various functions for computing device 800 and to
process data.

[0070] Each processor of processors 804 may include one
processing unit (e.g., a single core processor) or several
processing units (e.g., a multicore processor). In some
embodiments, processors 804 of processing system 802 may
be implemented as independent processors while, in other
embodiments, processors 804 of processing system 802 may
be implemented as multiple processors integrate into a
single chip. Still, in some embodiments, processors 804 of
processing system 802 may be implemented as a combina-
tion of independent processors and multiple processors
integrated into a single chip.

[0071] Memory 806 may be configured to receive and
store software (e.g., operating system 822, applications 824,

US 2023/0130940 A1

/O module 826, communication module 828, etc. from
storage system 820) in the form of program instructions that
are loadable and executable by processors 804 as well as
data generated during the execution of program instructions.
In some embodiments, memory 806 may include volatile
memory (e.g., random access memory (RAM)), non-volatile
memory (e.g., read-only memory (ROM), programmable
read-only memory (PROM), erasable programmable read-
only memory (EPROM), electrically erasable program-
mable read-only memory (EEPROM), flash memory, etc.),
or a combination thereof.

[0072] 1/O system 808 is responsible for receiving input
through various components and providing output through
various components. As shown for this example, I/O system
808 includes display 810, one or more sensors 812, speaker
814, and microphone 816. Display 810 is configured to
output visual information (e.g., a graphical user interface
(GUI) generated and/or rendered by processors 804). In
some embodiments, display 810 is a touch screen that is
configured to also receive touch-based input. Display 810
may be implemented using liquid crystal display (LCD)
technology, light-emitting diode (LED) technology, organic
LED (OLED) technology, organic electro luminescence
(OEL) technology, or any other type of display technologies.
Sensors 812 may include any number of different types of
sensors for measuring a physical quantity (e.g., temperature,
force, pressure, acceleration, orientation, light, radiation,
etc.). Speaker 814 is configured to output audio information
and microphone 816 is configured to receive audio input.
One of ordinary skill in the art will appreciate that 1/O
system 808 may include any number of additional, fewer,
and/or different components. For instance, [/O system 808
may include a keypad or keyboard for receiving input, a port
for transmitting data, receiving data and/or power, and/or
communicating with another device or component, an image
capture component for capturing photos and/or videos, etc.

[0073] Communication system 818 serves as an interface
for receiving data from, and transmitting data to, other
devices, computer systems, and networks. For example,
communication system 818 may allow computing device
800 to connect to one or more devices via a network (e.g.,
a personal area network (PAN), a local area network (LAN),
a storage area network (SAN), a campus area network
(CAN), a metropolitan area network (MAN), a wide area
network (WAN), a global area network (GAN), an intranet,
the Internet, a network of any number of different types of
networks, etc.). Communication system 818 can include any
number of different communication components. Examples
of such components may include radio frequency (RF)
transceiver components for accessing wireless voice and/or
data networks (e.g., using cellular technologies such as 2G,
3G, 4G, 5G, etc., wireless data technologies such as Wi-Fi,
Bluetooth, ZigBee, etc., or any combination thereot), global
positioning system (GPS) receiver components, and/or other
components. In some embodiments, communication system
818 may provide components configured for wired commu-
nication (e.g., Ethernet) in addition to or instead of compo-
nents configured for wireless communication.

[0074] Storage system 820 handles the storage and man-
agement of data for computing device 800. Storage system
820 may be implemented by one or more non-transitory
machine-readable mediums that are configured to store
software (e.g., programs, code modules, data constructs,

Apr. 27,2023

instructions, etc.) and store data used for, or generated
during, the execution of the software.

[0075] In this example, storage system 820 includes oper-
ating system 822, one or more applications 824, /O module
826, and communication module 828. Operating system 822
includes various procedures, sets of instructions, software
components and/or drivers for controlling and managing
general system tasks (e.g., memory management, storage
device control, power management, etc.) and facilitates
communication between various hardware and software
components. Operating system 822 may be one of various
versions of Microsoft Windows, Apple Mac OS, Apple OS
X, Apple macOS, and/or Linux operating systems, a variety
of commercially-available UNIX or UNIX-like operating
systems (including without limitation the variety of GNU/
Linux operating systems, the Google Chrome® OS, and the
like) and/or mobile operating systems such as Apple iOS,
Windows Phone, Windows Mobile, Android, BlackBerry
OS, Blackberry 10, and Palm OS, WebOS operating sys-
tems.

[0076] Applications 824 can include any number of dif-
ferent applications installed on computing device 800.
Examples of such applications may include a browser appli-
cation, an address book application, a contact list applica-
tion, an email application, an instant messaging application,
a word processing application, JAVA-enabled applications,
an encryption application, a digital rights management
application, a voice recognition application, location deter-
mination application, a mapping application, a music player
application, etc.

[0077] 1/O module 826 manages information received via
input components (e.g., display 810, sensors 812, and micro-
phone 816) and information to be outputted via output
components (e.g., display 810 and speaker 814). Commu-
nication module 828 facilitates communication with other
devices via communication system 818 and includes various
software components for handling data received from com-
munication system 818.

[0078] One of ordinary skill in the art will realize that the
architecture shown in FIG. 8 is only an example architecture
of computing device 800, and that computing device 800
may have additional or fewer components than shown, or a
different configuration of components. The various compo-
nents shown in FIG. 8 may be implemented in hardware,
software, firmware or any combination thereof, including
one or more signal processing and/or application specific
integrated circuits.

[0079] FIG. 9 illustrates an exemplary system 900 for
implementing various embodiments described above. For
example, cloud computing system 912 may be used to
implement computing system 110 and one of the client
devices 902-908 may be used to implement client device
105. As shown, system 900 includes client devices 902-908,
one or more networks 910, and cloud computing system
912. Cloud computing system 912 is configured to provide
resources and data to client devices 902-908 via networks
910. In some embodiments, cloud computing system 900
provides resources to any number of different users (e.g.,
customers, tenants, organizations, etc.). Cloud computing
system 912 may be implemented by one or more computer
systems (e.g., servers), virtual machines operating on a
computer system, or a combination thereof.

[0080] As shown, cloud computing system 912 includes
one or more applications 914, one or more services 916, and

US 2023/0130940 A1

one or more databases 918. Cloud computing system 900
may provide applications 914, services 916, and databases
918 to any number of different customers in a self-service,
subscription-based, elastically scalable, reliable, highly
available, and secure manner.

[0081] In some embodiments, cloud computing system
900 may be adapted to automatically provision, manage, and
track a customer’s subscriptions to services offered by cloud
computing system 900. Cloud computing system 900 may
provide cloud services via different deployment models. For
example, cloud services may be provided under a public
cloud model in which cloud computing system 900 is owned
by an organization selling cloud services and the cloud
services are made available to the general public or different
industry enterprises. As another example, cloud services
may be provided under a private cloud model in which cloud
computing system 900 is operated solely for a single orga-
nization and may provide cloud services for one or more
entities within the organization. The cloud services may also
be provided under a community cloud model in which cloud
computing system 900 and the cloud services provided by
cloud computing system 900 are shared by several organi-
zations in a related community. The cloud services may also
be provided under a hybrid cloud model, which is a com-
bination of two or more of the aforementioned different
models.

[0082] In some instances, any one of applications 914,
services 916, and databases 918 made available to client
devices 902-908 via networks 910 from cloud computing
system 912 is referred to as a “cloud service.” Typically,
servers and systems that make up cloud computing system
912 are different from the on-premises servers and systems
of a customer. For example, cloud computing system 912
may host an application and a user of one of client devices
902-908 may order and use the application via networks
910.

[0083] Applications 914 may include software applica-
tions that are configured to execute on cloud computing
system 912 (e.g., a computer system or a virtual machine
operating on a computer system) and be accessed, con-
trolled, managed, etc. via client devices 902-908. In some
embodiments, applications 914 may include server applica-
tions and/or mid-tier applications (e.g., HTTP (hypertext
transport protocol) server applications, FTP (file transfer
protocol) server applications, CGI (common gateway inter-
face) server applications, JAVA server applications, etc.).
Services 916 are software components, modules, applica-
tion, etc. that are configured to execute on cloud computing
system 912 and provide functionalities to client devices
902-908 via networks 910. Services 916 may be web-based
services or on-demand cloud services.

[0084] Databases 918 are configured to store and/or man-
age data that is accessed by applications 914, services 916,
and/or client devices 902-908. For instance, storages 135-
150 may be stored in databases 918. Databases 918 may
reside on a non-transitory storage medium local to (and/or
resident in) cloud computing system 912, in a storage-area
network (SAN), on a non-transitory storage medium local
located remotely from cloud computing system 912. In some
embodiments, databases 918 may include relational data-
bases that are managed by a relational database management
system (RDBMS). Databases 918 may be a column-oriented
databases, row-oriented databases, or a combination thereof.
In some embodiments, some or all of databases 918 are

Apr. 27,2023

in-memory databases. That is, in some such embodiments,
data for databases 918 are stored and managed in memory
(e.g., random access memory (RAM)).

[0085] Client devices 902-908 are configured to execute
and operate a client application (e.g., a web browser, a
proprietary client application, etc.) that communicates with
applications 914, services 916, and/or databases 918 via
networks 910. This way, client devices 902-908 may access
the various functionalities provided by applications 914,
services 916, and databases 918 while applications 914,
services 916, and databases 918 are operating (e.g., hosted)
on cloud computing system 900. Client devices 902-908
may be computer system 700 or computing device 800, as
described above by reference to FIGS. 7 and 8, respectively.
Although system 900 is shown with four client devices, any
number of client devices may be supported.

[0086] Networks 910 may be any type of network config-
ured to facilitate data communications among client devices
902-908 and cloud computing system 912 using any of a
variety of network protocols. Networks 910 may be a
personal area network (PAN), a local area network (LAN),
a storage area network (SAN), a campus area network
(CAN), a metropolitan area network (MAN), a wide area
network (WAN), a global area network (GAN), an intranet,
the Internet, a network of any number of different types of
networks, etc.

[0087] The above description illustrates various embodi-
ments of the present disclosure along with examples of how
aspects of the present disclosure may be implemented. The
above examples and embodiments should not be deemed to
be the only embodiments, and are presented to illustrate the
flexibility and advantages of various embodiments of the
present disclosure as defined by the following claims. Based
on the above disclosure and the following claims, other
arrangements, embodiments, implementations and equiva-
lents will be evident to those skilled in the art and may be
employed without departing from the spirit and scope of the
present disclosure as defined by the claims.

What is claimed is:

1. A non-transitory machine-readable medium storing a
program executable by at least one processing unit of a
device, the program comprising sets of instructions for:

receiving an image of a document;

detecting a plurality of text based on the image of the

document;

using a machine learning model to predict whether each

text in the plurality of text is one of a plurality of
defined types of text;

based on the predicted types of text for the plurality of

text, determining a set of defined objects.

2. The non-transitory machine-readable medium of claim
1, wherein the program further comprises sets of instructions
for:

determining a bounding box for each text in the plurality

of text;

determining a particular bounding box that encompasses

each text having a defined type of text in the plurality
of defined types of text; and

ignoring each text in the plurality of text with a bounding

box that is outside of the particular bounding box.

3. The non-transitory machine-readable medium of claim
1, wherein determining the set of defined objects comprises,
upon determining, for each defined type of text in the
plurality of defined types of text, that a number of text

US 2023/0130940 A1
11

having the defined type of text is the same, generating the set
of defined objects so that each defined object in the set of
defined objects includes one of each defined type of text in
the plurality of defined types of text.

4. The non-transitory machine-readable medium of claim
1, wherein determining the set of defined objects comprises:

determining a bounding box for each text in the plurality

of text;

sorting the plurality of text based on a y-coordinate of the

bounding boxes of the plurality of text; and
generating the set of defined objects based on the sorted
plurality of text.
5. The non-transitory machine-readable medium of claim
1, wherein determining the set of defined objects comprises:
determining, for each defined type of text in the plurality
of defined types of text, a bounding box that encom-
passes each text having the defined type of text; and

for each bounding box, identifying text in the bounding
box that is predicted as not being the defined type of
text and determining whether the identified text is the
defined type of text.

6. The non-transitory machine-readable medium of claim
1, wherein each defined object in the set of defined objects
includes one of each defined type of text in the plurality of
defined types of text.

7. The non-transitory machine-readable medium of claim
1, wherein the plurality of defined types of text comprises a
date type of text, a description text, and an amount type of
text.

8. A method comprising:

receiving an image of a document;

detecting a plurality of text based on the image of the

document;

using a machine learning model to predict whether each

text in the plurality of text is one of a plurality of
defined types of text;

based on the predicted types of text for the plurality of

text, determining a set of defined objects.

9. The method of claim 8 further comprising:

determining a bounding box for each text in the plurality

of text;

determining a particular bounding box that encompasses

each text having a defined type of text in the plurality
of defined types of text; and

ignoring each text in the plurality of text with a bounding

box that is outside of the particular bounding box.

10. The method of claim 8, wherein determining the set of
defined objects comprises, upon determining, for each
defined type of text in the plurality of defined types of text,
that a number of text having the defined type of text is the
same, generating the set of defined objects so that each
defined object in the set of defined objects includes one of
each defined type of text in the plurality of defined types of
text.

11. The method of claim 8, wherein determining the set of
defined objects comprises:

determining a bounding box for each text in the plurality

of text;

sorting the plurality of text based on a y-coordinate of the

bounding boxes of the plurality of text; and
generating the set of defined objects based on the sorted
plurality of text.

12. The method of claim 8, wherein determining the set of
defined objects comprises:

Apr. 27,2023

determining, for each defined type of text in the plurality
of defined types of text, a bounding box that encom-
passes each text having the defined type of text; and

for each bounding box, identifying text in the bounding
box that is predicted as not being the defined type of
text and determining whether the identified text is the
defined type of text.

13. The method of claim 8, wherein each defined object
in the set of defined objects includes one of each defined
type of text in the plurality of defined types of text.

14. The method of claim 8, wherein the plurality of
defined types of text comprises a date type of text, a
description text, and an amount type of text.

15. A system comprising:

a set of processing units; and

a non-transitory machine-readable medium storing

instructions that when executed by at least one pro-
cessing unit in the set of processing units cause the at
least one processing unit to:

receive an image of a document;

detect a plurality of text based on the image of the

document;

use a machine learning model to predict whether each text

in the plurality of text is one of a plurality of defined
types of text;

based on the predicted types of text for the plurality of

text, determine a set of defined objects.

16. The system of claim 15, wherein the instructions
further cause the at least one processing unit to:

determine a bounding box for each text in the plurality of

text;

determine a particular bounding box that encompasses

each text having a defined type of text in the plurality
of defined types of text; and

ignore each text in the plurality of text with a bounding

box that is outside of the particular bounding box.

17. The system of claim 15, wherein determining the set
of defined objects comprises, upon determining, for each
defined type of text in the plurality of defined types of text,
that a number of text having the defined type of text is the
same, generating the set of defined objects so that each
defined object in the set of defined objects includes one of
each defined type of text in the plurality of defined types of
text.

18. The system of claim 15, wherein determining the set
of defined objects comprises:

determining a bounding box for each text in the plurality

of text;

sorting the plurality of text based on a y-coordinate of the

bounding boxes of the plurality of text; and
generating the set of defined objects based on the sorted
plurality of text.
19. The system of claim 15, wherein determining the set
of defined objects comprises:
determining, for each defined type of text in the plurality
of defined types of text, a bounding box that encom-
passes each text having the defined type of text; and

for each bounding box, identifying text in the bounding
box that is predicted as not being the defined type of
text and determining whether the identified text is the
defined type of text.

US 2023/0130940 A1
12

20. The system of claim 15, wherein each defined object
in the set of defined objects includes one of each defined
type of text in the plurality of defined types of text.

#* #* #* #* #*

Apr. 27,2023

