US 20180103174A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2018/0103174 A1l

Ito 43) Pub. Date: Apr. 12,2018
(54) IMAGE PROCESSING APPARATUS AND (52) US. CL
METHOD FOR CONTROLLING THE SAME CPC oo HO4N 1/21 (2013.01); HO4N 1/3877

(2013.01); HO4N 2201/216 (2013.01)
(71) Applicant: CANON KABUSHIKI KAISHA,

Tokyo (JP) (57) ABSTRACT
(72) Inventor: Tadayuki Ito, Yokohama-shi (JP) An image processing apparatus that performs filtering by
reading out an image from an external storage unit, the
(21) Appl. No.: 15/724,627 image being divided into a plurality of banks by a first
interleave method according to a transfer length when the
(22) Filed: Oct. 4, 2017 image is read out from the external storage unit is provided.
The apparatus comprising: a plurality of local memories;
(30) Foreign Application Priority Data and a control unit configured to divide, into a plurality of
pixel fragments, a pixel of a bank which includes at least one
Oct. 7, 2016 (JP) oo 2016-199409

of a plurality of pixels needed for the filtering by a second
interleave method according to the transfer length and store

Publication Classification each of the pixel fragments obtained as a result of division

(51) Int. CL in one of the plurality of local memories in accordance with
HO4N 121 (2006.01) the transfer length.
10
o 10 " |MAGEPROCESSING APPARATUS |
i e e - i
{ 1 CPU CIRCUIT UNIT ! :
i | 108 102 104 106 !
| ; 3 § § S| ;
| ! EXTERMAL : !
| " STORAGE CcRY ROM RAM 1 f
i = t
| ! D._liICE : 490 |
; ! I 1 1 § 160 .
: l i E ' E ¢ :
i - IMAGE |
| VIDEQ || DMAC pmac || il | DMAC omMac | | viDEO ;
; E> INPUT UNIT parte) | | (Reaq) [1PROSEISNG ™ (e | | (Ready [TDISPLAY UNIT §> ;
| 5 3)) 5) :
' 130 192 194 16C 166 198 e " i
! 120 i IMAGE i
L 410 S t PRINTING 1 ;
b IMAGE READING UNIT | . :
; AD 170 !
| — CON- | ;
! VERSIONI | :
I |
t t
i b
I I

US 2018/0103174 A1

Apr. 12,2018 Sheet 1 of 20

Patent Application Publication

ST T <4}
A G (.-,
 [NOISE3A].] ~
Ned i aoo .AW_
0Lb L9 .
IR | LIND ONIGY3Y FOWNI |
| ONIINId | ;
| 3OV 4}
P ‘g6l 961 051 v61 Z61 ot
§ § § § § §

— JUNnAYTasIa) | (pesd) | | (e S AT I ™ Y LING LN
03QIA ovie | | ovig 350 OVWQ | | OWAQ 03aIA
EBL

ny | | | | |
5 R Y S —
| 3030 |
v NOY Neo JOVHOLS | |
| TYNHELY
Py 5 })
L 804 ¥0i 261 804
“ LINM LINDHIO)
SNLYHYddY DNISSTOONd FOVIN 001

e e e e v nnn vvv ve rem eee e e rre em nen v vvs ren e e e ree wes men o www nen e s v ew wes men one e e oee e v e wes wm e ves wm eee e o v res wm e v wm eee e wn v e wn e vvw wm ree wee wn ree re en nee v wn e oo

3
;

0L

US 2018/0103174 A1

Apr. 12,2018 Sheet 2 of 20

Patent Application Publication

L6
- e 1NN (0did) NN E L LNG
VIO 4 oot NOLYTOE N3N0 1, NOWY |} NOUYWNOS | | Ny {iof)
e e || EE ALACEA | D 1T CSNAML [T angs i b
g6, L EXid YN | [SsTuaay] (ELVNIGHOOOL | Exd | g2y
2 5) ? 5 5 ¥
3 Le61 ogh, Sc8l ¥€8L £851 zes besy voor
i M R . | é%m_m@w o
L | 7 g
1 91 | zzoL ZoL
R 03 !
. N3N0 | ot m
b e ran BN T
b i TN RED !
i mwmﬂww | NOLNI | 1 3 | 9eob
Ep Rl A AT _
E % RN E R |
i SN L RS TN |
L el bzsel” zd | |
o _ o011 08k ”
oot ! L HoLdd |
¥ e HNNONISSIOONd r-0g L 01
",_Ffi-!;!;iiiii!i!::iiiiiw%;&m@wih 51N " 4
SR R R w ,,,,,,,,,,,,,,,,,,,,, HITIOHLNGD
SNE QRUYHS Wy
061 m
AR I 90L~ WwWdC

US 2018/0103174 A1

Apr. 12,2018 Sheet 3 of 20

Patent Application Publication

//;,V/
o e e B /é%/
g s o= il N TN | NOLOZI LHOIEH
== AN
et s 03N SIHLONT
o " Vi
2
ﬁMm
ey
M/,&% e NOILLD3HI
_,,,// L SNINNYOS 808
R wx/@/ S RSy NN N //,//
“ i RECUN ¥ R mm{/ BRINESN
! 5 B N H e / N L
! ' . 3 NS .
7 7 Y 7 7 e o) -
cle zie SO S A L T 4 NOLLOZHIO ONINNYOS NI

Patent Application Publication Apr. 12,2018 Sheet 4 of 20 US 2018/0103174 A1

182
?
CACHE
DETERMINATION
UNIT 1834
¥ 3
ADDRESS REGISTER 2
1823 YA,
1825 1504 | [COTFIRATR :]
¢ O) <~ CACHETAGET]) LNE[T
) }
[COMPARATOR - -
- - { CACHETAGI]) LINE[S]
st i ¥
COMPARATOR - , _
-) < CACHETAGIS]) LINE[S
o i :
COMPARATOR -) .
») «{ CACHETAGHM]) LINEW]
.]
-]
COMPARATOR
DETER- . - -~ CACHETAG[S]) LINE
MINER | ,
[COMPARATOR - N
A { CACHETAGIZ) LINEQ
4
COMPARATOR - _
.) = CACHETAG[I]) LINE[!
< i
) 7
- COMF@?ATQR««{ CACHETAGID])} LINE[]
. i

1827~ 1828
o~ 1828

Patent Application Publication Apr. 12,2018 Sheet 5 of 20 US 2018/0103174 A1

CACHE DATA ‘:
MEMORY | | AREa !
186 ’
/ RECEPTION
oA 1 TAREA
ACQUISITION gy
N E) s——

(START

!

FETCH “LINE NUMBER AND CACHE MISS FLAG— 8305
FROM INTERMEDIATE QUELE (FIFO)

T CACHE MISS?

$340
~

el

" DIFFERENCE
BETWEEN RECEPTION POINTE

<< e AND DATA POINTER # 0?7 I 83245
T WAIT
[YES —
UPDATE DATAPOINTER ~- 8350
gt I

CALCULATE STORAGE DESTINATIONOF |~ 8380
CACHE DATA FROM LINE NUMBER,
DATA POINTER, AND RECEPTION POINTER
AND SET READ DATAREAD OUT
FROM CACHE MEMORY AS CACHE DATA

!

QUTRUT CACHE DATA —~ 8368

¥

(=0)

Patent Application Publication Apr. 12,2018 Sheet 6 of 20 US 2018/0103174 A1

" DOESREFILLDATA ™,
e ARRME?

5385
¥
UPDATE RECEPTION POINTER
§
AA A,%,,m $380
7 NUMBEROF N oo
« REFILL DATATO BE RECEIVED ™
“NFUTURE = RECEPTION .~
S\ JHRESHOLD? o~
§392 - $394
{ ¥ Ny ¥)
SET PREFETCH PERMISSION SIGNAL SET PREFETCH PERMISSION SIGNAL
“PERMISSION’ “PROHIBITION’
a ol]
1

US 2018/0103174 A1

Apr. 12,2018 Sheet 7 of 20

Patent Application Publication

\
ol gl [o's] o'yl el 07l o1 lo'o]
A A A A A A A A
HEEEEEEE -
< LING RE0L saol NN N
LYINNOA 1070} (ONOW) IONYNINNT ¥ALSYY
o
qu: loel low! o'z] Io'dd
[P S A A sy lloendfozilioldivoll]loslfoel o'l lo'ol
m;if_{:: AL AT ALNT AT AL AL ALALA
< [o'st lo'el [o°)] o S
LNnakg9l T L0 H0-8 {ONOW) IONYNINAT M31SYY
T 9 914

[gilesg] «-- {lzilesg)li il wegiiol]weg] [slieeq | Iplesg | [11meg | [oliweq | [cliesq | [yl ieeq | iclieeg | [zlimeg | [1]ieq | (ol g

T HFASNY ML 3Gt
" HIASNYHL 188G

“MA4SNYML 1eag-g
"MO4SNYHL 800}
T UTHSNYYL B80T

T H3ASNvuL 209

US 2018/0103174 A1

Apr. 12,2018 Sheet 8 of 20

Patent Application Publication

wmfmw Nmﬂmv ; mmwmw mmmmv mm%;.
LINN LIND LIND JINN JINAY
NOLLYHIANAD = NOUYAHOASNYHL o NOLLYHANAD s ONITANYS i NOLLY T0d6E LN
1HXld ALYNIGHCOD ERE e TEXId TEXid

HL R

{(ONISSIDONEd 3L W . Z0G
NYOS THL u
40 ONISSI00Hd IOV m
M N T dEddnE WECTO
| 40 Y10 30V I/
NOLLYISHOS30 ¥ 14Y W NOILYIWHO 30 20434 U&
NILSAS LYNICQUODD | WILSAS 3LYNICHOOO &mmm&xmom
NOLLYTOCJHIING HyaNTg tREkeE)
\

US 2018/0103174 A1

Apr. 12,2018 Sheet 9 of 20

Patent Application Publication

SHNYE 40 <g> HAENON SNV 40 <8> YIINN
gl {0l 151 I [}l)
LY YLYG 4 181~ | SS¥aaY SSIMaaY | SsawMaay |
A &
5 PN P S S N
- ~, 88l 228b-1 i | JONVHO NOLLOIINNOD)
LINA NOLLYZINOYHONAS Y.vC R ooy
STHONTN 19207 |y ey - 8t~ Tgl inn Limn | ToTINN
40 <1 HIGNN pggy| 18 NOILSINODY 6981 NOLLYNIA NOILYNI | NOILLYNIN
. o vlvd zpoy. || 2130 BTl B ETE
o8 | BECS %0 | 30090 | g
. ! , NOILYNIRYAL3G
I (| R N S L glodd : -
o} AJOWIA | ; ALYICIWHIALN JHOYD
oot [NOILIS : i
! , “ -NDOY ; e ea |
| : | NN S e LINN NOLLYHLIgYY S3300Y mew
\od ey |] [NOLL A eI i TTTmT—— b
<Sib N MGINAIING | o - phgL
hadonan |] ionan | Hodd W i 5
o LA VRS 1 3LYI0SNHEINI PUElodld b Dlodd | liodld
ENmE — A
(] AHONGIN o LEEIEEV B N
SRRCON . w{amfgmwzm
L RO N / (181 ~
L “ - 1581
gdy 2881 5981~ . I LN
 LINT NOLLISIDDY YL ¥Q -) o 6381~ OJSS | NoISSISNvAL
9L egl—
® . 4
g8 9id 061 SN G3uvHS

US 2018/0103174 A1

Apr. 12,2018 Sheet 10 of 20

Patent Application Publication

(N "Wos2) e N , p : , - ey (N0
9NNl Eron(nibuege Nwg] [2+poniN)broeg—IN'w] [ro(Niueg<{N'ol
oMl TN rosll~Nibueg e [L-N'wzl [Z+%{ -N)bege{L-N'wl P50 -NiDveg—{L-N'o]
[roe(@-Nile-1z-N'] ron(z-Nibueg [z-N'wzl [Z+y%{Z-N) buege-Z-N'wil - [pos(E-Nbueg—{z-Nol
[ohweg—{ug'w] [ohuege-[ugug] [zbuga—{ug'w] lobuea—{ug'ol
[eheg—{u'w [ehiueg[uz W] [bueg—{us'w] lehueg—{us o]
[ehueae{ug'n] [Zhueg—(ug'uz] lobueg—fugw] [zhueg—{ug 0]
[} Bueg{ug'w [byuege{ug uig] [ehueg—{ug'wl [bueg{ug o)
[ohueg{uyw] [obuege{uy'uz] [Zhueg—{upw] [obuege{uyo] 1T 4¥F
[ehueg—{ug Wl [ehiuege-[ug'wig] [1 Jueg{ug'u] [chuegfug'nl v 9¥F
[Zheg—{uz'n] [Zhueg—[uz'wg] [obueg—fuz'w] [zlwveg—fuz'e] +-sv¥
[} bege-{u'pl [ihueg—{uwe] r fehueg—{u 'w} [1hueg{u'g] E
u [obeg—{o'wl (0 lobea{owe] M [Zhueado wi ~ lohveg—ool N
{0 'Wasz) {)] ; Vi g s oo
s ohh 1A 4 Lob
6 Oi=

Patent Application Publication Apr. 12,2018 Sheet 11 of 20 US 2018/0103174 A1

A

- ™y
FIG. 10A LOCAL LOCAL LOCAL LOCAL

MEMORY | | MEMORY| |MEMORY| |MEMORY
[0} [2 3]

Beat{0] Beal[1] Beatf2] Beat[3] 1bank[O}
Beat|4] Beat[5) Beat[s) Beat[7)

Beat]s] Best[9] Beat10] Beat11]

Beat{12] Beal[13] Beat[14] Beat[15]

Beat[?] Beat[3) Beat{0] Beat{1] lbaﬂkm
Beat[6] Beal[7] Beat[4] Beat[5]

Beat[10] Beat[11] Beat[8] Beat[9]

Beal[14] Beat[15] Beat[12] Beat[15]

Beat[0] Best[1] Best|2] Best[3] Ibaﬁkgzj
Bestl4] Beat[5) Beat|s) Beatf7]

Beat[8] Beal[9] Beat[10] Beat[i1]

Beat[12] Beat]13] Beat[14] Beat{15]

Beat[2] Beat[3] Beat[0] Beat[1] lbank{S]
Beat[§] Beal[7] Beat]7] Beat]?]

Beal[10] Beatf11] Beat[s] Beaty]

Beal[14] Beall15] Beal[12] Beat[13])
- e T

LOCAL LOCAL LOCAL
MEMORY MEMORY MEMORY MEMORY

[0] [1] 4] 3]

Beat[0] Beal[1] Beat[2] Beal[3] hank(0]
Beat{4] Beal[5] Beal[s] Beat[7]
Beat[2] Beat[3] Beati0} Beat[1] bank(1]
Beat[5] Beat[7] Beat{4] Beat|5]
Beat[l] Beat[1] Beat[2] Beat{d] bank{2
Beat[4] Beal[5] Beat[6] Beal[?]
Beat[2] Beat[3] Beat[0] Beat[1] -
Beat[8] Beat[7] Beat[4] Beat[5]

b S e e

US 2018/0103174 A1

Apr. 12,2018 Sheet 12 of 20

Patent Application Publication

919 ZL8 809 V08
; H H H Wi I
oy [sheeg | [vhesq | [chesq | [Lheaq | [oheog | |lg)ieeg | [yileeq [oiheeg | [zihesg | [} lesg : 709
lehiveg | [chueq | [chiveq | [ehwueq | [ghueq [ihieg | [Lbeq | [bueg | [y bweq | [bueg
} \
N t [hes | [vheeq | [cheeq | {Lhees | [ohesg | |Isihesy |lyiliess jiciliesq [z1heea |11 leeg w 089
ves || [zhweg | [Zhueg | [zbueq | [zhueg | lzhueg | | [obwe | lobwueq | [obiueg | [ohjueg | [obues |
i \\\\\la _/ A\\ v m w .efa !
vis Hﬁ;m O 808 w08
| AN T T TT] Nbroze
so~L T T T T TTTTT] [T1 4290 /Pogedovuwl
douvwip vyt 1 yB i sp2ag e

Patent Application Publication Apr. 12,2018 Sheet 13 of 20 US 2018/0103174 A1

4 [LOCALT TLOCAL1 [LOCAL1 TLOCALI
640 MEMORY MEMORY MEMORY MEMORY
- MU RSN
N e e b b
mnopabed Baat {11
WZZN RN e e e [515] bank0]
i 13 { 3
602 806 gat{12]] |Beal13]] |Peat[14]] Beal{15]
bank[0]Beat/11] bank[0)Beat/12] [Beaio]] [Bearil]
S T pesase - — bank{1]
Besi[14]] |Beat[i5]] |BeatfiZ]! (Beai{13]
604 —~ 808
< benk[1|Beal[11] bank{1|Beat[12] |Beai0] | | Beat{i]| |Beat[2]| |Beat(3] bank(2]
Beai[d] | | Beat[5]
Beal[2] | | Beall3]! | Beal[0]| | Beai[l] bank|
)
850 Beai[4] | | Beat[5]
™ b e d BE“ """"""""""
mnopabe eat
HERZ =R : . - 2 J bank{0]
Beal[12ll Bealli3]] Beallid]l Besil1d]
802~ 508
bank[Q]Beat{11] bank[0[Beat12] |Beat{10]| [Beall1] penk(1]
M. N Beat|14] |Beat[15] {Beati2)] Beai[13]
604~ 608
bank[1]Beat[11] bank[1iBeatjiz] |Beatll]| |Beaf{l]| |Beat[?]| | Beat[3] bank[2]
Reatld] | | Beat[§]
Beat[2]| | Beat{3]| | Beati0]| | Beat[i] —
Beat[d] | | Beat[5]
gs0 ey
Beat[11
el | pano)
mnop abed Beal{12]i |Beat[13]] |Beal[id]] (Beai[15]
N7 =N et
840 i~ &14 (Beal[10]] Bea11)
; ; e . bank(1]
bank[0}Beail15] banki2]Beatil] |Beat[i4] @ea}[’i% Beatl[12]} Besi{13]
b B
812~ 618 Beat[C]| | Beat{t]| | Beat2]| | Beal[3] bank?]
bank{{]Beat[15] bank[3|Beatj0] | Beatld]| | Beat(5]
Beal?] | | Beat[3]| EBeat0]i | Beat[l] bark(3]
,,,,,,,,, an
g Beatld] | | Beat[5]

Patent Application Publication Apr. 12,2018 Sheet 14 of 20 US 2018/0103174 A1

1865
§
SHARED MEMORY ARBITRATION UNIT
S N '
o O - LOCAL
- - o] MEMORY
’s (0]
- >
B PIXEL LOCAL
. o REAR | » MEMORY
i ™! RANGEMENT i
1 > =l UNIT N
i -
i hacaannk
! .
i .
: —

i LOCAL
] . - MEMORY
- - [L-1]

- >
N . AN . A

US 2018/0103174 A1

Apr. 12,2018 Sheet 15 of 20

Patent Application Publication

SHNVE H0 HITNON SHNVE H0 HIFNON
gl [1] (o] 1% 1] ol
LARTE vivg | viva SSFOY| |SSIHAqY|SSTHAaY
¥ i 4 el
) 3
- ™ 681 2]
5681 LINN NOLLYZINOUHONAS YLVC
SRHOWIN YO0 ww_mv gl ,
A0 <> HIEANN \ NOLLISINDAY ¥1¥ |
Pt zi81
JRIN N 1y NS | i .
e | T fmkw_mw%mmzm -
h_ Ll [NOLLIS ! =
f ! NoDoY: :
L | . ym\\\/ymiﬁé | odd |
VT 1] ann e i\\; e n ERT TN
- |adonaw| T NOL L & ¥ olodd .
B BLCCLN AHONAN ER S g ERETTERN
| »m%% TS {0414) 3nanD
e “ﬂ eI IENNEHY
| Emm— _)
7 AHONAN | R—— L8
L 3HOYD 9B
Tttt “egeL . z,:i/._.wzm
g8L 88t 1IN | NOILd303Y
L NOILISINDOY Y1vQ . y
981
.\t\
0b1 SNE OIHYHS

Patent Application Publication Apr. 12,2018 Sheet 16 of 20 US 2018/0103174 A1

fo‘"
t.:-.-,
=
5
&
®
)
o
(o)
(e
<
- 1_..?
P ” =] -
= 7=y S
z — e
® 0 T
= Ot | | i R
; pom i~
@ vy O | [ol
o 2 - e £
& - =R — Ll a0 Qe =
D& 52 =L R
P] | e i A R PR ol
5wl el LS O o
I eaaa b i | W Pl F e S R s o
3 o= L3 e Lt B D =y e —
>—-m— — —— 5{\0“)“Ln" — Pl [UR)
pracit 7 fam i Bt (Ze) Jr—
> - =R e] (T
! =S] [s =3 S - Pt s A
= e B RO B IS §) BEL S e N 2
Annnnd S5 >“g:j“ [[t e }""!\:
u o L ﬁc\{ e s ot B et i
&y J— et . i i
OB S el lss > Ce| e
it — o 2eey fr—
o I I SIS
N I A 55 7 S b] el] = 3 ey
5@" > o =t ﬁﬂi > = h
i3) I P 2ol o R e
: - ot oy y - et [
T &5 > 119, Pt E it
f) - =i - b
p - =R B >~g~ - oI I ey
ot = Wi el | S L5 Sl B S
@ IS | W | T s
.y o= 0% = g
o~ e e B YR g . ==l
il I <3 — b P e w3 e
@ — &2, 8v- >—_¢-~ o p= ﬁ:n“ P
— et ~g S -4
@l Pl = S e PNl B I B gt %Y
(D franas >--V"j Qq‘ o Banand >__lq Uﬁ' pm—
- J—) J—] | b
| it § S Ceil [ol | BB Oed
82 oy B Ry Wl B el
k| Py S = A A >
AT “ ARy R R
e 5 S e 59 e
& 3 J. s = - . bl
I o e = Py ol o L s
] e e] e = -
% b I b SRS el o AN
— e} T".. QN r—— [— >
S 1 sS = L | e o, =
e 2415 Eg B B | =R Pary
bt O{Q — b S Q{Q
B == Es i e
! < < jo— il <
%3 >n"r-: Jo— Ff..e ‘QNn >“C5
l Sl >..O., UN \\ Pl
3 B, oy
SRR o T NS
> 24 1 o8 :
% ey
< P :
b =)
. & ¥

Patent Application Publication Apr. 12,2018 Sheet 17 of 20 US 2018/0103174 A1

J——

ae

|
40] 60] [310]
E
0][38.0] [83.0

i

b
$

o} [5
!

Sty
"

iT

E
01[34,01136,

(1.0] [3

R

[0.0] [2.0]

i

~.-160-Byte UNI

80-Byte UN

&,
=)
X3
o, M3,
=
<3 — | S]
S £, 3 o W, “.
o | =112l Sl bsl s 5 eS| -2 g
= < () el oy > bt fTu} o T3
@l e = e =l e AP
e e B I o = s S L [Sar | T
= > = [=) >3 = W =
&, 2 (&%) Jr— ~ < 500
25 ol TS TN a2 e | TS TR
Sed . | B =1 = = >_§ -
— ﬁa — o =) JEN ﬁ o - o =
- o Ml oy HILE LR 5y e 78
< [— 3 T
< e . e 52 7 >"§§ = =, 52» o
= o >__c;: frg £ - .
. [&) st pTa wmexs [X93
o) 9 H A | e
o TS Py 5 ﬁ < ey “
L~ o — i B e L3I0 =y =,
e 5 oy Kot - D
PN - =, mg e =1, i
Fow) I [r— o 2
T > I Y Rl 33 >
Mnannsd {:}
2 e = =
S| sE e RCS
. L i e .
jr et =L £
= Cw,
) (=)
2 4ls
_ o,

Patent Application Publication Apr. 12,2018 Sheet 18 of 20 US 2018/0103174 A1

\\\\}\\V\ -..304
BAND AREA STORED
N MEMORY

[
&3
<
e«
) ,
D i
o PriEa
o o
Eeriey
00 =2t
{Z Ol
< e 22
[J2:01€0 BN
F
4
)
o3
’I
v,
s
HZ
O~ 00
Edne)
I ==
27 Oy
S
B
WO !///E
= =
w2 z
; TSI e B
% Aé‘ 7 .2 SAZ/////':A;
=5 =% ” e |
<§5 <5ia £ :"{%Oé o
R ey e vy
Al ELely & 1Zou
Z 5= = ighs=
N .
= g o /ﬁml
L = b 2o
L0
-

SUB SCANNING
DIRECTION
HEIGHT
DIRECTION

Patent Application Publication Apr. 12,2018 Sheet 19 of 20 US 2018/0103174 A1

G. 16F FIG

MAIN SCANNING OVERLAP
DIRECTION EACHOTHER

NS,
" oA | S S S
S| e {a NI
i ¢ N i S S
DIRECTION 300 W, MEMORY - BAND AREA
x "STORED N
282 o MEMORY.)
I \ 303
OVERLAP
EACH OTHER
MAIN SCANNING
DIRECTION BAND AREA 3
SN i SO L
SUB | IBAND: {BAND! N
! 1 ho2] N
AR B E\\:‘\\
LENGTHWISE
DIRECTION

HEIGHT
DIRECTION

US 2018/0103174 A1

Apr. 12,2018 Sheet 20 of 20

Patent Application Publication

NN AHOWIN ONVE
08¢ T ONEOEMOLS
Y3uY ONYE
LIN NOLLADEXT J—
ONISSI00Hd FOVWI sujl no upg
A mmv;awﬁa o B
” w “ﬁlm|“.uv HMZD.MQE@. - ot - P i ,ni.x f.xu: o “
Lo 198h ingino 39w b e . 082 4RIV INAINO
IR - |- 853400y 19¥i !
I ‘o §7T~ ! T YEY INdLNO
R | LINDJOBINCO | L Y LN
R NENVETENE “ . SSIHAQY LSHId |
R . % " Ty YINY LAdN |
ST ! “ AHOWIN “
[i i I - SO { NMN.N\.(. “
N | I V9 | NOLLO3HIO
T T | / ; ONINNYOS
L1 166 L o U NS
1 : 3
RNy ,E&HO T sl zay LINDHID NOILYY gy 4
ol llingwzoww bESb L 4344N4 3LYICINILN
| g Db wor o0c ,w
(93N uomaw anva N1 a3u0.s NSO ONYE ||)
Y3 ONvE Lot Ni GEHOLS
A [P B w@m;}w YauY ONYE
S Lpd NOILOTHIA Ay .
ke 1HDEH

NOLLOTMIG FSMHLDNTT

NOILOTMIO DNINNYDS Nivi

US 2018/0103174 Al

IMAGE PROCESSING APPARATUS AND
METHOD FOR CONTROLLING THE SAME

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to an image process-
ing apparatus and a method for controlling the same.

Description of the Related Art

[0002] In recent years, various devices are required to
achieve both an improvement in processing performance
and a greater reduction in cost. A certain type of computer
system is installed in each of these devices. It can be said
that processing performance per manufacturing cost of the
computer system is one of factors for deciding the quality of
the device.

[0003] The computer system is generally made of a pro-
cessor and data processing circuit which execute applica-
tions, and a storage device such as a memory which stores
programs and data to be processed. Ideally, each of the
processor and the data processing circuit includes a storage
device capable of reading/writing programs and data used by
itself at a high speed. The storage device is, for example, a
memory unit such as an SRAM having a comparatively low
access latency. If such a memory unit can be provided, as a
dedicated local memory, for each of the processor and the
data processing circuit, the improvement in processing per-
formance is implemented easily.

[0004] In order to reduce the cost of the device, however,
it is desirable to reduce the number of storage devices to be
installed by sharing a single storage device with many
processors and data processing circuits. If a memory is
adopted as the storage device to be installed, an inexpensive
DRAM that is widespread on each occasion is often used. If
the DRAM is used, however, the access latency becomes
higher than in the case of the aforementioned SRAM. In
addition, if many processors and data processing circuits
share the single storage device, read/write from each of the
processors and data processing circuits to the storage device
may conflict. Each access needs arbitration in order to
resolve this conflict, increasing access latencies from the
processors and data processing circuits. As a result, the
processing performance of each of the processors and data
processing circuits degrades.

[0005] In order to suppress performance degradation of
each of the processors and data processing circuits, a cache
device is often provided between the storage device, and the
processor and the data processing circuit. Each of the
processors and data processing circuits does not gain access
(data request) to the storage device while it can read out
desirable data from the embedded cache device. This
decreases the frequency of access (data request) from each
of the processors and data processing circuits, making it
possible to reduce the needed total amount of access bands.
A circuit scale increases by providing the cache devices. It
is possible, however, to further suppress an increase in
circuit scale as compared with a case in which a dedicated
local memory is provided. It becomes possible, by thus
providing the cache devices best suited to the computer
system, to achieve both high processing performance and a
low cost required when the device is implemented.

Apr. 12,2018

[0006] However, there are types of image processing
which are difficult to maintain processing performance in the
computer system using such cache devices. As one of the
types of such image processing, image processing for
deforming a plurality of images different in shape into
images of the same shape and combining the plurality of
images into one image is given. In this image processing, the
respective images are deformed with different deformation
parameters so as to have the same shape, and thus they are
read out from a memory such as a DRAM while being
deformed. At this time, an access pattern to the memory
changes greatly for each image. In order to reduce the cost
of a processing apparatus, cache memories need to be
allocated appropriately to all the plurality of images needed
for combination.

[0007] Furthermore, in recent years, concerning a DRAM
serving as a general storage device configured to store an
image before deformation and an image after deformation,
an operating frequency in terms of specifications is
increased from DDR3 to DDR4 and DDRS in order to
increase processing performance. It is therefore necessary, in
order to maintain the performance of the DRAM, to conceal
switching of read and write of the DRAM or a latency at the
time of a bank conflict by increasing a transfer length per
memory access. That is, as for the aforementioned image
processing, there are factors (1), (2), and (3). (1) The cache
memory needs to be controlled to a predetermined capacity.
(2) The access pattern to the memory when each image is
read out changes. (3) The transfer length per memory access
increases. Because of these factors, it is difficult to maintain
the performance of the aforementioned image processing.

SUMMARY OF THE INVENTION

[0008] For example, Japanese Patent Laid-Open No.
2012-243026 discloses a method of maintaining perfor-
mance by prefetching a needed image and storing it in a
cache memory, and concealing the latency of DRAM access.
However, a technique described in Japanese Patent Laid-
Open No. 2012-243026 cannot cope with a complicated
access pattern to a memory caused by an example of the
aforementioned image processing and an increase in transfer
length per memory access.

[0009] A certain aspect of the present invention provides
an image processing apparatus which includes a cache
device capable of suppressing performance degradation
even if the access pattern to the memory changes variously.
[0010] The certain aspect of the present invention has the
following arrangement.

[0011] An image processing apparatus that performs fil-
tering by reading out an image from an external storage unit,
the image being divided into a plurality of banks by a first
interleave method according to a transfer length when the
image is read out from the external storage unit, the appa-
ratus comprising: a plurality of local memories; and a
control unit configured to divide, into a plurality of pixel
fragments, a pixel of a bank which includes at least one of
a plurality of pixels needed for the filtering by a second
interleave method according to the transfer length and store
each of the pixel fragments obtained as a result of division
in one of the plurality of local memories in accordance with
the transfer length.

[0012] According to an exemplary aspect of the present
invention, it is possible to achieve both high processing
performance and a low cost in image processing for deform-

US 2018/0103174 Al

ing a plurality of images different in shape into images of the
same shape and combining the plurality of images into one
image.

[0013] Further features of the present invention will
become apparent from the following description of exem-
plary embodiments (with reference to the attached draw-

ings).
BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The accompanying drawings, which are incorpo-
rated in and constitute a part of the specification, illustrate
embodiments of the invention, and together with the
description, serve to explain the principles of the invention.
[0015] FIG.1 is a block diagram showing the function and
arrangement of an image processing apparatus;

[0016] FIG.2 is a block diagram showing the function and
arrangement of an image processing unit;

[0017] FIGS. 3Ato 3E are views for explaining tile areas;
[0018] FIG. 4 is a block diagram showing the function and
arrangement of a cache determination unit;

[0019] FIGS. 5A to 5C are a view and flowcharts for
explaining a data acquisition unit;

[0020] FIGS. 6A to 6C are views for explaining a transfer
unit;
[0021] FIG. 7 is a view for explaining an image deforma-
tion;
[0022] FIG. 8 is a block diagram showing the function and

arrangement of a cache unit;

[0023] FIG. 9 is a table for explaining a method of storing
image data and bank allocation on a DRAM;

[0024] FIGS. 10A and 10B are views for explaining pixel
assignment to a plurality of local memories that form a cache
memory;

[0025] FIGS. 11A and 11B are views for explaining a
method of access to the cache memory;

[0026] FIG. 12 is a block diagram showing the function
and arrangement of a shared memory arbitration unit;

[0027] FIG. 13 is a block diagram showing the function
and arrangement of the cache unit;

[0028] FIG. 14 is a view showing image data stored in a
DRAM,;

[0029] FIG. 15 is a view showing image data stored in a
DRAM,;

[0030] FIGS. 16A to 16L are views for explaining band
areas; and

[0031] FIG. 17 is a view for explaining input/output

processing of image data.

DESCRIPTION OF THE EMBODIMENTS

[0032] Embodiments of the present invention will be
described below with reference to the accompanying draw-
ings. However, the embodiments of the present invention are
not limited to embodiments below. The same reference
numerals denote the same or similar constituent elements,
members, processes, and signals shown in the respective
drawings, and a repetitive description will be omitted as
needed. Further, some members that are not important from
a descriptive point of view are omitted and are not shown in
the respective drawings.

Apr. 12,2018

First Embodiment

[0033]

[0034] FIG. 1 is a block diagram showing an example of
the overall arrangement of an image processing apparatus
(computer) 10 according to the first embodiment. The image
processing apparatus 10 performs image processing for
performing burst read-out on image data from a memory and
deforming an image. The image processing apparatus 10
includes a CPU circuit unit 100, an image reading unit 120,
a video input unit 130, an image processing unit 150, a video
display unit 160, and an image printing unit 170. The
operational overview by these components will be described
below.

[0035] The image reading unit 120 includes a lens 124, a
CCD sensor 126, and an analog signal processing unit 127.
Image information of an original 110 is formed on the CCD
sensor 126 via the lens 124. The CCD sensor 126 converts
the image information into R (Red), G (Green), and B (Blue)
analog electrical signals. The pieces of image information
converted into the analog electrical signals are input to the
analog signal processing unit 127, undergo correction on the
respective R, G, and B colors, and then are analog/digital-
converted (A/D-converted). Consequently, a full-color digi-
tal image signal (pixel value) is generated. The generated
digital image signal is input to the video input unit 130, and
then input to a DMAC (Direct Memory Access Controller)
192.

[0036] A CPU 102 sets in advance the operation of the
DMAC 192. The DMAC 192 stores the input digital image
signal in a RAM 106 or an external storage device 108 of the
CPU circuit unit 100 via a shared bus 190. In the following
description, data acquired by aggregating digital image
signals including a plurality of pixels so as to form one
image will be called image data. In this embodiment, assume
that the digital image signal is stored in the RAM 106 in an
image data format. When performing image processing, the
CPU 102 or an image input/output unit 152 to be described
later activates a DMAC 194 to read out image data stored in
the RAM 106 and supply a digital image signal correspond-
ing to a pixel to be processed to the image processing unit
150.

[0037] The image processing unit 150 is an image data
processing apparatus which performs, for example, image
processing (for example, correction of the individual varia-
tion of the reading element of a sensor device such as a
scanner and color correction such as input gamma correc-
tion) on an input digital image signal, and generates image
data. ADMAC 196 stores the image data having undergone
the image processing by the image processing unit 150 in the
RAM 106 or the external storage device 108. Note that the
DMAC 196 is controlled as follows. For example, the CPU
102 or the image input/output unit 152 to be described later
sets in advance the operation of the DMAC 196, and the
CPU 102 activates the DMAC 196. Note that as for the
operation of the DMAC 196, for example, the operation of
writing image data after processing in the RAM 106 is set.
The image processing unit 150 executes, on an input digital
image signal, image processes for printing an image, such as
input color correction processing, spatial filtering, color
space conversion, density correction processing, and half-
tone processing. The image processing unit 150 generates
printable image data, and stores the image data in the RAM
106 via the DMAC 196.

Overall Arrangement of Apparatus

US 2018/0103174 Al

[0038] A DMAC 198 reads out image data that has under-
gone image processing and is stored in the RAM 106, and
outputs the image data to an image printing unit 170. The
image printing unit 170 is, for example, a printer. The setting
of the DMAC 198 is performed by, for example, the CPU
102. The image printing unit 170 includes a printout unit
(not shown) including an inkjet head, a thermal head, or the
like and prints an image on paper based on the digital image
signal of input image data.

[0039] Although an example has been shown here in
which the image printing unit 170 prints out the image data
of the original 110 read by the image reading unit 120, the
present invention is not limited to this. For example, by
using the video input unit 130 or the video display unit 160,
desirable image (video) processing may be performed on an
input video, and the processed video may be displayed on a
video display device (not shown) such as a display.

[0040] The CPU circuit unit 100 includes the CPU 102 for
arithmetic control, a ROM 104 that holds permanent data
and programs, the RAM 106 used to temporarily save data
and load a program, and the external storage device 108. The
CPU circuit unit 100 controls the image reading unit 120, the
image processing unit 150, and the image printing unit 170,
and performs centralized control of the sequence of the
image processing apparatus 10. The external storage device
108 is a storage medium such as a disk that stores param-
eters, programs, and correction data used in the image
processing apparatus 10. Data and programs held by the
RAM 106 may be loaded from the external storage device
108. The RAM 106 according to this embodiment performs
data transfer with the image processing unit 150 via the
DMAC:s 194 and 196. However, the storage destination of
this transfer data is not limited to the RAM 106 but may be
the external storage device 108. The storage destination of
the transfer data secured in the RAM 106 or the external
storage device 108 will be referred to as a global buffer
(external storage buffer) hereinafter. In a description below,
the global buffer is secured on the DRAM as an example of
the RAM 106, and image data is held in the global buffer.
[0041] Image Processing Unit 150

[0042] The detailed arrangement and operation of the
image processing unit 150 which executes image processing
on image data will be described with reference to FIG. 2.
FIG. 2 is a block diagram showing an example of the
arrangement of the image processing unit 150. FIG. 2 shows
the CPU 102 as a component related to the image processing
unit 150, a register I/'F 1022, the DRAM 106 serving as an
external storage device (external memory), a DRAM con-
troller 107, and the shared bus (system bus) 190. In addition,
the RDMAC 194 serving as a DMAC (Direct Memory
Access Controller) for reading out data and the WDMAC
196 for writing data are provided in order to read/write data
fronm/in the DRAM 106.

[0043] Image Processing Execution Unit 153

[0044] In the description of the overall arrangement of the
aforementioned apparatus, the exemplary function of the
image processing unit 150 which implements the image
processing of the scanner/printer has been described. An
example of image deformation will be described below.
[0045] The image processing unit 150 includes a control
sequencer 154, the image processing execution unit 153, and
a cache unit 180. The CPU 102 performs in advance a
predetermined register setting on the components of the
image processing unit 150 via the register I/'F 1022. Not the

Apr. 12,2018

image processing of the scanner/printer but image deforma-
tion is implemented by, for example, disconnecting an input
from the RDMAC 194 (reference numeral 1941 of FIG. 2),
generating a pixel by a pixel generation unit 1531 to be
described later, and inputting the pixel in a coordinate
transformation unit 1532. Note that the input from the
RDMAC 194 and the pixel generation unit 1531 may be
connected, the value of the input pixel may or may not be
modified by the pixel generation unit 1531, and the value
may be output to the coordinate transformation unit 1532.
[0046] The CPU 102 activates the control sequencer 154
via the register I/F 1022 to give an instruction to start image
processing. The control sequencer 154 controls the image
processing execution unit 153 and the cache unit 180.
[0047] First, the pixel generation unit 1531 of the image
processing execution unit 153 is activated upon receiving
the instruction from the control sequencer 154 and generates
the pixels of a partial image in accordance with a predeter-
mined register value. The pixel generation unit 1531 gen-
erates the pixels of the partial image by, for example,
dividing the overall of one image data 300 on a tile basis as
shown in FIGS. 3A to 3D. The pixel generation unit 1531
also generates pixels by scanning the respective tile areas in
an order shown in FIG. 3E. In FIG. 3E, for example, the tile
area of 8 pixelsx8 pixels is zigzag-scanned in the order of an
arrow, generating the pixels of the partial image. At this
time, the coordinates of the pixels generated by scanning in
an entire image are calculated from the positions (coordi-
nates) of the tile areas in a coordinate system defined for the
entire image and the positions (coordinates) of pixels to be
scanned in a coordinate system defined for the tile areas.
Note that the size of each tile area may not be 8 pixelsx8
pixels, and a length TL and height TH of the tile area may
be the arbitrary numbers of pixels.

[0048] Referring back to FIG. 2, a pixel with a coordinate
value generated by the pixel generation unit 1531 is input to
the coordinate transformation unit 1532 and undergoes
coordinate transformation by the coordinate transformation
unit 1532. For example, when a coordinate transformation
scheme uses affine transformation, a parameter for affine
transformation is set in advance in the register of the
coordinate transformation unit 1532. The coordinate trans-
formation unit 1532 calculates a coordinate value after
coordinate transformation in accordance with a set param-
eter value and outputs the obtained value to an address
generation unit 1533. Note that the coordinate transforma-
tion scheme may be a coordinate transformation method
such as UV mapping in a rendering field.

[0049] Based on the first address of the global buffer area
of the DRAM 106 where image data is stored, an image
format to be described later, and the coordinate value after
coordinate transformation calculated by the coordinate
transformation unit 1532, the address generation unit 1533
calculates the address of the global buffer area. At this time,
based on an integer part of the coordinate value after
coordinate transformation and a transfer length from the
DRAM 106 to be described later, the address generation unit
1533 calculates an address, the position of a pixel in one
transfer length, and a fraction part of the coordinate value.
The address generation unit 1533 stores, in an intermediate
queue (FIFO) 1534, the position of the pixel and the fraction
part of the coordinate value. Stored information is used in a
pixel sampling unit 1535 and pixel interpolation unit 1536 to
be described later. An address calculated by the address

US 2018/0103174 Al

generation unit 1533 is input to the cache unit 180 via an I/F
181. The function and operation of the cache unit 180 will
be described later. The image processing execution unit 153
reads out needed target data (an image, video, setting value,
table, attribute information, and the like) from the DRAM
106 via the cache unit 180 and uses them for data processing.
[0050] The pixel sampling unit 1535 fetches information
held by the intermediate queue (FIFO) 1534 and waits until
image data for pixel interpolation arrives from a cache unit
I/F 189. Upon the arrival of the image data for pixel
interpolation, based on the position of a pixel in data of one
transfer length fetched from the intermediate queue (FIFO)
1534, the pixel sampling unit 1535 extracts a plurality of
pixel values needed for pixel interpolation from the image
data. The pixel sampling unit 1535 outputs, to the pixel
interpolation unit 1536, a fraction part of a coordinate value
fetched from the intermediate queue (FIFO) 1534 and the
pixel values for pixel interpolation extracted from the image
data. The pixel interpolation unit 1536 performs predeter-
mined filter calculation based on the pixel values for pixel
interpolation and the fraction part of the coordinate value,
calculates pixel values after interpolation, and outputs them
to a pixel combining unit 1537. In the first mode, the pixel
combining unit 1537 combines a plurality of images and
writes a pixel value after combination in the DRAM 106 via
the WDMAC 196. In the second mode, the pixel combining
unit 1537 does not combine the plurality of images and
outputs the pixel values after interpolation by the pixel
interpolation unit 1536 without any change to handle defor-
mation in one image. In this embodiment, the pixel com-
bining unit 1537 operates in accordance with the second
mode. At the time of output, the pixel combining unit 1537
packs the plurality of pixel values until image data on a
processing result becomes the size of the transfer length of
the DRAM 106 and sends them to the WDMAC 196 once
the data reaches the size of the transfer length. Note that
concerning the combination of a plurality of images, a
concrete function will be described in another embodiment
to be described later.

[0051] Cache Unit 180

[0052] The operation of the cache unit 180 will be
described in detail. If desirable data exists (cache hit) in the
cache unit 180, there is no need to access (data request) to
the DRAM 106, lowering an access latency. On the other
hand, if the desirable data does not exist (cache miss) in the
cache unit 180, access (data request) to the DRAM 106 is
gained for the desirable data. At this time, the access latency
is the same as in a case without any cache device. In general,
each of the processor and data processing circuit processes
data sequentially, and thus pauses until the desirable data is
read out from the DRAM at the time of a cache miss.
Processing performance of the processor and data process-
ing circuit degrades by this pause. Such an operation is
called a blocking operation. An action to read out data in
correspondence with the cache miss is called refill, the
readout data is called refill data, a unit read out at once is
called a refill length, and a readout period is called a refill
latency.

[0053] When reading out data from the DRAM 106 via the
cache unit 180, the image processing execution unit 153
provides the storage address of data on the DRAM 106 for
a cache determination unit 182 via the I/F 181. Then, the
cache determination unit 182 determines a cache hit or cache
miss based on the provided address.

Apr. 12,2018

[0054] (Cache Determination Unit 182)

[0055] An example of the circuit arrangement of the cache
determination unit 182 will be described in detail with
reference to FIG. 4. The association (line selection) method
of the cache unit 180 is a full associative method.

[0056] An address register 1821 holds the address input to
the cache determination unit 182. The cache determination
unit 182 holds eight cache tags 1822, and a cache device of
an 8-node full associative method is implemented. Numbers
[0] to [7] are allocated in advance to the eight cache tags
1822. Each of these numbers indicates the “relative” cache
line number of a corresponding cache memory. The reason
that the number is “relative” will be described later. Eight
comparators 1823 determine “matches™ between the input
address of the address register 1821 and the eight cache tags
1822. Eight comparison results 1824 from the comparators
1823 are output to a determiner 1825.

[0057] The determiner 1825 determines a cache hit if there
is even one “match” out of the eight comparison results
1824. The determiner 1825 determines a cache miss if there
exists no “match” in the eight comparison results 1824. A
determination result 1829 includes a cache miss flag 1828
and is output from the cache determination unit 182. If the
cache miss flag 1828 of the determination result 1829
indicates the cache hit, the determination result 1829
includes a “relative” line number 1827 of the “matched”
cache tag.

[0058] If the cache miss flag 1828 of the determination
result 1829 indicates the cache miss (YES in a branch 1826),
the cache tags 1822 are updated by writing the input address
in them. Each cache tag 1822 is a storage area formed by a
shift register. If the cache miss flag 1828 indicates the cache
miss, the values of upstream cache tags move to downstream
cache tags by a shift operation. That is, the value of the cache
tag [1] is written in the cache tag [0], and the value of the
cache tag [2] is written in the cache tag [1], respectively.
Writing is repeated in the same manner, and the value of the
cache tag [7] is written in the cache tag [6]. Then, the value
of the input address is finally written in the cache tag [7]. If
the cache miss flag 1828 indicates the cache miss, the cache
tags are updated as described above, and the value of the line
[7] is output from the cache determination unit 182 as the
line number 1827.

[0059] A cache tag replacement method of discarding tag
information of the old cache tag [0] definitely as described
above is called a “FIFO method (round robin method)”. In
the cache device of the full associative method, the device
can be implemented easily, and thus the “FIFO method
(round robin method)” is often adopted as the replacement
method.

[0060] The cache determination unit 182 adds the input
address to the determination result 1829 which includes the
cache miss flag 1828 and line number 1827 obtained as
described above, and outputs it to an access arbitration unit
184 as a cache determination result.

[0061] Referring back to FIG. 2, the image processing
apparatus 10 according to this embodiment adopts a non-
blocking cache mechanism in order to conceal a refill
latency as a penalty at the time of a cache miss. In this cache
mechanism, information “line number and cache miss flag”
to be needed later is saved in an intermediate queue (FIFO)
187 even if the cache determination result indicates the
cache miss. Then, cache determination processing for next
data is performed in advance before the completion of a

US 2018/0103174 Al

process of reading out cache data on the cache miss from the
DRAM 106 and storing it in a cache memory 188. By
performing such a process, it is also possible to perform
cache determination processing for subsequent data while
the cache data on the cache miss is refilled from the DRAM
106 to the cache memory 188. Therefore, it becomes pos-
sible to suppress performance degradation at the time of a
cache miss.

[0062] Note that the access arbitration unit 184 fetches
input addresses from the cache determination result at the
time of a cache miss and sequentially stores them in a
transmission unit (FIFO) 185. The DRAM controller 107
receives the input addresses from the transmission unit
(FIFO) 185, reads out desirable data (refill data) from the
DRAM 106, and writes it in the cache memory 188. A data
acquisition unit 186 fetches a “cache miss flag” from the
intermediate queue (FIFO) 187 and specifies whether a
cache determination result is a cache miss or a cache hit.
When the cache determination result is the cache hit, the
data acquisition unit 186 reads out cache data from the cache
memory 188 directly and sends it to the /F 189. On the other
hand, when the cache determination result is the cache miss,
the data acquisition unit 186 updates the cache data and
sends the updated cache data to the I/F 189. Such a series of
processes, that is, a process of reading out the cache data of
the cache miss from the DRAM 106 and updating the cache
memory 188 is the aforementioned refill.

[0063] (Access Arbitration Unit 184)

[0064] The access arbitration unit 184 operates when an
input cache determination result is valid and waits at other
times. The access arbitration unit 184 performs the follow-
ing processing in accordance with whether a “cache miss
flag” included in the cache determination result is valid/
invalid.

[0065] When the “cache miss flag” included in the cache
determination result is valid (cache miss), the access arbi-
tration unit 184 first evaluates whether the storage areas of
the connected transmission unit (FIFO) 185 and intermedi-
ate queue (FIFO) 187 are free. The access arbitration unit
184 evaluates the state of a prefetch permission signal 1862
from the data acquisition unit 186. If there are free areas in
two FIFOs, and the state of the prefetch permission signal
1862 is “permission”, the access arbitration unit 184 writes
“line number and cache miss flag” in the intermediate queue
(FIFO) 187. The access arbitration unit 184 also writes an
address in the transmission unit (FIFO) 185 concurrently. If
there is no free area in two FIFOs, or the state of the prefetch
permission signal 1862 is not “permission”, the access
arbitration unit 184 stops (stalls) the cache determination
unit 182. Then, the access arbitration unit 184 waits until the
storage areas of two FIFOs become free, and the state of the
prefetch permission signal 1862 is set “permission”.

[0066] When the “cache miss flag” included in the cache
determination result is invalid (cache hit), the access arbi-
tration unit 184 evaluates whether the intermediate queue
(FIFO) 187 is free. If the storage area is free, the access
arbitration unit 184 writes “line number and cache miss flag”
in the intermediate queue (FIFO) 187. If the storage area is
not free, the access arbitration unit 184 stops (stalls) the
cache determination unit 182 and waits until the storage area
becomes free. In this embodiment, the number of nodes of
the cache tags in the full associative method is eight for the

Apr. 12,2018

sake of descriptive simplicity. However, the number of
nodes is not limited to this and in an example, the larger
number is more desirable.

[0067] Note that the cache determination unit 182 and the
access arbitration unit 184 form a prefetch unit (apparatus/
circuit/logic) corresponding to the data acquisition unit 186
to be described below. The cache determination unit 182 and
the access arbitration unit 184 are linked to a pipeline stage
preceding a predetermined pipeline stage that needs data. In
that sense, it can be said that preprocessing for the prede-
termined pipeline stage is performed.

[0068] (Data Acquisition Unit 186)

[0069] The operation of the data acquisition unit 186 will
be described in detail with reference to FIGS. 5A to 5C. As
shown in FIG. 5A, the cache memory 188 logically includes
a “data area” and “reception area, and is physically imple-
mented by a plurality (a plurality of banks) of SRAMs. The
data acquisition unit 186 contains information for managing
the reception area (reception pointer) and information for
managing the data area (data pointer).

[0070] FIG. 5B shows an example of a cache data acqui-
sition operation by the data acquisition unit 186. The data
acquisition unit 186 evaluates whether there is data to be
processed in the storage area of the intermediate queue
(FIFO) 187. The data acquisition unit 186 waits because
there is no cache determination result to be processed if the
intermediate queue (FIFO) 187 is free. The data acquisition
unit 186 fetches, from the intermediate queue (FIFO) 187,
the cache determination result to be processed, that is, “line
number and cache miss flag” (step S305). The data acqui-
sition unit 186 performs a next cache data acquisition
operation in accordance with the value of the cache miss flag
as the determination result.

[0071] When the cache miss flag is invalid (cache hit), the
data acquisition unit 186 fetches, from the intermediate
queue (FIFO) 187, a line number, and the reception pointer
and data pointer of the cache memory 188. Based on fetched
information, the data acquisition unit 186 calculates a stor-
age address on the cache memory 188. Based on the
calculated storage address, the data acquisition unit 186
reads out stored data from the cache memory 188 as read
data 1884 (step S360). The data acquisition unit 186 sends
requested cache data to the image processing execution unit
153 via the I/F 189 (step S365).

[0072] When the cache miss flag is valid (cache miss), the
data acquisition unit 186 checks a difference between the
reception pointer and the data pointer (step S340). When
there is no difference (0) between the both pointers (NO in
step S340), the data acquisition unit 186 evaluates that refill
data requested from the DRAM 106 does not arrive at the
cache memory 188 and waits until the refill data arrives (step
S345). If there is the difference (value other than 0) between
the both pointers (YES in step S340), the data acquisition
unit 186 determines that the refill data requested from the
DRAM 106 has already been stored in the cache memory
188 and updates the data pointer (step S350). The remaining
procedure is the same as a procedure when the above-
described cache miss flag is invalid (cache hit).

[0073] The data acquisition unit 186 performs a refill data
reception operation in parallel with the aforementioned
cache data acquisition operation. FIG. 5C shows an example
of the refill data reception operation of the data acquisition
unit 186. If requested refill data arrives at the data acquisi-
tion unit 186 from the DRAM 106 (YES in step S380), the

US 2018/0103174 Al

data acquisition unit 186 updates the reception pointer (step
S385). The data acquisition unit 186 checks the difference
between the reception pointer and the data pointer (step
S390). If the difference between the both pointers is equal in
number to a predetermined reception threshold (YES in step
S390), the refill data cannot be received any more, and thus
the data acquisition unit 186 sets the prefetch permission
signal 1862 “prohibition” (step S394). If the difference
between the both pointers is smaller than the reception
threshold (NO in step S390), the refill data can be received
from the DRAM 106, and thus the data acquisition unit 186
keeps the prefetch permission signal 1862 “permission”
(step S392). In circuit implementation, the access arbitration
unit 184 is preceded by the data acquisition unit 186.
Therefore, in some cases, it is late even if the access
arbitration unit 184 stops access (data request) to the DRAM
106 after receiving the prefetch permission signal 1862 from
the data acquisition unit 186. Considering such a difference
in latency made by a circuit positional relationship, the
above-described reception threshold may be set smaller than
the number of reception stages that can be stored. Alterna-
tively, as a stricter method, the number of waits for refill may
be defined newly, and the prefetch permission signal 1862
may be generated using the number of waits for refill. The
number of waits for refill starts from 0, 1 is added for each
cache miss in the access arbitration unit 184, and 1 is
subtracted each time refill data arrives at the data acquisition
unit 186. That is, the number of waits for refill represents the
number of refill data that has not reached a fetch unit yet
although the data request is made. The total value of the
received number of refill data (the difference between the
reception pointer and the data pointer) and the number of
waits for refill becomes the number of refill data to be
received in the future. If the number of refill data to be
received in the future is smaller than the reception threshold,
the prefetch permission signal 1862 is set “permission”. If
the number to be received in the future is equal in number
to the reception threshold, the prefetch permission signal
1862 is set “prohibition”. At this time, the number to be
received in the future and the reception threshold have the
same value, making it impossible to receive the refill data
any more. Therefore, the data acquisition unit 186 sets the
prefetch permission signal 1862 “prohibition”, notifies the
access arbitration unit 184 of this, and temporarily stops
non-blocking access. The prefetch unit stops a data request
to an external memory.

[0074] The data acquisition unit 186 forms a fetch unit
(apparatus/circuit/logic) that acquires the requested data.
The data acquisition unit 186 supplies the acquired data to
the predetermined pipeline stage.

[0075] The cache unit 180 according to this embodiment
implements the cache device of the full associative method
which performs a non-blocking operation with an extremely
simple mechanism. This embodiment is characterized by
allocating part of the cache memory 188 to the reception
area, and data reception and data holding are synthesized in
one storage area. [t becomes possible, by integrating a data
reception area and a data holding area on the cache memory
188, to change a capacity flexibly, and to implement an
appropriate arrangement change according to various opera-
tions in image processing. The replacement method of the
FIFO method (round robin method) generally adopted in the
cache device of the full associative method and usage of the
cache memory 188 of this embodiment match. Accordingly,

Apr. 12,2018

no problem particularly occurs in implementing the cache
device of the full associative method.

[0076] Transfer Length

[0077] A transfer length when a 128-bit bus (16 Bytes) is
adopted as an example of the shared bus 190 will be
described with reference to FIG. 6A. As described above, the
operating frequency of a DRAM standard doubles. As a
result, it is impossible to conceal an overhead increased by
switching of read and write or a bank conflict and maintain
the performance (effective value) of the DRAM unless the
transfer length per memory access is increased. For
example, when image data is read out from the DRAM 106
in 16-Byte (1-beat or single) transfer for the shared bus 190
of the 128-bit (16-Byte) bus, the performance (effective
value) of the DRAM degrades extremely. On the other hand,
if continuous (burst) transfers of several to several tens of
times are set as a unit per memory access, degradation in
performance (effective value) of the DRAM can be allevi-
ated. Therefore, an image processing apparatus capable of
changing the transfer length in accordance with the DRAM
standard or the operation mode of image processing is
desirable. For example, FIG. 6A shows 64-Byte (4-beat)
transfer, 80-Byte (5-beat) transfer, 128-Byte (8-beat) trans-
fer, 160-Byte (10-beat) transfer, 192-Byte (12-beat) transfer,
and 256-Byte (16-beat) transfer. The image processing appa-
ratus 10 may change the transfer length among them. Note
that 128-bit (16-Byte) bus in one transfer length and one-
cycle transfer will be referred to as one packet (1 beat).
[0078] Image Format (8-Bit Raster)

[0079] The structure of image data in this embodiment
will be described in detail. In this embodiment, the image
data is temporarily stored in an external storage area (global
buffer) in the DRAM 106 serving as an external memory.
Therefore, the image data is handled using, as a unit, the
above-described transfer length that allows the DRAM 106
to read/write without degrading its performance.

[0080] For example, FIG. 6B shows image data stored in
the DRAM 106 as a raster luminance (mono) of an 8-bit
format. Luminance (mono) data “Y” of an 8-bit format is
packed in a 16-Byte (1-beat) unit. [0, O] to [15, 0] in FIG. 6B
represent [main scanning coordinate, sub scanning coordi-
nate], and 16 pixels (pixel segments or pixel fragments) are
packed in the 16-Byte (1-beat) unit. Therefore, when a
transfer length is, for example, 256 Bytes (16 beats), lumi-
nance (mono) data of 256 pixels (pixel group) in the range
of coordinates [0, 0] to [255, 0] is read/written per memory
access. In the following description, the term “pixel seg-
ment” and the term “pixel fragment” are used as a synonym.
[0081] In the case of an image data format for packing
luminance (mono) data “Y” of a 16-bit format, 8 pixels
(pixel segments or pixel fragments) are packed in the
16-Byte (1-beat) unit as shown in FIG. 6C. Therefore, when
the transfer length is, for example, 256 Bytes (16 beats),
luminance (mono) data of 128 pixels (pixel group) in the
range of coordinates [0, O] to [127, 0] is read/written per
memory access.

[0082] Readout of Pixel Value

[0083] In this embodiment, an image is divided into areas
in a tile (block) unit, and image processing is performed on
each area obtained as a result of the division. FIG. 7 is a view
showing an example of image processing. Partial images are
extracted from the entire image in the tile (block) unit. As
shown in FIG. 7, the pixel generation unit 1531 selects and
sequentially processes the pixels of the partial images in a

US 2018/0103174 Al

tile scan order (tile processing). Each pixel selected at this
time is the pixel after deformation and has a pixel position
(coordinate) after deformation. The coordinate transforma-
tion unit 1532 calculates, from the pixel position (coordi-
nate) after deformation, a pixel position (coordinate) before
deformation in the matrix of affine transformation and sets
the calculated pixel position (coordinate) before deforma-
tion as the center of a pixel position (coordinate) to obtain.
This coordinate value before deformation is the coordinate
value of image data stored in the global buffer on the DRAM
106. FIG. 7 shows, for example, a point 502 at the upper left
of a tile (block) 311. In this embodiment, in order to
calculate a pixel value before deformation using a bilinear
pixel interpolation method to be described later, interpola-
tion calculation is performed on the point 502 by using pixel
values at four points in its neighborhood. It is therefore
necessary to read out, from the DRAM 106, the pixel values
at four points (a, b, ¢, d) near the point 502. The address
generation unit 1533 calculates coordinate values at the
nearby four points from a coordinate value before transfor-
mation and calculates the address value of the global buffer
on the DRAM 106 based on them. The pixel sampling unit
1535 reads out, based on the calculated address, four image
data before deformation and samples four pixel values.
[0084] Pixel Interpolation Method (Bilinear)

[0085] The pixel interpolation unit 1536 performs, on the
pixel values at the nearby four points (a, b, ¢, d) of two pixels
in a main scanning directionxtwo pixels in a sub scanning
direction, linear interpolation by using, as interpolation
coeflicients, coordinate fraction parts (Ax, Ay) of a shift
amount from the coordinate value at the point 502 (center).
The pixel interpolation unit 1536 calculates the pixel value
of the point 502 based on the result of the interpolation
(bilinear interpolation).

[0086] Detailed Cache Configuration

[0087] A cache configuration in this embodiment will be
described in detail below. A cache according to this embodi-
ment holds a pixel value by dividing image data into a
plurality of banks in accordance with the pixel interpolation
method (bilinear). This embodiment adopts a pixel value
storage method (referred to as “bank interleave™) capable of
obtaining a plurality of pixel values needed for interpolation
concurrently in one cycle. The number of banks obtained as
a result of division is calculated by an image data storage
format and a pixel interpolation method (a detail of which
will be described later). In this embodiment, an image
format is an 8-bit raster, and the pixel interpolation method
is bilinear, resulting in a four-bank configuration.

[0088] FIG. 8 is a diagram showing a detailed cache
configuration for the number of banks. There exist
cache units equal in number to the number of banks
indicating the number of bank divisions. The cache deter-
mination unit 182 includes a cache determination unit [0] to
a cache determination unit [B-1] in order to perform cache
determination in parallel on an address [0] to an address
[B-1], respectively, input from the I/F 181.

[0089] B cache determination results for the address [0] to
address [B-1] are transmitted to the transmission unit 185
and the intermediate queue (FIFO) 187 via the access
arbitration unit 184.

[0090] The transmission unit 185 includes B input FIFO
[0] to FIFO [B-1] that receive B cache determination results
(including addresses at the time of a cache miss) 1844. With
respect to an address determined as the cache miss out of the

Apr. 12,2018

B cache determination results 1844, the transmission unit
185 makes a data request to the shared bus 190 in order to
acquire image data from the external memory such as the
DRAM 106. The transmission unit 185 includes a serializer
1851. The serializer 1851 confirms whether the cache deter-
mination result is the cache miss sequentially from the FIFO
[0]. If the result is the cache miss, the serializer 1851 writes
an address for the data request in SerFIFO 1859 in order to
output it to the shared bus 190. The serializer 1851 repeats
the same operation from the FIFO [0] to the FIFO [B-1]. At
this time, the transmission unit 185 and the serializer 1851
receive, from the data acquisition unit 186, B prefetch
permission signals 1862 corresponding to the number
of banks. If the prefetch permission signal of a correspond-
ing bank is “prohibition”, the serializer 1851 waits without
writing the address of cache miss determination in the
SerFIFO 1859 until the permission signal becomes “permis-
sion”.

[0091] As shown in FIG. 8, the intermediate queue (FIFO)
187 includes B intermediate FIFOs [0] to [B-1]. B determi-
nation results are transmitted to the data acquisition unit 186
via the intermediate queue (FIFO) 187.

[0092] The data acquisition unit 186 includes B data
acquisitions [0] to [B-1] and performs control by receiving
a cache determination result 1872 from the B intermediate
FIFOs.

[0093] The cache memory 188 includes a plurality of local
memories [0] to [L-1] such as SRAMs. The number <[> of
local memories is decided in consideration of the image
format and the pixel interpolation method, and may be
different from the number of banks. In this embodi-
ment, the image format is the 8-bit raster, and the pixel
interpolation method is bilinear, and thus the number <[> of
local memories may be four.

[0094] The data acquisition unit 186 includes a shared
memory arbitration unit 1865. The shared memory arbitra-
tion unit 1865 obtains and arbitrates a maximum of B access
requests from the data acquisitions [0] to [B-1], and reads/
writes them from/in the local memories [0] to [L-1] to be
accessed by the cache memory 188. The shared memory
arbitration unit 1865 transmits L. read/write requests 1882 to
the L local memories [0] to [L-1]. In response to the L
read/write requests 1882, the L local memories [0] to [L-1]
return L. read/write responses 1884 to the shared memory
arbitration unit 1865. Therefore, the shared memory arbi-
tration unit 1865 can perform a maximum of [access
operations per cycle. The cache memory 188 is thus shared
by the B data acquisitions [0] to [B-1] (the cache memory
188 may be referred to as a shared memory hereinafter).
[0095] When the cache determination result of one of the
data acquisitions [0] to [B-1] is a cache hit, this data
acquisition reads out cache data from a desirable local
memory via the shared memory arbitration unit 1865 and
sends it to a data synchronization unit 1869. It is also
possible to access a plurality of local memories from one
data acquisition, and such an operation will be described
later. When access concentrates on one local memory, that
is, a conflict arises in which the plurality of data acquisitions
request access to one local memory, the shared memory
arbitration unit 1865 conducts access arbitration and issues
the read/write requests 1882 sequentially. When the access
conflict arises as described above, it is impossible to collect
B pixel values concurrently from the data acquisitions [0] to
[B-1]. Thus, the data synchronization unit 1869 waits until

US 2018/0103174 Al

the B pixel values are collected and sends data [0] to data
[B-1] to the I/F 189 when all the pixel values are collected.
Note that the operation of the data acquisition unit 186 when
the cache determination result is the cache miss will be
described later.

[0096] Bank Allocation Method of Image Data on DRAM
106
[0097] FIG. 9 is a table for explaining a storage method

and bank allocation of image data 440 on the DRAM 106.
This bank is not a physical bank of the DRAM but a logical
bank obtained by giving a numerical name to an aggregate
of pixels. The image data 440 has a size of 256M pixels in
a main scanning direction and N pixels in the sub scanning
direction. Reference numeral 441 in FIG. 9 denotes data sent
by one transfer in the aforementioned image format (8-bit
raster), that is, a transfer unit. For example, when a transfer
length is 256 Bytes (16 beats), data corresponding to one
memory access, that is, 256 pixels in the range of coordi-
nates [0, 0] to [255, 0] are held in the transfer unit 441. In
order to cope with a raster image format, it is desirable that
a bank allocation method using bank interleave switches
banks for each line in the sub scanning direction. That is, the
transfer unit 441 is set as a bank [0], a transfer unit 444 is
set as a bank [1], a transfer unit 445 is set as a bank [2], a
transfer unit 446 is set as a bank [3], and a transfer unit 447
is set as a bank [0] in FIG. 9, circulating bank numbers. In
this embodiment, it is necessary to cope with the pixel
interpolation method (bilinear). More specifically, in one
pixel interpolation operation, 2x2 pixels need to be sampled
as shown in FIG. 7. Therefore, if adjacent 2x2 pixels are
allocated to different banks, the plurality of local memories
that form the cache memory 188 do not conflict with each
other. For example, considering that the transfer unit 441 is
the bank [0], and the transfer unit 444 is the bank [1] in FIG.
9, the transfer unit 442 can be the bank [2]. The bank
numbers of the second column are thus circulated as the
bank [3], bank [0], bank [1], and bank [2] in the sub scanning
direction. As described above, in this embodiment, the
transfer length is determined, and the bank numbers are
determined in consideration of the pixel interpolation
method (bilinear) in the transfer unit, performing bank
interleave (first interleave method).

[0098] Method of Pixel Assignment to Cache Memory
(Shared Memory) 188 Formed by Plurality of Local Memo-
ries

[0099] Pixel assignment to the plurality of local memories
that form the cache memory 188 will be described with
reference to FIG. 10A. In this embodiment, the cache
memory (shared memory) 188 is formed by, for example,
four local memories. The shared bus (system bus) 190 is 128
bits (16 Bytes), and thus in this embodiment, the bus width
of one local memory is determined as 128 bits to match the
shared bus (system bus) 190. The total capacity of the cache
memory 188 becomes equal to the number of cache entriesx
the number of banksxtransfer length, and the capacity
of one local memory is obtained by dividing the total
capacity by the number <> of local memories. The bus
width of one local memory is the same as the bus width of
the shared bus 190. It is therefore possible to store 1-packet
(1-beat) data in one storage area of the local memory (one
word for the SRAM). 16 pixels (pixel segments) are stored
in the 1-packet (1-beat) data.

[0100] As shown in FIG. 10A, when data for one transfer
length is stored in the plurality of local memories, a local

Apr. 12,2018

memory to be a storage destination is switched in a 1-packet
(1-beat) unit. The respective packets of the bank [0] and
bank [2] are stored in the order of local memories [0], [1],
[2],[3], [0], The respective packets of the bank [1] and
bank [3] are stored in the order of the local memories [2],
[3], [0], [1], [2], - - - . FIG. 10A shows an example of a
storage method. However, another storage method may be
used and, for example, a plurality of packets corresponding
to a certain bank may be stored in four continuous words of
a local memory.

[0101] In contrast to bank interleave, storing the packet of
image data in a different local memory for each packet will
be referred to as packet interleave (second interleave
method). A plurality of pixel regions (pixel segments) stored
in the 1-packet (1-beat) unit are different depending on an
image format. Consequently, the packet is stored in the
different local memory for each pixel segment. Therefore,
packet interleave may be referred to as pixel interleave
(second interleave method).

[0102] In this embodiment, a bank number bk (bk=0, 1, 2,
..., B-1) and a local memory number Im (Im=0, 1, 2, . ..
, L-1) are expressed by:

bk=[(m % 2)*B/2+1] % B o)

where m is a main scanning coordinate of the transfer length,
n is a sub scanning coordinate of the transfer length, and B
is the number of banks, and

Im=[(bk % 2)*L/2+beat] % L 2

where beat is a packet number, and L is the number of local
memories.

[0103] Method of Access to DRAM 106

[0104] In the pixel interpolation method (bilinear), 2x2
pixels are sampled as shown in FIG. 7. As is apparent from
FIG. 9, 2x2 pixels are stored in different transfer lengths
(transfer units) by using a bank interleave method of this
embodiment. When pixel interpolation is performed from
four points of, for example, coordinates (0, 0), (1, 0), (0, 1),
and (1, 1), (0, 0) and (1, 0) are included in the bank [0], and
(0, 1) and (1, 1) are included in the bank [1], respectively.
When pixel interpolation is performed from four points of,
for example, coordinates (15, 0), (16, 0), (15, 1), and (16, 1),
these four points are, respectively, included in the bank [0],
the bank [2], the bank [1], and the bank [3].

[0105] In the former case, an appropriate address [0] and
address [1] are input to the cache unit 180, and an address
[2] and an address [3] are invalidated. The circuits of the
bank [0] and bank [1] in the cache unit 180 are used, and the
circuits of the bank [2] and bank [3] are not used. On the
other hand, in the latter case, the appropriate address [0] to
address [3] are input to the cache unit 180, and all the
circuits of the bank [0] to bank [3] in the cache unit 180 are
used. Following the bank interleave method according to the
image format, the address generation unit 1533 requests,
from the cache unit 180, cache data of a transfer unit in
which a desirable pixel is stored.

[0106] The cache unit 180 may return, to the image
processing execution unit 153, four cache data of the transfer
length (256 Bytes) that include 2x2 pixels. Originally, 2x2
pixels will functionally suffice if they return data for four
pixels (8x4=32 bits if one pixel is represented by 8 bits). In
the above-described arrangement, however, they return data
for 1,024 pixels (256 Bytesx4), and it is wasteful in terms of
both a circuit and power consumption. To cope with this,
data corresponding to four pixels are selected in packet units

US 2018/0103174 Al

(128 bits or 16 pixels), and selected packets are returned to
the pixel sampling unit 1535 as desirable cache data. This
makes it possible to reduce an unnecessary hardware
resource while coping with various image formats and pixel
interpolation methods in common.

[0107] Method of Access to Cache Memory (Shared
Memory) 188
[0108] Inthis embodiment, in order to prevent a conflict in

the cache memory 188, cache data of different packets in one
bank are stored in different local memories following the
packet interleave method. This operation will be described
in detail with reference to FIGS. 11A and 11B.

[0109] Data 630, 632, 634, and 636 of a transfer unit
shown in FIG. 11A, respectively, correspond to, for
example, the image data 441, 442, and 444 and image data
448 of FIG. 9. Four adjacent data are arranged in different
banks. Reference numerals 602, 604, 606, 608, 610, 612,
614, and 616 in FIG. 11A are data of a packet unit in these
four data. In this embodiment, following the image format
(8-bit raster), for example, 16 pixels of a to p are stored in
the data 614 as denoted by reference numeral 615 of FIG.
11A.

[0110] For example, as denoted by reference numeral 640
shown in FIG. 11B, a case will be considered in which 2x2
pixels which perform pixel interpolation are four pixels,
namely, the pixels n and o of the packet 602, and pixels n and
o of the packet 604. The pixels n and o of the packet 602 are
stored in the local memory [3], and the pixels n and o of the
packet 604 are stored in the local memory [1]. That is, two
local memories that need access do not conflict thanks to the
packet interleave method, allowing simultaneous access.

[0111] For example, as denoted by reference numeral 650
shown in FIG. 11B, a case will be considered in which 2x2
pixels which perform pixel interpolation are four pixels,
namely, the pixel p of the packet 602, the pixel p of the
packet 604, the pixel a of the packet 606, and the pixel a of
the packet 608. As shown in FIG. 11B, the respective pixels
are stored in the local memories [0] to [3] different from
each other.

[0112] However, following the bank interleave method
according to the image format, the address generation unit
1533 requests, from the cache unit 180, cache data of a
transfer unit in which a desirable pixel is stored. The packet
602 and the packet 606 are included in the same bank, and
thus the address generation unit 1533 only makes one access
request to the two packets. The same also applies to the
packet 604 and the packet 608.

[0113] Therefore, the shared memory arbitration unit 1865
has a function of compensating for a difference in arrange-
ment between logical image data that have undergone bank
interleave for the DRAM 106 and cache data for implemen-
tation that has undergone packet interleave for the cache
memory 188.

[0114] More specifically, when 2x2 pixels which perform
pixel interpolation cross the boundary of packet units, the
shared memory arbitration unit 1865 divides, into two, one
access request from any one of the data acquisitions and
makes the access requests to two local memories concur-
rently. The shared memory arbitration unit 1865 extracts
parts corresponding to pixels from two cache data from two
local memories and combines them into one cache data. The
shared memory arbitration unit 1865 returns the combined
data to the data acquisition of a request source.

Apr. 12,2018

[0115] With the above-described control, it becomes pos-
sible to read out, by simultaneous access, four pixels of the
packets 602, 606, 604, and 608 from four local memories
without any conflict. Note that the present invention is not
limited to a case in which 2x2 pixels which perform pixel
interpolation cross the boundary of the packet units and, for
example, the above-described control may be performed
when an address value from the address generation unit
1533 shifts by half the packet length (16 Bytes), that is, a
half packet length (8 Bytes). At this time, with respect to a
Beat [11] and Beat [12] of two cache data read out from the
local memories, the shared memory arbitration unit 1865
first extracts lower 8 Bytes of the Beat [11] and upper 8
Bytes of the Beat [12]. The shared memory arbitration unit
1865 combines both that are extracted to generate cache data
of 1-packet length and returns it to the data acquisition. If the
above-described control is performed in detail in a 1-Byte
unit, it is possible to read out, from two local memories that
have undergone packet interleave, needed cache data at
arbitrary Byte positions.

[0116] For example, as denoted by reference numeral 660
in FIG. 11B, a case will be considered in which 2x2 pixels
which perform pixel interpolation are four pixels, namely,
the pixel p of the packet 610, the pixel p of the packet 612,
the pixel a of the packet 614, and the pixel a of the packet
616. As shown in FIG. 11B, the respective pixels are stored
in the local memories [0] to [3]. The packets 610, 612, 614,
and 616 cross a bank boundary before crossing the boundary
of the packet (pixel segment) units. In this case, there are
four access requests from four data acquisitions related to
four banks. Therefore, it becomes possible, according to the
bank interleave method, to perform simultancous access
without conflicting four local memories that need access.
[0117] As described above, the image processing appara-
tus 10 according to this embodiment includes a logical bank
interleave method (first interleave method) of image data
stored in the DRAM 106. The image processing apparatus
10 further includes the packet interleave method (second
interleave method) for implementation of cache data to be
distributed and stored in the plurality of local memories. The
image processing apparatus 10 includes the shared memory
arbitration unit 1865 which compensates for the difference
in arrangement between the logical image data that have
undergone bank interleave and the cache data for imple-
mentation that has undergone packet interleave. As a result,
even in a system with a comparatively large transfer length
of DRAM access, it becomes possible to concurrently read
out arbitrary 2x2 pixels needed for the pixel interpolation
method (bilinear) from the cache memory (shared memory)
188 formed by four local memories without any conflict at
all times.

[0118] Refill at Time of Cache Miss

[0119] Refill of the cache configuration in this embodi-
ment will be described in detail below with reference to
FIGS. 8 and 12. When the cache determination result is the
cache miss, a data request is issued by a prefetch operation,
and the data acquisition unit 186 is refilled with desirable
refill data via the shared bus 190.

[0120] Upon receiving the desirable refill data, a reception
unit 1861 sends the data to the shared memory arbitration
unit 1865 and writes the refill data in the cache memory 188.
The reception unit 1861 updates the reception state of the
refill data by making a notification to one of the data
acquisitions [0] to [B-1]. With respect to the cache memory

US 2018/0103174 Al

188, cache data is read out by the B data acquisitions [0] to
[B-1] concurrently, in addition to writing these refill data.
Therefore, the cache memory 188 is formed by a two-port
SRAM capable of performing read/write operations concur-
rently. The shared memory arbitration unit 1865 makes the
read request 1882 from the B data acquisitions [0] to [B-1]
and the write request 1882 from the reception unit 1861
concurrently.

[0121] However, the two-port SRAM is generally larger in
circuit scale than a one-port SRAM capable of performing
only one of the read/write operations. It is therefore desir-
able that the cache memory 188 is formed by the one-port
SRAM, if possible. To achieve this, as shown in FIG. 12, a
control circuit 1868 is provided in the shared memory
arbitration unit 1865. The shared memory arbitration unit
1865 receives the refill data from the reception unit 1861. At
this time, refill data for one transfer length is divided into
packets for each bus width, and such packets are input to the
shared memory arbitration unit 1865 by time division. It is
therefore considered that this is performed as a write opera-
tion in the local memory for each local memory in one cycle.
The image processing apparatus 10 according to this
embodiment includes the data synchronization unit 1869,
allowing the cache device to perform a desirable operation
even if all the read requests 1882 from the B data acquisi-
tions [0] to [B-1] are not responded concurrently. However,
if even one of the B data acquisitions [0] to [B-1] does not
collect cache data, performance degrades, although slightly,
in queuing in the data synchronization unit 1869.

[0122] To cope with this, the control circuit 1868 includes
registers equal in number (L) to the local memories and a
write counter. Each register stores refill data in a packet unit.
The control circuit 1868 sequentially receives the packets of
the refill data and stores each packet received in a corre-
sponding one of the registers. The control circuit 1868
increments the write counter each time one packet is
received and does not issue write requests until write data
are collected in all the registers. Then, when the write data
are stored in all the registers, the control circuit 1868
performs the write operation on all the local memories [0] to
[L-1] concurrently in one cycle. In this method, the stop of
data acquisition by refill to the cache memory 188 is
calculated by a transfer length and the sum of the bus widths
of'the local memories. For example, when the transfer length
of the refill data is 256 -Byte transfer, and there are four
128-bit (16-Byte) local memories, a stop period per cache
miss is calculated as four cycles (=256/16/4). As a result, the
stop time of data acquisition by refill can be calculated in
advance by obtaining the percentage of the cache misses,
making it possible to predict processing performance of
overall image processing. By predicting the processing
performance, it can be decided whether to adopt the two-port
SRAM or the one-port SRAM as the local memory.

[0123] Effect of This Embodiment

[0124] As described above, the method of this embodi-
ment can suppress the performance degradation even if an
access pattern to the external memory such as the DRAM
106 changes greatly in the image processing apparatus with
the cache device. In the image processing apparatus 10
according to this embodiment, the conflict in the plurality of
local memories that form the shared memory hardly arises
even if the transfer length of data transfer increases in
accordance with the DRAM standard. It is therefore possible

Apr. 12,2018

to deform the plurality of images to make them have the
same shape and to combine the plurality of images after
deformation.

[0125] Modification

[0126] With the above described concept, it is possible to
change design easily even if the transfer length changes by
a change in DRAM standard to be used or the bus width of
the system bus changes by a change in system specification.
Even if it is necessary to optimize the transfer length of
DRAM access due to the use case of a product, an operation
can be performed without any problem in accordance with
the transfer length by changing the setting of the cache
device according to this embodiment. The number of pixels
in the packet unit does not change even if the transfer length
is changed as shown in FIG. 6A. If the storage destination
of the local memory is decided by the method of equations
(1) and (2), only the storage destination of the local memory
for each word changes, making it possible to cope with an
arbitrary transfer length.

[0127] This embodiment can suffice even in the case of an
image format other than the image format (8-bit raster) as
long as one pixel falls within the half packet length (8
Bytes). In this case, it is only necessary that an appropriate
pixel value is extracted in accordance with the image format
to be used in the pixel sampling unit 1535 of the image
processing execution unit 153 in FIG. 2.

[0128] In this embodiment, the case has been described in
which the image processing apparatus 10 includes the cache
unit. However, the present invention is not limited to this.
For example, if the capacity of the local memory is large
enough to store all image data, a cache mechanism can be
omitted as shown in FIG. 13. In that case, the cache memory
188 is treated as the shared memory formed by the plurality
of local memories.

[0129] In this embodiment, the case has basically been
described in which an image is deformed and rotated.
However, the present invention is not limited to this. For
example, two interleave methods adopted in this embodi-
ment also hold for filtering on an image other than defor-
mation and rotation. A technical idea according to this
embodiment is also applicable to a case in which filtering is
performed on an image stored in the external memory.
[0130] In this embodiment, the case has been described in
which the transfer length is 256 Bytes. However, the present
invention is not limited to this. For example, two interleave
methods adopted in this embodiment also hold in a case in
which the transfer length is 128 Bytes. In this case, a data
amount per bank stored in the local memory only decreases
as shown in FIG. 10B. That is, the technical idea according
to this embodiment is applicable to an arbitrary transfer
length. As a result, this embodiment functions more effec-
tively by selecting or switching over to an appropriate
transfer length in accordance with the contents of image
processing or a system constraint such as the DRAM stan-
dard.

Second Embodiment

[0131] In the first embodiment, the method of performing
bilinear interpolation on 2x2 pixels has been described. In
the second embodiment, a bicubic pixel interpolation
method using 4x4 pixels is used.

[0132] Pixel Interpolation Method (Bicubic)

[0133] In this embodiment, with respect to 16 points near
four pixels in a main scanning directionxfour pixels in a sub

US 2018/0103174 Al

scanning direction, an interpolation coeflicient of each pixel
value is calculated from a coordinate fraction part of a shift
amount from coordinate values at a center point, weighted
interpolation is performed, and a pixel value at the center
point is calculated (bicubic interpolation).

[0134] Image Format (10-Bit Y, Cb, and Cr Blocks)
[0135] The structure of image data in this embodiment
will be described in detail below. FIG. 14 shows image data
stored in a DRAM 106. This image data is data of 10-bit Y,
Cb, Cr block formats. 10-bit luminance data “Y”, and color
difference data “Cb” and “Cr” are packed in a 16-Byte
(1-beat) unit. At this time, the respective components (color
elements) Y, Cb, and Cr of the image data are handled with
a 10-bit length, for example, in a two-pixel unit such as (Y[O,
0], Cb[0, 0], Cr[0, 0], and Y[1, O]). Therefore, a pixel
boundary is provided in the two-pixel unit (40-bit length).
[0136] Detailed Cache Configuration

[0137] On the other hand, a bus width is 16-Byte (1-beat)
length, making it impossible to store all the pixels in the
two-pixel unit (40-bit length). Consequently, as each
hatched portion shown in FIG. 14, part of data in two-pixel
unit (40-bit length) crosses a 16-Byte boundary and is stored
in next data of a 16-Byte length. A pixel boundary of
two-pixel unit (40-bit length) and the boundary of a bus
width (16 Bytes (1 beat)) first match at 80-Byte (16 Bytesx5
beats) length of the least common multiple of a 40-bit length
and 16 Bytes=128-bit length.

[0138] [0, 0] to [7, 3] in FIG. 14 represent [main scanning
coordinate, sub scanning coordinate], and 8x4 pixels are
packed in the aforementioned 80-Byte (5-beat) unit. There-
fore, when a transfer length is, for example, 160 Bytes (10
beats), 64-pixel image data in the range of coordinates [0, 0]
to [7, 7] is read/written per memory access. A cache device
of this embodiment reads out image data from the DRAM
106 by using the 80-Byte (16 Bytesx5 beats) transfer length
as a unit.

[0139] Bank Allocation Method of Image Data on DRAM
106
[0140] A storage method and bank allocation method of

image data in the DRAM 106 are basically the same as a
method described in the first embodiment with reference to
FIG. 9. For example, if the transfer length is 80 Bytes (5
beats), 32 pixels in the range of coordinates [0, O] to [7, 3]
corresponding to one memory access are stored in a transfer
unit 441 of FIG. 9. Image data 440 of FIG. 9 has a size of
8M pixels in the main scanning direction and 4N pixels in
the sub scanning direction. For example, if the transfer
length is 160 Bytes (10 beats), 64 pixels in the range of
coordinates [0, O] to [7, 7] corresponding to one memory
access are stored in the transfer unit 441 of FIG. 9. Image
data 440 of FIG. 9 has a size of 8M pixels in the main
scanning direction and 8N pixels in the sub scanning direc-
tion.

[0141] Method of Pixel Assignment to Cache Memory
(Shared Memory) 188 Formed by Plurality of Local Memo-
ries

[0142] In a description below, the cache device of this
embodiment reads out image data from the DRAM 106 by
using 80-Byte (16 Bytesx5 beats) transfer length as a unit.
The pixel boundary of two-pixel unit (40-bit length) and the
boundary of the bus width of 16 Bytes (1 beat) do not match,
making it impossible to perform pixel assignment as in the
first embodiment in this state. To cope with this, in this
embodiment, the bit length of a local memory (such as an

Apr. 12,2018

SRAM) that forms the shared memory is adjusted not to the
bus width of 16 Bytes but to the pixel boundary. Then, a
pixel rearrangement circuit 1867 of a shared memory arbi-
tration unit 1865 in FIG. 12 performs conversion from a data
storage format on the DRAM 106 to a pixel storage format
on a cache memory.

[0143] More specifically, the bit length of the local
memory (such as the SRAM) is set not to 16 Bytes (128 bits)
but to a 160-bit length as an integer multiple of two-pixel
unit (40-bit length). Then, after a control circuit 1868
receives data of an 80-Byte (16 Bytesx5 beats) transfer
length, a pixel value is extracted by using two pixels (40-bit
length)x4 sets as a unit and packed in a 160-bit length. At
this time, considering that bicubic interpolation of 4x4
pixels is performed in this embodiment, the pixel value is
packed in the 160-bit length in the unit of 4x2 pixels. Then,
the shared memory arbitration unit 1865 writes four cache
data of a 160-bit length in four local memories [0] to [3],
respectively. The data has a transfer length of 5 beats (=80
Bytes), is divided into logical banks every 80 Bytes (=640
bits), and stored at the 160-bit length (the integer multiple of
two pixels of 40 bits) in accordance with four as the number
of local memories when stored at a transfer destination.
[0144] A bank selection method for the plurality of local
memories and a calculation method of the addresses of the
respective local memories will comply with a method used
in the packet interleave method of the first embodiment. In
the second embodiment, adjacent 4x2 pixels can be read out
from four different local memories, making it possible to
obtain adjacent 4x4 pixels for bicubic interpolation from the
shared memory (cache memory) concurrently in one cycle.
[0145] Effect of This Embodiment

[0146] In the first embodiment, packet interleave (second
interleave) for the shared memory is performed by using one
packet (1-beat data transfer) as a unit. In this embodiment,
it becomes possible, by further devising packet interleave
for the shared memory in the first embodiment, to cope with
even a case in which the boundary of transfer lengths and the
pixel boundary do not match. In this embodiment, conver-
sion is performed from an interleave method in a packet
(1-beat data transfer) unit to an interleave method in the unit
of a plurality of pixels (packet-pixel interleave conversion
(second interleave method)).

[0147] Moreover, a method according to the second
embodiment can extend not only to the 80-Byte (16 Bytesx5
beats) transfer length but also to the 160-Byte (10-beat)
transfer length by the same extension method as an exten-
sion method according to the first embodiment.

Third Embodiment

[0148] In the third embodiment, extension to a raster
image format of bicubic pixel interpolation will be
described.

[0149] Image Format (10-Bit Y, Cb, and Cr Rasters)
[0150] The structure of image data in this embodiment
will be described in detail below. FIG. 15 shows image data
stored in a DRAM 106. This image data is data in 10-bit Y,
Cb, and Cr raster formats. As in the second embodiment, a
pixel boundary is provided in a two-pixel unit (40-bit
length), and pixels are packed in the 80-Byte (5-beat) unit.
Note that the raster image format is used, and thus 32x1
pixels are stored in the 80-Byte (5-beat) unit as [0, 0] to [31,
0] in FIG. 15. For example, when a transfer length is 160

US 2018/0103174 Al

Bytes (10 beats), image data of 64 pixels in the range of
coordinates [0, O] to [63, 0] is read/written per memory
access.

[0151] Bank Allocation Method of Image Data on DRAM
106
[0152] A storage method and bank allocation method of

image data in the DRAM 106 are basically the same as a
method described in the first embodiment with reference to
FIG. 9. For example, if the transfer length is 80 Bytes (5
beats), 32 pixels in the range of coordinates [0, 0] to [31, 0]
corresponding to one memory access are stored in a transfer
unit 441 in FIG. 9. Image data 440 of FIG. 9 has a size of
32M pixels in a main scanning direction and N pixels in a
sub scanning direction. For example, if the transfer length is
160 Bytes (10 beats), 64 pixels in the range of coordinates
[0, O] to [63, 0] corresponding to one memory access are
stored in the transfer unit 441 in FIG. 9. Image data 440 of
FIG. 9 has a size of 64M pixels in the main scanning
direction and N pixels in the sub scanning direction.
[0153] Detailed Cache Configuration

[0154] In the first and second embodiments, the case has
been described in which the cache memory 188 includes
four caches (the number of banks=4). In this embodiment,
the number of banks of a cache is increased to eight in order
to perform bicubic pixel interpolation using 4x4 pixels on a
raster image with a throughput of one pixel/one cycle.
Basically, as in the second embodiment, the number of local
memories (such as SRAMs) of a 160-bit length can be
increased to eight. For bicubic pixel interpolation, desirable
performance can be achieved if four pixels in the main
scanning direction can be obtained concurrently from one
local memory. Therefore, eight local memories (such as the
SRAMs) of an 80-bit length are provided. The number of
words of the local memories (such as the SRAMs) is
doubled in order to make the capacities of the local memo-
ries equal. In general, a circuit scale is smaller by being
formed with a 160-bit length than by being formed with an
80-bit length also in the SRAM of the same capacity, making
it possible to suppress a circuit scale of an overall apparatus.
[0155] Method of Pixel Assignment to Cache Memory
(Shared Memory) 188 Formed by Plurality of Local Memo-
ries

[0156] As in the second embodiment, a pixel rearrange-
ment circuit 1867 of a shared memory arbitration unit 1865
described in FIG. 12 compensates for a difference between
the bus width of 16 Bytes (1 beat) and the bit length of the
local memory (such as the SRAM) that forms the cache
memory 188.

[0157] More specifically, after data of an 80-Byte (16
Bytesx5 beats) transfer length is received in refill corre-
sponding to one cache miss, the shared memory arbitration
unit 1865 extracts a pixel value assuming that 2 pixels
(40-bit length)x2 sets and packs it in an 80-bit length. The
shared memory arbitration unit 1865 writes eight sets of data
of an 80-bit length in eight local memories [0] to [7],
respectively.

[0158] A bank selection method for the plurality of local
memories and a calculation method of the addresses of the
respective local memories can be decided by extending a
method used in the packet interleave method of the first
embodiment to eight banks. Pixel segments (4x1 pixels) for
four lines in the sub scanning direction need to be obtained
concurrently, assigning the pixel segments of these four lines
to four different banks. Two adjacent pixel segments (4x1

Apr. 12,2018

pixels) are assigned to two different banks in the main
scanning direction. As a result, adjacent 2x4 sets of pixel
segments (4x1 pixels) can be read out from eight different
local memories, making it possible to obtain adjacent 4x4
pixels for bicubic interpolation from the shared memory
(cache memory) 188 concurrently in one cycle. Based on the
first and second embodiments, a cache unit of four-bank
configuration can be extended to a cache unit of eight-bank
configuration.

[0159] Effect of This Embodiment

[0160] With the above-described method, it is possible to
implement deformation/rotation processing using bicubic
pixel interpolation of a raster image. An increase in circuit
scale is suppressed by controlling the bit lengths of the
plurality of local memories that form the shared memory to
be smaller than 1 packet (1-beat data transfer) in contrast to
an increase in the number of banks of the cache unit.

Fourth Embodiment

[0161] In the above-described embodiments, the cache
device capable of changing the transfer length and the
number of banks of image data in the raster image format or
block image format has been described. The problem of the
above-described embodiments is that the images are com-
bined while synchronizing the plurality of image data by
rotating or deforming them. In particular, if image data of a
raster image format is rotated or deformed, the following
problem may arise depending on a refill transfer length with
respect to a cache miss.

[0162] Inimage data of a raster image format as shown in
FIGS. 6B, 6C, or 15, pixels are arranged in the main
scanning direction of an image. For example, in luminance
(mono) data of an 8-bit raster image format shown in FIG.
6B, 16 pixels are packed in a 16-Byte (1-beat) unit. Accord-
ingly, 128-pixel data can be read/written if a transfer length
is 128 Bytes (8 beats), and 256-pixel data is read/written if
a transfer length is 256 Bytes (16 beats).

[0163] A case will be considered in which the size of a tile
area is 64x64 pixels in image processing of tile scan as
shown in FIG. 7. The first tile area is [0, 0] to [63, 63], the
second tile area is [64, 0] to [127, 63], and the third tile area
is [128, 0] to [191, 63], and tile processing is performed on
these tile areas.

[0164] For example, tile processing when the image is not
rotated (rotation angle=0°) will be as follows. First, an
image processing apparatus reads out the pixels of [0, 0] to
[255, 0] from a DRAM via a cache device with the transfer
length of 256 Bytes (16 beats). As tile scan progresses, the
image processing apparatus sequentially reads out, in a sub
scanning direction, the needed pixels of [0, 1] to [255, 1] and
[0, 2] to [255, 2]. The image processing apparatus finally
reads out the pixels of [0, 0] to [255, 63] and processes the
first tile area of [0, 0] to [63, 63].

[0165] Then, the image processing apparatus processes the
second tile area of [64, 0] to [127, 63]. However, the needed
pixels have already been stored in a cache memory, and thus
the image processing apparatus processes the second tile
area without reading out a new pixel from the DRAM. Note
that the image processing apparatus performs the same
operation up to the fourth tile area and reads out the pixels
of [256, 0] to [511, O] from the DRAM with a cache miss in
the fifth tile area. As described above, without rotating the
image, all the pixels stored in the cache memory can be used

US 2018/0103174 Al

for the image processing even if the transfer length is large,
bringing about good efficiency.

[0166] On the other hand, tile processing when the image
is rotated through 90° will be as follows. First, the image
processing apparatus reads out the pixels of [0, 0] to [0, 255]
from the DRAM via the cache device with the transfer
length of 256 Bytes (16 beats). As tile scan progresses, the
image processing apparatus sequentially reads out, in a main
scanning direction, the needed pixels of [1, 0] to [1, 255] and
[2, O] to [2, 255]. The image processing apparatus finally
reads out the pixels of [0, 0] to [63, 255] and processes the
first tile area of [0, 0] to [63, 63].

[0167] Then, the image processing apparatus processes the
second tile area of [64, 0] to [127, 63]. However, all the
pixels stored in the cache memory cannot be used, and thus
the image processing apparatus needs to newly read out the
pixels of [64, 0] to [127, 255] from the DRAM. The image
processing apparatus sequentially performs tile processing
on the tile areas and reads out the pixels with a cache miss
each time the tile area advances in the main scanning
direction. The size of the tile area at this time is 64x64
pixels, and thus the pixels of [0, 0] to [0, 63] are used, but
the pixels of [0, 64] to [0, 255] are discarded without being
used even if they are read out from the DRAM.

[0168] Therefore, in this embodiment, the transfer length
of the cache device is decreased in accordance with the size
of the tile area when a raster image is rotated through 90°.
If the size of the tile area is 64x64 pixels, the transfer length
of'the cache device is 64-Byte (4-beat) transfer, and 64-pixel
image data is read out per refill. As a result, the number of
pixels temporarily stored in the cache memory is controlled
by changing the transfer length of the cache device so as to
reduce the pixels ([0, 64] to [0, 255]) to be only discarded
without being used as described above.

[0169] The control of 90-degree rotation has been
described above. It is desirable, however, that an appropriate
transfer length is selected in accordance with a clockwise
rotation angle (degree of rotation). Assume that, for
example, the maximum transfer length is 256 Bytes (16
beats), and the maximum number of transfer pixels is 256
pixels at the time of the above-described image format.
Then, from a height TH of the tile area and a rotation angle
0, the number TP of pixels is calculated by:

number 7P of pixels=height 7H of tile area/sin@ 3)

where TH is the height of the tile area, and 0 is the clockwise
rotation angle. Then, a transfer length that exceeds the
number TP of pixels and is smaller than the maximum
number of transfer pixels of 256 can be selected.

[0170] Giving an example, when the height of the tile area
is 64 pixels, and the rotation angle is 30°, the number TP of
pixels is 128 pixels, and this number of pixels is smaller than
the maximum number of transfer pixels of 256. Therefore,
the transfer length can be 128 Bytes (8 beats) capable of
transfer 128 pixels.

[0171] Effect of This Embodiment

[0172] According to this embodiment, it is possible, by
selecting the appropriate transfer length in accordance with
the rotation angle, to suppress unnecessary readout of the
pixels that are not used in image processing. As a result, it
is possible to optimize memory access to an external
memory and to improve an access band (memory band) to
the external memory.

Apr. 12,2018

Fifth Embodiment

[0173] In the fifth embodiment, image processing for each
band area of image data when one-dimensional division is
adopted as an area division method of the image data will be
described with reference to FIGS. 16A to 16L and 17.
[0174] Band Processing

[0175] One-dimensional division of the image data is
adopted as the area division method of the image data in this
embodiment. Band processing as processing for each band
area obtained by one-dimensional division will be described
below.

[0176] Inband processing, as shown in FIGS. 16 A to 16D,
one image data 300 is divided into belt-shaped band areas
301 to 304, and image processing is performed successively
for each of these areas. Each band area is a divided long,
narrow area. Hach band area is obtained by dividing the
image data in one of a main scanning direction and a sub
scanning direction, and thus the band area and the image
data match in length in one of the main scanning direction
and the sub scanning direction. In an example of FIG. 16A,
the image data is divided in the sub scanning direction, and
the image data and each band area have the same length in
the main scanning direction and have different lengths in the
sub scanning direction. A storage area where each band area
is expanded will be referred to as a band memory, and an
action to divide the image data will be referred to as band
division, hereinafter. The band memory can be secured in an
appropriate storage area on a system. For the sake of
descriptive simplicity, however, the band memory is secured
as a storage area (global buffer) in a DRAM 106 here.
[0177] As shown in FIG. 16E, the coordinate system
(main scanning direction-sub scanning direction) of the
image data is defined by a coordinate system (band area
coordinate system) in a lengthwise direction and height
direction, and the band area is expressed by a length
Bdlxheight Bdh, hereinafter. The length Bdl of the band
area, that is, the size of a side of the band area in the
lengthwise direction is a value of one of the length of the
image data in the main scanning direction and the length in
the sub scanning direction. The height Bdh of the band area,
that is, the size of a side of the band area in the height
direction is an arbitrary value. In examples of FIGS. 16A to
16D, the lengthwise direction is the main scanning direction,
and the height direction is the sub scanning direction. In
contrast, if the image data is divided in the main scanning
direction as shown in FIGS. 16I to 16K, the lengthwise
direction is the sub scanning direction, and the height
direction is the main scanning direction as shown in FIG.
16L. Band division shown in FIGS. 16I to 16K may be
performed in a case in which, for example, the size of the
image data in the main scanning direction is larger than in
the sub scanning direction.

[0178] In band processing shown in FIGS. 16A to 16D,
first, the first band area 301 is expanded in the band memory
on the DRAM 106 and undergoes image processing. Then,
the second band area 302 is overwritten and expanded in the
band memory on the DRAM 106 where the first band area
301 is expanded, and undergoes image processing. Subse-
quently, the third band area 303 is overwritten and expanded
in the band memory on the DRAM 106 where the second
band area 302 is expanded, and undergoes image processing.
Finally, the fourth band area 304 is overwritten and
expanded in the band memory on the DRAM 106 where the
third band area 303 is expanded, and undergoes image

US 2018/0103174 Al

processing. As seen in FIGS. 16 A to 16D, the band areas 301
to 304 have the same length but may not have the same
height. Therefore, the height of the band memory is decided
in accordance with the band area (the band areas 301 to 303
in FIGS. 16A to 16D) having the largest side in the height
direction.

[0179] Note that in band processing of this embodiment,
each band area is set so as to partially overlap the adjacent
band area as shown in FIGS. 16F to 16H in order to perform
local (neighborhood) image processing such as spatial fil-
tering without any gap between the band areas.

[0180] Input/Output of Image Data

[0181] Input/output of image data, that is, transfer pro-
cessing of image data from the DRAM 106 to an image
input/output unit 152 or from the image input/output unit
152 to the DRAM 106 in this embodiment will be described
in detail below with reference to FIG. 17. An image pro-
cessing apparatus of this embodiment extracts the band area
301 (width Bdlxheight Bdh) from one image data 300 and
stores it in the DRAM 106 as input image data. As described
with reference to FIG. 9, the input image data of this band
area has a data structure using a predetermined transfer
length as a unit to be handled easily in the DRAM 106.
[0182] A DMAC 194 is activated in FIG. 17. The DMAC
194 reads out, from the DRAM 106, input image data 210
of this band area via a shared bus 190 shown in FIG. 1 and
inputs it to an image processing unit 150. According to the
above-described data structure, the input image data 210 is
divided into M pixel regions (small regions) from a region
(1) 211 to a region (M) 219 in the processing unit of width
32 Bytesxheight Bdh_in. Then, the DMAC 194 sequentially
reads out input image data of these M small regions from the
small region (1) 211 to the small region (M) 219 and inputs
them to the image processing unit 150. The image process-
ing unit 150 receives the input image data of these small
regions and performs image processing for each of these
small regions.

[0183] The input image data is input to a pixel generation
unit 1531 by switching a switch 1941 of FIG. 2. The pixel
generation unit 1531 according to this embodiment converts
the pixel value of the input image data into the coordinate
value of the image data and outputs it to a coordinate
transformation unit 1532. Note that deformation/rotation
processing from the coordinate transformation unit 1532 is
the same as in the first embodiment.

[0184] While receiving the input image data from the
DMAC 194, an image input unit 1521 of the image input/
output unit 152 transfers the data to an intermediate buffer
control unit 1522. The intermediate buffer control unit 1522
includes an intermediate buffer arbitration circuit 230 and an
intermediate buffer 232. In this embodiment, the area of the
intermediate buffer is allocated to part of the shared memory
(a plurality of local memories) as shown in FIG. 17. The
intermediate buffer 232 is made of an input area 234 as an
area for storing the input image data and an output area 236
as an area for storing output image data to be described later.
[0185] A CPU 102 determines a transfer length based on
a deformation mode, a deformation amount, a rotation angle,
an image format, a pixel interpolation format, or the like and
allocates the area of a cache memory to the shared memory.
Then, the CPU 102 allocates the input area and output area
of the intermediate buffer 232 in accordance with the
remaining capacity of a shared memory area. More specifi-
cally, the CPU 102 decides an input band height Bdh_in and

Apr. 12,2018

an output band height Bdh_out based on the remaining
capacity of the shared memory area. Based on the decided
input band height and output band height, the CPU 102 then
sets the first addresses of the input area and output area of
the intermediate buffer 232 as an input area first address and
an output area first address, respectively.

[0186] The intermediate buffer arbitration circuit 230 tem-
porarily stores the received input image data in the input area
234 of the intermediate buffer 232. Subsequently, the image
input unit 1521 reads out the temporarily stored input image
data of the small regions via the intermediate buffer arbi-
tration circuit 230, sequentially generates an input pixel
value 155 for each pixel, and inputs it to an image processing
execution unit 153. Note that the image input unit 1521 and
an image output unit 1523 may operate asynchronously and,
for example, a small region (1) 251 of the output image data
may be generated and output by using parts of the small
region (1) 211 and small region (2) in the input image data.
[0187] The image processing execution unit 153 performs
image processing on a pixel region made of one or more
input pixels. The image processing execution unit 153
advances such processing while sliding the pixel region in
the height direction of the band area and performs a process
for outputting a pixel of a next column after outputting a
pixel value for one column in the height direction. The
processed pixel value is output to the image output unit 1523
of the image input/output unit 152 for each pixel.

[0188] In the image output unit 1523, the output image
data is generated from a processed output pixel value 156
and stored in the output area 236 of the intermediate buffer
232 via the intermediate buffer arbitration circuit 230 in a
32-Byte unit. Note that the data structure of the generated
output image data remains in the image format shown in
FIG. 9. However, the format may be changed in output
image data 250. In the image processing execution unit 153,
various image processing operations different in size
between the input pixel region and the output pixel region
are performed, and thus the input image data 210 and the
output image data 250 are different in the number of pixels.
Therefore, the height and width of the output band area of
the output image data 250 are different from those of the
input image data 210, and the height Bdh_out and the width
32xN are obtained. The height of the band area is different
between the input image data 210 and the output image data
250 as described above, and thus the capacity of the small
region as the processing unit is different. In addition, the
width of the band area is also different, and thus the number
of small regions also changes from M to N.

[0189] The image output unit 1523 stops receiving the
output pixel value 156 from the image processing execution
unit 153 at a point of time when the output image data of the
small region (1) 251 are collected in the output area 236 of
the intermediate buffer 232. The image output unit 1523
sequentially reads out the output image data of the output
area 236 and sends them to a DMAC 196. In accordance
with an instruction signal 225 from the CPU 102, the DMAC
196 writes the processed image data in the DRAM 106. The
DMAC 196 sequentially performs the same operation from
the small region (2) to a small region (N) and writes all the
output image data of the output band area back to the DRAM
106.

[0190] Effect of This Embodiment

[0191] In this embodiment, the transfer length is deter-
mined in accordance with the standard of the external

US 2018/0103174 Al

memory (such as the DRAM), the image format, or the pixel
interpolation format, and the cache memory area is allocated
to the shared memory in accordance with the transfer length.
An appropriate band height is calculated and set for a
remaining area obtained by excluding the cache memory
area from the shared memory. An input image area and an
output image area are allocated to the shared memory,
reducing a circuit scale. With these methods, it is possible to
implement complicated image deformation by inputting a
deformation coordinate from the external memory (such as
the DRAM).

Sixth Embodiment

[0192] TItis possible to combine a plurality of images after
performing different deformation or rotation processing
operations on the plurality of images to make them have the
same shape by using the first to fifth embodiments. A pixel
generation unit 1531 of FIG. 2 sequentially generates pixels
of the plurality of images. For example, when five images
are combined, the pixel generation unit 1531 sequentially
generates the pixels of five images and sends them to a
coordinate transformation unit 1532 with respect to the same
coordinate such as the coordinates [0, 0] of the first image,
the coordinates [0, 0] of the second image, . . . , the
coordinates [0, 0] of the fifth image. The pixel generation
unit 1531 also sends image identification information con-
currently. After sending the pixels of five images, the pixel
generation unit 1531 sequentially generates the pixels of five
images with respect to next coordinates [1, 0]. The coordi-
nate transformation unit 1532 switches registers based on
the image identification information and sequentially per-
forms coordinate transformation according to the images. A
cache device 180 switches cache tags and cache memories
in accordance with the image identification information, and
uses a different cache unit for each of the plurality of images.
The cache device 180 reads out pixel segments needed for
filtering with respect to the pixels of five images at the same
coordinates to be input next and sends them to a pixel
sampling unit 1535 sequentially. The pixel sampling unit
1535 extracts a plurality of pixels needed for filtering on the
pixels of five images to be input sequentially and sends them
to a pixel interpolation unit 1536. The pixel interpolation
unit 1536 performs filtering on the pixels of five images to
be input sequentially and sends them to a pixel combining
unit 1537 sequentially. The pixel combining unit 1537
sequentially receives pixel values after filtering on the pixels
of five images and when receiving all the pixels of five
images, performs calculation for image combination and
calculates an image combination value for one pixel. Then,
the pixel combining unit 1537 sends, to a WDMAC 196, the
pixel values after image combination. It is possible to
implement the arbitrary number of image combinations by
processing a series of pixels for the number of image
combinations with respect to the same coordinates.

[0193] Effect of This Embodiment

[0194] According to this embodiment, it is possible to
make the plurality of images have the same shape by
performing the different deformation or rotation operations
on them and to combine the plurality of images.

[0195] The arrangement and operation of the image pro-
cessing apparatus according to the embodiments have been
described above. Those skilled in the art will appreciate that
these embodiments are merely examples, various modifica-
tions can be made to the combination of the respective

Apr. 12,2018

constituent elements and processes thereof, and such modi-
fications also fall within the scope of the present invention.

Other Embodiments

[0196] Embodiment(s) of the present invention can also be
realized by a computer of a system or apparatus that reads
out and executes computer executable instructions (e.g., one
or more programs) recorded on a storage medium (which
may also be referred to more fully as a ‘non-transitory
computer-readable storage medium’) to perform the func-
tions of one or more of the above-described embodiment(s)
and/or that includes one or more circuits (e.g., application
specific integrated circuit (ASIC)) for performing the func-
tions of one or more of the above-described embodiment(s),
and by a method performed by the computer of the system
or apparatus by, for example, reading out and executing the
computer executable instructions from the storage medium
to perform the functions of one or more of the above-
described embodiment(s) and/or controlling the one or more
circuits to perform the functions of one or more of the
above-described embodiment(s). The computer may com-
prise one or more processors (e.g., central processing unit
(CPU), micro processing unit (MPU)) and may include a
network of separate computers or separate processors to read
out and execute the computer executable instructions. The
computer executable instructions may be provided to the
computer, for example, from a network or the storage
medium. The storage medium may include, for example, one
or more of a hard disk, a random-access memory (RAM), a
read only memory (ROM), a storage of distributed comput-
ing systems, an optical disk (such as a compact disc (CD),
digital versatile disc (DVD), or Blu-ray Disc (BD)™), a
flash memory device, a memory card, and the like.

[0197] While the present invention has been described
with reference to exemplary embodiments, it is to be under-
stood that the invention is not limited to the disclosed
exemplary embodiments. The scope of the following claims
is to be accorded the broadest interpretation so as to encom-
pass all such modifications and equivalent structures and
functions.

[0198] This application claims the benefit of Japanese
Patent Application No. 2016-199409, filed Oct. 7, 2016,
which is hereby incorporated by reference herein in its
entirety.

What is claimed is:

1. An image processing apparatus that performs filtering
by reading out an image from an external storage unit, the
image being divided into a plurality of banks by a first
interleave method according to a transfer length when the
image is read out from the external storage unit, the appa-
ratus comprising:

a plurality of local memories; and

a control unit configured to divide, into a plurality of pixel

fragments, a pixel of a bank which includes at least one
of a plurality of pixels needed for the filtering by a
second interleave method according to the transfer
length and store each of the pixel fragments obtained as
a result of division in one of the plurality of local
memories in accordance with the transfer length.

2. The apparatus according to claim 1, wherein the
external storage unit stores an image before one of defor-
mation and rotation, and

the image processing apparatus reads out the image before

one of deformation and rotation from the external

US 2018/0103174 Al

storage unit to perform filtering, and generates an
image after one of deformation and rotation.

3. The apparatus according to claim 2, wherein the
transfer length is set in accordance with a degree of one of
deformation and rotation.

4. The apparatus according to claim 1, wherein the first
interleave method and the second interleave method are
implemented by calculating a bank number bk and a local
memory number Im by:

bk=[(m % 2)*B/2+n] % B

Im=[(bk % 2)*L/2+beat] % L

where m is a main scanning coordinate of the transfer length,
n is a sub scanning coordinate of the transfer length, B is the
number of banks, beat is a packet number, and L is the
number of local memories.

5. The apparatus according to claim 1, wherein a size of
each of the pixel fragments is set in accordance with a bus
width of a bus configured to connect the external storage unit
and the control unit.

6. The apparatus according to claim 1, wherein a size of
each of the pixel fragments is set in accordance with the
number of pixels needed for the filtering.

7. The apparatus according to claim 1, wherein at time
when the plurality of pixels are read out from the plurality
of'local memories, and the plurality of pixels needed for the
filtering cross a boundary of the pixel fragments the control
unit converts one request from a corresponding bank into
two requests to two local memories.

8. The apparatus according to claim 1, wherein the control
unit rearranges pixels of the banks obtained as a result of
division by the first interleave method into the pixel frag-
ments of the second interleave method in accordance with
bit lengths of the local memories and stores the pixel
fragments in the local memories.

9. The apparatus according to claim 1, wherein the control
unit sequentially holds pixels of the banks obtained as a
result of division by the first interleave method and writes
the plurality of pixel fragments in the plurality of local
memories concurrently.

10. The apparatus according to claim 1, wherein the
transfer length is set based on an image format.

11. The apparatus according to claim 1, wherein the
transfer length is set based on an access latency.

12. The apparatus according to claim 1, wherein the
number of banks in the first interleave method is set based
on an image format and a pixel interpolation format of the
filtering.

Apr. 12,2018

13. The apparatus according to claim 1, wherein a plu-
rality of images undergo one of different deformation opera-
tions and rotation operations so as to have the same shape,
and are combined.

14. The apparatus according to claim 1, further compris-
ing a plurality of cache units corresponding to the plurality
of banks,

wherein the plurality of cache units share the plurality of
local memories, and

cache memories of the cache units are allocated to the
plurality of local memories based on the transfer
length.

15. The apparatus according to claim 14, wherein an input
image and an output image divided into areas are allocated
to an area obtained by excluding areas of the cache memo-
ries from areas of the plurality of local memories.

16. An image processing apparatus, comprising:

a readout unit configured to read out pixel data of an
image associated with a plurality of banks by a first
interleave method according to a transfer length when
the pixel data is read out from an external storage unit;

a plurality of local memories;

a control unit configured to perform control for dividing
a plurality of pixel data of a first unit associated with
the banks into a plurality of pixel data of a second unit
by a second interleave method in accordance with the
number of local memories, and

for storing a plurality of pixel data corresponding to the
banks sequentially in the plurality of local memories so
that local memories with which the storing in the
second unit is started are different among banks which
have been consecutively read out; and

a filtering unit configured to perform filtering by using a
pixel data group of pixels read out from the plurality of
local memories and adjacent in the image.

17. A method for controlling an image processing appa-
ratus that performs filtering by reading out an image from an
external storage unit, the image being divided into a plurality
of banks by a first interleave method according to a transfer
length when the image is read out from the external storage
unit, and the image processing apparatus including a plu-
rality of local memories, the method comprising:

dividing, into a plurality of pixel fragments, a pixel of a
bank which includes at least one of a plurality of pixels
needed for the filtering by a second interleave method
according to the transfer length and storing each of the
pixel fragments obtained as a result of division in one
of the plurality of local memories in accordance with
the transfer length.

#* #* #* #* #*

