US 20240123617A1

a2y Patent Application Publication o) Pub. No.: US 2024/0123617 A1

a9y United States

Liu et al.

43) Pub. Date: Apr. 18, 2024

(54) ROBOT MOVEMENT APPARATUS AND
RELATED METHODS

(71) Applicant: Intel Corporation, Santa Clara, CA

Us)

(72) Inventors: Zhongxuan Liu, Beijing (CN); Zhe

Weng, Beijing (CN)

@
(22)

Appl. No.: 18/492,458

Filed: Oct. 23, 2023

Related U.S. Application Data

Continuation of application No. 17/271,779, filed on
Feb. 26, 2021, now Pat. No. 11,850,752, filed as
application No. PCT/CN2018/108253 on Sep. 28,
2018.

(63)

Publication Classification

Int. CL.
B25J 9/16

(51)
(2006.01)

{ START)
\.......T....../

4

(52) US.CL
CPC

B25J 9/1664 (2013.01); B25J 9/163
(2013.01); B25J 9/1653 (2013.01); B25J 9/161
(2013.01)
(57) ABSTRACT
Apparatus, systems, articles of manufacture, and methods
for robot movement are disclosed. An example robot move-
ment apparatus includes a sequence generator to generate a
sequence of context variable vectors and policy variable
vectors. The context variable vectors are related to a move-
ment target, and the policy variable vectors are related to a
movement trajectory. The example apparatus includes a
calculator to calculate an upper policy and a loss function
based on the sequence. The upper policy is indicative of a
robot movement, and the loss function is indicative of a
degree to which a movement target is met. The example
apparatus also includes a comparator to determine if the loss
function satisfies a threshold and an actuator to cause the
robot to perform the robot movement of the upper policy
when the loss function satisfies the threshold.

— 300
¥

— 302

] GENERATE GAUSSIAN PROCESS SAMPLES I

.4

304

] GENERATE CONTEXT TRAINING SAMPLES I

] 306
v £
| GENERATE SEQUENCE |< -----------------------------
‘i’ /// 308
1 INPUT VECTORS I
| 310
v s
| CALGULATE 8VP, BUP, AND LOSS FUNCTION |
; 312 314
¥ £
< DOES LOSS FUNCTION MEET THRESHOLD? \NO;»{ IMCREMENT t
, YES 316
l GENERATE SEQUENCE FOR NEW TASK I

T
,

3

l IMPORT COEFFICIENTS FROM TRAINED MODEL I

! 320
¥ 4

] CALCULATE BUP I
; 322
A4 s

] CALCULATE POLICY I
| 324

¥ /

1 EFFECT MOVEMENT I

v
{ END

e

US 2024/0123617 Al

Apr. 18,2024 Sheet 1 of 5

Patent Application Publication

I E

LAALNO
211 —

{(SIUOLYNLOY
201 —
HAHOMYES
ADNMOd LXEINOD (SYHOSNES
DONINSYIT INIHDVA
7
-
vow\\\ 901}

10804

Now\\

Patent Application Publication Apr. 18,2024 Sheet 2 of 5 US 2024/0123617 A1

104
//
MACHINE LEARNING CONTEXT POLICY SEARCHER 202
MODEL TRAINER
208
Z
GAUSSIAN PROCESS 10
SAMPLE GENERATOR SEQUENGE
208 GENERATOR
y
CONTEXT TRAINING o 212
SAMPLE GENERATOR
VECTOR INPUT
216
J
214
COMPARATOR ‘
LOSS FUNCTION
CALCULATOR
220
/‘
SEQUENCE BVP BUP
INCREMENTOR
o 218
DATABASE
//”‘ 284
MODEL INFERENCER
202
//"’
224
SEQUENCE INPUT :
COEFFICIENTS INPUT
226
228
POLICY CALCULATOR V4
DATABASE

Patent Application Publication Apr. 18,2024 Sheet 3 of 5 US 2024/0123617 A1

{ START)

i S 302

GENERATE GAUSSIAN PROCESS SAMPLES

] o 304
GENERATE CONTEXT TRAINING SAMPLES

i o 306

GENERATE SEQUENCE o

s 300

¥

INPUT VECTORS

! o 310

CALCULATE BVP, BUP, AND LOSS FUNCTION

312 14
4 o “ o3
<DOES LOSS FUNCTION MEET THRESHOLD’?>—> INCREMENT 1t

| YES 316
GENERATE SEQUENCE FOR NEW TASK

v 3T

IMPORT COEFFICIENTS FROM TRAINED MODEL

%

CALCULATE BUP

i) S 322

CALCULATE POLICY

. o 324

EFFECT MOVEMENT

o 320

FIG. 3

Patent Application Publication Apr. 18,2024 Sheet 4 of 5 US 2024/0123617 A1

FIG. 4

e Y e e e el me e e e e e e nd o, me mi. me ma me Gne men e

FIG. 5

Patent Application Publication

Apr. 18, 2024 Sheet 5 of 5

628 |
014 s MASS |
STORAGE
VOLATILE L L |
MEMORY [832,300 218, 228"
622, 106, 110
1] L |
632,300 218,228 NPUT |
616 DEVICE(S)
o~ |
NON-VOLATILE . v o0
q MEMORY | INTERFACE <——§—->§ :'
e ”
633" 300 618~ L o
812 632, 300 |
PROCESSOR QU;;UT |
e DEVICE(S) |
LOCAL R Ly
MEMORY 624,108, 112 |
- 613 |
Ly
632, 300 |
104 E
202
|
....... g
(214 (28] [220] |
|
204 |
12221224 || 228 |
|

US 2024/0123617 Al

626

NETWORK

US 2024/0123617 Al

ROBOT MOVEMENT APPARATUS AND
RELATED METHODS

RELATED APPLICATIONS

[0001] This patent arises from a continuation of U.S.
patent application Ser. No. 17/271,779, which was filed on
Feb. 26, 2021, which is the U.S. national stage of Interna-
tional Patent Application Serial No. PCT/CN2018/108253,
which was filed on Sep. 28, 2018. Priority is claimed to U.S.
patent application Ser. No. 17/271,779 and International
Patent Application Serial No. PCT/CN2018/108253. U.S.
patent application Ser. No. 17/271,779 and International
Patent Application Serial No. PCT/CN2018/108253 are
hereby incorporated by reference in their entireties for all
purposes.

FIELD OF THE DISCLOSURE

[0002] This disclosure relates generally to robots, and,
more particularly, to robot movement apparatus and related
methods.

BACKGROUND

[0003] Robots may be programmed to effect certain move-
ments. In addition, artificial neural networks are used to
enable robot movement without robots being programmed
for the robot movement.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram of an example system to
effect robot movement including an example machine learn-
ing context policy searcher in accordance with the teachings
of this disclosure.

[0005] FIG. 2 is a block diagram of the example machine
learning context policy searcher of FIG. 1

[0006] FIG. 3 is a flowchart representative of machine or
computer readable instructions that may be executed to
implement the example system of FIG. 1 and example
machine learning context policy researcher of FIGS. 1 and
2.

[0007] FIG. 4 is a schematic illustration of an example
operation of the example model trainer of FIG. 2.

[0008] FIG. 5 is a schematic illustration of an example
operation of the example model inferencer of FIG. 2.
[0009] FIG. 6 block diagram of an example processing
platform structured to execute the instructions of FIG. 3 to
implement the example system of FIG. 1 and example
machine learning context policy researcher of FIGS. 1 and
2.

[0010] The figures are not to scale. Also, in general, the
same reference numbers will be used throughout the draw-
ing(s) and accompanying written description to refer to the
same or like parts.

DETAILED DESCRIPTION

[0011] Robot movement including robot navigation is
important for the utilization of robots to effect specific tasks.
Adaptability of robot movement is useful in environments in
which the robot encounters changing weather, diverse ter-
rain, and/or unexpected or changing situations including, for
example, collision detection and avoidance and/or the loss
of functionality (e.g., a robot loses full range of motion of a
leg and needs to continue to ambulate). Also, in some

Apr. 18,2024

examples, adapting robot movement is beneficial where the
robot is to learn a new skill, action, or task.

[0012] Adaptability of robot movement can be accom-
plished through machine learning. Machine learning gives
computer systems the ability to progressively improve per-
formance without being explicitly programmed. An example
machine learning methodology is meta learning in which
automatic learning algorithms are applied on metadata.
Another example machine learning methodology is deep
learning, which uses deep neural networks or recurrent
neural networks to enhance performance of the computer
system based on data representations and not task-specific
algorithms.

[0013] A further example is reinforcement learning, which
is concerned with how a robot or other computer system
agent ought to take actions in an environment so as to
maximize some notion of long-term reward. Reinforcement
learning algorithms attempt to find a policy that maps states
of the world to the actions the robot ought to take in those
states. Thus, a policy provides parameters of actions to be
effected or performed by a robot based on environmental
conditions and/or conditions or characteristics of the robot.
With reinforcement learning, the robot interacts with its
environment and receives feedback in the form of rewards.
The robot’s utility is defined by the reward function, and the
robot learns to act so as to maximize expected rewards. The
machine or reinforcement learning is based on observed
samples of outcomes. Reinforcement learning differs from a
supervised learning in that correct input/output pairs are not
presented, nor are sub-optimal actions explicitly corrected.
[0014] Reinforcement learning may include a step-based
policy search or an episode-based policy search. Step-based
policy searching uses an exploratory action in each time step
of the learning process. Episode-based policy searching
changes a parameter vector of the policy at the start of an
episode in the learning process.

[0015] As a solution for robot reinforcement learning,
episode-based policy searching improves skill parameters of
robot by tries. One of the core challenges of such method is
to generate contextual policy with high sample efficiency.
Bayesian optimization is a sample efficient method for
contextual policy search, but Bayesian optimization has the
disadvantage of a computing burden that is cubic to number
of samples. Another example methodology is contextual
covariance matrix adaptation evolutionary strategies, which
uses covariance matrix adaptation evolutionary strategies to
find optimal parameters. Contextual covariance matrix adap-
tation evolutionary strategies have much less sample effi-
ciency than Bayesian optimization contextual policy search.
[0016] The examples disclosed herein ensure sample effi-
ciency for contextual policy search that has linear time cost
to the number of samples. The example disclosed herein also
have both sample efficiency and computing efficiency. These
efficiencies are important where robot activity simulation
episodes can cost about 0.1 seconds to about 1 second per
episode, and a learning process may include numerous
attempts (e.g., hundreds to millions).

[0017] The examples disclosed herein include a training
process and an inference process. The example training
process involves a cost function that makes the process of
sampling accomplish, simultaneously, both a high value of
samples and weighted regression of the samples. The
samples are weighted regressed to generate an upper policy,
which is represented by a parameterized function. As dis-

US 2024/0123617 Al

closed herein, the distance of the upper policy to an ideal
upper policy is used as part of the cost consideration in the
machine learning process.

[0018] In the example inference process, a trained long
short-term memory (LSTM) model is used to sample in the
contextual policy search process. The inference process also
uses the samples to generate the upper policy by weighted
regression. LSTMs are a type of recurrent neural network
(RNN). RNNs are networks with loops in the network,
allowing information to persist so that, for example, previ-
ous information can be used by a robot for a present task.
The loops are in the form of a chain of repeating modules of
neural network. In some RNNSs, the repeating module will
have a simple structure, such as, for example, a single tanh
layer. LSTMs also have the chain-like structure, but the
repeating module have a more complex structure. Instead of
having a single neural network layer, LSTMs including a
plurality (e.g., four) of interacting neural network layers.
[0019] FIG. 1 is a block diagram of an example system
100 to effect robot movement. The example system 100
includes an example robot 102 that includes an example
machine learning context policy searcher 104, example
sensor(s) 106, and example actuator(s) 108.

[0020] The sensor(s) 106 of the robot 102 receive an input
110. The input 110 can be information about the environ-
ment including, for example, weather information, terrain
information, information about other robots, and/or other
information that may be used to assess the state of the
robot’s surroundings. In addition, the input 110 may be
information obtained about internal functioning of the robot
102 or other information concerning the robot 102 includ-
ing, for example, information about the physical and/or
processing functions and/or capabilities of any of the robot’s
systems.

[0021] The input 110 is used by the machine learning
context policy searcher 104 to determine a policy based on
a context such as a desired output. The policy identifies an
action to be taken by the robot 102 based on the input 110
and the context. The actuator(s) 108 of the robot 102 are
used to deliver an output 112 in accordance with the action
identified by the policy.

[0022] Consider, for example, the robot 102 holding a ball
and controlling the robot 102 to throw the ball to objective
position. Here the objective position is the context. A
different trajectory would be generated to control a robot
arm or other actuator 108 according to the different objective
positions or different contexts. The parameter to generate the
trajectory is known as a policy parameter or policy. The
policy, in this example, is generated automatically by the
machine learning context policy searcher 104.

[0023] To facilitate adding the new skill for the robot 102,
a reward function related to the context is defined by the
machine learning contact policy searcher 104 to judge if the
robot 102 does the activity well. The robot 102 performs
multiple attempts to improve the context policy search in
simulation, in reality, and/or jointly in simulation and reality.
During this process an upper policy is learned, which is a
projection from contexts to robot joint trajectory parameters.
This learning process is done by an optimization process to
improve the reward function.

[0024] FIG. 2 is a block diagram of the example machine
learning context policy searcher 104 of FIG. 1. The example
machine learning context policy searcher 104 includes an
example model trainer 202 and an example model inferencer

Apr. 18,2024

204. The example model trainer 202 includes an example
Gaussian process sample generator 206, an example context
training sample generator 208, an example sequence gen-
erator 210, an example vector input 212, an example cal-
culator such as an example loss function calculator 214, and
example comparator 216, an example database 218, and an
example sequence incrementor 220. The example model
inferencer 204 includes an example sequence input 222, an
example coeflicients input 224, and example policy calcu-
lator 226, and an example database 228.

[0025] The example machine learning context policy
searcher 104 and its components form part of an apparatus
to move the robot 102 based on context policy. The machine
learning context policy searcher 104 operates in two parts:
a training part executed with the model trainer 202 and an
inference part executed with the model inferencer 204. In
this example, in the training part, an LSTM model is trained.
In other examples, there may be other RNNs than an LSTM
including, for example, a differentiable neural computer
(DNC). Also in this example, in the inference part, the
LSTM is used to sample the new contextual policy search
task and an upper policy is generated according to a sample
sequence. Using the upper policy, the robot 102 can have
ability to get fitful policy according to any context of the
task.

[0026] In an example training process, the Gaussian pro-
cess sample generator 206 generates Gaussian process
samples. For example, the Gaussian process sample genera-
tor 206 generates Gaussian process samples:

GPioy . Ax)
[0027]
GP,(x)(dy)

The dimension of:

is the same with the dimension of x (policy parameter
vector), [is the number of training samples.

[0028] The Gaussian process is a description of unknown
random process that only assumes the random distribution of
each time point is a Gaussian distribution and the covariance
between each two time point distributions is only related to
the time difference of the two time points. Gaussian distri-
bution describes the unknown point distribution according
to Central Limit theorem.

[0029] The context training sample generator 208 gener-
ates context training samples. For example, the context
training sample generator 208 generates context training
samples:

CS. . 4(sx)
[0030]
CS.. Asx)(d,) is: d =d +d_

The dimension of:

here d s is the dimension of context vector s.

CSi 4(sx)
is translational version of:

GP_ %)
and the translation is decided by a randomly generated
polynomial function.
[0031] The sequence generator 210 generates a sequence
of context variable vectors and policy variable vectors. For

example, the sequence generator 210 generates the sequence
of:

s, and x,

US 2024/0123617 Al

For example, when the LSTM parameters 0 are given, a
sampling process can generate the sequence of s, and x,. The
context variable vectors are related to a movement goal or
target, and the policy variable vectors are related to a
movement trajectory. The sequence is based on the Gaussian
process samples and the context training samples. For
example, N1 Gaussian process samples may be generated,
and N2 context samples are generated for each of the
Gaussian process sample. Each context sample is a polyno-
mial function. In this example, the generated sequence is for
a subset of these N1¥*N2 samples. The objective of the
system and method optimization is to ensure the sampling
process converges for all or most of the N1*N2 samples. In
addition, in some examples, the Gaussian process samples
and the context samples are generated online, which may
also increase a score of the model in the RNN for the online
samples.

[0032] The example vector input 212 inputs into the loss
function calculator and into each cell of the RNN a plurality
of inputs. In some examples, the inputs include a latent
variable vector h,. Also, in some examples, the input
includes an input-context variable vector:

St:[st,lst,z e St,d:]

and policy variable vector x,. Also, in some examples, the
input includes a reward value y,.

[0033] The example model trainer 202 also includes the
example loss function calculator 214, which is to calculate
an upper policy and a loss function based on the sequence.
The upper policy is indicative of a robot movement, and the
loss function is indicative of a degree to which a movement
goal or target is met. In some examples, the loss function
calculator 214 calculates a loss function:

Lopd®)=Epy, o, [F(s1.501.p+0D(AA)]
The loss function is composed of two parts: a first part that
encourages sampling better value points:

Fsip x1.0)
(called BVP); and a second part that encourages sampling to
generate better upper policy:

D(AA)

(called BUP).
[0034] The loss function calculator calculates the BVP as:

T
Flsvr, x10) =) f(sis %)

=1

where (s,x,) is the value of the tth point in the sequence.
Other methods to define BVP may be used in other
examples.

[0035] The loss function calculator calculates the BUP is
as:

D(A,A)=|A-A],
where A (matrix of size d,qo*d,) is upper policy computed

by training data according to the sampled point sequence,
and A is the polynomial to generate the training samples.

Apr. 18, 2024

For example:

12
a=|2 0] for {ﬁl :;ﬁsl
03 2= 52
Here:
[0036]

A= argmin”Dl/z(CI)A —X)”2
4

and then A can be computed as:
A=(D®TDO+AD ' PTDX

Here D is diagonal weighting matrix containing the weight-
ings d, which can be computed as:

d=In(T+0.5)-In(k)

where k is the order of descending sorted f(s,x,); P is
defined as:

(N is length of sampling sequence) and ¢,, can be selected as:
¢,()=1s,1"

(length of @,,(s,) is defined as d,,); AL is a regularization term.
As noted above, in some examples, the calculator is to
calculate the upper policy using a diagonal weighting of the
sequence.

[0037] In some examples, the @(s) can be arbitrary n,,
-dimensional feature function of the context s. Also, in some
examples, the @(s) is selected as linear generalization over
contexts, while other examples may have other generaliza-
tions. In addition, in some examples, the BUP, D(A,A), can
also be other forms of matrix distance. Also, in some
examples, the loss function, L, (8), can also be other forms
of function with F(s,.,X;.;) and D(A,A) as input.

[0038] In some examples, the LSTM network can be
trained to diminish the loss function from the data. For
example, the model trainer 202 includes the comparator 216
to determine if the loss function satisfies a threshold. If the
loss function does not meet the threshold, the sequence
incrementor 220 will increment the value for t and the model
trainer 202 runs through the simulation again with a renewed
sequence generation, BVP, BUP, and loss function calcula-
tion, etc. For example, for a new task, the RNN generates s_t
and x_t, the environment returns y_t, and then RNN gener-
ates s_(t+1) and x_(t+1). The process will go on.

[0039] If the comparator 216 determines that the loss
function does meet the threshold, the machine learning
context policy searcher 104 considers the model trained and
the coefficients of the RNN are set as those computed during
the training phase with operation of the model trainer 202.
In some examples, the coefficients are known as the model.
The model trainer 202 can store the coefficients, the model,
the samples, and/or other data related to the training process
in the database 218 for access in subsequent operations.
With the model trained, the machine learning context policy
searcher 104 triggers operation of the model inferencer 204.

US 2024/0123617 Al

[0040] In the inference stage, the model inferencer 204
inputs or accesses the sequence generated for a new task via
the sequence input 222. For example, a sequence of samples:

(s1.7%1.7)

The model inferencer 204 also inputs or access the coeffi-
cients (the trained model) via the coefficients input 224.
[0041] The model inferencer 204 further includes the
policy calculator 226 that calculates the upper policy. For
example, the policy calculator 226 determined the upper
policy by:

A=(®TDO+M) ' DIDX

The policy calculator 226 can further determine, for any
context s, the corresponding policy as:

IONN

[0042] With the policy determined after the model is
trained after the loss function satisfies the threshold, as
detailed above, the machine learning context policy searcher
104 can signal to the actuator 108 to cause the robot 102 to
perform the robot movement of the upper policy. The
calculated upper policy, policy, and/or other data related to
the inference process can be stored by the model inferencer
204 for access for subsequent operations. In these examples,
the robot movement effected by the actuator(s) 108 in
accordance with the policy is first performed by the robot
102 after the sequence generator 210 generates the sequence,
and the machine learning context policy searcher 104 oper-
ated in accordance with the foregoing teachings.

[0043] The selected context used by the context training
sample generator 208 has the same range with the actual
action to be taken by the robot 102 in the real world. Because
any upper policy can be approximated by a polynomial
function, training for the random generated upper policy
(context samples) can ensure the trained result, which is the
movement taken by the robot 102, approximates the optimal
upper policy.

[0044] While an example manner of implementing the
machine learning context policy searcher 104 of FIG. 1 is
illustrated in FIG. 2, one or more of the elements, processes
and/or devices illustrated in FIG. 2 may be combined,
divided, re-arranged, omitted, eliminated, and/or imple-
mented in any other way. Further, the example model trainer
202, the example model inferencer 204, the examiner Gauss-
ian process sample generator 206, the example context
training sample generator 208, the example sequence gen-
erator 210, the example vector input 212, the example
comparator 216, the example loss function calculator 214,
the example database 218, the example sequence incremen-
tor 220, the example sequence input 222, the example
coeflicients input 2254, the example policy calculator 226,
the example database 228, and/or, more generally, the
example machine learning context policy searcher 104 of
FIG. 2 may be implemented by hardware, software, firm-
ware and/or any combination of hardware, software, and/or
firmware. Thus, for example, any of the example model
trainer 202, the example model inferencer 204, the examiner
Gaussian process sample generator 206, the example context
training sample generator 208, the example sequence gen-
erator 210, the example vector input 212, the example
comparator 216, the example loss function calculator 214,
the example database 218, the example sequence incremen-
tor 220, the example sequence input 222, the example
coeflicients input 2254, the example policy calculator 226,

Apr. 18,2024

the example database 228, and/or, more generally, the
example machine learning context policy searcher 104 could
be implemented by one or more analog or digital circuit(s),
logic circuits, programmable processor(s), programmable
controller(s), graphics processing unit(s) (GPU(s)), digital
signal processor(s) (DSP(s)), application specific integrated
circuit(s) (ASIC(s)), programmable logic device(s) (PLD
(s)), and/or field programmable logic device(s) (FPLD(s)).
When reading any of the apparatus or system claims of this
patent to cover a purely software and/or firmware imple-
mentation, at least one of the example model trainer 202, the
example model inferencer 204, the examiner Gaussian pro-
cess sample generator 206, the example context training
sample generator 208, the example sequence generator 210,
the example vector input 212, the example comparator 216,
the example loss function calculator 214, the example data-
base 218, the example sequence incrementor 220, the
example sequence input 222, the example coefficients input
2254, the example policy calculator 226, the example data-
base 228, and/or the example machine learning context
policy searcher 104 is/are hereby expressly defined to
include a non-transitory computer readable storage device or
storage disk such as a memory, a digital versatile disk
(DVD), a compact disk (CD), a Blu-ray disk, etc. including
the software and/or firmware. Further still, the example
machine learning context policy searcher 104 of FIGS. 1 and
2 may include one or more elements, processes, and/or
devices in addition to, or instead of, those illustrated in FIG.
2, and/or may include more than one of any or all of the
illustrated elements, processes, and devices. As used herein,
the phrase “in communication,” including variations thereof,
encompasses direct communication and/or indirect commu-
nication through one or more intermediary components, and
does not require direct physical (e.g., wired) communication
and/or constant communication, but rather additionally
includes selective communication at periodic intervals,
scheduled intervals, aperiodic intervals, and/or one-time
events.

[0045] A flowchart representative of example hardware
logic, machine or computer readable instructions, hardware
implemented state machines, and/or any combination
thereof for implementing the example machine learning
context policy searcher 104 of FIG. 2 is shown in FIG. 3.
The machine readable instructions may be an executable
program or portion of an executable program for execution
by a computer processor such as the processor 612 shown in
the example processor platform 600 discussed below in
connection with FIG. 6. The program may be embodied in
software stored on a non-transitory computer readable stor-
age medium such as a CD-ROM, a floppy disk, a hard drive,
a DVD, a Blu-ray disk, or a memory associated with the
processor 612, but the entire program and/or parts thereof
could alternatively be executed by a device other than the
processor 612 and/or embodied in firmware or dedicated
hardware. Further, although the example program is
described with reference to the flowchart illustrated in FIG.
3, many other methods of implementing the example
machine learning context policy searcher 104 may alterna-
tively be used. For example, the order of execution of the
blocks may be changed, and/or some of the blocks described
may be changed, eliminated, or combined. Additionally or
alternatively, any or all of the blocks may be implemented
by one or more hardware circuits (e.g., discrete and/or
integrated analog and/or digital circuitry, an FPGA, an

US 2024/0123617 Al

ASIC, a comparator, an operational-amplifier (op-amp), a
logic circuit, etc.) structured to perform the corresponding
operation without executing software or firmware.

[0046] As mentioned above, the example processes of
FIG. 3 may be implemented using executable instructions
(e.g., computer and/or machine readable instructions) stored
on a non-transitory computer and/or machine readable
medium such as a hard disk drive, a flash memory, a
read-only memory, a compact disk, a digital versatile disk,
a cache, a random-access memory, and/or any other storage
device or storage disk in which information is stored for any
duration (e.g., for extended time periods, permanently, for
brief instances, for temporarily buffering, and/or for caching
of the information). As used herein, the term non-transitory
computer readable medium is expressly defined to include
any type of computer readable storage device and/or storage
disk and to exclude propagating signals and to exclude
transmission media.

[0047] “Including” and “comprising” (and all forms and
tenses thereof) are used herein to be open ended terms. Thus,
whenever a claim employs any form of “include” or “com-
prise” (e.g., comprises, includes, comprising, including,
having, etc.) as a preamble or within a claim recitation of
any kind, it is to be understood that additional elements,
terms, etc. may be present without falling outside the scope
of the corresponding claim or recitation. As used herein,
when the phrase “at least” is used as the transition term in,
for example, a preamble of a claim, it is open-ended in the
same manner as the term “comprising” and “including” are
open ended. The term “and/or” when used, for example, in
a form such as A, B, and/or C refers to any combination or
subset of A, B, C such as (1) A alone, (2) B alone, (3) C
alone, (4) A with B, (5) A with C, (6) B with C, and (7) A
with B and with C. As used herein in the context of
describing structures, components, items, objects, and/or
things, the phrase “at least one of A and B” is intended to
refer to implementations including any of (1) at least one A,
(2) at least one B, and (3) at least one A and at least one B.
Similarly, as used herein in the context of describing struc-
tures, components, items, objects, and/or things, the phrase
“at least one of A or B” is intended to refer to implemen-
tations including any of (1) at least one A, (2) at least one B,
and (3) at least one A and at least one B. As used herein in
the context of describing the performance or execution of
processes, instructions, actions, activities, and/or steps, the
phrase “at least one of A and B” is intended to refer to
implementations including any of (1) at least one A, (2) at
least one B, and (3) at least one A and at least one B.
Similarly, as used herein in the context of describing the
performance or execution of processes, instructions, actions,
activities, and/or steps, the phrase “at least one of A or B” is
intended to refer to implementations including any of (1) at
least one A, (2) at least one B, and (3) at least one A and at
least one B.

[0048] The program 300 of FIG. 3 is used to train the
model such as, for example, the LSTM model. The program
300 includes the Gaussian process sample generator 206 of
the model trainer 202 of the machine learning context policy
searcher 104 of the robot 102 generating policy variable
vectors such as, for example, Gaussian process samples
(block 302). The example program 300 also includes the
context training sample generator 208 generating context
training samples (block 304).

Apr. 18,2024

[0049] The sequence generator 210 generates a sequence
(block 306) based on the Gaussian process samples and the
context training samples. The vector input 212 inputs vec-
tors (block 308) into each cell of the RNN of the LSTM
model for the sequence. In some examples, the vectors
include a latent variable vector, an input-context vector and
policy vector, and a reward value.

[0050] A calculator, such as the loss function calculator
214, calculates better value points (BVP), better upper
policy (BUP), and a loss function (block 310) based on the
sequence and input vectors. The comparator 216 determines
if the loss function meets or satisfies a threshold (block 312).
If the loss function does not meet the threshold, the sequence
incrementor 220 increments t, a count in the sequence (block
314). With t incremented, the example program 300 contin-
ues with the sequence generator 210 generating the sequence
at the incremented t (block 306). The example program 300
continues to determine a new loss function, etc.

[0051] If the comparator 216 determines that the loss
function does meet the threshold (block 312), the example
program 300 has a trained model. For example, the loss
function meeting the threshold may be indicative of the
LSTM model or network meeting a desired diminished loss
function. In this example, with an acceptably diminished
loss function, the robot 102 has learned to meet the context
or otherwise take the desired action.

[0052] The example program 300 continues with the
sequence generator 210 generating a sequence for a new task
(block 316), which is accessed or received by the model
inferencer 204 via the sequence input 222. The coefficients
input 224 of the model inferencer 204 imports coefficients
from the trained model (block 318). The policy calculator
226 calculates the BUP (block 320). In addition, the policy
calculator 226 determines the policy based on the BUP
(block 322). With the policy determined, the actuator(s) 108
of the robot 102 perform or effect the movement indicated
by the policy (block 324).

[0053] FIG. 4 is a schematic illustration of an example
operation of the example model trainer 202 of FIG. 2, and
FIG. 5 is a schematic illustration of an example operation of
the example model inferencer 204 of FIG. 2. FIGS. 4 and 5§
show the sequence (s, and x,) of the Gaussian process
samples and context training samples for a plurality of RNN
cells. In addition, the inputs of the cells is composed of three
parts:

[0054] (1) latent variable vector:
hy;

[0055] (2) input-context variable vector and policy vari-
able vector:
SIS, 185 - - - Sea; and x5

[0056] (3) reward value:
Ye

[0057] The training stage of FIG. 4 determines the loss

function (labeled “Loss” in the figure). The Loss in FIG. 4
is representative of the reward function. The reward function
in the training process is composed of two parts: (1) the
better values (y_t) (BVP); and (2) the regressed upper policy
(BUP). Both BVP and BUP are to be calculated and opti-
mized. The input used to determine the Loss in FIG. 4 is the
output of f(x). The coefficients of the RNN in FIG. 4, the
training stage, are calculated and recalculated for optimiza-
tion.

US 2024/0123617 Al

[0058] The inference stage of FIG. 5 uses the loss deter-
mined in the training stage as input in RNN cells to
determine the upper policy (labeled “A” in the figure). The
input used to determine A in FIG. 5 is the s_t and h_t. In the
inferencer stage of FIG. 5, the coefficients of the RNN are
fixed.

[0059] FIG. 6 is a block diagram of an example processor
platform 1000 structured to execute the instructions of FIG.
4 to implement the machine learning context policy searcher
104 of FIGS. 1 and 2. The processor platform 1000 can be,
for example, a server, a personal computer, a workstation, a
self-learning machine (e.g., a neural network), a mobile
device (e.g., a cell phone, a smart phone, a tablet such as an
iPad™), a personal digital assistant (PDA), an Internet
appliance, a DVD player, a CD player, a digital video
recorder, a Blu-ray player, a gaming console, a personal
video recorder, a set top box, a headset or other wearable
device, or any other type of computing device.

[0060] The processor platform 600 of the illustrated
example includes a processor 612. The processor 612 of the
illustrated example is hardware. For example, the processor
612 can be implemented by one or more integrated circuits,
logic circuits, microprocessors, GPUs, DSPs, or controllers
from any desired family or manufacturer. The hardware
processor may be a semiconductor based (e.g., silicon
based) device. In this example, the processor 612 imple-
ments the example model trainer 202, the example model
inferencer 204, the examiner Gaussian process sample gen-
erator 206, the example context training sample generator
208, the example sequence generator 210, the example
vector input 212, the example comparator 216, the example
loss function calculator 214, the example sequence incre-
mentor 220, the example sequence input 222, the example
coeflicients input 2254, the example policy calculator 226,
and/or the example machine learning context policy searcher
104

[0061] The processor 612 of the illustrated example
includes a local memory 613 (e.g., a cache). The processor
612 of the illustrated example is in communication with a
main memory including a volatile memory 614 and a
non-volatile memory 616 via a bus 618. The volatile
memory 614 may be implemented by Synchronous
Dynamic Random Access Memory (SDRAM), Dynamic
Random Access Memory (DRAM), RAMBUS® Dynamic
Random Access Memory (RDRAM®) and/or any other type
of random access memory device. The non-volatile memory
616 may be implemented by flash memory and/or any other
desired type of memory device. Access to the main memory
614, 616 is controlled by a memory controller.

[0062] The processor platform 600 of the illustrated
example also includes an interface circuit 620. The interface
circuit 620 may be implemented by any type of interface
standard, such as an Ethernet interface, a universal serial bus
(USB), a Bluetooth® interface, a near field communication
(NFC) interface, and/or a PCI express interface.

[0063] In the illustrated example, one or more input
devices 622, 106, 110 are connected to the interface circuit
620. The input device(s) 622, 106, 110 permit(s) a user to
enter data and/or commands into the processor 612. The
input device(s) can be implemented by, for example, an
audio sensor, a microphone, a camera (still or video), a
keyboard, a button, a mouse, a touchscreen, a track-pad, a
trackball, isopoint, and/or a voice recognition system.

Apr. 18,2024

[0064] One or more output devices 624, 108, 112 are also
connected to the interface circuit 620 of the illustrated
example. The output devices 624, 108, 112 can be imple-
mented, for example, by display devices (e.g., a light emit-
ting diode (LED), an organic light emitting diode (OLED),
a liquid crystal display (LCD), a cathode ray tube display
(CRT), an in-place switching (IPS) display, a touchscreen,
etc.), a tactile output device, a printer, and/or speaker. The
interface circuit 620 of the illustrated example, thus, typi-
cally includes a graphics driver card, a graphics driver chip,
and/or a graphics driver processor.

[0065] The interface circuit 620 of the illustrated example
also includes a communication device such as a transmitter,
a receiver, a transceiver, a modem, a residential gateway, a
wireless access point, and/or a network interface to facilitate
exchange of data with external machines (e.g., computing
devices of any kind) via a network 626. The communication
can be via, for example, an Ethernet connection, a digital
subscriber line (DSL) connection, a telephone line connec-
tion, a coaxial cable system, a satellite system, a line-of-site
wireless system, a cellular telephone system, etc.

[0066] The processor platform 600 of the illustrated
example also includes one or more mass storage devices 628
for storing software and/or data. Examples of such mass
storage devices 628 include floppy disk drives, hard drive
disks, compact disk drives, Blu-ray disk drives, redundant
array of independent disks (RAID) systems, and digital
versatile disk (DVD) drives.

[0067] The machine executable instructions 300 of FIG. 3
and other machine executable instructions 632 may be
stored in the mass storage device 628, in the volatile
memory 614, in the non-volatile memory 616, and/or on a
removable non-transitory computer readable storage
medium such as a CD or DVD.

[0068] From the foregoing, it will be appreciated that
example apparatus, systems, articles of manufacture, and
methods have been disclosed that effect robot movement
and, in particular, movement learned by the robot outside of
the robot’s standard or original programming. These
examples use inputs, such as data gathered or otherwise
delivered to sensors, which is used in a machine learning
context, to output a policy to be used by the robot to change
the robot’s activity including the movement of the robot.
The disclosed apparatus, systems, articles of manufacture,
and methods improve the efficiency of using a computing
device by enabling a robot to learn new tasks and actions,
which allows the robot to adapt to changing surroundings or
changing functional capabilities. The disclosed apparatus,
systems, articles of manufacture, and methods are accord-
ingly directed to one or more improvement(s) in the func-
tioning of a computer.

[0069] Because the context policy is a continuous function
and both context and policy parameters are multi-dimen-
sional, the machine learning context policy searcher dis-
closed herein may execute the learning process many times
(e.g., hundreds to millions). Even in a simulation setting, the
computing cost (e.g., about 0.1 seconds to about 1.0 second
per attempt or per simulation) of such a large number of
executions is significant. The examples disclosed herein
have linear computing complexity to enable the learning of
context policy with high sample efficiency and efficient
computing costs. In addition, the examples of this disclosure
provide reasonable time and sample efficiency for robot
simulation that has better performance than the compara-

US 2024/0123617 Al

tively lower computing ability against the cloud computing.
Therefore, these examples, which enable robots to adapt to
new tasks efficiently, are useful to edge computing.

[0070] Example apparatus, systems, articles of manufac-
ture, and methods for robot movement are disclosed herein.
Example 1 includes a robot movement apparatus to move a
robot, where the apparatus includes a sequence generator to
generate a sequence of context variable vectors and policy
variable vectors, the context variable vectors related to a
movement target and the policy variable vectors related to a
movement trajectory. The apparatus also includes a calcu-
lator to calculate an upper policy and a loss function based
on the sequence, the upper policy indicative of a robot
movement and the loss function indicative of a degree to
which a movement target is met. In addition, the apparatus
includes a comparator to determine if the loss function
satisfies a threshold and an actuator to cause the robot to
perform the robot movement of the upper policy when the
loss function satisfies the threshold.

[0071] Example 2 includes the robot movement apparatus
of Example 1, wherein the calculator is to calculate the
upper policy using a diagonal weighting of the sequence.
[0072] Example 3 includes the robot movement apparatus
of Examples 1 or 2, wherein the calculator is to calculate the
loss function further based on the upper policy.

[0073] Example 4 includes the robot movement apparatus
of Examples 1-3, wherein the sequence is a first sequence,
the upper policy is a first upper policy, the robot movement
is a first robot movement, and the loss function is a first loss
function, the apparatus further including a sequence incre-
mentor to change the first sequence to a second sequence
when the first loss function does not satisty the threshold.

[0074] Example 5 includes the robot movement apparatus
of Example 4, wherein the calculator is to calculate a second
upper policy and a second loss function based on the second
sequence, the second upper policy indicative of a second
robot movement and the second loss function indicative of
the degree to which the movement target is met. The
comparator is to determine if the second loss function
satisfies the threshold, and the actuator to cause the robot to
perform the second robot movement of the second upper
policy when the second loss function satisfies the threshold.

[0075] Example 6 includes the robot movement apparatus
of Examples 1-5, wherein the sequence is based on long
short-term memory parameters.

[0076] Example 7 includes the robot movement apparatus
of Examples 1-6, wherein the calculator is to determine the
upper policy further based on a matrix distance.

[0077] Example 8 includes the robot movement apparatus
of Examples 1-7, wherein the robot movement is first
performed by the robot after the sequence generator gener-
ates the sequence.

[0078] Example 9 is a robot movement apparatus to move
a robot, where the apparatus includes means for generating
a sequence of context variable vectors and policy variable
vectors, the context variable vectors related to a movement
target and the policy variable vectors related to a movement
trajectory. Example 9 also includes means for calculating an
upper policy and a loss function based on the sequence, the
upper policy indicative of a robot movement and the loss
function indicative of a degree to which a movement target
is met. In addition, Example 9 includes means for determin-
ing if the loss function satisfies a threshold and means for

Apr. 18,2024

actuating the robot to perform the robot movement of the
upper policy when the loss function satisfies the threshold.
[0079] Example 10 includes the robot movement appara-
tus of Example 9, wherein the means for calculating is to
calculate the upper policy using a diagonal weighting of the
sequence.

[0080] Example 11 includes the robot movement appara-
tus of Examples 9 or 10, wherein the means for calculating
is to calculate the loss function further based on the upper
policy.

[0081] Example 12 includes the robot movement appara-
tus of Examples 9-11, wherein the sequence is a first
sequence, the upper policy is a first upper policy, the robot
movement is a first robot movement, and the loss function
is a first loss function, the apparatus further including means
for changing the first sequence to a second sequence when
the first loss function does not satisfy the threshold.
[0082] Example 13 includes the robot movement appara-
tus of Example 12, wherein the means for calculating is to
calculate a second upper policy and a second loss function
based on the second sequence, the second upper policy
indicative of a second robot movement and the second loss
function indicative of the degree to which the movement
target is met. The means for determining is to determine if
the second loss function satisfies the threshold, and the
means for actuating is to actuate the robot to perform the
second robot movement of the second upper policy when the
second loss function satisfies the threshold.

[0083] Example 14 includes the robot movement appara-
tus of Examples 9-13, wherein the sequence is based on long
short-term memory parameters.

[0084] Example 15 includes the robot movement appara-
tus of Examples 9-14, wherein the means for calculating is
to determine the upper policy further based on a matrix
distance.

[0085] Example 16 includes the robot movement appara-
tus of Examples 9-15, wherein the robot movement is first
performed by the robot after the means for generating
generates the sequence.

[0086] Example 17 is a non-transitory computer readable
storage medium including machine readable instructions
that, when executed, cause a machine to, at least: generate
a sequence of context variable vectors and policy variable
vectors, the context variable vectors related to a movement
target and the policy variable vectors related to a movement
trajectory. The instructions further cause the machine to
calculate an upper policy and a loss function based on the
sequence, the upper policy indicative of a robot movement
and the loss function indicative of a degree to which a
movement target is met. In addition, the instructions cause
the machine to determine if the loss function satisfies a
threshold and actuate a robot to perform the robot movement
of the upper policy when the loss function satisfies the
threshold.

[0087] Example 18 includes the storage medium of
Example 17, wherein the instructions cause the machine to
calculate the upper policy using a diagonal weighting of the
sequence.

[0088] Example 19 includes the storage medium of
Examples 17 or 18, wherein instructions cause the machine
to calculate the loss function further based on the upper
policy.

[0089] Example 20 includes the storage medium of
Examples 17-19, wherein the sequence is a first sequence,

US 2024/0123617 Al

the upper policy is a first upper policy, the robot movement
is a first robot movement, and the loss function is a first loss
function, the instructions further causing the machine to
change the first sequence to a second sequence when the first
loss function does not satisfy the threshold.

[0090] Example 21 includes the storage medium of
Example 20, wherein the instructions further cause the
machine to calculate is to calculate a second upper policy
and a second loss function based on the second sequence, the
second upper policy indicative of a second robot movement
and the second loss function indicative of the degree to
which the movement target is met. Also, the instructions
cause the machine to determine is to determine if the second
loss function satisfies the threshold and actuate the robot to
perform the second robot movement of the second upper
policy when the second loss function satisfies the threshold.
[0091] Example 22 includes the storage medium of
Examples 17-21, wherein the sequence is based on long
short-term memory parameters.

[0092] Example 23 includes the storage medium of
Examples 17-22, wherein the instructions further cause the
machine to determine the upper policy further based on a
matrix distance.

[0093] Example 24 includes the storage medium of
Examples 17-23, wherein the robot movement is first per-
formed by the robot after the instructions cause the machine
to generate the sequence.

[0094] Example 25 is a method to move a robot, the
method including generating a sequence of context variable
vectors and policy variable vectors, the context variable
vectors related to a movement target and the policy variable
vectors related to a movement trajectory. The method also
includes calculating an upper policy and a loss function
based on the sequence, the upper policy indicative of a robot
movement and the loss function indicative of a degree to
which a movement target is met. In addition, the method
includes determining if the loss function satisfies a threshold
and actuating the robot to perform the robot movement of
the upper policy when the loss function satisfies the thresh-
old.

[0095] Example 26 includes the method of Example 25,
further including calculating the upper policy using a diago-
nal weighting of the sequence.

[0096] Example 27 includes the method of Examples 25 or
26, further including calculating the loss function further
based on the upper policy.

[0097] Example 28 includes the method of Examples
25-27, wherein the sequence is a first sequence, the upper
policy is a first upper policy, the robot movement is a first
robot movement, and the loss function is a first loss function,
the method further including changing the first sequence to
a second sequence when the first loss function does not
satisfy the threshold.

[0098] Example 29 includes the method of Example 28,
and further includes calculating a second upper policy and a
second loss function based on the second sequence, the
second upper policy indicative of a second robot movement
and the second loss function indicative of the degree to
which the movement target is met. The example method also
includes determining if the second loss function satisfies the
threshold and actuating the robot to perform the second
robot movement of the second upper policy when the second
loss function satisfies the threshold.

Apr. 18,2024

[0099] Example 30 includes the method of Examples
25-29, wherein the sequence is based on long short-term
memory parameters.

[0100] Example 31 includes the method of Examples
25-30, further including determining the upper policy fur-
ther based on a matrix distance.

[0101] Example 32 includes the method of Examples
25-31, wherein the robot movement is first performed by the
robot after the generating of the sequence.

[0102] Although certain example methods, apparatus and
articles of manufacture have been disclosed herein, the
scope of coverage of this patent is not limited thereto. On the
contrary, this patent covers all methods, apparatus and
articles of manufacture fairly falling within the scope of the
claims of this patent.

1. canceled.

2. A memory comprising machine readable instructions to
cause at least one processor circuit to:

train a reward function with reinforcement learning, the

reward function to define a robot’s activities in an
environment;

deploy the reward function in the robot to cause the robot

to move in the environment in accordance with the
reward function;

access reward feedback based on the robot movement;

and

process the reward feedback to update the reward func-

tion.

3. The memory of claim 1, wherein the reinforcement
learning is episode based.

4. The memory of claim 1, wherein the instructions cause
one or more of the at least one processor circuit to cause
storage of data related to the reward feedback in a database.

5. The memory of claim 1, wherein the instructions to
cause one or more of the at least one processor circuit to train
the reward function based on a demonstration.

6. The memory of claim 5, wherein the instructions to
cause one or more of the at least one processor circuit to
effect the demonstration.

7. The memory of claim 1, wherein the instructions cause
one or more of the at least one processor circuit to train the
reward function using a tanh activation.

8. The memory of claim 1, wherein the instructions cause
one or more of the at least one processor circuit to train the
reward function in a simulation and in the environment.

9. A system comprising:

interface circuitry;

machine readable instructions; and

at least one programmable circuit to operate in accordance

with the instructions to:

train a reward function with reinforcement learning, the
reward function to define a robot’s activities in an
environment;

deploy the reward function in the robot to cause the
robot to move in the environment in accordance with
the reward function;

access reward feedback based on the robot movement;
and

process the reward feedback to update the reward
function.

10. The system of claim 9, wherein the reinforcement
learning is episode based.

US 2024/0123617 Al

11. The system of claim 9, further including a database,
one or more of the at least one programmable circuit to cause
storage of data related to the reward feedback in the data-
base.

12. The system of claim 9, wherein one or more of the at
least one programmable circuit is to train the reward func-
tion based on a demonstration.

13. The system of claim 12, wherein one or more of the
at least one programmable circuit is to cause performance of
the demonstration.

14. The system of claim 9, wherein one or more of the at
least one programmable circuit is to train the reward func-
tion using a tanh activation.

15. The system of claim 9, wherein one or more of the at
least one programmable circuit is to train the reward func-
tion in a simulation and in the environment.

16. A method for training a robot, the method comprising:

training a reward function with reinforcement learning by

executing an instruction with at least one processor
circuit, the reward function to define a robot’s activities
in an environment;

Apr. 18,2024

deploying the reward function in the robot to cause the
robot to move in the environment based on the reward
function;
accessing reward feedback based on the robot movement;
and
updating the reward function based on the reward feed-
back by executing an instruction with one or more of
the at least one processor circuit.
17. The method of claim 16, wherein the reinforcement
learning is episode based.
18. The method of claim 16, further including:
presenting a demonstration; and
training the reward function based on the demonstration.
19. The method of claim 16, further including training the
reward function using a tanh activation.
20. The method of claim 16, further including training the
reward function jointly in a simulation and in the environ-
ment.

