
THE MAIN TEA ETA ANTON MART US 20170322965A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2017 / 0322965 A1

Gray (43) Pub . Date : Nov . 9 , 2017

(54) COMPUTING SYSTEMS AND PROCESSES
FOR IMPROVED DATABASE JUNCTION
RELATIONSHIPS (52)

H04L 12 / 58 (2006 . 01)
H04L 29 / 06 (2006 . 01)
U . S . CI .
CPC GO6F 17 / 30345 (2013 . 01) ; H04L 67 / 42

(2013 . 01) ; G06F 17 / 30289 (2013 . 01) ; H04L
51 / 28 (2013 . 01)

(71) Applicant : salesforce . com , inc . , San Francisco , CA
(US)

(72) Inventor : William Victor Gray , San Francisco ,
CA (US)

Assignee : salesforce . com , inc . , San Francisco , CA
(US)

(57) ABSTRACT
(73)

(21) Appl . No . : 15 / 145 , 436
(22) Filed : May 3 , 2016

Publication Classification
(51) Int . Ci .

G06F 1730 (2006 . 01)
G06F 1730 (2006 . 01)

Database clients submit junction data (such as invitees to a
meeting or other event) at the same time that a new database
entity is created . Junction data may be represented within a
string array or other data structure that can be delivered
using a SOAP , REST or similar protocol for delivering data
to the computing server platform . By submitting junction
data within the same structure that is used to create the new
entity , the likelihood of phantom data or other corruption in
the database is greatly reduced .

Client - 140 Server 102
I 201

Database - 130
203 Maintain / Store

Data
- - - - - - - Maintain / Store

Data

New Event (Invite C1 , C2 , C7 . . .)
200 204 205

206 Update
Event Table

Create En
- 207

- 208
Return key Generate Key

212 212 - 210
E1 . Invitees (C1 , C2 , C7 . . .) Update

Event Record
Update

Event Record
211 214

Response) Confirm
Query Invitees (E1)

216
Query E1 217
Return ID 218

Query (E1 . ID , Invitees
E1 . Invitees E1 . Invitees = (C1 , C2 , c7)

219 - 220 222
E1 . Invitees Retrieve

Data
221 Update / Delete E1

ste (eg E1 . Invitees (C1 , C2 , C7 , C9))
228 Update

Event Record
E1 . Invitees (C1 , C2 , C7 , 09) Update

Event Record 226 227

Contacts
Events

Contacts 142A
Events 145A

Patent Application Publication

Data

(147)

134 132

Junction

1428

{ E2 . Invitees = [C1 , C2 , C7 , C13 . . .] }

130 130

144A

145B
App 2

App 1

128A

- 128B
Platform
110

non sono para sa an pentes sammen

100

OS

108

Nov . 9 , 2017 Sheet 1 of 2

10

107

Processor

105 Memory

106

142A

1428

145

Network

140A

Party Friday 8pm - Zack (Admin)

- Yolanda - Xavier

Meeting Thursday 9am - Bob (Admin)

- Amanda - Cristina

140B

1 / 0

Proc Mem

1 / 0

Proc Mem

US 2017 / 0322965 A1

FIG . 1

Client (140

Server - 102

Database - 130

201

203

202

Maintain / Store Data

Maintain / Store Data

Patent Application Publication

New Event (Invite C1 , C2 , C7)

200

204

- 205

Create in

206

Update Event Table

207

208

Return key

Generate Key

- 210

212

Update Event Record

E1 . Invitees (C1 , C2 , C7 . . .)

Update Event Record

2

1

4

211

Response / Confirm Query invitees (E1)

Nov . 9 , 2017 Sheet 2 of 2

Query E1217

216

Return ID 218 Query (E1 . ID , Inviteesr219 E1 . Invitees - (C1 , C2 , C7)

220

Retrieve Data

221

222

E1 . Invitees (C1 , C2 , C7)

Update / Delete E1

(eg E1 . Invitees (C1 , C2 , C7 , C9))

225

Update
226 Event Record

one228

E1 . Invitees = (C1 , C2 , C7 , 29) / Update

Event Record

227

FIG . 2

US 2017 / 0322965 A1

US 2017 / 0322965 A1 Nov . 9 , 2017

COMPUTING SYSTEMS AND PROCESSES
FOR IMPROVED DATABASE JUNCTION

RELATIONSHIPS

TECHNICAL FIELD

[0005] It is therefore desirable to create processes and
systems that can more efficiently process many - to - many
relationships without the technical problems currently being
experienced in conventional database management systems .
It would be further beneficial to streamline database man
agement for serialized interfaces , especially those used in
conjunction with multi - tenant or other cloud - based database
management systems .

[0001] This document relates to data processing by a
computer , especially database or file management for more
efficient processing of data within a computer system . More
particularly , this document relates to processes and systems
to reduce data corruption and to improve computing effi
ciency , thereby improving database junction relationship
processing by a computer system .

BACKGROUND
[0002] Modern database and software application devel
opment is evolving away from the client - server model
toward “ cloud ” - based processing systems that provide
access to data and services via networks such as the Internet .
In contrast to prior systems that hosted networked applica
tions on dedicated server hardware , the cloud computing
model allows applications to be provided over the network
“ as a service ” supplied by an infrastructure provider .
[0003] Although cloud computing platforms can provide
substantial benefits to developers and users , certain technical
challenges can arise in designing , building and operating
database applications based upon such platforms . Database
tables that include many - to - many relationships , for
example , can pose particular technical challenges in large
scale databases for several reasons . If a user is attempting to
create an application that tracks people invited to a meeting
or other event , for example , every “ event ” entry in the
database would typically require multiple links to different
“ invitee ” records . That is , any number of events would be
linked to any number of invitees , thereby leading to com
plicated and potentially inter - woven data relationships .
[00041 Traditional database management systems often
handle many - to - many data relationships by creating “ junc
tion tables ” to manage the different relationships . These
junction tables are effectively separate lists that maintain
keys or other data to track the various relationships between
the primary tables . Conventional junction tables , however ,
exhibit several marked disadvantages . At the very least , the
junction tables are additional data structures that require
processing every time any of the many - to - many resources
are modified , thereby requiring substantial computing
resources . Moreover , in modern database environments
based upon SOAP / REST or similar serial application pro
gram interface (API) constructs , client interactions with
junction tables can create multiple API calls , thereby
increasing computing overhead and presenting additional
opportunities for data corruption . To continue the meeting
invitee example , creating a new meeting with invitees would
require first creating a new event entity to obtain a newly
generated key identifying the new event . The client would
then submit the newly - generated key to the appropriate
junction records to establish many - to - many relationships
between the new event and some number of invitees . In a
serialized API such as SOAP or REST , each of these steps
would generally require a separate interaction between the
client the server . This multi - step process creates the oppor
tunity for data corruption if the first call to obtain the key is
successful but ensuing calls to establish junction relation
ships are unsuccessful .

BRIEF DESCRIPTION
[0006] According to various example embodiments , data
base clients submit table junction data (such as invitees to a
meeting or other event) at the same time that a new database
table entry is created . Junction data may be represented
within a string array or other data structure , for example , that
can be delivered using a SOAP , REST or similar protocol for
delivering data from the database client to the computing
server platform . By submitting junction data within the same
structure that is used to create the new entity , the likelihood
of phantom data generation or other data corruption is
greatly reduced .
[0007] Various embodiments relate to a process executed
by a computer system that interacts with a database . The
computer system may be , for example , a multi - tenant or
other cloud based database management system executing
on any number of processors having access to memories ,
mass storage , input / output interfaces and other computing
hardware resources . In this example , the computer system
executes a process that suitably comprises : storing , by the
computer system , a contact list as a first data structure in the
database ; storing , by the computer system , an event list as a
second data structure separate from the first data structure in
the database ; receiving , by the computer system , a request to
add a new event to the event list , wherein the request is
received via a data network from a remote client device ,
wherein the request comprises a list of contacts correspond
ing to contacts maintained in the first data structure that are
associated with the new event ; and , in response to the
request , the computer system sending both a first message to
the database to obtain a key for the new event and a second
message that includes the key obtained in response to the
first message and the list of contacts received in the request
to thereby associate the list of contacts with the new event .
0008] Other embodiments relate to a computer - imple
mented process executable by a computer system that man
ages a database . The process suitably comprises : receiving ,
by the computer system from a client device , an electronic
request to create a new entry for a first table in the database ,
wherein the electronic request received from the client
device comprises digital identifiers for at least one entry in
a second table in the database that is separate from the first
table ; and , in response to receiving the request from the
client device , the computer system automatically initiating
both a first message to the database to create the new entry
in the first database table and a second message to associate
the newly - created entry in the first database table with the
digital identifiers for the at least one entry in the second
database table .
10009] . Still other embodiments relate to a server system
that manages a database . The computer system suitably
comprises an interface to a network and a processor . The
processor is configured to receive an electronic request to
create a new entry for a first table in the database from a
client device , wherein the electronic request received from

US 2017 / 0322965 A1 Nov . 9 , 2017

the client device comprises digital identifiers for at least one
entry in a second table in the database that is separate from
the first table ; and , in response to receiving the request from
the client device , to initiate both a first message to the
database to create the new entry in the first database table
and a second message to associate the newly - created entry
in the first database table with the digital identifiers for the
at least one entry in the second database table . In some
embodiments , both the computing platform sends both the
first and second messages without further input from the
client device , thereby reducing the likelihood of phantom
data . Various embodiments may implement the server sys
tem with a cloud - based computing platform having any
number of processors , memories , interfaces and / or the like .

DESCRIPTION OF THE DRAWING FIGURES
[0010] Example embodiments will hereinafter be
described in conjunction with the following drawing figures ,
wherein like numerals denote like elements , and
[0011] FIG . 1 is a block diagram of one example of a data
processing system that supports improved database junction
interfaces ; and
[0012] FIG . 2 is a flow diagram showing an example of a
computerized process to efficiently process database junc
tion interfaces .

DETAILED DESCRIPTION
[0013] According to various embodiments , systems and
processes are provided to greatly streamline the processing
of many - to - many database relationships by representing
junction relationship data within the newly - created entity
itself rather than in a separate junction table . To that end ,
various embodiments receive junction relationships from the
client via a flattened array of ID values represented as a
string or similar construct . This array is processed by the
computing platform to associate junction data with the
newly - created database entity . By receiving a new data field
within the entity creation message , create / insert / update
operations can be processed within a single call from the
client to the database server , thereby greatly improving
transactional integrity while simplifying the protocol design
and hiding the complexity of the junction table from the

[0016] Platform no allows users to create and run data
driven applications 128A - B of all sorts . The examples
presented herein often reference a scheduling application
that links events to persons attending the event for clarity
and consistency . Equivalent embodiments could implement
the same (or similar) concepts , however , in any number of
different applications that make use of many - to - many rela
tionships .
[0017] In the examples presented in FIG . 1 , a more
conventional database application 128A is shown with a
junction table 144A that links data relationships between
two data tables : a contact table 142A and an event table
145A . Contact table 142A suitably maintains contact infor
mation for people , and an event table 145 A suitably main
tains information about meetings , social gatherings or other
events that people might attend . To that end , junction table
144A typically includes pairings of events from event table
145A and attendees from contact table 145A . Such a table
144A may appear as a series of paired keys representing the
different database attendees . One example junction table
144A could be formatted as : { (E1 , C1) , (E2 , C2) , (E3 , C2) ,
(E3 , C5) , . . . } or the like , with each contact (“ C ”) attending
each event (“ E ”) having its own separate entry . One issue
with this structure is that it maintains a relatively large
amount of data . If ten people are each attending five different
events , for example , a junction table 144A formatted in this
manner will have fifty different entries . Whenever an entry
is updated , the table 144A typically needs to be de - normal
ized or otherwise processed , thereby creating an undesirable
amount of programming overhead . Other embodiments
could be formatted in other ways , but similar challenges
would nevertheless occur .
[0018] Handling of remote client applications 142 execut
ing on remote client devices 140A - B can present additional
challenges . Typically , a client application 142A - B interacts
with the server platform no via an application program
interface (API) based upon protocols such as Simple Object
Access Protocol (SOAP) , REpresentational State Transfer
(REST) and / or the like . These protocols make use of serial
messaging , often formatted in accordance with Hypertext
Transport Protocol (HTTP) or the like for convenient trans
port over the Internet or similar networks .
[0019] Typically , the client 142 would place a first API call
to the platform no to create a new entity (e . g . , a new event
in event table 145A) . This first call would typically return a
unique key that identifies the newly - created entity . Client
application 142 would then place a second call to the
platform 110 providing the newly - received key to populate
the information in the new event , including a list of invitees .
In practice , data corruption can occur if the first call from the
client application 142 (creating the new event) is successful
but the second call (providing the junction data) is not
successful . In this case , a “ phantom ” entity with no data can
be created in event table 145A . This situation seems to occur
more frequently when the client device 140 is a mobile
device such as a phone or tablet , possibly due to the
unreliable nature of wireless networks .
[0020] Database application 128B provides an API with
more robust and efficient junction data handling . In this
example , client application 142 submits new events to the
platform no by including a new data field 147 representing
the junction data in the new event request . To that end , event
invitees , attendees and / or other contacts can be received in
an array or similar list - type data structure 147 , with data

user .
[0014] The general concepts and systems described herein
may be applied in any number of different computing
settings to support any number of different data types ,
processing environments and / or presentation systems . FIG .
1 presents one example of database development imple
mented within the context of a multi - tenant computing
system . Other embodiments could be developed to execute
in any other collaborative computing environment , includ
ing any sort of server based , peer - to - peer or other networked
environment in which multiple client applications process
data obtained from a shared server or other resource .
10015] Turning now to FIG . 1 , an example of a multi
tenant application system 100 suitably includes a server 102
operating a platform no that dynamically creates virtual
applications 128A - B based upon data 132 from a common
database 130 that is shared between multiple tenants . Data
and services generated by the virtual applications 128A - B
are provided via network 145 to any number of client
devices 140A - B , as desired .

US 2017 / 0322965 A1 Nov . 9 , 2017

formatted as a text string or similar construct . In FIG . 1 , for
example , new events 145 are received by the API with a new
data field 147 “ E , . Invitees ” that contains a list of contact IDs
(e . g . , “ C1 , C2 , C7 , C13 , . . . } ” or the like , with each “ Cx ”
representing an identifier of a different contact in list 142B .
Because the platform no receives the junction data in the
same message that creates the event , the platform 110 is able
to create the new event record (including junction relation
ships to invitees or other contacts) without further interac
tion with the client . This substantially reduces the likelihood
of phantom data , thereby leading to improved performance
and less data corruption . The platform no is then able to
process the received data by creating new events , updating
tables 145 , or performing other actions with database 130 as
appropriate . In further examples , new event records could be
submitted with additional or alternate data structures 147 to
represent other lists of contacts , such as “ attendees ” , “ absen
tees ” , “ administrators ” , “ remote attendees ” , “ in - person
attendees ” , and / or the like .
[0021] To create a new event in application 128B , then , the
client application 142B suitably provides a SOAP , REST or
similar call to the API executing within application platform
110 . The call placed to the API suitably includes a request
for a new event that additionally provides the invitee ,
attendee and / or other contact information within an appro
priate field 147 . The platform receives the information and
processes any backend interactions with database 130 to
create a new event identifier / key and to populate the event
record with appropriate data . These actions by the platform
no may be abstracted from the client application 142 in the
sense that the platform 110 handles new record creation and
population of the new record without further interaction with
the client 140 , thereby greatly reducing the risk of phantom
data being created . To that end , a new " event " request
submitted by client 140 may include an additional data
structure 147 that provides a list of contact identifiers
corresponding to event invitees , attendees or others , as
appropriate . Contact identifiers are submitted by client
application 142 within data structure 147 as part of the
newly - created entity itself . Interactions between the com
puting platform no and database 130 may proceed normally ,
including creation of junction tables or other structures as
needed to efficiently store and retrieve data in database 130 .
Additional details about processes to create , query and
update entities having internally - stored junction data are
presented below with respect to FIG . 2 .
[0022] Once again , the examples herein have focused
primarily upon many - to - many relationships between event
and contact tables ; other embodiments could store and
process junction information relating to any other types of
data in an equivalent manner .
[0023] In the example illustrated in FIG . 1 , virtual appli
cations 128A - B may be generated at run - time using a
common platform no that securely provides access to data
132 in database 130 for each of the various tenants sub
scribing to system 100 . Each application 128A - B can
include routines and processes for receiving data , processing
the data , and reporting data to one or more users .
[0024] Database 130 is any sort of repository or other data
storage system capable of storing and managing data 132
associated with one or more tenants . Database 130 may be
implemented using any type of conventional database server
hardware . In various embodiments , database 130 shares
processing hardware 104 with server 102 . In other embodi

ments , database 130 is implemented using separate physical
and / or virtual database server hardware that communicates
with server 102 to perform the various functions described
herein .
[0025] Data 132 may be organized and formatted in any
manner to support application platform 110 . In various
embodiments , data 132 is suitably organized into a relatively
small number of large data tables to maintain a semi
amorphous “ heap ” - type format . Data 132 can then be orga
nized as needed for a particular virtual application 128A - B .
In various embodiments , conventional data relationships are
established using any number of pivot tables or other
structures that establish indexing , uniqueness , relationships
between entities , and / or other aspects of conventional data
base organization as desired .
[0026] Further data manipulation and report formatting is
generally performed at run - time using a variety of meta - data
constructs . Metadata within a universal data directory
(UDD) , for example , can be used to describe any number of
forms , reports , workflows , user access privileges , business
logic and other constructs that are common to multiple users
of database 132 . Tenant - specific formatting , functions and
other constructs may be maintained as tenant - specific meta
data for each tenant , as desired . Rather than forcing data 132
into an inflexible global structure that is common to all
tenants and applications , then , database 130 is organized to
be relatively amorphous , with tables and metadata providing
additional structure on an as - needed basis . To that end ,
application platform no suitably uses tables and / or metadata
to generate “ virtual ” components of applications 128A - B
that logically obtain , process , and present the relatively
amorphous data 132 from database 130 . Such tables and
metadata may be used to define one or more tables 142 and
145 , as appropriate .
[0027] Server 102 is implemented using one or more
actual and / or virtual computing systems that collectively
provide a dynamic application platform no for generating
virtual applications 128A - B . Server 102 operates with any
sort of conventional computing hardware 104 , such as any
processor 105 , memory 106 , input / output features 107 and
the like . Processor 105 may be implemented using one or
more of microprocessors , microcontrollers , processing cores
and / or other computing resources spread across any number
of distributed or integrated systems , including any number
of “ cloud - based ” or other virtual systems . Memory 106
represents any non - transitory short or long term storage
capable of storing programming instructions for execution
on processor 105 , including any sort of random access
memory (RAM) , read only memory (ROM) , flash memory ,
magnetic or optical mass storage , and / or the like . Input /
output features 107 represent conventional interfaces to
networks (e . g . , to network 145 , or any other local area , wide
area or other network) , mass storage , display devices , data
entry devices and / or the like . In a typical embodiment ,
application platform no gains access to processing
resources , communications interfaces and other features of
hardware 104 using any sort of conventional or proprietary
operating system 108 . As noted above , server 102 may be
implemented using a cluster of actual and / or virtual servers
operating in conjunction with each other , typically in asso
ciation with conventional network communications , cluster
management , load balancing and other features as appropri
ate .

US 2017 / 0322965 A1 Nov . 9 , 2017

[0028] Application platform no is any software applica
tion or other data processing engine that generates virtual
applications 128A - B that provide data and / or services to
client devices 140A - B . Virtual applications 128A - B are
typically generated at run - time in response to queries
received from client devices 140A - B , as described more
fully below . To that end , platform 110 dynamically builds
and executes displays and other aspects of virtual applica
tions 128A - B in response to specific requests received from
client devices 140A - B . Virtual applications 128A - B are
typically constructed in accordance with tenant - specific
metadata , which describes the particular tables , reports /
dashboards , interfaces and / or other features of the particular
application . In various embodiments , each virtual applica
tion 128A - B generates dynamic web content that can be
served to a browser or other client program 142A - B asso
ciated with client device 140A - B , as appropriate . Applica
tions 128 may contain JAVA , . NET , HTML5 and / or other
content that can be presented using conventional client
software running on client device 140 ; other embodiments
may simply provide dynamic web or other content that can
be presented and viewed by the user , as desired .
[0029] Data and services provided by server 102 can be
retrieved using any sort of personal computer , mobile tele
phone , tablet or other network - enabled client device 140 on
network 145 . Typically , the user operates client program 142
to contact server 102 via network 145 . Client program 142
may operate within a conventional web browser , in some
embodiments , while other embodiments may be more free
standing applications based upon a separate API as desired .
Client application 142 communicates with server 102 using ,
for example , the hypertext transport protocol (HTTP) or the
like . Some embodiments may use HTTP and / or other com
munications based upon the TCP / IP protocol stack , although
other embodiments may use other types of protocols (e . g . ,
voice or other telephony protocols , military protocols ,
secure or proprietary protocols and / or the like) as appropri
ate . As noted above , many implementations may make
further use of SOAP , REST or similar APIs to facilitate
transfer of database data , as desired .
[0030] In operation , then , developers use application plat
form no to create data - driven virtual applications 128A - B
for the tenants that they support . Such applications 128A - B
may make use of interface features such as tenant - specific
screens , universal screens and / or the like . Any number of
tenant - specific and / or universal objects may also be avail
able for integration into reports , dashboards and / or other
output displays of tenant - developed applications 128A - B .
Data 132 associated with each application 128A - B is pro
vided to database 130 , as appropriate , and stored until
requested , along with metadata that describes the particular
features (e . g . , reports , tables , functions , etc .) of tenant
specific application 128A - B until needed .
[0031] Data and services provided by server 102 can be
retrieved using any personal computers , mobile telephones ,
tablets or other network - enabled client devices 140A - B on
data network 145 . Typically , the user operates a conven
tional browser or other client program to contact server 102
via network 145 using , for example , the hypertext transport
protocol (HTTP) or the like . In some implementations ,
HTTP " get " and " put ” statements may be transmitted over
a transmission control protocol (TCP) session or the like to
pass various messages , instructions and data relating to the
display and design of interface objects , as described more

fully below . In many implementations , Javascript , ActiveX ,
. NET , HTML5 and / or other logic executing within the
browser of client device 140 generates interface features to
be displayed in response to instructions received from the
server 102 ; equivalent embodiments may use any sort of
application program interface (API) , application or other
feature executing on client computing devices 140 to render
graphical imagery to the display .
[0032] FIG . 2 is a data flow diagram showing various
functions and interactions between a client application 142
executing on a client device 140 , a server 102 and a database
130 . As shown in FIG . 2 , an example process 200 that makes
use of embedded junction data 147 allows more streamlined
communication between client 140 and server 102 , thereby
reducing the chance of data corruption .
10033] As shown in FIG . 2 , server 102 and database 130
suitably interact 203 to store and maintain data 132 in an
organized manner . Typically , applications 128 executing on
platform 110 of server 102 direct the actions taken by
database 130 to store and update data 132 , as appropriate
(function 201) . Database system 130 typically includes
database management software (executing on any number of
processors or other computing hardware) that processes the
storage and updating of data 132 on magnetic , solid state ,
optical or other mass storage available to database 130 . As
noted above , data 132 may be organized in any manner .
[0034] When a client application 142 executing on a client
device 140 wants to create a new database entity (e . g . , a new
event) , the application 142 sends a “ new entity ” message
204 that includes any parameters and other information
associated with the new entity . In various embodiments , a
user enters the new information using a web - type or other
interface presented by client device 140 . When the infor
mation is entered , the user submits the new entity to the
server 204 , as appropriate . Application 142 then formats a
new entity message 204 in accordance with SOAP , REST or
other protocols that are capable of representing data to
populate the various data fields in the newly - created entity .
For a new “ event ” entity , for example , message 204 may
include user - entered or user - selected data describing the
event date and time , location , purpose , any invitees , admin
istrators and / or the like . Invitees or other contacts may be
described using database keys if this information is available
to the client 140 ; otherwise contact names or other identi
fying information may be included in the message 204 for
subsequent resolution by server 102 and / or database 130 .
[0035] In response to the newly - received instruction 204 ,
the application 128 suitably interacts with database 130 to
create the new entity . In this example , server 102 creates a
new " event " entity by requesting a new key identifier for a
new event entity that can be added to a table of event records
145 (function 205) . The server 102 therefore directs the
database 130 to create a new key associated with the new
entity (function 206) . The database 130 creates the new key
(function 207) and returns the newly - generated key to the
server 102 (function 208) as directed .
[0036] Rather than forwarding the newly - generated key to
the client 140 at this point for further processing , the server
102 uses the key to create a second instruction 211 for the
database 130 . This second instruction 211 includes the
invitee list and / or other information that populates the data
fields of the newly - created entity (function 210) . The server
102 is therefore able to send two separate instructions to the
database 130 without further interaction with the client 140 :

US 2017 / 0322965 A1 Nov . 9 , 2017

a first instruction 206 to create a key identifier for the new
entity , and a second instruction 211 to populate the newly
identified entity with information obtained from client 140 .
These two instructions 206 and 211 are typically sent via a
relatively secure and fast data connection (e . g . , a private data
connection or even a local area network) , so the likelihood
of losing one message (and thereby creating phantom or
corrupt data) is much lower than the likelihood of losing
messages sent over the Internet or a wireless network . By
shifting the junction data into the newly - created entity
record itself , the need for the client to interact with separate
tables in database 130 is reduced , thereby reducing the
chances of corruption or data loss .
[0037] Successful (and / or unsuccessful) creation of the
new entity record may be confirmed by the server 102
sending a response 214 to the client 140 , as appropriate . In
some embodiments , the key identifier associated with the
newly - generated entity is reported to the client 140 via the
response 214 . Other embodiments may send identifying
information as part of reports , tables , responses to subse
quent queries , and / or in any other manner .
[0038] To query the data in a record , the client 140 suitably
requests the data associated with a particular event (function
216) . The request 216 may include the key identifier asso
ciated with the queried event if the key is known .
0039] If the key is not known to the client , than query 216

will include other information (e . g . , event name , date and
time , or the like) sufficient for the server 102 to identify the
requested data and to obtain the key on its own . In such
cases , the server 102 appropriately posits an SQL or similar
query 217 to database 130 to receive one or more keys 218
that are associated with records matching the query . If
multiple records match the query , then the results may be
forwarded to the client 140 so the user can select the desired
record from the query results .
10040] When the key to the appropriate database entity is
known to the server 102 , then server 102 posits a SOL or
similar query 219 to the database requesting some or all of
the data stored with that entity . The database 130 processes
the query (function 220) to obtain and format the requested
data , which is then returned to the server 102 via message
221 . The server 102 then forwards the requested data to the
client application 142 executing on the client device 140 as
appropriate (function 222) .
[0041] To update or delete an entity record , the client
application 142 suitably sends an update or delete instruc
tion 222 to the server via the network connection . To add an
invitee to an event , for example , the client application 142
might first posit a query 216 to the server 102 to identify the
current invitees , and then provide a graphical or other
interface to the user for making additions , deletions or other
changes to the invitee list . The changes are formatted by the
client application 142 as an instruction 225 (e . g . , using
SOAP , REST or other constructs) and submitted to the
server 102 for further processing . This update instruction
may include an array or other structure that represents
contacts or other junction data in a manner similar to that
described above . Server 102 receives the instruction 225 and
updates the database record associated with the entity (func
tion 226) by formatting an SQL or similar instruction 227
that is sent to database 130 to update the record as appro
priate (function 228) . Typically , data fields are updated by
simply replacing the previous data . Updating a list of
invitees to an event , for example , may involve replacing the

previous data with data received from the newly - formatted
structure containing the current data . The success (and / or
failure) of the update may be confirmed by sending reporting
messages back to the server 102 (function 230) and / or the
client 140 (function 232) as desired .
[0042] Other embodiments may supplement and / or
modify the basic functions and messages shown in FIG . 2 in
any manner . Generally speaking , the various functions and
features of process 200 may be carried out with any sort of
hardware , software and / or firmware logic that is stored
and / or executed on any platform . Some or all of process 200
may be carried out , for example , by logic executing within
system 100 in FIG . 1 . Other portions of process 200 may be
performed by client devices 140A - B , as shown in the figure .
To that end , the various functions shown in FIG . 2 may be
implemented using software or firmware logic that is stored
in memory 106 and executed by processor 105 as part of
application platform 110 , or using software or firmware
logic stored in memory or mass storage of client devices
140A - B and executed by processors operating within client
devices 140A - B , as appropriate . The particular hardware ,
software and / or firmware logic that implements any of the
functions shown in FIG . 2 may vary from context to context ,
implementation to implementation , and embodiment to
embodiment in accordance with the various features , struc
tures and environments set forth herein . The particular
means used to implement each of the various functions
shown in FIG . 2 , then , could be any processing structures
that are capable of executing software and / or firmware logic
in any format , and / or any application - specific or general
purpose hardware , including any discrete and / or integrated
circuitry .
10043] . The term " exemplary ” is used herein to represent
one example , instance or illustration that may have any
number of alternates . Any implementation described herein
as “ exemplary ” should not necessarily be construed as
preferred or advantageous over other implementations , but
rather as a non - limiting example .
100441 Although several embodiments have been pre
sented in the foregoing description , it should be appreciated
that a vast number of alternate but equivalent variations
exist , and the examples presented herein are not intended to
limit the scope , applicability , or configuration of the inven
tion in any way . To the contrary , various changes may be
made in the function and arrangement of the various features
described herein without departing from the scope of the
claims and their legal equivalents . To that end , the concepts
set forth herein have been primarily described within the
context of generating dashboard interfaces for a multi - tenant
cloud computing platform . Equivalent embodiments , how
ever , could be readily applied to other programming envi
ronments , platforms and / or the like .
What is claimed is :
1 . A process executed by a computer system that interacts

with a database , the computer system having a processor and
a memory , the process comprising :

storing , by the computer system , a contact list as a first
data structure in the database ;

storing , by the computer system , an event list as a second
data structure separate from the first data structure in
the database ;

receiving , by the computer system , a request to add a new
event to the event list , wherein the request is received
via a data network from a remote client device , wherein

US 2017 / 0322965 A1 Nov . 9 , 2017

the request comprises a list of contacts corresponding
to contacts maintained in the first data structure that are
associated with the new event ; and

in response to the request , the computer system sending
both a first message to the database to obtain a key for
the new event and a second message that includes the
key obtained in response to the first message and the list
of contacts received in the request to thereby associate
the list of contacts with the new event .

2 . The process of claim 1 , further comprising the com
puter system updating the list of contacts for one of the
events in the list of events to thereby add an additional
contact from the contact list in response to a subsequent
request received via the data network from the remote client
device .

3 . The process of claim 1 wherein the updating comprises
replacing a prior version of the list of contacts with a new
version of the list of contacts that includes the additional
contact from the contact list .

4 . The process of claim 1 wherein the first and second data
structures are database tables .

5 . The process of claim 1 wherein the list of contacts is
received from the remote client device as a serialized list .

6 . The process of claim , wherein the serialized list is an
array of text strings .

7 . The process of claim 6 wherein each of the text strings
represents an identifier of one of the contacts in the contacts
list .

8 . The process of claim , wherein the text strings are
associated with the second data structure .

9 . The process of claim 8 wherein the computer system
identifies contacts associated with the new event from the
identifiers represented in the text strings of the array .

10 . The process of claim 8 wherein each of the identifiers
represented in the text string of the array received from the
remote client device identifies an invitee to the new event .

11i . The process of claim 1 wherein the first and second
messages are both sent from the computer system to the
database without further input from the client device .

12 . A computer - implemented process executable by a
computer system that manages a database , the process
comprising :

receiving , by the computer system from a client device , an
electronic request to create a new entry for a first table
in the database , wherein the electronic request received
from the client device comprises digital identifiers for
at least one entry in a second table in the database that
is separate from the first table ; and

in response to receiving the request from the client device ,
the computer system automatically initiating both a
first message to the database to create the new entry in

the first database table and a second message to asso
ciate the newly - created entry in the first database table
with the digital identifiers for the at least one entry in
the second database table .

13 . The computer - implemented process of claim 12
wherein the first table is a table of events and the second
table is a table of contacts .

14 . The computer - implemented process of claim 13
wherein the electronic request received from the client
device is a request for a new event that comprises a list of
contacts corresponding to event invitees .

15 . The computer - implemented process of claim 14
wherein the list is a string array .

16 . The computer - implemented process of claim 15
wherein the first and second messages are both sent from the
computer system to the database without further input from
the client device .

17 . The computer - implemented process of claim 15 fur
ther comprising the computer system receiving , in response
to the first message , a key that identifies the newly - created
entry in the first table and wherein the second message
comprises the key .

18 . The computer - implemented process of claim 17 fur
ther comprising the computer system transmitting a confir
mation to the client device after receiving confirmation from
the database that the first and second messages were suc
cessful .

19 . A computer system that manages a database , the
computer system comprising :

an interface to a network ; and
a processor configured to :

receive an electronic request to create a new entry for
a first table in the database from a client device via
the network , wherein the electronic request received
from the client device comprises digital identifiers
for at least one entry in a second table in the database
that is separate from the first table ; and

in response to receiving the request from the client
device , to initiate both a first message to the database
to create the new entry in the first database table and
a second message to associate the newly - created
entry in the first database table with the digital
identifiers for the at least one entry in the second
database table .

20 . The computer system of claim 19 wherein the first
table is a table of events and the second table is a table of
contacts , and wherein the electronic request received from
the client device is a request for a new event that comprises
a list of contacts corresponding to event invitees , and
wherein the list is represented by a string array .

* * * * *

