
US 20200322257A1
IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0322257 A1

SUNG et al . (43) Pub . Date : Oct. 8 , 2020

Publication Classification (54) METHODS AND SYSTEMS FOR SENDING
PACKETS THROUGH A PLURALITY OF
TUNNELS

(71) Applicant : Pismo Labs Technology Limited ,
Kowloon (HK)

(72) Inventors : Patrick Ho Wai SUNG , Kowloon
(HK) ; Kam Chiu NG , New Territories
(HK) ; Wan Chun LEUNG , New
Territories (HK)

(73) Assignee : Pismo Labs Technology Limited ,
Kowloon (HK)

(51) Int . Ci .
H04L 12/707 (2006.01)
H04L 12/46 (2006.01)

(52) U.S. CI .
CPC H04L 45/24 (2013.01) ; H04L 2212/00

(2013.01) ; H04L 12/4633 (2013.01)
(57) ABSTRACT
Described in example embodiments herein are methods and
systems for implementing sending packets from a first
network node to a second network node . Packets belonging
to the same session may be sent through the same or
different tunnels . The second network node processes pack
ets belonging to the same session using the same core . In
accordance with an example embodiment , the first network
node informs the second network code the core to process
the packets . Optionally , selection of core at the second
network node is assisted by a core identity created by the
first network based on the session . The core identity may be
stored in the header or payload of the packets . In an example
embodiment , the second network determines the core for
processing packet belonging to the same session .

(21) Appl . No .: 16 / 882,485

(22) Filed : May 24 , 2020

Related U.S. Application Data
(63) Continuation of application No. PCT / IB2019 /

052743 , filed on Apr. 4 , 2019 .

3000

310
312 -316 7314

303 315 314-1 302 301 312-1
308

312-2
304 4

13 313 312-3 312-3
306

305 314-2

Patent Application Publication Oct. 8 , 2020 Sheet 1 of 10 US 2020/0322257 A1

102 Receiver MPND 302 receives
the first datagram from
sender MPND 301

Does the first
datagram

belong to a new
data - flow ?

Yes
Receiver MPND 302
assigns a core and a

core identity

Determine a core based
on the prior core
assignment of the
data - flow the first

datagram belongs to
Receiver MPND 302

informs MPND 301 the
core identity

Process the first
datagram at the
assigned core

2000
201

200

Patent Application Publication

Processor 200a 200b

Main memory

Core
Core

202

203

Oct. 8 , 2020 Sheet 2 of 10

204

Secondary Storage
Network Interface

US 2020/0322257 A1

Fig . 2

3000

Patent Application Publication

307

310

311

312

316

314

303

315

302

301

314-1

308

312-2

3

313

Oct. 8 , 2020 Sheet 3 of 10

312-3

Me

309

US 2020/0322257 A1

Patent Application Publication Oct. 8 , 2020 Sheet 4 of 10 US 2020/0322257 A1

Sender MPND 301 receives a core
identity from receiver MPND 302

402
Sender MPND 301 has a datagram to be

sent to the receiver MPND 302

403 Sender MPND 301 stores the core
identity of the core determined in the

datagram

Sender MPND 301 sends the datagram to
the receiver MPND 302

An aggregated tunnel is established between sender MPND 301 and receiver MPND 302. A core identity is created

Receiver MPND 30 % receives the encapsulation - packet from sender MPND 301

Patent Application Publication

502

Sender MPND 301 has a datagram to be sent to receiver MPND 302 over the aggregated tunnel

Retrieve the core identity

Sender MPND 301 creates an encapsulation packet by encapsulating the datagram with the core identity

Oct. 8 , 2020 Sheet 5 of 10

Receiver MPND 302 assigns the encapsulation - packet to a core according to the core identity

Sender MPND 301 sends the encapsulation - packet to receiver MPND 302 through the aggregated tunnel

Fig . 5

US 2020/0322257 A1

6000

Processor
600

Patent Application Publication

600a

600b

Main memory

Core Core

602

603

604

605

606

607

Oct. 8 , 2020 Sheet 6 of 10

Secondary Storage
Network Interface
Network Interface
Network Interface
Network Interface

US 2020/0322257 A1

Fig . 6

701

705

First MPND and Second MPND exchange processor information during establishment of an aggregated tunnel

Sender MPND sends the encapsulation packet to the receiver MPND through the aggregated tunnel

Patent Application Publication

702

When a sender MPND has a datagram to be sent through the aggregated tunnel , the sender MPND identifies the session of the datagram

Receiver MPND receives the encapsulation packet from the sender MPND through the aggregated tunnel

707

Sender MPND assigns a core of
receiver to the datagram based on the session

Receiver MPND decapsulates the encapsulation packet to retrieve the core identity and the datagram .

Oct. 8 , 2020 Sheet 7 of 10

704

708

Sender MPND encapsulates a core identity and the datagram into an encapsulation packet . The core identity corresponds to the core assigned .

Receiver MPND uses the core corresponding to the core identity to process the datagram

US 2020/0322257 A1

Fig . 7

80 Sender MPND has a first datagram to be sent to the receiver MPND

Sender MPND sends the one or 806 more encapsulation packets to w
the receiver MPND

802

Sender MPND selects one or more of
the tunnels of an aggregated tunnel based on a tunnel selection criteria to send the first datagram to the receiver MPND

Patent Application Publication

807

Receiver MPND receives the
one or more encapsulation packets from the sender MPND

ceiver MPND

803

808

Sender MPND encrypts the first datagram to create a payload for one
or more encapsulation packets

Receiver MPND decapsulates one or more encapsulation packets to retrieve the payload

Oct. 8 , 2020 Sheet 8 of 10

804

809

Sender MPND creates an aggregated tunnel header corresponding to the aggregated tunnel

Receiver MPND decrypts the payload to retrieve the first datagram

805

810

Sender MPND encapsulates the payload with the aggregated tunnel header to create one or more encapsulation packets

Receiver MPND assigns the datagram to one of its cores based on core selection criteria criterion

US 2020/0322257 A1

Fig

901

905

Sender MNPD has a first datagram to
be sent to the receiver MNPD

Sender MPND sends the first encapsulation packet to the
receiver MPND

Patent Application Publication

902

906

Sender MNPD determines a session - ID ,

based on a session identification
criterion , for the session the first datagram belongs to

Receiver MPND receives the first encapsulation - packet from the sender MPND

903

907

Sender MPND selects one or more of
the tunnels of an aggregated tunnel based on a tunnel selection criteria to send the first datagram to the receiver MPND

Receiver MPND retrieves the session - ID and the first datagram from the encapsulation packet

Oct. 8 , 2020 Sheet 9 of 10

MPND

908

904

Sender MWBAR encapsulates the first datagram and the session - ID to create
a first encapsulation packet

Receiver MPND assigns the first datagram to one of its cores based on the session - ID

US 2020/0322257 A1

1001 Sender MPND has a first datagram to be sent to the receiver MPND

1006

Sender MPND encapsulates the first datagram with the aggregated tunnel header to create a first encapsulation - packet

1002

1007

Sender MPND creates a session - ID based on at least one first criteria for the session the first datagram belongs to

Patent Application Publication

Sender MPND sends the first encapsulation - packet to the receiver MPND

1008

1003 Sender MPND selects one or more of the tunnels of an aggregated
tunnel based on at least one second criteria to send the first datagram to the receiver MPND

Receiver MPND receives the first encapsulation - packet from the sender MPND

Oct. 8 , 2020 Sheet 10 of 10

1004

Sender MPND creates an aggregated tunnel header corresponding to the aggregated tunnel

1009

Receiver MPND decapsulates the first N encapsulation - packet to extract the first datagram

1010

Receiver MPND retrieves the session - ID
from the aggregated tunnel header

1011

Receiver MPND assigns the first datagram to one of its processor cores
corresponding to the session - ID

datagr

1005

Sender MPND includes the session - ID with the aggregated tunnel header

US 2020/0322257 A1

US 2020/0322257 Al Oct. 8. 2020
1

METHODS AND SYSTEMS FOR SENDING
PACKETS THROUGH A PLURALITY OF

TUNNELS

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This Application is a Bypass Continuation of Inter
national Application No. PCT / IB2019 / 052743 filed on Apr.
4 , 2019 , the entire disclosure of which is specifically incor
porated herein by reference thereto .

TECHNICAL FIELD

[0002] Embodiments of the present invention relate to the
field of network data communications at a network device ,
and specifically , to select computing cores of the network
device to process packets sent through a plurality of tunnels .

BACKGROUND ART

[0003] A multi Wide Area Network (WAN) site - to - site
VPN router is a router that supports aggregating bandwidth
of a plurality of WAN connections by forming an aggregated
tunnel . This type of routers is referred to as MPND router
hereinafter . A MPND router may establish a plurality of
aggregated tunnels with a plurality of network nodes . Selec
tion of WAN connections for a particular aggregated tunnel
may be determined based on various factors such as , but not
limited to , source IP address , destination IP address , source
port number , destination port number , content of application
data , Quality of Service (QoS) requirement of the applica
tions , time and date , user - ID , bandwidth , latency or hop
count of the connected links etc. individually or in any
combination thereof . Commonly these MPNDs have the
capability to add or remove WAN connections as needed
during data transfer . Determining the WAN connections to
be comprised in an aggregated tunnel may be performed by
an administrator / user or by the router itself according to
real - time requirements .
[0004] An MPND may be implemented with one process
ing - unit or a plurality of processing - units , such as multipro
cessor devices . A processing - unit may have a plurality of
cores . The use of a plurality of cores may provide improved
performance by sharing the load of processing network
datagrams or packets . MPNDs may simultaneously handle
traffic received from many applications running on numer
ous host machines such as desktop / laptop computers , serv
ers , smartphones , and more recently loT devices etc. Dif
ferent cores in the MPND may have different processing
performance due to different factors , including processing
load . Indiscriminately allocating the received datagrams or
packets to the cores may result in consecutive packets of a
particular data session being processed by different cores .
This may then result in out out - of - order datagrams or
packets progressing and lower overall throughput of the
particular data session .

particular session . Datagrams belonging to the same session
is assigned to the same core . This conditional assignment
reduces re - ordering of datagrams which , as a result , reduces
packet - drops and increases the overall data throughput rate
of the receiver MPND .
[0006] In one embodiment , the receiver MPND associates
a received datagram to a particular session based on values
of one or more of the header fields , or the content of the
payload contained in the datagram . In this embodiment , the
sender MPND is not required to know the processor infor
mation comprised in the receiver MPND . The processor
information of a receiver MPND may include , but not
limited to , the number of cores comprised within the
receiver MPND . Value or status of any parameter that is
associated with the cores may also be included in the
processor information . In this particular embodiment , the
receiver MPND assigns the received datagrams to its cores
independently from the sender MPND .
[0007] In one embodiment , the sender MPND receives the
Processor information of the receiver MPND prior to send
ing the datagram . In this embodiment , the sender MPND
determines which core the receiver MPND should assign the
received datagram to . The sender MPND then sends the
corresponding instruction to the receiver MPND .
[0008] In one embodiment , tunnels are used to create
connection - oriented communication links between the
sender MPND and the receiver MPND . The tunnels are
established at the sender MPND based on a criterion . Each
datagram destined for the receiver MPND is then encapsu
lated with the tunnel header creating a new datagram (re
ferred to as " encapsulation packet ” herein) . Each encapsu
lation packet is then sent to the receiver MPND . After
receiving each encapsulation packet , the receiver MPND
determines a core to which the received encapsulation
packet will be assigned to . There is no limitation on how this
determination is made by the receiver MPND .
[0009] In one embodiment where tunnels are used to send
datagrams from the sender MPND to the receiver MPND ,
the sender MPND receives the PI of the receiver MPND
prior to sending the datagram . In this embodiment , the
sender MPND determines which core the receiver MPND
should assign the received encapsulation packet to .
[0010] In one embodiment , the sender MPND and the
receiver MPND are able to send and receive datagrams
using aggregated tunnels as used by MPNDs . In this
embodiment encapsulation packets are created by encapsu
lating each datagram with the aggregated tunnel header .
Each encapsulation packet is then sent to the receiver
MPND . After receiving each encapsulation packet , the
receiver MPND determines a core to which the received
encapsulation packet will be assigned to .
[0011] In one embodiment where the sender MPND and
the receiver MPND uses aggregated tunnels to transmit and
receive datagrams , the sender MPND receives the processor
information of the receiver MPND prior to sending the
datagram . In this embodiment , the sender MPND determines
which core the receiver MPND should assign the received
encapsulation packet to .
[0012] The one or more criteria used to assign the received
datagrams to a particular core is related to the one or more
condition based on which the tunnel is formed . In one
embodiment , the receiver MPND assigns inbound data units
to a core with less processing load to reduce processing
delay . The term " data unit " used herein refer to any Protocol

SUMMARY OF THE INVENTION

[0005] The present invention discloses methods and sys
tems to improve the rate of processing of datagrams at a
receiver MPND by assigning each received datagram to a
determined core of the processor of the receiver MPND . The
determination is made by matching each received datagram
against a criterion or criteria . Datagrams that satisfy a
particular criterion or a set of criteria are associated with a

US 2020/0322257 A1 Oct. 8. 2020
2

Data Unit (PDU) . For consistency , only the term “ datagram ”
is used hereinafter to refer to such PDU . Although the
present invention describes methods and systems to condi
tionally allocate datagrams to cores of a multicore system ,
one of ordinary skill in the art would appreciate that the
methods and systems detailed herein can be applied to any
computing system with a plurality of processors such as a
single multicore processor , a plurality of single core pro
cessors , a plurality of multicore processors and the like .

DETAILED DESCRIPTIONS

[0013] The ensuing description provides preferred exem
plary embodiment (s) only , and is not intended to limit the
scope , applicability or configuration of the invention .
Rather , the ensuing description of the preferred exemplary
embodiment (s) will provide those skilled in the art with an
enabling description for implementing a preferred exem
plary embodiment of the invention . It is being understood
that various changes may be made in the function and
arrangement of elements without departing from the spirit
and scope of the invention as set forth in the appended
claims . Thus , the embodiment (s) are not to be limited to
those shown , but are to be accorded the widest scope
consistent with the principles and features described herein .
[0014] For purpose of clarity , details relating to technical
material that is known in the technical fields related to the
embodiment (s) have not been described in detail . Specific
details are given in the following description to provide a
thorough understanding of the embodiments . However , it
will be understood by one of ordinary skill in the art that the
embodiments may be practiced without these specific
details . For example , circuits may be shown in block dia
grams in order not to obscure the embodiments in unnec
essary detail . In other instances , well - known circuits , pro
cesses , algorithms , structures , and techniques may be shown
without unnecessary detail in order to avoid obscuring the
embodiments .
[0015] Also , it is noted that the embodiments may be
described as a process which is depicted as a flowchart , a
flow diagram , a se ion diagram , a structure diagram , or a
block diagram . Although a flowchart may describe the
operations as a sequential process , many of the operations
can be performed in parallel or concurrently . In addition , the
order of the operations may be re - arranged . A process is
terminated when its operations are completed , but could
have additional steps not included in the figure . A process
may correspond to a method , a function , a procedure , a
subroutine , a subprogram , etc. When a process corresponds
to a function , its termination corresponds to a return of the
function to the calling function or the main function .
[0016] Embodiments , or portions thereof , may be embod
ied in program instructions operable upon a processing - unit
for performing functions and operations as described herein .
The program instructions making up the various embodi
ments may be stored in a non - transitory storage medium .
Moreover , as disclosed herein , the term “ non - transitory
storage medium ” may represent one or more devices for
storing data , including read - only memory (ROM) , program
mable read - only memory (PROM) , erasable programmable
read - only memory (EPROM) , random access memory
(RAM) , magnetic RAM , core memory , floppy disk , flexible
disk , hard disk , magnetic tape , CD - ROM , flash memory
devices , a memory card and / or other machine readable
mediums for storing information . The term “ machine - read

able medium ” includes , but is not limited to portable or fixed
storage devices , optical storage mediums , magnetic medi
ums , memory chips or cartridges , wireless channels and
various other mediums capable of storing , containing or
carrying instruction (s) and / or data . A machine - readable
medium can be realized by virtualization , and can be a
virtual machine readable medium including a virtual
machine readable medium in a cloud - based instance .
[0017] The term " non - transitory computer - readable
medium ” , “ main memory ” , or “ secondary storage ” , as used
herein refers to any medium that participates in providing
instructions to a processing - unit for execution . The com
puter - readable medium is just one example of a machine
readable medium , which may carry instructions for imple
menting any of the methods and / or techniques described
herein . Such a medium may take many forms , including but
not limited to , non - volatile media , volatile media , and trans
mission media . Non - volatile media includes , for example ,
optical or magnetic disks . Volatile media includes dynamic
memory . Transmission media includes coaxial cables , cop
per wire and fiber optics . Transmission media can also take
the form of acoustic or light waves , such as those generated
during radio - wave and infrared data communications .
[0018] A volatile storage may be used for storing tempo
rary variables or other intermediate information during
execution of instructions by processing - unit . A non - volatile
storage or static storage may be used for storing static
information and instructions for processing - unit , as well as
various system configuration parameters .
[0019] The storage medium may include a number of
software modules that may be implemented as software code
to be executed by the processing - unit using any suitable
computer instruction type . The software code may be stored
as a series of instructions or commands , or as a program in
the storage medium .
[0020] Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to the processing - unit for execution . For
example , the instructions may initially be carried on a
magnetic disk from a remote computer . Alternatively , a
remote computer can load the instructions into its dynamic
memory and send the instructions to the system that runs the
one or more sequences of one or more instructions .
[0021] A processor may be a microprocessor , a microcon
troller , a digital signal processor (DSP) , a central processing
unit (CPU) , a multiprocessor , a multi - core processor . A
processor may also be an independent processor may have
a plurality of processing unit called cores . A multiprocessor
or a multi - core processor that share a common operating
system , any combination of those devices , or any other
circuitry configured to process information are also consid
ered as a processor for this invention .
[0022] A processing - unit executes program instructions or
code segments for implementing embodiments of the pres
ent invention . Furthermore , embodiments may be imple
mented by hardware , software , firmware , middleware ,
microcode , hardware description languages , or any combi
nation thereof . When implemented in software , firmware ,
middleware or microcode , the program instructions to per
form the necessary tasks may be stored in a computer
readable storage medium . A processing - unit (s) can be real
ized by virtualization , and can be a virtual processing - unit (s)
including a virtual processing - unit in a cloud - based instance .

US 2020/0322257 A1 Oct. 8. 2020
3

[0023] Embodiments of the present invention are related
to the use of a computer system for implementing the
techniques described herein . In an embodiment , the inven
tive processing - units may reside on a machine such as a
computer platform . According to one embodiment of the
invention , the techniques described herein are performed by
a computer system in response to the processing - unit execut
ing one or more sequences of one or more instructions
contained in the volatile memory . Such instructions may be
read into the volatile memory from another computer
readable medium . Execution of the sequences of instructions
contained in the volatile memory causes the processing - unit
to perform the process steps described herein . In alternative
embodiments , hard - wired circuitry may be used in place of
or in combination with software instructions to implement
the invention . Thus , embodiments of the invention are not
limited to any specific combination of hardware circuitry
and software .
[0024] Acode segment , such as program instructions , may
represent a procedure , a function , a subprogram , a program ,
a routine , a subroutine , a module , a software package , a
class , or any combination of instructions , data structures , or
program statements . A code segment may be coupled to
another code segment or a hardware circuit by passing
and / or receiving information , data , arguments , parameters ,
or memory contents . Information , arguments , parameters ,
data , etc. may be passed , forwarded , or transmitted via any
suitable means including memory sharing , message passing ,
token passing , network transmission , etc.
[0025] Alternatively , hardwired circuitry may be used in
place of , or in combination with , software instructions to
implement processes consistent with the principles of the
invention . Thus , implementations consistent with principles
of the invention are not limited to any specific combination
of hardware circuitry and software .
[0026] A network interface may be implemented by a
standalone electronic component or may be integrated with
other electronic components . A network interface may have
no network connection or at least one network connection
depending on the configuration . A network interface may be
an Ethernet interface , a wireless communication interface , a
frame relay interface , a fibre optic interface , a cable inter
face , a Digital Subscriber Line (DSL) interface , a token ring
interface , a serial bus interface , a universal serial bus (USB)
interface , Firewire interface , Peripheral Component Inter
connect (PCI) interface , etc.
[0027] A network interface may connect to a wired or
wireless access network . An access network may carry one
or more network protocol data . A wired access network may
be implemented using Ethernet , fiber optic , cable , DSL ,
frame relay , token ring , serial bus , USB , Firewire , PCI , or
any material that can pass information . A wireless access
network may be implemented using infrared , High - Speed
Packet Access (HSPA) , HSPA + , Long Term Evolution
(LTE) , WiMax , GPRS , EDGE , GSM , CDMA , WiFi ,
CDMA2000 , WCDMA , TD - SCDMA , BLUETOOTH ,
WiBRO , Evolution - Data Optimized (EV - DO) , Digital
Enhanced Cordless Telecommunications (DECT) , Digital
AMPS (IS - 136 / TDMA) , Integrated Digital Enhanced
(iDEN) or any other wireless technologies .
[0028] Embodiments , or portions thereof , may be embod
ied in a computer data signal , which may be in any suitable
form for communication over a transmission medium such
that it is readable for execution by a functional device (e.g. ,

processing - unit) for performing the operations described
herein . The computer data signal may include any binary
digital electronic signal that can propagate over a transmis
sion medium such as electronic network channels , optical
fibers , air , electromagnetic media , radio frequency (RF)
links , and the like , and thus the data signal may be in the
form of an electrical signal , optical signal , radio frequency
or other wireless communication signal , etc. The code
segments may , in certain embodiments , be downloaded via
computer networks such as the Internet , an intranet , LAN ,
MAN , WAN , the PSTN , a satellite communication system ,
a cable transmission system , and / or the like .
[0029] FIG . 3 illustrates a typical network topology 3000
where a plurality of MPNDs may be connected together via
groups of access networks . There is no limitation to the
number of MPND that can be connected together . System
3000 is adapted according to embodiments configured to
transmit and receive data through aggregated multiple con
nections , also herein referred to as “ aggregated tunnel ” ,
according to the present invention . System 3000 includes
multiple sites 307 and 311. Sites 307 and 311 each comprise
at least one MPND 301 and MPND 302 respectively .
Network 310 may comprise one or more of a local area
network (LAN) , metropolitan area network (MAN) , wide
area network (WAN) , wireless network , the public switched
telephone network (PSTN) , the Internet , an intranet , an
extranet , or other similar networks . Desktop computer 303
and laptop computer 305 are connected to network MPND
301 using connections 304 and 306 respectively . File server
315 and database server 309 are connected to MPND 302
using connections 308 and 313 respectively . There is no
limitation that only desktop computers , laptop computers ,
file servers and database servers can connect to MPNDs 301
and 302. Any electronic device with networking capability
may connect to MPNDs 301 and 302 .
[0030] Access networks 312 and 314 are data connections
for communicating information within network 310 between
sites 307 and 311. These number of access networks are
shown only for illustration . A person skilled in the art would
appreciate that any number and arrange ent of access
networks are possible to be adapted by MPNDs 301 and 302 .
Access networks 312-1 , 312-2 , 312-3 , 314-1 and 314-2 may
have similar or different network characteristics , including
packet loss rate and bandwidth capabilities . Further , access
networks 312 and 314 may comprise different types of
network connections , such as a WiFi , fiber optics , cable ,
DSL , T1 , 3G , 4G , 5G , satellite connections , Ethernet , ATM ,
and the like . It is also noted that MPNDs 301 and 302 may
be thought of as both a sender or receiver , and discussions
regarding the functionality of either site may be imple
mented on the other site . In other words , system 3000 may
be implemented as a symmetrical network with bidirectional
data transfer capabilities .
[0031] When establishing an aggregated connection
between MPNDs 301 and 302 , such as by implementing an
aggregated site - to - site VPN connection , a plurality of tun
nels 316 may be created . The plurality of tunnels 316
correspond to a unique permutation of the WAN connections
312 of site 307 and the network connections 314 of site 311 .
One or more of the plurality of tunnels 316 may be estab
lished through networks 310 between MPNDs 301 and 302 .
There is no limitation that the plurality of tunnels 316 must
be two per access networks 312 or three per access networks
314. There is no limitation that both MPND 301 and 302

US 2020/0322257 A1 Oct. 8. 2020
4

a core

must have a plurality of WAN ports or must connect to a
plurality of WAN connections . However , at least one of
MPND 301 and 302 must connect to a plurality of WAN
connections through a plurality of WAN interfaces or ports .
[0032] FIG . 6 is an illustrative block diagram of a router
6000 , which has similar functionalities to MPNDs 301 and
302 , according to one of the embodiments of the present
invention . Router 6000 comprises processor 600 , main
memory 601 , systembus 602 , secondary storage 603 , and
network interfaces 604 , 605 , 606 and 607. Processor 600 and
main memory 601 are connected to each other directly .
Processor 600 is connected to secondary storage 603 and
network interlaces 604 , 605 , 606 and 607 through systembus
602. Systembus 602 can be any of several types of bus
structures including a memory bus , a peripheral bus , and a
local bus using any of a variety of bus architectures . Sec
ondary storage 603 stores program instructions for execution
by processor 600. Processor 600 comprises a plurality of
cores as processing units . For illustration purpose only ,
processor 600 has two cores , namely core 600a and core
6006. Those who are skilled in the art would appreciate that
processor 600 is not limited to have only two cores , but may
also have more than two cores . The scope of the invention
is not restricted to router 6000 having four network inter
faces , such that router 6000 is allowed to have network
interfaces higher or below this number . Moreover , router
6000 is not limited to have only one processor 600 , but may
also have a plurality of processors .
[0033] It shall be appreciated that the present disclosure is
not limited to the architecture of system 6000. For example ,
any suitable processor based device may be utilized for
implementing the above teachings , including without limi
tation routers , personal computers , laptop computers , com
puter workstations , multiprocessor servers , and even mobile
telephones . Moreover , certain embodiments may be imple
mented on application specific integrated circuits (ASICs) or
very large scale integrated (VLSI) circuits . In fact , persons
of ordinary skill in the art may utilize any number of suitable
structures capable of executing logical operations according
to the embodiments .
[0034] A access network connects a network interface of
a network device such as MPND to interconnected net
works , such as the Internet . The network interface can be an
Ethernet interface , a 3G / 4G / 5G network interface , a
WiMAX network interface , or any other network interface
of a network device . A network interface can also be a virtual
network interface of a virtual machine (VM) . A access
network is in form of optical fiber , Ethernet , ATM , Frame
Relay , T1 / E1 , IPv4 , IPv6 , wireless technologies , Wi - Fi ,
WiMAX , High - Speed Packet Access technology , 3GPP
Long Term Evolution (LTE) or the like .
[0035] An end - to - end connection is a connection between
a source node and a destination node . An end - to - end con
nection may include one or more access networks and one
or more intermediate nodes . In one of the embodiments of
the present invention , an end - to - end connection between a
source node and a destination node is a virtual private
network (VPN) tunnel .
[0036] A tunnel is an end - to - end connection established
between two MPNDs using their respective tunnel interfaces
and one or more access networks . A tunnel is established
using a tunnelling protocol that encapsulates one type of
protocol data unit (PDU) into another type of protocol data
unit . Examples of tunnelling protocols include , but are not

limited to , Generic Routing Encapsulation (GRE) and
Layer - 2 Tunneling Protocol (L2TP) . A tunnel creates a
virtual point - to - point connection between two network
nodes . Tunnels may or may not encrypt the encapsulated
PDU such as an IP packet . More than one tunnel interface
can be established using the same network interface of a
MPNS . The two MPNDs on each end of a tunnel may be
directly connected or may be connected through one or more
interconnected networks .
[0037] An information packet is a PDU that contains
control information , such as address information , and user
data . An information packet can be a network layer PDU
such as Internet Protocol (IPv4 or IPv6) , a transport layer
PDU such as Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) , or PDU of any other protocol
that is capable of carrying information over a access net
work .

[0038] Data flow , session and data session are considered
as interchangeable in the present invention . For example , a
multimedia data session or session is a set of multimedia
senders and receivers and the data streams flowing from
senders to receivers . A multimedia conference is an example
of a multimedia data session or flow .
[0039] FIG . 1 and FIG . 4 should be viewed in conjunction
with network architecture diagram FIG . 3. FIG . 1 and FIG .
4 illustrate steps performed by receiver MPND 302 and
sender MPND 301 respectively according to one embodi
ment of the present invention . In this embodiment , receiver
MPND 302 relies on a core identity in datagrams to select

process the received datagram . The core identity
may be in the form of a string , a number , a hash , a code or
any data format that is recognizable by sender MPND 301
and receiver MPND 302. In case there is no core identity in
a datagram , receiver MPND 302 will inform sender MPND
301 the core identity for future datagrams belonging to the
same flow of the datagram .
[0040] At step 102 , receiver MPND 302 receives a first
datagram from one of access networks 312 and 314. At step
103 , receiver MPND 302 determines whether the first data
gram belongs to a new session or a session already having
one or more datagrams received .
[0041] The session is identified based on a data session
identification process . The data session identification pro
cess may be based on , but not limited to core identity , source
IP address , destination IP address , source port number ,
destination port number , connection - state , payload - content ,
quality of service (QoS) requirement of the applications ,
time and date , user - ID , bandwidth , latency or hop - count of
the connected links etc. individually or in any combination
thereof .
[0042] If the datagram belongs to a new session , at step
104 , receiver MPND 302 assigns a core to process data
grams of the new session . The new session comprises the
first datagram and to be received datagrams of the new
session . Receiver MPND 302 also creates or assigns a core
identity corresponding to the assigned core .
[0043] At step 105 , receiver MPND 302 informs sender
MPND 301 the identity of the core assigned . There is no
limit that step 104 must be performed immediately after step
103. For example , step 104 may be performed after step 107 .
In one variance , step 104 may be performed after one or
more datagrams belonging to the new session have arrived
at receiver MPND 302 .

US 2020/0322257 A1 Oct. 8. 2020
5

[0044] There is no limit that all datagrams belonging to a
session must be sent by the same WAN interface of sender
MPND 301 or must be sent through the same path , or must
be received by the same network interface at receiver
MPND 302. It is preferred that all datagrams of the new
session , except the first one datagram or the first few
datagrams , are sent by sender MPND 301 along with the
core identity
[0045] If one or more datagrams belonging to a session
already have already arrived at the receiver MPND 302 , at
step 106 , receiver MPND 302 then determines the core
based on prior core assignment of the session the first
datagram belongs to . When there is a core identity stored in
the first datagram , receiver MPND 302 will assign the core
corresponding to the core identity to process the first data
gram .
[0046] At step 107 , receiver MPND 302 processes the
datagram using the core assigned . The processed datagram
will then be forwarded to the corresponding destination ,
such as receiver MPND 302 or a device , such as file server
315 or database server 309 , connected to MPND 302 .
[0047] FIG . 4 illustrates steps performed by sender MPND
301 and receiver MPND 302 according to one embodiment
of the present invention . The embodiment illustrated by FIG .
4 may be implemented together with the embodiment illus
trated by FIG . 3 in a system or be implemented indepen
dently from FIG . 3. In this particular embodiment , sender
MPND 301 has a core identity sent by receiver MPND 302
prior to sending the datagram . The core identity is to be used
by the receiver MPND 302 as described in the embodiment
of FIG . 1 .
[0048] For all embodiments disclosed The processor infor
mation may be sent by receiver MPND 302 , or pre - shared
with sender MPND 301 by a user or administrator of the
both MPND 302 and MPND 303 , or from a remote man
agement node .
[0049] At step 401 , sender MPND 301 receives the core
identity sent by receiver MPND 302 at step 105 from MPND
302 for a flow . In one variant , sender MPND 301 receives
the core identity before sending the initial datagram of a new
flow . In one variant , sender MPND 301 receives the core
identity after sending the initial datagram or the initial few
datagrams of a new flow .
[0050] At step 402 , sender MPND 301 has a datagram to
be sent to the receiver MPND 302. The datagram may be
created by MPND 301 based on another datagram received
from a device , such as desktop computer 303 and laptop
computer 305 , connected to MPND 301 .
[0051] At step 403 , sender MPND 301 puts the core
identity , which corresponds to the core determined , into the
datagram .
[0052] At step 404 , sender MPND 301 sends the datagram
to receiver MPND 302 through one of access networks 312 .
[0053] There is no limitation whether the core identity is
encrypted or not . There is also no limitation whether the core
identity is stored in the header section or payload section of
a datagram . In one example , sender MPND 301 encrypts the
core identity and stores it at the header section of the
datagram during step 403. Receiver MPND 302 then
decrypts the encrypted core identity before assigning the
first datagram to a core at step 106. In another example , the
core identity is not encrypted . It is preferred that the core
identity is not encrypted and stored in the header section of
the datagram in order to reduce processing load .

[0054] FIG . 5 illustrates steps performed by sender MPND
301 and receiver MPND 302 according to one embodiment
of the present invention . Comparing this embodiment to the
embodiment illustrated by FIG . 1 and FIG . 4 , datagrams to
be sent by sender MPND 301 are encapsulated in encapsu
lation packets and are sent through an aggregated tunnel .
FIG . 5 should be viewed in conjunction with FIG . 3 .
[0055] At step 501 , an aggregated tunnel is established
between sender MPND 301 and receiver MPND 302. The
aggregated tunnel may be established using one or more of
access networks 312 and one or more access networks 314
through network 310. During the aggregated tunnel estab
lishment stage , receiver MPND 302 sends sender MPND
301 a core identity .
[0056] At step 502 , sender MPND 301 has a datagram to
be sent to receiver MPND 302. The datagram may be
received from a network node in a network connected to
sender MPND 301 and designated to receiver MPND 302 or
a network node in a network connected to receiver MPND
302. At step 503 , sender MPND 301 creates an encapsula
tion packet by encapsulating the datagram with an aggre
gated tunnel header . In the aggregated tunnel header , the
core identity is stored . The encapsulation packet may be an
IP packet . The payload portion of the IP packet is unen
crypted and holds the aggregated tunnel header and the
datagram .
[0057] At step 504 , sender MPND 301 sends the encap
sulation - packet to receiver MPND 302. At step 505 , receiver
MPND 302 receives the encapsulation - packet from the
sender MPND 301. At step 506 , receiver MPND 302 exam
ines the encapsulation packet and retrieve the core identity
from the aggregated tunnel header . Then MPND 302 selects
one of its cores based on the core identity to process the
datagram , which is retrieved from the payload portion of the
encapsulation packet .
[0058] Since in this particular embodiment , MPND 301
does not encrypt the payload of the encapsulation packet ,
receiver MPND 302 does not need to perform any decryp
tion at step 506 to retrieve the core identity . At step 507 ,
receiver MPND 302 assigns the encapsulation packet to a
core corresponding to the core identity . The core will then
process the encapsulation packet . Then receiver MPND 302
may send the datagram , which is in the payload of the
encapsulation packet , to a corresponding receiving network
node after the processing .
[0059] When more datagrams arrived at sender MPND
301 and are designated to receiver MPND 302 through the
aggregated tunnel , steps 502 to 507 will repeat . Therefore
core identities of tunnel headers of the encapsulation packets
encapsulating the datagrams will be the same .
[0060] In one variant , during step 501 , sender MPND 301
may also send receiver MPND 302 a core identity . When
receiver MPND 302 has datagrams to be sent to sender
MPND 301 , receiver MPND 302 will also encapsulate the
datagrams with that core identity in encapsulation packets
and then send the encapsulation packets to sender MPND
301 .
[0061] In one variant , receiver MPND 302 provides the
core identity to sender MPND 301 prior to the transmission
of data datagrams of a particular data session (e.g. using a
handshake method) from sender MPND 301 to receiver
MPND 302. In another variant , the core identity is prede
termined and set by the administrator or a user . In another
variant , sender MPND 301 receives or collects the core

US 2020/0322257 A1 Oct. 8. 2020
6

identity from a remote management node or from a data
storage device . In one variant of this embodiment , only the
number of total cores of the receiver node to be used to
process datagrams , is shared with sender MPND 301. In
another variant , the total number of cores comprised in
receiver MPND 302 is shared with sender MPND 301 and
sender MPND 301 determines the number of process - cores
to be used .
[0062] In one variant , step 503 and step 506 are modified .
At modified step of 503 , sender MPND 301 encrypts the
datagram and tunnel header and then stores both in the
payload portion of an encapsulation packet . The datagram
and the tunnel headers are encrypted . At modified step 506 ,
receiver MPND 302 first decrypts the payload of the encap
sulation packet to retrieve the datagram and the tunnel
header . Then the core identity could be retrieved from the
tunnel header .

[0063] In one variant , the core identity is not sent by
receiver MPND 302 during step 501. Instead , a session - ID
is sent by receiver MPND 302 .
[0064] In one variant , there is no core identity sent by
receiver MPND 302 during step 501. Instead , a session - ID
is determined by MPND 301 and is sent to receiver MPND
302 .

[0065] In another variant , the core identity is replaced by
a session - ID and the session - ID is a hash value .
[0066] There is no limitation on the format , data - type or
length of a session - ID as long it is able to uniquely identify
data session . For example , a session - ID may be , without

limitation , in the format of plain - text alphanumeric , binary
or hexadecimal .
[0067] FIG . 7 illustrates steps performed by a sender
MPND and a receiver MPND according to one embodiment
of the present invention . In this embodiment , similar to the
embodiment illustrated in FIG . 5 , the sender MNPD will
assign a core identity for each packet to be sent to the
receiver MPND . However not all encapsulation packets
have the same core identity . Instead , core identity is deter
mined mainly based on the data session of the datagram to
be sent to the receiver MPND .
[0068] At step 701 , a first MPND and a second MPND
exchanges processor information during establishment of an
aggregated tunnel . For illustration purpose only , the first
MPND is MPND 301 and the second MPND 302 is MPND
302. Both MPND 301 and MPND 302 may be sender and
receiver . The processor information includes number of
cores each MPND has . For example , MPND 301 has one
processing - unit and the processing - unit has four cores .
MPND 301 informs MPND 302 that it has four cores . For
example , MPND 301 has two processing - units and each
processing - unit has eight cores . MPND 302 informs MPND
301 that it has sixteen cores . There is no limitation on
representation of processor information and core informa
tion . The number of cores may be simply represented by four
bits to represent one of the cores . For example , processor
information may be in string , bytes or binary data .
[0069] In another example , the number of cores is repre
sented by characters or strings . For illustration purpose only ,
MPND 301 may send “ AA ” , “ BB ” , “ CC ” and “ DD ” to
MPND 302 as core identities for the four cores respectively .
MPND 302 may send MPND 301 “ corel " , " core2 ” ,
“ core3 ” , " core4 " , " core5 " , " core6 " , " core7 ” , “ core8 ” ,

" core9 ” , “ core10 ” , “ core11 ” , “ core12 ” , “ core13 ” , “ core14 ” ,
" core15 ” , and “ core16 ” as core identities for the four cores
respectively .
[0070] Processor information may also include core selec
tion criteria . For example , the core selection criteria is to
select a core based on types of datagrams . For example ,
certain cores should not be used and / or certain cores are
preferred to be used . The processor information may also be
updated after the aggregated tunnel is established . In one
example , when more cores are added or made available at a
MPND , the MPND may update the other MPND about the
number of cores .
[0071] At step 702 , when sender MPND receives a data
gram that is designated to a receiver MPND , processing - unit
of the sender MPND identifies the data session that the
datagram belongs to . There are myriad methods to identify
a data session , such as those disclosed in step 103 of the
embodiment illustrated by FIG . 1 .
[0072] At step 703 , sender MPND assigns a core to the
datagram based on the data session . If the datagram is the
first datagram in the data session , sender MPND may select
one of the cores from the number of cores of receiver
MPND . There are many ways to select the core . There is no
limitation on the selection method . For example , sender
MPND selects the core randomly . In another example ,
sender MPND selects core uniformly that the first data
session uses the first core , the second data session uses the
second core , and so on . If there are four cores , the fifth data
session will use the first core again . In another example , any
of the cores may be selected , except one or more non
selectable cores . The non - selectable cores may only be used
for certain specific datagrams , such as high priority data
grams .
[0073] If the datagram is not the first datagram of the data
session , sender MPND looks up for the core that is already
assigned to data session .
[0074] At step 704 , the core identity corresponding to the
core assigned at step 703 and the datagram are encapsulated
in one or more encapsulation packets . At step 705 , sender
MPND sends the one or more encapsulation packets to
receiver MPND through the aggregated tunnel , which was
already established at step 701 .
[0075] The core identity may be in the form of a string , a
number , a hash , a code or any data format that is recogniz
able by receiver MPND .
[0076] At step 706 , receiver MPND receives the one or
more encapsulation packets from sender MPND from the
aggregated tunnel . At step 707 , receiver MPND decapsulates
the one or more encapsulation packets to extract the data
gram and the core identity . At step 708 , receiver MPND
processes the datagram by using the core indicated by the
core identity .
[0077] When more datagrams belonging to the same data
session arrive later , those datagrams will also be assigned
with the same core identity , i.e. , the same core of receiver
MPND , already assigned to the data session .
[0078] FIG . 8 illustrates steps performed by a sender
MPND and a receiver MPND according to one embodiment
of the present invention . In this embodiment sender MPND
does not use any information related to the processor infor
mation of receiver MPND . Sender MPND encrypts the
datagrams before sending them to receiver MPND . Receiver
MPND decrypts the received datagrams and then determine
corresponding cores to process the datagrams .

US 2020/0322257 A1 Oct. 8. 2020
7

or may

[0079] At step 801 , sender MPND has a first datagram to
be sent to receiver MPND . At step 802 , the sender MPND
selects one or more of the tunnels of an aggregated tunnel
(which is already established between the two MPND) based
on a tunnel selection criterion to send the first datagram to
receiver MPND . The tunnel selection criterion is determined
as described in step 103 of FIG . 1. At step 803 , sender
MPND encrypts the first datagram to create a payload for
one or more encapsulation packets . At step 804 , sender
MPND creates an aggregated tunnel header corresponding
to the aggregated tunnel .
[0080] At step 805 , sender MPND encapsulates the pay
load and the aggregated tunnel header to create one or more encapsulation - packet . If the payload is small enough to be fit
inside one encapsulation packet , only one encapsulation
packet is required . Otherwise more encapsulation packets
will be required . At step 806 , sender MPND sends the one
or more encapsulation packet to receiver MPND . At step
807 , receiver MPND receives the one or more encapsulation
packets from sender MPND . At step 808 , receiver MPND
decapsulates the one or more encapsulation packets to
retrieve the datagram .
[0081] At step 809 , receiver MPND decrypts the second
datagram to retrieve the first datagram . At step 810 , receiver
MPND assigns the datagram to one of its cores based on a
core selection criterion . The core selection criterion is to first
identify the data session the datagram belongs to . Datagrams
belonging to the same data session are processed by the
same core . Secondly , if the datagram is the first datagram of
a new data session , receiver MPND selects a core to process
the datagram . Therefore , when a session identifier has not
been received before by receiver MPND , the datagram
encapsulated in the encapsulation packet with the session
identifier is the first datagram of the session . There is no
limitation on the method of selection . For example , the
selection may be based on core availability or core loading .
The core may also be selected randomly or sequentially . In
another example , any of the cores may be selected , except
one or more non - selectable cores . The non - selectable cores
may only be used for certain specific datagrams , such as
high priority datagrams .
[0082] The core selected and the session identifier are
stored for later look - up .
[0083] If the first datagram belongs to a data session
already identified , receiver MPND selects a core that is
already selected for the data session to process the first
datagram . When the session identifier was received , pro
cessing unit of receiver MPND is able to determine which
data session the first datagram belongs to . The core may be
looked up by using the session identifier .
[0084] FIG . 9 illustrates steps performed by a sender
MPND and a receiver MPND according to one embodiment
of the present invention . In this embodiment , receiver
MPND does not need to decrypt the datagrams in order to
select the core to process the datagrams . Instead , an unen
crypted session - ID is used for that purpose . As discussed
before , there is no limitation on the format , data - type or
length of a session - ID as long it is able to uniquely identify
a data session . Additionally , in this embodiment , the whole datagrams may be encrypted , only parts of the datagrams
may be encrypted or the datagrams may not be encrypted at
all . A session - ID for a datagram is used to identify a
particular data session (such as , but not limited to , a TCP
data session) that the particular datagram belongs to . Data

grams belonging to different data sessions are assigned with
different session - IDs . Receiver MPND may directly retrieve
the session - ID without decryption and select a core based on
the session - ID to process the datagram .
[0085] At step 901 , sender MPND has a first datagram to
be sent to receiver MPND . At step 902 , sender MPND
creates a session - ID based on a data session identification
process for the data session the first datagram belongs to .
The data session identification process is determined as
described in step 103 of FIG . 1. At step 903 , sender MPND
selects one or more of the tunnels of an aggregated tunnel
based on a tunnel selection criterion to send the first data
gram to the receiver MPND . There is no limitation on the
tunnel selection criterion . For example , one or more tunnels
may be selected according to tunnel bandwidth , tunnel
latency , tariffs of using an access network that one or more
tunnels used , and / or geographical location of the sender
MPND .
[0086] At step 904 , sender MPND creates an aggregated
tunnel header corresponding to the aggregated tunnel . The
aggregated tunnel header comprises tunnel information ,
such as tunnel identification tunnel sequence number and
global sequence number , and session - ID . The first datagram
and aggregated tunnel header are then stored in the payload
of a first encapsulation packet . There is no limitation that the
session - ID must be stored in the aggregated tunnel header .
For example , the session - ID may instead be stored in a
section of the payload of the encapsulation packet but not in
the aggregated tunnel header . Sender MPND may not
encrypt the aggregated tunnel header .
[0087] Sender MPND also encapsulates the first datagram
in the payload of the first encapsulation packet . Depending
on configuration , the first datagram may or may not be
encrypted by the sender MPND .
[0088] In one variant , the session - ID is stored in the
header of the first encapsulation packet . In this embodiment ,
session - ID is not encrypted regardless if it is in the header
of first encapsulation packet , in an aggregated tunnel header
or in a section of the payload . This will allow receiver
MPND to retrieve the session - ID without decryption at step
908 .
[0089] At step 905 , sender MPND sends the first encap
sulation packet through the aggregated tunnel . As the aggre
gated tunnel is composed of a plurality of tunnels , the
encapsulation packet is sent through a tunnel selected at step
903. In the case that the first datagram is fragmented into a
plurality of first encapsulation packets , there is no limit that
all the plurality of first encapsulation packets must be sent
through the same tunnel .
[0090] At step 906 , receiver MPND receives the first
encapsulation packet from the sender MPND through the
aggregated tunnel .
[0091] At step 907 , receiver MPND decapsulates the first
encapsulation packet to retrieve the first datagram and the
session - ID . If the first datagram is encrypted when being
placed in the payload of the first encapsulation packet at step
904 , decryption will be performed to retrieve the first
datagram . As the session - ID is not encrypted , receiver
MPND is capable of retrieving the session - ID without
decryption . This may allow receiver MPND to identify the
session - ID quicker comparing to if the session - ID is
encrypted .
[0092] At step 908 , receiver MPND assigns the first data
gram to one of its cores corresponding to the session - ID .

US 2020/0322257 A1 Oct. 8. 2020
8

There is no limitation on the method receiver MPND may
use to select the core based on the session - ID . The selection
criterion is similar to , but not identical , the core selection
criterion at step 810 in the embodiment illustrated in FIG . 8 .
The selected core and the session - ID may be stored for
lookup . For example , the selected core and session - ID pair
information is stored in a database or text file .
[0093] It is preferred to process datagrams corresponding
to the same session - ID by the same core . Receiver MPND
selects a core to process the datagram based on the session
ID . There is no limitation on the method of selection . For
example , the selection may be based on core availability or
core loading . The core may also be selected randomly or
sequentially . In another example , any of the cores may be
selected , except one more non - selectable cores . The non
selectable cores may only be used for certain specific
datagrams , such as high priority datagrams . The selection at
this step is similar to the core selection performed at step

criterion is determined as described in step 103 of FIG . 1. In
one variant of this embodiment , sender MPND 301 does not
create a session - ID , but rather determines a session - ID for
the data session the first datagram belongs to . At step 1003 ,
sender MPND 301 selects one or more of the tunnels of an
aggregated tunnel (which is already established between the
two MPNDs) based on at least one second criterion to send
the first datagram to receiver MPND 302. The at least one
second criterion may include , without restriction , the at least
one first criterion . At step 1004 , sender MPND 301 creates
an aggregated tunnel header corresponding to the aggregated
tunnel . At step 1005 , sender MPND 301 includes the ses
sion - ID in the aggregated tunnel header . At step 1006 ,
sender MPND 301 encapsulates the first datagram with the
aggregated tunnel header to create a first encapsulation
packet . At step 1007 , sender MPND 301 sends the first
encapsulation - packet to receiver MPND 302. At step 1008 ,
receiver MPND 302 receives the encapsulation - packet from
sender MPND 301. At step 1009 , receiver MPND 302
decapsulates the first encapsulation - packet to retrieve the
first datagram . At step 1010 , receiver MPND 302 retrieves
the session - ID from the aggregated tunnel header . At step
1011 , receiver MPND 302 assigns the first datagram to one
of its cores corresponding to the session - ID as described in
step 908 of FIG . 9 .
[0099] Although the embodiments described in the present
invention are directed towards multi - core MPNDs , one of
ordinary skill in the art would appreciate that the techniques
described herein are not only applicable to multi - core
MPNDs , rather any multiprocessing computing system
including , but not limited to , multi - processing systems ,
multicore systems , manycore systems .

703 .

BRIEF DESCRIPTION OF DRAWINGS

[0094] If receiver MPND has already receive an encapsu
lation packet having the same session - ID , this implies that
one or more datagrams of the data session corresponding to
the session - ID have already been received . Receiver MPND
selects a core that is already selected for the session - ID to
process the first datagram . Receiver MPND may lookup for
the core that is already assigned for the session - ID . For
example , receiver MPND may lookup for the core , using a
text file , based on the session - ID .
[0095] In one variant , session - ID is replaced by cored
identity . At step 902 , sender MPND selects a core of the
receiver MPND and then use the core identity , instead of a
session - ID , to inform receiver MPND the core to be used to
process the first datagram . Therefore , in step 904 and 907 ,
session - ID is replaced by the core identity . At step 908 , as
the core to be used to process the first datagram is already
indicated by the core identity , there is no need to store the
core - ID . There is also no need to perform a core lookup
based on the core identity .
[0096] When core identity is used , sender MPND should
receive processor information from the receiver MPND as
discussed in step 701. Then sender MPND will select a core
for datagrams belonging to the same data session . The core
identity corresponding to the core is encapsulated along with
the datagram .
[0097] For example , for illustration purpose only , the
session identifier is represented as “ A3B8F20A88C23EB ”
in hexadecimal format . The first - time receiver MPND
receives a datagram with this session identifier , processing
unit of receiver MPND assigns a core , for example , core - 12 ,
to process the datagram . From then on , whenever receiver
MPND receives an encapsulation packet with session iden
tifier “ A3B8F20A88C23EB ” , the processing unit will use
core - 12 to process the datagrams in the encapsulation pack
ets .

[0098] FIG . 10 illustrates steps performed by a sender
MPND and a receiver MPND 302 according to one variant
of the embodiment illustrated by FIG . 9. Compared to the
embodiment illustrated by FIG . 9 , in this particular variant
the session - ID is included with the aggregated tunnel header
instead of being included with the first datagram . At step
1001 , sender MPND 301 has a first datagram to be sent to
receiver MPND 302. At step 1002 , sender MPND creates a
session - ID based on at least one first criterion for the data
session the first datagram belongs to . The at least one first

[0100] FIG . 1 illustrates a flowchart of processes being
performed according to one of the embodiments of the
present invention ;
[0101] FIG . 2 illustrates a block diagram of communica
tion device according to one of the embodiments of the
present invention ;
[0102] FIG . 3 illustrates a network environment according
to one of the embodiments of the present invention ;
[0103] FIG . 4 illustrates a flowchart of processes being
performed according to one of the embodiments of the
present invention ;
[0104] FIG . 5 illustrates a flowchart of processes being
performed according to one of the embodiments of the
present invention ;
[0105] FIG . 6 illustrates a block diagram of communica
tion device according to one of the embodiments of the
present invention ;
[0106] FIG . 7 illustrates a flowchart of processes being
performed according to one of the embodiments of the
present invention ;
[0107] FIG . 8 illustrates a flowchart of processes being
performed according to one of the embodiments of the
present invention ;
[0108] FIG . 9 illustrates a flowchart of processes being
performed according to one of the embodiments of the
present invention ; and

US 2020/0322257 A1 Oct. 8. 2020
9

[0109] FIG . 10 illustrates a flowchart of processes being
performed according to one of the embodiments of the
present invention .

1-40 . (canceled)
41. A method for sending packets from a first network

device to a second network device comprising :
at the first network device :

a . receiving a first datagram ;
b . assigning a core identity , wherein the core identity

corresponds to a core of the second network device ;
c . encapsulating the first datagram and the core identity

into a first encapsulation packet ;
d . sending the first encapsulation packet to the second

network device ;
at the second network device :

e . receiving the first encapsulation packet ;
f . retrieving the first datagram and the core identity

from the first encapsulation packet ; and
g . processing the first datagram using the core identi

fied by the core identity .
42. The method of claim 41 , wherein the core identity is

based on processor information provided by the second
network device .

43. The method of claim 42 , wherein the processor
information includes number of cores available at the second
network device .

44. The method of claim 42 , wherein the processor
information is provided by the second network device before
the first encapsulation packet is sent .

45. The method of claim 41 , wherein the core identity is
not encrypted .

46. The method of claim 41 , further comprising :
h . when the first datagram is a first in a sequence of

datagrams belonging to a session , the core identity is
assigned according to a selection policy and is also
assigned for future datagrams of the session ;

i . when the first datagram is not a first in the sequence of
datagrams belonging to the session , the core identity is
the same as the core identity already assigned to the
session .

47. The method of claim 46 , wherein the session is
identified based on the source address , source port , destina
tion address and destination port the first datagram .

48. The method of claim 46 , wherein the datagrams
belonging to the session are sent through a plurality of
connections established between the first network device
and the second network device ; and wherein the plurality of
connections is aggregated together to form an aggregated
connection .

49. The method of claim 48 , further comprising : the first
network device and the second network device exchange
respective processor information during establishment of the
aggregated connection .

50. A system for sending packets from a first network
device comprising :

the first network device and a second network device ;
wherein the first network device is comprised of :

at least one first network interface ;
at least one first processing unit ; and
at least one first non - transitory computer readable storage
medium for storing program instructions executable by
the at least one first processing unit for and configured
to cause the at least one first processing unit to perform :
a . receiving a first datagram ;

b . assigning a core identity , wherein the core identity
corresponds to a core of the second network device ;

c . encapsulating the first datagram and the core identity
into a first encapsulation packet ;

d . sending the first encapsulation packet to the second
network device ;

wherein the second network device comprise of :
at least one second network interface ;
at least one second processing unit ; and
at least one second non - transitory computer readable

storage medium for storing program instructions
executable by the at least one second processing unit
for and configured to cause the at least one second
processing unit to perform :
e . receiving the first encapsulation packet ;
f . retrieving the first datagram and the core identity

from the first encapsulation packet ;
g . processing the first datagram using the core identi

fied by the core identity .
51. The system of claim 50 , wherein the core identity is

based on processor information provided by the second
network device .

52. The system of claim 51 , wherein the processor infor
mation includes number of cores available at the second
network device .

53. The system of claim 51 , wherein the processor infor
mation is provided by the second network device before the
first encapsulation packet is sent .

54. The system of claim 50 , wherein the core identity is
not encrypted .

55. The system of claim 50 , wherein the at least one first
non - transitory computer readable storage medium further
stores program instructions executable by the at least one
first processing unit and configured to cause the at least one
first processing unit to perform the steps of :
h . when the first datagram is a first in a sequence of

datagrams belonging to a session , the core identity is
assigned according to a selection policy and is also
assigned for future datagrams of the session ;

i . when the first datagram is not a first in the sequence of
datagrams belonging to the session , the core identity is
the same as the core identity already assigned to the
session .

56. The system of claim 55 , wherein the session is
identified based on the source address , source port , destina
tion address and destination port the first datagram .

57. The system of claim 55 , wherein the datagrams
belonging to the session are sent through a plurality of
connections established between the first network device
and the second network device ; and wherein the plurality of
connections is aggregated together to form an aggregated
connection .

58. The system of claim 57 , wherein the at least one first
non - transitory computer readable storage medium further
stores program instructions executable by the at least one
first processing unit and configured to cause the at least one
first processing unit and the at least one second non
transitory computer readable storage medium further stores
program instructions executable by the at least one second
processing unit and configured to cause the at least one
second processing unit to exchange respective processor
information during establishment of the aggregated connec
tion .

US 2020/0322257 A1 Oct. 8. 2020
10

59. A method for sending packets from a first network
device to a second network device comprising :

at the first network device :
a . identifying session of a packet ;
b . encapsulating the packet into an encapsulated packet

with a core identity ; wherein the core identity is
based on processor information provided by the
second network device and the session ;

c . sending the encapsulated packet to the second net
work device through one connection of a plurality of
connections established between the first network
device and the second network device ; wherein the
plurality of connections is aggregated together to
form an aggregated connection ;

at the second network node :
d . receiving the encapsulated packet ;
e . retrieving the core identity and the packet from the

encapsulated packet ; and
f . processing the packet at a core according to the core

identity .
60. The method of claim 59 , further comprising : the

second network device sends processor information to the
first network node during establishment of the aggregated
connection .

