a9y United States

US 20240177007A1

a2y Patent Application Publication o) Pub. No.: US 2024/0177007 A1l

Cser et al. 43) Pub. Date: May 30, 2024
(54) SOFTWARE TEST CASE MAINTENANCE GOG6F 4020 (2006.01)
GO6N 3/08 (2006.01)
(71) Applicant: Functionize, Inc., Walnut Creek, CA G060 30/0601 (2006.01)
(Us) GO6V 10/82 (2006.01)
GO6V 10/84 (2006.01)
(72) Inventors: Tamas Cser, San Francisco, CA (US); GO6V 20/62 (2006.01)
Jonathan R. Seaton, San Francisco, GO6V 30/10 (2006.01)
CA (US) GO6V 30/19 (2006.01)
) (52) US. CL
(21) - Appl. No.: 18/387,269 CPC ... GOG6N 3/084 (2013.01); GOGF 11/3688
22) Filed: Nov. 6. 2023 (2013.01); GO6F 11/3692 (2013.01); GO6N
(22) File o 3/08 (2013.01); GOGV 10/82 (2022.01); GO6V
Related U.S. Application Data 10/84 (2022.01); GO6V 20/635 (2022.01);
o o GO6V 30/19173 (2022.01); GOGF 40/20
(63) Continuation of application No. 17/287,732, filed on (2020.01); GO6Q 30/0641 (2013.01); GO6V
Apr. 22, 2021, now abandoned, filed as application 30/10 (2022.01)
No. PCT/US2019/057738 on Oct. 23, 2019.
(60) Provisional application No. 62/749,521, filed on Oct. (57) ABSTRACT
23, 2018.
A . . Provided herein is technology relating to selecting an ele-
Publication Classification ment in a software application and particularly, but not
(51) Int. CL exclusively, to systems and methods for identifying a target
GO6N 3/084 (2006.01) element for testing a software application using artificial
GO6F 11/36 (2006.01)

‘ Slenent

intelligence.

T
S e
\\ T —
R e

.

Erement Code Seoring } {Eiemén’t Visuet Buoring

Y

™, .

[

Elewient Langtiage
Seonng

{ Tlemeat ontext Suonng]

o

{

el
-

e

H
i
S
PRIy

Combinaticon Maget

/

S ; ™ o / !
e . o :
~{., w.«u.w..u.~~..;~:\ i i
H ; |
I::; { Bian-firear
3
H

/

Successul
Selaion?

/ Re-train Mogels

Patent Application Publication = May 30, 2024 Sheet 1 of 20 US 2024/0177007 A1

Linsgr Combinalion

FIG. 1

Patent Application Publication = May 30, 2024 Sheet 2 of 20 US 2024/0177007 A1

N

US 2024/0177007 A1

May 30, 2024 Sheet 3 of 20

Patent Application Publication

/
%

SIOROR ,%,aém\.,,

Ve "Old

Patent Application Publication = May 30, 2024 Sheet 4 of 20 US 2024/0177007 A1

Re-frain Models

FIG. 3B

Patent Application Publication = May 30, 2024 Sheet 5 of 20 US 2024/0177007 A1

US 2024/0177007 A1

May 30, 2024 Sheet 6 of 20

Patent Application Publication

S
Rt |

ﬁ.mwn.ﬂ.vﬂ

FIG. 5

Patent Application Publication = May 30, 2024 Sheet 7 of 20 US 2024/0177007 A1

Apatoes Bor

FIG. 6

Patent Application Publication = May 30, 2024 Sheet 8 of 20 US 2024/0177007 A1

Estimated number of clusters: 3

Patent Application Publication = May 30, 2024 Sheet 9 of 20 US 2024/0177007 A1

{ Appmine for Redvoig)

Patent Application Publication = May 30, 2024 Sheet 10 of 20 US 2024/0177007 A1

1 Object detection

FIG. 9

Patent Application Publication = May 30, 2024 Sheet 11 of 20 US 2024/0177007 Al

Element Visual Scoring

&

[Blementlmage

Patent Application Publication = May 30, 2024 Sheet 12 of 20 US 2024/0177007 A1

Elsment Language Scoring

Text Empadding of B
S Wi B

FIG. 11

Patent Application Publication = May 30, 2024 Sheet 13 of 20 US 2024/0177007 A1

Patent Application Publication = May 30, 2024 Sheet 14 of 20 US 2024/0177007 Al

Element Context Scoring

Patent Application Publication = May 30, 2024 Sheet 15 of 20 US 2024/0177007 A1

UNIQUESELECTORS

E::\
e
8
.
: |
a0 1.0
Sigtes
FIG. 14A
ATIR CLARR

S

=

o

o

o

5.

00 10 29 30
States

FIG. 14B

Patent Application Publication = May 30, 2024 Sheet 16 of 20 US 2024/0177007 Al

Probability

Probability

CHESSELECTOR

Hiates
FIG. 14C

ATTR_TYPE

a0 18 2.4
Sigles

R
fon)

FIG. 14D

Patent Application Publication = May 30, 2024 Sheet 17 of 20 US 2024/0177007 A1

TYPE

850
845
A0
{3 35
B304
825
{20+
RV
R TR
0.05

Probability

0.0 i 240 30
States

FIG. 14E

EPATH

Probability

4
Slates

FiG. 14F

Patent Application Publication = May 30, 2024 Sheet 18 of 20 US 2024/0177007 A1

WALUE

Probahbility
LD DO EDCH D U CAD L

Bigtes

FIG. 14G

Patent Application Publication = May 30, 2024 Sheet 19 of 20 US 2024/0177007 A1

“Click on the first element in the list”

| Elements with high scors
Slep intention Model

List A ListB

i ist Element 1

Correct Element > | List Element 1

{ ist Element 2

Targeted Elemend -»

| List Element 3

List Element 2

| List Element 4

{ist Element 3

| List Element 5

List Element 4

ListC

{ist Element s

{ist Element 1

List D

{ist Element 2

List Element 1

{ist Element 3

{ist Element 2

List Element 4

List Element 3

{ist Element 5

List Element 4

FIG. 15

List Element 5

Patent Application Publication = May 30, 2024 Sheet 20 of 20 US 2024/0177007 A1

SETHBNGE —

aa— LY

FIG. 16

US 2024/0177007 Al

SOFTWARE TEST CASE MAINTENANCE

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 17/287,732, filed Apr. 22, 2021, which is a
national phase application under 35 U.S.C. § 371 of PCT
International Application No. PCT/US2019/057738, filed
Oct. 23, 2019, which claims priority to U.S. Provisional
Patent App. No. 62/749,521, filed Oct. 23, 2018, the entire
contents of which are incorporated herein by reference for

all purposes.

FIELD

[0002] Provided herein is technology relating to maintain-
ing software test cases comprising performing actions on
elements in a software application and particularly, but not
exclusively, to systems and methods for identifying ele-
ments in a software application using artificial intelligence.

BACKGROUND

[0003] Web application software tests often fail due to a
movement or change in one or more attributes and/or
attribute values of an element. For example, minor CSS
styling changes can cause tests to fail to select a correct
element even when no other functionality has changed. In
addition, the increasing use of responsive applications (e.g.,
where the screen layout dynamically changes) requires
selectors to be frequently recoded. Accordingly, new tech-
nologies for element identification and tracking are needed
for maintenance of test cases.

SUMMARY

[0004] Accordingly, provided herein is a technology that
uses machine learning to identify elements of a software
application by inspecting elements on a software application
Ul (e.g., a web application Ul (e.g., a web page)), recording
the attributes and/or attribute values of the elements, pro-
ducing an element definition using element attributes and/or
attribute values, and scoring elements by comparing the
element definition to the attributes and/or attribute values of
a target element of a test case. In some embodiments,
scoring elements comprises calculating probabilities (e.g.,
an element match score) that an element on a software
application Ul is a target element of a test case, e.g., an
element on which a scripted action of a test case acts. As
described herein. in some embodiments, the element defi-
nition is produced using one or more element attributes
and/or attribute values, which can be any properties of an
element and/or context attributes and/or attribute values of
an element based on the relationship of an element with
other elements on the Ul. In some embodiments, the tech-
nology determines element attributes and/or attribute values
that are element visual render, element text, element code,
and/or element context. In some embodiments, the technol-
ogy comprises use of machine learning (e.g., probabilistic
models, neural nets, etc.) to improve identifying a target
element using element definitions based on element attri-
butes and/or attribute values such as, e.g., element visual
render, element text, element code, and/or element context.
In some embodiments, computer vision and/or image analy-
sis is used to analyze a software application Ul (e.g., a screen
shot of a Ul), identify elements of the Ul, and determine
attributes and/or attribute values of elements by analyzing
the visual render of elements on the Ul. In some embodi-

May 30, 2024

ments, text extraction, optical character recognition, and/or
text embedding is used to analyze a software application Ul
and determine text attributes and/or attribute values of
elements of the Ul In some embodiments, code analysis is
used to analyze code that produces elements to determine
attributes and/or attribute values of elements of the Ul

[0005] In some embodiments, relative position between
elements and/or distribution of element attribute values are
used to determine the context of an element. For instance, in
some embodiments, a model is produced comprising asso-
ciations between an element and other elements based on
attributes and/or attribute values of the elements and relative
location on a Ul (e.g., a page). Accordingly, embodiments of
the technology provide a robust element identification model
to track and/or identify elements from one version of soft-
ware to another version of the software. In some embodi-
ments, the element identification model is used by a selector
to identify elements on a page after an element attribute
changes, e.g., after an element is moved and/or restyled. In
some embodiments, the element identification model is used
to identify a target element of a test case and/or a step of a
test case.

[0006] In some embodiments, the technology provides an
autonomous technology for selection of elements on a web
application using a combination of a generative model and
a discriminative model to produce element definitions. See,
e.g., FIG. 1. For example, in some embodiments, an element
is identified on a Ul and the attributes and/or attribute values
of the element are recorded. Next, element attributes and/or
attribute values are input into a generative model that
outputs a model of the joint probability distribution of
element attribute values and selectors defining element
classes. Then, elements surrounding the element on the page
and/or the attributes and/or attribute values of the elements
surrounding the element on the page are used as inputs to
train a discriminative model that assigns a probabilistic
association of elements and/or element attributes and/or
attribute values to selectors defining element classes.
Finally, a linear combination of the generative model and the
discriminative model is produced and the page contents are
used as input into the linear combination to produce a unique
element definition of the element. In some embodiments,
this process is repeated for each element on a page (e.g., to
produce a plurality of element signatures and/or to produce
a page signature). In some embodiments, the unique signa-
ture of the element and/or the page signature is used to
identify a target element by producing match scores describ-
ing the likelihood that the element is a target element of a
test case. In some embodiments, the unique signature of the
element and/or the page signature is used to identify a target
element on subsequent visits to the application page.

[0007] Accordingly, embodiments of the technology pro-
vide method for identifying an element of a user interface
that is a target element of a test case action. For example, in
some embodiments, methods comprise producing element
definitions for elements of a user interface; producing ele-
ment match scores for the elements by comparing each
element definition to a target element definition; and iden-
tifying the element having the highest element match score
as the target element. In some embodiments, the element
having the highest element match score is identified as a
putative target element. In some embodiments, producing
the element definitions comprises determining attribute val-
ues of each element. In some embodiments, determining

US 2024/0177007 Al

attribute values comprises evaluating one or more of the
element visual render, the element text, the element code,
and/or the element context. In some embodiments, methods
comprise performing a test case action on the putative target
element or target element. In some embodiments, methods
comprise validating the result of performing the test case
action on the target element or putative target element. In
some embodiment, validating the result comprises produc-
ing a “test success” or “test failure” value. In some embodi-
ments, the “test success” or “test failure” value is used to
train a neural net for identifying target elements. In some
embodiments, methods comprise validating page loading
prior to producing element definitions for elements of the
user interface, e.g., using a timing model. In some embodi-
ments, methods comprise alerting a user of a failed test when
validating the result comprises producing a “test failure”
value. In some embodiments, methods comprise determin-
ing test case intent comprising an intended target and an
intended action. In some embodiments, determining test
case intent comprises use of natural language processing. In
some embodiments, methods comprise comparing the ele-
ment having the highest element match score and the
intended target. In some embodiments, methods comprise
performing the intended action on the intended target. In
some embodiments, methods comprise producing element
match scores using a neural net. In some embodiments,
evaluating one or more of the element visual render, the
element text, the element code, and/or the element context
comprises element visual scoring, element language scoring,
element code scoring, and/or element context scoring using
a neural net. In some embodiments, evaluating element
context comprises producing a linear combination of a
generative model and a discriminative model. In some
embodiments, evaluating element context comprises relative
location of elements, element attributes weighted by stabil-
ity scores, and/or high information elements.

[0008] Further embodiments provide systems for identi-
fying an element of a user interface that is a target element
of a test case action. In some embodiments, systems com-
prise a component configured to produce element definitions
for elements of a user interface; a component configured to
produce element match scores for the elements by compar-
ing each element definition to a target element definition;
and a component configured to identify the element having
the highest element match score as the target element. In
some embodiments, the component configured to produce
element definitions is configured to determine attribute
values of each element. In some embodiments, the compo-
nent configured to determine attribute values is configured to
evaluate one or more of the element visual render, the
element text, the element code, and/or the element context.
In some embodiments, systems further comprise a compo-
nent configured to perform a test case action on the target
element. In some embodiments, systems further comprise a
component configured to validate the result of performing
the test case action on the target element. In some embodi-
ments, the component configured to validate the result of
performing the test case action on the target element is
configured to produce a “test success” or “test failure” value.
In some embodiments, the “test success” or “test failure”
value is used to train a neural net for identifying target
elements. In some embodiments, systems further comprise a
component configured to validate page loading prior to
producing element definitions for elements of the user

May 30, 2024

interface. In some embodiments, the component configured
to validate page loading comprises a timing model as
described herein. In some embodiments, systems further
comprise a component configured to alert a user of a failed
test when validating the result comprises producing a “test
failure” value. In some embodiments, systems further com-
prise a component configured to determine test case intent
comprising an intended target and an intended action. In
some embodiments, the component configured to determine
test case intent is configured to use natural language pro-
cessing. In some embodiments, the systems comprise a
neural net. In some embodiments, the component configured
to determine attribute values is configured to perform ele-
ment visual scoring, element language scoring, element code
scoring, and/or element context scoring using a neural net.
In some embodiments, the component configured to perform
element context scoring is configured to produce a linear
combination of a generative model and a discriminative
model. In some embodiments, the component configured to
perform element context scoring is configured to determine
relative location of elements, element attributes weighted by
stability scores, and/or high information elements.

[0009] Additional embodiments will be apparent to per-
sons skilled in the relevant art based on the teachings
contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] These and other features, aspects, and advantages
of the present technology will become better understood
with regard to the following drawings:

[0011] FIG. 1 is a process diagram showing an embodi-
ment of the element selection technology provided herein.
[0012] FIG. 2 is a process diagram showing an embodi-
ment of an element selection technology provided herein.
[0013] FIG. 3A is a schematic drawing showing an
embodiment of a complete scoring model for producing
element match scores according to the technology provided
herein.

[0014] FIG. 3B is a schematic showing an embodiment of
a performance optimized scoring model for producing ele-
ment match scores according to the technology provided
herein.

[0015] FIG. 4 is a schematic showing the production of an
element definition using element render data (“visual ren-
der”), element text data (“language™), element code data
(“code definition”) and/or element context data (“context™)
according to the technology described herein.

[0016] FIG. 5 is a schematic showing the architecture of a
computer vision system for analyzing a web application user
interface.

[0017] FIG. 6 shows a schematic of an exemplary input
web application processed by a text box detection technol-
ogy and exemplary output produced by the text box detec-
tion technology.

[0018] FIG. 7 shows the output of a density-based clus-
tering technology as a graphical plot.

[0019] FIG. 8 shows a schematic of an exemplary input
web application processed by a text box detection technol-
ogy and exemplary output produced by the text box detec-
tion technology. The output of the text box detection tech-
nology is passed to an element detection technology. An
exemplary output of the element detection technology is
shown.

US 2024/0177007 Al

[0020] FIG. 9 shows a schematic of exemplary input web
application processed by an object detection technology and
exemplary output produced by the object detection technol-
ogy.

[0021] FIG. 10 is a process diagram showing a method for
element visual scoring.

[0022] FIG. 11 is a process diagram showing a method for
element language scoring.

[0023] FIG. 12 is a process diagram showing a method for
element code scoring.

[0024] FIG. 13 is a process diagram showing a method for
element context scoring.

[0025] FIG. 14A is a histogram showing the probability
distribution for the “UNIQUESELECTORS” attribute over
the values detected for the attribute for a plurality of versions
of the attribute.

[0026] FIG. 14B is a histogram showing the probability
distribution for the “ATTR_CLASS” attribute over the val-
ues detected for the attribute for a plurality of versions of the
attribute.

[0027] FIG. 14C is a histogram showing the probability
distribution for the “CSSSELECTOR” attribute over the
values detected for the attribute for a plurality of versions of
the attribute.

[0028] FIG. 14D is a histogram showing the probability
distribution for the “ATTR_TYPE” attribute over the values
detected for the attribute for a plurality of versions of the
attribute.

[0029] FIG. 14E is a histogram showing the probability
distribution for the “TYPE” attribute over the values
detected for the attribute for a plurality of versions of the
attribute.

[0030] FIG. 14F is a histogram showing the probability
distribution for the “XPATH” attribute over the values
detected for the attribute for a plurality of versions of the
attribute.

[0031] FIG. 14G is a histogram showing the probability
distribution for the “VALUE” attribute over the values
detected for the attribute for a plurality of versions of the
attribute.

[0032] FIG. 15 is a schematic showing the use of test case
step intention modeling to determine the correct target
element for a test case.

[0033] FIG. 16 is a schematic of a step intention model for
receiving sentences and elements as inputs, embedding
sentences and elements in a sentence embedding network
and an element embedding network, respectively, and pro-
ducing a score representing (e.g., quantifying) the match of
the sentence embedding and the element embedding.
[0034] It is to be understood that the figures are not
necessarily drawn to scale, nor are the objects in the figures
necessarily drawn to scale in relationship to one another. The
figures are depictions that are intended to bring clarity and
understanding to various embodiments of apparatuses, sys-
tems, and methods disclosed herein. Wherever possible, the
same reference numbers will be used throughout the draw-
ings to refer to the same or like parts. Moreover, it should be
appreciated that the drawings are not intended to limit the
scope of the present teachings in any way.

DETAILED DESCRIPTION

[0035] Provided herein is technology relating to test case
maintenance. In some embodiments, the technology relates
to identifying and/or acting upon an element in a software

May 30, 2024

application and particularly, but not exclusively, to systems
and methods for identifying elements in a software appli-
cation using artificial intelligence.

[0036] In this detailed description of the various embodi-
ments, for purposes of explanation, numerous specific
details are set forth to provide a thorough understanding of
the embodiments disclosed. One skilled in the art will
appreciate, however, that these various embodiments may be
practiced with or without these specific details. In other
instances, structures and devices are shown in block diagram
form. Furthermore, one skilled in the art can readily appre-
ciate that the specific sequences in which methods are
presented and performed are illustrative and it is contem-
plated that the sequences can be varied and still remain
within the spirit and scope of the various embodiments
disclosed herein.

[0037] All literature and similar materials cited in this
application, including but not limited to, patents, patent
applications, articles, books, treatises, and internet web
pages are expressly incorporated by reference in their
entirety for any purpose. Unless defined otherwise, all
technical and scientific terms used herein have the same
meaning as is commonly understood by one of ordinary skill
in the art to which the various embodiments described herein
belongs. When definitions of terms in incorporated refer-
ences appear to differ from the definitions provided in the
present teachings, the definition provided in the present
teachings shall control. The section headings used herein are
for organizational purposes only and are not to be construed
as limiting the described subject matter in any way.

Definitions

[0038] To facilitate an understanding of the present tech-
nology, a number of terms and phrases are defined below.
Additional definitions are set forth throughout the detailed
description.

[0039] Throughout the specification and claims, the fol-
lowing terms take the meanings explicitly associated herein,
unless the context clearly dictates otherwise. The phrase “in
one embodiment™ as used herein does not necessarily refer
to the same embodiment, though it may. Furthermore, the
phrase “in another embodiment” as used herein does not
necessarily refer to a different embodiment, although it may.
Thus, as described below, various embodiments of the
invention may be readily combined, without departing from
the scope or spirit of the invention.

[0040] In addition, as used herein, the term “or” is an
inclusive “or” operator and is equivalent to the term “and/
or” unless the context clearly dictates otherwise. The term
“based on” is not exclusive and allows for being based on
additional factors not described, unless the context clearly
dictates otherwise. In addition, throughout the specification,
the meaning of “a”, “an”, and “the” include plural refer-
ences. The meaning of “in” includes “in” and “on.”
[0041] As used herein, the terms “about”, “approxi-
mately”, “substantially”, and “significantly” are understood
by persons of ordinary skill in the art and will vary to some
extent on the context in which they are used. If there are uses
of these terms that are not clear to persons of ordinary skill
in the art given the context in which they are used, “about”
and “approximately” mean plus or minus less than or equal
to 10% of the particular term and “substantially” and “sig-
nificantly” mean plus or minus greater than 10% of the
particular term.

US 2024/0177007 Al

[0042] As used herein, disclosure of ranges includes dis-
closure of all values and further divided ranges within the
entire range, including endpoints and sub-ranges given for
the ranges.

[0043] As used herein, the suffix “-free” refers to an
embodiment of the technology that omits the feature of the
base root of the word to which “-free” is appended. That is,
the term “X-free” as used herein means “without X, where
X is a feature of the technology omitted in the “X-free”
technology. For example, a “calcium-free” composition
does not comprise calcium, a “mixing-free” method does not
comprise a mixing step, etc.

[0044] Although the terms “first”, “second”, “third”, etc.
may be used herein to describe various steps, elements,
compositions, components, regions, layers, and/or sections,
these steps, elements, compositions, components, regions,
layers, and/or sections should not be limited by these terms,
unless otherwise indicated. These terms are used to distin-
guish one step, element, composition, component, region,
layer, and/or section from another step, element, composi-
tion, component, region, layer, and/or section. Terms such as
“first”, “second”, and other numerical terms when used
herein do not imply a sequence or order unless clearly
indicated by the context. Thus, a first step, element, com-
position, component, region, layer, or section discussed
herein could be termed a second step, element, composition,
component, region, layer, or section without departing from
technology.

[0045] As used herein, the word “presence” or “absence”
(or, alternatively, “present or “absent™) is used in a relative
sense to describe the amount or level of a particular entity.
[0046] As used herein, an “increase” or a “decrease” refers
to a detectable (e.g., measured) positive or negative change,
respectively, in the value of a variable relative to a previ-
ously measured value of the variable, relative to a pre-
established value, and/or relative to a value of a standard
control. An increase is a positive change preferably at least
10%, more preferably 50%, still more preferably 2-fold,
even more preferably at least 5-fold, and most preferably at
least 10-fold relative to the previously measured value of the
variable, the pre-established value, and/or the value of a
standard control. Similarly, a decrease is a negative change
preferably at least 10%, more preferably 50%, still more
preferably at least 80%, and most preferably at least 90% of
the previously measured value of the variable, the pre-
established value, and/or the value of a standard control.
Other terms indicating quantitative changes or differences,
such as “more” or “less,” are used herein in the same fashion
as described above.

[0047] As used herein, a “system” refers to a plurality of
real and/or abstract components operating together for a
common purpose. In some embodiments, a “system” is an
integrated assemblage of hardware and/or software compo-
nents. In some embodiments, each component of the system
interacts with one or more other components and/or is
related to one or more other components. In some embodi-
ments, a system refers to a combination of components and
software for controlling and directing methods.

[0048] As used herein, the term “web application” refers
to a client-server computer program that is executed by the
client in a web browser. Common web applications include
webmail, online retail sales, and online auction. In some
embodiments, the web application comprises a user inter-
face and/or client-side logic (e.g., code executed on a client

May 30, 2024

computer). In some embodiments, a web application com-
prises one or more web pages and the user interface refers
to the appearance, design, and elements of the one or more
web pages.

[0049] As used herein, the term “element” refers to a Ul
visual component and/or data structure that can be identified
by an element definition, an identifier, and/or relationships
with one or more other elements. For example, an element
may have a unique identifier that is a string, such as a name,
number, or symbol. Accordingly, the element may be refer-
enced and/or retrieved using the identifier. Further, if a
particular element is the first child element of a parent
element, then the particular element may be referenced
and/or retrieved using a pointer to the parent element and
then retrieving a pointer to the first child element. A browser
and/or runtime environment may provide one or more
Application Programming Interfaces (“APIs”) for referenc-
ing and/or retrieving elements. Thus, in some embodiments,
the term “element” refers to a component of a software
application (e.g., a web application (e.g., a graphical com-
ponent of a graphical user interface of an application)) with
which a user (e.g., a person, another application, an appli-
cation programming interface, etc.) interacts. In some
embodiments, interacting with an element causes the appli-
cation to perform a function.

[0050] In some embodiments, an “element” is a button,
hyperlink, text box, text area, check box, slider, radio button,
menu, menu item, scroll bar, drop down menu, list item,
combo box, toggle button, spin button, tool bar, widget,
image, window, calendar, tab strip, list box, thumbnail, etc.
In some embodiments, an element is a web page or screen.
In some embodiments, an element comprises other elements,
e.g., a web page comprising one or more buttons, text fields,
etc. In some embodiments, source code corresponding to an
element or associated with an element is mappable to a
visible element presented on a screen of a client device for
viewing by a user. An element has one or more attributes
and/or attribute values, e.g., that can be provided by ana-
lyzing the visual render, text, code, and/or context of the
element.

[0051] As used herein, the term “target element” is an
element on which an action (e.g., of a test case and/or a step
of'a test case) is to be performed (e.g., by the test case and/or
step of a test case). For example, if a step of a test case is
“click on the login button”, the element that is the login
button is the target element of the test case step.

[0052] As used herein, the term “attribute” refers to data
that identify and/or describe the appearance, behavior, and/
or content of an element. An element may have any number
of attributes, e.g., element type; location on a screen, win-
dow, or page; color; text; size; border; typeface; and code
associated with the element. In some embodiments, attri-
butes have “attribute values”—for example, the location
attribute may have an attribute value comprising X, y coor-
dinates describing a screen location. Attribute values may be

integral, continuous, and/or discontinuous; numbers;
classes; types; categories; etc.
[0053] As used herein, the term ‘““visual render” of an

element refers to the visual (e.g., graphical) representation of
visual attributes and/or attribute values of an element as
rendered on a software application (e.g., web application
(e.g., a web page)) UL In some embodiments, visual attri-
butes and/or attribute values of an element are provided by
analyzing the visual render (e.g., a bitmapped screen shot) of

US 2024/0177007 Al

a Ul to identify elements on the Ul and assign element
attributes and/or attribute values to the elements of the UI.

[0054] As used herein, the term “language” or “text” of an
element refers to the text attributes and/or attribute values of
an element, e.g., the characters (e.g., ASCII, Unicode, etc.)
and/or strings of characters that are associated with an
element. In some embodiments, text attributes and/or attri-
bute values of an element are words or phrases (e.g.,
comprising one or more words separated by a non word
space) displayed within, around, and/or near an element.

[0055] As used herein, the term “code” of an element
refers to data that defines attributes and/or attribute values of
the element and/or software code that produces the element
on a software application (e.g., a web application (e.g., a
web page)) Ul e.g., software that causes an image of the
element to be produced on a display when the code is
executed. As used herein, in some embodiments, the code of
an element is an attribute of an element; in some embodi-
ments, analysis of the code of an element provides one or
more attributes and/or attribute values of an element.

[0056] As used herein, the term “context” of an element
refers to an attribute of the element describing the relation-
ship of the element to other elements of a software appli-
cation (e.g., web application (e.g., web page)) Ul In some
embodiments, the context of an element comprises one or
more of: the distance between the element and other ele-
ment, element attributes and/or attribute values of the ele-
ment and other elements, distributions of element attribute
values on the Ul, and/or relative location of the element with
respect to other elements. In some embodiments, the context
of an element is determined for an element based on
elements (e.g., element location, element attributes and/or
attribute values, distribution of attribute values, distances
between elements) in the “local neighborhood” of the ele-
ment. As used herein, the “local neighborhood” of an
element is a region of a UI that is closer in distance to an
element than the distance to other regions of the UI that are
not in the local neighborhood. In some embodiments, the
local neighborhood is defined by a distance cutoff describing
a locus or region surrounding the element. In some embodi-
ments, the local neighborhood is defined by the nearest
neighboring elements to an element (e.g., the set of elements
closest to an element). In some embodiments, the local
neighborhood is defined by the nearest neighboring elements
to an element (e.g., the set of elements closest to an element)
and the next-nearest neighboring elements to the element
(e.g., the set of elements closest to an element and the set of
elements next closest to the element). In some embodiments,
the local neighborhood is defined by the nearest neighboring
elements to an element (e.g., the set of elements closest to
an element), the next-nearest neighboring elements to the
element (e.g., the set of elements closest to an element and
the set of elements next closest to the element), and the
next-next-nearest neighboring elements to the element (e.g.,
the set of elements closest to an element, the set of elements
next closest to the element, and the set of elements next
closest to the element outside the closest and next closest
elements).

[0057] As used herein, a “selector” is a logical rule or
pattern that identifies a set of elements, e.g., a set comprising
zero (an empty set), one, or a plurality of elements. In some
embodiments, a selector identifies elements specified by
element type, elements specified by element attribute (e.g.,

May 30, 2024

id, class, etc.), and/or elements specified by element location
(e.g., by element location relative to other elements).
[0058] As used herein, the term “user” refers to a person
(e.g., real or virtual) that interacts with an application (e.g.,
with an element of an application). In some embodiments, a
user is a person (e.g., that interacts with an application
through a graphical user interface). In some embodiments, a
user is another application (e.g., a script) or software com-
ponent that interacts with an application.

[0059] As used herein, the terms “module” or “compo-
nent” refer to hardware or software implementations con-
figured to perform the actions of the module or component.
In some embodiments, a module or component is a software
object or software routine that is stored on and/or executed
by general purpose hardware (e.g., computer-readable
media, processing devices, etc.). In some embodiments,
components and/or modules are implemented as objects or
processes that execute on a computing system (e.g., as
separate threads). While some of the systems and methods
described in the present disclosure are generally described as
being implemented in software (stored on and/or executed
by general purpose hardware), specific hardware implemen-
tations, firmware implements, or any combination thereof
are also possible and contemplated. In this description, a
“computing entity” may be any computing system as pre-
viously described in the present disclosure, or any module or
combination of modules executing on a computing system.
[0060] As used herein, the term ‘“browser” refers to a
software application for retrieving, presenting, and travers-
ing information resources on the World Wide Web, such as,
for example, Mozilla Firefox, Internet Explorer, Microsoft
Edge, Google Chrome, Apple Safari, or any other web
browser provided for use on a desktop, laptop, and/or mobile
device.

[0061] As used herein, the term “user interface” (UI)
refers to a program interface that utilizes displayed graphical
information to allow a user to control and/or operate a
software application (e.g., a web application (e.g., a web
page)), for example, by a pointer and/or a pointing device.
A pointer may refer to a cursor, arrow, or other symbol
appearing on a display and may be moved or controlled with
a pointing device to select objects, populate fields, input
commands, etc. via the Ul. A pointing device may refer to
any object and/or device used to control a cursor and/or
arrow, to select objects, to populate fields, or to input
information such as commands and/or drop-down menu
options, for example, via a Ul of the web application. Such
pointing devices may include, for example, a mouse, a
trackball, a track pad, a track stick, a keyboard, a stylus, a
digitizing tablet, a digital pen, a fingertip in combination
with a touch screen, etc. A cursor may refer to a symbol or
pointer where an input selection or actuation may be made
with respect to a region in a UL

[0062] As used herein, the terms “click” or “clicking”
refer to a selection process made by any pointing device,
such as a mouse, for example, but use of such terms is not
intended to be so limited. For example, a selection process
may be made via a touch screen. In such a case, “clicking”
may be replaced by “touching” or “tapping”. However, these
are merely examples of methods of selecting objects or
inputting information, and claimed subject matter is not
limited in scope in these respects.

[0063] As used herein, the term “test case” refers to a
defined set of actions and/or inputs performed on a software

US 2024/0177007 Al

application that generates a defined set of outputs. Generally,
a test case includes instructions specifying actions and/or
inputs, predicted results, and a set of execution conditions.
The test case can be viewed as a predetermined collection of
one or more actions involving one or more elements of a
software application. In some embodiments, a test case
comprises a series of actions and/or inputs executed in a
predetermined order specified in a test case script to simulate
use of a software application or system by a user. Each input
and/or action executed may be represented by individual test
cases that can be joined together to represent a more
complex sequence of actions within a larger test case. In
some embodiments, a test case is executed to identify errors
needing repair in a software application or in components of
an interrelated system.

[0064] As used herein, the term “script” refers to an
implementation of a test case in a particular script language.
In some embodiments, a script is a written description of the
set of inputs and/or actions to be executed in a test case and
a list of expected results for comparison to the actual results.
A script is typically associated with each test case. The
instructions for inputs and/or actions to execute in a script
may be written in descriptive terms to tell a human operator
what transactions to execute or it may comprise or access
computer instructions to execute the transactions automati-
cally without human user interaction or with minimal or
reduced human user interaction. In some embodiments, a
script may comprise a combination of computer-executed
and human-executed instructions.

Software Applications

[0065] As described herein, the technology relates to
maintaining a test case for a software application (e.g., a web
application (e.g., a web page)) comprising a Ul. A web
application may comprise one or more web pages. A web
application may communicate with a database. While some
embodiments are described with respect to a web applica-
tion, the technology is not so limited and includes software
applications that may or may not be web applications and/or
that may or may not be executed by a browser. The tech-
nology finds use in testing any software application that
comprises a Ul comprising elements.

[0066] In some embodiments, the technology finds use in
testing a software application that is a web application. In
some embodiments, a server computer runs code for the web
application on a server side that serves web pages, files, and
other content to a web browser executing the web applica-
tion on the client side. In some embodiments, a client-side
application executes without the use of a browser. In some
embodiments, the web application has elements that are
identified, located, and monitored using computer vision
and/or analysis of source code. In some embodiments,
element attributes and/or attribute values are determined
and/or assigned to an element using computer vision, image
analysis, text extraction, text embedding, analysis of source
code, and/or analysis of element context.

[0067] For example, in some embodiments, a web appli-
cation that executes on the client side as a series of HTML
web pages includes identifiable Document Object Model
(DOM) elements. In the HTML DOM, the element object
represents an HTML element. HTML element objects can
have child nodes (e.g., type element node, text node, or
comment node). HTML element objects may also have
attributes and/or attribute values. Thus, in some embodi-

May 30, 2024

ments, elements (e.g., DOM elements) can be located and
monitored by embodiments of the technology provided
herein that identify, locate, and monitor elements using
computer vision and/or analysis of source code (e.g., to
reference and/or retrieve an element by a unique identifier
and/or by a relative and/or absolute location in a DOM). In
some embodiments, element attributes and/or attribute val-
ues (e.g., DOM elements) are determined and/or assigned to
an element using computer vision, image analysis, text
extraction, text embedding, analysis of source code, and/or
analysis of element context.

[0068] In some embodiments, the web application has
elements that can be identified, located, and monitored
without using standard DOM elements. For example, these
elements may be defined using XML files, JSON files, or
any other proprietary file type. Accordingly, in some
embodiments, the technology relates to an automated testing
utility that is configured to identify, locate, and monitor
these elements based on computer vision, image analysis,
text extraction, text embedding, analysis of source code,
and/or analysis of element context to identify elements from
one version of software to a subsequent version of the
software. In some embodiments, element attributes and/or
attribute values are determined and/or assigned to an ele-
ment using computer vision, image analysis, text extraction,
text embedding, analysis of source code, and/or analysis of
element context. In embodiments where a web application
has multiple screens or pages, each screen or page may be
defined as a separate web element with elements contained
inside the parent element.

Testing

[0069] In some embodiments, the technology provides an
automated testing utility that provides tools to produce test
cases and execute scripts for testing a software application
(e.g., a web application, e.g., for web browser automation)
comprising a Ul. Thus, in some embodiments, each script
defines at least one input, action, or event that occurs within
a software application (e.g., a web browser) such as, e.g., an
interaction with an element (e.g., a click, touch, or tap; item
selection; data input; etc.) In some embodiments, the auto-
mated testing utility is provided as a plug-in for a web
browser. In some embodiments, the automated testing utility
does not require a user (e.g., a developer, a software engi-
neer) to write a script comprising a number of steps de novo.
In some embodiments, the automated testing utility includes
controls to record and edit specific actions or events, con-
trols that facilitate adding test specific commands to the
script, and/or a component to perform natural language
processing to translate English phrases into script steps.

Element selection

[0070] Embodiments of the technology relate to maintain-
ing a test case, e.g., by identifying an element on a Ul that
is a target element on which a test case step (e.g., action) acts
during execution of a test case. Identifying elements on
which test case steps (e.g., actions) act is particularly impor-
tant for software applications (e.g., web applications) com-
prising a Ul that changes, e.g., a Ul comprising an element
whose position or other attribute(s) changes from one ver-
sion of the software application (e.g., software application
UI) to a subsequent version. For example, the technology
provides methods and systems for maintaining a test case

US 2024/0177007 Al

that acts on an element having a position, text string, and/or
appearance after the position, text string, and/or appearance
of the element changes by identifying the element using
machine learning and statistical models.

[0071] According to embodiments of the technology and
as described below, methods and systems are provided that
produce an element definition (e.g., a signature or “finger-
print” of an element) using attributes and/or attribute values
of the element such as, e.g., the visual render of the element,
text associated with the element, code that generates the
element, and/or the surroundings and relationship of the
element to other elements (element context). In some
embodiments, statistical models are used to produce the
element definition. In some embodiments, an element match
score is produced for each element of a software application
UI based on comparing the element definition to the target
element definition describing the target element of the test
case and/or test case step. In some embodiments, the success
of identifying the correct UI element as the target element is
used as an input to train a machine learning component (e.g.,
a neural net) to improve identifying a target element of a Ul.

[0072] For example, in some embodiments, the technol-
ogy provides methods for selecting an element, e.g., for
identifying a target element upon which to act according to
an action described by a test case and/or a step of a test case.
As shown in FIG. 2, embodiments of the technology provide
a method comprising starting a test, e.g., starting a test case
to test a software application (e.g., a web application com-
prising a UI). Next, in some embodiments, methods com-
prise visiting a web page (e.g., loading a web page in a
browser). In some embodiments, methods comprise per-
forming a step of a test case. In some embodiments, a test
case comprises multiple steps. In some embodiments, a test
case comprises a single step (e.g., click or tap an element,
input text into an element, select an element, etc.)

[0073] In some embodiments, methods comprise validat-
ing that a page is loaded before performing a test step.
Validating that a page is loaded before proceeding ensures
and/or maximizes the probability that the target element has
been provided on the Ul of the software application and thus
the target element can be acted upon by a test case action. In
some embodiments, methods comprise providing and/or
using a timing model to validate that a page is loaded (e.g.,
in some embodiments, validating that a page is loaded
comprises using a timing model). In some embodiments, the
timing model predicts an amount of time that will elapse
from initiating the loading of a page to completing the
loading of the page. In some embodiments, the timing model
predicts an amount of time that will elapse from initiating
the loading of a page to completing the loading of the page
by analyzing page content (e.g., simpler pages load more
quickly than more complicated pages). In some embodi-
ments, the timing model predicts the amount of time from
initiating the loading of a page to completing the loading of
the page using data describing previous page loading times.
In some embodiments, the timing model predicts an amount
of time that will elapse from initiating the loading of a page
to completing the loading of the page (and, optionally, a
standard deviation or other error in the prediction) using
machine learning, e.g., using data describing previous page
loading times to train a neural net or other machine learning
model. In some embodiments, the model comprises calcu-
lating the mean (and, optionally, the standard deviation) of
previous page loading times. In some embodiments, meth-

May 30, 2024

ods comprise identifying a successful page loading when the
page loads within a range of time that is the meanzthe
standard deviation of previous page loading times. In some
embodiments, a user is alerted if the page loads in a time that
is outside of the range of time that is the meansstandard
deviation of page loading times.

[0074] After validating that a page is loaded, the technol-
ogy comprises collecting (e.g., identifying) each of the
elements on the page and/or one or more of the elements on
the page. In some embodiments, data describing one or more
(e.g., in some embodiments, all) of the elements of the Ul
are stored. In some embodiments, element attributes and/or
attribute values are provided and/or determined. In some
embodiments, element attributes and/or attribute values are
determined by analyzing the visual render of the page and/or
elements on the page, by analyzing text associated with
elements on the page, by analyzing code that produces
elements on the page and/or that is associated with elements
on the page, and/or by analyzing the context of elements on
the page. In some embodiments, the attributes and/or attri-
bute values of each element are stored. Next, in some
embodiments, the technology comprises producing an ele-
ment definition for each element of the Ul (e.g., a Ul of a
page) identified by the technology. In some embodiments,
producing the element definition comprises assigning attri-
butes and/or attribute values to elements according to a
technology as described herein (see, e.g., the section entitled
“Element Definition”). In some embodiments, producing an
element definition comprises using an element definition
model that produces the element definition using one or
more of the element visual render, a text string of the
element, the code that generates the element, and/or element
context (e.g., the surroundings and relation of each element
to other elements and distributions of element attribute
values).

[0075] In some embodiments, the element definition
model comprises attribute weights and/or assigns weights to
one or more attributes and/or attribute values, e.g., the
element visual render, a text string of the element, the code
that generates the element, and/or the element context (e.g.,
surroundings and relation to other elements and distributions
of element attribute values). In some embodiments, com-
puter vision, code analysis, natural language processing,
machine learning, neural nets, and/or other technologies
described herein is/are used to quantify the element visual
render, a text string of the element, the code that generates
the element, and/or element context (e.g., the surroundings
and relation to other elements and distributions of element
attribute values) and produce the element definition accord-
ing to the element definition model. In some embodiments,
the technology comprises producing a page definition (e.g.,
a “page signature” or “page fingerprint”) comprising ele-
ment definitions. In some embodiments, comparing a page
definition to a previous page definition identifies a page as
comprising a change. In some embodiments, comparing a
page definition to a previous page definition identifies a page
as being the same.

[0076] Next, in some embodiments, the technology scores
each element of the Ul by calculating an element match
score that describes the quality of the match of the target
element of the test case and/or a step of a test case to each
element definition produced by the element definition model
as described herein. In some embodiments, the technology
scores each element on the Ul by calculating an element

US 2024/0177007 Al

match score that describes the likelihood that each element
definition produced by the element definition model as
described herein is the target element of the test case and/or
a step of a test case.

[0077] In some embodiments, the methods and systems
optionally comprise a step of validating the intention of the
test and/or a test step. That is, in some embodiments, the
technology determines a test case and/or test step intention
(e.g., using an intention model) to validate elements in the
scoring process. As described herein, a software test case
comprises a sequence of actions and elements on which
those actions are performed. In some embodiments, a writ-
ten description of the test case and/or test case step is
included in the test case definition. In some embodiments,
the written description of the test case and/or test case step
is provided in a scripting language and, in some embodi-
ments, the written description of the test case and/or test case
step is provided in natural language. An example of a test
step description is provided in FIG. 15, e.g., “click on the
first element in the list.” In some embodiments, a natural
language test case description is included and the natural
language test case description is used to provide a test case
and/or test case step intention model. In some embodiments,
after elements have been scored as described herein, the
highest scoring element is validated against the intention of
the test case step (e.g., as determined by the test case and/or
test case step intention model). See, e.g., Example 2 and
FIG. 15. In some embodiments, an attribute of a targeted
element in a test case definition has changed. Thus, while, in
some embodiments, the element scoring process success-
fully identifies the target element. In some embodiments, the
element scoring process may assign a high score to elements
surrounding it containing similar code attributes and posi-
tion. However, in some embodiments, when the target
element identified by the scoring process is compared with
the target element identified by the test case and/or test case
step intention model, validation fails because the scoring
process identifies the incorrect element. In some embodi-
ments, if this validation fails, the results from the step
intention model are intersected with the results from the
element scoring processes to redefine and re-identify the
target element. This process results in correctly selecting the
target element and produces a successful validation. In some
embodiments, the test case definition is edited to store the
new target element representation for subsequent test runs.

[0078] Insome embodiments, each element match score is
stored. In some embodiments, the highest element match
score is identified and returned, e.g., to identify the element
with the highest likelihood of being the target element upon
which to act during the test case or step of a test case. Then,
the action defined by the test case or step of the test case is
performed on the element identified as the target element
according to the highest element match score. The results of
the action are evaluated and/or validated to determine if the
correct element was identified and acted upon by the test
case or step of the test case. In some embodiments, validat-
ing the results of the action of the test case or step of the test
case upon the element identified as the highest target ele-
ment according to the highest element match score com-
prises assigning a test case outcome (e.g., a “test successtul”
or “test failed”) value to the test case and/or step of the test
case. In some embodiments, the test case or step of the test
case, element definition, element match score, highest ele-
ment match score, and/or test outcome value are provided to

May 30, 2024

a machine learning component of the technology, e.g., to
update and/or adapt the model for the success or failure of
the test so that it performs better in subsequent test cases
(e.g., in subsequent element scoring and identification). In
some embodiments, a “test failed” test case outcome is
reported to a user. In some embodiments, the technology
comprises producing an element definition and element
match score in an iterative (e.g., sequential) manner for each
element of a Ul. In some embodiments, the technology
comprises producing an element definition and element
match score in parallel (e.g., using parallel computing) for
each element of a Ul. In some embodiments, the technology
comprises producing an element definition and element
match score in parallel using a plurality of virtual machines.
In some embodiments, the technology comprises producing
an element definition and element match score in parallel
using a plurality of virtual machines produced using cloud
computing.

[0079] In some embodiments, e.g., as shown in FIG. 3A
and FIG. 3B, scoring an element (e.g., producing an element
match score) comprises use of a complete scoring model
and/or a performance optimized scoring model.

[0080] In some embodiments, the technology scores an
element (e.g., produces an element match score) using a
complete scoring model that evaluates a match between an
element definition (e.g., describing an element on a Ul) and
a target element definition. In some embodiments, data are
input into the complete scoring model. In some embodi-
ments, the data input into the complete scoring model
comprise data describing the visual render of the element
(element render data), text (e.g., a text string) of the element
(element text data), code that generates the element (element
code data), and/or element context (e.g., data characterizing
the elements surrounding an element and the relationships
between an element and other elements on the page). See
FIG. 3A. In some embodiments, the technology comprises
independently calculating a render match score, a text match
score, a code match score, and/or a context match score by
comparing render data, text data, code data, and/or context
data provided by an element definition identifying a target
element and the render data, text data, code data, and/or
context data, respectively, of an element on a page and the
element match score is produced from the individual render
match score, text match score, code match score, and/or
context match score (see, e.g., FIG. 3A). In some embodi-
ments, the technology comprises calculating an element
match score by producing a target element definition using
render data, text data, code data, and/or context data pro-
vided by an element definition identifying a target element
(e.g., provided by a test case) and producing an element
definition for an element of the Ul using the render data, text
data, code data, and/or context data of an element on a page
and the element match score is produced from the target
element definition and the element definition of the element
on the page. In some embodiments, a model (e.g., a com-
bination model (e.g., a non-linear combination model)) is
produced from the render match score, text match score,
code match score, and/or context match score. In some
embodiments, the model produces an element match score.
In some embodiments, the model is trained and/or retrained
using inputs describing the success or failure of the test case,
the render match score, text match score, code match score,
context match score, and/or element match score.

US 2024/0177007 Al

[0081] In some embodiments, the technology scores an
element using a performance optimized scoring model. In
some embodiments, data are input into the performance
optimized scoring model. In some embodiments, the data
input into the performance optimized scoring model com-
prise data describing the visual render of the element (ele-
ment render data), text (e.g., a text string) of the element
(element text data), code that generates the element (element
code data), and/or element context (e.g., data characterizing
the elements surrounding an element and the relationships
between an element and other elements on the page). See
FIG. 3B. The performance optimized model produces an
element definition using a first type of element data that is
one of element render data, element text data, element code
data, or element context data. An element match score is
produced from the element definition and an element defi-
nition of the target element using the same first type of
element data. The model is evaluated to characterize (e.g.,
by a statistical measure) the confidence of the model to
identify the correct element on the page as the target element
of the test case or step of the test case. If the confidence of
the model is not sufficient, the element definition and target
element definition are updated using a second, different type
of element data that is one of element render data, element
text data, element code data, or element context data. The
model is evaluated to characterize (e.g., by a statistical
measure) the confidence of the model to identify the correct
element on the page as the target element of the test case or
step of the test case. If the confidence of the model is not
sufficient, the element definition and target element defini-
tion are updated using a third, different type of element data
that is one of element render data, element text data, element
code data, or element context data. The model is evaluated
to characterize (e.g., by a statistical measure) the confidence
of the model to identify the correct element on the page as
the target element of the test case or step of the test case. If
the confidence of the model is not sufficient, the element
definition and target element definition are updated using a
fourth, different type of element data that is one of element
render data, element text data, element code data, or element
context data.

[0082] While FIG. 3B shows an exemplary order of the
first, second, third, and fourth types of element data as
element code data, element render data, element text data,
and element context data, the technology is not limited to
this exemplary order of using data types in the performance
optimized scoring model. Accordingly, embodiments pro-
vide performance optimized scoring models in which the
order of data types used to produce element definitions and
target element definitions, calculate element match scores,
and iteratively evaluate and/or train the model as described
above is provided by one of the following ordered lists of
data types: element code data, element render data, element
text data, element context data; element render data, element
code data, element text data, element context data, element
text data, element code data, element render data, element
context data, element code data, element text data, element
render data, element context data, element render data,
element text data, element code data, element context data;
element text data, element render data, element code data,
element context data; element text data, element render data,
element context data, element code data; element render
data, element text data, element context data, element code
data; element context data, element text data, element render

May 30, 2024

data, element code data; element text data, element context
data, element render data, element code data; element render
data, element context data, element text data, element code
data; element context data, element render data, element text
data, element code data; element context data, element code
data, element text data, element render data; element code
data, element context data, element text data, element render
data; element text data, element context data, element code
data, element render data; element context data, element text
data, element code data, element render data; element code
data, element text data, element context data, element render
data; element text data, element code data, element context
data, element render data; element render data, element code
data, element context data, element text data; element code
data, element render data, element context data, element text
data; element context data, element render data, element
code data, element text data; element render data, element
context data, element code data, element text data; element
code data, element context data, element render data, ele-
ment text data; and/or element context data, element code
data, element render data, element text data.

Test Case Intent

[0083] In some embodiments, the technology comprises
use of test case intent or test case step intent to improve
identifying an element on a software application Ul (e.g., a
web page Ul) as a target element upon which to perform an
action. For example, in some embodiments, an element
match score is not sufficient (e.g., not sufficiently high) to
identify an element as a target element with a sufficient
degree of confidence. As an example, one or more of data
describing the visual render of the element (element render
data), text (e.g., a text string) of the element (element text
data), code that generates the element (element code data),
and/or element context (e.g., data characterizing the ele-
ments surrounding an element and the relationships between
an element and other elements on the page) may have
changed to a degree such that it is difficult to determine if the
element is the same element or a different element relative
to a previous version of the Ul Accordingly, in some
embodiments, the technology comprises analyzing test cases
and/or steps of test cases (e.g., using natural language
processing, machine learning, and statistical modeling) to
identify the intent of a test case and/or a step of a test case
to improve identifying if a changed clement is the same
element or a different element as in a previous version of the
Ul In some embodiments, intent is modeled by evaluating
past user interactions with a software application Ul, train-
ing a machine learning model, and updating and/or retrain-
ing the machine learning model. In some embodiments, code
describing a test case is analyzed by natural language
processing to determine the intent of the test case or a step
of the test case.

[0084] In some embodiments, a test case and/or test case
step intention model is constructed to identify elements
based on a description given by a user and associated with
a test step. In some embodiments, the test case and/or test
case step intention model assigns a score to each combina-
tion of sentence and element (e.g., each sentence-element
combination) and chooses the combination with the highest
score. See, e.g., FIG. 16.

[0085] In some embodiments, the model receives two sets
of'inputs: 1) sentences that describe an element in a software
application (e.g., a web application (e.g., a web page)) UI;

US 2024/0177007 Al

and/or 2) all elements of the software application (e.g., web
application (e.g., web page)) UL In some embodiments, the
elements are represented by a set of attributes. e.g., as
determined by analysis of code (e.g., html representation),
visual render, element context, and language as described
herein. In some embodiments, the technology comprises
transforming an element into a vector form. In some
embodiments, the technology comprises: 1) embedding the
element inputs using a neural network that embeds each
attribute, concatenating the embeddings, and reducing the
dimensionality to the same embedding dimension used in
the sentence embedding: and 2) embedding the sentence-
inputs using a neural network that embeds each word to
produce a word embedding and averaging the word embed-
ding to produce a sentence embedding. In some embodi-
ments, the neural network is initialized using natural lan-
guage processing vectors. In some embodiments, the
technology provides an unsupervised learning algorithm for
producing vector representations for words. In some
embodiments, the learning algorithm is trained using aggre-
gated global word co-occurrence statistics. In some embodi-
ments, the neural network is initialized using the Glove
vectors. See, e.g., author Pennington, et al. (2014) “GloVe:
Global Vectors for Word Representation” in Empirical
Methods in Natural Language Processing (EMNLP), pages
1532-43, incorporated herein by reference. Then, in some
embodiments, the outputs from the sentence embedding
network and the element embedding network are concat-
enated and used as inputs for a new neural network, e.g., a
network comprising hidden layers and a fully connected
layer as output. The output of this model is a score repre-
senting (e.g., quantifying) the match of the sentence embed-
ding to an element embedding. See, e.g., FIG. 16.

[0086] In some embodiments, the neural network embed-
dings are trained by collecting examples of element and
description tuples. In some embodiments, the technology
comprises use of crowdsourcing, e.g., to collect element
description tuple data through a graphical user interface. In
some embodiments, an element can be labeled by a plurality
of descriptions. For example, “the blue button” and “the
button in the top left corner” can refer to the same element.
In some embodiments, the neural network models are used
and are continuously retrained as new tuples of data become
available. All neural networks are trained using backpropa-
gation and Adam optimizer. See, e.g., Kingma (2014)
“Adam: A Method for Stochastic Optimization” arXiv:
1412.6980 [cs.LG] and version 9 thereof (2017), arXiv:
1412.6980v9 [cs.L.G], each of which is incorporated herein
by reference.

Element Definition

[0087] Embodiments of the technology provide methods
and systems for defining an element, e.g., methods compris-
ing producing an element definition and systems configured
to produce an element definition. In some embodiments, an
element definition is used to identify a target element on a
software application (e.g., a web application (e.g., a web
page)) UL e.g., using an element match score. As shown in
FIG. 4, in some embodiments, an element definition is
produced using element attributes and/or attribute values.
For example, in some embodiments, an element definition is
produced using attribute data that comprises one or more of
data describing the visual render of the element (element
render data), data describing the text (e.g., a text string) of

May 30, 2024

the element (element text data), data describing the code that
generates the element (element code data), and/or element
context data (e.g., data characterizing the elements sur-
rounding an element and the relationships between an ele-
ment and other elements on the page, including, in some
embodiments, using distributions of element attribute val-
ues). In some embodiments, an element definition is pro-
duced by weighting the contributions of one or more attri-
butes, e.g., one or more of the element render data, the
element text data, the element code data, and/or the element
context data and calculating the element definition from the
weighted attributes, e.g., the weighted element render data,
the weighted element text data, the weighted element code
data, and/or the weighted element context data. In some
embodiments, weighting an attribute comprises multiplying
a value describing the attribute (e.g., element render data,
the element text data, the element code data, and/or the
element context data0 by a coefficient and/or adding a value
to the value describing the attribute (e.g., element render
data, the element text data, the element code data, and/or the
element context data).

[0088] The technology described herein provides scoring
models for evaluating and/or quantifying each of element
render data, element text data, element code data, and/or
element context data, e.g., for producing an element defini-
tion. See, e.g., FIGS. 10, 11, 12, and 13, respectively.
[0089] For example, as shown in FIG. 10, the technology
comprises methods and systems for “element visual scor-
ing”, e.g., to provide data (e.g., a quantitative and/or quali-
tative score) describing the visual render of an element on a
software application Ul (e.g., a web application UI). In some
embodiments, the data (e.g., a quantitative and/or qualitative
score) describing the visual render of an element is provided
to methods and systems for defining an element, e.g.,
methods for producing an element definition and systems
configured to produce an element definition as described
herein. In some embodiments, methods for visual render
scoring comprise recording a screen shot of an application
UI. In some embodiments, methods for visual render scoring
comprise segmenting the screen shot image (e.g., to provide
screen shot image segments) and/or labeling the screen shot
image (e.g., to provide a labeled screen shot). In some
embodiments, methods comprise clustering screen shot
image segments to provide screen shot image segment
clusters and classifying screen shot image segment clusters
to provide one or more classes of screen shot image seg-
ments. In some embodiments,

[0090] methods comprise training an element neural net-
work using the labeled screen shot. In some embodiments,
the element neural network provides a neural network
classifier that receives elements (e.g., from screen shot
labeling) and identifies elements and/or outputs classes of
elements and/or assigns an element class to each element
and outputs each element and its assigned element class.
[0091] In some embodiments, the element visual scoring
technology for providing data describing the visual render of
an element of a software application identifies candidate
elements on the application Ul using the classes of screen
shot image segments output by the image clustering and
cluster classification steps and/or the elements and assigned
element classes output by the neural network classifier. In
some embodiments,

[0092] each candidate element is compared with a target
element definition to produce an element match score for

US 2024/0177007 Al

each element of a software application Ul based on the
match of each candidate element definition to the target
element definition describing the target element of the test
case and/or test case step. In some embodiments, comparing
each candidate element definition with a target element
definition comprises use of a comparison component and/or
other image analysis technologies. In some embodiments,
element visual scoring comprises use of computer vision. In
some embodiments, element visual scoring comprises use of
a graphical model of elements on a Ul. In some embodi-
ments, element data (e.g., candidate elements, candidate
element definitions, target element definitions, and/or ele-
ment match scores) are recorded (e.g., saved to storage
media). In some embodiments, candidate elements (e.g.,
candidate element data) are compared to element data from
previous element visual scoring of an application UI (e.g., to
recorded element data). In some embodiments, comparing
element data from previous visual scoring of an application
Ul with candidate element data (e.g., candidate element,
element definitions, target element definitions, and/or ele-
ment match scores) provide data describing element change
and/or element sameness between versions of an application
Ul In some embodiments, element data (e.g., candidate
elements, element definitions, target element definitions,
and/or element match scores), element change, and/or ele-
ment sameness are used to train an element neural net that
finds use to classify elements based on visual render data
and/or image analysis of an application screenshot.

[0093] In some embodiments, the technology provides
systems configured to perform methods for “element visual
scoring”, e.g., to provide data (e.g., a quantitative and/or
qualitative score) describing the visual render of an element
on a software application Ul (e.g., a web application UI). In
some embodiments, systems comprise one or more compo-
nents configured to perform methods for “element visual
scoring”, e.g., to provide data (e.g., a quantitative and/or
qualitative score) describing the visual render of an element
on a software application Ul (e.g., a web application UI). In
some embodiments, systems comprise one or more compo-
nents configured to perform one or more steps of methods
for “element visual scoring”, e.g., to provide data (e.g., a
quantitative and/or qualitative score) describing the visual
render of an element on a software application Ul (e.g., a
web application UI).

[0094] Further, in some embodiments (e.g., as shown in
FIG. 11), the technology comprises methods and systems for
“element language scoring”, e.g., to provide data (e.g., a
quantitative and/or qualitative score) describing the text of
an element of a software application Ul (e.g., a web appli-
cation UI). In some embodiments, the data (e.g., a quanti-
tative and/or qualitative score) describing the text of an
element is provided to methods and systems for defining an
element, e.g., methods for producing an element definition
and systems configured to produce an element definition as
described herein. In some embodiments, methods for ele-
ment language scoring comprise identifying an element on
a software Ul e.g., identifying an element comprising text.
See, e.g., FIG. 6. In some embodiments, methods for ele-
ment language scoring comprise extracting the text from an
element. In some embodiments, extracting the text from an
element comprises use of optical character recognition to
produce extracted text. In some embodiments, extracting the
text from an element comprises use of computer vision,
pattern recognition, and/or pattern matching. In some

May 30, 2024

embodiments, methods comprise vectorizing extracted text
to produce vectorized text (e.g., converting a bitmap repre-
sentation of shapes of letters and characters to a vector
representation of letters and characters). In some embodi-
ments, methods comprise labeling extracted text to produce
labeled extracted text. In some embodiments, methods com-
prise training an element neural network using labeled
extracted text. In some embodiments, the element language
scoring technology for providing data describing the text of
an element of a software application comprises a neural
network encoder that receives as inputs the vectorized text
and the output of an element neural network trained using
extracted text. In some embodiments, the neural network
encoding comprises and/or provides methods and/or sys-
tems for text embedding. See, e.g., Mikolov (2013) “Dis-
tributed Representations of Words and Phrases and their
Compositionality” arXiv: 1310.4546 [cs.CL], incorporated
herein by reference. In some embodiments, text embedding
comprises text categorization and/or text clustering. See,
e.g., Lavelli (2004) “Distributional Term Representations:
An Experimental Comparison” in Proceedings of the Thir-
teenth ACM International Conference on Information and
Knowledge Management, pages 615-24, Association for
Computing Machinery, New York, New York, incorporated
herein by reference. In some embodiments, text embedding
comprises mapping words and/or phrases to vectors of real
numbers. In some embodiments, text embedding quantifies
and/or classifies similarities between text of elements based
on co-occurring words and/or phrases (e.g., based on statis-
tical distributions of co-occurring words and/or phrases). In
some embodiments, text embedding quantifies and/or clas-
sifies similarities between text of elements based on the
context in which words and/or phrases occur (e.g., based on
statistical distributions of the context in which words and/or
phrases occur). In some embodiments, text embedding com-
prises use of locally linear embedding. See, e.g., Roweis and
Saul (2000) “Nonlinear dimensionality reduction by locally
linear embedding” Science 290: 2323-26, incorporated
herein by reference. In some embodiments, element lan-
guage scoring comprises measuring the distance between
words and/or phrases, e.g., to identify words and/or phrases
that belong to the same element and/or to identify words
and/or phrases that belong to different elements (e.g., to
assign text to elements). See, e.g., FIGS. 6-8.

[0095] In some embodiments, the element language scor-
ing technology for providing data describing the text of an
element of a software application identifies (and/or pro-
vides) text of elements on a software application UI. In some
embodiments, the text of each element is compared with the
text of a target element (e.g., according to an element
definition of the target element) to produce an element text
match score for each element of a software application Ul
based on the match of the text of each element to the target
element definition describing the target element of the test
case and/or test case step. In some embodiments, element
text data (e.g., text of elements, text embedding of elements,
element definitions, text of target elements, text embedding
of target elements, target element definitions, and/or element
text match scores) are recorded (e.g., saved to storage
media). In some embodiments, the text (e.g., text embed-
ding) of an element is compared to the text (e.g., text
embedding) of the element from previous element language
scoring of an application Ul (e.g., compared with recorded
element text data). In some embodiments, comparing ele-

US 2024/0177007 Al

ment text data from previous language scoring of an appli-
cation Ul with element text data (e.g., text of elements, text
embedding of elements, element definitions, text of target
elements, text embedding of target elements, target element
definitions, and/or element text match scores) provide data
describing element change and/or element sameness
between versions of an application Ul In some embodi-
ments, element text data (e.g., text of elements, text embed-
ding of elements, element definitions, text of target ele-
ments, text, embedding of target elements, target element
definitions, and/or element text match scores), element
change, and/or element sameness are used to train an ele-
ment neural net that finds use to classify elements based on
language (e.g., text (e.g., word and/or phrase)) data. In some
embodiments, the neural net is used to modify the param-
eters used to identify words and/or phrases that belong to the
same element and/or to identify words and/or phrases that
belong to different elements (e.g., to assign text to elements)
using distance measurements between text (e.g., words
and/or phrases).

[0096] In some embodiments, the technology provides
systems configured to perform methods for “element lan-
guage scoring”, e.g., to provide data (e.g., a quantitative
and/or qualitative score) describing the text of an element on
a software application Ul (e.g., a web application UI). In
some embodiments, systems comprise one or more compo-
nents configured to perform methods for “element language
scoring”, e.g., to provide data (e.g., a quantitative and/or
qualitative score) describing the text of an element on a
software application Ul (e.g., a web application UI). In some
embodiments, systems comprise one or more components
configured to perform one or more steps of methods for
“element language scoring”, e.g., to provide data (e.g., a
quantitative and/or qualitative score) describing the text of
an element on a software application Ul (e.g., a web
application UI).

[0097] Further, in some embodiments (e.g., as shown in
FIG. 12), the technology comprises methods and systems for
“element code scoring”, e.g., to provide data (e.g., a quan-
titative and/or qualitative score) describing the code of an
element of a software application Ul (e.g., a web application
Ul), e.g., code that produces an element of a software
application. In some embodiments, the data (e.g., a quanti-
tative and/or qualitative score) describing the code of an
element is provided to methods and systems for defining an
element, e.g., methods for producing an element definition
and systems configured to produce an element definition as
described herein. In some embodiments, the element code
scoring technology for providing data describing the code of
an element of a software application identifies (and/or
provides) code of elements on a software application Ul
(e.g., code that produces elements of a software application
UI). In some embodiments, the element code scoring tech-
nology for providing data describing the code of an element
of a software application extracts (and/or provides) the
attributes and/or attribute values of elements on a software
application Ul from each element on the application Ul In
some embodiments, attributes and/or attribute values are
extracted using text processing, pattern matching, regular
expressions, and/or string parsing. In some embodiments,
methods comprise extracting and/or assigning attribute
weights to attributes to provide weighted attributes. In some
embodiments, methods comprise comparing the weighed
attributes of each element to the weighted attributes of a

May 30, 2024

target element. In some embodiments, methods comprise
producing an element match score for each element by
comparing the weighed attributes of each element to the
weighted attributes of a target element.

[0098] Thus, in some embodiments, the element code
scoring technology for providing data describing the code of
an element of a software application extracts the attributes
and/or attribute values (e.g., weighted attributes) of elements
on a software application Ul In some embodiments, the
attributes and/or attribute values of each element are com-
pared with the attributes and/or attribute values of a target
element (e.g., according to an element definition of the target
element) to produce an element code and/or element attri-
bute match score for each element of a software application
Ul based on the match of the attributes and/or attribute
values of each element to the target element definition
describing the target element of the test case and/or test case
step. In some embodiments, element attribute data (e.g.,
attributes and/or attribute values of eclements, weighted
attributes of elements, element definitions, attributes and/or
attribute values of target elements, weighted attributes of
target elements, target element definitions, and/or element
attribute and/or element code match scores) are recorded
(e.g., saved to storage media). In some embodiments, the
attributes and/or attribute values (e.g., weighted attributes)
of an element are compared to the attributes and/or attribute
values (e.g., weighted attributes) of the element from pre-
vious element code scoring of an application Ul (e.g.,
compared with recorded element attribute data). In some
embodiments, comparing element attribute data from pre-
vious code scoring of an application Ul with element
attribute data (e.g., attributes and/or attribute values of
elements, weighted attributes of elements, element defini-
tions, attributes and/or attribute values of target elements,
weighted attributes of target elements, target element defi-
nitions, and/or element attribute and/or element code match
scores) provide data describing element change and/or ele-
ment sameness between versions of an application Ul. In
some embodiments, element code data (e.g., attributes and/
or attribute values of elements, weighted attributes of ele-
ments, element definitions, attributes and/or attribute values
of target elements, weighted attributes of target elements,
target element definitions, and/or element attribute and/or
element code match scores), element change, and/or element
sameness are used to train an element neural net that finds
use to classify elements based on code producing the ele-
ments and/or attributes and/or attribute values of elements
(e.g., weighted attributes of elements). In some embodi-
ments, the neural net is used to modify the attribute param-
eters used to identify elements using attributes and/or attri-
bute values. For instance, in some embodiments, recorded
element attribute data (e.g., attributes and/or attribute values
of elements, weighted attributes of elements, element defi-
nitions, and/or element attribute and/or element code match
scores) are used to produce an element attribute history
describing changes of element attributes and/or attribute
values between versions of a software Ul

[0099] Insome embodiments, the element attribute history
is used to calculate an element stability score describing
(e.g., quantifying) the types and/or amounts of change of an
element as a function of software Ul version. See, e.g.,
Example 1 and FIGS. 14A-14G. In some embodiments, the
technology determines a stability of element attributes. In
some embodiments, code scoring is used to determine the

US 2024/0177007 Al

values (“states”) of the attributes for a plurality of versions
of a web application. In some embodiments, the number of
times each value (“state”) is detected for each attribute is
used to produce a histogram showing a distribution for the
values that each attribute had over the plurality of versions
of the web application. Exemplary histograms are shown in
FIGS. 14A to 14G. In some embodiments, the distributions
of the values are used to predict the probability that an
attribute will have a value according to the detected states.
The histograms show the likelihood that an attribute will
have a particular value and, accordingly, show the stability
of the attribute value. An attribute that has a significant
probability of having a different value between versions of
a web application Ul has alow (e.g., 0) stability. An attribute
that has a significant probability of having the same value
between versions of a web application UI has a high (e.g.,
1) stability.

[0100] Further, in some embodiments, the standard devia-
tion of the distribution is used to determine the stability of
the attribute over versions of a web application. For
example, in some embodiments, a low standard deviation
indicates a high stability for the attribute and a high standard
deviation indicates a low stability for the attribute.

[0101] In some embodiments, the “information” provided
by an attribute or an element is determined by calculating an
information entropy (S) associated with each possible attri-
bute value (i), e.g., according to an equation in which
information is the negative logarithm of the probability mass
function for the value:

S= —ZP,vlogP,v

where P, is the probability of each attribute value i. Accord-
ingly, when an attribute has a low-probability value, the
element having the attribute provides more information than
when the attribute has a high-probability value. In some
embodiments, element attributes that are more stable are
given a higher weighting when used in producing an element
definition (e.g., as shown in FIG. 4) and/or a target element
match score. In some embodiments, elements providing
more information are given a higher weighting when deter-
mining the context of an element (e.g., as described herein
and shown in FIG. 13).

[0102] Insome embodiments, the element attribute history
is used to calculate an element class stability score describ-
ing (e.g., quantifying) the types and/or amounts of change of
an element class as a function of software Ul version. In
some embodiments, the element stability score and/or the
element class stability score is used to train a neural net-
work, e.g., to identify elements that change from one soft-
ware version to another software version and/or to identify
elements that are the same from one software version to
another software version. In some embodiments, the element
stability score and/or the element class stability score is used
to train a neural network to produce an element code and/or
element attribute match score for each element of a software
application UI based on the match of the attributes and/or
attribute values of each element to the target element defi-
nition describing the target element of the test case and/or
test case step.

[0103] In some embodiments, the technology provides
systems configured to perform methods for “element code

May 30, 2024

scoring”, e.g., to provide data (e.g., a quantitative and/or
qualitative score) describing the attributes and/or attribute
values of an element on a software application Ul (e.g., a
web application UI). In some embodiments, systems com-
prise one or more components configured to perform meth-
ods for “element code scoring”, e.g., to provide data (e.g., a
quantitative and/or qualitative score) describing the attri-
butes and/or attribute values of an element on a software
application Ul (e.g., a web application UI). In some embodi-
ments, systems comprise one or more components config-
ured to perform one or more steps of methods for “element
code scoring”, e.g., to provide data (e.g., a quantitative
and/or qualitative score) describing the attributes and/or
attribute values of an element on a software application Ul
(e.g.. a web application UI).

[0104] Further, in some embodiments (e.g., as shown in
FIG. 13), the technology comprises methods and systems for
“element context scoring”, e.g., to provide data (e.g., a
quantitative and/or qualitative score) describing the context
of an element of a software application Ul (e.g., a web
application UI), e.g., the relationship of an element to other
elements on the Ul of a software application. In some
embodiments, the data (e.g., a quantitative and/or qualitative
score) describing the context of an element is provided to
methods and systems for defining an element, e.g., methods
for producing an element definition and systems configured
to produce an element definition as described herein. In
some embodiments, methods for element context scoring
comprise providing a Ul comprising elements, e.g., provid-
ing an application page (e.g., a page of a web application)
comprising elements. In some embodiments, methods com-
prise identifying, extracting, and/or providing attributes and/
or attribute values of each element of the application UL In
some exemplary embodiments, the attributes and/or attribute
values of elements are provided by computer vision, image
analysis, text processing, and/or code analysis, e.g., as
described for element visual scoring, element language
scoring, and/or element code scoring. In some embodiments,
methods comprise producing a distribution of element attri-
bute values for the elements of the application UL In some
embodiments, the distribution of element attribute values for
the elements of the application Ul is used to calculate
information gain for the elements. That is, in some embodi-
ments, methods comprise calculating information gain for
elements of an application UI based on a distribution of
element attribute values. In some embodiments, methods
comprise identifying elements with the greatest information
on the application UL In some embodiments, methods
comprise measuring the distances between an element (e.g.,
each element) and high information elements in the local
neighborhood of the element. In some embodiments, meth-
ods comprise producing a map and/or a model of the
distances between an element (e.g., each element) and high
information elements in the local neighborhood of the
element. In some embodiments, methods comprise record-
ing a screen shot of an application UL In some embodi-
ments, methods comprise segmenting the screen shot image
(e.g., to provide screen shot image segments). In some
embodiments, methods comprise clustering screen shot
image segments to provide screen shot image segment
clusters. In some embodiments, the methods comprise pro-
ducing an image template for a screen shot image segment
and the screen shot image segments in the local neighbor-
hood (e.g., in the screen shot image segment cluster to which

US 2024/0177007 Al

the screen shot image segment belongs) of the screen shot
image segment. In some embodiments, methods comprise
producing a map and/or a model for a screen shot image
segment and the screen shot image segments in the local
neighborhood (e.g., in the screen shot image segment cluster
to which the screen shot image segment belongs) of the
screen shot image segment. In some embodiments, the map
and/or a model describes distances and/or relative spatial
relationships between a screen shot image segment and the
screen shot image segments in the local neighborhood (e.g.,
in the screen shot image segment cluster to which the screen
shot image segment belongs) of the screen shot image
segment.

[0105] In some embodiments, methods for element con-
text scoring comprise using high information elements and
the image template to produce data describing element
context, e.g., an element context score. In some embodi-
ments, methods for element context scoring comprise using:
1) the map and/or model of the distances between an element
(e.g., each element) and high information elements in the
local neighborhood of the element; and 2) the image tem-
plate for a screen shot image segment and the screen shot
image segments in the local neighborhood (e.g., in the
screen shot image segment cluster to which the screen shot
image segment belongs) of the screen shot image segment to
produce data describing element context, e.g., an element
context score. In some embodiments, methods comprise
iterating the scoring of each element with high information
elements and the image template.

[0106] In some embodiments, the element context scoring
technology for providing data describing the context of an
element of a software application provides an element
context score for elements on a software application Ul In
some embodiments, the context of each element is compared
with the context of a target element (e.g., according to an
element definition of the target element) to produce an
element context match score for each element of a software
application Ul based on the match of the context of each
element to the target element definition describing the target
element of the test case and/or test case step. In some
embodiments, element context data (e.g., context of ele-
ments, element definitions, context of target elements, target
element definitions, and/or element context match scores)
are recorded (e.g., saved to storage media). In some embodi-
ments, the context (e.g., context score) of an element is
compared to the context (e.g., context score) of the element
from previous element context scoring of an application Ul
(e.g., compared with recorded element context data). In
some embodiments, comparing element context data from
previous context scoring of an application Ul with element
context data (e.g., context of elements, element definitions,
context of target elements, target element definitions, and/or
element context match scores) provide data describing ele-
ment change and/or element sameness between versions of
an application Ul In some embodiments, element context
data (e.g., context of elements, element definitions, context
of target elements, target element definitions, and/or element
context match scores), element change, and/or element
sameness are used to train an element neural net that finds
use to classify elements based on context (e.g., element
context score, element context match score) data. In some
embodiments, the neural net is retrained to modify the

May 30, 2024

parameters used to identify high information elements and
distances for determining the local neighborhood of an
element.

[0107] In some embodiments, the technology provides
systems configured to perform methods for “element context
scoring”, e.g., to provide data (e.g., a quantitative and/or
qualitative score) describing the context of an element on a
software application Ul (e.g., a web application UI). In some
embodiments, systems comprise one or more components
configured to perform methods for “element context scor-
ing”, e.g., to provide data (e.g., a quantitative and/or quali-
tative score) describing the context of an clement on a
software application Ul (e.g., a web application UI). In some
embodiments, systems comprise one or more components
configured to perform one or more steps of methods for
“element context scoring”, e.g., to provide data (e.g., a
quantitative and/or qualitative score) describing the context
of an element on a software application Ul (e.g., a web
application UI).

[0108] As described above, the technology comprises use
of element visual scoring. element text scoring, element
code scoring, and/or element context scoring to produce an
element definition for an element and/or each element of an
application UI. The element definition is used to compare to
a target element (e.g., a target element definition) to identify
the target element on the Ul for action and/or interaction by
a step of a test case.

Monitoring Component

[0109] In some embodiments, the technology comprises a
component to monitor changes in a software application
(e.g., a web application (e.g., a web page)) Ul In some
embodiments, the monitoring component obtains and stores
screenshots of the web application while an automated test
is running. In some embodiments, screenshots are provided
to a component that analyzes the visual render and/or text of
a Ul, e.g., to identify elements and/or to assign element
attributes and/or attribute values to elements.

[0110] In some embodiments, the monitoring component
captures metadata from one or more test cases (e.g., script),
the automated testing utility, and/or the web application
while the automated test is executing. In some embodiments,
the technology provides a monitoring component that is,
e.g., an external program, a plugin for a browser, or an
extension of the automated testing utility. In some embodi-
ments, the monitoring component captures screenshots and
data produced by the automated testing utility. In some
embodiments, the monitoring component directly monitors
the application that is being tested or the environment that is
executing the application (e.g., a web browser). In some
embodiments, the monitoring component stores a picture of
a web page as a screenshot and the monitoring component
stores source code associated with the picture of the web
page that was captured as a screenshot. In some embodi-
ments, source code is provided to a component that analyzes
source code to identify elements and/or to assign element
attributes and/or attribute values to elements. In some
embodiments, style sheets and images are recorded with the
source code. In some embodiments, the monitoring compo-
nent executes with the automated testing utility to capture
screenshots during testing of a web application and to
capture metadata that describes the context in which the test
is being performed. In some embodiments, the metadata is
specific for a particular automated test (e.g., the metadata is

US 2024/0177007 Al

applicable to every screenshot taken while executing the
particular automated test (e.g., name of the test script, name
of the web application, etc.)) In some embodiments, the
metadata is specific for a step or portion of an automated test
(e.g., the metadata is applicable to one or more particular
screenshots).

[0111] Accordingly, embodiments provide a test case (e.g.,
script) that provides a series of instructions to an automated
testing utility and the automated testing utility interacts with
a software application (e.g., a web application (e.g., a web
page) UL The monitoring component captures screenshots
of'the UT of the software application while the test case (e.g.,
script) is being executed by the automated testing utility. In
some embodiments, screen captures are recorded when
defined criteria are satisfied, e.g., when certain types of steps
are identified in the test case (e.g., script), when certain types
of actions or events occur in the software application, or a
combination thereof. In some embodiments, screen captures
are recorded before they are processed by the automated
testing utility or after they are displayed in the UI of the
software application. Thus, in some embodiments, the moni-
toring component tracks an interaction before it occurs by
analyzing the test case (e.g., script) and a screen capture
occurs before the Ul changes. In some embodiments, the
monitoring component records a screen capture after a web
application responds to actions taken by a simulated user.
Screen captures are recorded relative to the monitoring
component identifying an action or event occurring in the
test case (e.g., script) and waiting for the action event to
happen in the web application (e.g., as a change in the UI).

[0112] In some embodiments, a user and/or test case (e.g.,
script) action is a click received as input by a Ul and
screenshots and associated metadata are recorded during the
click. In some embodiments, screenshots and associated
metadata are recorded during a web application event, e.g.,
a validation event, setting flags, variables, or threshold
conditions as met, the creation or deletion of a particular
element such as a DOM element, communications between
the server side web application and the client side web
application in either direction or both directions, internal
validation functions such as user input being a certain
primitive type or a certain length before forwarding the data
to a database, successfully executing a sub-routine or func-
tion such as scanning for malware, or any combination
thereof. In some embodiments, screenshots and associated
metadata are recorded during a browser event, e.g., a page
loading, completion of page loading, loading a previous
page in the browser history, loading a next page in the
browser history, opening a new page in a new browser,
opening a new page in a new tab, saving a page, printing a
page, opening a print preview screen, changing the size of
text in a web browser, or any combination thereof. In some
embodiments, page loading is evaluated and/or determined
to be complete using machine learning and/or a statistical
model of page loading time as described herein.

[0113] In some embodiments, the monitoring component
records emails or printed documents as they are sent during
an automated test. In some embodiments, the monitoring
component records screenshots that are not part of the Ul of
a software application, e.g., a confirmation message, noti-
fication (e.g., an SMS message, a message sent through
social media, or other messaging services known in the art)
and/or communications that result from interactions with
other external software (e.g., web) applications, such as a

May 30, 2024

software application that uses an external authentication
mechanism or emails sent through third party software as
part of the software application. In some embodiments,
screenshots are recorded and stored, and analysis of the
screenshots is used to construct a statistical model. In
addition to recording screenshots, the monitoring compo-
nent records metadata associated with the screenshots cap-
tured. In some embodiments, metadata (e.g., the interaction
that caused the screenshot to be captured, the location and
dimensions of an element that is clicked on a page, the URL
of'a page that received the click, and the type of user that has
accessed the page being clicked) are captured while a
screenshot is recorded during an automated test. In some
embodiments, metadata include the URL of a webpage that
was used to generate the screenshot, the current user, user
email, user type (e.g., basic, pro, returning customer, having
specific permissions), an account number, user country, user
IP address, number of screenshots recorded during a test, the
step within a test case (e.g., script) corresponding to the
screenshot, or any flags applied to the page. In some
embodiments, metadata include, e.g., the name of the test
case (e.g., script) or automated test, when the test case (e.g.,
script) was last updated, the time of the current test, the
scripter of the test case (e.g., script) or automated test, the
actual or simulated GPS location of a device accessing the
web application being tested, time of day during the access,
or any combination thereof.

Computer Vision

[0114] In some embodiments, the technology comprises
use of computer vision to analyze a software application
(e.g., a web application (e.g., a web application Ul (e.g., a
screen shot of a web application UI))). In some embodi-
ments, computer vision provides data describing the visual
render of a UI and/or one or more elements on a software
application (e.g., web application) Ul. In some embodi-
ments, computer vision provides data describing the text
(e.g., a text string) of an element (element text data), e.g., by
the use of computer vision and optical character recognition
(OCR). In some embodiments, computer vision provides
data describing the layout of a page, e.g., data characterizing
the elements surrounding an element and the relationships
between an element and other elements on the page (element
context data).

[0115] In some embodiments, the technology comprises
using computer vision to acquire, process, analyze, and
understand digital images (e.g., to understand the visual
render of a Ul, elements of a Ul, and/or to assign attributes
and/or attribute values to elements of a UT). As used herein,
the term “understanding” refers to transforming visual
images into a description of the image that is stored in a
database, data structure (e.g., a statistical model), and/or
used by subsequent analysis. In some embodiments, element
attributes and/or attribute values are determined and stored
in a database, data structure (e.g., a statistical model), and/or
used for subsequent analysis, e.g., to produce an element
definition and/or an element match score.

[0116] In some embodiments, understanding comprises
producing information from image data using models based
on geometry, physics, statistics, and learning theory. In some
embodiments, computer vision is used to determine the
presence or absence of an element in a web application UI,
determine the size and/or location of an element in a web
application U, and/or determine other attributes and/or

US 2024/0177007 Al

attribute values of an element in a web application Ul In
some embodiments, computer vision recognizes (e.g., iden-
tifies) elements and classifies elements, e.g., based on attri-
butes and/or attribute values determined by computer vision
analysis of the web application Ul In some embodiments,
computer vision comprises use of technologies for produc-
ing convolutional neural networks. In some embodiments,
computer vision comprises identifying changes in the attri-
butes and/or attribute values of elements for multiple ver-
sions (e.g., 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, 100, or more versions) of a web application UI.

[0117] In some embodiments, the technology verifies and/
or validates a software application (e.g., a web application
(e.g., a web page)) Ul using computer vision. In some
embodiments, a document template validation (DTV) tech-
nology comprises a text box detection (TBD) component, a
character recognition (OCR) component, an element detec-
tion (ED) component, a layout detection (LD) component,
and/or a template verification (TV) component (see, e.g.,
FIG. 5). In some embodiments, the technology provides a
method comprising steps that perform document template
validation (DTV), e.g., a method comprising detecting a text
box, recognizing characters (e.g., text characters), detecting
an element, detecting a layout, and/or a verifying a template.
In some embodiments, the technology provides a system
comprising modules and/or components configured to per-
form text box detection, character recognition (e.g., optical
character recognition), element detection, layout detection,
and/or template verification. See, e.g., FIG. 5. In some
embodiments, text attributes and/or attribute values are
assigned to an element. In some embodiments, text attributes
and/or attribute values are provided to a method and/or a
component of a system for producing an element definition
and/or an element match score as described herein.

[0118] In some embodiments, components of system
embodiments interact (e.g., communicate, transmit data and/
or instructions) according to a system architecture, e.g., as
shown in FIG. 5. For example, in some embodiments, the
TBD component interacts with the LD component and/or the
OCR component; the ED component interacts with the LD
component; and the OCR component and/or the LD com-
ponent interact with the TV component. In some embodi-
ments, the communication flow is unidirectional, e.g., as
shown in FIG. 5. For example, in some embodiments, data
and/or instructions are communicated from the TBD com-
ponent to the LD component and/or the OCR component;
data and/or instructions are communicated from the ED
component to the LD component; and data and/or instruc-
tions are communicated from the OCR component and/or
the LD component to the TV component. In some embodi-
ments, data and/or instructions move bidirectionally among
these components according to the system architecture
described herein. In some embodiments, each component
(e.g., a text box detection (TBD) component, a character
recognition (OCR) component, an element detection (ED)
component, a layout detection (LLD) component, and/or a
template verification (TV) component) in configured to
provide and/or to receive information and/or data from
another component according to the system architecture. In
some embodiments, the system architecture outputs text
attributes and/or attribute values that are used as input into

May 30, 2024

a method and/or system component for producing an ele-
ment definition as described herein and/or an element match
score as described herein.

[0119] In some embodiments, each module is configured
to perform machine learning and/or deep learning to perform
its function. For example, in some embodiments, a docu-
ment template validation (DTV) technology comprises a text
box detection (TBD) component configured to perform a
method comprising detecting a text box using machine
learning and/or deep learning, a character recognition
(OCR) component configured to perform a method com-
prising recognizing characters using machine learning and/
or deep learning, an element detection (ED) component
configured to perform a method comprising detecting an
element using machine learning and/or deep learning, a
layout detection (LLD) component configured to perform a
method comprising detecting a layout using machine learn-
ing and/or deep learning, and/or a template verification (TV)
component configured to perform a method comprising
verifying a template using machine learning and/or deep
learning.

[0120] In some embodiments, the technology provides
systems and methods for detecting a text box on a software
application (e.g., a web application (e.g., a web page))
application Ul. In some embodiments, detecting a text box
comprises identifying the location and/or dimensions of a
text box on a web application Ul. In some embodiments,
detecting a text box comprises producing values describing
the location (e.g., in X-y screen coordinates and/or in X-y
coordinates relative to a window or element comprising the
text box) and/or dimensions (e.g., as a height and width) of
a text box on a web application Ul. In some embodiments,
a text box and/or values describing the location and dimen-
sions of a text box on a web application Ul is/are passed to
a character recognition module.

[0121] In some embodiments, detecting a text box com-
prises providing and/or using a neural network to detect text
in an image (e.g., a screen image). In some embodiments, a
component configured to detect text is configured to use a
neural network to detect text in an image (e.g., a screen
image). See, e.g., FIG. 6. In some embodiments, the tech-
nology provided herein comprises a neural network as
described in Baek (2019) “Character Region Awareness for
Text Detection” arXiv:1904.01941 [cs.CV], incorporated
herein by reference. In some embodiments, the neural net-
work comprises an architecture as shown in Baek at FIG. 2
therein, incorporated herein by reference. In some embodi-
ments, the neural network comprises a central convolutional
architecture based on VGG-16 with batch normalization
(see, e.g., Simonyan (2018) “Very Deep Convolutional
Networks for Large-Scale Image Recognition” arXiv: 1409.
1556 [cs.CV], incorporated herein by reference). In some
embodiments, the neural network comprises skip connec-
tions (e.g., a decoding component of the neural network
comprises skip connections). In some embodiments, the skip
connections are similar to U-net (see, e.g., Ronneberger
(2015) “U-Net: Convolutional Networks for Biomedical
Image Segmentation” arXiv:1505.04597 [cs.CV], incorpo-
rated herein by reference). In some embodiments, methods
and/or systems for text box detection (e.g., comprising a
neural network) produce an output comprising two channels
as score maps: 1) a region score used to localize individual
characters in the image; and 2) an affinity score used to
group each character into a single instance (e.g., into a

US 2024/0177007 Al

character string (e.g., a character string comprising a word
or a phrase)). In some embodiments, a character string is a
text attribute provided to a method and/or a system compo-
nent for producing an element definition and/or an element
match score as described herein.

[0122] In some embodiments, the technology provides
methods and systems for detecting an element on a software
application (e.g., a web application (e.g., a web page)) Ul
In some embodiments, methods for detecting an element on
a software application (e.g., a web application (e.g., a web
page)) Ul comprises grouping text boxes and detecting
objects that are not in the text category (e.g., detecting
non-text category objects (e.g., buttons, input boxes, icons,
etc.)) In some embodiments, systems for detecting an ele-
ment on a software application (e.g., a web application (e.g.,
a web page)) Ul comprise a component configured to group
text boxes and a component configured to detect objects that
are not in the text category (e.g., detect non-text category
objects (e.g., buttons, input boxes, icons, etc.)). In some
embodiments, methods for element detection comprise
detecting text boxes and/or elements comprising grouped
text boxes. In some embodiments, methods for element
detection comprise detecting objects (e.g., non-text box
objects). In some embodiments, systems for element detec-
tion comprise a component configured to detect text boxes
and/or elements comprising grouped text boxes. In some
embodiments, systems for element detection comprise a
component configured to detect objects (e.g., non-text box
objects).

[0123] In some embodiments, detecting an element com-
prises identifying the location and/or dimensions of an
element on a software application (e.g., a web application
(e.g., a web page)) U], e.g., by analysis of the visual render
of a Ul to identify elements on the Ul and/or to identify
attributes and/or attribute values of elements on the Ul In
some embodiments, detecting an element comprises produc-
ing values describing the location (e.g., in X-y screen coor-
dinates and/or in x-y coordinates relative to a window or
element comprising the element) and/or dimensions (e.g., as
a height and width) of an element on a software application
(e.g., a web application (e.g., a web page)) Ul In some
embodiments, an element and/or values describing the loca-
tion and dimensions of an element on a software application
(e.g., a web application (e.g., a web page)) Ul is/are passed
to a character recognition module.

[0124] In some embodiments, an element of the Ul com-
prises grouped text boxes. In some embodiments, the tech-
nology represents a text box by a vector u=(x, y, w, h), where
x and y represent the pixel position in the document screen-
shot or viewport and w and h represent the width and height
of the box. In some embodiments, a distance between text
boxes is determined. In some embodiments, a distance
between text boxes is determined using a method perform by
a function encoded in software. In some embodiments, a
distance between text boxes is determined using a function
encoded as follows:

def block_distance (u, v):
if u[0] > v[0]:
dx = u[0] - (v[0]+v[2])
else:
dx = v[0] = (u[0] + u[2])
ifull] >v[1]:
dy = uf1] - (v[1] +v[3])

May 30, 2024

-continued

else:
dy = v[1] - ([1] + u[3])
dx = 0 if dx <0 else dx
dy =0 if dy <0 else dy
return np.fabs (dx) + np.fabs (dy)

where in this function u and v are two vectors whose
elements are defined as u=(x, y, w, h). In some embodiments,
the distance between text boxes is provided to a method for
density-based clustering that groups text boxes and outputs
clusters of text boxes (see, e.g., FIG. 7 and FIG. 8). In some
embodiments, the density-based clustering that groups text
boxes produces clusters of text boxes, e.g., to identify an
element and/or to identify text attributes and/or attribute
values to assign to an element.

[0125] In some embodiments, the technology provides
methods and systems for detecting an object on a web
application Ul See, e.g., FIG. 9. In some embodiments, a
method for element detection comprises a step of object
detection. In some embodiments, methods and systems for
element and/or object detection comprise analysis of the
visual render of a Ul. In some embodiments, detecting an
object comprises identifying the location and/or dimensions
of'an object on a software application (e.g., web application
(e.g., web page)) Ul In some embodiments, detecting an
object comprises producing values describing the location
(e.g., in X-y screen coordinates and/or in x-y coordinates
relative to a window or element comprising the object)
and/or dimensions (e.g., as a height and width) of an object
on a software application (e.g., web application (e.g., web
page)) UL In some embodiments, an object and/or values
describing the location and dimensions of an object on a
software application (e.g., web application (e.g., web page))
Ul is/are passed to a character recognition module. In some
embodiments, an object, and/or values describing the loca-
tion and dimensions of an object on a software application
(e.g., web application (e.g., web page)) Ul is/are passed to
a module for determining element context as described
herein (e.g., a combination statistical model as described
herein).

[0126] In some embodiments, a system comprising a
component configured to detect an element comprises a
sub-component configured to detect an object. In some
embodiments, methods for detecting an object on a software
application (e.g., web application (e.g., web page) Ul com-
prises providing and/or using a YOLO neural network. In
some embodiments, systems for detecting an object on a
web application UI comprises a YOLO neural network (see,
e.g., Redmon (2015) “You Only Look Once: Unified, Real-
Time Object Detection” arXiv:1506.02640 [cs.CV]; Red-
mon (2016) “YOLO9000: Better, Faster, Stronger” arXiv:
1612.08242 [cs.CV]; and Redmon (2018) “YOLOvV3: An
Incremental Improvement” arXiv: 1804.02767 [cs.CV],
each of which is incorporated herein by reference). In some
embodiments, the neural network is trained to identify
non-text objects, e.g., icons, buttons, and/or square input
boxes. In some embodiments, the neural network comprises
an icon classifier trained with a dataset of icons. In some
embodiments, the icon classifier identifies and/or classifies
an icon as a cart icon, arrow icon, open file icon, save file
icon, login icon, checked icon, bullet icon, and/or close icon.

US 2024/0177007 Al

Code Analysis

[0127] In some embodiments, the technology comprises
analyzing computer software (e.g., source code and/or
object code associated with a software application (e.g., web
application (e.g., web page))). In some embodiments, the
technology comprises analyzing source code and/or object
code without running the web application. In some embodi-
ments, the technology comprises analyzing source code
and/or object code while the web application is running. In
some embodiments, natural language processing is used to
analyze source and/or object code to identify and associate
actions with interface elements (e.g., identified by computer
vision and/or by analysis of source code). In some embodi-
ments, the code produces an element on a software appli-
cation (e.g., a web application (e.g., web page)) UL In some
embodiments, code analysis produces element code data that
is used to produce an element definition. In some embodi-
ments, producing an element definition comprises using
element code data produced by and/or acquired from ana-
lyzing code. In some embodiments, producing an element
definition comprises using element code data produced by
and/or acquired from a component configured to analyze
code. In some embodiments, code analysis is used to deter-
mine element attributes and/or attribute values and assign
element attributes and/or attribute values to an element. In
some embodiments, element attributes and/or attribute val-
ues determined using code analysis are provided to a method
and/or a system component for producing an element defi-
nition and/or an element match score using the element
attributes and/or attribute values.

Classifiers and Models

[0128] In some embodiments, data (e.g., element attri-
butes and/or attribute values, statistical values and/or param-
eters calculated from element attribute values, and/or char-
acteristics of distributions of element attribute values) are
analyzed by algorithms that recognize patterns and regulari-
ties in data, e.g., using artificial intelligence, pattern recog-
nition, machine learning, statistical inference, neural nets,
etc. In some embodiments, pattern recognition systems are
trained using known training data (e.g., using supervised
learning) and in some embodiments algorithms are used to
discover previously unknown patterns (e.g., unsupervised
learning). See, e.g., Duda, et al. (2001) Pattern classification
(2nd edition), Wiley, New York; Bishop (2006) Pattern
Recognition and Machine Learning, Springer, each of which
is incorporated herein by reference.

[0129] In some embodiments, the technology comprises a
classifier based on a statistical model. In some embodiments,
the technology comprises use of a generative model. In some
embodiments, the technology comprises use of a discrimi-
native model. In some embodiments, the technology com-
prises use of a linear combination of a generative and a
discriminative model. See, e.g., FIG. 1. In some embodi-
ments, methods and systems for determining element con-
text comprises using a statistical model. In some embodi-
ments, determining element context comprises use of a
generative model. In some embodiments, determining ele-
ment context comprises use of a discriminative model. In
some embodiments, determining element context comprises
use of a linear combination of a generative and a discrimi-
native model. See, e.g., FIG. 1. In some embodiments, the

May 30, 2024

element context is used as an input into a method and/or a
system component for producing an element definition and/
or an element match score.

[0130] In some embodiments, the technology provides a
system comprising a classifier component, e.g., configured
to assign element attributes and/or attribute values to ele-
ments and/or to assign element context attributes and/or
attribute values to elements (e.g., to determine distributions
of attribute values, spatial relationships among elements,
etc.) In some embodiments, the classifier component com-
prises a machine learning component (e.g., a neural net) that
is trained to identify elements, identify element attributes
and/or attribute values, assign element attributes and/or
attribute values to elements, determine the context of an
element (e.g., determine the neighbors of an element, deter-
mine distributions of attribute values, determine relative
spatial relationships among elements, etc.)

[0131] In some embodiments, determining element con-
text comprises use of a classifier that is implemented as a
linear classifier (e.g., linear support vector machine classi-
fier, least squares classifier, perceptron classifier, linear
regression classifier, logistic regression classifier, naive
Bayes classifier, linear discriminant analysis (LDA) classi-
fier, etc.), a nonlinear classifier (e.g., nonlinear support
vector machine classifier, neural network classifier, etc.), a
kernel classifier, a decision tree classifier, and/or other
suitable type of classifier. In some embodiments, determin-
ing element context comprises use of a classifier component
comprising and/or configured to perform one or more
machine learning techniques (e.g., supervised, semi-super-
vised, unsupervised, and/or combination thereof) based on
probabilistic and/or statistical-based models including, for
example: generative models (e.g., Hidden Markov Model
(HMM), naive Bayes. probabilistic context free grammars,
etc.), discriminative models (e.g., support vector machine,
conditional random fields, decision trees, neural networks,
linear regression, and the like), and/or a combination
thereof.

[0132] A generative model is a statistical model of the
joint probability distribution P(X,Y) given an observable
variable X (e.g., a data set) and a target variable Y (e.g., one
or more classes). Exemplary generative models include, e.g.,
mixture models (e.g., Gaussian mixture models), hidden
Markov models, probabilistic context-free grammars,
Bayesian networks (e.g., naive Bayesian networks, autore-
gressive models), averaged one-dependence estimators,
Latent Dirichlet allocation models, Boltzmann machines
(e.g. restricted Boltzmann machines, deep belief networks),
variational autoencoders, generative adversarial networks,
and/or a flow-based generative models. In some embodi-
ments, the technology comprises a classifier based on a
generative model, e.g., a generative classifier. Exemplary
generative classifiers include, e.g., a naive Bayes classifier
and linear discriminant analysis.

[0133] A discriminative model is a model of the condi-
tional probability of the target variable Y (e.g., class), given
an observation X (e.g., a measurement (e.g., datum)), e.g.,
P(Y1X)=x. Exemplary discriminative models include, e.g.,
k-nearest neighbors algorithm models, logistic regression
models, support vector machines, maximum-entropy
Markov models, conditional random fields, and/or neural
networks. In some embodiments, the technology comprises
a classifier based on a discriminative model, e.g., a discrimi-
native classifier. Exemplary discriminative classifiers

US 2024/0177007 Al

include, e.g., classifiers based on logistic regression and
non-model classifiers (e.g., perceptron. support vector
machine, etc.) See, e.g., Jebara (2004) Machine Learning:
Discriminative and Generative. The Springer International
Series in Engineering and Computer Science (Springer US),
incorporated herein by reference.

[0134] Accordingly, in some embodiments, the technol-
ogy provides determining element context using a discrimi-
native classifier that comprises data and operations for that
data to distinguish between two or more classes or classi-
fications (e.g., the classifier receives data as an input and
assigns a class to data as an output). In some embodiments,
the technology provides a generative classifier that assigns
classes to data using a probabilistic or statistical distribution
of input data and assignments of classes to the data (e.g., the
classifier generates sample data that is a member of a class).
In some embodiments, a discriminative classifier determines
to which class a sample (or input data or collection of data)
belongs by modeling the differences between and/or among
the classes and a generative classifier provides a description
or approximation of members of classes. Thus, a generative
model defines (or approximates with a statistical probability)
data-class relationships and a discriminative classifier
describes differences between two or more classes that are
used to sort data into classes.

Comparison Component

[0135] In some embodiments, the technology comprises a
comparison component. In some embodiments, the compari-
son component accepts as input a first graphical model and
a second graphical model and generates as output a graphi-
cal model difference model. The graphical model difference
model comprises element difference entries that identify
elements having attributes and/or attribute values that have
changed from the first graphical model and the second
graphical model. In some embodiments, the graphical model
difference model comprises element sameness entries that
identify elements having attributes and/or attribute values
that have not changed from the first graphical model and the
second graphical model. Accordingly, in some embodi-
ments, the graphical model difference model comprises
entries that identify elements having some attributes and/or
attribute values that have changed from the first graphical
model and the second graphical model and having some
attributes and/or attribute values that have not changed from
the first graphical model and the second graphical model. In
some embodiments, a plurality of graphical models describ-
ing a plurality of versions of a web application Ul are
compared and differences are identified. In some embodi-
ments, probabilistic models (e.g., hidden Markov models)
are used to assign probabilities of changes for elements
and/or regions of a screen based on the comparisons of the
plurality of graphical models.

[0136] Accordingly, in some embodiments, the technol-
ogy comprises a graphical modeling component configured
to produce a graphical model; and a graphical model com-
parison component. In some embodiments, the graphical
modeling component accepts a web application (e.g., com-
prising a Ul) having a version N (e.g., “application vN*) and
creates a vN graphical model. In some embodiments, the
graphical modeling component accepts a web application
(e.g., comprising a Ul) having a version N+1 (e.g., “appli-
cation VN+1”) and creates a vN+1 graphical model. In some
embodiments, the graphical model comparison component

May 30, 2024

accepts the vN graphical model and the vN+1 graphical
model to produce a graphical model difference model. In
some embodiments, The vN graphical model is a model of
a first version of a web application and the vN+1 graphical
model is a model of a subsequent version of the web
application.

[0137] In some embodiments, the graphical modeling
component accepts a plurality of versions of a web appli-
cation (e.g., comprising a Ul) having version numbers N,
N+1,...,N+X (e.g., “application vN”, “application vN+17,
..., “application vN+X”) and creates a vN graphical model,
a vN+1 graphical model, . . ., and a vN+X graphical model.
In some embodiments, the graphical model comparison
component accepts the vN graphical model, the vN+1
graphical model, . . . , and the vN+X graphical model to
produce a graphical model difference model.

[0138] In some embodiments, a probabilistic model is
used to analyze the graphical model difference model to
identify elements in a Ul. In some embodiments, a proba-
bilistic model is used to analyze the graphical model differ-
ence model to identify regions of a screen, page, window,
and/or parent element. In some embodiments, a probabilistic
model is used to analyze the graphical model difference
model to score elements according to their probability of
being a target element for a test case. In some embodiments,
a probabilistic model is used to analyze the graphical model
difference model to rank regions of a screen, page, window,
and/or parent element that have a high probability of com-
prising a target element for a test case. In some embodi-
ments, the ranked list of elements is used to provide output
to a user of elements that are likely to be target element of
atest case. In some embodiments, the ranked list of elements
is used to identify elements that are target elements and, in
some embodiments, the ranged list is used to identify
problems in a test case and/or software failures.

[0139] In some embodiments, the technology comprises
producing an element definition model that describes the
attributes and/or attribute values (e.g., element render data,
the element text data, the element code data, and/or the
element context data) of elements on a web application Ul.
In some embodiments, the technology comprises producing
a plurality of element definition models (e.g., a first element
definition model, a second element definition model, . . .) for
a plurality of versions of a web application Ul (e.g., a first
version, a second version, . . .). In some embodiments, the
comparison component accepts as input a first element
definition model and a second element definition model and
generates as output an element definition model difference
model. The element definition model difference model com-
prises element definition difference entries that identify
elements having element definitions that have changed from
the first element definition model and the second element
definition model. In some embodiments, the element defi-
nition model difference model comprises element definition
sameness entries that identify elements having element
definitions that have not changed from the first element
definition model and the second element definition model.
Accordingly, in some embodiments, the element definition
model difference model comprises entries that identify ele-
ments having element definitions that have changed from the
first element definition model and the second element defi-
nition model and having some element definitions that have
not changed from the first element definition model and the
second element definition model. In some embodiments, a

US 2024/0177007 Al

plurality of element definition models describing a plurality
of versions of a web application Ul are compared and
differences are identified. In some embodiments, probabi-
listic models (e.g., hidden Markov models) are used to
assign probabilities of changes for elements and/or regions
of a screen based on the comparisons of the plurality of
element definition models.

[0140] Accordingly, in some embodiments, the technol-
ogy comprises an element definition modeling component
configured to produce an element definition model; and an
element definition model comparison component. In some
embodiments, the element definition modeling component
accepts a web application (e.g., comprising a UI) having a
version N (e.g., “application vN”’) and creates a vN element
definition model. In some embodiments, the element defi-
nition modeling component accepts a web application (e.g.,
comprising a Ul) having a version N+1 (e.g., “application
vN+1”) and creates a vN+1 element definition model. In
some embodiments, the element definition model compari-
son component accepts the vN element definition model and
the vN+1 element definition model to produce an element
definition model difference model. In some embodiments.
The vN element definition model is a model of a first version
of'a web application and the vN+1 element definition model
is a model of a subsequent version of the web application.
[0141] In some embodiments, the element definition mod-
eling component accepts a plurality of versions of a web
application (e.g., comprising a UI) having version numbers

N, N+1, . . ., N+X (e.g., “application vN”, “application
vN+17, ..., “application vN+X”) and creates a vN element
definition model, a vN+1 element definition model, . . ., and

a vN+X element definition model. In some embodiments,
the element definition model comparison component accepts
the vN element definition model, the vN+1 element defini-
tion model, . . ., and the vN+X element definition model to
produce an element definition model difference model.
[0142] In some embodiments, a probabilistic model is
used to analyze the element definition model difference
model to identify elements of the web application. In some
embodiments, a probabilistic model is used to analyze the
element definition model difference model to identify
regions of a screen, page, window, and/or parent element of
the web application. In some embodiments, a probabilistic
model is used to analyze the element definition model
difference model to rank elements according to their prob-
ability of being a target element of a test case or a step of a
test case. In some embodiments, a probabilistic model is
used to analyze the element definition model difference
model to rank regions of a screen, page, window, and/or
parent element that have a high probability of comprising a
target element of a test case or a step of a test case. In some
embodiments, the ranked list of elements is used to provide
output to a user of the likelihood of an element being a target
element for a test case or a step of a test case. In some
embodiments, the ranked list of elements is used to identify
target elements and/or to identify problems in a test case
and/or software failures.

[0143] In some embodiments, comparison is performed
using a probabilistic model to identity differences between
versions of a web application Ul (e.g., by identifying dif-
ferences between models (e.g., graphical and/or element
definition models describing versions of a Ul)). In some
embodiments, the comparison component is configured to
provide and/or evaluate a probabilistic model, accept inputs

May 30, 2024

for the probabilistic model, and/or produce outputs from the
probabilistic model. In some embodiments, the probabilistic
model is a statistical model comprising statistical assump-
tions, mathematical relationships between pairs of variables,
rules, and/or weights associated with data and/or mathemati-
cal relationships and/or assumptions. In some embodiments,
the probabilistic model is a statistical model that receives as
inputs statistical assumptions, mathematical relationships
between pairs of variables, rules, and/or weights associated
with data and/or mathematical relationships and/or assump-
tions. In some embodiments, the probabilistic model is a
statistical model that identifies and/or produces statistical
assumptions, mathematical relationships between pairs of
variables, rules, and/or weights associated with data and/or
mathematical relationships and/or assumptions by receiving
training set data, producing models characterizing the train-
ing set data, and evaluating the models characterizing the
training set data. In some embodiments, the probabilistic
model outputs a probability that an element is a target
element. In some embodiments, the probabilistic model is a
hidden Markov model (e.g., the model assumes the model
describes a Markov system). See, e.g., Baum (1966) “Sta-
tistical Inference for Probabilistic Functions of Finite State
Markov Chains” The Annals of Mathematical Statistics 37:
1554-63: Baum (1967) “An inequality with applications to
statistical estimation for probabilistic functions of Markov
processes and to a model for ecology” Bulletin of the
American Mathematical Society 73: 360: Baum, (1968)
“Growth transformations for functions on manifolds”
Pacific Journal of Mathematics 27: 211-27: Baum (1970) “A
Maximization Technique Occurring in the Statistical Analy-
sis of Probabilistic Functions of Markov Chains” The
Annals of Mathematical Statistics 41: 164-71: and Baum
(1972) “An Inequality and Associated Maximization Tech-
nique in Statistical Estimation of Probabilistic Functions of
a Markov Process” Inequalities 3: 1-8. each of which is
incorporated herein by reference. In some embodiments, the
probabilistic model comprises use of conditional random
fields. In some embodiments, the probabilistic model com-
prises use of Markov random fields. See, e.g., Kindermann
(1980) Markov Random Fields and Their Applications,
Contemporary Mathematics, 1. American Mathematical
Society, Providence, R.1.; Li (2009) Markov Random Field
Modeling in Image Analysis, Springer, 3rd ed, (editor
Sameer Singh): and Lauritzen (1996) Graphical models,
Oxford, Clarendon Press, page 33 et seq., each of which is
incorporated herein by reference.

Hardware

[0144] In some embodiments, the technology provided
herein is implemented by one or more special-purpose
computing devices. In some embodiments, the special-
purpose computing devices are hard wired to perform
embodiments of the technology and, in some embodiments,
hardware comprises digital electronic devices such as one or
more application-specific integrated circuits (ASICs) or field
programmable gate arrays (FPGAs) that are persistently
programmed to perform embodiments of the technology. In
some embodiments, hardware comprises one or more gen-
eral purpose hardware processors programmed to perform
embodiments of the technology based on program instruc-
tions in firmware, memory, other storage, or a combination.
In some embodiments, special-purpose computing devices
comprise custom hard-wired logic, ASICs, and/or FPGAs

US 2024/0177007 Al

and use of custom programming to accomplish embodi-
ments of the technology. In some embodiments, special-
purpose computing devices are, e.g., desktop computer
systems, portable computer systems, handheld devices, net-
working devices, or any other device that incorporates
hard-wired and/or program logic to implement the tech-
niques.

[0145] In some embodiments, the technology comprises
use of a computer system. In some embodiments, a com-
puter system comprises a bus or other component configured
to communicate information and a hardware processor
coupled with the bus for processing information. In some
embodiments, the hardware processor is a general-purpose
microprocessor. In some embodiments, the computer system
comprises a main memory, such as a random access memory
(RAM) or other dynamic storage device, coupled to the bus
for storing information and instructions to be executed by
the processor. In some embodiments, the main memory is
used for storing temporary variables or other intermediate
information during execution of instructions to be executed
by the processor. In some embodiments, instructions (e.g.,
stored in non-transitory storage media accessible to the
processor) are provided to a computer system to provide a
special-purpose machine that is customized to perform the
operations specified in the instructions. In some embodi-
ments, the computer system comprises a read only memory
or other static storage device coupled to the bus for storing
static information and instructions for the processor. In some
embodiments, a storage device, such as a magnetic disk,
optical disk, or solid-state drive, is provided and coupled to
the bus for storing information and instructions. In some
embodiments, the computer system is coupled by the bus to
a display, such as a cathode ray tube (CRT), liquid crystal
display (LCD), or other display technology known in the art,
for displaying information to a computer user. In some
embodiments, an input device (e.g., including alphanumeric
and other keys) is coupled to the bus for communicating
information and command selections to the processor. In
some embodiments, other types of user input devices that
find use for cursor control include, e.g., a mouse, a trackball,
or cursor direction keys for communicating direction infor-
mation and command selections to the processor and for
controlling cursor movement on the display. Input devices
typically have two degrees of freedom in two axes, a first
axis (e.g., x) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0146] Insome embodiments, the computer system imple-
ments embodiments of the technology described herein
using customized hard-wired logic, one or more ASICs or
FPGAs, firmware, and/or program logic that, in combination
with the computer system, causes or programs the computer
system to be a special-purpose machine. In some embodi-
ments, methods described herein are performed by a com-
puter system in response to a processor executing one or
more sequences of one or more instructions contained in
main memory. In some embodiments, instructions are read
into main memory from another storage medium, such as a
storage device. In some embodiments, execution of the
sequences of instructions contained in main memory causes
a processor to perform the process steps described herein. In
some embodiments, hard-wired circuitry is used in place of
or in combination with software instructions.

[0147] As used herein, the term “storage media” refers to
any non-transitory media that store data and/or instructions

May 30, 2024

that cause a machine to operate in a specific fashion. Such
storage media may include non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, stor-
age devices (e.g., optical disks, magnetic disks, or solid-state
drives). Volatile media includes dynamic memory, such as
main memory. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid-state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, or any other memory chip or cartridge. Storage
media is distinct from but may be used in conjunction with
transmission media. Transmission media participates in
transferring information between storage media. For
example, transmission media includes coaxial cables, cop-
per wire and fiber optics, including the wires that include a
bus. Transmission media can also take the form of acoustic
or light waves, such as those generated during radio-wave
(e.g., IEEE 802.11) and infra-red data communications.
Transmission media also includes the Internet, WAN, and
LAN.

[0148] In some embodiments, various forms of media
carry one or more sequences of one or more instructions to
a processor for execution. For example, the instructions may
initially be carried on a magnetic disk or solid-state drive of
a remote computer. The remote computer can load the
instructions into its dynamic memory and send the instruc-
tions over a transmission medium. A local computer system
can receive the data on the transmission medium and appro-
priate circuitry can place the data on a bus. The bus carries
the data to main memory, from which a processor retrieves
and executes the instructions. The instructions received by
main memory may optionally be stored on a storage device
either before or after execution by the processor. In some
embodiments, a computer system comprises a communica-
tion interface coupled to the bus. In some embodiments, a
communication interface provides a two-way data commu-
nication coupling to a network link that is connected to a
local network. For example, a communication interface may
be an integrated services digital network (ISDN) card, cable
modem, satellite modem, ethernet card, wireless radio, or a
modem to provide a data communication connection to a
corresponding type of telephone line. As another example, a
communication interface may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any such implementation, the communication interface
sends and receives electrical, electromagnetic, or optical
signals that carry digital data streams representing various
types of information.

[0149] In some embodiments, a network link provides
data communication through one or more networks to other
data devices. For example, a network link may provide a
connection through a local network to a host computer or to
data equipment operated by an Internet Service Provider
(ISP). An ISP in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet”. A local network
and the Internet both use electrical, electromagnetic, or
optical signals that carry digital data streams. The signals
through the various networks and the signals on the network

US 2024/0177007 Al

link and through the communication interface, which carry
the digital data to and from a computer system, are example
forms of transmission media.

[0150] In some embodiments, the computer system sends
messages and receives data, including program code,
through the network(s), network link, and communication
interfaces. For example, a server can transmit a requested
code for an application program through the Internet, ISP,
local network, and communication interface. In some
embodiments, the received code is executed by a processor
as it is received and/or stored in a storage device or other
non-volatile storage for later execution.

[0151] Insome embodiments, any of these hardware com-
ponents are provided as a virtual component using emulation
and/or cloud computing. Accordingly, as used herein, the
term ‘“hardware” and components of hardware described
herein also refer to local or remote physical hardware or
hardware and/or hardware components that are provided by
emulation on as one or a plurality of virtual machines in a
cloud environment.

[0152] In various embodiments, aspects the described
subject matter may be implemented by computer-executable
instructions, e.g., stored on one or more computer-readable
storage media described herein and/or known in the art.
Computer-executable instructions may be implemented
using any various types of suitable programming and/or
markup languages such as: Extensible Application Markup
Language (XAML), XML, XBL HTML, XHTML, XSLT,
XMLHttpRequestObject, CSS, Document Object Model
(DOM), JAVA, JavaScript, JavaScript Object Notation
(JSON), IJscript, ECMAScript, Ajax, FLASH, SILVER-
LIGHT, VISUAL BASIC (VB), VBScript, PHP, ASP,
SHOCKWAVE, Python, PERL, C, Objective-C, C++, C#/.
net, Swift, SmallTalk. and/or others.

[0153] Although the disclosure herein refers to certain
illustrated embodiments, it is to be understood that these
embodiments are presented by way of example and not by
way of limitation.

EXAMPLES

Example 1—Attribute Stability

[0154] During the development of embodiments of the
technology provided herein, the technology was used to
evaluate the stability of element attributes for several attri-
bute types. See, e.g., FIGS. 14A to 14G. Code scoring (e.g.,
as described herein and as shown in FIG. 12) was used to
identify elements and assign values of element attributes to
elements. The code scoring determined the values (“states”)
of the UNIQUESELECTORS, ATTR_CLASS, ATTR_
TYPE, CSSSELECTOR, TYPE, ATTR_PARENT_INDEX,
ATTR_ALT, ATTR_PARENT_Y, XPATH, TEXT, ATTR_
MAXLENGTH, ATTR_PARENT X, ATTR_PARENT_
VALUE, ATTR_AUTOFOCUS, ATTR_SRC, ELEMENT,
VALUE, TIMESTAMP, XPATHS, XPATH2, ATTR_
NAME, INDEX, CSSSELECTOR2, XPATH4,ATTR_
PARENTMETHOD, ATTR_PARENTCLASS, XPATH3,
ATTR_ID, ATTR_PARENT_TEXT, ATTR_PARENTAC-
TION, X, UNIQUESELECTORS2, Y, FORMDATA,
ATTR_PARENTID, ATTR_PLACEHOLDER, SECOND-
ARYSELECTORS, and ATTR_PARENT_ELEMENT attri-
butes for a plurality of versions of a web application. The
number of times each value (“state”) was detected for each
attribute was used to produce histograms showing the dis-

May 30, 2024

tributions for the values that each attribute had over the
plurality of versions of the web application. Exemplary
histograms are shown in FIGS. 14A to 14G. The distribu-
tions of the values are used to predict the probability that an
attribute will have a value according to the detected states.
[0155] For example, as shown in FIG. 14A, the UNIQUE-
SELECTORS attribute had the same value (according to a
first state) in every version of the web application evaluated.
Thus, the UNIQUESELECTORS attribute is predicted to
have a value according to the first state with a probability of
1.0. As shown in FIG. 14B, the ATTR_CLASS attribute had
three different values over the plurality of versions of the
web application with the same frequency for each of the
three values. Thus, the ATTR_CLASS attribute is predicted
to have a value according to the first, second, or third states
with the same probability (e.g., approximately 0.33). Exem-
plary histograms for CSSSELECTOR, ATTR_TYPE,
TYPE, XPATH, and VALUE are shown in FIGS. 14C-14G.
[0156] The histograms show the likelihood that an attri-
bute will have a particular value and, accordingly, show the
stability of the attribute value. An attribute that has a
significant probability of having a different value between
versions of a web application Ul has a low (e.g., 0) stability
(e.g., the ATTR_CLASS attribute in this example). An
attribute that has a significant probability of having the same
value between versions of a web application Ul has a high
(e.g., 1) stability (e.g., the UNIQUESELECTORS attribute
in this example). In some embodiments, the standard devia-
tion of the distribution is used to determine the stability of
the attribute over versions of a web application. In some
embodiments, the information provided by an attribute or an
element is determined by calculating the information
entropy (S) associated with each possible attribute value (i),
e.g., according to an equation in which information is the
negative logarithm of the probability mass function for the
value:

§=-> PilogP;

where P, is the probability of attribute values indexed over
i. Accordingly, when an attribute has a low-probability
value, the element having the attribute provides more infor-
mation than when the attribute has a high probability value.
In some embodiments, element attributes that are more
stable are given a higher weighting when used in producing
an element definition (e.g., as shown in FIG. 4) and/or a
target element match score. In some embodiments, elements
providing more information are given a higher weighting
when determining the context of an element (e.g.. as
described herein and shown in FIG. 13).

Example 2—Test Case Intent

[0157] During the development of embodiments of the
technology provided herein, the technology was used to
identify a target element by identifying the intent of a test
case. See, e.g., FIG. 15. As described herein, a software test
case consists of a sequence of actions and elements upon
which those actions are performed. A written description of
the test case step may also be included in the test case
definition. An example of a test step description can be seen
in FIG. 15 such as “click on the first element in the list.” If

US 2024/0177007 Al

a natural language test case description is included, this
language can be used to build a step intention model. After
elements have been scored, the highest scoring element is
validated against the intention of the test case step. As seen
in FIG. 15, the targeted element in the test case definition has
moved its position in a menu list A from the first position to
the third position. The application page also contains other
menu lists represented as lists B, C, and D. The element
scoring process could successfully identify the target ele-
ment and would give a high score to elements surrounding
it containing similar code attributes and position. However,
when compared with the step intention model, the validation
would fail. The step intention model would identify the first
element in all menu lists A, B, C, and D with high scores. If
this validation fails, the results from the step intention model
are intersected with the results from the element scoring
processes to redefine the target element. This process results
in correctly selecting the first element in list A. The test case
definition is then edited to store the new target element
representation for subsequent test runs.

[0158] All publications and patents mentioned in the
above specification are herein incorporated by reference in
their entirety for all purposes. Various modifications and
variations of the described compositions, methods, and uses
of the technology will be apparent to those skilled in the art
without departing from the scope and spirit of the technol-
ogy as described. Although the technology has been
described in connection with specific exemplary embodi-
ments, it should be understood that the invention as claimed
should not be unduly limited to such specific embodiments.
Indeed, various modifications of the described modes for
carrying out the invention that are obvious to those skilled
in the art are intended to be within the scope of the following
claims.

1-33. (canceled)

34. A method for identifying an element of a user interface
of'a software application that is a target element of a test case
action, the method comprising:

producing element definitions for elements of the user

interface by determining attribute values of each ele-
ment, wherein determining attribute values comprises
evaluating one or more of an element visual render, an
element text, an element code, and/or an element
context;

May 30, 2024

producing element match scores for said elements by
comparing each element definition to a target element
definition; and

identifying the element having the highest element match

score as the target element.

35. The method of claim 34, further comprising perform-
ing the test case action on the target element.

36. The method of claim 35, further comprising validating
the result of performing the test case action on the target
element.

37. The method of claim 36, wherein validating the result
comprises producing a “test success” or “test failure” value.

38. The method of claim 37, wherein said “test success”
or “test failure” value is used to train a neural net for
identifying target elements.

39. The method of claim 34, further comprising validating
page loading prior to producing element definitions for the
elements of said user interface.

40. The method of claim 37, further comprising alerting
a user of a failed test when validating the result comprises
producing the “test failure” value.

41. The method of claim 34, further comprising deter-
mining a test case intent comprising an intended target and
an intended action.

42. The method of claim 41, wherein determining the test
case intent comprises use of natural language processing.

43. The method of claim 41, comprising comparing the
element having the highest element match score and the
intended target.

44. The method of claim 41, comprising performing the
intended action on the intended target.

45. The method of claim 34, wherein producing element
match scores comprises use of a neural net.

46. The method claim 34, wherein evaluating one or more
of the element visual render, the element text, the element
code, and/or the element context comprises element visual
scoring, element language scoring, element code scoring,
and/or element context scoring using a neural net.

47. The method of claim 34, wherein evaluating element
context comprises producing a linear combination of a
generative model and a discriminative model.

48. The method of claim 34, wherein evaluating element
context comprises relative location of the elements, element
attributes weighted by stability scores, and/or high informa-
tion elements.

