
US 20190108268A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0108268 A1

Santiago et al . (43) Pub . Date : Apr . 11 , 2019

(54) DISTRIBUTED DATA MANAGEMENT
SYSTEM AND METHOD

(71) Applicant : The Boeing Company , Chicago , IL
(US)

(72) Inventors : Rodolfo A . Santiago , Bellevue , WA
(US) ; Claudiu Bogdan Sherry
Danilov , Cypress , CA (US) ; Greg
Kimberly , Seattle , WA (US)

(52) U . S . Ci .
CPC G06F 17 / 30575 (2013 . 01) ; H04L 67 / 1097

(2013 . 01) ; H04W 4 / 006 (2013 . 01) ; G06F
17 / 30174 (2013 . 01)

(57) ABSTRACT
A computing device includes an interface configured to
communicate with a second computing device , a memory
configured to store a first copy of a file that is synchronized
with a second copy of the file stored at the second computing
device , and a processor . The processor is configured , in
response to receiving an update to the file while the interface
is unable to communicate with the second computing
device , to access versioning management data indicating
synchronization settings associated with each of a plurality
of files that includes the file . The processor is configured to ,
conditioned on determining that the versioning management
data indicates a first synchronization setting associated with
the file , write the update to the first copy , and conditioned on
determining that the versioning management data indicates
a second synchronization setting associated with the file ,
refrain from writing the update to the first copy .

(21) Appl . No . : 15 / 726 , 927

(22) Filed : Oct . 6 , 2017

Publication Classification
(51) Int . Cl .

G06F 1730 (2006 . 01)
H04W 4700 (2006 . 01)
H04L 29 / 08 (2006 . 01)

100

First Computing Device 102
Memory 106

Related Device IDs 125

Threshold No . 127
Processor 103
Data Manager 104

Third Computing
Device 192

Workspace 105
Synchronizer 110

First Copy of File 107 Second Computing Device 152
Processor 153

Data Manager 154 Versioning Management
Data 117

Synchronization
Setting 121

Update 115
Memory 156

Application 114 Workspace 155
Second Copy of File 157 Network 190 Peer Data 129

First Peer Data 131 Interface 108

Second Peer Data 133
Interface 158

100

%
| First Computing Device 102

Patent Application Publication

Memory 106

Related Device IDs 125 Threshold No . 127

Processor 103 Data Manager 104

Third Computing Device 192

Workspace 105

Synchronizer 110

First Copy of File 107

Second Computing Device 152 Processor 153 Data Manager 154

Versioning Management Data 117 Synchronization Setting 121

Apr . 11 , 2019 Sheet 1 of 11

Update 115

Memory 156

Application 114

Workspace 155

Network 190

Second Copy of File 157

Peer Data 129
First Peer Data 131

Interface 108

Second Peer Data 133

Interface 158

US 2019 / 0108268 A1

FIG . 1

200 7

First Computing Device 102 Processor 103
Application 114

Data Manager 104 Reconciler 212

Patent Application Publication

Memory 106

Second Computing Device 152 Processor 153 Data Manager 154

Related Device IDs 125

Repository 109 Version 111

Third Computing Device 192

Threshold No . 127

Version 113

Memory 156
Repository 259 Version 260

Workspace 105

Tree Data 215

First Copy of File 107

Tree Data 261

1

Difference

Request 241

Data 217

Apr . 11 , 2019 Sheet 2 of 11

Versioning Management Data 117 Synchronization Setting 121 Reconciliation Setting 223

Workspace 155

Request 241

Update Msg . 245

Second Copy of File 157

Application 114

(

Network 190

Update Msg . 245

Interface 108

. . .

Data 243 Peer Data 229

.

Peer Data 129
First Peer Data 131

Interface 158

.

Data 243 Peer Data 229

Second Peer Data 133

US 2019 / 0108268 A1

FIG . 2

Patent Application Publication Apr . 11 , 2019 Sheet 3 of 11 US 2019 / 0108268 A1

300
302

Commit Workspace

304

Survivor Selection

306
No

Victim ?

Yes
308

Create Branch

310

Pull from Survivor

312

Perform Reconciliation

Continue Processing

FIG . 3

400
4

420

402

A : (A) (AB) , c1 B : (B) + (AB) , c1

404

Patent Application Publication

Bon

422

490 -

A : (A) (A) , c2 , d2 B : (AB) + (B) , c3

406 406

event

+ A on

424

408

A B : (AB) = (AB) , C

Correo 426

410

d2

A : (A) (A) , c4 B : (B) = (B) , c3

, 000

412

d2

B off

Apr . 11 , 2019 Sheet 4 of 11

428
-

Sync A : (A) = (AB) , c4 B : (B) + (AB) , c4

414A

: (AB) (A) , c2 , d2
B : (AB) + (AB) , c2 , 02

416A
off

418A : (A) + (A) , c2 , 02 B : (AB) + (AB) , c2 , 02

US 2019 / 0108268 A1

FIG . 4

5002 502

520

Patent Application Publication

530

ABC : (*) > (ABC) , c1

B on

d3

504

532

590

506

A : (AB) + (AB) , c3 , 03 B : (AB) ? (AB) , c3 , d3 C : (AC) (AC) , c1 , d1 + d2 '

B off

508

d1 '

c1

- 522

A : (AC) (A) , C1 , d1 + d2 B : (ABC) – (B) , c2 C : (AC) + (AC) , c1 , d1 + d2 '

- 524

A on

526

A : (AC) – (A) , c3 B : (B) (B) , c2 C : (AC) - (AC) , c1 , d1 + d2 '

d1 + d2 '

AC : (ABC) ? (AC) , c1 , d1 B : (*) + (ABC) , c1 , d1 '

534

Con

d1 + d2

510

536

c2) 07 * .

d2

C : (AC) ? (C) , c4 A : (AB) ? (AB) , c5 B : (AB) ? (AB) , c5

512c ' off

Apr . 11 , 2019 Sheet 5 of 11

514

538

A : (AC) (A) , C1 , d1 + d2 B : () + (ABC) , c1 , d1 ' C : (AC) = (AC) , c1 , d1 + d2 '

528

Sync A : (A) (AB) , c3 B : (B) (AB) , c3 C : (AC) - > (AC) , c1 , d1 + d2 '

Sync C : (C) > (ABC) , c5 A : (AB) ? (ABC) , c5 B : (AB) > (ABC) , c5

516A
off

- 540

518

d4

A : (AC) (A) , C1 , d1 + d2 B : (*) + (ABC) , C1 , 01 ' C : (AC) + (AC) , c1 , d1 + d2 '

FIG . 5

US 2019 / 0108268 A1

600 % 602

690

Patent Application Publication

616

+

ABC : (*) + (ABC) , c1

604 -

622

Bjoins A

d3

01

606

B is partitioned
from A & C

- 624

C joins A & B

- 626

C : (AC) – (C) , c3 A : (A) + (AB) , c4 B : (B) ? (AB) , C4

608

AC : (ABC) ? (AC) , c1 , 01 B : (ABC) (B) , c1 , d1

610

- 618

A : (A) (A) , c3 B : (B) + (B) , c2 C : (C) C) , c1 , d1 + d2

' 0 - 0 . 0 . 0
Sync - 628

d2

A : (AB) + (ABC) , c4 B : (AB) ? (ABC) , c4 C : (C) ? (ABC) , c4

Apr . 11 , 2019 Sheet 6 of 11

612

A & C are partitioned

620

OJU 630

614

04

A : (AC) (A) , C1 , d1 + d2 B : (B) + (B) , C1 , d1 C : (AC) (C) , c1 , d1 + d2

Sync A : (A) ? (AB) , c3 B : (B) + (AB) , c3 C : (C) (C) , c1 , d1 + d2

FIG . 6

US 2019 / 0108268 A1

700 -

d5736

7025

722

Bon

724

A : (AC) ?A) , C1 , 01 + d2 + d3 ' B : (ABC) – (B) , c2 C : (AC) > AC) , c1 , d1 + d2 '

Patent Application Publication

ABC : (*) (ABC) , c1

704

d1

706

B off

738

A : AB) + (AB) , c3 , d5 B : (AB) ? (AB) , c3 , d5 C : (AC) + (AC) , c1 , d1 + d2 '

790

04126

708

01 + 02

c1

740

728

d1 '

AC : (ABC) ? (AC) , c1 , d1 B : (*) + (ABC) , c1 , 01 '

_ 742

01 + d2 + d3

710

A : (AC) + (A) , C1 , 01 + d2 + d3 ' B : (B) ? (B) , c2 , 04 C : (AC) + (AC) , C1 , d1 + d2 '

730

A on

d2

C : (AC) – (C) , c5 A : (AB) (AB) , c6 B : (AB) ? (AB) , c6

712

04

C off

732

Apr . 11 , 2019 Sheet 7 of 11

744

714

Sync

05

A : (AC) – (A) , C1 , d1 + d2 B : (*) + (ABC) , c1 , 01 ' C : (AC) + (AC) , c1 , d1 + d2

716

A : (A) = (A) , c3 B : (ABC) (B) , c4 C : (AC) - (AC) , c1 , d1 + d2 '

A : (AB) + (ABC) , c6 B : (AB) ? (ABC) , c6 C : (C) ? (ABC) , c6

734

Sync
-

d6746

d3 7185A Off

A : (A) ? (AB) , c3 B : (B) (AB) , c3 C : (AC) - (AC) , c1 , d1 + d2

720

A : (AC) = (A) , C1 , d1 + d2 + d3 ' B : (*) + (ABC) , c1 , d1 ' C : (AC) + (AC) , c1 , d1 + d2 '

FIG . 7

US 2019 / 0108268 A1

800
4

802

890

Patent Application Publication

1 842
C joins A & B

- 832

2

ABC : (*) + (ABC) , c1

804 -

O

B joins A

806 -

834

- 844

C : (AC) – (C) , c4 AB : (AB) + (AB) , c5

B is partitioned
from A & C

E - - - - - - - -

A : (A) = (A) , c3 B : (B) (B) , c2

808

1 810 1

B : (ABC) + (B) , c1 , d1 il

846

AC : (ABC) + (AC) , c1 , d1

TOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Sync

812

d3820 l

AB : (AB) + (ABC) , c5 C : { C } = (ABC) , c5

836

Apr . 11 , 2019 Sheet 8 of 11

- 822 i

Sync

- 848

c4

L

-

-

A : (A) (AB) , c3 B : (B) + (AB) , c3

814

A & Care B : (B) + (B) , C1 , d1 + d3 i

partitioned

818

C : (AC) = (©) , C1 , d1 + d2 A : (AC) = (4) , C1 , d1 + d2

824 - 826

C : (C) – (C) , c1 , d1 + d2 + d5 A : (A) + (A) , c1 , d1 + d2 + d4

816

838

d6

Mr828

d4

830

840

AB : (AB) + (AB) , (3 , 06
M

ONWNW

US 2019 / 0108268 A1

FIG . 8

Patent Application Publication Apr . 11 , 2019 Sheet 9 of 11 US 2019 / 0108268 A1

d4
066 - 2p + LP

d1 '
FIG . 9

10 ??
T

d1 + d2 + d3
(tp s?pnppui) gp

k

006

Patent Application Publication Apr . 11 , 2019 Sheet 10 of 11 US 2019 / 0108268 A1

10004

1002

Store , at a first computing device , a first copy of a file that is
synchronized with a second copy of the file stored at a second

computing device

1004

Receive an update to the file while communication with the second
computing device is unavailable

1006

Access versioning management data indicating , for each particular
file of a plurality of files that includes the file , a synchronization

setting associated with the particular file

1008
Conditioned on determining that the versioning management data

indicates a first synchronization setting associated with the file , write
the update to the first copy of the file

1010
Conditioned on determining that the versioning management data
indicates a second synchronization setting associated with the file ,

refrain from writing the update to the first copy of the file

FIG . 10

1100 - 4

Patent Application Publication

wwwwwwwwwwwwwwwwwwwwwwww
AIRCRAFT

SYSTEMS 1120

1124

-

1132)

Propulsion

Distributed Data Management System

102

1126

First Computing Device

152

Electrical

Second Computing Device

1921

1118

1128

Apr . 11 , 2019 Sheet 11 of 11

. Airframe

Environmental

Third Computing Device

11222

- 1112

1130

Interior

Hydraulic

Additional Computing Device (s)

US 2019 / 0108268 A1

FIG . 11

US 2019 / 0108268 A1 Apr . 11 , 2019

DISTRIBUTED DATA MANAGEMENT
SYSTEM AND METHOD

data reconciliation may negatively affect system perfor
mance . Due to these different operating conditions , enter
prise distributed systems have not been expanded into some
operating environments , such as vehicle - based systems or
“ Internet of Things ” (IoT) devices .

FIELD OF THE DISCLOSURE
[0001] The present disclosure is generally related to a
distributed data management system . SUMMARY

BACKGROUND
[0002] Distributed computer systems enable multiple
devices in different locations to access shared services or
shared data , such as via one or more network connections ,
and offer improved scalability as compared to centralized
computer systems . One type of distributed computer system
is a shared file system , in which group data is stored at a
centralized server (or small group of servers) . Because
shared data is stored in a single (or a few) locations , shared
file systems are susceptible to a single point of failure (or a
small number of failure points) .
[0003] Another type of distributed computer system is a
distributed data storage system . In a distributed data storage
system , group data is copied (e . g . , replicated) and stored at
multiple nodes , which enables the distributed data storage
system to tolerate faults or network partitions using the
replicated data . For this reason , distributed data storage
systems have been used as the basis for enterprise distrib
uted systems , such as clusters of computers in data centers .
These enterprise distributed systems typically include a
large number of individual nodes (e . g . , devices) that are
connected via one or more relatively secure networks .
[0004] In order to maintain consistency between the group
data on multiple nodes , a synchronization policy may be set
by a human network administrator . The synchronization
policy may allow a group of nodes of the enterprise distrib
uted system to continue operating when one or more nodes
are powered down or are partitioned , as long as a particular
number of nodes (e . g . , a quorum) remain in the group . The
remaining nodes of the group may continue updating and
replicating the group data , and when a node is returned to the
group , the returning node performs data reconciliation by
retrieving a copy of the group data stored at one of the other
nodes and overwriting any group data at the returning node
with the retrieved copy . By copying the group data from
another node of the group , the returning node is prevented
from having divergent group data , although at the cost of
losing any data generated or received by the returning node
while the node was disconnected from the group .
[0005] Such " one size fits all ” synchronization and rec
onciliation policies may work well in enterprise distributed
systems , such as data centers , that include a large number of
nodes , a relatively stable network , and a human network
administrator to perform some management operations .
However , a particular synchronization and reconciliation
policy may be insufficient in distributed data management
systems that do not have the same characteristics . For
example , a distributed data management system in an avi
onics environment (e . g . , an airplane system) may be char
acterized by fewer nodes , a less stable network , unplanned
or abrupt power down and power up operations , multiple
nodes joining the system at the same time , independent /
interruptible power circuits , little or no human network
administration , and continued operation (for at least some
applications) regardless of the number of nodes in the group .
Additionally , for at least some applications , data loss during

[0006] In a particular implementation , a computing device
for a distributed data management system includes an inter
face configured to communicate with a second computing
device of the distributed data management system , a
memory configured to store a first copy of a file that is
synchronized with a second copy of the file stored at the
second computing device , and a processor . The processor is
configured , in response to receiving an update to the file
while the interface is unable to communicate with the
second computing device , to access versioning management
data indicating , for each particular file of a plurality of files
that includes the file , a synchronization setting associated
with the particular file . The processor is configured to ,
conditioned on determining that the versioning management
data indicates a first synchronization setting associated with
the file , write the update to the first copy of the file . The
processor is also configured to , conditioned on determining
that the versioning management data indicates a second
synchronization setting associated with the file , refrain from
writing the update to the first copy of the file .
[0007] In another particular implementation , a method of
distributed data management includes storing , at a first
computing device , a first copy of a file that is synchronized
with a second copy of the file stored at a second computing
device . The method further includes , in response to receiv
ing an update to the file while communication with the
second computing device is unavailable , accessing version
ing management data indicating , for each particular file of a
plurality of files that includes the file , a synchronization
setting associated with the particular file . The method
includes , conditioned on determining that the versioning
management data indicates a first synchronization setting
associated with the file , writing the update to the first copy
of the file . The method further includes , conditioned on
determining that the versioning management data indicates
a second synchronization setting associated with the file ,
refraining from writing the update to the first copy of the file .
10008] In another particular implementation , a distributed
data management system includes a first computing device
and a second computing device . The first computing device
includes a first interface configured to communicate with a
second interface of a second computing device , first memory
configured to store a first copy of a file that is synchronized
with a second copy of the file stored at the second computing
device , and a first processor . The first processor is config
ured , in response to receiving a first update to the file while
the first interface is unable to communicate with the second
interface , to access a first copy of versioning management
data indicating , for each particular file of a plurality of files
that includes the file , a synchronization setting associated
with the particular file . The first processor is configured to ,
conditioned on determining that the first copy of the ver
sioning management data indicates a first synchronization
setting associated with the file , write the first update to the
first copy of the file . The first processor is further configured
to , conditioned on determining that the first copy of the
versioning management data indicates a second synchroni

US 2019 / 0108268 A1 Apr . 11 , 2019

zation setting associated with the file , refrain from writing
the first update to the first copy of the file . The second
computing device includes the second interface configured
to communicate with the first interface of the first computing
device and second memory configured to store the second
copy of the file .

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG . 1 is a block diagram that illustrates a particu
lar implementation of a distributed data management system
that synchronizes data on a per - directory or per - file basis ;
[0010] FIG . 2 is a block diagram that illustrates a particu
lar implementation of a distributed data management system
that performs data reconciliation based on a tree - based
version management scheme ;
[0011] FIG . 3 is a flow chart of an example of a method of
performing data synchronization and reconciliation ;
[0012] FIG . 4 illustrates a first example of operations of
devices of a distributed data management system in accor
dance with aspects of the present disclosure ;
[0013] FIG . 5 illustrates a second example of operations of
devices of a distributed data management system in accor
dance with aspects of the present disclosure ;
[0014] FIG . 6 illustrates a third example of operations of
devices of a distributed data management system in accor
dance with aspects of the present disclosure ;
[0015] FIG . 7 illustrates a fourth example of operations of
devices of a distributed data management system in accor
dance with aspects of the present disclosure ;
[0016] FIG . 8 illustrates a fifth example of operations of
devices of a distributed data management system in accor
dance with aspects of the present disclosure ;
[00171 FIG . 9 is a directed acyclic graph indicative of an
example of data reconciliation in accordance with aspects of
the present disclosure ;
[0018] FIG . 10 is a flow chart of an example of a method
of performing data synchronization on a per - file or per
directory basis ; and
[0019] FIG . 11 is a block diagram of an aircraft including
a distributed data management system including the com
puting devices of FIGS . 1 and 2 .

element , but rather merely distinguishes the element from
another element having a same name (but for use of the
ordinal term) . As used herein , the term “ set ” refers to a
grouping of one or more elements , and the term " plurality ”
refers to multiple elements .
[0021] In the present disclosure , terms such as “ determin
ing ” , “ calculating ” , “ generating ” , “ adjusting ” , “ modifying ” ,
etc . may be used to describe how one or more operations are
performed . It should be noted that such terms are not to be
construed as limiting and other techniques may be utilized to
perform similar operations . Additionally , as referred to
herein , " generating " , " calculating ” , “ using ” , “ selecting ” ,
" accessing ” , and “ determining ” may be used interchange
ably . For example , " generating ” , “ calculating " , or “ deter
mining ” a parameter (or a signal) may refer to actively
generating , calculating , or determining the parameter (or the
signal) or may refer to using , selecting , or accessing the
parameter (or signal) that is already generated , such as by
another component or device . Additionally , “ adjusting " and
“ modifying ” may be used interchangeably . For example ,
“ adjusting ” or “ modifying ” a parameter may refer to chang
ing the parameter from a first value to a second value (a
“ modified value ” or an “ adjusted value ”) . As used herein ,
" coupled ” may include " communicatively coupled , ” “ elec
trically coupled , ” or “ physically coupled , " and may also (or
alternatively) include any combinations thereof . Two
devices (or components) may be coupled (e . g . , communi
catively coupled , electrically coupled , or physically
coupled) directly or indirectly via one or more other devices ,
components , wires , buses , networks (e . g . , a wired network ,
a wireless network , or a combination thereof) , etc . Two
devices (or components) that are electrically coupled may be
included in the same device or in different devices and may
be connected via electronics , one or more connectors , or
inductive coupling , as illustrative , non - limiting examples . In
some implementations , two devices (or components) that are
communicatively coupled , such as in electrical communi
cation , may send and receive electrical signals (digital
signals or analog signals) directly or indirectly , such as via
one or more wires , buses , networks , etc . As used herein ,
“ directly coupled ” may include two devices that are coupled
(e . g . , communicatively coupled , electrically coupled , or
physically coupled) without intervening components .
10022] Implementations disclosed herein are directed to
systems and methods for a distributed data management
system , also referred to as a distributed versioned file system
(DVFS) . A distributed data management system , in accor
dance with aspects of the present disclosure can be imple
mented in environments with different characteristics than
enterprise distributed systems , such as vehicle - based distrib
uted systems or the “ Internet of Things ” (IoT) . To illustrate ,
vehicle - based systems or IoT systems may be characterized
by a small number of nodes , a relatively unstable network ,
unplanned power down and power up operations , multiple
nodes joining the system at the same time , independent /
interruptible power circuits , little or no human network
administration , and continued operation (for at least some
applications) regardless of the number of active nodes .
Typical enterprise distributed systems are not suited for
these environments . For example , quorum - based synchro
nization in enterprise distributed systems is inefficient in
systems with a small number of nodes because the quorum
will be difficult to maintain , resulting in large amounts of
time that group data is locked . Additionally , enterprise

DETAILED DESCRIPTION
[0020] Particular implementations are described with ref
erence to the drawings . In the description , common features
are designated by common reference numbers throughout
the drawings . As used herein , various terminology is used
for the purpose of describing particular implementations
only and is not intended to be limiting . For example , the
singular forms “ a , " " an , ” and “ the ” are intended to include
the plural forms as well , unless the context clearly indicates
otherwise . It may be further understood that the terms
" comprise , " " comprises , ” and “ comprising " may be used
interchangeably with “ include , ” “ includes , ” or “ including . ”
Additionally , it will be understood that the term " wherein ”
may be used interchangeably with “ where . ” As used herein ,
“ exemplary ” may indicate an example , an implementation ,
and / or an aspect , and should not be construed as limiting or
as indicating a preference or a preferred implementation . As
used herein , an ordinal term (e . g . , " first , " " second , ” “ third , ”
etc .) used to modify an element , such as a structure , a
component , an operation , etc . , does not by itself indicate any
priority or order of the element with respect to another

US 2019 / 0108268 A1 Apr . 11 , 2019

distributed systems are designed to handle “ graceful ”
power - ups and power - downs (e . g . , having nodes leave the
system one at a time or be added one at a time) . In
vehicle - based systems and IoT systems , nodes are more
likely to join (or leave) the system unpredictably , including
situations where multiple nodes may join the system con
currently . Typical enterprise distributed systems may be
unable to prevent data divergence in these situations , and
instead rely on a human network administrator to resolve
data divergence . However , vehicle - based systems and IoT
systems may not be able to rely on a human network
administrator to solve data divergence issues .
[0023] Accordingly , a distributed data management sys
tem of the present disclosure is configured to select data
synchronization and data reconciliation policies on a per
directory or per - file basis . Allowing selection of different
policies at a finer granularity may enable the distributed data
management system of the present disclosure to account for
the above - described challenges associated with vehicle
based systems or IoT systems . To illustrate , a computing
device of a distributed data management system includes an
interface configured to communicate with a second device of
the distributed data management system , a memory storing
a first copy of a file that is synchronized with a second copy
of a file stored at the second computing device , and a
processor . The processor is configured to perform synchro
nization operations or reconciliation operations on a per
directory or per - file basis . For example , the processor is
configured , in response to receiving an update to the file
while the interface unable to communicate with the second
computing device , to access versioning management data .
The versioning management data indicates , for file of a
plurality of files , a synchronization setting associated with
the respective file . For example , the versioning management
data may indicate synchronization settings for each directory
of a synchronized workspace or for each individual file of
the synchronized workspace . The processor is further con
figured to determine whether to write the update based on
the version management data . For example , the processor
may write the update to the first copy of the file if the
versioning management data indicates a first synchroniza
tion setting associated with the file . Alternatively , the pro
cessor may refrain from writing the update if the version
management data indicates a second synchronization setting
associated with the file .
[0024] Because the synchronization settings are on a per
directory or per - file basis , some files (or directories) asso
ciated with higher data availability criteria or frequently
updated data may be synchronized in accordance with a first
synchronization scheme (e . g . , a scheme that allows updates
without a quorum) and other files (or directories) associated
with less frequently updated data or higher data integrity
criteria may be synchronized in accordance with a second
scheme (e . g . , a quorum - based scheme) . Thus , computing
devices of the distributed data management system of the
present disclosure can execute applications having different
criteria (e . g . , high availability or high integrity without
additional hardware (e . g . , dedicated hardware for each type
of application) . This flexibility enables the distributed data
management system of the present disclosure to compensate
for the varying applications of a vehicle - based system or IoT
system , such as critical ” systems having a high data integ
rity criterion and service - based systems having a high avail
ability criterion .

[0025] In some implementations , computing devices of
the distributed data management system are configured to
use a tree - based version management scheme for data rec
onciliation operations . To illustrate , each computing device
may store data indicative of a tree of committed versions of
a shared workspace . When a particular device is partitioned
from the group , the device may continue to receive updates
to files of a synchronized workspace . Each time the device
commits the workspace (e . g . , the state of the files) to a
repository , the tree data is updated with a branch . When the
device rejoins the group , the device may retrieve a copy of
the shared workspace from one of the other devices of the
group , and may store a new branch in the tree data . The
device may determine a difference between the new branch
and the previous branches (e . g . , data that was added while
the device was partitioned) and may provide the data to a
corresponding application for a determination whether to
include the data in a future update to the workspace . In this
manner , automated application - level data reconciliation is
performed without data loss , as compared to enterprise
distributed systems in which data loss occurs during recon
ciliation (or a human network administrator intervenes) .
Thus , the distributed data management system of the present
disclosure can be implemented in vehicle - based systems or
IoT systems which have no (or little) human network
administration .
[0026] FIG . 1 illustrates an example of a particular imple
mentation of a system 100 (e . g . , a distributed data manage
ment system) that synchronizes data on a per - directory or
per - file basis . For example , different directories (e . g . , a
group of files) or different files may be synchronized accord
ing to different synchronization methodologies without
requiring a human network administrator . Enabling data
synchronization on a per - directory or per - file basis increases
the versatility of the distributed data management system
such that the distributed data management system may be
deployed beyond typical enterprise environments , for
example in an avionics environment (or other vehicle - based
environment) or on “ Internet of Things ” (IoT) devices , as
further described herein .
[0027] The system 100 includes a first computing device
102 , a second computing device 152 , and a third computing
device 192 . The first computing device 102 , the second
computing device 152 , and the third computing device 192
may be communicatively coupled via a network 190 . In a
particular implementation , the first computing device 102 ,
the second computing device 152 , and the third computing
device 192 are integrated into a vehicle . For example , the
system 100 may be integrated in an aircraft , an unmanned
aerial vehicle (UAV) , a spacecraft , a satellite , a watercraft ,
or a land - based vehicle (a car , a truck , a tank , etc .) . In a
particular implementation , the system 100 is a distributed
avionics system of an aircraft . For example , the computing
devices 102 , 152 , and 192 may include or correspond to
sensor devices , control devices , environmental devices ,
power devices , etc . Alternatively , the system 100 may be
integrated within a building or structure , such as a refinery ,
a manufacturing facility , an airport , a space launch system ,
etc . In a particular implementation , the first computing
device 102 includes or corresponds to a first line replaceable
unit of an aircraft , the second computing device 152 includes
or corresponds to a second line replaceable unit of the
aircraft , and the third computing device 192 includes or
corresponds to a third line replaceable unit of the aircraft . In

US 2019 / 0108268 A1 Apr . 11 , 2019

another particular implementation , the first computing
device 102 , the second computing device 152 , and the third
computing device 192 are IoT devices . As non - limiting
example , the computing devices 102 , 152 , and 192 include
or correspond to building and home equipment (e . g . , smart
home devices , internet - connected appliances , media
devices , computers , robotic devices , etc .) , environmental
monitoring devices , infrastructure management devices ,
manufacturing equipment and monitoring devices , agricul
tural devices , energy management devices , medical and
healthcare devices , vehicles , other devices capable of gen
erating data and accessing a network , or a combination
thereof .
[0028] The first computing device 102 includes a proces
sor 103 , a memory 106 , and an interface 108 . The interface
108 may include or correspond to a network interface , a
transmitter , a receiver , a transceiver , or a combination
thereof , that is configured to communicate with other
devices of the system 100 via the network 190 . The proces
sor 103 is configured to execute computer - readable instruc
tions stored at the memory 106 to perform various opera -
tions , as further described herein . In a particular example ,
the processor 103 is configured to execute an application
114 . The application 114 may be associated with particular
operations to be performed . As a non - limiting example , the
application 114 is a sensor application that is configured to
receive sensor data from one or more sensors (e . g . , sensor
that are integrated in the first computing device 102 or that
are accessible by the first computing device 102 , such as via
the network 190) and to generate output data , such as
summarized or collected data from the one or more sensors .
In a particular implementation , the application 114 may be
executed by each of the computing devices 102 , 152 , and
192 , as further described herein . The processor 103 may also
be configured to execute a data manager 104 to perform one
or more data management operations for shared group data ,
as further described herein . Although described as being
executed by the processor 103 , in other implementations , the
data manager 104 includes dedicated circuitry or hardware ,
such as a field - programmable gate array (FPGA) device , an
application - specific integrated circuit (ASIC) , a digital sig
nal processor (DSP) , a controller , etc . , software (e . g . ,
instructions executable by a processor) , firmware , or a
combination thereof , that perform (or cause the processor
103 to perform the operations described herein . The
memory 106 is configured to store related device identifiers
125 , one or more threshold numbers 127 , a workspace 105
(e . g . , a shared workspace) , versioning management data
117 , and peer data 129 .
[0029] The second computing device 152 includes a pro
cessor 153 , a memory 156 , and an interface 158 . The
interface 158 may include or correspond to a network
interface , a transmitter , a receiver , a transceiver , or a com
bination thereof , that is configured to communicate with
other devices of the system 100 via the network 190 . The
processor 153 is configured to execute computer - readable
instructions stored at the memory 156 to perform various
operations , as further described herein . For example , the
processor 153 may execute one or more applications , similar
to the application 114 . The memory 156 is configured to
store a workspace 155 (e . g . , a shared workspace) . The
memory 156 may also store related device identifiers , one or
more threshold numbers , versioning management data , and
peer data , as described with reference to the first computing

device 102 . The processor 153 also includes or executes a
data manager 154 , similar to the data manager 104 of the
first computing device 102 . In a similar manner , the third
computing device 192 includes a processor , a memory , and
an interface .
(0030) Each of the computing devices 102 , 152 , and 192
is configured to generate local data and to perform local
operations . For example , ephemeral data (e . g . , " conversa
tional ” states) and node - specific data is processed and stored
locally . As used herein , the members of the system 100 (e . g . ,
the computing device 102 , 152 , and 192) may also be
referred to as nodes . Additionally , each of the computing
devices 102 , 152 , and 192 is configured to generate , store ,
and process group data that is shared by the other devices .
To illustrate , each computing device is configured to main
tain a corresponding shared workspace that includes one or
more files of group data . To manage the workspaces , each
computing device executes or includes a corresponding data
manager . For example , the first computing device 102
executes (or includes) the data manager 104 to manage the
workspace 105 , and the second computing device 152
executes (or includes) the data manager 154 to manage the
workspace 155 .
[0031] In order to enable sharing of group data among
multiple computing devices of the system 100 , the comput
ing devices 102 , 152 , and 192 are configured to replicate
group data (e . g . , one or more files that are to be read from
and written to by multiple computing devices of the system
100) and store the replicated data in the corresponding
workspace . To illustrate , the group data may include a file ,
the first computing device 102 stores a first copy 107 of the
file in the workspace 105 in the memory 106 , the second
computing device 152 stores a second copy 157 of the file
in the workspace 155 in the memory 156 , and the third
computing device 192 stores a third copy of the file in a
workspace in the memory of the third computing device 192 .
Although storage of copies of a single file is illustrated in
FIG . 1 , each workspace may include copies of more than one
file . In a particular implementation , each of the workspaces
105 and 155 store one or more directories , each directory
including one or more files .
[0032] The computing devices 102 , 152 , and 192 are
configured to enable access to the copied files in the work
spaces to one or more applications , such as the application
114 , executed at the computing devices 102 , 152 , and 192 .
Additionally , the data managers 104 and 154 are configured
to manage updates to the files stored in the respective
workspaces based on one or more conditions and versioning
management data . For example , the data manager 104
includes a synchronizer 110 that is configured (or executed)
to synchronize the copies of files (e . g . , the replicated data) ,
such as the first copy 107 , stored at the workspace 105 based
on the versioning management data 117 . The version man
agement data 117 includes synchronization settings associ
ated with particular files , synchronization settings associated
with particular directories , or both . The synchronization
setting associated with a file or directory) indicates a
particular synchronization scheme of multiple selectable
synchronization schemes used by the data manager 104 to
control synchronization of the corresponding file (or direc
tory) . The particular synchronization scheme may indicate
when files are synchronized , how files are updated (e . g . ,
written to) , conditions for allowing (or preventing) updating ,
other synchronization information , or a combination thereof .

US 2019 / 0108268 A1 Apr . 11 , 2019

[0033] During operation , group data is duplicated and
stored at each computing device that is a member of a group
of active , connected computing devices of the system 100 .
For example , at a first time , the first computing device 102 ,
the second computing device 152 , and the third computing
device 192 are connected via the network 190 to form a
group , and group data is replicated and stored locally . To
illustrate , the first computing device 102 stores the first copy
107 of the file at the memory 106 , the second computing
device 152 stores the second copy 157 of the file at the
memory 156 , and the third computing device 192 stores the
third copy of the file at the memory of the third computing
device 192 . One or more applications executed at the
computing devices 102 , 152 , 192 may access the copies of
the file under the control of the corresponding data manager .
For example , the data manager 104 may control access of
the application 114 to the first copy 107 at the first comput
ing device 102 , and the data manager 154 may control
access to the second copy 157 at the second computing
device 152 . The access may be controlled based on the
versioning management data 117 , which includes a synchro
nization setting 121 associated with the first copy 107 . The
synchronization setting 121 indicates a synchronization
scheme associated with the first copy 107 . Although a single
synchronization setting is illustrated in FIG . 1 , the version
ing management data 117 may include a plurality of syn
chronization settings . For example , the versioning manage
ment data 117 may include a plurality of synchronization
settings associated with a plurality of files (e . g . , copies of
files) stored at the workspace 105 .
[0034] The data manager 104 may determine whether to
enable the application 114 to access the first copy 107 based
on the type of access (e . g . , a read operation or a write
operation) and based on the synchronization setting 121 and
one or more conditions at the first computing device 102 .
For example , because the file is copied to the local memory
(e . g . , the memory 106) , all read operations are permitted and
do not accrue network overhead , as compared to shared file
systems that retrieve shared data from a server for each read
operation . For write operations (or other operations that
modify or update the first copy 107) , the synchronizer 110
selectively enables access to the first copy 107 by the
application 114 based on the synchronization setting 121 and
one or more conditions at the first computing device 102 .
[0035] The synchronization setting 121 indicates one of
multiple synchronization schemes or modes to be applied to
the first copy 107 . In some implementations , the multiple
synchronization modes include a quorum mode and a high
availability mode . In other implementations , other modes
may be used in addition to or instead of the quorum mode ,
the high availability mode , or both . In a quorum mode ,
updates to replicated files (e . g . , the first copy 107) are
permitted at a particular computing device if the particular
computing device is connected to a group of devices that
includes at least a threshold number of devices . As an
illustrative example , if the system 100 includes a total of six
computing devices , a quorum may exist when a majority of
the devices are included in the group (e . g . , when four or
more devices are included in the group) . In the example
illustrated in FIG . 1 (e . g . , if the system includes a total of
three computing devices) , a quorum is a group of any two
computing devices or a group of all three computing
devices . In the quorum mode , as long as the group includes
at least a threshold number of devices , devices of the group

may update replicated data locally and share the updates
among members of the group . Updates may be shared with
other devices of the group using " safe writes . ” To perform
a safe write , a computing device that has an update to a file
at a workspace transmits the update to each computing
device of the group and waits until the other computing
devices of the group receive (and acknowledge) the update
before performing the update at the workspace . Additionally ,
computing devices of the group maintain and communicate
information between computing devices to enable write
operations to be performed in order (e . g . , a “ total ordering
of write events ”) among computing devices of the group .
Use of the safe writes reduces data divergence between
computing devices of the group in the case of an unex
pected disconnection from the network 190) . Although
described with reference to the quorum mode , in some
implementations , safe writes (and ordering of write events)
are used in all synchronization modes .
[0036] In the quorum mode , if a particular computing
device is isolated (e . g . , not connected to any other comput
ing devices of the system 100) or connected to a group that
includes fewer than the threshold number of computing
devices , updates to replicated data are prevented . Thus ,
divergence of replicated data at computing devices that
isolated or part of a small group is prevented . To illustrate ,
when the particular computing device later rejoins the
group , a copy of the file stored at a different computing
device of the group may be requested and used to update the
local copy , thereby preventing the particular computing
device from storing different data than other devices of the
group . Thus , the quorum mode is designed to preserve data
integrity , and is therefore beneficial for files (or directories)
for which data integrity is a primary criterion , such as
" critical ” system files or directories .
[0037] In the high availability mode , computing devices
are enabled to update replicated files regardless of whether
the computing devices are part of a group that includes at
least the particular number of computing devices . For
example , individual computing devices that are partitioned
from the network 190 may continue to update copies of files
that correspond to the high availability mode while discon
nected from the network 190 (or while part of a group that
does not include enough computing devices to qualify as a
quorum) . Because a particular computing device may update
the locally stored copies of files multiple times before the
particular computing device is able to rejoin the group , the
particular computing device may store divergent data from
other members of the group . In order to provide automated
recovery from potentially divergent data , the computing
devices of the system 100 may perform data reconciliation
operations in accordance with data reconciliation settings
indicated by the versioning management data 117 , as further
described with reference to FIG . 2 .
[0038] In this manner , the computing devices of the sys
tem 100 perform synchronization (and data reconciliation)
on a per - file or per - directory basis using the versioning
management data 117 . The following describes particular
examples of operation of the system 100 . The examples are
illustrative and are not intended to be limiting .
[0039] In a particular example , the data manager 104 (e . g . ,
the processor 103) receives an update 115 to the first copy
107 of the file from the application 114 while the interface
108 is unable to communicate with the second computing
device 152 . For example , at a second time that is subsequent

US 2019 / 0108268 A1 Apr . 11 , 2019

to a first time (at which the first copy 107 is stored at the
workspace 105) , the second computing device 152 may be
powered down or disconnected from the network 190 , or the
first computing device 102 may be disconnected from the
network 190 . In response to receiving the update 115 while
the interface 108 is unable to communicate with the second
computing device 152 , the processor 103 (e . g . , the data
manager 104 and the synchronizer 110) accesses the ver
sioning management data 117 to determine the synchroni
zation setting 121 associated with the first copy 107 of the
file . If the synchronization setting 121 is a first synchroni
zation setting , the processor 103 (e . g . , the data manager 104)
writes the update 115 to the first copy 107 of the file in the
workspace 105 . If the synchronization setting 121 is a
second synchronization setting , the processor 103 (e . g . , the
data manager 104) refrains from writing the update 115 to
the first copy 107 of the file in the workspace 105 .
[0040] In a particular implementation , the versioning man
agement data 117 includes a plurality of synchronization
settings associated with a plurality of individual files stored
at the workspace 105 . In this implementation , the synchro
nization setting 121 corresponds to only the first copy 107 of
the file , and other synchronization settings correspond to
other files . In an alternate implementation , the versioning
management data 117 indicates a synchronization setting
associated with a directory of files that includes the first copy
107 of the file . For example , the synchronization setting
indicates a synchronization mode applied to a plurality of
files including the first copy 107 of the file . In this imple
mentation , the processor 103 (e . g . , the data manager 104)
writes the update 115 to the first copy 107 of the file
conditioned on determining that the synchronization setting
121 indicates the first synchronization setting corresponds to
the directory of files that includes the first copy 107 of the
file , and the processor 103 (e . g . , the data manager 104)
refrains from writing the update 115 to the first copy 107 of
the file conditioned on determining that the synchronization
setting 121 indicates the second synchronization setting
corresponds to the directory of files .
[0041] As a first example , the processor 103 writes the
update 115 to the first copy 107 of the file in response to
determining that the first synchronization setting corre
sponds to a quorum mode and detecting that the interface
108 is able to communicate with at least a threshold number
of a plurality of computing devices that includes the second
computing device 152 and one or more additional comput
ing devices . To illustrate , the computing devices 102 , 152 ,
and 192 may periodically (or responsive to events) generate
peer data , such as the peer data 129 , indicating which
computing devices are peers (e . g . , part of a group) at various
times . The peer data may indicate one or more of the related
device identifiers 125 (e . g . , the device identifiers of all
known members of the system 100) . For example , at a first
time when the first computing device 102 is able to com
municate with the second computing device 152 and the
third computing device 192 (e . g . , a time when the first copy
107 of the file is received and stored) , the first computing
device 102 generates first peer data 131 indicating the
identifiers of the second computing device 152 and the third
computing device 192 . At a second time when the interface
108 is unable to communicate with the second computing
device 152 and the update 115 is received , the first comput
ing device 102 generates second peer data 133 that indicates
identifiers of computing devices that the interface 108 is able

to communicate with . For example , the second peer data 133
may indicate the identifier of the third computing device 192
(if the interface 108 is able to communicate with the third
computing device 192) or may be null data (if the interface
108 is unable to communicate with any other computing
device) . The peer data 129 may be updated periodically or
in response to detection of a change in the number of
computing devices that the interface 108 is able to commu
nicate with .
0042] To determine whether to write the update 115 in the
quorum mode , the processor 103 determines the number of
peer computing devices indicated by the second peer data
133 and compares the number to a threshold number (of the
one or more threshold numbers 127) that corresponds to the
synchronization setting 121 . If the number satisfies (e . g . , is
greater than or equal to) the threshold number , the processor
103 writes the update 115 to the first copy 107 of the file . To
illustrate , if the threshold number is one and the second peer
data 133 indicates the identifier of the third computing
device 192 , the processor 103 writes the update 115 to the
first copy 107 of the file in the workspace 105 .
[0043] As a second example , the processor 103 writes the
update 115 to the first copy 107 of the file in response to
determining that the first synchronization setting corre
sponds to a high availability mode . In the high availability
mode , the update 115 is written regardless of the number of
computing devices indicated by the second peer data 133 . As
a third example , the processor 103 refrains from writing the
update 115 to the first copy 107 of the file in response to
determining that the second synchronization setting corre
sponds to a quorum mode and detecting that the interface
108 is able to communicate with less than a threshold
number of a plurality of computing devices that includes the
second computing device 152 and one or more additional
computing devices . To illustrate , in the quorum mode , the
processor 103 refrains from writing the update 115 to the
first copy 107 of the file conditioned on the second peer data
133 indicating fewer computing devices than the threshold
number .
[0044] The second computing device 152 (and the third
computing device 192) perform similar operations to the
first computing device 102 . As an illustrative example , the
processor 153 (e . g . , the data manager 154) is configured , in
response to receiving a second update to the second copy
157 of the file (e . g . , from an application executed by the
processor 153) while the interface 158 is unable to commu
nicate with the first computing device 102 , to access a copy
of versioning management data stored at the memory 156 . In
this example , the processor 153 is configured , conditioned
on determining that the versioning management data indi
cates that a first particular synchronization setting is asso
ciated with the second copy 157 of the file , to write the
second update to the second copy 157 of the file . The
processor 153 is further configured , conditioned on deter
mining that the versioning management data indicates that a
second particular synchronization setting is associated with
the second copy 157 of the file , to refrain from writing the
second update to the second copy 157 of the file .
[0045] Thus , the system 100 of FIG . 1 provides a distrib
uted data management system that enables synchronization
and updating operations to be performed on a per - file basis
or a per - directory basis . For example , a first copy of a file
may be managed according to a quorum mode , and a second
copy of a second file may be managed according to a high

US 2019 / 0108268 A1 Apr . 11 , 2019

availability mode . Because system 100 is able to manage
different files according to different modes , the system 100
is more flexible than conventional distributed data manage
ment systems . Accordingly , the system 100 is more suited
for use in more challenging system environments , such as
vehicle - based systems or the IoT , which have fewer nodes
(and limited hardware at each node) , unplanned power - ups
and power - downs , limited battery power , and potentially
unstable networks . Because different synchronization set
tings can be used for different files , “ critical ” system files
can be managed in accordance with a quorum mode to
protect data integrity of the system files , and service files or
sensor - generated files can be managed in accordance with a
high availability mode to allow data to be updated regardless
of the conditions within the distributed data management
system . Because of this enhanced flexibility , the system 100
is better able to handle the challenges of vehicle - based
systems , such as aircraft distributed systems , or the chal
lenges associated with the IoT than conventional distributed
data management systems that apply a single synchroniza
tion policy to all files within the distributed data manage
ment system .
[0046] FIG . 2 illustrates an example of a particular imple
mentation of a system 200 (e . g . , a distributed data manage
ment system) that performs data reconciliation based on a
tree - based version management scheme . Use of the tree
based version management scheme enables devices of the
system 200 to perform automated data recovery and recon
ciliation after synchronization . Thus , the system 200 is able
to recover from partitioning events (or other events that may
cause a “ split - brain ” condition) without a human network
administrator , which enables the system 200 to be deployed
in vehicle - based environments or on IoT devices .
[0047] The system 200 includes the first computing device
102 , the second computing device 152 , and the third com
puting device 192 , as described with reference to FIG . 1 . In
addition to being configured to perform selective updating
operations , as described with reference to FIG . 1 , the com
puting devices 102 , 152 , and 192 are configured to perform
version management of replicated data . To illustrate , the
versioning management data may indicate one or more
settings or rules associated with performing version control
with respect to data stored at the workspaces of the com
puting devices 102 , 152 , and 192 . To further illustrate , each
computing device 102 , 152 , 192 may maintain a correspond
ing workspace (e . g . , a directory) in memory that serves as a
staging area for files (or directories) to be committed to a
repository in the memory . The computing devices 102 , 152 ,
192 may “ commit ” the workspace to a local repository at
various times , such as in response to a detected condition .
Committing a workspace , as used herein , refers to saving
current state data of the files within the workspace to the
local memory . In some implementations , each time the
workspace is committed , state data is stored that indicates
only the changes made to the workspace since the previous
commitment . In other implementations , state data indicating
a snapshot of the current state of the workspace is stored .
[0048] In some implementations , a globally unique iden
tifier is associated with each individual local workspace to
be synchronized as replicas of shared data . Within each
workspace are individual files (e . g . , copies of files) or
directories (e . g . , groups of copies of files) that are synchro
nized in accordance with individual (or directory - based)
synchronization settings , as described with reference to FIG .

1 . Committing the workspace (e . g . , storing state data indica
tive of a current state of the workspace) may also be referred
to as checkpointing . In a particular implementation , the
workspace is committed (e . g . , a checkpoint is created) after
a power - on event (or after an initialization phase of a
processor) and prior to synchronization with other devices of
the system 200 .
[0049] In a particular implementation , the computing
devices 102 , 152 , and 192 are configured to perform " lazy
synchronization ” . Lazy synchronization refers to synchro
nization only when group membership grows . Group mem
bership may grow when peer nodes start up or when
partitioned networks are merged . In some implementations ,
in addition to performing lazy synchronization , the comput
ing devices 102 , 152 , and 192 are configured to enable
application - based synchronization . For example , the first
computing device 102 may be configured to synchronize the
workspace 105 based on an instruction from the application
114 . Application - based synchronization enables applications
to synchronize workspaces prior to periods of expected
activity , such as periods where intense data collection is
expected to occur .
[0050] To perform synchronization , the computing
devices 102 , 152 , and 192 are configured to commit work
spaces to respective local repositories , determine whether
each computing device is a “ victim node ” or a “ survivor
node ” , retrieve copies of replicated data from survivor nodes
(if the computing device is a victim node) , and perform data
reconciliation operations . A victim node is a node that
retrieves a copy of replicated data from a survivor node and
uses the retrieved copy instead of local data such that all
nodes have the same replicated data after a synchronization
event . Because the victim node overwrites local data with
replicated from the survivor node , the victim node is said to
be “ victimized . ” However , as further described herein , the
computing devices 102 , 152 , and 192 are configured to
maintain tree - based versioning management data that
enables victim nodes to selectively preserve local data that
would otherwise by lost during reconciliation .
[0051] The determination whether a particular computing
device is a victim node or a survivor node is based on
reconciliation settings included in the versioning manage
ment data stored at each of the computing devices 102 , 152 ,
and 192 . The reconciliation settings may be stored on a
per - file or per - directory basis , similar to the synchronization
settings , or on a per - workspace basis . Each reconciliation
setting indicates one of multiple reconciliation settings that
corresponds to a respective file (or directory) stored at the
workspace . In a particular implementation , the multiple
reconciliation settings include a “ LAST " setting , a “ FIRST ”
setting , and a “ NONE " setting . In other implementations ,
fewer than three or more than three reconciliation settings
may be selectable . In the LAST setting , a survivor node is
selected as the last node to be turned off from a group of
survivor candidates (e . g . , a pool of nodes that ran in the
previous cycle , such as a flight cycle in avionics implemen
tations) . If the synchronization setting is quorum mode , the
survivor node is the last to be turned off (or an arbitrary
member) of the last set of nodes that established a quorum .
In the FIRST setting , the survivor node is the first node
among the survivor candidates to come online (or a node
from the current largest set of nodes that are already peers) .
In the NONE setting , divergences between workspaces are
resolved by the applications being executed by the comput

US 2019 / 0108268 A1 Apr . 11 , 2019

ing devices 102 , 152 , and 192 (e . g . , no copying and recon
ciliation occurs unless controlled by an application) .
[0052] In order to prevent data loss during reconciliation ,
the computing devices 102 , 152 , and 192 are configured to
use a tree - based version management scheme when per
forming workspace commitments and reconciliation opera
tions . To illustrate , the computing devices 102 , 152 , and 192
are configured to generate tree data indicative of a tree of
commitments . The tree - data indicates a tree of versions of
the respective workspaces . For example , when the work
space is committed , the respective computing device is
configured to update tree data to indicate a new node in a
version tree . When a computing device is determined to be
a victim node , the computing device updates the tree data to
indicate a new branch prior to retrieving and storing repli
cated data from a survivor node . To illustrate , the computing
device may indicate that the version tree branches in two
directions . In one branch is the most recent version com
mitted by the computing device (as part of a synchronization
operation that results in the computing device determining
that it is a victim node) , and in the other branch is the version
copied from a survivor node . By maintaining tree data (and
branching during synchronize operations that would other
wise result in data loss) , data that was updated at the
computing device can be made available (e . g . , provided to
or retrieved by) one or more applications at the computing
device , thereby enabling application - level data reconcilia
tion operations to occur .
[0053] To illustrate , during operation , the computing
devices 102 , 152 , and 192 may undergo one or more changes
in connectivity (e . g . , due to powering down or being parti
tioned from the network 190) . For example , at an initial
time , the first computing device 102 , the second computing
device 152 , and the third computing device 192 may each be
connected via the network 190 to form a group of nodes that
share replicated data . For example , each of the computing
devices 102 , 152 , 192 may store a copy of a particular file
at the respective workspace . To illustrate , the first computing
device 102 stores the first copy 107 of the file at the
workspace 105 , and the second computing device 152 stores
the second copy 157 of the file at the workspace 155 . The
computing devices 102 , 152 , and 192 execute one or more
applications that may attempt to update the respective copies
of the file . Updates to the first copy 107 of the file are
controlled based on the synchronization setting 121 , as
described with reference to FIG . 1
[0054] At a second time , the first computing device 102
becomes disconnected from the other computing devices of
the group (or undergoes a power - down operation , followed
by a power - on operation) . The processor 103 generates and
stores the first peer data 131 that does not indicate any
identifiers (e . g . , the first peer data 131 may be null data) .
Updates to the first copy 107 of the file are continue to be
selectively permitted based on the synchronization setting
121 , as described with reference to FIG . 1 . In at least some
implementations , one or more updates may be made to the
first copy 107 of the file (or another copy of a file within the
workspace 105) after the first computing device 102 is
disconnected from the other computing devices . For
example , the synchronization setting 121 may indicate that
the first copy 107 of the file is associated with the high
availability mode .
[0055] At a second time , the first computing device 102
becomes re - connected to the network 190 and to the second

computing device 152 and the third computing device 192 .
The processor 103 generates and stores the second peer data
133 that indicates the identifiers of the second computing
device 152 and the third computing device 192 . Addition
ally , one or more reconciliation operations are performed .
For example , the data manager 104 executes (or includes) a
reconciler 212 that performs data reconciliation operations .
The reconciler 212 includes hardware , software , or a com
bination thereof , configured to perform one or more recon
ciliation operations , as further described herein . In a par
ticular implementation , because the size of the peer group of
the first computing device 102 has increased (from zero to
two) , the processor 103 commits the workspace 105 to the
repository 109 , in accordance with a lazy synchronization
scheme indicated by the synchronization setting 121 . To
simplify explanation , examples are described in which the
workspace contains a single file , the first copy 107 of the file .
Such illustration is not intended to be limiting , and in other
examples , the workspace 105 includes multiple files that are
committed to the repository 109 .
[0056] Committing the workspace 105 to the repository
109 includes storing the first copy 107 of the file as a first
version 111 . The first computing device 102 also updates
tree data 215 to indicate a first node of a tree associated with
the workspace 105 (including the first copy 107 of the file) .
For example , a head of a tree indicated by the tree data 215
is associated with the first version 111 (and any other files
store in the repository 109 during committing of the work
space 105) . In a similar manner , the second computing
device 152 stores versions of the second copy 157 of the file
in a repository 259 , such as storing a first version 260 , and
maintains tree data 261 associated with versions of the files
in the repository 259 .
f0057] The processor 103 (e . g . , the reconciler 212) may
detect a reconciliation phase at the second time and , during
the reconciliation phase , determine that the interface 108 is
able to communicate with a first set of computing devices .
The first set of computing devices includes the second
computing device 152 and the third computing device 192 ,
as indicated by the second peer data 133 . The processor 103
(e . g . , the reconciler 212) may detect the reconciliation phase
in response to detecting an initialization phase of the pro
cessor 103 (e . g . , after a power - up condition) , detecting that
communication is restored with the second computing
device 152 , or both . Responsive to detecting the reconcili
ation phase , the processor 103 (e . g . , the reconciler 212)
accesses the versioning management data 117 to determine
a reconciliation setting 223 associated with the first copy
107 of the file . The reconciliation setting 223 indicates that
the first copy 107 of the file is associated with one of
multiple reconciliation settings . The multiple reconciliation
settings indicate when reconciliation is to occur , how a
survivor or victim node is determined , whether a quorum is
used to determine a survivor node , etc .
[0058] Conditioned on determining that the reconciliation
setting 223 is a first reconciliation setting , the processor 103
sends a request for updated data to the second computing
device 152 . For example , the reconciliation setting 223 may
indicate a LAST setting , and the processor 103 may deter
mine whether the first computing device 102 is a survivor
node (or a victim node) in accordance with the LAST
setting . To illustrate , the processor 103 receives peer data
from each computing device of the computing devices of the
set of computing devices indicated by the second peer data

US 2019 / 0108268 A1 Apr . 11 , 2019

133 . For example , the first computing device 102 receives
additional peer data 229 from the second computing device
152 . The additional peer data 229 indicates a peer group of
the second computing device 152 at the first time (e . g . , the
time when the first computing device 102 was disconnected
from the network 190) . In a particular example , the addi
tional peer data 229 indicates that the third computing
device 192 was a peer of the second computing device 152
at the second time .
[0059] In a particular implementation , the first computing
device 102 determines whether the first computing device
102 is a victim device and , if so , determines an accessible
survivor device , based on local peer data (e . g . , the first peer
data 131 and the second peer data 133) and the additional
peer data 229 . For example , if the additional peer data 229
indicates that the second computing device 152 had more
peers at the second time (or was part of a quorum at the
second time) , the first computing device 102 determines that
the second computing device 152 is a survivor node (and the
first computing device 102 is a victim node) . In this manner ,
the first computing device 102 selects the second computing
device 152 (e . g . , as a survivor node) based on the local peer
data and the additional peer data 229 .
[0060] Based on a determination that the second comput
ing device 152 is a survivor node (and that the first com
puting device 102 is a victim node) , the first computing
device 102 sends a request 241 for a second version of the
file to the second computing device 152 . For example , the
processor 103 (e . g . , the reconciler 212) may initiate trans
mission via the interface 108 of the request 241 to the second
computing device 152 . The second computing device 152
receives the request 241 and in response sends data 243 to
the first computing device via the interface 158 . The data
243 indicates the second copy 157 of the file (including any
updates made while the first computing device 102 was
disconnected from the second computing device 152) . The
first computing device 102 receives the data 243 and stores
the data 243 in the repository 109 as a second version 113
of the file .
[0061] Additionally , the processor 103 may update the tree
data 215 to indicate a branch has occurred . For example , an
entry representing the second version 113 is added as a
separate branch from the most recently added entry , and the
new branch is designated part of the “ main trunk ” (e . g . ,
connected entries leading from a head entry to an initial
entry) . The other branch that contains the most recently
added entry prior to the new entry is designated as a branch
(e . g . , as not being part of the main trunk) . However , because
the new entry is added to a different branch , the previously
added entry may indicate changes caused by one or more
updates prior to the second time . In systems that do not use
tree - based versioning , such changes would be lost during the
reconciliation process (e . g . , overwritten with the data 243) .
However , systems and method of the present disclosure
enable this data to be selectively preserved .
[0062] To illustrate , during the reconciliation phase , after
storing the second version 113 , the processor 103 uses the
tree data 215 to determine difference data 217 . The differ -
ence data 217 includes particular data indicating a difference
between the first version 111 of the file and the second
version 113 of the file . The difference data 217 is provided
to one or more applications , such as the application 114 of
FIG . 1 , and the one or more applications perform data
reconciliation . For example , the application 114 may deter -

mine whether to make one or more updates to the first copy
107 of the file based on the difference data 217 to reintro
duce data that was committed after the first computing
device 102 lost connection to the second computing device
152 (and would otherwise by lost by overwriting with the
second version 113 of the file) . For example , the application
114 may generate one or more updates during the reconcili
ation phase to reintroduce data that was generated while the
first computing device 102 was disconnected , and due to the
use of safe writes (as described with reference to FIG . 1) , the
one or more updates will be provided to each computing
device of the group during the reconciliation phase .
[0063] In an alternate example , the second computing
device 152 is disconnected from the group at the first time
and rejoins the group at the second time , and the first
computing device 102 remains in the group the entire time .
In this example , the first computing device 102 may deter
mine that the first computing device 102 is a survivor node .
Responsive to determining that the first computing device
102 is a survivor node , the first computing device 102 sends
an update message 245 to the second computing device 152
via the interface 108 . The update message 245 indicates one
or more updates made to the first copy 107 of the first file
while the second computing device 152 was disconnected .
Thus , in some implementations , survivor nodes may “ push ”
updated copies of replicated data to victim nodes (instead of
waiting for victim nodes to “ pull ” updated copies of repli
cated data)
[0064] Thus , the system 200 of FIG . 2 employs versioning
(using the versioning management data 117 and storage of
versions of files in the repositories 109 and 259) with respect
to replicated data (e . g . , shared data that is replicated and
stored at the computing devices 102 , 152 , and 192) using a
tree - based version management scheme . To illustrate , com
puting devices of the system 200 maintain tree data indica
tive of the relationship between versions of replicated data
stored at a repository . For example , the first computing
device 102 maintains the tree data 215 indicative of a
relationship between versions (e . g . , the first version 111 of
the file and the second version 113 of the file) stored at the
repository 109 . By maintaining the tree data , the computing
devices 102 , 152 , and 192 are able to determine data that
would otherwise be lost during reconciliation and to provide
an indication of that data to a corresponding application to
enable application - defined recovery and re - introduction of
the data . In this manner , data that would otherwise be lost
during reconciliation may be reintroduced by one or more
updates from the application . Thus , the system 200 enables
re - synchronization of replicated data after one or more
computing devices are disconnected or powered - down with
out data loss , which enables files associated with a high
availability mode to be updated while a particular computing
device is disconnected from the group without losing the
updated data when the particular computing device is recon
nected .
100651 Because the system 200 performs data reconcilia
tion without data loss (e . g . , due to the tree - based versioning
management scheme) , the system 200 is suitable for imple
mentations as a distributed data management system of an
aircraft (or other vehicle) , which may have limited or
unstable power supplies , a small number of nodes , and
unpredictable power - ups and power - downs , as well as hav
ing line replaceability and minimal administration overhead
and data accounting , as compared to typical enterprise

US 2019 / 0108268 A1 Apr . 11 , 2019
10

distributed data systems . Additionally , the tree data stored at
computing devices of the system 200 indicates a record of
revisions that may be used for forensic purposes , which may
be common to aircraft systems in contrast to typical enter
prise distributed data systems . Additionally , by offloading
the data reconciliation to the application layer , the overhead
associated with the system 200 is reduced as compared to
typical enterprise distributed data systems . Additionally ,
application - driven data reconciliation reduces faults associ
ated with a human network administrator performing data
reconciliation . In some implementations , the system 200
enables lazy synchronization or periodic synchronization
instead of real - time replication . Because the synchronization
policies include determining survivorship based on past and
current group memberships (e . g . , based on the first peer data
131 , the second peer data 133 , and the additional peer data
229) , synchronization is able to be performed without use of
synchronized system clocks , which would increase the com
plexity of the computing devices 102 , 152 , and 192 .
[0066] . FIG . 3 illustrates a method 300 of performing data
synchronization and reconciliation . In some implementa
tions , the method 300 is performed by the first computing
device 102 , the second computing device 152 , or the third
computing device 192 of FIGS . 1 and 2 , as non - limiting
examples . The method 300 corresponds to a method of
performing " lazy synchronization ” , as described with refer
ence to FIG . 2 . In a particular implementation , the method
300 is initiated in response to detecting a particular condi
tion , such as a power - on operation , an initialization opera
tion , or an increase in a number of peers in a peer group at
a computing device . In other implementations , the method
300 may be initiated by an application .
[0067] The method 300 includes , at a particular computing
device , committing a workspace , at 302 . Committing the
workspace includes storing state information indicative of a
state of the workspace in a repository . For example , the first
computing device 102 may store the first copy 107 of the file
at the repository 109 as the first version 111 of the file , as
described with reference to FIG . 2 .
[0068] The method 300 includes survivor selection , at
304 . Survivor selection is based on a reconciliation setting
stored in versioning management data . For example , the
reconciliation setting 223 included in the versioning man
agement data 117 may indicate a method of determining a
survivor node . In a particular implementation , reconciliation
settings are stored on a per - file basis . In another particular
implementation , reconciliation settings are stored on a per
directory basis . In another particular implementation , rec
onciliation settings are stored on a per - workspace basis .
[0069] The method 300 includes determining whether the
particular computing device is a victim node , at 306 . For
example , the particular computing device may determine
whether it is a victim by accessing the reconciliation setting
stored in the versioning management data . In a particular
implementation , the reconciliation setting indicates that sur
vivor nodes are determined based on a LAST setting , a
FIRST setting , or a NONE setting , as described with refer
ence to FIG . 2 . In a particular implementation , all computing
devices that are not the survivor node are considered to be
victim nodes . If the particular computing device is not a
victim node , the method 300 continues to process updates to
files in the workspace in accordance with a synchronization
setting , until detection of a subsequent condition that trig -
gers the workspace to be committed .

[0070] If the particular computing device is determined to
be a victim node , the method 300 continues to 308 , and a
branch is created . For example , the first computing device
102 may update the tree data 215 to indicate that a branch
has occurred with respect to the previously committed
version of the workspace (e . g . , the first version 111 of the
file) .
[0071] The method 300 includes pulling data from a
survivor node , at 310 . For example , the first computing
device 102 may send the request 241 to the second com
puting device 152 (responsive to determining that the second
computing device 152 is a survivor node) , and the first
computing device 102 receives the data 243 from the second
computing device 152 responsive to sending the request
241 . The data 243 indicates the second copy 157 of the file .
The first computing device 102 stores the data 243 as the
new version of the first copy 107 in the workspace 105 and
in the repository 109 as the second version 113 of the file .
10072) The method 300 further includes performing rec
onciliation , at 312 . For example , the processor 103 (e . g . , the
reconciler 212) determines the difference data 217 indicating
a difference between the second version 113 and the first
version 111 . The difference data 217 is provided to the
application 114 , and the application 114 determines whether
to add data indicated by the difference data 217 in one or
more subsequent updates to the first copy 107 of the file
during the reconciliation phase . In this manner , application
level reconciliation is performed , and data is not lost during
reconciliation due to the tree - based versioning management
scheme that includes using the tree data 215 .
100731 Thus , the method 300 of FIG . 3 enables devices of
a distributed data management system to perform synchro
nization and data reconciliation operations without losing
data . Performing data reconciliation without data loss may
be important in particular environments , such as vehicle
based environments or IoT environments , where each com
puting devices continue to receive or generate data regard
less of whether the computing devices are connected with
other computing devices .
[0074] FIGS . 4 - 8 illustrate examples of operations of a
distributed data management system . In FIGS . 4 - 8 , the
operations are illustrated by activity diagrams that include a
string of states , data , and events in the following manner :
workspace state - > (delta) - > event - > (delta) - > synched work
space state . The workspace state carries information on the
workspace and is notated as follows :
[0075] nodes : (PrevPeers) - > (CurrPeers) , HEAD [DELTA]
where nodes is a list of nodes that have the same workspace
state , PrevPeers are previous workspace peer nodes , Cur
rPeers are current workspace peer nodes , HEAD is a des
ignator for the last committed version of the workspace , and
DELTA is a notational designator for accumulated changes
made to the workspace since HEAD .
100761 A first example of a workspace notation is AB :
(ABC) - > (AB) , c1 . In this example , nodes A and B have the
same workspace state , the previous peers of nodes A and B
were nodes A , B , and C , and the current peers of nodes A and
B are themselves (e . g . , node B is a peer of node A , and node
A is a peer of node B) . The HEAD revision is designated cl ,
and no changes have been made to the workspace since cl .
10077] A second example of a workspace notation is
B : (ABC) - > (B) , c1 , d1 . In this example , node B is currently
by itself (e . g . , disconnected from other nodes) , and nodes A ,
B , and C were previously peers . The HEAD revision is

US 2019 / 0108268 A1 Apr . 11 , 2019

designated c1 , and node B has made update dl to the shared
workspace subsequent to the commit associated with cl .
[0078] A third example of a workspace notation is
B : (ABC) - > (AB) , c) , dl ' . In this example , node B is powered
down (possibly before applying update dl) , nodes A , B , and
C were previously peers , and after node B is powered - on ,
nodes A and B are peers . The HEAD revision is designated
cl , and node B has made update dl ' to the shared workspace
subsequent to the commit associated with cl . Because node
B may have lost power before making all of update dl , the
update is designated dl ' (indicative of at least some , but
potentially not all , of update dl) .
[0079] Referring to FIG . 4 , a first example of operations of
devices of a distributed data management system is shown
and generally designated 400 . FIG . 4 illustrates operations
of a first node (“ node A ”) and a second node (“ node B ”) . In
a particular implementation , node A and node B include or
correspond to the first computing device 102 and the second
computing device 152 of FIGS . 1 and 2 , respectively .
[0080] At 402 , node A and node B join a peer set and store
identical copies of replicated data , which are committed as
cl . Thus , at this point in time , the files in the workspace at
node A and the files in the workspace at node B are the same ,
and are indicated by the HEAD c1 . Each of the nodes A and
B store tree data indicating an entry for version cl , and that
entry is designated the HEAD .
[0081] At 404 , update dl to the shared workspace occurs .
Due to the use of safe writes , as described with reference to
FIG . 1 , when an application at one node updates the shared
workspace , the update is provided to each other node of the
peer set and , as long as each node of the peer set remains
powered - on and connected , the update is made at each node
of the peer set . For example , an application executed at node
A or node B may generate the update dl , and both node A
and node B perform the update di at a respective workspace .
10082] At 406 , an event occurs that triggers synchroniza
tion . The event may be a change in membership of the peer
set , power cycling (e . g . , powering down and powering up)
at one of the nodes of the peer group , or a periodically
occurring synchronization time , as non - limiting examples .
In the first example 400 illustrated in FIG . 4 , the event
occurs after completion of the update dl at the nodes A and

update is designated d2 ' because it is unknown if all of
update d2 was performed (or just a portion thereof) before
node B was powered down .
[0085] At 416 , node A is powered off . Prior to being
powered off , there was no commitment and no additional
update . Accordingly , at 418 , the state of the workspaces at
node A and node B is the same as the state of the workspaces
at 414 . At 420 , node B is powered on . In accordance with a
synchronization setting stored at node B , node B may be
configured to commit the workspace in response to detecting
a power on or an initialization operation . Accordingly , at
422 , node B commits the workspace to the repository . The
commit is represented by c3 = c2 + d2 ' . Node B adds an entry
corresponding to c3 to the tree data and designates the entry
as the HEAD . Additionally , node B detects that it is no
longer peered with node A and changes the peer set to
indicate that node B has no peers . For example , node B may
update peer data stored at node B to indicate that no other
nodes are in the peer set .
[0086] At 424 , node A is powered on . Accordingly , at 426 ,
node A commits its workspace to its repository . The commit
is represented by c4 = c2 + d2 . Node A adds an entry corre
sponding to c4 to the tree data and designates the entry as the
HEAD .

[0087] At 428 , node A detects that it is connected with
node B and updates its peer set to include node B . Node B
similarly detects that it has reconnected with node A and
updates its peer set to include node A . Additionally , nodes A
and B perform synchronization . For example , synchroniza
tion settings at node A and node B may indicate that
synchronization is to be performed in response to detecting
power up (or initialization) and in response to detecting an
increase to the respective peer set . In a particular implemen
tation , such synchronization settings indicate a lazy syn
chronization scheme . As part of synchronization , node A and
node B determine a survivor node . Rules for determining a
survivor node may be indicated by a reconciliation setting
stored at each node . The reconciliation settings may be
stored on a per - file , per - director , or per - workspace basis .
10088] In the first example 400 of FIG . 4 , a survivor node
is determined to be the last node to be active in a peer set .
In other implementations , the survivor node may be deter
mined using other rules . Because node A remained in the
peer set after node B was powered off , node A is determined
to be the survivor . The survivor node may be determined
based on comparing peer data , as described with reference
to FIG . 2 . Accordingly , node B sends a request to node A for
the shared workspace , and node A provides the workspace
corresponding to c4 to node B .
[0089] Node B overwrites the data stored in its workspace
with the data from node A and commits the workspace to the
repository . The commit is represented by c4 . Node B also
creates a branch in the tree data in response to determining
that Node B is not the survivor . To illustrate , node B adds an
entry for c4 to the tree - data as a new branch off of the entry
for c2 , such that the entry for c4 and the entry for c3 are on
different branches . Node B designates the entry for c4 to be
the HEAD . However , because a branch for the c3 entry
exists , node B can compare c4 to c3 to determine difference
data to be provided to an application for performance of
application - level data reconciliation . In the particular
example illustrated in FIG . 4 , the difference between c4 and
c3 is the portion of update d2 that was not finished prior to

B .
[0083] At 408 , nodes A and B commit respective work
spaces to respective repositories . The commit is represented
by c2 = c1 + d1 . Because node A and node B remained peers
between committing the workspaces at 402 and at 408 , the
committed workspaces of node A and node B remain the
same . Additionally , node A and node B add an entry corre
sponding to c2 to the respective tree data , and designate the
entry associated with c2 as the HEAD .
[0084] At 410 , update d2 to the shared workspace occurs .
Due to the use of safe writes , both node A and node B begin
to perform the update d2 at the respective workspace . At
412 , node B is powered off . Node B may be powered off
before completion of the update d2 at node B ' s workspace .
Accordingly , at 414 , node A ' s peer set changes from A and
B to A alone . Node A may update peer data to indicate that
node B is no longer in the peer set . Because no commitment
has occurred since 408 , the HEAD at node A still indicates
c2 , and update d2 is pending . Additionally , prior to being
powered off , update d2 ' was pending at node B . Node B ' s

US 2019 / 0108268 A1 Apr . 11 , 2019

node B being powered down . Thus , data reconciliation does
not add any additional updates in this particular example .
[0090] FIG . 4 also illustrates a directed acyclic graph 490
indicative of versions of a workspace (e . g . , the workspaces
105 and 155 of FIGS . 1 and 2) and relationships between the
versions . In the particular example illustrated in FIG . 4 , the
directed acyclic graph 490 indicates tree data (e . g . , the tree
data 261) generated and stored at node B . For example , at
402 , node B adds an entry corresponding to c1 , and at 408 ,
node B adds an entry corresponding to c2 . The difference
between c2 and cl is di , as shown by the arrow from c2 to
cl . At 422 , node B adds the entry for c3 . The difference
between c3 and c2 is d2 ' , as shown by the arrow from c3 to
c2 . At 428 , node B adds the entry corresponding to c4 to a
new branch . The difference between c4 and c2 is d2 , as
shown by the arrow from c4 to c2 . Additionally , the entry
corresponding to c4 is set as the HEAD at 428 , as indicated
by the circle around c4 . Additional entries may be made by
adding entries connected to c4 . In a particular implementa
tion , entries c1 , c2 , and c4 may be referred to as a “ main
trunk ” of the tree indicated by the directed acyclic graph
490 , and c3 may be referred to as a branch entry . As further
described herein , branch entries may be compared to main
trunk entries to determine difference data that is provided to
applications to prevent data loss during reconciliation . Node
A stores similar tree data including entries corresponding to
c1 , c2 , and c4 , but not c3 .
[0091] Referring to FIG . 5 , a second example of opera
tions of devices of a distributed data management system is
shown and generally designated 500 . FIG . 5 illustrates
operations of a first node (“ node A ”) , a second node (“ node
B ") , and a third node (node C ') . In a particular implemen
tation , node A , node B , and node C include or correspond to
the first computing device 102 , the second computing device
152 , and the third computing device 192 of FIGS . 1 and 2 ,
respectively . In the second example 500 , the files are syn
chronized in accordance with a quorum mode that prevents
updates from being applied to a workspace if a peer set drops
below N / 2 nodes (2 nodes when N = 3) . Additionally , the
survivor node is determined in FIG . 5 as the LAST node
remaining in a previous quorum .
[0092] At 502 , node A , node B , and node C join a peer set
and store identical copies of replicated data , which are
committed as cl . Thus , at this point in time , the files in the
workspace at node A , the files in the workspace at node B ,
and the files in the workspace at node C are the same , and
are indicated by the HEAD c1 . Each of the nodes A , B , and
C store tree data indicating an entry for version cl , and that
entry is designated the HEAD . The previous peer sets of
nodes A , B , and C are indicated by (*) .
[0093] At 504 , update dl to the shared workspace occurs .
Due to the use of safe writes , nodes A , B , and C begin
performing the update dl at respective workspaces . At 506 ,
node B is powered off . Node B may be powered off before
completion of the update dl at node B ' s workspace . Accord
ingly , at 508 , the peer sets of node A and C change to include
only nodes A and C (and not node B) . Nodes A and C may
update peer data to indicate that node B is no longer in the
peer set . Because no commitment has occurred since 502 ,
the HEAD at nodes A and C still indicates cl , and update di
is pending . Additionally , prior to being powered off , update
dl ' was pending at node B . Node B ' s update is designated
dl ' because it is unknown if all of update dl was performed
(or just a portion thereof) before node B was powered down .

[0094] At 510 , update d2 to the shared workspace occurs .
Because node A and node C are each included in a peer set
of size 2 (e . g . , A and C) , a quorum remains and updates are
still permitted . Accordingly , nodes A and C begin perform
ing the update d2 . At 512 , node C is powered off . Accord
ingly , at 514 , node A detects that node C is no longer
connected and updates its peer set to include only itself .
Additionally , updates dl and d2 are pending at node A . Node
C may be powered off before completion of the update d2 ,
and thus the updates pending at node C are designated as di
and d2 ' . At this point , the quorum is lost , and no nodes are
able to perform updates to the respective workspaces .
[0095] At 516 , node A is powered off . Prior to being
powered off , there was no commitment and no additional
update . Accordingly , at 518 , node A ' s peer set included node
A and updates dl and d2 are pending , node B ' s peer set
includes nodes , A , B and C and update dl ' is pending , and
node C ' s peer set includes nodes A and C and updates dl and
d2 ' are pending .
[0096] At 520 , node B is powered on . At 522 , node B
commits its workspace to the repository in response to
detecting a power - up operation (or an initialization opera
tion) . The commit is represented by c2 = cl + d1 ' . Node B adds
an entry corresponding to c2 to the tree data and designates
the entry as the HEAD . Additionally , node B detects that it
is no longer peered with nodes A and C and changes the peer
set to indicate that node B has no peers . For example , node
B may update peer data stored at node B to indicate that no
other nodes are in the peer set . Although node B is powered
on , node B is not part of a quorum , and thus any updates
received from applications executing at node B are pre
vented from modifying the workspace .
[0097] At 524 , node A is powered on . Accordingly , at 526 ,
node A commits its workspace to the repository in response
to detecting a power - up condition (or an initialization opera
tion) . The commit is represented by c3 = c1 + d1 + d2 . Node A
adds an entry corresponding to c3 to the tree data and
designates the entry as the HEAD .
100981 . At 528 , node A detects that it is connected with
node B and updates its peer set to include node B . Node B
similarly detects that it has reconnected with node A and
updates its peer set to include node A . Additionally , nodes A
and B perform synchronization . As part of synchronization ,
node A and node B determine a survivor node in accordance
with a LAST setting (a setting indicating that the last
member of a quorum is selected as the survivor node) .
Nodes A and B share peer data and determine that node A
was the last member of a quorum , thus node A is selected as
the survivor node . Node B sends a request to node A for the
shared workspace , and node A provides the workspace
corresponding to c3 to node B . Node B overwrites the data
stored in its workspace with the data from node A and
commits the workspace to the repository . The commit is
represented by c3 . Node B also creates a branch in the tree
data in response to determining that Node B is not the
survivor . To illustrate , node B adds an entry for c3 to the
tree - data as a new branch off of the entry for cl , such that
the entry for c3 and the entry for c2 are on different
branches . Node B designates the entry for c3 to be the
HEAD . Because FIG . 5 illustrates operations in a quorum
mode , the entry associated with c2 is not used to perform
data reconciliation (because the entry was generated while

su

US 2019 / 0108268 A1 Apr . 11 , 2019
13

node B was not part of a quorum) . At this point , a quorum
exists and nodes A and B may allow updates to modify the
workspaces .
[0099] At 530 , update d3 occurs . Because nodes A and B
are part of a quorum (e . g . , their peer sets include at least two
nodes , A and B) , nodes A and B begin performing the update
d3 . Accordingly , at 532 , the peer sets of node A and B
include two nodes (nodes A and B) , and update d3 is
pending . At 534 , node C is powered on . Accordingly , at 536 ,
node C commits its workspace to the repository in response
to detecting a power - up condition (or an initialization opera
tion) . The commit is represented by c4 = c1 + d1 + d2 ' . Node C
adds an entry corresponding to c4 to the tree data and
designates the entry as the HEAD . Additionally , nodes A and
B commit their workspaces to their repositories . These
commits are represented by c5 = c3 + d3 . Nodes A and B add
entries corresponding to c5 to their tree data and designate
the entries as the HEAD .
[0100] At 528 , node C detects connection with nodes A
and B , and nodes A and B detect connection with node C .
Node C updates its peer set to include nodes A and B , and
nodes A and B update their peer set to include node C .
Additionally , nodes A , B , and C perform synchronization .
As part of synchronization , nodes A , B , and C determine a
survivor node in accordance with a LAST setting (a setting
indicating that the last member of a quorum is selected as the
survivor node) . Nodes A , B , and C share peer data and
determine that node A was the last member of a quorum , thus
node A is selected as the survivor node . Node C sends a
request to node A for the shared workspace , and node A
provides the workspace corresponding to c5 to node C . Node
C overwrites the data stored in its workspace with the data
from node A and commits the workspace to the repository .
The commit is represented by c5 . Node C also creates a
branch in the tree data in response to determining that Node
C is not the survivor . To illustrate , node C adds an entry for
c5 to the tree - data as a new branch off of the entry for cl ,
such that the entry for c5 and the entry for c4 are on different
branches . Node C designates the entry for c5 to be the
HEAD . Because FIG . 5 illustrates operations in a quorum
mode , the entry associated with c4 may be used to perform
data reconciliation (because the entry was generated while
node C was part of a quorum) , however , c4 does not include
any additional data that is not included in c5 . At this point ,
nodes A , B , and C are part of a quorum , and each node may
allow updates to modify the respective workspace . For
example , at 540 , update d4 occurs and is applied to the
workspaces of the nodes A , B , and C .
[0101] FIG . 5 also illustrates a combined directed acyclic
graph 590 indicative of versions of a workspace and rela
tionships between the versions . The combined directed
acyclic graph 590 is based on tree data stored at the three
nodes A , B , and C , although each node may only store data
indicative of a portion of the combined acyclic graph 590
(e . g . , each node may store tree data indicative of branches
created at the respective node , and not branches created at
the other nodes) . To illustrate , the tree data stored at node A
includes the entries corresponding to cl (added at 502) , c3
(added at 526) , and c5 (added at 536) . The tree data stored
at node B includes the entries corresponding to cl (added at
502) , c2 (added at 522) , c3 (added at 538) , and c5 (added at
536) . The tree data stored at node C includes the entries

corresponding to cl (added at 502) , c4 (added at 536) , and
c5 (added at 538 , with a connection directly to cl and a
difference of d1 + d2 + d3) .
[0102] Referring to FIG . 6 , a third example of operations
of devices of a distributed data management system is
shown and generally designated 600 . FIG . 6 illustrates
operations of a first node (" node A ") , a second node (“ node
B ”) , and a third node (“ node C ”) . In a particular implemen
tation , node A , node B , and node C include or correspond to
the first computing device 102 , the second computing device
152 , and the third computing device 192 of FIGS . 1 and 2 ,
respectively . In the third example 600 , the files are synchro
nized in accordance with a quorum mode that prevents
updates from being applied to a workspace if a peer set drops
below N / 2 nodes (2 nodes when N = 3) . Additionally , the
survivor node is determined in FIG . 6 as the LAST node
remaining in a previous quorum .
[0103] At 602 , node A , node B , and node C join a peer set
and store identical copies of replicated data , which are
committed as c1 . Thus , at this point in time , the files in the
workspace at node A , the files in the workspace at node B ,
and the files in the workspace at node C are the same , and
are indicated by the HEAD cl . Each of the nodes A , B , and
C store tree data indicating an entry for version c1 , and that
entry is designated the HEAD . The previous peer sets of
nodes A , B , and C are indicated by (*) .
0104] . At 604 , update dl to the shared workspace occurs .
Due to the use of safe writes , nodes A , B , and C begin
performing the update dl at the respective workspaces . At
606 , node B is partitioned from nodes A and C (but remains
powered) . Node B is partitioned after completion of the
update dl at node B ' s workspace . Accordingly , at 608 , the
peer sets of nodes A and C change to include only nodes A
and C (and not node B) , and node B ' s peer set is changed to
include only node B . Nodes A and C may update peer data
to indicate that node B is no longer in the peer set , and node
B may update peer data to indicate that nodes A and Care
no longer in the peer set . Because no commitment has
occurred since 602 , the HEAD at nodes A , B , and C still
indicates cl , and update di is pending .
10105] . At 610 , update d2 to the shared workspace occurs .
Because node A and node C are each included in a peer set
of size 2 , a quorum remains and updates are still permitted .
Accordingly , nodes A and C begin performing the update d2 .
At 612 , nodes A and C are partitioned . Accordingly , at 614 ,
node A detects that node C is no longer connected and
updates its peer set to include only itself . Additionally ,
updates dl and d2 are pending at node A . Node C detects
that node A is no longer connected and updates its peer set
to include only itself . Additionally , updates dl and d2 are
pending at node C . At this point , the quorum is lost , and no
nodes are able to perform updates to the respective work
spaces .
f0106] . At 616 , node B joins (e . g . , reconnects) with node
A . Accordingly , at 618 , nodes A and B determine an increase
to the peer sets and commit their respective workspaces .
Node A ' s commit is represented by c3 = cl + d1 + d2 , and node
B ' s commit is represented by c2 = cl + di . Node A adds an
entry corresponding to c3 to the tree data and designates the
entry as the HEAD , and node B adds an entry corresponding
to c2 to the tree data and designates the entry as the HEAD .
[0107] At 620 , node A detects that it is connected with
node B and updates its peer set to include node B . Node B
similarly detects that it has reconnected with node A and

US 2019 / 0108268 A1 Apr . 11 , 2019
14

updates its peer set to include node A . Additionally , nodes A
and B perform synchronization . As part of synchronization ,
node A and node B determine a survivor node in accordance
with a LAST setting (a setting indicating that the last
member of a quorum is selected as the survivor node) .
Nodes A and B share peer data and determine that node A
was the last member of a quorum , thus node A is selected as
the survivor node . Node B sends a request to node A for the
shared workspace , and node A provides the workspace
corresponding to c3 to node B . Node B overwrites the data
stored in its workspace with the data from node A and
commits the workspace to the repository . The commit is
represented by c3 . Because c3 includes all the changes
associated with c2 , node B adds an entry for c3 to the
tree - data as a new entry connected to c2 , such that the entries
for c2 and c3 are in the main trunk . Node B designates the
entry for c3 to be the HEAD .
[0108] At 622 , update d3 occurs . Because nodes A and B
are part of a quorum (e . g . , their peer sets include at least two
nodes , A and B) , nodes A and B begin performing the update
d3 . At 624 , node C joins (e . g . , reconnects) with nodes A and
B . Accordingly , at 626 , node C commits its workspace to the
repository in response to detecting a power - on operation (or
initialization operation) . Node C ' s commit is represented by
c3 . Node C adds an entry corresponding to c3 to the tree data
and designates the entry as the HEAD . Additionally , nodes
A and B commit their workspaces to their repositories .
These commits are represented by c4 = c3 + d3 . Nodes A and
B add entries corresponding to c4 to their tree data and
designate the entries as the HEAD .
[0109] At 628 , node C detects connection with nodes A
and B , and nodes A and B detect connection with node C .
Node C updates its peer set to include nodes A and B , and
nodes A and B update their peer set to include node C .
Additionally , nodes A , B , and C perform synchronization .
As part of synchronization , nodes A , B , and C determine a
survivor node in accordance with a LAST setting (a setting
indicating that the last member of a quorum is selected as the
survivor node) . Nodes A , B , and C share peer data and
determine that node Awas the last member of a quorum , thus
node A is selected as the survivor node . Node C sends a
request to node A for the shared workspace , and node A
provides the workspace corresponding to c4 to node C . Node
C overwrites the data stored in its workspace with the data
from node A and commits the workspace to the repository .
Because c4 includes all the changes associated with c3 , node
C adds an entry for c4 to the tree - data as a new entry
connected to c3 , such that the entries for c3 and c4 are in the
main trunk . Node C designates the entry for c4 to be the
HEAD . Because there are no branches in the tree data , data
reconciliation is not performed . At this point , nodes A , B ,
and C are part of a quorum , and each node may allow
updates to modify the respective workspace . For example , at
630 , update d4 occurs and is applied to the workspaces of the
nodes A , B , and C .
[0110] FIG . 6 also illustrates a combined directed acyclic
graph 690 indicative of versions of a workspace and rela
tionships between the versions . The combined directed
acyclic graph 690 is based on tree data stored at the three
nodes A , B , and C , although each node may only store data
indicative of a portion of the combined acyclic graph 690
(e . g . , each node may store tree data indicative of branches
created at the respective node , and not branches created at
the other nodes) . To illustrate , the tree data stored at node A

includes the entries corresponding to cl (added at 602) , c3
(added at 618) , and c4 (added at 626) . The tree data stored
at node B includes the entries corresponding to cl (added at
602) , c2 (added at 618) , c3 (added at 620) , and c4 (added at
626) . The tree data stored at node C includes the entries
corresponding to cl (added at 602) , c3 (added at 626) , and
c4 (added at 628) .
[0111] Referring to FIG . 7 , a fourth example of operations
of devices of a distributed data management system is
shown and generally designated 700 . FIG . 7 illustrates
operations of a first node (“ node A ") , a second node (“ ' node
B ”) , and a third node (“ node C ”) . In a particular implemen
tation , node A , node B , and node C include or correspond to
the first computing device 102 , the second computing device
152 , and the third computing device 192 of FIGS . 1 and 2 ,
respectively . In the fourth example 700 , the files are syn
chronized in accordance with a high availability mode that
enables updates to be applied to a workspace regardless of
a size of a node ' s peer set . Additionally , the survivor node
is determined in FIG . 7 as the LAST node remaining in a
previous quorum .
[0112] At 702 , node A , node B , and node C join a peer set
and store identical copies of replicated data , which are
committed as c1 . Thus , at this point in time , the files in the
workspace at node A , the files in the workspace at node B ,
and the files in the workspace at node C are the same , and
are indicated by the HEAD c1 . Each of the nodes A , B , and
C store tree data indicating an entry for version cl , and that
entry is designated the HEAD . The previous peer sets of
nodes A , B , and C are indicated by (*) .
[0113] At 704 , update dl to the shared workspace occurs .
Due to the use of safe writes , nodes A , B , and C begin
performing the update dl at respective workspaces . At 706 ,
node B is powered off . Node B may be powered off before
completion of the update dl at node B ' s workspace . Accord
ingly , at 708 , the peer sets of node A and C change to include
only nodes A and C (and not node B) . Nodes A and C may
update peer data to indicate that node B is no longer in the
peer set . Because no commitment has occurred since 702 ,
the HEAD at nodes A and C still indicates cl , and update di
is pending . Additionally , prior to being powered off , update
dl ' was pending at node B . Node B ' s update is designated
dl ' because it is unknown if all of update dl was performed
(or just a portion thereof) before node B was powered down .
[0114] At 710 , update d2 to the shared workspace occurs .
Because of the high availability mode , updates are always
permitted . Accordingly , nodes A and C begin performing the
update d2 . At 712 , node C is powered off . Accordingly , at
714 , node A detects that node C is no longer connected and
updates its peer set to include only itself . Additionally ,
updates dl and d2 are pending at node A . Node C may be
powered off before completion of the update d2 , and thus the
updates pending at node C are designated as dl and d2 ' .
10115] At 716 , update d3 to the shared workspace of node
A occurs . Node A begins performing the update d3 . At 718 ,
node A is powered off . Prior to being powered off , there was
no commitment and no additional update . Accordingly , at
720 , node A ' s peer set includes node A and updates dl , d2 ,
and d3 ' are pending , node B ' s peer set includes nodes A , B
and C and update dl ' is pending , and node C ' s peer set
includes nodes A and C and updates dl and d2 ' are pending .
[0116] At 722 , node B is powered on . At 724 , node B
commits its workspace to the repository in response to
detecting a power - up operation (or an initialization opera

US 2019 / 0108268 A1 Apr . 11 , 2019
15

tion) . The commit is represented by c2 = c1 + d1 ' . Node B adds
an entry corresponding to c2 to the tree data and designates
the entry as the HEAD . Additionally , node B detects that it
is no longer peered with nodes A and C and changes the peer
set to indicate that node B has no peers . For example , node
B may update peer data stored at node B to indicate that no
other nodes are in the peer set . At 726 , update d4 to the
shared workspace of node B occurs . Node B begins per
forming the update d4 . At 728 , node B ’ s peer set indicates
only node B (e . g . , no other nodes) and the update d4 is
pending .
[0117] At 730 , node A is powered on . Accordingly , at 732 ,
node A commits its workspace to the repository in response
to detecting a power - up condition (or an initialization opera
tion) . The commit is represented by c3 = c1 + d1 + d2 + d3 . Node
A adds an entry corresponding to c3 to the tree data and
designates the entry as the HEAD . Additionally , node B
commits its workspace to the repository . The commit is
represented by c4 = c2 + d4 . Node B adds an entry correspond
ing to c4 to the tree data and designates the entry as the
HEAD .
10118] At 734 , node A detects that it is connected with
node B and updates its peer set to include node B . Node B
similarly detects that it has reconnected with node A and
updates its peer set to include node A . Additionally , nodes A
and B perform synchronization . As part of synchronization ,
node A and node B determine a survivor node in accordance
with a LAST setting (a setting indicating that the last
member of a peer set is selected as the survivor node) . Nodes
A and B share peer data and determine that node A was the
last member of an active peer set , thus node A is selected as
the survivor node . Node B sends a request to node A for the
shared workspace , and node A provides the workspace
corresponding to c3 to node B . Node B overwrites the data
stored in its workspace with the data from node A and
commits the workspace to the repository . The commit is
represented by c3 . Node B also creates a branch in the tree
data in response to determining that Node B is not the
survivor . To illustrate , node B adds an entry for c3 to the
tree - data as a new branch off of the entry for cl , such that
the entry for c3 is on a different branch than the entries for
c2 and c4 (e . g . , the branch is off of cl because cl was the
last commit while node B was connected to node A) . Node
B designates the entry for c3 to be the HEAD . Because c4
includes additional data (e . g . , d4) that is not included in c3 ,
c4 may be used for data reconciliation , as further described
with reference to FIG . 9 .
[0119] At 736 , update d5 occurs . Nodes A and B begin
performing the update d5 . Accordingly , at 738 , the peer sets
of node A and B include two nodes (nodes A and B) , and
update d5 is pending . At 740 , node C is powered on .
Accordingly , at 742 , node C commits its workspace to the
repository in response to detecting a power - up condition (or
an initialization operation) . The commit is represented by
c5 = cl + d1 + d2 ' . Node C adds an entry corresponding to c5 to
the tree data and designates the entry as the HEAD . Addi
tionally , nodes A and B commit their workspaces to their
repositories . These commits are represented by ch = c3 + d5 .
Nodes A and B add entries corresponding to c6 to their tree
data and designate the entries as the HEAD .
[0120] At 744 , node C detects connection with nodes A
and B , and nodes A and B detect connection with node C .
Node C updates its peer set to include nodes A and B , and
nodes A and B update their peer set to include node C .

Additionally , nodes A , B , and C perform synchronization .
As part of synchronization , nodes A , B , and C determine a
survivor node in accordance with a LAST setting (a setting
indicating that the last member of a peer set is selected as the
survivor node) . Nodes A , B , and C share peer data and
determine that node A was the last member of a peer set , thus
node A is selected as the survivor node . Node C sends a
request to node A for the shared workspace , and node A
provides the workspace corresponding to c6 to node C . Node
C overwrites the data stored in its workspace with the data
from node A and commits the workspace to the repository .
The commit is represented by ch . Node C also creates a
branch in the tree data in response to determining that Node
C is not the survivor . To illustrate , node C adds an entry for
co to the tree - data as a new branch off of the entry for cl ,
such that the entry for c5 and the entry for c6 are on different
branches . Node C designates the entry for c6 to be the
HEAD . If c5 included additional data that is not included in
c6 , c5 could be used for data reconciliation . At this point ,
nodes A , B , and C are each configured to allow updates to
modify the respective workspace . For example , at 746 ,
update do occurs and is applied to the workspaces of the
nodes A , B , and C .
[0121] FIG . 7 also illustrates a combined directed acyclic
graph 790 indicative of versions of a workspace and rela
tionships between the versions . The combined directed
acyclic graph 790 is based on tree data stored at the three
nodes A , B , and C , although each node may only store data
indicative of a portion of the combined acyclic graph 790
(e . g . , each node may store tree data indicative of branches
created at the respective node , and not branches created at
the other nodes) . To illustrate , the tree data stored at node A
includes the entries corresponding to cl (added at 702) , c3
(added at 732) , and c6 (added at 742) . The tree data stored
at node B includes the entries corresponding to cl (added at
702) , c2 (added at 724) , c4 (added at 732) , c3 (added at 734) ,
and c6 (added at 742) . The tree data stored at node C
includes the entries corresponding to cl (added at 702) , c5
(added at 742) , and cm (added at 744) .
[0122] Referring to FIG . 8 , a fifth example of operations
of devices of a distributed data management system is
shown and generally designated 800 . FIG . 8 illustrates
operations of a first node (“ node A ”) , a node device (“ node
B ”) , and a third node (“ node C ”) . In a particular implemen
tation , node A , node B , and node C include or correspond to
the first computing device 102 , the second computing device
152 , and the third computing device 192 of FIGS . 1 and 2 ,
respectively . In the fifth example 800 , the files are synchro
nized in accordance with a high availability mode that
allows updates to be applied to a workspace regardless of a
number of nodes in a peer set . Additionally , the survivor
node is determined in FIG . 8 as the LAST node remaining
in a previous peer set . In other implementations , the survivor
node is determined in accordance with a FIRST setting in
which an arbitrary node is selected from a majority set of
nodes that are already peers (e . g . , that are already synchro
nized) , and if no majority exists , an arbitrary node is selected
as the survivor node .
10123] At 802 , node A , node B , and node C join a peer set
and store identical copies of replicated data , which are
committed as c1 . Thus , at this point in time , the files in the
workspace at node A , the files in the workspace at node B ,
and the files in the workspace at node C are the same , and
are indicated by the HEAD cl . Each of the nodes A , B , and

US 2019 / 0108268 A1 Apr . 11 , 2019
16

C store tree data indicating an entry for version cl , and that
entry is designated the HEAD . The previous peer sets of
nodes A , B , and C are indicated by (*) .
[0124] At 804 , update dl to the shared workspace occurs .
Due to the use of safe writes , nodes A , B , and C begin
performing the update dl at the respective workspaces . At
806 , node B is partitioned from nodes A and C (but remains
powered) . Node B is partitioned after completion of the
update dl at node B ' s workspace . Accordingly , at 808 , the
peer sets of nodes A and C change to include only nodes A
and C (and not node B) , and at 810 node B ' s peer set is
changed to include only node B . Nodes A and C may update
peer data to indicate that node B is no longer in the peer set ,
and node B may update peer data to indicate that nodes A
and C are no longer in the peer set . Because no commitment
has occurred since 802 , the HEAD at nodes A , B , and C still
indicates cl , and update di is pending .
[0125] At 820 , update d3 to the workspace of node B
occurs . Node B begins performing the update d3 . Accord
ingly , at 822 , the updates dl and d3 are pending , and cl
remains the HEAD . At 812 , update d2 to the workspaces of
node A and node C occurs . Nodes A and C begin performing
the update d2 . At 814 , nodes A and C are partitioned .
Accordingly , at 818 , node A detects that node C is no longer
connected and updates its peer set to include only itself .
Additionally , updates dl and d2 are pending at node A . At
816 , node C detects that node A is no longer connected and
updates its peer set to include only itself . Additionally ,
updates dl and d2 are pending at node C .
[0126] At 824 , update d4 to the workspace of node A
occurs . Node A begins performing the update d4 . Accord
ingly , at 826 , the updates dl , d2 , and d4 are pending at node
A , and cl remains the HEAD . At 828 , update d5 to the
workspace of node C occurs . Node C begins performing the
update d5 . Accordingly , at 830 , the updates di , d2 , and d5
are pending at node C , and cl remains the HEAD .
[0127] At 832 , node B joins (e . g . , reconnects) with node
A . Accordingly , at 834 , nodes A and B determine an increase
to the peer sets and commit their respective workspaces .
Node A ' s commit is represented by c3 = c1 + d1 + d2 + d4 , and
node B ' s commit is represented by c2 = c1 + d1 + d3 . Node A
adds an entry corresponding to c3 to the tree data and
designates the entry as the HEAD , and node B adds an entry
corresponding to c2 to the tree data and designates the entry
as the HEAD .
[0128] At 836 , node A detects that it is connected with
node B and updates its peer set to include node B . Node B
similarly detects that it has reconnected with node A and
updates its peer set to include node A . Additionally , nodes A
and B perform synchronization . As part of synchronization ,
node A and node B determine a survivor node in accordance
with a LAST setting (a setting indicating that the last
member of an active peer set is selected as the survivor
node) . Nodes A and B share peer data and determine that
node A was the last member of an active peer set , thus node
A is selected as the survivor node . Node B sends a request
to node A for the shared workspace , and node A provides the
workspace corresponding to c3 to node B . Node B over
writes the data stored in its workspace with the data from
node A and commits the workspace to the repository . The
commit is represented by c3 . The entry for c3 is added to a
new branch off of the entry for c3 . Node B designates the
entry for c3 to be the HEAD . Because c2 includes additional
data that is not included in c3 , node B generates difference

data based on the difference between c3 and c2 and provides
the difference data to an application being executed at node
B . The application determines whether to generate one or
more updates that include the data indicated by the differ
ence data in order to prevent data loss during reconciliation .
[0129] At 838 , update d6 to the workspaces of nodes A and
B occurs . Nodes A and B begin performing the update db .
Accordingly , at 840 , update d6 is pending to c3 at nodes A
and B . At 842 , node C joins (e . g . , reconnects) with nodes A
and B . Accordingly , at 844 , node C commit its workspace to
the repository in response to detecting an increase in the peer
set . Node C ' s commit is represented by c4 = cl + d1 + d2 + d5 .
Node C adds an entry corresponding to c4 to the tree data
and designates the entry as the HEAD . Additionally , nodes
A and B commit their workspaces to their repositories .
These commits are represented by c5 = c3 + d6 . Nodes A and
B add entries corresponding to c5 to their tree data and
designate the entries as the HEAD .
[0130] At 846 , node C detects connection with nodes A
and B , and nodes A and B detect connection with node C .
Node C updates its peer set to include nodes A and B , and
nodes A and B update their peer set to include node C .
Additionally , nodes A , B , and C perform synchronization .
As part of synchronization , nodes A , B , and C determine a
survivor node in accordance with a LAST setting (a setting
indicating that the last member of a peer set is selected as the
survivor node) . Nodes A , B , and C share peer data and
determine that node Awas the last member of a peer set , thus
node A is selected as the survivor node . Node C sends a
request to node A for the shared workspace , and node A
provides the workspace corresponding to c5 to node C . Node
C overwrites the data stored in its workspace with the data
from node A and commits the workspace to the repository .
The entry for c5 is added to a new branch off of the entry for
c1 . Node C designates the entry for c5 to be the HEAD .
Because c4 includes additional data that is not included in
c5 , node C generates difference data based on the difference
between c4 and c5 and provides the difference data to an
application being executed at node C . The application deter
mines whether to generate one or more updates that include
the data indicated by the difference data in order to prevent
data loss during reconciliation . At this point , nodes A , B , and
C may allow updates to modify the respective workspaces .
For example , at 848 , update d7 occurs and is applied to the
workspaces of the nodes A , B , and C .
[0131] FIG . 8 also illustrates a combined directed acyclic
graph 890 indicative of versions of a workspace and rela
tionships between the versions . The combined directed
acyclic graph 890 is based on tree data stored at the three
nodes A , B , and C , although each node may only store data
indicative of a portion of the combined acyclic graph 890
(e . g . , each node may store tree data indicative of branches
created at the respective node , and not branches created at
the other nodes) . To illustrate , the tree data stored at node A
includes the entries corresponding to cl (added at 802) , c3
(added at 834) , and c5 (added at 844) . The tree data stored
at node B includes the entries corresponding to cl (added at
802) , c2 (added at 834) , c3 (added at 836) , and c5 (added at
644) . The tree data stored at node C includes the entries
corresponding to cl (added at 802) , c4 (added at 844) , and
c5 (added at 846) . The empty entries in the directed acyclic
graph 890 are for illustration .
[0132] Referring to FIG . 9 , a combined directed acyclic
graph 900 indicative of versions of a workspace and rela

US 2019 / 0108268 A1 Apr . 11 , 2019
17

tionships between the versions for a distributed data man -
agement system across multiple devices is shown . The
combined directed acyclic graph 900 is based on tree data
stored at three nodes A , B , and C , although each node may
only store data indicative of a portion of the combined
acyclic graph 900 (e . g . , each node may store tree data
indicative of branches created at the respective node , and not
branches created at the other nodes) . The combined acyclic
graph 900 corresponds to the operations described with
reference to FIG . 7 . However , with respect to FIG . 9 , the
nodes are configured to perform data reconciliation based on
the tree - based version management scheme . For example ,
node B determines difference data indicating a difference
between c4 and c3 after the branch with the entry corre
sponding to c3 is created (e . g . , when node B and node A
perform synchronization) .
[0133] In a particular implementation , the difference data
is provided to an application , and the application determines
whether to generate an additional update to add data asso
ciated with an unused branch back to the main trunk . For
example , the application may determine that update d4
added important data , and accordingly the application gen
erates an update that includes d4 during a reconciliation
operation . Although d4 is illustrated as being added with
update d6 (e . g . , after node C has synchronized with nodes A
and B) , in other examples , the application may generate an
update including d4 at the same time (or a nearby time) as
the update d5 (e . g . , after node A and node B perform
synchronization) . In an alternate implementation , the tree
data is stored at each node , but the difference data is not
generated and provided to the application . Instead , applica
tions are programmed to access the repository of the node
that executes the application in order to extract the difference
data .
[0134] FIG . 10 illustrates a method 1000 of performing
data synchronization . In some implementations , the method
1000 is performed by the first computing device 102 , the
second computing device 152 , or the third computing device
192 of FIGS . 1 and 2 , as non - limiting examples .
[0135] The method 1000 includes storing , at a first com
puting device , a first copy of a file that is synchronized with
a second copy of the file stored at a second computing
device , at 1002 . For example , the first computing device
may include or correspond to the first computing device 102 ,
the first copy of the file may include or correspond to the first
copy 107 of the file , the second copy of the file may include
or correspond to the second copy 157 of the file , and the
second computing device may include or correspond to the
second computing device 152 .
[0136] The method 1000 includes receiving an update to
the file while communication with the second computing
device is unavailable , at 1004 . For example , the update may
include or correspond to the update 115 , which is received
by the processor 103 (e . g . , the data manager 104) while the
interface 108 is unable to connect to the second computing
device 152 .
[0137] The method 1000 includes accessing versioning
management data indicating , for each particular file of a
plurality of files that includes the file , a synchronization
setting associated with the particular file , at 1006 . For
example , the versioning management data may include or
correspond to the versioning management data 117 that
includes the synchronization setting 121 . In a particular
implementation , the versioning management data includes

synchronization settings that correspond to individual files .
In other implementations , the versioning management data
includes synchronization settings that correspond to direc
tories .
10138] The method 1000 includes , conditioned on deter
mining that the versioning management data indicates a first
synchronization setting associated with the file , writing the
update to the first copy of the file , at 1008 . To illustrate , the
update 115 is written to the first copy 107 of the file in the
workspace 105 conditioned upon the synchronization setting
being a high availability setting , as a non - limiting example .
[0139] The method 1000 further includes , conditioned on
determining that the versioning management data indicates
a second synchronization setting associated with the file ,
refraining from writing the update to the first copy of the file ,
at 1010 . To illustrate , the update 115 is not written to the first
copy 107 of the file in the workspace 105 conditioned upon
the synchronization setting being a quorum setting and the
first computing device 102 not being a part of a quorum , as
a non - limiting example .
[0140] In a particular implementation , the method 1000
includes , in response to detecting a reconciliation phase ,
storing the first copy of the file as a first version of the file ,
determining that communication is available with a first set
of computing devices , the first set of computing devices
including the second computing device , and updating peer
data to indicate the first set of computing devices . For
example , the first version of the file may include or corre
spond to the first version 111 . The reconciliation event may
be detected in response to detecting that communication
with the second computing device is restored or in response
to detecting a power - up event , as non - limiting examples . In
this implementation , the method 1000 further includes
receiving additional peer data from each of the first set of
computing devices and selecting the second computing
device from the first set of computing devices based on the
peer data , the additional peer data , and a reconciliation
setting associated with the file . For example , the reconcili
ation setting may include or correspond to the reconciliation
setting 223 . In this particular implementation , the method
1000 further includes sending a request for a second version
of the file to the second computing device , receiving data
from the second computing device responsive to the request ,
and storing the data as the second version of the file . For
example , the request may include or correspond to the
request 241 , and the data may include or correspond to the
data 243 . In some implementations , the method 1000 further
includes , in response to detecting a change in communica
tion status of a particular computing device , updating the
peer data to indicate the communication status .
[0141] The method 1000 enables thus enables synchroni
zation to be performed on a per - file (or per - application)
basis . Accordingly , the method 1000 is suitable for execu
tion on a vehicle - based distributed data management system ,
such as a distributed aircraft system , or on IoT devices .
[0142] In a particular implementation , one or more of the
elements of the method 1000 of FIG . 10 may be performed
by a processor that executes instructions stored on a non
transitory , computer readable medium . For example , a non
transitory computer readable medium may store instructions
that , when executed by a processor , cause the processor to
perform operations including storing , at a first computing
device , a first copy of a file that is synchronized with a
second copy of the file stored at a second computing device .

US 2019 / 0108268 A1 Apr . 11 , 2019

The operations include , in response to receiving an update to
the file while communication with the second computing
device is unavailable , accessing versioning management
data indicating , for each particular file of a plurality of files
that includes the file , a synchronization setting associated
with the particular file . The operations include , conditioned
on determining that the versioning management data indi
cates a first synchronization setting associated with the file ,
writing the update to the first copy of the file . The operations
further include conditioned on determining that the version
ing management data indicates a second synchronization
setting associated with the file , refraining from writing the
update to the first copy of the file .
[0143] Aspects of the disclosure may be described in the
context of an aircraft 1100 as shown in FIG . 11 . The aircraft
1100 may include a distributed data management system
1132 that includes the first computing device 102 , the second
computing device 152 , the third computing device 192 , and
one or more optional additional computing devices 1112 . As
shown in FIG . 11 , the aircraft 1100 also includes an airframe
1118 with a plurality of systems 1120 and an interior 1122 .
Examples of high - level systems 1120 include one or more of
a propulsion system 1124 , an electrical system 1126 , a
hydraulic system 1128 , an environmental system 1130 , and
the distributed data management system 1132 . Other sys
tems may also be included . Although the distributed data
management system 1132 is illustrated as a separate system ,
in other implementations , the distributed data management
system 1132 may encompass or be included within one or
more of the systems 1124 - 1130 . Although an aerospace
example is shown , the present disclosure may be applied to
other industries . For example , the distributed data manage
ment system 1132 may be used onboard a manned or
unmanned vehicle (such as a satellite , a watercraft , or a
land - based vehicle) , in a building or other structure .
[0144] Although one or more of FIGS . 1 - 11 illustrate
systems , apparatuses , and / or methods according to the
teachings of the disclosure , the disclosure is not limited to
these illustrated systems , apparatuses , and / or methods . One
or more functions or components of any of FIGS . 1 - 11 as
illustrated or described herein may be combined with one or
more other portions of another of FIGS . 1 - 11 . For example ,
one or more elements of the method 300 of FIG . 3 may be
performed in combination with one or more elements of the
method 1000 of FIG . 10 or with other operations described
herein . Accordingly , no single implementation described
herein should be construed as limiting and implementations
of the disclosure may be suitably combined without depart
ing form the teachings of the disclosure . As an example , one
or more operations described with reference to FIG . 3 or 10
may be optional , may be performed at least partially con
currently , and / or may be performed in a different order than
shown or described .
[0145] The illustrations of the examples described herein
are intended to provide a general understanding of the
structure of the various implementations . The illustrations
are not intended to serve as a complete description of all of
the elements and features of apparatus and systems that
utilize the structures or methods described herein . Many
other implementations may be apparent to those of skill in
the art upon reviewing the disclosure . Other implementa
tions may be utilized and derived from the disclosure , such
that structural and logical substitutions and changes may be
made without departing from the scope of the disclosure . For

example , method operations may be performed in a different
order than shown in the figures or one or more method
operations may be omitted . Accordingly , the disclosure and
the figures are to be regarded as illustrative rather than
restrictive .
10146] . Moreover , although specific examples have been
illustrated and described herein , it should be appreciated that
any subsequent arrangement designed to achieve the same or
similar results may be substituted for the specific implemen
tations shown . This disclosure is intended to cover any and
all subsequent adaptations or variations of various imple
mentations . Combinations of the above implementations ,
and other implementations not specifically described herein ,
will be apparent to those of skill in the art upon reviewing
the description .
10147] The Abstract of the Disclosure is submitted with
the understanding that it will not be used to interpret or limit
the scope or meaning of the claims . In addition , in the
foregoing Detailed Description , various features may be
grouped together or described in a single implementation for
the purpose of streamlining the disclosure . Examples
described above illustrate but do not limit the disclosure . It
should also be understood that numerous modifications and
variations are possible in accordance with the principles of
the present disclosure . As the following claims reflect , the
claimed subject matter may be directed to less than all of the
features of any of the disclosed examples . Accordingly , the
scope of the disclosure is defined by the following claims
and their equivalents .
What is claimed is :
1 . A computing device for a distributed data management

system , the computing device comprising :
an interface configured to communicate with a second

computing device of the distributed data management
system ;

a memory configured to store a first copy of a file that is
synchronized with a second copy of the file stored at the
second computing device ; and

a processor configured , in response to receiving an update
to the file while the interface is unable to communicate
with the second computing device , to :
access versioning management data indicating , for each

particular file of a plurality of files that includes the
file , a synchronization setting associated with the
particular file ;

conditioned on determining that the versioning man
agement data indicates a first synchronization setting
associated with the file , write the update to the first
copy of the file ; and

conditioned on determining that the versioning manage
ment data indicates a second synchronization setting
associated with the file , refrain from writing the update
to the first copy of the file .

2 . The computing device of claim 1 , wherein the version
ing management data indicates a synchronization setting
associated with a directory of files that includes the file .

3 . The computing device of claim 2 , wherein the proces
sor is further configured to , in response to receiving an
update to a first file of the directory of files while the
interface is unable to communicate with the second com
puting device :

conditioned on determining that the versioning manage
ment data indicates a first particular synchronization

US 2019 / 0108268 A1 Apr . 11 , 2019
19

setting associated with the directory of files , write the
update to a first particular copy of the first file ; and

conditioned on determining that the versioning manage
ment data indicates a second particular synchronization
setting associated with the directory of files , refrain
from writing the update to the first particular copy of
the first file .

4 . The computing device of claim 1 , wherein the proces
sor is further configured , in response to detecting that the
interface is able to communicate with the second computing
device subsequent to writing the update to the first copy of
the file :

conditioned on determining that the versioning manage
ment data indicates a first reconciliation setting asso
ciated with the file , send an update message to the
second computing device , wherein the update message
indicates the update to the first copy of the file ; and

conditioned on determining that the versioning manage
ment data indicates a second reconciliation setting ,
send a request for updated data to the second comput
ing device , the updated data indicating changes to the
second copy of the file .

5 . The computing device of claim 1 , wherein the proces
sor is configured to write the update to the first copy of the
file in response to determining that the first synchronization
setting corresponds to a quorum mode and detecting that the
interface is able to communicate with at least a threshold
number of a plurality of computing devices , wherein the
plurality of computing devices includes the second comput
ing device and one or more additional computing devices .

6 . The computing device of claim 1 , wherein the proces
sor is configured to write the update to the first copy of the
file in response to determining that the first synchronization
setting corresponds to a high availability mode .

7 . The computing device of claim 1 , wherein the proces
sor is configured to refrain from writing the update to the
first copy of the file in response to determining that the
second synchronization setting corresponds to a quorum
mode and detecting that the interface is able to communicate
with fewer than a threshold number of a plurality of com
puting devices , wherein the plurality of computing devices
includes the second computing device and one or more
additional computing devices .

8 . The computing device of claim 1 , wherein the proces
sor , the interface , and the memory are integrated into at least
one of an aircraft , a vehicle , or an internet - of - things (IoT)
device .

9 . The computing device of claim 1 , wherein the proces
sor is further configured to , during a reconciliation phase ,
determine , at a first time , that the interface is able to
communicate with a first set of computing devices that
includes the second computing device , and wherein the
memory is configured to store peer data indicating that the
interface is able to communicate with the first set of com
puting devices at the first time .

10 . The computing device of claim 9 , wherein the pro
cessor is configured to detect the reconciliation phase in
response to detecting an initialization phase of the processor ,
detecting that communication is restored with the second
computing device , or both .

11 . The computing device of claim 9 , wherein the pro
cessor is further configured , during the reconciliation phase ,
to :

store the first copy of the file in the memory as a first
version of the file ;

receive additional peer data from each of the first set of
computing devices ;

select the second computing device from the first set of
computing devices based on the peer data , the addi
tional peer data , and a reconciliation setting associated
with the file ;

send a request for a second version of the file to the second
computing device ;

receive data from the second computing device respon
sive to the request ; and

store the data in the memory as the second version of the
file .

12 . The computing device of claim 11 , wherein the
processor is further configured , during the reconciliation
phase , to provide particular data indicating a difference
between the first version of the file and the second version
of the file to one or more applications .

13 . A method of distributed data management , the method
comprising :

storing , at a first computing device , a first copy of a file
that is synchronized with a second copy of the file
stored at a second computing device ;

in response to receiving an update to the file while
communication with the second computing device is
unavailable :
accessing versioning management data indicating , for

each particular file of a plurality of files that includes
the file , a synchronization setting associated with the
particular file ;

conditioned on determining that the versioning man
agement data indicates a first synchronization setting
associated with the file , writing the update to the first
copy of the file ; and

conditioned on determining that the versioning man
agement data indicates a second synchronization
setting associated with the file , refraining from writ
ing the update to the first copy of the file .

14 . The method of claim 13 , further comprising , in
response to detecting a reconciliation phase :

storing the first copy of the file as a first version of the file ;
determining that communication is available with a first

set of computing devices , the first set of computing
devices including the second computing device ;

updating peer data to indicate the first set of computing
devices ;

receiving additional peer data from each of the first set of
computing devices ;

selecting the second computing device from the first set of
computing devices based on the peer data , the addi
tional peer data , and a reconciliation setting associated
with the file ;

sending a request for a second version of the file to the
second computing device ;

receiving data from the second computing device respon
sive to the request ; and

storing the data as the second version of the file .
15 . The method of claim 14 , further comprising , in

response to detecting a change in communication status of a
particular computing device , updating the peer data to
indicate the communication status .

US 2019 / 0108268 A1 Apr . 11 , 2019
20

16 . The method of claim 14 , wherein the reconciliation
phase is detected in response to detecting that communica
tion with the second computing device is restored .

17 . The method of claim 14 , wherein the reconciliation
phase is detected in response to detecting a power - up event .

18 . A distributed data management system comprising :
a first computing device comprising :

a first interface configured to communicate with a
second interface of a second computing device ;

first memory configured to store a first copy of a file
that is synchronized with a second copy of the file
stored at the second computing device ; and

a first processor configured , in response to receiving a
first update to the file while the first interface is
unable to communicate with the second interface , to :
access a first copy of versioning management data

indicating , for each particular file of a plurality of
files that includes the file , a synchronization set
ting associated with the particular file ;

conditioned on determining that the first copy of the
versioning management data indicates a first syn
chronization setting associated with the file , write
the first update to the first copy of the file ; and

conditioned on determining that the first copy of the
versioning management data indicates a second
synchronization setting associated with the file ,
refrain from writing the first update to the first
copy of the file ; and

the second computing device comprising :
the second interface configured to communicate with

the first interface of the first computing device ; and
second memory configured to store the second copy of

the file .
19 . The distributed data management system of claim 18 ,

wherein the second computing device further comprises a
second processor configured , in response to receiving a
second update to the file while the second interface is unable
to communicate with the first interface , to :

access a second copy of the versioning management data ;
conditioned on determining that the second copy of the

versioning management data indicates a first particular
synchronization setting associated with the file , write
the second update to the second copy of the file ; and

conditioned on determining that the second copy of the
versioning management data indicates a second par
ticular synchronization setting associated with the file ,
refrain from writing the second update to the second
copy of the file .

20 . The distributed data management system of claim 18 ,
wherein the first computing device corresponds to a first line
replaceable unit of an aircraft , and wherein the second
computing device corresponds to a second line replaceable
unit of the aircraft .

* * * * *

