US 20160306631A1

a2y Patent Application Publication (o) Pub. No.: US 2016/0306631 A1l

a9y United States

VORBACH

(54) PROVIDING CODE SECTIONS FOR MATRIX
OF ARITHMETIC LOGIC UNITS IN A
PROCESSOR

(71) Applicant: Hyperion Core, Inc., Los Gatos, CA
(US)

(72) Inventor: Martin VORBACH, Lingenfeld (DE)

(73) Assignee: Hyperion Core, Inc., Los Gatos, CA
(US)

(21) Appl. No.: 15/130,852

(22) Filed: Apr. 15, 2016

Related U.S. Application Data

(63) Continuation of application No. 13/809,159, filed on
Mar. 1, 2013, now Pat. No. 9,348,587, filed as appli-
cation No. PCT/EP2011/003428 on Jul. 8, 2011.

43) Pub. Date: Oct. 20, 2016
Sep. 27, 2010 10010803 .4
Oct. 4, 2010 10013253.9
Oct. 25, 2010 10013932.8
Dec. 28, 2010 10016117.3
Jan. 26, 2011 11000597.2
Feb. 17, 2011 11001305.9
May 16, 2011 11004033.4
Publication Classification
(51) Inmt. Cl
GO6F 9/38 (2006.01)
GO6F 9/30 (2006.01)
(52) US. CL
CPC ... GOG6F 9/381 (2013.01); GO6F 9/30065

(2013.01); GO6F 9/3001 (2013.01); GO6F
9/30043 (2013.01); GO6F 9/3013 (2013.01);
GO6F 9/30138 (2013.01)

(57) ABSTRACT

The present invention relates to a processor having a trace

(30) Foreign Application Priority Data cache and a plurality of ALUs arranged in a matrix, com-
prising an analyser unit located between the trace cache and
Jul. 9, 2010 (EP) wovviviiiiiiiciccccene 10007074.7 the AL Us, wherein the analyser unit analyses the code in the
Jul. 19, 2010 ... 10007437.6 trace cache, detects loops, transforms the code, and issues to
Jul. 23, 2010 (EP) oo 10007657.9 the ALUs sections of the code combined to blocks for joint
Aug. 21, 2010 (EP) ccoecveiiieieiciciene 10008734.5 execution for a plurality of clock cycles.
0101 IS
N
N
0102 /‘/ o
N
—
—
| <
0201 S
—
—
0103 ™ — ™
0132
— —
— —_—
| < ™~ | <
o
/f N
—
-
| <
0105 /‘/ 3
—
| <

US 2016/0306631 Al

Oct. 20,2016 Sheet 1 of 40

Patent Application Publication

1B o T G
_<v 4| SLLO !
i " |
@ m |
! : m
! — PLLO m] R
| _ m gl b4 wig
@ m 2
| — €110 m H.solu._:mm:m <!
_ _ _ AAAAA]
: !
@ — 2Ll _ -
“ 9110 LLLO " H.solu._:ww._m < !
! I I e e J
[_
! h m —tt— | .
| W i w! o !
T 70 i £eL0 'S
| i Ino ynsas: © !
I i L. ;|
| m
| S0L0 | = 1! ==
| 210 2 W o
Jsolu._:w& by m m i = =5
" 70 o 7010 ; no ynsal’ © !
| = €010, Lo
i ¢010;
i 1010
S S

Patent Application Publication Oct. 20,2016 Sheet 2 of 40 US 2016/0306631 A1

0132

0211

S
T
Fig. 2

0211 0211

0211 0211 0211

<
0201
~_

<
)

<

0101
0102
0103
0104
0105

US 2016/0306631 Al

Oct. 20,2016 Sheet 3 of 40

Patent Application Publication

h

)

£

2

o

0
10E0 ¢0€0
shkeme | shemje
|l puod | shemje
| puod | sAemje
|l puod |z puod
| puoo |z puoo
| puoo |z puoo
| puoo | shemje
|l puod | shemje
|l puod | shemje
|l puod | sAemje
| puod | shemje
sfemie | shkeme
sfemie | shkeme

L2

branch to .L2

Fig. 3A

.L1:

do puosun ;L7

do puosun
do puosun
do puosun
do puooun
21 youelqg
(1 sbej} 19s) do puooun
do puosun
do puosun
do puodsun
171" ydueuq
(1 sbej}19s) do puooun
do puooun

ZT

4ANY
(FANY

L1LEO

cleo

€LE0

(oads ass ‘ sAem|y, 10 SolUBWSS
uo Buipuadap) sAemiy, 10 Moegq, SI 9poD UOHIPUOD

skeme [sheme | (Mg's! 99) do puosun
| puod | shemie do | puoo
| puod | shemie | (yg si9H9) do | puoo
|l puod |z puod do g puoo
| puod |z puoo do g puoo
| puod | sheme | (z sbejj 10s) do | puood
| puod | shemje do | puod
| puod | shemie do | puoo
| puod | shemje do | puoo
sAemie | shemie | (| sbBej) 19s) do puooun
sheme | shemje do puosun
0¢ b1
sheme | shkemje do puooun
|l puoo | shkemje do | oeq
| puood | shkeme do | puod
| puoo | shkeme do | puod
| puod [g puod do z oeq
| puod [z puod do z puoo
l puod [z puod do z puoo
| puod | shkempe | (z sbe|}1es) do |~ puod
| puood | shkeme do | puoo
| puod | shkemje do | puod
| puoo | shkeme do | puod
shkeme | sAeme | (| sBej 1os) do puooun
sAeme | shemje do puooun

d¢ "b14

US 2016/0306631 Al

Oct. 20,2016 Sheet 4 of 40

Patent Application Publication

@_ (aybtax ‘1 + 10atd ‘Aerze)jzaosyornb
m.v H_ :|uo>ﬂg\uwmﬂSﬁuumvuuowv_oﬂﬂ&

T - XpPI1JsT = XPI1JST = 10ATd
joATd == T + XpPI3ydbta FT OST®
I + XpIaybtx = xpIrjybta = j3oatd
joatd == T - XpI3jSl FT
T - XpI1UbTI = XpIiybtx
T + XpI3F=Tl = XpIaij=Tl
[xpI3uybTta]dAexae yaTm [xpIlijeT]liexae dems
‘T - ¥PIAYLbTI = xpIjybtx

J0oATd =< xpI3ybta pue [Joatd]Aeade < [xpIdybra]iAeire STTIY cL¥0

T + XPI3IOT = XPIIFOT

j0ATd => xpI1JeT pue [1joaTd]Aerxe > [xpIiJaT]ierze oTtum ZI¥0 |
joatd =< xpIiybri pue 304Td => XpIIIST STTUM| | |0 |
¢ / (3ubTta + 3Is7) = 30aTd
0 < 3381 - 3ybta IT
JUbTI = XPI3ybTa ‘3197 = XpIiJol ‘10aTd xeBA

0402 5

(Jybtx ‘3397 ‘Avxaxze)izosyoTnb uorjoung

0401

US 2016/0306631 Al

Oct. 20,2016 Sheet 5 of 40

Patent Application Publication

ooerd TPUTI S3T // mm m_H_

XOPUISICIS UINlax

073 joaTd saACl // [1UybTa]Aexre pue [Xspulsiols]Aviie dems

T + XOpuIrIoIols
[xspuIsxois]Arvaae pue

=: XSPUIDIOIS

[T]Aexae dems €160

2150 [9NTBAROATd 5 [T]AeIae, IT

ybrs > v s 3797 // T - 2ybtx

03 1JoT7 woxy T IOZF L LGS0

1I9] =: XOpUISIO1S

pus 03 joard sACl // [dubta]lAexxe pue [¥spulloaTd]Aeire dems
[xspuIjoaTd]Aerae =: onTeploaTd

(xopuriloatd ‘aubta ‘3397

(1ybtx ‘7 + xopulImsNioaTd

(T - xspuimsNioaTd ‘3387

(xopurjoatd ‘aybrtx ‘3397 ‘Aexxe)uoritiaed
(¢/(3F0T - ybra) + 3797 /7

‘AeIie)UuoT3Tlaed uoTiouny

‘Aexxe)qaosyotnb
fAexxe)3aosyotnb
=: xopuIlImoNioaTd

=: xopujijoard -bH-s8) // xspul 1o0atd e 109[SS

(Iybtx ‘37FsT

1I9T < 3uybTxa IFT
‘Aexxe)1a0syoTnb sanpassoad

0504

0504 0505 0504

\.

\.

0502 0503

0506

0501

Patent Application Publication Oct. 20,2016 Sheet 6 of 40 US 2016/0306631 A1

Push 0603
pipeline

Fig. 6
Push 0602
pipeline

Active Set 0601

Pop
reservation 0607
(speculative)

Pop
reservation 0606
(speculative)

Pop
reservation 0605
(speculative)

Pop
reservation 0604
(speculative)

Pop
immediate or 0608
empty slot

US 2016/0306631 Al

Oct. 20,2016 Sheet 7 of 40

Patent Application Publication

L00LL 000LL

1000l 0000l
L0409 | /0SI
9045 | 90sI
GO | ¢0si
v010 | v0OSI
€040 | €0SI
c040 | 20sI
1040 | LOS|
0045 | 00sI

....---'pemess.lu.‘“

L100LO 00010 10010 00010 L0000

GLo | 200 1 gL /04 JJww | dso
vle | 909 HIETYH LY Jloww | dgs
cle | s0® | z el | so4 | Flsww | Ips
2l [voe | & | 2 | vO4 | & [pww | 1s®
1o [€09 |5 [b [€0 | § [eww] xps
OL® VAV, p QL4 rANY p cuul X09
602 | L0@ |/ 604 Lod |/ Jww | xgo
809 00° 304 004 Qwuwi Xeo

LLL
oLl
q0]°
00l
110
0L0
100
000

US 2016/0306631 Al

Oct. 20,2016 Sheet 8 of 40

Patent Application Publication

L+l 1e JY /Yy
Ojul Buijlum 1oy W3 swil Je palos|as
SI XNINY JoAeMOH "L +1J} SI ejep
1064e] 8y} Jo dweisawl |enjoe ay |
elep jnsalJ Jo dwelsawi |

uayo] J9)sibay jabie] 313 (¢

elep
92.4n0s 10} paJinbal dwelsawi |
uayo] Jajsibay aounog s (¢

Jais16a1 ayj Ul palo}s
Ajlenoe ejep jo dwejsawi |
ua) o] jJuduoy J3)sibay 1301 (Z

Jaysibal ay) Bunabiey uonondisul
panssi jse| Jo dwejsswi |
ua)o] anssj J3)sibay :Ju (1

¢ ommm e o emmm o o+ el v o mmm e e+ e+ e oy

_ NV

_ [~ Fephan\

_vowo €080

0801

US 2016/0306631 Al

Oct. 20,2016 Sheet 9 of 40

Patent Application Publication

6 ‘614

y
€060
abels X3 o0} e1ep puesado
it ‘

\ 2Z060 AN ssiwfly «— /060 G060
A A A
/ 42060 N—— YT ! " AR
L 92060 Ne—— | ! 5 &
... | I T
oL T E Tt AN T LT Y sleplleAul 1 _._.._ . S Gl
Holv|o|o| Eagq » ok
Sunm——l I N A A A v | | JOS)O# + 9seq = Ipe :[}osyog ‘oseq] U Jp)! ! !
8060 | ol ol ol * L 2L Qi S PSPPI i |
“ @ 2) % () M. Q M. “w _ ! |
H 38|38 8 FLR ' o - _ _
' QO ' _ jm———— ! _
yeesacmcmasacesscscmssssessmmemed ool mimm oo m — coInIIn

.oseq, buisnpe Joj Jybu Hiug 17060 O# | | i

_ :

g ~ ” _ 19s)jo¢+oseq=aseq ‘aseq = Jpe 1asyoy ‘[eseq] 4 Ip|

v6 b1 S

US 2016/0306631 A1
<
(o)}
o)
-

]

]

]

]

]

]

]

]

]

]

]

]

]

[]
-l
a2

m oo £060
: ¢l60 ' _
" b k
: Voo
o ' v SsiWly -— 2060 G060
< " LLe0 | |
M : 0] N o
abels o] eje ueiado ' ’
= 15 X3 01 BEp P " SVIg ! tmmmmmmm oo R .
% s L . T
z N\ y _ o &
° \ 82060 <-4 £l60 [®-——--—---—--— - o m“ R
S 7 92060 Ne— LT =18l
g 7 52060 N— L0 AN N
e 119060 | | b
8 predorecpeacteacdracranadnactens f I
t(P[P[P]P HIERE |:19s}Jo# + oseq = Jpe :[lasyoy ‘osed] Jipl |
5 AT AT ATA A | N |—AISYIN e it eI NN o
= []] |
= - 0 L W 0 | _ P
= o = = = = . < g <|ig _ SR B
= o H] mn] ‘e m ~m A 3= |
2 SR i PN P + 9 Qe e AR J— R
E e 1212 (2] [BIB3 (7000 0 !
1 " fo] O fo] O O O “ | | |
= : ; i _ “ ;
Am SIS o . Josyogt+aseq=oseq ‘aseq = Jpe :}asyoy ‘[eseq] J ip|!
S R !
g
=
[~™

US 2016/0306631 Al

Oct. 20,2016 Sheet 11 of 40

Patent Application Publication

- o) a4
S 3SJo
E 8 SER
_ === | v0o0!l
AAWVDI-{ mmv . — ¢ ofam o ¢ emmm s ¢ e e s s — ’ _
obels X3 0} Bjep puessdo | i I B e
A : [Nkl
i _
RS S | N N 3, H
o 2001 N Loy |
. D S 46900} !
L e =" 1003|858 a _ £00L
\ azool / _ S
aogol
10]09|9S . N Avake|
7 E2001 N Toperes——J1, 29001 _mmmm_wmmv
| _
. 1sanbal peo| s/
+ v ¥
S|[(P[P PP PP / ol
-— A A A A A A |
n v n 0 ‘_‘
< K K K << N
SO < TN < I N m S@ & 8001
o *lo *lo *lo +| o Xlo X| f—> - > 6001
N N wn wn w w
© © M) M) © +|c +
O o] O le)] O O

US 2016/0306631 Al

Oct. 20,2016 Sheet 12 of 40

Patent Application Publication

-

ysewAlplieA «—{ /G0l

Svid

yseNAlplleAysel]

AseNALPIBAISS

vol ‘614

1003

0914

€50 PA < anjosqe | F | (Bun-(s)7
osegqloy doliay Q woly) do|
<+— 9G01 - doJoy)
“osegry
v
o
2¢s0l Mmmm_mp,q a|n|osge
(O + asegjoy) < osedsqy
_ —

osegloy > asegsqy < % S Seq st

seajod o & SO Jjsul

150} (O + ssegloy) > - .

asegsqy s esegloy

[dnfataddiadadaded e ittt ddadadaddind]
[] []
[] []
' = N :
“svig 1|8 2 :
1 4 "
’ []
[] []
[] []
' .

Patent Application Publication Oct. 20,2016 Sheet 13 of 40 US 2016/0306631 A1

.globl fir
type fir1, @function
fir1:
push ebp
1121 > — - — mov _ ebp, esp
push edi
push esi
push ebx
sub esp, 4

mov ecx, DWORD PTR [ebp+12]
mov ebx, DWORD PTR [ebp+20]
mov edx, DWORD PTR [ebp+8]

mov edi, DWORD PTR [ebp+16]
lea eax, [ecx-9]

test eax, eax

mov ~ DWORD PTR [ebx], eax

je L4

Fig. 11A

*------------------

Patent Application Publication Oct. 20,2016 Sheet 14 of 40 US 2016/0306631 A1

0
0
0
0
0
0
0
0
0
0
0
0
i
T sub ecx, 4
1M13 L = = .. mov_ .. eax, 1
1112 A = = mov_ .. DWORD PTR [ebp-16], ecx

xor ecx, ecx

jmp L3

.p2align 4,,7

I_(s.lpiahgn 3 1101

[RT] mov ecx, eax
[RZ] mov eax, ebx

L3:
[(MT] imul ebx, DWORD PTR [edx+12+eax*4], 42659
[M2] imul esi, DIWORD PTR [edx+8+eax*4], 8407
[M3] add esi, ebx
imul ebx, DWORD PTR [edx+4+eax*4], 7031
add esi, ebx
[M4] imul ebx, DWORD PTR [edx+eax*4], 3323
add esi, ebx
[M5] imul ebx, DWORD PTR [edx+ecx*4], 30124

1102

[Ad] lea ebx, [esi+ebx]
[ST] mov DWORD PTR [edi+ecx*4], ebx
1111 Ao lea. _ .. _ebx, Jeax+1]
A cmp_ .. ebx, DWORD PTR [ebp-16]
1110 -} .
Ao jne _ L6
" L4:
add esp, 4
pop ebx
pop esi
pop edi
pop ebp

et Fig. 11B

US 2016/0306631 Al
o
N

_ © 102}
L .
_\ ~ © 0 N | v, i o o o !
= = Q S N e 1 i0 O o) O | !N
" pd Z \ L Z pd pd Z i
= / i ! | !
s _ ! I
v @ ! ! !
o © _ S M s O O ! [O O O O _
= \ O I Z Z ! — i Z Z Z Z |
2 o _ ! _ !
= ®© _ ! i i
S g : @ !
S By o 5 g | L a il il a |
. o) . e > | ! O O O O _
>4 = [pd pd _ [pd pd pd pd _
N A _
. | " . |
s il L. -
g | E > 2 2 h 13 5 o S ||
: S R P 2RI 2 2
A _ ~— | i !
= .!!yiﬁ. |||||||||| h.\!R!!L 20zl Ll i
.m JOpIOS] [EdTHoA >
lp pa / Z /
= ’ } dwip je | eusle) ’ ’ doon 11 swiy Je Z eusjen ’
£
=
[~™

Patent Application Publication Oct. 20,2016 Sheet 16 of 40 US 2016/0306631 A1

conditional jump backwards :
1301 to already executed code Flg) 1 3
)
code_pntr-- code_pntr--
) 1303)
1302 (aa aeneratin arthmefic) instructio
g generating on which 1302
instruction no no
depends on
Lyes yes
T [
1331 set | 1332@ set |
'TCM | : TCM |

code pntr--
1307
code pntr<
target address 5
of 1301 /e 1334
1308/ et initial value of i set !
no loop counter yes ' TCM |)
) 1335 _
| B
1309 set loop termination | set !
no criterion es’ TCM | |
1310 .
<1 308 and 1309 Set\no
1305 yes exit and start
< modification to 1321 optimized loop
data on which
1303 depends on’?/ L ===
supported i set !
1306 by TCM yes ' TCM
. o 553
break and continue 1322

without loop optimization——

US 2016/0306631 Al

Oct. 20,2016 Sheet 17 of 40

Patent Application Publication

1434@
1436@

s9h /¢ ulin|oa nje\

O

uels = Jjud spoo

dooj
puiyaq apod . , suononysul
anupuos | ‘ aoejdun
E‘_“,> uiju . door " padeg|
paysiul} | eJnoexy | ajow ou
uonnosxs doo| G 3
oLvl

8lvi

SoA

¢dwnl dooj

'suoioNasul
paoejdun aJow JI

1

ou

1945

++Jud 8poo

I vivl

ou
ey ¢

++UWNOo Ne

“ [uwnioo npe
. ‘moJ npel 1e

454%

vl 61

1417

ou

uononsul
paoe|dun pue
Juapuadap

LIyl

1421
1435@

sak

S| == MOJ n|e
ou 1Sl [

cOvl

ue1s = Jjud apoo
1S| = UWwnN|oo nje
1S| = MOJ nje

I Lovl

A

US 2016/0306631 Al

Oct. 20,2016 Sheet 18 of 40

Patent Application Publication

O

_ uoned |
I]X8U YlIM ©nuljuoo LMOJ Ne 1se|
rEvk _ pue dooqainosxy cevl
eevl —
@ uels = Jjud apoo
m.V_\ _H_ 1S| = UWn|o2 ne
++MOJ Nje
LEVL
doo| puyaq T ___Tsok
opoo yum anuguoo | doo ' suononasul \ ¢dwnl dool ou
_ — ¢ :SuolloNJISUl
paysiull . 9INoeX3 | paoe|dun / d .
uonnoaxs dooj i i 2J0W OU PSJEIGUN BIOW Yl 7o),
(0] 4% T
S ++jud apoo
3 el0) 4"
sak / éuwn|od ne
sop__Is® ou
++UWINJOS nje
14014" ou
H / N\
e uononaisul pasedun
, [uwnoo nie pue spuadapul
© | ‘mol nelle \ E0PL
Q vvi“ uononJisul soeld "

1409

©,

1421

1435

"1435

US 2016/0306631 Al

Oct. 20,2016 Sheet 19 of 40

Patent Application Publication

EBX

ESI

! !
@ !
NI =" T 5
| 02 |
| S5 |
el i
- UL LUL xUL !
| - -
_ wU |
! !
i _ !
U | o~ \—D o o !
|2 = S S |
! !
! !
! % |
L (- o o _
=0 2 S 2 |
! !
! !
! !
! o o :
B = o o |
_ !
| |
“ ESI EBX | EBX i
. —A03| _ SATT —A12| "
P X < < < _
! EBX ES ES i
i —A02 —A10 —A20 i
e e e i

EBX

Fig. 15

Patent Application Publication

Oct. 20,2016 Sheet 20 of 40 US 2016/0306631 A1l

b b b -_ -~
M1 M2 M3 M4
|
r — — — p—g
\ —_ —_ —_ —_ -
A1 M5 NOP NOP i
|
A2 NOP NOP NOP |
|
_ _ _ _ -
— _ — —-
A3 NOP NOP NOP

Fig. 15A

Patent Application Publication Oct. 20,2016 Sheet 21 of 40 US 2016/0306631 A1

horizontal reorder 1

A4

horizontally vertical reorderingi
(inserting horizontal latency)’

y ittt =
| R R2 M1 M2 | e
i ' i
| |
5 ' i
< g] A M3 M4 M5 | !
I — T — ' i
o g ‘4 i i
© 9 l i
G5 | A NOP NOP {!i NOP | i
| |
| SN e i
| I T el S |
A DA T st 1 NoP
! : ||__|__J||___J [
S 2 oI I ____

US 2016/0306631 Al

Oct. 20, 2016 Sheet 22 of 40

Patent Application Publication

A~¢3—~ a0d

S} 9IS
Ol @_H_ SEIR
YooV . [s1:us
g 1 [s7790s 1S
Al h | | (ol] PEVY SIS Py
¥ I] | 1FloElv) ! el R[] s
ollt L | ! letfozlv! ! ez lv] 11 Bouslloelv] ey
Ell = __ | iefoelv] ! RATNE 11 gLzl v
= L] _ _ 70 LIV _ AR 1syioasf ozl | ev
By 17 1 1 1Cl0 LIV, 1 A28 1! gy .
e L....] I [I eolv! I 'L [Z0lV! __mH.o._w:‘Z,Q EN
8| 1]] HIEOlV,] LHle OV I SEE IR
S|t i] | ealv,] _ukleolvy) Evisis[Ieolv | e
o e R I o I I I oy b1 BosslTeolv] L
| e e I [s] :0Us
S} ‘oIS
(ewi @ JBpIQ) JepIo uooNJISUl Ul 81epdn s} .0JS
LL9L 2091 109l
leisiBay 1HOY 113 €091
_ s] ‘oIS _ _ S] ‘0JS _ s] '04S _ s] ‘0Us _ s] ‘0Us _ S} ‘OIS _ s] ‘0JS _ s] '0JS _ s] ‘0Us _ S] ‘0US _ s] ‘0JS _
ldd ldd 0dd ds3 d494 a3 1S3 Xa4d X043 Xd3 Xv3

Patent Application Publication Oct. 20,2016 Sheet 23 of 40 US 2016/0306631 A1

xed”
e
o O et
o¥s ess ©
Py, \\) /
0 4
C 90 /
gow® _
N~ -
o
E || —
i <
o - { O
& [| -
o | .D
mo| || LL
o L
s
m || —
5 —
w Bl
a —
L | -
X]
a)
=
> ||
O
R
> ||
foa)
o LH
X L |
<
w o)
(9]
(@]
Q

1603a |
1603b |
1603c |

US 2016/0306631 Al

Oct. 20,2016 Sheet 24 of 40

Patent Application Publication

TUSWIPOqUID 1511
S VEIETEIR

JUSWIPOqWa puodas
3> 9|0BuUS JM / pJ

Jaulod Ajjus ealy —
N

S0LL[

]

/1 ‘B4

> $s900e Juelb

a1eo0||e

——
v0LL ________

== Jol|n /1d

== gol |n 9.d

== gol|n Gid

== [pol|n pid | S

== cod|n cid| =

== ZoJ|n ZJd]

== LoJ [N L4d

== ooJ [n 0.d A | ddgd ==

201
o] o]

] [
[lesyjo ¥ eseq] Y1d AHOMA

€0LL

US 2016/0306631 Al

Oct. 20,2016 Sheet 25 of 40

Patent Application Publication

gl b4

—

leg L1 4

U5 95 mw+v*w ST S o o3 IS
ATIUD
AU
_1:2 _ 1281 |
m _,._.lmHuHanHuHumm N
! 1 ||||||||I||»| gX — 108 l—
| Tt R + X
_ ! Jpewauw 7X -1 - 1-
- - [X X 0 [L
oseq < \ i [#x[¥ [0] . 3
\||mow7 S\ [#x][8 o] ° ®
2081 |-[|[|] = rx [ZL [0 j
908l X o o [IPT
® ® 35
(00}

Patent Application Publication Oct. 20,2016 Sheet 26 of 40 US 2016/0306631 A1

)

closest to rd_ptr

rd ptr

Vv
Vv
Vv
Vv
Vv
Vv
Vv
Vv

wr ptr
flag
generator

Fig. 18A

Patent Application Publication Oct. 20,2016 Sheet 27 of 40 US 2016/0306631 A1

. O o J 2
L > 2 > - gl gl 8
~—
D
8 le i
I
(@))
LL
o
O e
I
L 0 2 ,% <
8 (@)
—
: T A .
! O
' N LL
!_ _________ O<_
I

Patent Application Publication Oct. 20,2016 Sheet 28 of 40 US 2016/0306631 A1

o S
L > 2 S ~—
e
\ ’ LL
a)
(V)] Ll)
O T » X<
<C &) Ll
o
LL
(@)]
L > O > © 2| Y
LIJ []
D
LL
o
O |«
D
| 2
el R
Y »| 9: > A
A n
©)]
LL

AOS
A

US 2016/0306631 Al

Oct. 20, 2016 Sheet 29 of 40

Patent Application Publication

120C

£00¢

ey
<Ysews> umop ded

<fsews> dn 4shd

2002}

< aunnoiqns |[eo;

€00¢

2002}

cm:ay

~aupnoIqns ||eo;

voz¢ ‘614

€00¢

1002

104
dod

ysnd

¢00cZ

\ aupnoiqgns __mm_
\\ 7

:0¢ 'bi-

Patent Application Publication Oct. 20,2016 Sheet 30 of 40 US 2016/0306631 A1

@ 2101

N next instruction
\\
\
. 2102
]
®& "N get reference to operand resource for all
" operands

2103

compute free ALU below of lowest ALU in
ALU-Block providing an operand

2104

\no
Any ALU availabl

/

yes

2105

issue instruction to free ALU;
update RCRT

Fig. 21A

Patent Application Publication

Oct. 20,2016 Sheet 31 of 40 US 2016/0306631 A1l

<« ALU available[0,0
- ALUﬁ__avaiIabIe[O 1] l

<1 ALU_ available[0,max_col] °

ALU ava|IabIe ?
ALU Lavallaple

I

|

>N

< ALU_ available[1,max_col] |
I

l

]

l«— ALU available[max_row O]l
<—.— ALU available[max_row,1

4—'—ALU _available[max_row, |
max_col] .

<«— ALU_available[0,0 I

-«—— ALU?_avaiIabIe[O 1

<«— ALU available[0,max_col] l

ALU_available[1,0 .
<— ALU_available[1,1 |

- ALU:_avaiIabIe[’I ,max_col] *

«— ALU available[max_row,0]°
<+— ALU available[max_row, 1

,
RCRT refere\nfce
for...
op1 op2
2112 l l
MAX
(op1,0p2)
2111
[
high 2121 2113 |1 [o
priority |
— |
o [
N 1 - OR
- 5 !
i |
i I
o 2122 max_row-1 i
ow 12123
priority max_row —E— OR
/ 2115
AN
(a2}
N © 2116
- =
AN
\ 2117

Fig. 21B

<—ALU _available[max_row,
max_col] |

US 2016/0306631 Al

Oct. 20,2016 Sheet 32 of 40

Patent Application Publication

[[00 Xew mos xewl]

A

~ .

[[00 xew'?]
niy
[[00 xew’|]
niy

~.

[[00 xew Q]
niy

~

~

f-

-~

-~

ze b4

[

d .

.

.

[z‘mos xewl] [L‘mol xew] [0‘mos xew]
Ny Ny Ny
Pl N N
S 662¢ N 6622 N
b62C
| | [
A JL X J >> - ™ b e - ™ D e
> A JL X] H - e e H - e e H
_||+]] !] ! 32
b ezl d 4 d 02l Q
Poce Ny (Y ol | |
> A JL X] > - e e > - e e >
]]] —
B iz :A [l :A 10°1] Q
P62 [yl Q| || | ©
YYY IR YYD IYYYERREEE /Y
N _ _
y _N_o_A :_o_A 0°0l
b62¢ [Ny | | PoC nvl | | poe nv
A JL X J _ _ - e . e _ _ - e . e _ _
a ¢0ce a a

US 2016/0306631 Al

Oct. 20,2016 Sheet 33 of 40

Patent Application Publication

vz b4

LSS LIS \wx
MOJ Xew r L \N\\vcﬁmao Hmo\so_\
S A S A S S,
_ \\xﬁ\\ I ES \m.\x _
L-MOJ XEW ! “,puedado jsemoj \\ MOJ Xew
o IS S
_ \E\\ T \\k\ _
Z-MOJ Xew x&c&mao 1SOMO] \ MOJ~ Xew L-MOJ” Xew
_ it A

\\ S SIS IS, %

- puetedo “wmso_\\ € 4 }
b S S S

US 2016/0306631 Al

Oct. 20,2016 Sheet 34 of 40

Patent Application Publication

3¢e¢ ‘b4

. ¢ ¢ ¢ @I_
97" ‘GUo L+ XBO XqO g7 40 B6ET dao g
97 ‘[91-dge] VO 'L+ ‘Xee ‘Xge d [91-dg “rmmmm._u _xmm

X098 ‘[p,x08+Ip3] IHOLS

[xge+i1s9] ‘X

v2Z10€ ‘[F.x00+Xpd] QYO Xg®
XQo ‘Ise

€Zee ‘[P Xes+xps] avOT Xge

XQo ‘IS8

1€0. ‘[P Xea+p+Xp8] VO Xg8
XQo ‘IS8

1,098 ‘[v.Xes+g8+xpa] avO1 ‘1se
6592V ‘[v.Xea+Zl+Xpa] AvO1 ‘xXg8

Xgo ‘xee

vee b

aul
dwo
Bo|
[1S]
ed| [V |
Inwi [G|
pre [¢V |
Inwt [A]
ppe [ZV |
Inwi [S]
ppe [1V |
Inwi [2]
Inw [T
€T
Aowl
AW [TH]
9T

US 2016/0306631 Al

Oct. 20, 2016 Sheet 35 of 40

Patent Application Publication

dgee 614

97 46))

aNr

Xge ‘[p,x08+Ip8] IHOLS

Gl ‘Xqga ‘4b|}

[91-dg®] ‘glhe avO - [L+Xxes] ‘xge
[Xxga+Isa] ‘Xga

S| ‘Xqa

v210€ ‘[¥.x00+Xp8] ‘¥S| VO - X0d ‘Ise
€S| ‘Xgo

czee ‘[v.xea+xpa] ‘eS| AvO1 - Xge ‘1s8
Zs| ‘Xge

1€0.L ‘[F.Xee+p+Xp8] ‘2SI VO - X9 ‘Ise
rw_;wm

L0¥8 ‘[P xes+g+xpa] ‘LS| QVOT : 0S| Xge

6592V ‘[V.X08+Z+Xpa] ‘0S| QYO : Xge ‘xes
XBea ‘X909

dIND
e9|

e9|
Inw
ppe
Inw
ppe
Inw
ppe
Inw
Inw

&
-l

AOW
AOW

S
-l

|

N | IO\ [v—]|CD <t LO —

US 2016/0306631 Al

Oct. 20,2016 Sheet 36 of 40

Patent Application Publication

D¢z ‘b4

97 ‘Beyy
OMe XQge

Xge ‘[fx08+Ipd] IHOLS

[xge+isa] ‘DI

Glle ‘OHo ‘Bey)

[91-dgs] ‘cle avOT : [L+xes] 'xgs

S| ‘Xge

XQo ‘1S9

vZ10€ ‘[F.x00+Xp8] ‘¥S| AVOT - €S| 'Xg8
XQo ‘1S9

czee ‘[v.xesa+xpa] ‘€s| QYO - ZS| ‘X8
XQo ‘1S9

L€0L ‘[P Xee+p+Xp8] ‘2SI VO : 1S| ‘Is®
0S| ‘Xg®

L0¥8 ‘[¥,.X08+8+Xp8] ‘LS| QYO : Xg® ‘Xes
6592¥ ‘[F.X08+Z+Xp8] ‘0S| VO - Xes ‘X089

aANr
NOWN
[1S]
es| [pV |
diANO
Bo|
Inwi [GIN]
PPe [€V |
Inwt [yIN |
pre [2V |
Inwr €N |
ppe [1V |
Inwi [ZIN]
nwit [LA
o
Aow [zZY |
aow LY |
9T

US 2016/0306631 Al

Oct. 20, 2016 Sheet 37 of 40

Patent Application Publication

aez ‘614

97 ‘Beyy

Xge ‘[fx08+Ipd] IHOLS

[xge+isa] ‘xqge

GlIa ‘xgo ‘Bey}

[91-dgs] ‘e avOT - [L+xes] 'xgs

S| ‘Xge

XQo ‘1S9

v210¢€ ‘[F.X00+Xp8] ‘¥S| AVO1 - €S| 'Xg8

XQo ‘1S9

czee ‘[p.xes+xpa] ‘cs| QYO - ZS| ‘X8

X(go ._wm

L€0.L ‘[F.Xee+p+Xp8] ‘2SI AvO1: LS| ‘Isd
L0¥8 ‘[v.xes+g+Xxpa] avO

L 6592Y ‘[P.Xxea+g+Xpa] V0T - 0S| ‘X8

Xgo ‘Xxes
Xe9 ‘X008

anr
[1S]
es| [vV |
diND
B3|
Inw! [GIAl |
ppe [gV]
inwi [$IN]
ppe [V |
Inwi S|
ppe [V |
Inwi [2 |
inwi [N]
€T
AW [2y |
row [Y]
97T

US 2016/0306631 Al

Oct. 20,2016 Sheet 38 of 40

Patent Application Publication

o1"4B) INP

Y2 O_H_ _%otm Xge AOW
. X9 ‘[,X08+1p8] IHOLS [1S |
[xge+1s9] ‘Xge e9| [y |
¥S| ‘Xga Inwi [GIA]
X(go ._wm ppe E
€S| 'Xgoe InWi [N]
Xge ‘Ise ppe [2V]
ZS| ‘Xga Inwi [SN]
XQo ‘1S9 ppe [1V |
LS| ‘Is® Inwi [ZIN]

¥Z10¢ ‘[P.x00+xp3] ‘¥S| AVO
L ¢2¢¢ ‘[v.xea+xpd] ‘eS| QYO - LE0L ‘[P.Xeo+p+Xpd] ‘Zs| AVOT

. L0V8 ‘[F.Xeo+g8+xpa] ‘| S| VO : 6592 ‘[v.xe8+ZL+Xp8] ‘0S| AVO1 0S| Xge [nul [LA]

GL® ‘OHS 4Bl dIND

[10%2 | [L+xes] ‘D13 Bo|

€T
Xge ‘xes Aow [z]
Xes X089 AOW [T]
97T

US 2016/0306631 Al

Oct. 20, 2016 Sheet 39 of 40

Patent Application Publication

= ANE .
Etm ‘XQo

EIN
AOIN

Xge ‘[px08+Ip8] IHOLS [1S]

[xge+1s9] ‘XQe
S| ‘xge
XQo ‘1s8
€s| ‘xge
XQo ‘1s8
Zsl 'xge
XQo ‘1s8
LS| ‘1s®
0s| ‘xg®

X(go ‘Xeo
¥Z10¢ ‘[Xes+xpa] ‘ps| AVOT
L ¢z¢¢ ‘[p.Xqo+xpse] ‘e8| AVO1 - L€0.L ‘[P XTo+p+Xpa] ‘Zs| AVOT
L L0v8 ‘[¥.X0o+8+xpa] ‘LS| VO - 6592Y ‘[¥.X08+Z1L+XpPd] ‘0S| AVOT : Xes ‘X08
Gu® ‘0P8 'Ib)
[L+X03] ‘OF8

es| [pV |
Inw [G |
ppe [€Y]
Inwi [FIA]
ppe [2VY]
[nwii _Im.|_>_l_
ppe [1VY]
Inwt [ZIA |
Inwi [N]
{o |
AOW

row [T3T]

dIANO
e9|

9T

Ge ‘b14

€1 dul
X08 'X08 JOX

US 2016/0306631 Al

[91-dqs] ‘ge avO1/

X090 ‘GHa AOW ' X099 ‘[91-dge] IHOLS [ALT]

l ‘Xeo AOW

174 ‘X009 ans

val of

xes ‘[xge] ¥1d a4OoMa Aow

Xeo ‘xes 1S9}

[G-x08] ‘xes eo|

[9L+dgs] ¥1d adoma ‘pe Aow

[g+dgs] Y1d a4OMA ‘Xpe Aow

[oz+das] ¥1d adoMma xge Aow

Oct. 20, 2016 Sheet 40 of 40

.m [Z1+dge] ¥Y1d AHOMA X08 Aowl
B y ‘dse gns
2 Xge ysnd
=

R IS8 ysnd
m pe ysnd
S dse ‘dge Aow
lw dge ysnd
z Al
E

«

[~™

US 2016/0306631 Al

PROVIDING CODE SECTIONS FOR MATRIX
OF ARITHMETIC LOGIC UNITS IN A
PROCESSOR

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation of U.S.
patent application Ser. No. 13/809,159, which was filed on
Mar. 1, 2013 and titled PROVIDING CODE SECTIONS
FOR MATRIX OF ARITHMETIC LOGIC UNITS IN A
PROCESSOR, which claims priority to PCI/EP2011/
003428, which was filed on Jul. 8, 2011 and titled DATA
PROCESSING DEVICE AND METHOD, which claims
priority to the following applications:

[0002] EP 11004033.4, filed on May 16, 2011;
[0003] EP 11001305.9, filed on Feb. 17, 2011;
[0004] EP 11000597.2, filed on Jan. 26, 2011;
[0005] EP 10016117.3, filed on Dec. 28, 2010;
[0006] EP 10013932.8, filed on Oct. 25, 2010;
[0007] EP 10013253.9, filed on Oct. 4, 2010;
[0008] EP 10010803.4, filed on Sep. 27, 2010;
[0009] EP 10008734.5, filed on Aug. 21, 2010;
[0010] EP 10007657.9, filed on Jul. 23, 2010;
[0011] EP 10007437.6, filed on Jul. 19, 2010; and
[0012] EP 10007074.7, filed on Jul. 9, 2010, the contents

of all of which are all incorporated herein by reference in
their entirety.

INTRODUCTION AND FIELD OF INVENTION

[0013] The present invention relates to data processing in
general and to data processing architecture in particular.
[0014] Energy efficient, high speed data processing is
desirable for any processing device. This holds for all
devices wherein data are processed such as cell phones,
cameras, hand held computers, laptops, workstations, serv-
ers and so forth, offering different processing performance
based on accordingly adapted architectures.

[0015] Often similar applications need to be executed on
different devices and/or processor platforms. Since coding
software is expensive, it is desirable to have software code
which can be compiled without major changes for a large
number of different platforms offering different processing
performance.

[0016] It would be desirable to provide a data processing
architecture that can be easily adapted to different process-
ing performance requirements while necessitating only
minor adoptions to coded software.

BRIEF DESCRIPTION OF DRAWINGS

[0017] FIG. 1A is a diagrammatic illustration of an
example network node of a data network of a processor;
[0018] FIG. 1B is a diagrammatic illustration of an
example cascade of four of the network nodes shown in FIG.
1A;

[0019] FIG. 2 is a diagrammatic illustration of an example
implementation of a bus structure for a data network;
[0020] FIGS. 3A, 3B, and 3C are diagrammatic illustra-
tions of example code and graph for multilevel conditional
execution for ALU execution;

[0021] FIG. 4A is a diagrammatic illustration of a flow
graph illustrating an example of an inner loop of an appli-
cation and a called function;

Oct. 20, 2016

[0022] FIG. 4B is a diagrammatic illustration of example
pseudocode providing a loop effect for called functions
similar to FIG. 4A;

[0023] FIG. 5A is a diagrammatic illustration of a flow
graph illustrating an example of splitting code into different
partitions;

[0024] FIG. 5B is a diagrammatic illustration of example
pseudocode providing a loop effect for the split graph of
FIG. 5A;

[0025] FIG. 6 is a diagrammatic illustration of an example
of prefetching register file instances to be available for
context switching;

[0026] FIG. 7 is a diagrammatic illustration of an example
register set arrangement;

[0027] FIG. 8is a diagrammatic illustration of an example
In-Order-Write-Back (IOWB) implementation for writing
data to a register file;

[0028] FIGS. 9 and 9A are diagrammatic illustrations of
example implementations for loading streaming or fre-
quently accessed data using a frequent load register file
(FLR);

[0029] FIG. 10 is a diagrammatic illustration of another
example implementation for loading data using a frequent
load register file (FLR);

[0030] FIG. 10A is a diagrammatic illustration of an
example implementation of a BASE control unit of the
implementation of FIG. 10;

[0031] FIGS. 11A and 11B are diagrammatic illustrations
of example code showing a combination of conditional and
unconditional jump instructions;

[0032] FIGS. 12A and 12B are diagrammatic illustrations
of example placements of instructions in ALUs for trans-
formation and optimization of a loop detected in code;
[0033] FIG. 13 is a diagrammatic illustration of an
example backtracking process for analysing loops;

[0034] FIGS. 14A and 14B are diagrammatic illustrations
showing an example process for placing instructions onto
the ALUs in the ALU-block;

[0035] FIG. 15 is a diagrammatic illustration of example
management of registers and ALUs;

[0036] FIG. 15A is a diagrammatic illustration of an
example data flow direction for ALUs;

[0037] FIG. 16 is a diagrammatic illustration of example
reordering of instructions mapped on ALUs, renaming or
replacing of registers, and storing timestamps;

[0038] FIG. 16A is a diagrammatic illustration of an
example expanded Register Cross Referencing Table
(RCRT);

[0039] FIG. 16B is a diagrammatic illustration of an
example circular timestamp;

[0040] FIG. 17 is a diagrammatic illustration of an
example Pseudo-Register File (PRF);

[0041] FIG. 18 is a diagrammatic illustration of an
example memory interface unit;

[0042] FIG. 18A is a diagrammatic illustration of an
example stream register of the stream register file (SRF) of
FIG. 18;

[0043] FIGS. 19A, 19B, and 19C are diagrammatic illus-
trations of example implementations of stages of out-of-
order processors;

[0044] FIGS. 19D, 19E, and 19F are diagrammatic illus-
trations of example implementations of stages of in-order
processors;

US 2016/0306631 Al

[0045] FIGS. 20A and 20B (part of FIG. 20) are diagram-
matic illustrations of example memory structures storing
main routines and call subroutines;

[0046] FIG. 20C (part of FIG. 20) is a diagrammatic
illustration of an example memory structure storing a main
routine and call subroutine without context switches;
[0047] FIGS. 21A and 21B are diagrammatic illustrations
of example implementations of a scheduler placing instruc-
tions from a Code Analysis Queue (CAQ) into ALUs;
[0048] FIG. 22 is a diagrammatic illustration of an
example ALU-block structure having features for out-of-
order processing;

[0049] FIG. 22A is a diagrammatic illustration of an
example placement sequence of instructions for the ALU-
block structure of FIG. 22;

[0050] FIGS. 23A, 23B, 23C, and 23D are diagrammatic
illustrations of example portions of code showing moving up
of instructions in the code sequence;

[0051] FIG. 23E is a diagrammatic illustration of an
example of fusion of instructions into a complex instruction;
[0052] FIGS. 24A and 24B are diagrammatic illustrations
of'example code including placing instructions in an instruc-
tion sequence;

[0053] FIG. 25 is a diagrammatic illustration of example
code referencing examples of FIGS. 23 and 24.

DETAILED DESCRIPTION

[0054] Itis an object of the present invention to provide an
improvement over the prior art of processing architectures
with respect to at least one of data processing efficiency,
power consumption and reuse of the software codes.
[0055] The present invention describes a new processor
architecture called ZZYX thereafter, overcoming the limi-
tations of both, sequential processors and datatlow architec-
tures, such as reconfigurable computing.

[0056] It shall be noted that whereas hereinafter, fre-
quently terms such as “each” or “every” and the like are used
when certain preferred properties of elements of the archi-
tecture and so forth are described. This is done so in view of
the fact that generally, it will be highly preferred to have
certain advantageous properties for each and every element
of a group of similar elements. It will be obvious to the
average skilled person however, that some if not all of the
advantages of the present invention disclosed hereinafter
might be obtainable, even if only to a lesser degree, if only
some but not all similar elements of a group do have a
particular property. Thus, the use of certain words such as
“each”, any “every” and so forth. is intended to disclose the
preferred mode of invention and whereas it is considered
feasible to limit any claim to only such preferred embodi-
ments, it will be obvious that such limitations are not meant
to restrict the scope of the disclosure to only the embodi-
ments preferred. Subsequently Trace-Caches are used.
Depending on their implementation, they either hold unde-
coded instructions or decoded instructions. Decoded instruc-
tions might be microcode according to the state of the art.
Hereinafter the content of Trace-Caches is simply referred as
instruction or opcodes. It shall be pointed out, that depend-
ing on the implementation of the Trace-Cache and/or the
Instruction Decode (ID) stage, actually microcode might
reside in the Trace-Cache. It will be obvious for one skilled
in the art that this is solely implementation dependent; it is
understood that “instructions” or “opcodes” in conjunction

Oct. 20, 2016

with Trace-Cache is understood as “instructions, opcodes
and/or microcodes” (depending on the embodiment).
[0057] It shall also be noted that notwithstanding the fact
that a completely new architecture is disclosed hereinafter,
several aspects of the disclosure are considered inventive per
se, even in cases where other advantageous aspects
described hereinafter are not realized.

[0058] The technology described in this patent is particu-
larly applicable on

[0059] ZYXX processors as described in PCT/EP 2009/
007415;
[0060] their memory architectures as described in PCT/

EP 2010/003459, which are also applicable on multi-
core processors are known in the state of the art (e.g.
from Intel, AMD, MIPS and ARM); and

[0061] exemplary methods for operating ZYXX proces-
sors and the like as described in ZZYX09 (DE 10 013
932.8), PCT/EP 2010/007950.

[0062] The patents listed above are fully embedded into

this specification by reference for detailed disclosure.

[0063] The ZZYX processor comprises multiple Arithme-

tic Logic Units (ALU) Blocks in an array with pipeline

stages between each row of ALU-Blocks. Each AL U-Block
may comprise further internal pipeline stages. In contrast to
reconfigurable processors data flows preferably in one direc-
tion only, in the following exemplary embodiments from top
to bottom. Each AL U may execute a different instruction on

a different set of data, whereas the structure may be under-

stood as a MIMD (Multiple Instruction, Multiple Data)

machine.

[0064] The ZZYX processor is optimized for loop execu-

tion. In contrast to traditional processors, instructions once

issued to the AL.Us may stay the same for a plurality of clock
cycles, while multiple data words are streamed through the

ALUs. Each of the multiple data words is processed based

on the same temporarily fixed instructions. After a plurality

of clock cycles, e.g. when the loop has terminated, the
operation continues with one or a set of newly fetched,
decoded and issued instruction(s).

[0065] The ZZYX processor provides sequential VLIW-

like processing combined with superior dataflow and data

stream processing capabilities. The ZZYX processor cores
are scalable in at least 3 ways:

[0066] 1. The number of ALUs can be scaled at least two
dimensionally according to the required processing per-
formance; the term multi-dimensional is to refer to “more
than one dimension”. It should be noted that stacking
several planes will lead to a three dimensional arrange-
ment;

[0067] 2. the amount of Load/Store units and/or Local
Memory Blocks is scalable according to the data band-
width required by the application;

[0068] 3. the number of ZZYX cores per chip is scalable
at least one dimensionally, preferably two or more dimen-
sionally, according to the product and market. Low cost
and low power mobile products (such as mobile phones,
PDAs, cameras, camcorders and mobile games) may
comprise only one or a very small amount of ZZYX cores,
while high end consumer products (such as Home PCs,
HD Settop Boxes, Home Servers, and gaming consoles)
may have tens of ZZYX cores or more.

[0069] High end applications, such as HPC (high per-
formance computing) systems, accelerators, servers,

US 2016/0306631 Al

network infrastructure and high and graphics may
comprise a very large number of interconnected ZZYX
cores.
[0070] ZZYX processors may therefore represent one kind
of multicore processor and/or chip multiprocessors (CMPs)
architecture.
[0071] The major benefit of the ZZYX processor concept
is the implicit software scalability. Software written for a
specific ZZYX processor will run on single processor as
well as on a multi processor or multicore processor arrange-
ment without modification as will be obvious from the text
following hereinafter. Thus, the software scales automati-
cally according to the processor platform it is executed on.

[0072] The concepts of the ZZYX processor and the
inventions described in this patent are applicable on tradi-
tional processors, multithreaded processors and/or multi-
core processors. A traditional processor is understood as any
kind of processor, which may be a microprocessor, such as
an AMD Phenom, Intel Pentium, Core2 or Xeon, IBM’s and
Sony’s CELL processor, ARM, Tensilica or ARC; but also
DSPs such as the C64 family from TI, 3DSP, Starcore, or the
Blackfin from Analog Devices.

[0073] The concepts disclosed are also applicable on
reconfigurable processors, such as SiliconHive, IMEC’s
ADRES, the DRP from NEC, Stretch, or IPFlex; or multi-
processors systems such as Picochip or Tilera. Most of the
concepts, especially the memory hierarchy, local memories
elements, and Instruction Fetch units as well as the basic
processor model can be used in FPGAs, either by config-
uring the according mechanisms into the FPGAs or by
implementing according hardwired elements fixedly into the
silicon chip. FPGAs are known as Field Programmable Gate
Arrays, well known from various suppliers such as XILINX
(e.g. the Virtex or Spartan families), Altera, or Lattice.
[0074] The concepts disclosed are particularly well appli-
cable on stream processors, graphics processors (GPU) as
for example known from NVidia (e.g. GeForce, and espe-
cially the CUDA technology), ATI/AMD and Intel (e.g.
Larrabee), and especially General Purpose Graphics Proces-
sors (GPGPU) also know from NVidia, ATI/AMD and Intel.
[0075] ZZYX processors may operate stand alone, or
integrated partially, or as a core into traditional processors or
FPGAs; it is noted that any such FPGA integrating a ZZYX
processor as disclosed hereinafter will be or have coarse
granular elements. While ZZYX may operate as a co-
processor or thread resource connected to a processor
(which may be a microprocessor or DSP), it may be inte-
grated into FPGAs as processing device. FPGAs may inte-
grate just one ZZYX core or multiple ZZYX cores arranged
in a horizontal or vertical strip or as a multi-dimensional
matrix.

[0076] All described embodiments are exemplary and
solely for the purpose of outlining the inventive apparatuses
and/or methods. Different aspects of the invention can be
implemented or combined in various ways and/or within or
together with a variety of other apparatuses and/or methods.
[0077] A variety of embodiments is disclosed in this
patent. However, it shall be noted, that the specific constel-
lation of methods and features depends on the final imple-
mentation and the target specification. For example may a
classic CISC processor require another set of features than
a CISC processor with a RISC core, which again differs
from a pure RISC processor, which differs from a VLIW

Oct. 20, 2016

processor. Certainly, a completely new processor architec-
ture, not bound to any legacy, may have another constella-
tion of the disclosed features.

[0078] On that basis it shall be expressively noted, that the
methods and features which may be exemplary combined
for specific purposes may be mixed and claimed in various
combinations for a specific target processor.

Implementing ALU Arrays in Traditional Processors

[0079] One exemplary embodiment of an integration of
the inventive ALU array into a processor is described on the
basis of the Intel x86 (and IA, TA32, [A64) architecture,
other examples are given using the ARM processor archi-
tecture (e.g. ARM7, ARMS, ARM11). While most concepts
of the inventions are directly applicable some may require
modifications. The most important ones are described
herein, other modifications are obvious for one skilled in the
art. The concepts are particularly well suited for multi-issue
processor architectures, which have the capability to issue a
plurality of instructions within a clock cycle.

[0080] The IA register file is insufficient for transferring
enough operands and results per clock cycle for the amount
of ALUs in the ALU-Block of the ZZYX core (see e.g. [3]
FIG. 4). According to one aspect of this invention, the
register file is extended for having a sufficient amount of
registers:

Extended Register File (ERF)

[0081] ERF is used for expanding the processors register
space. It is more efficient than the use of Register Allocation
Tables (RAT). But, to implement the described features, the
functionality of a RAT can basically be used as well.

[0082] The ERF is implemented using a window into the
main memory space of the processor. E.g. could a specific
value in a segment register or an entry in a Segment
Descriptor Table be used for identifying the ERF space.

[0083] Actually the ERF is not stored in the memory but
the address window it used to identify processor internal
registers, which are physically located inside the processor
(on the processor chip).

[0084] For example the segment value FFFC might be
used to identify the ERF window:

[0085] mov es, [FFFC] addresses the ERF

[0086] All subsequent load/stored are not executed by the
load store unit(s). Preferably no data is transferred between
the processor and the memory hierarchy. All load/store
commands are replaced by register addresses and registers
transfers between the data path and the Extended Register
File. The replacement is done by (depending on the imple-
mentation) one or a plurality of instruction decoders. The
accordingly modified micro-codes are entered into the later
described Code Analysis Queue (CAQ) or into the later
stage Reservation Station (RS) and/or ReOrdering Buffer
(ROB) of the processor. For details reference is made to the
respective processor documentation. Particularly, reference
is made to [2] Chapter 5.

[0087] mov eaX, es:0 addresses ERO in the ERF. All
subsequent eax accesses are redirected to ERO.

US 2016/0306631 Al

Using Segment Registers and/or the Segment Descriptor
Table

In Real-Mode:

[0088] dedicated masks are used to identify LRM, TRM
and ERF memory:

OxFFFF: TCM Space
OxFFFE: LCM Space
O0xFFFC: ERF Space
[0089] Data written or read from ERF memory will not
cause a load/store action, but only address the extended
physical register set for extending the real register set.

In IA-32 Mode:

[0090] a bit in the segment descriptor table (e.g. Byte6,
bit5) may be used to indicate a special memory access, the
base addresses are set respectively to the real mode. See
page 388 and 389 of [1].

In TA-32e Mode:

[0091] a bit in the segment descriptor table (e.g. Byte6,
bit5) may be used to indicate a special memory access,
the base addresses are set respectively to the real mode.
See page 933 and 934 of [1].

The Register Set

[0092] The Extended Register File comprises the ZZYX
registers r (FDR), e (VDR) and is (LSDR). Additionally, for
compatibility the original 1A registers might be mapped into
the Extended Register File. An exemplary register set
arrangement is shown in FIG. 7.

Selecting Registers

[0093] For the sake of simplicity the model is explained
based on the 8086 real mode. Obvious for one skilled in the
art, the disclosed method is applicable on any other proces-
sor mode with minor amendments.

[0094] The following sequence of 3 instructions selects
EFR7 as alias for ebx:

[0095] mov eax, FFFC
[0096] mov esi, eax
[0097] mov ebx, es:7
[0098] Subsequent accesses to ebx are replaced in the

microcode by the address of ERF7.
[0099] Generally the sequence is (reg being any IA reg-
ister and erf being any Extended Register File register):
mov eax, FFFC
mov esi, eax
mov reg, erf
[0100] The sequence is required for each alias selection.
Ideally esi is loaded with FFFC and not changed. Then,
further aliasing requires only the 3rd instruction of the
sequence.
[0101] In one preferred embodiment, the sequence is
replaced by a single instruction:

[0102] alias ebx, 7
or, generally

[0103] alias reg, erf
[0104] The processor operates on the ERF only. At startup,
[EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP] are aliased
(mapped) to ERFO . . . ERF7.

Oct. 20, 2016

[0105] The method is particularly useful, as IA compilers
generate many instructions accessing memory (due to the
very limited register set AND the CISC nature of the
processor). The memory addresses can be mapped to ERF
registers, e.g.: add es:7, eax is addressing ERF7 instead of
memory (assuming es is set to FFFC).

Extending the 2 Address Assembler Code

[0106] One solution for Extending the 2 address assembler
code is to move the result of an operation into the target
register after the operation. By doing so, the operation is
embraced by the alias code to move the operands and the
alias code to move the result. The generalized result alias is:

[0107] mov eax, FFFC
[0108] mov esi, eax
[0109] mov erf, reg
or
[0110] alias erf, reg
[0111] Prior accesses to reg are replaced in the microcode

by the address of erf. This may be achieved via a buffer (e.g.
the Code Analysis Queue, the ReOrder Buffer (ROB), or the
Reservation Station) or Register Renaming; both known in
the state of the art. For avoiding backtracking, the result
register aliasing might be pulled in front of the operation.
However, this is incompatible with processors not having an
ERF.
[0112] In matrix mode (i.e. the subsequently described
vertical reordering), no result register is defined by the
opcode as default. So, the basic operation is:

[0113] op-, srcO, srcl
[0114] Oanly if a move to a result register is explicitly
defined (e.g. by a mov or alias command), a result register
is defined.
[0115] Yet, results produced within the matrix are acces-
sible by other AL Us in the array via the ALU registers a (e.g.
a[row, col], with e.g. O<row<3 and 0<col<3), reference is
made to the software model and exemplary embodiment of
assembly language of the ZZXY processor described in
PCT/EP 2009/007415. Replacing the original source register
with a reference to the ALU producing the result obsoletes
the need of a ReOrdering Buffer (ROB) or Alias Registers
(AR) to handle Out-OfOrder execution (OOO). The physical
register, formerly being implemented via ROB or AR is
implemented by the output (register) of the ALU in the
ALU-Block producing the result being required as operand.

Executing Non- or Partially Optimized Code in the
ALU-Block

[0116] Processing loops in Matrix Mode in the ALU-
Block is provides performance and power benefits. Instruc-
tion fetching and decoding is largely reduced by mapping by
statically mapping loops or loop partitions onto the ALU-
Blocks and keeping the setting static until the loop termi-
nates or the FIFO registers are filled.

[0117] In order to execute non-optimized IA code on the
ALU-Block preferably the following steps are performed to
transform loops preferably (but not necessarily) in the
shown order:

LT1) Register Renaming

[0118] Registers are renamed, preferably using the
described ERF in order to have a decent register file.
Alternatively for example Register Renaming or Reor-
der Buffers (ROB) (both known in the state of the art)
might be implemented.

US 2016/0306631 Al

LT2) Loop Detection

[0119] Loops are detected by conditional jumps to code
sections which have been executed already. Code
embraced by the conditional jump instruction and the
target of the conditional jump is likely a loop and may
qualify for execution in Matrix Mode.

LT3) Horizontal Reordering

[0120] Register independent instructions are horizon-
tally reordered and mapped horizontally on ALUs in
the ALU-Block according to the state of the art (e.g. as
done in Reorder Buffers (ROB) or achieved by Register
Renaming). If more independent instructions than
ALUs exist, mapping may continue in with a lower,
preferably the next lower ALU row of the ALU-Block.

LT4) Vertical Reordering

[0121] Instructions depending on the results of other
instructions are mapped onto subsequently lower ALU
rows of the ALU-Block so that the respective results
can be fed from the result generating ALU in accor-
dance with the preferred data flow direction to the ALU
depending on the result. As described before, no result
register is defined by the opcodes as default. Only
explicit move instructions (e.g. mov or alias), may
transfer an ALU result to a register of the register file
(e.g. ERF). Note: Within this specification it is assumed
that the preferred data-flow direction is from top to
bottom.

LTS5) Partitioning

[0122] If the loop body is too large to be mapped onto
the ALUBIlock it is partitioned into a plurality of
Catenae. A partition has the size of all instructions
being mappable onto the given resources (e.g. ALUs) in
the ALU Block. If no more resources are available
during the mapping process, the respective partition
(i.e. Catena) of the loop is processed. In accordance to
[3] the results are written into the FIFO register file. If
the FIFOs are full or the loop terminates, the next
partition (i.e. Catena) is mapped and executed respec-
tively. If more than one ALU-Block is available and
allocated to the task, the instructions may be mapped
into a plurality of Catenae stretched out over a plurality
of ALUBlock immediately for parallel execution in
accordance to the previously described inventions.

[0123] As described in [3] preferably a Termination-Con-
trol-Counter (TCC) is implemented in hardware to compute
the termination criterion. Accordingly the loop header and
footer are evaluated and TCC is set accordingly. The con-
ditional jump of the loop footer is then controlled by the
TCC. The respective code is completely removed and not
executed by the ALU-Block.

[0124] One exemplary embodiment of a TCC:

[0125] Three registers are part of the processor’s register
file (e.g. the ERF) defining 1) the current value of the loop
counter (CurrentLoopCounter CLC), ii) the step width
(STEP) and iii) the limit to be tested (LIMIT). A fourth
register defines and controls the loop function (FUNC). This
register may reside in the processor’s register file or as a
separated control register. FUNC defines the function of the

Oct. 20, 2016

loop, the computation of the exit criterion and is used to
implement early exits from the loop (e.g. by statements such
as break or exit).

[0126] The TCC comprises a function processor (fp),
which may be an adder and/or subtractor. A comparator
(cmp) compares the result of the function processor with the
set limit and generates the termination signal (TERM) if the
termination criterion is met.

[0127] The operations of the function processor and the
comparator are defined by the FUNC register.

[0128] In advanced embodiments a more complex calcu-
lator (e.g. including one or a plurality of multipliers and/or
other mathematic and/or logic functions) may be imple-
mented.

[0129] In some embodiments an arrangement of compara-
tors may check for complex limits.

[0130] In those cases, more than one STEP and/or LIMIT
registers may be implemented and the FUNC register may
be extended to set the complex functionality.

[0131] An exemplary format of the FUNC register is
shown below:

bit position 4 3...1 0
break comparison: function:
000: < (less) 0: + (add)

001: > (greater)

010: <= (less equal)
011: >= (greater equal)
100: = (equal)

101: = (not equal)

1: - (subtract)

[0132] The exemplary TCC supports e.g. the execution of
loops such as, e.g.:

for (i=0; i<size; i++) { . .. ;}

[0133] CLC is initially set to 0 (according to i=0);

[0134] LIMIT is set to size;

[0135] STEP is set to 1 (according to i++);

[0136] FUNC(function) is set to 0 (add) (according to
i++);

[0137] FUNC(comparison) is set to 000 (according to
i<size).

i=0; while (i>limit) { . . . ; i-=step; . . . ;}

[0138] CLC is initially set to 0 (according to i=0);

[0139] LIMIT is set to limit;

[0140] STEP is set to 0 (according to i-=step), step can

by dynamically changed during the loop executed by
writing the respective value into the STEP register;
[0141] FUNC(function) is set to 0 (add) (according to
i-=step);
[0142] FUNC(comparison) is set to 001 (according to
i>limit).
An e.g. if () break; statement
[0143] might be embedded in the body of the loop to
implement early exits. The while the computation of
the condition will not be replaced but processed on in
the ALU-Block, the respective conditional exit is
replaced in the microcode with an instruction setting
the break bit in the FUNC register, causing the issue of
the TERM signal via the OR gate.
[0144] In advanced embodiments, the TCC is extended to
process the comparison for the early exit.

US 2016/0306631 Al

[0145] Having the TCC registers embedded in the proces-
sor’s register file allows other parts of the code to make
modifications to the loop control at any time during the
execution.

[0146] Basically two approaches for detecting loops may
be used:
[0147] LD1) A first iteration of the loop is executed and

the loop is detected during this first execution.

[0148] LD2)Loops are detected in advance of their execu-
tion using a look-ahead, prefetching and pre-decoding the
respective instructions.

[0149] In one embodiment, the processor may comprise a
Trace Cache, as e.g. known from the Pentium-4 architecture,
see e.g. [4] chapter 35. Trace Caches store decoded Micro-
codes instead of instructions. Preferably, once detected and
transformed loops are stored in the Trace Cache, so that they
are available the next time for immediate execution without
any effort on time and/or energy.

[0150] LD2 detects loops at an early stage, preferably even

prior to decoding the opcodes into microcodes. This is ideal

for e.g. loading the Trace Cache (if implemented) immedi-
ately with the correct microcodes. The disadvantage of LD2
remains in required look-ahead. Prior to decoding, a signifi-
cant amount of instructions needs to be loaded into a buffer

(Code Analysis Queue (CAQ)) and analysed in order to

detect loops of reasonable sizes. This increases the proces-

sors instruction pipeine significantly and may add additional
delays on context switches and/or interrupts.

[0151] LD1 detects loops during processing. Typically the

first loop iteration is processed non-optimized. During pro-

cessing of the loop the respective transformations are per-
formed. Preferably the code is loaded into a buffer (Code

Analysis Queue (CAQ), which is analysed for optimizable

code (e.g. loop code). The code is respectively optimized

and the optimized code is written (back) into the CAQ. In
one embodiment the CAQ could be implemented by the the

ReOrdering Buffer (ROB) or in a preferred embodiment by

the Reservation Station. The TCC is set up with the values

after the first loop iteration and with the second iteration, the
optimized loop is processed in Matrix Mode. In some slower
implementations, more than one loop iteration may be
required for transforming the loop and setting up the TCC.

[0152] If a Trace Cache is implemented, the modified

microcodes might be written back from the CAQ to the

Trace Cache, leading to the same positive effect on power

and execution time when starting the loop for a second time

as it can be achieved using LD1.

[0153] It shall be noted, that depending on the chosen

approach (LD1 or LD2) the CAQ is located at different

position within the processor pipeline.

[0154] To explain the invention in detail, a first example is

given below:

FIR-filter

#define N 5
static const int gFirCoeffs[N] =

Oxa6a3, 0x20d7, 0x1b77, 0x0ctb, 0x75ac

;

void firl(const int inData[], unsigned inSize,
int outData[], unsigned *outsize)

{

unsigned size = inSize — N;
int i, j;

Oct. 20, 2016

-continued

FIR-filter

int tmp;
*outSize = size;
for (i = 0; i<size; i++) {
tmp = 0;
for (j = 0; j<N; j++)
tmp += inData[i+N-1-j] * gFirCoeffs[j];
outData[i] = tmp;

[0155] FIGS. 11A and 11B show the assembler code
generated by the state of the art GNU GCC compiler.

[0156] Aloop is detected by a conditional jump backwards
in the code to a section which has already been processed.
[0157] The jne .LL6 opcode fulfils this requirement (1101).

[0158] Using a backtracking mechanism (1102) imple-
mented in hardware on the processor the loop counter is
analysed for setting up the TCC. Backtracking starts with the
instruction setting the flags for the conditional jump, which
is cmp ebx, DWORD PTR [ebp-16] (1110). Based on the
compare and jump type, the comparator of the TCC is set.
In the exemplary case the loop terminates if ebx is equal
DWORD PTR [ebp-16], therefore the comparator function
is set to equal (FUNC[3:1]=100). Further backtracking is
based on the input variables of the compare, in this example
ebx and DWORD PTR [ebp-16]. The variable ebx is modi-
fied by the add (lea) instruction lea ebx, [eax+1] (1111),
based on which the loop counter is incremented. On this
basis the TCC loop function can be set to add (FUNC[0]=0)
and the STEP register is set to 1.

[0159] Further backtracking is based on the input variables
of the compare and the add (lea) instruction.

[0160] Ifbacktracking reaches code before the jump target
(.L6), the loop header is found. In the loop header the limit
(LIM-IT) defining the loop termination and the start value of
the loop counter (CLC) is defined.

[0161] In this example mov DWORD PTR [ebp-16], ecx

(1112) sets the limit to the value of ecx. Respectively the

LIMIT register of the TCC is set to ecx. mov eax, 1 (1113)

sets the start value of the loop to 1 and respectively CLC is

set to 1; if the loop is analysed prior to the first execution,

e.g. according to LD2. If the loop has been analysed during

execution, CLC is set to the current value of eax, when the

transformed and optimized loop execution is started. The

actual value of CL.C then depends on the number of loop

iterations prior to the start of the transformed and optimized

loop execution.

[0162] One exemplary embodiment of a backtracking

algorithm (BTA) may operate as such:

[0163] BTAI) start with the conditional jump

[0164] BTA2) continue with the instruction (e.g. a com-
pare) generating the flag(s) the conditional jump depends
on

[0165] BTA3) continue with instructions modifying the
register and/or memory entries the flag generating instruc-
tion depends on

[0166] BTA4) continue following instructions modifying
the register and/or memory entries until instructions

before the conditional jump’s target address (i.e. the loop
header)

US 2016/0306631 Al

[0167] BTAS) use the settings in the loop header for
defining the loop counters start value and the setting of the
loop’s termination criterion

[0168] The algorithm is described on an instruction basis.

Depending on where the algorithm is performed, e.g. at

decoder level or at a later stage (e.g. at execution stage),

actual instructions or microcode might be analysed.

[0169] FIG. 12a shows the transformation and optimiza-

tion of the loop.

[0170] One exemplary embodiment of a Catena optimiza-

tion algorithm (COA) may operate as such:

[0171] COALl) place independent instructions in the first
row until the row is filled or no more independent
instructions are available

[0172] COAZ2) place instructions depending on instruc-
tions in a previous row in the subsequent row, if there is
space left in the row continue with independent instruc-
tions if available, else move to next row

[0173] COAZ2r) Repeat COA2)until all rows are processed

[0174] COA3) Process instructions and continue with next
Catena after termination

[0175] Respectively according to FIG. 12a the indepen-
dent instructions M1, M2, M3 and M4 are mapped into the
first row of ALUs in the ALU-Block (1201), until the row is
full. In the second row, first instruction Al is placed which
depends on M1 and M2. Then the row is filled with
remaining independent instructions; in the given example
only M5 remains. In the next row A2 is placed, depending
on Al and M3; no other independent instructions or instruc-
tions depending on any previous rows exist. Finally A3 is
placed in the last row, depending on A2 and M4; no other
independent instructions or instructions depending on any
previous rows exist.

[0176] The placed Catena is processed, the results are

written into the FIFO registers of the register file (1202).

[0177] Afterwards, according to BOA the second Catena

(Catena 2) is placed. Only A4 and S1 remain. A4 is placed

in the first row, the depending S1 in the subsequent row.

[0178] In one advanced embodiment, the number of unal-

located resources in a first Catena might be compared with

the number of required resources in the subsequent Catena.

If enough resources are available in the first Catena the

algorithm could try to map the instructions of the second

Catena into the empty space of the first, possibly under

violation of the timing rules. In that case additional latency

could be introduced by streaming data in on other direction
than the preferred one, e.g. horizontally as shown in FIG.
12b. A4 and S1 are mapped onto empty ALUs in the last row.

The result data from A3 is streamed to A4 with additional

latency and from there (again with additional latency) to S1.

While the latency of the first Catena increases, overhead for

executing the second Catena is saved. The additional latency

must be taken in to account, to ensure that all operations are
finished in the first Catena, when changing the instructions.

[0179] FIG. 13 shows an exemplary embodiment of a

backtracking algorithm (BTA) for analysing loops:

[0180] After detecting a conditional jump backwards (e.g.

jne .LL6 (1101) of FIGS. 11A and 11B) to already executed

code (1301), a code pointer (code_pntr) moves backwards
and the respective instructions are fetched and read until the

instruction is detected (1302), which generates the flags (e.g.

by comparison, e.g. 1110) controlling the conditional jump

operation (1301, e.g. jne .6 (1101)). The respective instruc-
tions might be fetched from memory (e.g. main memory or

Oct. 20, 2016

code cache (e.g. Level-1 instruction cache)), but are in
preferred embodiments preferably fetched from an accord-
ingly large Code Analysis Queue (which could be imple-
mented using a ReOrder Buffer (ROB) (reference is made to
[2] Chapter 5 and the “Tomasulo” algorithm know by one
skilled in the art) or Reservation Station (reference is made
to [2] Chapter 5 and the “Tomasulo” algorithm know by one
skilled in the art) or Trace Cache (reference is made to [4]
chapter 35) if located there. The TCC compare settings (e.g.
FUNCJ[3 . . . 1]) are set (1331) in accordance with the
detected instruction (1302).

[0181] The code pointer (code_pntr) moves further back-
wards and the respective instructions are fetched and read
until the instruction is detected (1303, e.g. 1111), which
modifies at least one of the variables which are used in the
flag generating instruction (1302). Typically the instruction
is arithmetic and of the type addition or subtraction. How-
ever in some embodiments more advanced instructions may
be supported and/or not only one instruction may be sup-
ported by the TCC but even more complex operations
having a plurality of instructions. The TCC arithmetic
settings (e.g. FUNCJO]) are set (1332) in accordance with
the detected instruction (1303).

[0182] The code pointer (code_pntr) moves further back-
wards and the respective instructions are fetched and read
until further instructions are detected (1305), modifying at
least one of the variables on which the flag generating
instruction (1302) depends on. If those instructions are
supported by the TCC (1306), the TCC is accordingly set
(1333); else the instructions might be ignored if possible. If
not the loop possibly cannot be optimized. In this case the
loop optimization is stopped and the non-optimized loop is
processed in the traditional manner (1322).

[0183] After the further continuously backward moving
code pointer (code_pntr) reached code before the jump
target (e.g. .LL6 of FIGS. 11A and 11B) of the conditional
jump 1301, the loop header has been reached (1307). There
the initial value of the loop counter and the loop termination
criterion are defined. If an instruction (e.g. 1113) is detected
setting the variable of the loop counter (1308), the TCC
initial loop counter value (e.g. CLC) is accordingly set
(1334).

[0184] If an instruction (e.g. 1112) is detected setting the
variable of the loop stop criterion (1309), the TCC stop
criterion (e.g. LIMIT) is accordingly set (1335).

[0185] If both, the initial loop counter value and the stop
criterion have been set (1310), the loop is completely
analysed and the TCC set up has been completed. The
analysis routine quits and the loop processing is started
(1321).

[0186] Respectively the backtracking algorithm may be
extended in some embodiments to support step widths of the
loop counter (CL.C) other than 1 (e.g. by setting STEP).
[0187] FIGS. 14A and 145 show an exemplary embodi-
ment of a Catena optimiza-tion (COA) placement algorithm
for placing instructions onto the ALUs in the ALU-Block:
[0188] After the detection of a loop the algorithm starts
with the first instruction of the loop, the code pointer
(code_pntr) points to the start of the loop. The ALU pointers
alu_row and alu_column point to the first ALU (in the
preferred embodiment the upper left ALU) (1401).

[0189] In the first row only instructions can be placed not
depending on other instructions placed in the ALU-Block.

US 2016/0306631 Al

Therefore the algorithm is continued respectively (1402)
with placing independent instructions (1421).

[0190] If code_pntr points to an unplaced independent
instruction (1403), it is mapped onto the specific ALU in the
ALU-Block at the position alu_row and alu_column are
pointing at (1441) and the alu_column pointer is incre-
mented (1404).

[0191] Ifthe last ALU in the column is not yet reached and
further ALUs are available (1405), the code pointer is
incremented (1406) and points to the next instruction to be
analysed.

[0192] Ifall instructions within the loop are placed and no
more unplaced instructions exist (1407), the placed instruc-
tions are executed (1408) and afterwards processing is
continued with code behind the loop.

[0193] If more unplaced instructions exist and the condi-
tional jump backwards is not yet reached (1407), the instruc-
tion analysis and placement continues with the next instruc-
tion (1409).

[0194] If more unplaced instructions exist and the condi-
tional jump backwards is reached (1407), the placement is
continued in the next ALU row. The ALU row pointer
(alu_row) is incremented, the ALU column pointer (alu_
column) is reset to the first column and the code pointer
(code_pntr) is set with the start address of the loop code
(1431).

[0195] If the last ALU row has been placed and no more
ALU row is available (1432), the placed instructions are
executed (1433) and afterwards the instruction analysis and
placement continues with the next unplaced instruction,
from the start ad-dress of the loop code on (1434).

[0196] If the last AL.U row has not been placed and more
ALU rows are available (1423), the loop analysis continues
placing code into the next row (1435).

[0197] When continuing, the algorithm restarts the analy-
sis from the first instruction in the loop on.

[0198] Now placing ALU rows other than the first (1402),
dependent unplaced instructions are searched and placed
first.

[0199] If code_pntr points to an unplaced dependent
instruction (1411), it is mapped onto the specific ALU in the
ALU-Block at the position alu_row and alu_column are
pointing at (1442) and the alu_column pointer is incre-
mented (1412).

[0200] Ifthe last ALU in the column is not yet reached and
further ALUs are available (1413), the code pointer is
incremented (1414) and points to the next instruction to be
analysed.

[0201] Ifall instructions within the loop are placed and no
more unplaced instructions exist (1415), the placed instruc-
tions are executed (1416) and afterwards processing is
continued with code behind the loop.

[0202] If more unplaced instructions exist and the condi-
tional jump backwards is not yet reached (1415), the instruc-
tion analysis and placement continues with the next instruc-
tion (1417).

[0203] If more unplaced instructions exist and the condi-
tional jump backwards is reached (1415), the search for
placeable independent instructions starts from the first
instruction in the loop on (1418).

[0204] If the last column has been placed (1413 or 1405)
the algorithm continues (1436) placing the next ALU row
(1431).

Oct. 20, 2016

[0205] In order to differentiate between place and
unplaced instructions, a scoreboard might be used, a table in
which each of the instructions in the loop is referencing to
a flag indicating whether the instructions has been placed
already or not, or any other flag associated to an instruction.
Obvious for one skilled in the art, the flags could be
implemented in the Trace-Cache or CAQ. For example, a
placement information (1602) in the CAQ according to the
exemplary embodiment shown in FIG. 16 can be used to
determine if an instruction has been placed. Also obvious for
one skilled in the art, various other methods might be used,
e.g. deleting placed instructions and/or replacing them with
a token indicating that the respective instruction has been
placed already.

Loop Control

[0206] The loop control may depend on data, computed
irregularly and/or not predictable within the loop. This
prevents automated counters as described before. Typically
such loops are not counter based, as e.g. simple for-loops,
but are controlled by more complicated conditions.

[0207] Loop analysis algorithms (such as BTA or COA)
may try to move the computation of the respective data
upwards in the code sequence for earlier processing, and
correspondingly the loop control. Ideally it is possible to
move both into the first Catena produced, so that the number
of loop iterations is known a prior.

[0208] However, often this is not possible, as the respec-
tive data can only be generated late in the loop computation.
[0209] In those cases, speculation may be used to ensure
optimal loop performance:

[0210] Each Catena is processed for n-iterations, until
finally loop control is computed. The loop termination may
be detected already after m<n iteration. Too many loop
iterations (n—-m) may have been computed, the loop overshot
by n-m cycles.

[0211] Overshooting causes a variety of problems: E.g.
wasted performance and power; but algorithmically worse
are wrong results at the end of the loop processing.

[0212] One preferred approach for avoiding erroneous
results is to buffer all store and register write operations in
a loop result pipeline (RSP), which depth is n—1 (assuming
that at least one of n cycles has to be processed to detect the
loop terminations, else the terminations had been detected
already previously).

[0213] During loop processing, the output of the pipeline
is written into the registers of the register file and analogous
memory. This is safe, as the pipeline is deeper than the
number of overshoot cycles in the worst case.

[0214] In case of the overshoot, the overshot entries are
deleted and the remaining pipeline entries are written to the
target. If entries are targeting the same address (e.g. the same
register or the same memory location) it is sufficient to write
the last entry and discard all others.

[0215] Obviously, during loop processing, read operations
have to receive the data of the addressed register or memory
location from the RSP, if the respective address is in there.
[0216] To avoid unnecessary performance and power loss,
as well as unnecessary hardware overhead for the RSP, it is
preferred to limit the number of maximum loop iterations for
such kind of loops.

[0217] Processing only n=1 iterations, would eliminate all
problems, but the pipeline through the array of ALUs
(ALU-Block) would frequently stall and bubble.

US 2016/0306631 Al

[0218] The minimum number of iterations to keep the
pipeline operating under optimum conditions (bubbles or
stalls are avoided), the number of iterations n should equal
the depth of the pipeline (e.g. the number of rows). E.g. for
a 4 rows deep ALU-Block, the number of iterations n should
be ideally 4. Thus the optimum performance is achieved and
the maximum overshoot is limited to acceptable 3 cycles
(assuming that at least one of n cycles has to be processed
to detect the loop terminations, else the terminations had
been detected already previously). Respectively, a 3 entries
deep RSP shall be deemed as an acceptable hardware
overhead.

Code Analysis

[0219] As described, in a preferred embodiment the code
is analysed during first loop execution(s), e.g. the first loop
execution, the first two loop executions or within a number
of first loop executions.

[0220] The benefit of this procedure is manifold, e.g.:
[0221] No effort during code decoding, which typically
increases the latency and pipeline depth.

[0222] In this preferred embodiment the code is dynami-
cally analysed during execution. This allows more thorough
analysis as runtime information is available during execu-
tion, which would not be accessible at the decode stage.

The Code Analysis Queue (CAQ)

[0223] The CAQ is an instruction buffer, storing an
amount of instructions large enough to detect, analyse and
optimized loops of decent size. While a larger queue size
improves the quality of the optimization algorithms, the size
is limited by silicon cost. The lower limit of the queue size
is defined by the amount of ALUs in the AL U-Block. At least
as many instructions as can be mapped onto the ALU-Block
should be storable into the CAQ.

[0224] The detection, analysis and optimization algo-
rithms read the instructions from the CAQ, and write the
optimized instructions either back to the CAQ or forward
them to further processing.

[0225] The CAQ is a circular buffer. Instructions newly
received are written to the beginning of the buffer. Instruc-
tions forwarded for further processing are marked as being
released. Released instructions might be removed from the
CAQ. Released instructions at the end of the buffer are
removed freeing space for receiving new instructions.
[0226] The CAQ might be located

[0227] a) in front of or coupled with the Instructions
Decoders: Instructions are received from the Instruc-
tions Buffers (e.g. see [4] FIG. 38-2 Streaming Buffer,
or [2] FIG. 5-11FU1,2,3) and forwarded to the Decoder
Stage or Register Allocation Table (RAT) or Register
Renaming Stage or Schedulers (e.g. [2] FIG. 5-1, [4]
FIG. 38-3);

[0228] b) behind the Instruction Decoders: Instructions
are received from the Decoders (e.g. [4] FIG. 38-2
1A32/pop Decode, or [2] FIG. 5-1 DECI1, 2) and
forwarded to the Reservation Station (RS) (e.g. [4]
FIG. 38-3 General Instruction Queue, [2] FIG. 5-1)
and/or (Re-Order Buffer (ROB) or the Execution Units
(EX).

[0229] In preferred embodiments for Out-Of-Order Pro-
cessors the CAQ might be implemented using the Reserva-

Oct. 20, 2016

tion Station(s) (e.g. [4] FIG. 38-3 General Instruction
Queue, [2] FIG. 5-1) and/or the Re-Order Buffer (e.g. [2]
FIG. 5-1) of the processor.

[0230] In-Order processors typically do not comprise buf-
fer such as ReOrder Buffers (ROB) or Reservation Stations
(RS). This type of processors therefore preferably have
dedicated CAQ implemented, either in front of or coupled
with the Instructions Decoders (see a)) or behind the Instruc-
tion Decoders, preferably in front of or in parallel to the
Execution Units (EX).

[0231] The Trace Cache might be used directly as CAQ. It
shall be noted that the Trace Cache (TC) might be imple-
mented in both types of processors, In-Order and Out-Of-
Order.

[0232] Exemplary implementations are shown in FIG. 19
using simplified processor block diagrams. The used labels
are obvious for one skilled in the art: IF=Instruction Fetch
stage, ID =Instruction Decode stage, ROB=Reorder Buffer,
RS=Reservation Station, EXU=Execution Units. The
instructions are transferred from the IF to the ID. Subse-
quently decoded instructions and/or microcode (e.g. uOps)
are processed. In the context of describing the function
and/or implementation of the invention, the term instruc-
tions may be understood 1) as decoded instructions and/or
microcode (e.g. nOps) if the invention is applied behind the
Instruction Decoder stage (ID); ii) as instructions (e.g.
binary opcodes) if the invention is applied before or in the
Instruction Decoder stage (ID).

[0233] The Analyser and Optimizer stage (AOS) (accord-
ing to this invention comprising e.g. BTA and/or COA
and/or the subsequently described MRA) monitors the
instructions transmitted from the RS to EXU. A plurality of
Reservation Stations (RS) may exist, e.g. one for each of the
Load/Store units, the Integer Units, and the Floating Point
units. Alternatively one RS may serve all of said units.
[0234] Exemplary implementations for Out-Of-Order pro-
cessors are shown in FIGS. 194, 196 and 19c.

[0235] FIG. 194 shows a first example of an Out-Of-Order
processor (OOO). The instruction stream through one or a
plurality of Reservation Station(s) is analysed (RS equals
CAQ). The RS receive the instruction from ID. Simultane-
ously the instructions may be written into the ROB.
[0236] In a preferred embodiment, it is assumed that the
Reservation Station(s) RS have sufficient depth to keep all
instruction entries for the optimized code. The optimized
code is written back from AOS directly into the RS and
subsequently transferred from the RS into EXU again.
[0237] In other embodiments, e.g. if the Reservation Sta-
tion(s) have insufficient depth, the AOS writes the optimized
code into the ROB, from which it is subsequently transferred
to the RS for being sent to EXU.

[0238] FIG. 1956 shows a second and more preferred
example of an Out-Of-Order processor (OOO), comprising
a Trace Cache. In the shown example the basic architecture
of the Pentium 4 is used, which did not comprise a ReOrder-
Buffer (ROB), but used Register Aliasing. Obviously in
other implementations, a ROB could be implemented behind
the TC. As in the Figure before, the instruction stream
through one or a plurality of Reservation Station(s) is
analysed (RS equals CAQ). The RS receive the instruction
from TC. Simultaneously the instructions may be written
into a ROB if implemented.

[0239] In a preferred embodiment, it is assumed that the
Reservation Station(s) RS have sufficient depth to keep all

US 2016/0306631 Al

instruction entries for the optimized code. The optimized
code it written back from AOS directly into the RS and
simultaneously into the Trace Cache (TC), so that later
executions of the very code immediately have access to the
optimized version. As before, the optimized code is subse-
quently transferred from the RS into EXU again.

[0240] In other embodiments, e.g. if the Reservation Sta-
tion(s) have insufficient depth, the AOS writes the optimized
code into the TC, from which it is subsequently transferred
to the RS for being sent to EXU.

[0241] The Trace Cache typically stores the dynamic
instruction stream in order of the dynamic executions (ref-
erence is made to [6]). Therefore it is in most cases sufficient
to apply the invention on Trace Cache (TC) level, analysing
the instructions stream in the Trace Cache (TC equals CAQ)
and writing the optimized code back into the TC. A respec-
tive implementation is shown in FIG. 19¢.

[0242] Exemplary implementations for In-Order proces-
sors are shown in FIGS. 194 and 19e.

[0243] In FIG. 19d the instructions are sent from ID
directly to the EXU. A dedicatedly implements CAQ traces
the instruction stream and stores the instructions. The analy-
sis and optimization (AOS) is done on the instructions stored
in the CAQ and/or directly on the instruction stream to the
EXU. The optimized instructions are written into the CAQ,
from which they are read if accessed again.

[0244] Obviously the CAQ operates very similar to a
Trace Cache. Therefore in a preferred embodiment accord-
ing to FIG. 19¢ a Trace Cache is implemented between the
ID and EXU. The analysis and optimization (AOS) is done
on the instructions stored in the TC and/or directly on the
instruction stream to the EXU. The optimized or reordered
instructions are written into the TC, from which they are
read if accessed again. (TC equals CAQ).

[0245] In one embodiment, the CAQ’s (or Trace-Cache’s)
data output might be of sufficient width to supply a plurality
of ALUs of the ALU-Block, ideally an entire row with
instructions in one single clock cycles.

Compiler Support

[0246] In an ideal environment, the high level compiler,
generating the source code from a high level language might
already sort the instructions into an ideal order for placing on
the ALU Block. A respectively adapted optimizer path,
which uses ideally the same placer algorithm as the proces-
sor internal Code Analysis and/or Placer sorts the instruc-
tions already into the correct order, so that no reordering has
to be done by the processor (e.g. using BTA, COA, etc). The
compiler’s emitter delivers the instructions already in the
optimal order.

[0247] In an ideal embodiment, the compiler emits all
instructions in the same order as the processor would issue
them to the ALU Block. As (in the exemplary embodiment
of this patent) the processor places independent instructions
within a row from left to right and then moves to the next
row, and places dependent instructions in deeper rows, so
that results can be transferred by the network from upper
rows to lower rows, the compiler will emit the instructions
in exactly the right order.

[0248] Instructions may be implemented to indicate that
the next instructions shall wrap-around and be place in the
next deeper row (in case a row cannot be completely filled),
and/or instructions may use a bit or flag to indicate a

Oct. 20, 2016

wrap-around, and/or instructions may exist to place a sub-

sequent instruction at an exactly specified location.

[0249] However, the most important aspect of this

approach is that typically no specific support by the instruc-

tion set is required.

[0250] The processor internal code analysis wraps around

to the next row as soon as

[0251] WRPa) the first instruction is detected depending
on any other instruction in the current row;

[0252] WRPD) code to the last ALU of the current row has
been issued and no more ALUs in that row are available.

[0253] This algorithm even works if the real processor

might have a different architecture than the compiler

assumed (e.g. more 30 or less ALUs in a row, and/or more

or less ALUs).

[0254] If this basic rule is observed, once respectively

generated code can easily be used on other AL U-Block

shapes and/or processor architectures.

Register Analysis and Handling

[0255] Based on the exemplary FIR-filter 1, FIG. 15
shows the handling of result registers in an exemplary
embodiment according to [3], e.g. FIG. 27. Each of the
multipliers M1, M2, M3, M4, and M5 produces a result
which is written into register EBX. Equivalently the adding
instructions Al, A2, A3, (and A4), produce results which are
written into the register esi. It must be ensured, that only and
exactly the last in-struction according to the original order of
instructions actually writes its result into the respective
registers. Basically methods known in the prior art, such as
combinations of ReOrder Buffers (ROB), Register-Alloca-
tion-Table (RAT) and Retirement (RET) stages may be used
(see e.g. [2], Chapter 5), e.g. in conjunction with register
renaming, to solve this issue.

[0256] However, implementing a respectively optimized
register write path to write result data into the register file,
reduces the managing overhead significantly.

[0257] In one preferred embodiment, the source registers
are managed by the RAT,ROB or Register Renaming stages,
while the access order to the target registers is managed in
the datapath.

[0258] FIG. 16 shows the exemplary implementation of
the source register assignment. In the Code Analysis Queue
(CAQ) (1601) the decoded instructions are placed in pro-
gram order (1601), according to the state of the art. The
exemplary shown CAQ comprises exemplary instruction
entries according to FIGS. 11A and 11B, FIG. 124, and FIG.
15.

[0259] Preferably the BTA and COA algorithms operate
on the ROB entries.

[0260] The CAQ comprises a field (1602) associated to
each of the instruction entries indicating for each instruction
where it has been placed. This filed can also be used by the
COA algorithm as flag information to determine whether the
respective instruction has already been placed already (e.g.
for 1411, 1415, 1403 and 1407).

[0261] A Register Cross Referencing Table (RCRT)
(1603) monitors for each target register, where the instruc-
tion generating the respective data has been placed within
the ALU-Block. The shown exemplary embodiment uses the
Intel 1A register set (EAX, EBX, ECX, EDX, ESI, EDI,
EBP, ESP, FPO, FP1, FP2, FP3, FP4, FPS, FP6, FP7).
[0262] Inone embodiment (El) the RCRT exists only once
and is updated from cycle to cycle (t) each time a respective
algorithm walks through the CAQ. For each subsequent
instruction the source register is looked up from the RCRT.

US 2016/0306631 Al

The source register address is then accordingly replaced
with the respective AL U register (a[row, column), for details
see also [3]), so that the source ALU is accessed instead of
the actual register. The dashed table 1604 shows the changes
made to the RCRT over time (t) in the Order of the
instructions in the CAQ.

[0263] In one embodiment (E2), not one single RCRT is

implemented, but each CAQ entry has an additional field

1611 comprising the RCRT. While this requires a larger

CAQ, the maintenance effort for updating the RCRT from

instruction to instruction in each of the CAQ walks is

omitted. In this case 1604 shows the content of the 1611 field
at the position of the exemplary instructions.

[0264] FIG. 15 exemplary shows the actual source register

addressing and target register management of the exemplary

FIR-filter 1 algorithm according to FIGS. 11A and 11B, FIG.

12a, and FIG. 16. The input registers EBX and ESI have

been replaced with the ALU addresses according to FIG. 16:

[0265] Instruction Al: The EBX source data is directly
received from the ALU AO03 at position A[0,3], the ESI
source data is directly received from the ALU A04 at
position A[0,4].

[0266] Instruction A2: The EBX source data is directly
received from the ALU All at position A[1,1], the ESI
source data is directly received from the ALU A10 at
position A[1,0].

[0267] Instruction A3: The EBX source data is directly
received from the ALU A12 at position A[1,2], the ESI
source data is directly received from the ALU A20 at
position A[2,0].

[0268] The source connections are implemented by the

data network programmably interconnecting the ALUs in

the ALU-Block. For details see e.g. [3].

[0269] The output to the register file is fed through several

multiplexer stages, prioritizing those instructions being later

in the original instruction order. This is compliant with the
behaviour of the original code.

[0270] Two multiplexer structures are supported by the
hardware:
[0271] a) column multiplexers, feeding the result data

from first row to last row of the ALLU-Stage. Result data
produced closer to the last row supersedes results
produced by prior rows (to the top).

[0272] b) row multiplexers, feeding the result data from
the left to the right, to the column multiplexers. Result
data produced closer to the right (column multiplexers)
supersedes results produced by prior ALUs (to the left).

[0273] The dotted lines in the multiplexer symbols indi-
cate the actual setting of each respective multiplexer accord-
ing to the exemplary mapped loop of the FIR-filter 1.
[0274] Note: The described multiplexer structure is imple-
mented for the exemplary ALU-Blocks with a preferred
dataflow direction from top to bottom and for the exemplary
Catena optimization algorithm (COA) starting the place-
ment of instructions in the upper right corner, then moving
to the right in the same row and then moving one row down
and continuing there with the left ALU (see FIG. 15a).

Subroutine Calls

[0275] Often loops comprise subroutine calls, which
would render any optimization unfeasible. The following
solution eliminates subroutine calls in loops:

[0276] The CAQ (which canbe a Trace Cache), caches the
dynamic execution order of the instructions. In other words,

Oct. 20, 2016

a called subroutine is linearly embedded in the code calling
the subroutine. Reference is made to FIG. 20.

[0277] FIG. 20a shows a main routine (2002), calling a
subroutine (2003) within a memory structure (2001) (main
memory or cache) according to the prior art.

[0278] The subroutine call modifies the processor’s Pro-
gram Pointer (PP) and the processing continues with the
subroutine. The subroutine first saves (push) registers onto
the stack, generating sufficient space for its own data. Before
the subroutine returns to the main routine, the saved registers
are restored (pop) from the stack, so that the main routine
can continue operation unimpaired.

[0279] The call-ret and push-pop operations require sig-
nificant time and memory traffic.

[0280] A Trace-Cache (2011) of the state of the art stores
the code in execution order, as shown in FIG. 205. Still, the
call-ret and push-pop operations are stored and executed.
[0281] According to FIG. 20¢, in the inventive CAQ
(2021) the call-ret operations are eliminated. The respective
instructions may be simply erased, as the code stored in the
CAQ has the subroutine already embedded (in-lined) at the
respective position.

[0282] The context switches (push-pop operations) are
removed for avoiding e.g. 1) wasting resources by placing
and executing the opcodes; ii) wasting bandwidth of the
memory hierarchy; and slowing down data processing by
adding access latency. Instead an expanded version of the
Register Cross Referencing Table (RCRT) (1603) is imple-
mented: A plurality of RCRT tables exist arranged in a stack
or FIFO structure (RCRTS) see FIG. 16a) and within each
context exactly one of the sets is active. When switching the
context (e.g. by a subroutine call) another set of the table is
selected. FIG. 16a exemplary shows 4 sets (1603a, 16035,
1603¢, 16034), while the gap between set 3 and 4 indicates,
that there might be more sets.

[0283] When entering a subroutine the push operations are
analysed and condensed into a mask. Each register has an
entry in the mask and if pushed, the respective entry is set.
Ultimately the push operations are replaced by one single
“down” instruction having the mask as parameter.

[0284] The “down” operation causes to switch the RCRT
set to the subsequent one. The register references for those
registers not being masked out (the flag in the mask is not
set) are copied into the linearly subsequent “lower” set. For
the masked registers references to unused registers of the
Register File are generated.

[0285] A code example is provided to explain the mask
function, for a RCRT according to FIG. 16a-

[0286] push eax; will set the eax mask bit

[0287] push edx; will set the edx mask bit

[0288] push fp7; will set the fp7 mask bit
[0289] The respective mask is

[0290] mask=<1001000000000001>

[0291] Executing down <1001000000000001> will copy
all register references from the current RCRT set to the next
lower RCRT set, but those for EAX, EDX, and FP7. For
EAX, EDX, and FP7 new references to unused entries in the
Register File are generated. Then the down instruction
deselects the current RCRT set and selects the next lower
RCRT set.

[0292] Respectively an “up” instruction is used to replace
the pop operations. Analogously a mask is generated repre-
senting the register references to be copied into the linearly

US 2016/0306631 Al

next “upper” RCRT set. The up instruction then deselects the
current CRT set and selects the next upper RCRT set.
[0293] Without having a negative impact on the loop
optimization, as many cascaded subroutine calls as RCRT
set exist can be embedded into the loop code. However, it
cannot be guaranteed that there is no loop not having more
cascaded subroutines than RCRT set exist. In this case, the
remaining subroutine calls cannot be optimized and have to
be process according to the prior art, which means the
call-ret and push-pop operations are actually executed.
[0294] It shall be mentioned, that modern compilers often
call functions, particularly compiler library functions (e.g. C
Library) without saving (and subsequently restoring) the
registers or part of the registers to the stack. In that case, no
further action respective the described stack management is
required and the in-lining of the called function into the main
routine is comparably simple. Basically this can be done
using the Trace-Cache, as the code is rearranged from the
original binary order to the order in which it is actually
executed. In the simplest embodiment it is sufficient to either
remove the unnecessary jump instruction from the Trace-
Cache or to skip its execution.

[0295] In advanced embodiments, the described stack
management might be used to even implement very deep
nesting, e.g. as required for recursive function calls (as e.g.
used in the QuickSort algorithm). In those embodiments, the
stack or FIFO of RCRT tables (RCRTS) is not limited in
hardware. Rather, the set according to FIG. 16a is managed
like a stack. The oldest RCRT(s) is/are spilled to or from the
memory hierarchy, depending whether RCRTs are added or
removed from the set. Preferably the RCRTs spilled to or
from a memory page which is explicitly reserved for the
spilling. Under control of the MMU, the page can be held
close to the processor core in the memory hierarchy for fast
low latency access. Furthermore, the reserved page is vir-
tually invisible for executed programs and programmer and
has no effect. Special debugging mechanisms may be imple-
mented supporting the access of tools (such as e.g. a
debugger) or the operating system to this reserved memory

page.
In-Lining Functions and Inner Loop Optimization

[0296] In the ideal case, a called function is in-lined as
previously described and has no further effect on the calling
code. Simple functions, such as counters, accumulators, type
conversion, etc. may not comprise loops on their own, so
that the optimization of a calling loop is not effected.
However, if the called function comprises loops, inner-loop-
optimization might be effected, at least in terms of perfor-
mance and worst-case even deranged.

[0297] FIG. 4a shows a respective flow graph. Shown is
the inner loop (0401) of an application, which ideally can be
optimized using inner loop optimization technics, e.g. such
as the loop optimizations described in this patent. However,
the application loop calls another function (0402), which
comprises a loop by itself. This loop becomes (by calling)
the real inner loop, anticipating the optimization of the
calling loop. Exemplary, the Quicksort pseudocode in FIG.
4B shows this effect. Ideally the while-loop 0411 should be
optimized as inner loop. However, possibly already the
while-loops (0412, and 0413) prevent this. Even then it
would be ideal to optimize those two loops as inner loops.
As long as the processed data is numeric (e.g. integer data)
the compare functions are simple and no loops are required.

Oct. 20, 2016

However, assuming strings or complex structs are com-
pared, loops are very likely required for doing the compare
functions (array[leftldx|<array[pivot] and leftldx<=pivot)
and (array[rightldx]|>array[pivot] and rightldx>=pivot). In
this example the compare function(s) comprise inner loops
at their own (see 0402).

[0298] If the algorithm permits, it is preferred to rewrite
the algorithm into code avoiding such problems. A respec-
tive example is given in FIG. 5.

[0299] The critical while-loops are replaced by a for-loop.
for-loops are preferred compared to while-loops or until-
loops as their iteration value and exit criteria can be deter-
mined at the start of each loop iteration in most cases.
[0300] This allows splitting the graph into at least two,
typically three partitions: first partition with the for-loop first
half (0501), a second partition (0502) with the function
comprising at least another loop and (possibly) a third
partition (0503) with the second half of the loop.

[0301] It is now possible to loop each partition indepen-
dently of each other. Each of the partitions is able to be
optimized as an inner loop using the respective loop and
inner loop optimization methods for compilers known in the
state of the art. Particularly useful are optimizations such as
Loop Interchange and Vectorization; Scalar and Array
Renaming; Node Splitting; Index Set Splitting, Loop Peel-
ing; Loop Skewing. Some optimization may be applicable in
hardware, e.g. in the CAQ, or AOS, all of them are useful in
the compiler generating optimized code for ALU Blocks.
The optimizations above are well known to one skilled in the
art. Those and other applicable loop optimizations are e.g.
described in [5] and particularly in [10], Chapter 5.

[0302] For this optimization and transformation it is
important that no partition depends on the results of a later
partition. Only later partitions receive operands from prior
partitions.

[0303] In other words, 0503 receives data from 0502,
which receives data from 0501. 0501 has to calculate both
the loop counter and the termination condition self-con-
tained, without any input from the lower partitions 0502 and
0503.

[0304] This conditions are not only applicable on for-
loops (but rather typical for them), but may also apply on
other type of loops (e.g. while- and until-loops) if they are
respectively designed. Graph analysis of the control-flow
(CFG) and/or dato-flow (DFG) graphs even allow compilers
in a large number of cases to rearrange the computations in
loops such, that the above described conditions are met and
the loop becomes respectively optimizable.

[0305] Each loop (0501, 0502, 0503) iterates the number
of iterations (0504) defined by the first loop partition 0501
calculating the loop counter for each of the iterations and the
termination condition. By such, each partition form an inner
loop by itself.

[0306] The function 0502 iterates internally the number of
iterations (0505) required to perform the function. After the
function terminates, it is restarted for the number of itera-
tions defined by 0504, or in other words: 0502 is a nested
loop comprising two loops.

[0307] According to the ZZYX processor model, the data
is passed from one partition to another via the FIFO register
file, reference is made to [1]. With respect to [9], each of the
partitions form a Catena, for which the specification of [9]

may apply.

US 2016/0306631 Al

[0308] FIG. 56 exemplary shows a respectively rede-
signed Quicksort algorithm. The calculation of the iteration
counter (i) and the termination criteria (i=right-1) of the
for-loop 0511 form the first partition (0501) according to
FIG. 5a.

[0309] The compare function (0512) forms the second
partition (0502) returning the result of each compare opera-
tion. Based on the result for each compare operation, the
code (0513) in the body of the if-operation (and the remain-
ing code of the for-loop) form the third partition. In each
iteration, the code belonging to the if-operation is condi-
tionally executed, depending on the result of the compare
function. Details on conditional execution within optimized
loops are subsequently described.

[0310] The loop header processed in 0501 sets the number
of iterations for each run through the partitions 0501, 0502,
and 0503 in accordance to the hardware capabilities and/or
resources of a processor (e.g. the depth of the FIFOs of the
register file (FDR)). For example if the loop had to be
processed for 100 cycles. The processor only provides 16
entries in the FIFOs of the register file, setting the maximum
number of iterations of 0504 to 16. The loop has to be
subdivided into 100 divided by 16 equals 6 remaining 4
main iterations (0506). Obviously the remainder of the
division requires an additional iteration through 0506, but
this last time 0504 is iterated only 4 times.

[0311] Reference is made to FIG. 5 of [3], wherein the
basics of loop processing are described (e.g. compare 0530
of [3] to 0506, 0510 of [3] to 0501 and 0520 of [3] to 0502).

Load/Store Analysis

[0312] For details on IA addressing modes reference is
made to [1], e.g. Chapter 7 (e.g. FIG. 7-17) and Chapter 8.

Stack, Spilling
(MLRV)

and Memory-Located-Register-Values

[0313] This analysis and optimization is focusing on
memory access for spilling registers. For details on spilling
reference is made to [5] chapter 10.2.4.

[0314] Memory-Located-Register-Values (MLRV) are
understood as memory locations used as registers or regis-
ter-like. Those are typically values which are not as fre-
quently used or not as performance critical as those other
values preferably kept in registers. RISC processors follow-
ing a rather strict load/store model would spill those values.
CISC processors (such as Intel’s IA/x86 architecture) sup-
porting memory addressing in a wide variety of instructions,
may place those values directly in the memory and access
them through respective instructions (e.g. cmp ebx,
DWORD PTR [ebp-16] (1110), see also FIG. 1). Memory-
Located-Register-Values (MLRV) may originate for
example from pseudoregisters (variables which theoretically
can be allocated to registers), which actually could not be
allocated to registers due to limitations of the register file.
For details on pseudoregisters reference is made to [5]
chapter 10.2.3.

[0315] According to this invention, Memory-[Located-
Register-Values (MLRV) are replaced by actual physical
registers in the processor, the Pseudo-Register-File (PRF),
which is preferably located close to the register file.

Oct. 20, 2016

[0316] One exemplary embodiment of a Memory Register
Algorithm (MRA) may operate as such:

MRAT1) Defining a Vicinity

[0317] Avicinity is defined, in which Memory-Located-
Register-Values (MLRV) are replaced by a Pseudo-
Register-File (PRF).

[0318] Ideally a vicinity may be defined as
[0319] 1. analysable block of code (e.g. a loop, a

subroutine, etc); and/or
[0320] ii. code without interaction with other code
(e.g. other tasks, threads, etc.; e.g. via globally
shared resources such as memory or periphery).
[0321] For example, a subroutine vicinity may be code
from a call target to the return instruction (ret); or loop code
from a target of a conditional jump to the conditional jump
instruction (referring e.g. to FIGS. 11A and 11B: the code
section from the label/address .16 (the target of jump 1101)
to the jump instruction jne .L6.

MRAZ2) Selecting Base Pointer(s)

[0322] One or more base pointers and/or base addresses
are selected defining the address window into the
memory space to be optimized. Typically and prefer-
ably the stack pointer register (e.g. esp) is selected,
and/or other register whose values are derived from the
stack pointer register (e.g. ebp in the FIR-filter 1
example, see FIGS. 11A and 11B: mov ebp,esp (1121)).

MRA3) Replacing Memory Addresses
References

[0323] Within this vicinity memory addressing/ad-
dresses of the Memory-Located-Register-Values
(MLRYV) is replaced by register referencing/references
to the Pseudo-Register-File (PRF).

[0324] The most simple and save approach is first to copy
Memory-Located-Register-Values (MLRV) to the Pseudo-
Register-File (PRF). If analysis can guarantee that a value is
written for the first time in the respective vicinity the
respective copy operation may be omitted. If within the
preceding vicinity a Memory-Located-Register-Value
(MLRV) has been replaced with the same register of the
Pseudo-Register-File (PRF), the respective copy operation
may also be omitted.

by Register

MRA4) Write Back

[0325] When the execution (i.e. the program pointer PP)
leaves the vicinity, the Pseudo-Register-File (PRF) is
written back to the memory, so that it is guaranteed, that
all Memory-Located-Register-Values (MLRV) are
updated and correct. The MRA may continue with step
MRAL).

[0326] FIG. 17 shows an exemplary embodiment of a
PRF, comprising 8 pseudo-registers pr0 . . . 7 (1701).
[0327] The example uses a 32-bit address pointer
(DWORD PTR [basexoffset] according to the Microsoft
MASM assembler.

[0328] When initializing the PRF for a new vicinity, the
base address (base) is stored in step MRA?2) in the Reference
Base Pointer Register (RBPR, 1702). The RBPR may com-
prise a valid tag (v) for allowing the control state-machine
to check whether the register has been set and the PFR is in
use. After writing back the PFR contents (flushing), the valid
flag might be reset.

US 2016/0306631 Al

[0329] At each memory access (e.g. via an address pointer
such as DWORD PTR), the value in the RBPR register is
compared (by the comparator (1703) with the current base
address (base). Only if the values are identical, access (read,
write and/or modify) to the PRF is granted (grant_access).
This mechanism ensures that the correct address space is
managed and mapped to the PFR. Access is denied for
incorrect base addresses. In one embodiment, a plurality of
PFR might be implemented in hardware. Some of the PFR
might be used for managing different base addresses, such
allowing for optimizing a variety of base addresses. Others
might be used for extending the space of other PFR: If a PFR
is full and has no more free entries, the next PFR is used,
having the same base address.

[0330] Alookup table might be used to reference the offset
of an address to the respective register in the PRF. One
exemplary embodiment (1704) uses an associated reference-
offset register (ron, i.e. r00 . . . 7 in FIG. 17) for each
pseudo-register (prn). Each reference offset register has an
associated comparator (==), comparing the register’s con-
tent with the current offset (offset). If the current offset
matches the value in a reference-offset register (rO,), the
associated pseudo-register (pr,,) is selected for data access.

[0331] In afirst exemplary embodiment, memory accesses
are replaced, e.g. in the Code Analysis Queue (CAQ),
Register-Allocation-Table (RAT), Reorder Buffer (ROB)
and/or Trace Cache, with references to the PRF. The replace-
ment might be done at the decoder stage or the Register
Allocation Table stage (RAT) of the processor. For details on
the Decoder and Register Allocation Stages, reference is
made to [2], chapter 5, e.g. FIGS. 5-1 and 5-6. For gener-
ating the reference, each memory access is looked up in
1704. If both, the base address matches (grant_access) and
1704 detects that the offset is stored in one of the reference-
offset register (ro), the memory access is replaced with a
reference to the respective reference-offset register. If the
access is granted (grant_access), but the current offset does
not yet exist in the lookup-table 1704, a new entry might be
generated if there is space left in the PRF.

[0332] In a second exemplary embodiment, memory
accesses are not replaced, but for each memory access the
lookup-table (1704) is checked during execution. If both, the
base address matches (grant_access) and the current offset is
found in the lookup-table (1704), access to the respective pr
register is enabled. If the access is granted (grant_access),
but the current offset does not yet exist in the lookup-table
1704, a new entry might be generated if there is space left
in the PRF.

[0333] For allocating a pseudo-register for the new entry,
two exemplary methods might be used:

[0334] a) each reference-offset register (ro) might have
an associated used flag (u). For the new entry, a priority
decoder may select for allocation one of those registers
pr and ro not having the associated used flag set.
Consequently the associated used (u) flag is set.

[0335] b) a free-entry-pointer (1705) may point to the
next free entry in the PRF (free entry pointer) to be
allocated. The free-pointer might be reset to the first
register (e.g. pr0), e.g. during reset and/or flushing of
the PFR (e.g. during MRA4)). With each new alloca-
tion of a register of the PFR (allocate), the free-pointer
is moved (e.g. incremented) to the next free register.

Oct. 20, 2016

Repetitive, Stream-Like Access Patterns, Prefetching

[0336] Another inventive optimization focuses on repeti-
tive, stream-like memory accesses patterns as they may be
generated in loops, e.g. for reading constant values (such as
parameters), input data or writing output data. For such
memory accesses dedicated Address Generators and/or
Load/Store Units are implemented loading the data in
advance (prefetching) and/or storing the data in the back-
ground. The code may have overlapping address patterns,
which are managed by the Address Generators and/or Load/
Store Units, so that the amount of memory accesses and the
necessary bandwidth is reduced. An exemplary embodiment
is shown in FIG. 18.

[0337] Exemplary code is shown in FIGS. 11A and 11B,
within the loop from the label .13 to the conditional jump jne
.LL6 (1101). The decoder stage or the Register Allocation
Stage (RAT) of the processor and/or the previously describe
loop optimization algorithms (e.g. LT, BTA, COA) may
analyse the code for memory accesses which addresses
depend on the loop counter, either directly or in advanced
embodiments indirectly. In the exemplary code of FIGS.
11A and 11B, the instructions (M1), (M2), (M3), and (M4)
access the memory and are using the loop counter value in
register eax for generating the memory address (Note: lea
ebx, [eax+1] (1111) and mov eax, ebx (R2)).

[0338] An exemplary memory interface unit is shown in
FIG. 18: When analysing the loop code, the detected
memory accesses are mapped into a memory access pattern
table (MAPT, 1801).

[0339] The algorithm of each memory access is (prefer-
ably linearly) written into the MAPT in (preferably strict)
program order. The exemplary used Intel x86/IA processors
support a base address (base), an offset constant (offset), an
index (index) and a multiplier (x1, x2, x4, x8) to compute
eg. DWORD PRT [base+offset+indexxmultiplier). A
respective MAPT comprises the fields offset (1802) and
multiplier (1803). According to the exemplary code of FIGS.
11A and 11B, the following entries are written into the
MAPT:

[0340] 1. entry: offset=12, multiplierx4 according to
(M1)
[0341] 2. entry: offset 8, multiplierx4 according to (M2)
[0342] 3. entry: offset 4, multiplierx4 according to (M3)
[0343] 4. entry: offset 0, multiplierx4 according to (M4)
[0344] The MAPT further comprises a last-flag (1808),

indicating the last entry in the table, which is respectively set
(1) for the 4™ entry according to the shown exemplary code.
[0345] The address generator has an input from a loop
counter providing the index (1804). Further details in the
loop counter are subsequently described. The base address is
provided directly from the base register. The base register is
retrieved from the memory accesses during analysis, accord-
ing to the exemplary code, the base address register is edx.
The selector setting of a multiplexer (1805) is respectively
set, to feed the base address register from the processors
register file (1806) to the address computation. In one
embodiment, the correctness of the base address might be
checked during operation using hardware similar to 1702
and 1703 of FIG. 17.

[0346] The memory address (memadr) is computed by
adding (1807) all values and fed to the memory (1811).
Located between the address generator and the memory
might be a unit (1821) checking for the same addresses
previously generated. If the same address has been previ-

US 2016/0306631 Al

ously access, read accesses might be bypasses in that unit
(1821) without accessing the memory (1811).

[0347] Read data is stored in a Stream-Register-File (SRF,
1831). There is one Stream Register (SRO . . . 7) for each
of the entries in the MRPT. Each of the Stream Registers is
implemented as a FIFO for prefetching a plurality of
addresses. Each memory access is replaced, e.g. in the Code
Analysis Queue (CAQ), Register-Allocation-Table (RAT),
Reorder Buffer (ROB) and/or Trace Cache, with a reference
to the SRF. The replacement might be done at the decoder
stage or the respective stages of the processor. For details on
the Decoder and Register Al-location Table Stages, refer-
ence is made to [2], chapter 5, e.g. FIGS. 5-1 and 5-6. Each
entry in the MAPT has an associated SRF register, MAPT
[entry] is associated with sr (e.g. MAPT][2] is associated
with sr2).

[0348] The operation of the exemplary address generator
is now described:

[0349] A counter (1809) is selecting entries in the MAPT.
The counter (1809) starts with the first entry and selects the
following entries one by one in preferably strict program
order. After reaching and selecting the last entry, which is the
one having the last-flag (1808) set, the counter restarts with
the first entry. Thus, the MAPT is a circular memory. The
address according to the entry the counter (1809) is pointing
at is generated and issued.

[0350] The counter value (entry) is transmitted together
with the generated address to the memory subsystem for
indicating to which memory access the respective address
belongs to. Ultimately the counter value selects (sel) the
associated register in the SRF (1831).

[0351] The read address generation is synchronized with
the register file 1831. If one or more FIFO registers are full
(or almost full) the address generation is stopped until
sufficient free entries in the SRF are available again.
[0352] The write address generation is synchronized with
the availability of write data.

[0353] The index value (1804) might be provided in at
least two ways:

[0354] 1. If the sequence of the index can be analysed
and guaranteed, the index might be generated by
respective hardware, e.g. a counter. The start value and
step width of the counter is set according to the
analysis. If possible an end value might be provided by
the analysis and set.

[0355] 2. If it is not possible to determine and/or guar-
antee the index sequence, the original index value is
used, in case of the exemplary code eax. The address
generation is synchronized with the loop execution: it
stops after each run through the MAPT when resetting
the counter 1801 and continues only when the eax
value is updated (mov eax, ebx (R2)).

entry

Loading Streaming or Frequently Accessed Data

[0356] Many algorithms operate on streaming data (e.g.
video, audio, radio and/or other DSP algorithms) or use data
or data fields which are frequently accessed (e.g. sorting
data, linear algebra (e.g. matrix multiplication).

[0357] Frequent access to the same data (e.g. same
address) is optimized in the state-of-the-art using caches.
However, even the access to a Level-1 cache is comparably
slow and power consuming. Therefore Frequent Load Reg-
ister file (FLR) might be implemented in between the
memory hierarchy (preferably the Level-1 cache) and the

Oct. 20, 2016

execution units of a processor (e.g. the EX stage, the ALUs
or the ALU Block). The Frequent Load Register file might
be implemented in parallel to the normal processor register
file. The FLR can either be accessed using dedicated register
addresses, so that the normal register identifiers are
extended. Preferably the FLR is accessed using the normal
Load instructions, so that no significant modification of the
instruction set is necessary.

[0358] One embodiment of an optimized memory inter-
face has been previously described and is shown in FIG. 18.
The basic concept of yet another embodiment is demon-
strated in FIG. 9 (and FIG. 94) from a logical perspective.
ARM7 (see [8]) load instructions are exemplary used. The
FLR (0901) comprises a plurality of register (e.g. 8, 16, 32).
The distance between two 32-bit data words is 2°=4, allow-
ing byte wise access to the memory. Q represents the number
of register in the FLR. Each register has preferably the same
width as registers of the normal register file, e.g. the width
of'a data word. Register content is selected (e.g. as operands)
using a multiplexer (0902). Processors comprising a plural-
ity of ALLUs and/or execution resources may have a plurality
of multiplexers (0902 a,b,c) for selecting the respective
operands.

[0359] A Reference Base register (RefBase, 0903) stores
the base address for the contents of the respective FLR. In
one embodiment multiple FLR might be implemented, each
FLR being used for another base. RefBase (0903) is set by
instructions modifying the base or the first instruction using
the FLR with a new base. Exemplary shown is an ARM7
load instruction adding an offset (#offset) to the base [base]
(0904). The base plus offset ([base]#offset) add operation is
performed in an adder (0905), which result is written into the
RefBase register. Instructions not modifying the base (e.g.
0906) check if the base used in the instruction is equal to
RefBase (e.g. using a comparator (0907)). If the base is
equal RefBase (hit), access to the register file is granted, else
a ‘miss’ is generated which triggers actual loading of the
data from the memory hierarchy (e.g. the Level-1 cache). In
case of ‘hit’ data is directly retrieved from the FLR, no data
load from the memory hierarchy (e.g. the Level-1 cache) is
performed. The offset (*offset) is used as selector input of
the multiplexers (09024,5,c) to select the respective register
entry.

[0360] Associated with the data entry in each register of
the FLR is a valid token ‘v’ indicating the validity of the data
stored in the register. If the register contains no valid data,
a read access initiates actual loading of the data from the
memory hierarchy (e.g. the Level-1 cache).

[0361] Ifthe base address is adjusted, e.g. using an instruc-
tion as shown in 0905, the contents of the FLR are shifted.
In this example the base value can only be increased.
Therefore a shift right operation of the data in the FLR
adjusts the content of the FLR to the new base. The shift
moves as many registers to the right as the base is increased.
For example increasing the base address by 4, initiates a
shift operation to the right by one register position; increas-
ing the base by 16 triggers a shift right operation by 4
positions. (Note: The distance between two 32-bit data
words is 2°=4, allowing byte wise access to the memory).
Each shifting step invalidates the top register of the register
file, e.g. a shift by 1 position to invalidates the most left
register (containing address base+4x(Q-1)); shifting by 4
positions invalidates the 4 most left registers (comprising
base+4x2% to base+4x(Q-1)).

US 2016/0306631 Al

[0362] In this example the base address can only be
increased. Embodiments allowing subtraction from the base
or negative offsets will use shift left operations when the
base decreases. If the offset altering the base is larger (or
smaller) than Q, the whole register file is shifted out, which
has the same effect as a flush operation clearing the register
file.

[0363] The FLR might be implemented as read-only reg-
ister file or in one embodiment as read/write register file in
which store operations can write data into the register file.
Similar to a cache, a read/write register file may use different
write back strategies. For example a store instruction might
trigger the immediate write through of the data to the
memory hierarchy (e.g. the Level-1 Cache); data might be
written back in spare memory cycles if no other memory
operations take place; and/or a write-back strategy might be
used in which data is written back when the FLR is flushed
and/or shifted out, e.g. initiation by a change of the base
address (e.g. 0903). Read/write register files may use respec-
tive mechanisms to control the data write-back and consis-
tency. For example ‘dirty’-flags (e.g. see FIG. 9a and FIG.
10 dirty token ‘d’) might be associated with each entry,
indicating modified but not yet written back data.

[0364] It shall be noted, that theoretically the full address
(base and offset) could be checked for selecting a register
entry. However, in a preferred embodiment base and offset
are treated differently (as described in FIG. 9): While the
base address is compared with a reference base, offset is
used for directly selecting the register within the FLR. This
improves access time and reduces power consumption.

[0365] Data is transmitted to the memory hierarchy using
the channel 0908 which might be a separated, dedicated
address and data bus or be fed through the execution units
(e.g. one or a plurality of ALUs and/or the ALU Block).

[0366] The embodiment shown in FIG. 9 is one example
to explain the functionality of the FLR. In a preferred
embodiment data is not actually shifted within the FLR in
case of a base change, but the selection of the registers is
modified. This greatly reduces the hardware overhead and
the power dissipation required for shifting the register
content in the FLR. A respective implementation is shown in
FIG. 9a. BIAS Control Unit (0914) records the modifica-
tions of the base address and emits a correction factor
(BIAS) for the offset. In this exemplary embodiment an
accumulator is used, accumulating all changes of the base
address. The accumulator comprises a register (0911) and an
adder for adding (0912) the offset of the address change.

[0367] The correction factor (BIAS) is than added (0913,
0913") during load (or store) accesses to each of the respec-
tive offsets, so that the virtually shifted (by the correction
factor (BIAS)) register content is accessed.

[0368] The correction factor allows for virtually shifting
the register contents without actually performing a shift
operation. A bit mask (MASK) is required to set the valid
bits of the registers when the content is shifted.

[0369] FIG. 10 shows an architectural view of an exem-
plary embodiment. The FLR (1001) comprises Q register,
each register having an associated valid-flag ‘v’ indicating
valid content and a dirty-flag ‘d’ indicating that the register
content has been changed, e.g. by a store or write instruction,
but the respective data has not yet been written back to the
memory hierarchy (e.g. Level-1 cache). The registers com-
prise data from the address range base+0 to base+4x(Q-1).

Oct. 20, 2016

[0370] The FLR register’s content is fed to one, two, or a
plurality of operand input multiplexers (1002), depending on
the respective execution stage (EX) and/or ALU architec-
ture, selecting the respective register for read (data load)
access. If the processor comprises multiple ALUs (e.g.
VLIW, Superscalar, ZZYX, Hyperion) each ALU may have
respective operand input multiplexers (1002a, 10025, . . .
10027?).

[0371] Memory access operations modifying the base
address (e.g. initiated by an ARM I1dr r[base]|, #offset
instruction) are processed in a BASE Control Unit (1003),
which computes the new base and issues the reference base
(RefBase). In one embodiment, the base computation may
comprise the adder (0905) register (0903) coupling as
described in FIG. 9 and FIG. 9a.

[0372] In some embodiments a BIAS Control Unit may
adjust the base according to FIG. 94 and issue the respective
Bias. In one embodiment, the BIAS Control Unit might be
based on an accumulator, e.g. comprising an accumulator
register (e.g. 0911) and an adder (e.g. 0912). The BIAS
Control Unit might be embedded in or combined with the
BASE Control Unit.

[0373] In a preferred embodiment only one operation
modifying the base address is supported per cycle (e.g.
Z7YX Catena, VLIW instruction or Superscalar cycle). The
respective instruction control signals (control signals
according to the instruction being executed) (1004) are fed
to the BASE Control Unit (1003). In embodiments support-
ing multiple base address modifications per cycle, a plurality
of instruction control signals 1004a . . . 1004? are fed to an
arbiter (1005) which selects one instruction at a time for
being performed, so that step by step all pending request are
served. The respective execution cycle might be delayed
until all instructions have been selected are performed.
[0374] In apreferred embodiment a plurality of operations
not modifying the base address might be performed within
the same cycle (e.g. ZZYX Catena, VLIW instruction or
Superscalar cycle). Typically each operation is performed in
a respective execution unit (EX), e.g. an ALU, e.g. of an
ALU-Block. Depending on the specific embodiment all
execution units or only a subset support access to the FLR.
The supporting execution units comprise an Access Control
Unit (1006), which checks the validity of the base address
and computes the selector for the multiplexer (1002). The
validity of the base address might be checked using a
comparator (e.g. 0907) comparing the reference base (Ref-
Base) with the base address of the current memory access
operation. The Selector might be computed using an adder
(e.g. 0913) adding the BIAS to the offset of the current
memory operation.

[0375] In case of a mismatch between RefBase and the
base address of the current operation and/or the offset of the
current operation exceeding the range of the register file
and/or accessing invalid register content a request to a
Load-(and, depending on the implementation, Store) Unit
(1008) is generated (load_request) by the respective Access
Control Unit (1006) or BASE Control Unit (1003). An
arbiter (1007) selects one request at a time for being per-
formed, so that step by step all pending request are served.
[0376] The Load (and Store) Unit (1008) loads the
requested content from the memory hierarchy (e.g. Level-1
Cache) (1009). If writing to the FLR is implemented,
content marked dirty with the dirty-flag ‘d’, is written back
to the memory hierarchy (e.g. Level-1 Cache), depending on

US 2016/0306631 Al

the write back-strategy or when register content is overwrit-
ten with other content from another address or shifted out
due to changing the base address.

Vicinities

[0377] The describe algorithms for optimizing load/store
accesses are preferably used to optimize code sections
within vicinities. In the following, details about vicinities are
provided:

[0378] Vicinities are code sections, which are rather fre-
quently executed:

[0379] Local vicinities are code sections which are fre-
quently executed within a thread. The most obvious for
example Local Vicinity (LV) is an inner loop, and in the
second place an outer loop. Another example of a LV is a
frequently called subroutine.

[0380] Typical for Local Vicinities (LV) is that ideally the
original code is replaced with an optimized code in a Trace
Cache or rather local instruction memory (e.g. a Level-1
cache).

[0381] Global vicinities (GV) are code sections which are
frequently executed at system level. The most obvious
Global Vicinities (GV) are for example system calls or
frequent library calls.

[0382] Typical for Global Vicinities (GV) is that usually
the original code cannot be replaced with an optimized code
in a rather local instruction memory (e.g. a Trace Cache or
a Level-1 cache), but within more remote memories, such as
a Level-2, or -3 cache, the main memory, or even a mass
storage media (e.g. a disk drive)).

[0383] Preferably only those load/store accesses are opti-
mized, which are repeatedly read within a vicinity. Pure
store accesses, with no related read access, are preferably
not optimized.

Managing Constants

[0384] Some processors (or instruction set architectures),
such as e.g. the ARM (e.g. ARM?7) architecture, do not
support large and/or random constants directly in the
instructions (e.g. mnemonics).
[0385] Constants are loaded from memory, typically using
load instructions. This approach has at least two problems:
[0386] a) Loading a constant repeatedly, e.g. within a
loop, adds unnecessary memory load cycles and is
therefore wasting processor performance and energy.
[0387] b) Depending on the memory model, unneces-
sary effort, mainly in terms of energy consumption,
might be necessary for coherence management.
[0388] It is therefore proposed to use special dedicated
load-constant instructions (e.g. 1dc). Such instructions indi-
cate per se that the loaded value is constant and no instance
(e.g. another processor or processor core) may possibly
modify the value. On this basis, no coherence measurements
are necessary.
[0389] In a preferred embodiment, loaded constants are
written into a dedicated constant register file, assigned by a
register optimizer, as e.g. shown in FIG. 7 and/or FIG. 16.
If an once loaded value is accessed again, actually no load
instruction is executed. Instead the load instruction is
ignored and subsequent access to the value is directed to the
dedicated constant register (CR: e.g cr00, cr01, . . ., cr07)
and the constant data is actually taken from there.

Oct. 20, 2016

[0390] Experiments showed that this approach of loading
data is not only performing with constants, but also ideal for
accessing regular variables which do not change by defini-
tion during the runtime of a subroutine, e.g. a loop. If it is
known that input data to a routine is constant within the
scope and/or runtime of the subroutine, the respective data
load accesses might be treated as constant loads and accord-
ingly optimized.

[0391] For example, a first thread is writing data into
memory, a second thread is reading that data and operating
on it. It is known per se, that at least the data section the
second thread is working on will not change during the
runtime of the second thread. Therefore the second thread
may load the data as constants and by such significantly
increasing the access time.

[0392] In one embodiment, a load constant instruction
may be implemented operating as a pre-instruction (Load
Constant Pre (LCP)). Pre-instructions may provide addi-
tional information for subsequent instructions. An exem-
plary embodiment is described in [3], however we prefer a
slightly different implementation: LCP is actually executed
as a stand-alone instruction. It is placed at the lower right
ALU in the ALU-Block, so that it does not disturb the
placement of other instructions in the AL U-Block. LCP is
executed and the loaded constant is written into the register
file. In a preferred embodiment no dedicated constant reg-
ister file is used, but the loaded value is stored in the normal
register file. A flag is associated with the value and might be
stored within the register file indicating that the value is a
constant loaded by a pre-instruction. When an ALU of the
ALU Block executes a subsequent instruction reading the
constant from the register file the constant value will be
transferred into a local register within the ALU. During
further operation the ALU will derive the constant value
from the local register.

[0393] This method provides many benefits: Memory
access cycles are saved reducing power dissipation and
improving the performance. The hardware overhead is mini-
mal, LCP is implemented using the normal load instruction
and no additional register file is necessary. Simultaneously
the register is freed for other data, once the constant value
is transferred into the local register of the ALU. The constant
data is kept local, reducing the power dissipation of the
operand multiplexers.

Out-of-Order Processing

[0394] This invention is as previously described appli-
cable on In-Order (I0) and Out-Of-Order (OOO) proces-
sors. But, in addition to integration into existing processor
architectures, the invention enables a novel approach to
out-of-order processing.

[0395] Asshowne.g.in FIG. 10q, FIG. 12, FIGS. 14A and
14B, FIG. 15, and FIG. 16 the invention reorders instruction
when sched-uling (mapping) them onto the array of ALUs
(ALU-Block). Reg-isters are renamed or respectively
replaced as e.g. shown in FIG. 16.

[0396] On this basis, comparably simple and cheap In-
Order processors can implement Out-Of-Order processing
capabilities, e.g. see FIG. 194 or FIG. 19e.

[0397] Operations depending on previous results (those
operations which can only be processed sequentially) may
be mapped into a column of operations. Other operations not

US 2016/0306631 Al

depending on such previous results, may be positioned
horizontally; all horizontally placed operations are executed
in parallel.

[0398] Using the array of ALUs (ALU-Block) various
implementations are feasible:

shifted-OOO: According to the algorithm in FIG. 14, depen-
dent instructions are vertically placed, independent instruc-
tions horizontally. The instruction scheduler and the instruc-
tion execution shifts from top to the bottom of the ALU-
Block. Operands are supplied from the register file to the top
row and the bottom row returns the processing results to the
register file. As disclosed before, dependencies within the
ALU-Block are solved within the data network, by replacing
the operand source with the ALU coordinates of the pro-
ducing ALU. After all operations in the ALU-Block have
been processed, the results are collected, the AL U-Block is
cleared of all operations and the next part of the code is
scheduled (placed) onto the ALU-Block. The scheduling
(placeent) stalls, until all operations are finished and all
results are generated. This approach is simple to implement
and requires very little hardware overhead, but shows
already great speedup compared to In-Order processing.

collapsed-OOQ: Instead of spreading the operations over the
complete array of ALUs (ALU-Block), only one row of
ALUs are used. Similar to Reservation Stations, each ALU
has an operation buffer (OPB), buffering the scheduled
operations. However, dependencies cannot be replaced via
the data network by retrieving the operands directly from the
previously producing ALU. This network function may be
replace by a time stamp, indicating at which processing
cycle the respective result is produced. All results may be
buffered in FIFO stages (Result History Buffer (RHB)),
including the timestamp when they were produced. When
processing an operation, the FIFO is checked for an entry
with the required time-stamp and if available the entry is
retrieved and processed, else the respective operation stalls.
This approach has similarities with OOO processing in the
state of the art. Each ALU has a Reservation Station like
operation buffer (OPB) supplying the operations. But, the
operations in the buffer (OPB) are processed in order.
Independent operations are dedicatedly scheduled to other
operation buffers (OPB), e.g. according to the algorithm
shown in FIG. 14. In other words, the horizontal scheduling
is as described in FIG. 14 mapped to a plurality of ALUs in
the row, while the vertical scheduling is collapsed into the
operation buffers (OPB) for each of the ALUs.

[0399] Each register of the register file has an associated
FIFO structure (Result History Buffer (RHB)) for storing the
history of produced results, together with the timestamp.
The scheduler produces and keeps track of the timestamp
such that each processed result gets a timestamp associated,
which is equal or similar to the vertical and preferably also
horizontal address of the operation (if it had been placed
onto the array of ALUs (ALU-Block)). The method of FIG.
16 can be adapted to handling timestamps, mainly by storing
the timestamp instead of the ALU address in the table
(1604). If the timestamp stored as a reference in the RHB
meets the timestamp required for the operand for processing
in an ALU,

the associated data is transferred from the RHB to the
respective ALU for processing. If no data with the required
timestamp is available yet, processing in the respective ALU
stalls.

Oct. 20, 2016

[0400] The RHB can be understood as some replacement
for the ROB known in the prior art.

[0401] This approach is more complicated to implement
and requires some more hardware overhead than the shifted-
00O implementation. But, depending on e.g. the silicon
process, final system or product it may require lesser power.
As the shifted implementation it shows already great
speedup compared to In-Order processing.

cyclic-O0O0: In one embodiment, the instruction scheduler
and the instruction execution place instructions from top to
the bottom of the ALU-Block. Operands are supplied from
the register file to the top row of a first placement cycle. In
each subsequent cycle, operands may be received directly
from previous processing results or, if none are available,
from the respective register of the register file. If processing
is terminated, e.g. finished or a context switch occurs, the
bottom row returns the processing results to the register file.
As disclosed before, dependencies within the ALU-Block
are solved within the data network, by replacing the operand
source with the ALU coordinates of the producing ALU. In
difference to the shifted-OOO implementation, data is also
transferred over time from one placement cycle to the next.
Or, in other words, the buses of the last row are fed back to
the first row, so that in a subsequent cycle the results of the
last row are accessible as well. This is a major change in the
ALU-Block architecture, as operands cannot only be
received from ALUs above, but also from ALUs below.
However, data from AL Us below originates from a previous
processing (i.e. placement) cycle. If all AL Us are stalled and
no more new instructions can be placed on free ALUs,
scheduling (placement) stalls, until operations are finished
and ALUs are available for new instruction processing
again.

[0402] If, during a placement cycle an ALU operation is
not executed, the ALU stalls. However, in the subsequent
placement cycle (after the scheduler restarted at the top of
the ALU array (ALU-Block)) the stalled ALU keeps its
function and is spared when placing new instructions, until
the stalled ALU is capable of executing its instruction.

[0403] Any ALU requiring that very result as an operand,
remains connected to the stalled ALU, and will stall too.

[0404] To avoid deadlocks, preferably all instructions are
issued in strict program order. This requires modification of
the algorithm of FIG. 14:

[0405] Each ALU provides its state (e.g. unused, finished,
stalled) to the scheduler. In one embodiment, priority decod-
ers may be used such that for each row and for each column
the next available ALU is referenced to by the decoder. A
respective algorithm is exemplary described in FIGS. 21
(21a and 215).

[0406] FIG. 19f shows an exemplary implementation of
the inventive Out-Of-Order processing (000) on the basis of
a simple In-Order Architecture: Instructions are fetched (IF)
and decoded (ID) and forwarded into a CAQ (which might
be a Trace Cache, or in the most preferred embodiment an
advanced Trace Cache). A scheduler (SCHED) takes
decoded instructions from the CAQ and places them into
ALUs of the ALU-Block for execution. The scheduler may
alter the instructions stored in the CAQ for optimization
purposes. Alternatively and/or additionally an Analyser and
Optimized (AOS) may alter the instructions stored in the
CAQ for optimization purposes.

US 2016/0306631 Al

ALU-Block Adapted to Out-of-Order Processing (O0O)

[0407] The ALU-Block as e.g. known from [3] may be
optimized for Out-Of-Order processing (000). Some modi-
fications are shown in FIG. 22.

[0408] The ALUs are arranged in a matrix, having max_
col+1 columns (0 . . . max_col) and max row+1 rows (0 . .
. max_row).

[0409] Each ALU produces a status, which may be
checked by the scheduler placing the instruction onto the
array of ALUs (ALU-Block). The status provides informa-
tion indicating the operational status of an ALU, e.g. such as
stalled (waiting for operand data), busy (processing), free
(no instruction placed), done (processing completed).
[0410] The ALU-Block according to [3] transfers data
preferably from top to bottom of the ALU-Block. The top
ALUs are preferably connected to the register file only, but
not ALUs below. However, the preferred structure for 000
processing, particular cyclic-000, limited feeds back data
from the bottom to the top. Still, the preferred datatlow
direction is ensured, data is not transferred from bottom to
top (bottom up) in the AL U-Block. From the bottom ALU
row a connection is made to the top ALU row, so that the
data buses form a ring. However, the ring is cut open at
exactly the ALU supplying the data output to the bus, i.e. the
ALU driving the bus.

[0411] The rings are exemplary shown in FIG. 22. E.g. bus
2201 is the output of ALU[1,0], being provided as an
operand input to ALU[2,0], . . . , ALU[max_row,0], ALU
[0,0]. The bus does not supply ALU[1,0] with operands.
(While, in one embodiment, the ALLU[1,0] may have access
to its own results via the bus).

[0412] The wide buses (e.g. 2202) indicate the horizontal
multiplexer structure: Each operand input of each ALU
receives all buses available at a level and may selectively
feed one bus per operand input to a respective ALU.
Reference is made to the multiplexer structure of 3], see e.g.
[3] FIG. 4 0402, FIGS. 27 and 27a.

[0413] The data transmission on the buses is pipelined,
and balanced with the latency of the ALUs. E.g. if ALU[2,0]
operates with 1 clock cycle latency, the respective bus
connection (2203) of bus 2201 has one pipeline register
stage generating 1 clock cycle latency.

[0414] According to the interconnection structure of FIG.
22, each ALU has access to the register file (RF), all ALUs
above and all ALUs with the following timing:

[0415] Operand inputs from other ALUs of the ALU-
Block to ALU[n,m] at time t (@ t):

Output of

ALUs of row from time Note:

[n-1] t-1 ifn-1=20

[n-2] t-2 ifn-2=20

[n-3] t-3 ifn-3=20

[+ 1] t — (max__row) if n+ 1 < max_row

[+ 2] t — (max_row — 1) if n + 2 = max_row

[+ 3] t — (max__row — 2) if n + 3 = max_row
[0416] In one advanced embodiments, AL.Us may receive

data from other ALLUs in the same row. This enables a more
efficient usage of the ALU matrix, particularly for very
sequential code blocks in which results of AL Us are imme-

Oct. 20, 2016

diately used as operands in the directly subsequent ALUs.
The exemplary shown code section below is part of a string
compare function for ARM processors and implements such
behaviour via the r3 register:

8108: e28234ff add 13, 2, #16777216 ; 0xff0O0000
810c¢: €2433801 sub 13, 13, #65536 5 0x10000
8110: e2433¢c01 sub 13, 13, #256 3 0x100
8114: 2433001 sub 13, 13, #1 ; Ox1

8118: e3c3347f bic 13, 13, #2130706432 ; 0x7f000000
8llc: e3c3387f bic 13, 13, #8323072 ;5 0x7f0000
8120: e3c33¢7f bic 13, 13, #32512 5 0x7100
8124: e3¢3307f bic 13, 13, #127 5 O0x7f

8128: e1d32002 bics 12, 3, 12
812c: 0a000002 beq 813¢c <stromp+0x54>

[0417] In one such embodiment, an ALU in a row may
receive the results of all other ALUs or all left-hand ALUs
as operands. However, such an implementation increases the
hardware complexity unnecessarily. Therefore it is preferred
if ALUs in a row can (only) receive the results of the one
neighbouring ALU to the left as operands, as indicated by
2299.

[0418] In some (albeit not preferred) embodiments, 2299
may form a ring by connecting ALU[n,max_col] to ALU[n,
0], e.g. ALU[1,max_col] to ALU[1,0]. The result of the most
right ALU can be used as operand in the most left ALU.
However, in typical embodiments this is not preferred, as
may become too complex to decide when the data process-
ing in a row has been terminated and new instructions can
be issued to the row (e.g. in loop acceleration mode).
[0419] In some (albeit not preferred) embodiments the
horizontal connection (e.g. 2299) may not only support data
transmission from left to right ALLUs but additional horizon-
tal connections may be implemented for supporting data
transmission from right to left ALUs.

[0420] FIG. 224 shows the placement sequence of instruc-
tions depending on the position of the lowest ALU (the ALU
closest to the bottom of the ALU-Block) providing an input
operand for the instruction to be placed. Preferably the
placer positions an instruction as close to the lowest ALU
providing an input operand in order of the data stream
through the interconnect structure. The first preferred posi-
tion is in the row directly below, then the second row directly
below, and so on; until the lowest row (max row) is reached
and the placement order wraps around and continues with
the first row from the top, the second row from the top, and
so on, until the row of the lowest ALU providing an input
operand is reached.

Scheduler

[0421] FIG. 21a and FIG. 215 describe a scheduler placing
the instructions from the CAQ into ALLUs of the ALU-Block
in order of the instructions in the CAQ. This scheduler may
replace and be used instead of the COA algorithm described
in FIG. 14.

[0422] In each clock cycle one or a plurality of decoded
instructions (also called instructions) are read from the CAQ
for being issued to (placed in) AL Us of the AL U-Block for
execution.

[0423] The exemplary scheduler according to FIG. 21a
gets an instruction (2101). The RCRT is read for each
operand (2102) to determine the position of the operand
source (ALU or register supplying the operand), so that the

US 2016/0306631 Al

instruction can be placed in optimal position and distance to
the source(s). Positioning the instruction close to the source
(s) avoids data transfer latencies. As described above, pref-
erably instructions are placed directly in the next row below
the source(s), or if this is not possible (e.g. the source is
placed at row max_row), in the top row.

[0424] Based on the position of the source(s) the closest
free ALU is determined (2103).

[0425] Ifan ALU is available for receiving a new instruc-
tion (2104), it is sent to that ALU (2105), else checking for
available ALUs (2103) continues.

[0426] The algorithm for computing the closest free ALU
(2103) is described in FIG. 215. It is preferably implemented
in hardware.

[0427] For each row the availability of an ALU is deter-
mined, e.g. by logical OR-ing (2111) the status signals of
each ALU of a row indicating the readiness for receiving
new instructions.

[0428] The lowest operand source, which means the oper-
and source closest to the bottom (max_row) of the ALU-
Block is determined (2112) based on the operand source
reference from the RCRT.

[0429] A barrel shifter (2113), which receives the row
number of the lowest operand source, adjusts the row status
produced by 2111, such that the row status of the row
directly in the next row below the lowest source(s) is shifted
into the first position (2121) and the row directly above the
lowest source is shifted linearly into the last position (max_
row=1) (2122). The row status of the lowest source, which
is actually the last output (max row) of the barrel shifter is
usually neglected (2123).

[0430] A priority decoder (2114) selects the first available
row, whereas the next row below the lowest source(s) being
shifted into the first position (2121) has the highest priority
and the row directly above the lowest source being shifted
linearly into the last position (max_row-1) (2122) has the
lowest priority.

[0431] For each row the position of an available ALU (an
ALU being ready to receive a new instruction for execution)
is determined, based on the respective status signal of each
ALU. Preferably priority decoders are used, one for each
row (2115, 2116, 2117). The horizontal position of a free
ALU (if any) for each row is transmitted to a multiplexer
(2118), which selects based on the row (vertical ALU
position) selected by the priority decoder (2114) the respec-
tive horizontal ALU position.

[0432] The computed vertical (2131) and horizontal
(2132) position point to the free ALU (being ready for
receiving a new instruction for execution) being selected for
instruction issue.

Code Fission

[0433] While instruction set of RISC processors is usually
adapted to single cycle operations, which directly fit the
requirements of modern processor cores, CISC processors
have rather complex instructions set. One approach to solve
this issue are microcodes or uOps as e.g. used in Intel 1A
processors. For details see e.g. [4].

[0434] A complex instruction is decoded into a sequence
of simple microcodes. Typically the sequence is handled
atomically as a whole inside the processor. Modern proces-
sors even fuse microcodes together, for reducing the man-
agement overhead. (See e.g. [4] chapter 58).

Oct. 20, 2016

[0435] The approach of the prior art has not much negative
impact on store operations on traditional processors, but
when processing loops as previously described, it is pre-
ferred in the inventive technology to move store operations
to the end of the loop code.

[0436] For load operations, the prior art approach is rather
improper, even for traditional processors of the prior art. It
saddles the burden of the latency for reading data from
memory to the very data processing operation requiring the
data. If the data load operation would split from the data
processing operation and start earlier, the negative impact of
the latency could be reduced or even avoided.

[0437] Itis regarded beneficial to split memory operations,
particularly load operations from data processing operations.
[0438] Load operations are moved upwards in the code
sequence, such that they are executed as soon as any
possible, which is as soon as all necessary operands (address
data) is available. Data store operations may stay close to or
fused with the respective data processing operations, or
moved down in the code sequence if beneficial.

[0439] It shall be expressively noted that the code fission
is regarded highly beneficial even for processors of the prior
art

[0440] Moving the memory operations may be done at
decoder stage already, or preferably in the CAQ (which
might be a TC), e.g. by AOS. More traditional processor
architectures do the optimizations preferably in the Trace
Cache (TC).

[0441] The inventive approach is not limited to code
fission and/or memory operations. Also other code (e.g. such
as loop control) might be optimized accordingly (e.g. to
have the loop termination condition determined earlier in the
loop).

[0442] As memory load operations and loop control opera-
tions are (at least within the scope of this patent) more
important, the following description is focusing on moving
the respective instructions up in the code sequence (e.g.
bubbling up). However, obvious for one skilled in the art the
same or similar approaches are applicable on other type of
operations (e.g. store operations which may move down in
the code sequence).
[0443] Two exemplary
described:

optimization strategies are

1. Bubbling Up

[0444] Reference is made to FIG. 23. FIG. 23a shows an
exemplary code snippet. A pseudo microcode is used, in
which the original instructions are still used, but load and
store operations are separated, indicated by the UPPER case
Mmnemonics.

[0445] A first bubbling step is shown in FIG. 2354
[0446] Each of the LOAD operations is moved one line up
in the code sequence. While doing so, it is checked if any of
the required operands are just generated in the upper target
line. If so, the operation cannot be moved further up and has
to remain on the current line. This is true for the LOAD
operation moving from position M1 to R2. However, simple
analysis of the mov instruction at R2 provides ebx as a new
source for eax. In one advanced embodiment the LOAD
operation may there-fore move further up, while replacing
eax with ebx (underlined in FIG. 235).

[0447] For optimizing loop control the compare instruc-
tion cmp is detached from the conditional jump jne. While
doing so, the instructions are translated into other micro-

US 2016/0306631 Al

codes, which store the flag generated by CMP in a flag
register flgr, which is then used by JNE as flag input.
[0448] FIG. 23¢ shows the next bubble step, in which the
respective operations are moved one more line up, in the
same manner as described in FIG. 235.

[0449] As the conditional jump JNE jumps back to the
address .16, it is not possible to move the LOAD operation
(s) at the top (R1) further up. Here the bubbling ends. In one
embodiment, all LOAD operations may bubble up until they
are lined up just below R1, in other embodiments sufficient
parallelism is implemented to move all (or at least a plurality
of) LOAD operations up to R1 and execute them in parallel.
[0450] It shall also be noted, that jump targets (vector
addresses) are a problem to be managed by the bubbling
algorithm. In the example of FIG. 2356 and FIG. 23c¢ the
vector address at .L3 is ignored, at this is only used to jump
into the loop at the very beginning. It is assumed, that the
bubbling is done dynamically during loop execution and in
each loop run, the respective operations are moved up.
[0451] This way all jumps from the outside into the loop
may be ignored. Only loop internal jumps have to be
maintained (e.g. .L.6). However, it must be ensured that the
modified code does not outlast the loop execution. If the
loop is executed for the next time it will start at the vector
address .L.3 again, which would not work if the LOAD
operations are moved up above this point.

[0452] It may be ensured that the original code is reloaded
again before the next execution. For example could a TC
plus CAQ structure be implemented, in which the TC caches
the original code sequence and the optimizations only per-
formed inside the CAQ, which receives the code from the
TC. While processing a loop the code is derived from and
optimized within the CAQ. When the loop is started for the
next time, the code will be loaded from the TC again.
[0453] A stricter implementation of the algorithm is shown
in FIG. 234. It shows the code at the same time as FIG. 23c.
In this implementation all jump targets (vector addresses)
are complied with. Therefore the LOAD operations are not
moved up beyond the vector address of .L.3. In the exem-
plary shown embodiment sufficient parallelism is imple-
mented to move a plurality of LOAD operations up to M1
and execute them in parallel.

2. Attaching to Latest/Lowest Source

[0454] In FIG. 24 the latest source of the operands within
the instruction sequence is checked for fission and optimiz-
ing the load operations. The LOADs depend on the register
eax, ecx and edx. Analysis of the RCRT shows, that the
registers eax and ecx are supplied by the instructions R1 and
R2, edx is supplied even higher in the instruction sequence.
Therefore the LOADs could be placed directly below R2 as
shown in FIG. 24a.

[0455] The loop control is also respectively pulled up, just
below the sources of the operands. It shall be noted, that only
checking the operands may not be sufficient in many cases
for ensuring the correctness of an instruction move to
another positions. It may also be necessary to ensure that the
result(s) of the operation(s) do(es) not impair other opera-
tions. For example could a moved operation produce a result
for register ebx and destroy its original content at the new
location. Original instructions subsequently accessing ebx
will get the wrong data.

[0456] In case of FIG. 24a loop control (2401) actually
modifies ebx. While this does no harm as M1 rewrites ebx

Oct. 20, 2016

anyhow, it must also be ensured that at the original position
of the loop control ebx is correctly set. This is achieved by
allosating another register from the ERF (erf0) for loop
control and moving erf0 to ebx (mov ebx, erfO (2402)) at the
original location of the loop control. It shall be noted, that
ideally loop control is replaced according to FIG. 23e.
[0457] In an advanced implementation, simple move
operations might be recognized and the source registers are
adapted in accordance with the move operation. This is
shown in FIG. 24b, where the eax source registers were
replaced by the ebx register after moving the operations in
front of mov eax, ebx (R2).

[0458] It shall also be noted, that the optimization in FIG.
245 pulled the instructions up beyond the jump target (vector
address) .L.3. The respective effects have been discussed in
FIG. 23 already.

[0459] A save policy may not allow to move code beyond
vector addresses, so that FIG. 24a would be the save
representation.

[0460] FIG. 25 shows a load/store optimization as previ-
ously described. The memory location [ebp-16] is appar-
ently a pseudoregister holding ecx, which stores the loop
exit criterion. Having a larger register set, ecx may be moved
to the ERF. In the examples of FIG. 23 and FIG. 24, ecx is
moved to erfS. The compare operation (CMP) of the loop
control (e.g. 2402) has been optimized to access erf5 instead
of the costly memory LOAD operation. However, as it is
almost impossible to ensure that no other location in the
code or even another thread is accessing the memory loca-
tion [ebp-16], the STORE operation (LTV) is preferably
kept in place and the respective move (MOV erf5, ecx) is
just added to the code.

Instruction Fusion/Instruction Morphing

[0461] Known from microprocessors is the fusion of
decoded instructions, so called microcodes, into fused
microcodes. Reference is made to [4] chapter 58, e.g. section
“pop Fusion”. However, this invention follows a different
approach.

[0462] ZZYX processors preferably move loop control, if
possible, into hardware units (e.g. TCC, reference is made to
[3]). The respective control code is removed and the con-
ditional jump instruction is replaced by another jump
instruction controlling the TCC, e.g. by triggering an incre-
ment step with each executed jump and in return receiving
status information from the TCC controlling the conditional
execution (if the jump is made or not). In this case the
original loop control code and the conditional jump code is
morphed into a new instruction (e.g. JTCC 5: Jump con-
trolled by TCC number 5).

[0463] In other implementations or if the binary source
code is too complicated to be off-loaded to a TCC, the
instructions may be merged into one complex instruction
representing all the functionality. In FIG. 23e the control
code is fused (2399) into a single microcode having the
source data (eax), the increment settings (+1), the termina-
tion condition ([ebp-16] respectively erf5) and the branch
target (.LL6) as inputs; and the target ebx as output. Such
complex microcode may drive a TCC like hardware unit (see
e.g. FIG. 105) but provide more program control than rather
autonomous TCC units. The fused representation allows
faster execution and requires less resources, in both the CAQ
(and/or TC) and the Execution Units (EX). Also the off-
loading to TCC (or the like) may allow for automatic loop

US 2016/0306631 Al

analysis preventing overshooting (see also section Loop
Control). In difference to the prior art not a plurality of
microcodes (typically derived from one single instruction)
are fused into one representation, but a plurality of instruc-
tions are fused into one single microcode.

[0464] The respectively fused microcode might be used in
all examples of FIG. 23 and FIG. 24.

[0465] Subsequently other methods of instruction fusing
are described, e.g. fusing a conditional and non-conditional
jump instruction into one microcode for more efficient
branch prediction.

Write-Back to Register File and Data Network

[0466] To preserve the correct order of the processed
results, timestamps (TS, also called tokens) are attached to
data. The TS is unique, at least within a time or code range
wide enough to prevent collisions.

[0467] The time-stamp (TS) for each register is managed
by the RCRT register, e.g. according to FIG. 16. In addition
to the current source (src) of the register content, also the
latest time-stamp (ts) is stored in the RCRT. With each new
register value being produced by the execution, a new
time-stamp is issued and stored in the RCRT. An exemplary
time-stamp sequence is shown in 1604: The time-stamp
information of register EBX for example starts with TS=1
when the register value is produced by A[0,2], then the
time-stamp increments to TS=2 when the register value is
produced by A[1,1]. TS increments to TS=3 for A[1,2] and
is ultimately TS=4, when the register value is a result of the
data processing of A[1,3]. The timestamp for each register is
separated; each register requires its linear sequence of
time-stamp information to enable sorting the register values
in the correct order. Accordingly the time-stamp of ESI
changes in this example.

[0468] Preferably the scheduler issuing (i.e. placing)
instructions on the ALUs in the ALU-Block checks the
result’s target of the respective operation and manages the
generation of the time-stamp accordingly.

[0469] Result data in the ALU_Block are transferred to the
Register File (RF) and/or subsequent ALUs within the
ALU-Block together with the attached time-stamp (TS).

Transferring Results to Register File (RF) ()

[0470] In accordance with the principles of Out-Of-Order
processing, results should be written into the RF in strict
program order.

[0471] In one embodiment, a FIFO-like buffer called
Result-Sorting-Buffer (RSB) is implemented between the
ALU-Block and the register file, buffering the result data
together with the associated time-stamps. On basis of the
time-stamps data is then selected for transmission to the
register file (RF), such that the linear order of the time-
stamps is maintained. Note that previously the time-stamps
were generated in linear order according to the strict pro-
gram order of the occurrence of the respective register
transfers.

[0472] The buffer may delay the availability of data in the
register file and by that also delay the execution of opera-
tions depending on the data. One solution could be to allow
read access to the RSB, as it is e.g. implemented in ReOrder
Buffers (ROB) of the state-of-the-art. However this
increases the hardware complexity significantly.

Oct. 20, 2016

[0473] Preferably this issue is solved by the data network
in between the ALUs within the ALU Block. According to
this invention, result data is transmitted from the generating
ALU to the ALU requiring the data as an operand via the
ALU-Block internal bus system (see e.g. FIG. 22). There-
fore current operations do not depend on the availability of
the data in the register file (RF), avoiding the issue. It shall
be mentioned, that no hazard is generated if data is not
available in the register file for an operation at time. All
operations check the time-stamps of the ALLU contents prior
to execution, which is delayed if necessary until data with
the matching time-stamp is available.

Data Network

[0474] Within the data network transmissions are prefer-
ably synchronized by a handshake protocol.

[0475] Two types of transmission might be implemented:
1. Pulsed: Data is available for one clock cycle after gen-
eration or after reception in a pipeline stage. Any receive
must register the data during that single clock cycle.

2. Steady: Data is available for a plurality of clock cycles
after generation, until the next data word is generated,
replacing the data. Usually this protocol causes a problem,
as it might be unclear to which operations the data is related
to (e.g. the same data could trigger a plurality of operations,
while only one operation should be processed). The time-
stamps according to this invention allow a clear identifica-
tion of the data and prevent erroneous duplicated execution.
[0476] The time-stamps are transmitted together with the
data within the data network. The data network sorts the
result data into correct order:

[0477] In one embodiment (exemplary shown in FIG. 1)
each network node (FIG. 1a) has multiple result inputs. 5
inputs are exemplary shown (0101, 0102, 0103, 0104,
0105), typically a node has not less than 2 inputs, but can
have many more (e.g. 32, 64, 128, .. .).

[0478] A comparator unit, which may comprise a plurality
of comparators (0111, 0112, 0113, 0114, 0115) compares the
time-stamp of each of the result data inputs with a reference
value. The reference value might be i) exactly the next
time-stamp required/expected for the respective register
which might be received from the register or RCRT directly;
or ii) generated by a local counter linearly counting up the
time-stamp values; or iii) a register simply storing currently
selected time-stamps, being used as a threshold. Depending
on the type of reference, the comparators may compare for
equality, larger or less. In the most preferred embodiment (i),
the comparators check for the time-stamp being equal to the
next value required.

[0479] The comparator outputs drive the selection of the
result data using a multiplexer (0121) for transmission
through the node to a receiver (0123), which might be a
subsequent node or a target register of the register file (RF).
Depending on the implementation of the multiplexer, the
comparator outputs may directly drive the multiplexer’s
select input or are e.g. binary encoded via a decoder (0122)
(e.g. a decimal to binary decoder or a priority decoder). A hit
signal (0124) may be generated, e g. by the decoder,
indicating that one of the comparators detected a condition
to select a result for transmission though the node.

[0480] FIG. 15 shows an exemplary cascade of 4 network
nodes (0100) according to FIG. 1a. The outputs of the nodes
are fed to a multiplexer (0131), which selects on of the
results for transmission to the receiver (0132) (e.g. the target

US 2016/0306631 Al

register of the register file (RF)). In one embodiment, the
time-stamps might be checked in accordance to FIG. la.
However, in the preferred embodiment, the hit signal (0124)
of'each of the nodes (0100) is used to drive the selector input
of the multiplexer (0131). As described in FIG. 1a, depend-
ing on the implementation of the multiplexer, the hit signals
may drive the multiplexer’s selector input directly or a
decoder (0133) might be used.

[0481] Another embodiment of the bus structure is shown
in FIG. 2: The lowest (oldest) time-stamp (according to FIG.
165) is selected for each result data incoming at a node. In
FIG. 2, the selection is done per pair. Obviously other
granularities might be chosen. For example in a selector
element (0211) the lower time-stamp of the incoming result
data is selected by a comparator (0201), which drives the
multiplexer (0202) for transmitting the respective result
data.

[0482] The elements 0211 can be cascaded to form the
same network structure as e.g. FIG. 1. Respectively the
result data inputs (0101, 0102, 0103, 0104, 0105) and the
result data output (0132) use the same references.

[0483] In some embodiments, the network may comprise
registers or FIFO stages, buffering the data. The benefit is
two-fold: i) higher frequencies might be achievable as the
network operates pipelined and ii) the data is buffered in the
network, eliminating the limitation that an AL U must remain
in its state until the data is written into the register file, such
blocking the issue of a new instruction.

[0484] The respective embodiments are versions of the
implementations described in FIG. 1 and FIG. 2, e.g. con-
strued by simply adding registers or FIFOs at the inputs
and/or outputs of each stage (e.g. 0100 or 0211) of the
inventive network or merging the inventive network with the
Result Reordering Buffer previously described. Respective
implementations are lobvious for one skilled in the art and
supertluous to describe.

Synchronization: Issue Level, Network Level

[0485] It is necessary to synchronize the data transmission
and write into the register file with the issue of new
instructions to the ALU. For example it must be prevented
to overwrite an ALU operation with a new instruction as
long as the respective result has not been written back to the
register file. Alternatively results might be stored in the
network, e.g. using registers or FIFOs to buffer the data.
[0486] In one embodiment, synchronization might be
implemented using a handshake protocol in the network for
removing data in the network (or ALU) which has been
written to the register file (RF) and/or indicating that an AL U
can receive a new instruction.

[0487] In another embodiment, the scheduler checks if the
result data of an ALU has been written to the register file
(RF) before placing a new instruction onto the ALU. This
can be done by comparing the time-stamp for the result
originally issued to the ALU with the register’s current
time-stamp in the register file. If the ALU’s issued result
time-stamp is greater than the time-stamp of the result’s
target register in the register file, the ALU cannot receive a
new instruction; else a new instruction can be placed onto
the ALU.

Effect of Data Network on Register File

[0488] As the sorting of the result data might be done in
the data network already, it is not strictly necessary to
implement an additional Result Sorting Buffer (RSB).

Oct. 20, 2016

Scheduling

[0489] One problem for scheduling the placement of
instruction onto the ALU Block is that a result generated by
a first operation required as an operand for a second opera-
tion has been generated several clock cycles prior to the
placement of the second operation. In this case, the second
operation might miss the required data even if it is correctly
placed below the source ALU.

[0490] Various methods for avoiding the problem exist,
two preferred ones (SCD1 and SCD2) are subsequently
described:

[0491] SCD1: In a first embodiment the instruction sched-
uler (see e.g. FIG. 14, and/or FIG. 21) not only checks the
position of the source ALU, but also the position of result
data transferred between the ALUs in the ALU-Block. The
data positions are checked based on the attached time-
stamps (TS). If an operation required a specific data word as
operand, the scheduling algorithm ensures, that the respec-
tive instruction is placed into an ALU at a position so that the
data with the according time-stamp is accessible at the time
of or after placement, depending on when the operand data
is transmitted to the ALU inputs or stored in the operand
registers of the ALU.

[0492] Result data might be outputted by the respective
ALU pulsed (for one clock cycle only) or stable (for a
plurality of clock cycles, until a new instruction is issued to
the ALU).

[0493] SCD2: In a second embodiment, the result output
of the ALUs must be stable, so that any instruction being
issued at any later point in time is able to get the result
information in accordance with the network structure (e.g.
FIG. 22).

[0494] In this variant, the scheduler can issue instructions
only to such ALUs which have terminated their operation
already and their result is written into the register file
already. As long as the ALU’s result output might be
referenced by a newly placed instruction as a source, the
source ALU must remain unmodified (i.e. keep the current
instruction) in the AL U-Block. Typically this is no issue for
Out-Of-Order processing as the scheduler places the instruc-
tions from top to bottom of the ALU-Block and rolls over to
the top again after the bottom has been reached. This rolling
instruction issue provides adequate time to either receive the
result data by subsequent instructions requiring the result as
an operand or write the results into the target register of the
register file.

[0495] ALUs having instructions scheduled which require
results produced by prior ALUs in the ALU Block as
operands, preferably store the respective result data imme-
diately after it is available in the operand register. This
enables the source ALU producing the result data to be
replaced.

[0496] In some environments the best results are achieved
by combining said first and second embodiments.

Time-Stamps

[0497] The time-stamps (TS) must be unique within the
context of each register or Catena; this means the same
time-stamps (e.g. a TS=4) can be used for multiple registers
in parallel (as the register address identifies the context of
each TS), but for a single register (or Catenae) the time-
stamp must be unique for identifying its sequence of data.
Yet, the timestamp information may get arbitrarily large.

US 2016/0306631 Al

[0498] As the uniqueness is only required within a vicinity
of time, a certain locality can be used for shortening the TS
width. On this basis a circular TS system can be established,
which number range (i.e. width) is limited. Using the at least
two most significant bits (MSB) of the TS a circle is formed
by the following sequence of the 2 MSB called circular
pattern (cp): 00<01<10<11<00<01 Thus a TS may have
the following format:

s Circular pattern (cp) | Sequence information(sf)
~ 2 bis N bits (e.g. n=4)
[0499] An exemplary time-stamp (TS) is shown in FIG.
165.
[0500] The circular time-stamp works perfectly as long as

it is ensured that no old circular pattern cp (e.g. 01) is still
in use while a same circular pattern cp (e.g. 01) is being
newly used due to a roll over, such causing a collision. For
forming such a circle, only on bit would not be sufficient. At
least 3 interpolation points are required, requiring 2 bits
information. More than 2 bits are usually not necessary, if
not for other reasons.

[0501] In most applications and/or environments there is
no guarantee that an instruction may not stall for an arbi-
trarily long time. Therefore it cannot be assumed, that
time-stamps of any length will be large enough to provide
the minimum distance within the circle for preventing the
reissue of a circular pattern (cp) by the scheduler, which is
still in use by any blocked instruction.

[0502] Therefore a mechanism is required to stall the
scheduler if a collision is about to happen. Several mecha-
nisms are feasible, e.g.:

[0503] In one embodiment each time-stamp generator
checks, at least before moving from one circular pattern (cp)
to the next, if the next circular pattern (cp) is still in used
within the ALU-Block. Fither each ALLU may be checked or
monitored, or a time-stamp history buffer might be imple-
mented, recording the issue of time-stamps and the return of
the respective results to the register file (RF), such freeing
the time-stamps again.

[0504] Inanother less complex to implement embodiment,
each ALU constantly monitors the circular pattern (cp)
generated by the time-stamp generator of the registers used
by its instruction. If the current time-stamp of the time-
stamp generator is only one step away from the time-stamp
still used by a register of the ALU, the ALU issues a wait
signal to the time-stamp generator, preventing it to move
ahead to the subsequent circular pattern (cp). Depending on
the width of the sequence-information (si), latency is no
issue, as there is enough time for checking and transferring
the wait signal between the first use of a circular pattern (cp)
and moving to the next subsequent circular pattern (cp).
[0505] However, in a preferred embodiment, no dedicated
hardware is required at all. As disclosed before, usually
result data have to be written to the register file (RF) in strict
program order, which likely differs from the execution order
of the Out-Of-Order (OOO) execution. Result data for each
register is sorted by a (preferably dedicated) FIFO-like
Result Sorting Buffer (RSB). Result data is written into the
RSB in the sequence of its production by the AL Us. How-
ever, data is transferred from the RSB into the Register File
(RF) in the order defined by the time-stamps associated with

Oct. 20, 2016

the data. If the RSB is full, but the next time-stamp in linear
order required for transmission to the Register File (RF) is
not available in the RSB or at the input to the RSB from the
ALU-Block, scheduling will stall and no new time-stamps
will be generated. However, data processing continues.

[0506] As also disclosed before, the network preferably
transmits result data having the oldest time-stamp. While the
result data may stall back in the network that rule (preferably
transmitting the data associated with the oldest time-stamp
(TS)) will ultimately transfer the (previously missing) data
next in order to the input of the RSB. From there the data is
then transmitted to the Register File, establishing the correct
order. After the previously missing data has been written to
the Register File (RF), scheduling continues and the next
data in the sequence is selected for transmission from the
Result Sorting Buffer (RSB) to the Register File (RF).

[0507] Stalling scheduling until writing the data next in
the timestamp sequence to the Register File (RS) automati-
cally ensures that no time-stamp collision may occur.

Transferring Results to Register File (RF) (II)

[0508] Various implementations might be used for trans-
ferring back the results from the ALU-Block to the register
file. Exemplary two preferred embodiments, a multiplexer
arrangement, and a multiplexer tree are shown in FIG. 1 and
FIG. 2.

[0509] Another preferable embodiment is disclosed and
described in [3], e.g. FIG. 27 and FIG. 28. Here the results
are transferred to the register file (RF) through a pipeline,
each stage capable of adding its current output to the
pipeline. The order might be maintained, by selecting for
each pipeline stage, whether the timestamp (and respectively
data) of the previous pipeline stage or of the current ALU
row shall be transmitted.

[0510] Other embodiments may use entirely configurable
networks (which might also be used in between the ALUs of
the ALLU-Block) as known from FPGAs and reconfigurable
processors. However, as those tend to be slow, large and
power inefficient, they are usually not preferred.

Safeguarding Time-Stamps

[0511] Modern processors may require rather long laten-
cies accessing memory or peripherals, worst case conditions
of 20-60 clock cycles or even more are not uncommon. In
such environments the length of the Time-Stamps might
become a critical factor. It must be ensured, that the oldest
timestamp value in the ALU-Block is not reached again by
newer timestamps. One approach could be very wide time-
stamps, but they are expensive to handle and may even not
guarantee the correctness under any conditions.

[0512] Depending on the result-to-register-file write-back
strategy discussed subsequently, several methods can be
implemented to safeguard the correctness of the timestamps
and prevent an overflow, for example:

[0513] SGT1) The timestamp generator monitors all time-
stamps issued to ALUs in the ALU-Block. If a new
timestamp is about to issue, which is still in use within the
ALU-Block, the issue of the respective instruction is
delayed, until the required timestamp becomes free
(which means the respective instruction in the ALLU-Block
has been executed). In some embodiments an out-of-order

US 2016/0306631 Al

implementation may skip the execution and continue with
the issue of other instructions. This is a rather complex
way to safeguard.

[0514] SGT2) Each ALU of the ALU-Block monitors
issued timestamps. If a collision occurs or if a collision
could occur soon (the currently issued timestamp is in a
close vicinity of the one still in use (e.g. 1, 2, or 3 steps
away), the ALU produces a STOP signal preventing the
respective instruction to issue. The STOP signal is
removed as soon as the ALUs current instruction has been
processed and has terminated and the result data has been
written back to the register file, so that the timestamp is
not in use anymore.

[0515] SGT3) The timestamp generator checks the cur-
rently generated timestamp versus the timestamp of the
data in the respective register. If the currently generated
timestamp would be equal to the timestamp of the data in
the respective register (or comes close within a vicinity as
in case SGT2)), the timestamp is not issued and the
respective code issue is blocked, until the timestamp in
the data register is updated with newer result data. This is
the simplest safeguard implementation.

In-Order-Write-Back (IOWB) Vs. Most-Recent-Write-Back
(MRWB)

[0516] FIG.1, FIG. 2 and FIG. 8 show implementations of
an In-Order-Write-Back (IOWB). In those implementations,
the result data is written back to the register file in exactly
the same order as the instructions are ordered in the program
(in program order). The benefit is, that it is ensured that the
sequence of results in the register file is the same as the
program had produced executed in order. Also, the simple
timestamp safeguarding according to SGT3) can be imple-
mented, as the timestamps are linearly written to the register
file. However, the strict implementation might be unneces-
sary. Usually if a newer timestamp for a register is issued to
the AL U-Block, the timestamp older data became obsolete.
Either it is not required or it is consumed by instructions
already been issued to ALUs of the ALU-Block, so that
those ALUs directly receive the data from the producing
ALU via the ALU-Block data network: So the writing-back
this data to the register file is obsolete. For example the write
back structure of FIG. 2 can be modified such that not the
lowest (oldest) timestamp is selected for transmission to the
register file, but the largest (newest). All data with older
timestamps are discarded.

[0517] The benefit of this implementation is in the possi-
bly faster write-back of data to the register file: Not all of a
plurality of results to the same register do not need to be
arbitrated and transferred anymore, only the newest one.
Also, respectively energy can be saved: Not transmitted data
does not consume energy.

[0518] However, safeguarding the correctness of the time-
stamps becomes more complicated. Still SGT3) is the most
preferred safeguarding, but may not be sufficient in all kind
of implementations. This may force the implementation of
the more complex safeguarding methods SGT2) or SGT1).

[0519] FIG. 8 shows an exemplary implementation of a
timestamp based result reordering. A register file (0801)
comprises a plurality of registers (reg), each having an
associated Register Issue Token (timestamp) (rit), contain-
ing the timestamp of the last instruction using the register as
result target being issued. Also a Register Content Token
(timestamp) (rct) is associated with each register, containing

Oct. 20, 2016

the timestamp of the last instruction having written its result
back to the respective register (reg) of the register file
(0801).

[0520] When an ALU (0802) of the AL U-Block is getting
a new instructtion issued, together with the instruction the
current Register Issue Tokens (rit) of source and target
registers are transmitted and stored in internal registers (trt
for the result token and srtO and srtl for 2 operand data
tokens). Those tokens (timestamps) reference to the last
instruction issued, generating result data to be stored in the
respective register. The ALU (0802) has to receive its source
data exactly from the last issued instructions producing the
register values. It has to write back its own result exactly
after the previous instruction has sent its result to the target
register. Via an input multiplexer (IMUX), the ALU receives
the operands from the selected source. Note: The operand
paths (0803 and 0804) are not directly connected with the
register file. This shall indicate, that the operands may
actually not only be received from the register file, but
possible from another ALU in the ALU-Block.

[0521] Not only has the correct source had to be selected,
but also the correct data from the source. Therefore the
sources data tokens are compared with the respective srt(0,1)
value and only if the data token and srt value matches, the
respective data is transmitted to the ALU. It shall be men-
tioned, that preferably an input register is implemented right
after each of the IMUX for operand0 and operandi. The
input register stores the selected incoming data in case the
ALU is not ready for operation yet, at a later point in time,
the data with the correct timestamp may be lost. There are
several reasons why an ALU may not be able to perform an
operation, e.g. could another operand source data still be
missing.

[0522] A similar mechanism is implemented for the result
data. In this example the result is written-back in a write-
back stage (0805) in-order IOWB). Therefore, the write-
back is enable, after the exact previous instruction (in
program order) has written its result to the target register: trt
and rct match, and the result transmission to the target
register is enabled. Exemplary shown is a result-to-register-
file multiplexer (RMUX) collecting and transmitting the
result data from all ALUs in the ALU-Block (various
implementations have been previously described).

Jump Instructions

Jump Indicating Loop

[0523] Instructions for indicating the start and/or end of a
loop and switching between the modes are known from [3].
Additionally or alternatively ZZYX processors may provide
jump instructions indicating the start and/or end of a loop.
This may prevent to amend existing Instruction Set Archi-
tecture (ISA), e.g. Intel Pentium, MIPS, ARM, etc. with a
special respective instruction. The jump instructions may be
similar or even equivalent to traditional jump instruction,
but only differ in the binary code, so that the processor can
recognize the start or end of a loop and switch accordingly
from normal (or Out-Of-Order) execution into loop mode.
[0524] The existence of the respective jump instructions
may simplify the design, efficiency and accuracy of the loop
optimization (e.g. BTA, COA, CAQ).

[0525] If actually no jump is necessary but the instruction
is only used to switch between the modes, a jump to the next
linearly succeeding instruction is implemented, e.g. jmpr 1

US 2016/0306631 Al

(if jump (e.g. jmpr) is relative to the program pointer). The
instruction fetcher (IF) may read over the respective instruc-
tion, instruct to switch between the modes, and continue
fetching the next instruction from ProgramPointer+1 (PP+
1). No jump is actually performed, as execution continues
with the linearly next subsequent instruction (PP+1). The
sole purpose of such “pseudo” jump instructions is switch-
ing between the modes. The relative jump to PP+1 is ignored
and the instruction fetcher (IF) and instruction decoder (ID)
only issues the instruction to perform the switch.
[0526] The following exemplary jump instructions might
be implemented, which can be conditionally executed as
disclosed below (and as e.g. the ARM instructions set
provides):
[0527] bass (branch and superscalar) If execution is
enabled, branch and switch to superscalar mode.
[0528] boss (branch or superscalar) Branch if execution
is enabled else switch to superscalar mode.
[0529] bala (branch and loop-accelerator) If execution
is enabled, branch and switch to loop-accelerator mode.
[0530] bola (branch or loop-accelerator) Branch if
execution is enabled else switch to loop-accelerator
mode.

Branch Prediction and Speculative Execution

[0531] As of today, branch prediction is widely supported
in modern processor architectures. In conjunction with
tracking the jump history it is an important tool to avoid
unnecessary jumps and/or pipeline stalls. However, specu-
lative execution is complex to implement, and required
significant resources and power.

[0532] ZZYX cores therefore may provide conditional
jump instructions indicating if the jump is typically executed
or not, e.g. by using specific binaries: One for jump typically
executed, and another one for jump typically not executed.
This leaves it to the programmer, compiler and/or code
analysis tools to set the jump instruction in accordance to the
most typical case of the algorithm. In most cases, it is well
predictable either by analysing the algorithm or by profiling
the execution of realistic data, which path might be take
more often. For example, if the conditional jump defines a
loop, it is rather likely that the jump leads to the top of the
loop doing another iteration, than exiting the loop.

[0533] Compilers detect and optimize loops and can there-
fore be enhanced to use the respective jump in loops.
[0534] Other constructs, such as compares may require the
analysis and/or profiling of realistic data to define the best
jump setting. Such analysis can be done upfront at compile
(or design) time of a program or it can be done at runtime
e.g. in conjunction with the operating system and/or a
compiler library. At runtime the code might be temporarily
altered just for the runtime of the execution or it might be
written back to the mass storage, so that the altered code is
used at the time of the next program start.

[0535] Depending on the jump instruction:

jump-likely: the processor executes the jump and trashes the
pipeline in case it is figured out that the jump should not
have been executed.

jump-unlikely: the processor does not execute the jump and
trashes the pipeline in case it is figured out that the jump
should have been executed.

[0536] The respective opcodes and functionality can be
implemented in existing instruction sets (e.g. Intel IA, ARM,
MIPS). However some instruction sets might not have room

Oct. 20, 2016

for additional instructions or it does not appear useful to
waste space in the instruction map. In this case the following
construct may be used to emulate the function:

conditional_jump <adr>
unconditional_jump <adr>

[0537] It is a combination of a conditional jump, directly
followed by an unconditional jump. Whenever the instruc-
tion decoder of a processor detects such a combination,
depending on a predefined policy, the processor may specu-
latively execute the conditional jump (if the predefined
policy says so) or may speculatively not execute the condi-
tional jump (if the predefined policy says so). In order not to
waste time, it the policy is preferred to speculatively execute
conditional jumps in such a combination.

[0538] While this combination if two opcodes might be a
waste of time in traditional processor architectures, Trace
Caches enable efficient execution. Furthermore and even
preferred, the two jump opcodes might be fused by the
Instruction Decoder (ID) into one opcode, which may
require only one slot in the processor internal buffers (e.g.
the trace cache) and/or requires only one (instead of worst-
case two) jump cycle for execution. The Instruction Decoder
analysis two subsequent instructions for detecting the com-
bination of a conditional jump, directly followed by an
unconditional jump and fusing it into a respective Micro-
code, Microcode sequence or combined opcode, depending
on the implementation.

[0539] Fusing a plurality of Opcodes into one Microcode
or a joint combination of Microcodes is known in the state
of'the art, e.g. by Intel x86 processors. Reference is made to
[4], e.g. chapter 58, section “pop Fusion”.

[0540] It shall be noted, that the respective combination of
a conditional and unconditional jump instruction may lead to
rather weird code, for example in the code of FIGS. 11A and
11B:

[0541] The original code uses a conditional jump (jne,
1110) to loop to label .L6, but continues with label .14 if the
condition is not met:

lea ebx, [eax+1]
cmp ebx, DWORD PTR [ebp-16]
jne L6
L4:
add esp, 4
pop ebx

[0542] After the combination of a conditional and uncon-
ditional jump instruction is inserted, the code has an addi-
tional, rather superfluous jump instruction jmp .L4:

lea ebx, [eax+1]
cmp ebx, DWORD PTR [ebp-16]
jne L6
jmp 14
L4:
add esp, 4
pop ebx

[0543] However, it shall be pointed out that the sole
purpose of this jump instruction is (as described) the dec-
laration of the likely jump target. jne .L.6 and jmp .L4 are
recognized as a complex or joint opcode by the instruction
decode and trigger the execution unit (EX) or and/or fetch

US 2016/0306631 Al

unit (IF) to execute the conditional jump according the
policy. Particularly the two instructions might be fused into
a single microcode or a microcode group subsequently
treated as a whole, e.g.:

[0544] first_jump_to_.L.6 check_if condition_met. ...

[0545] . . else_trash_pipeline_and_jump_to_.I[.4

[0546] Speculative execution is expensive on processors
of the prior art. If a speculative execution has been proven
wrong, not only the pipeline has to be flushed and reloaded,
but also previously processed data, already transmitted to
the register file has to be removed and the register content
before the speculation has to be restored. This restoration is
costly in terms of time, resources and energy.
[0547] The ALU Block of ZZYX processors enable a new
type of speculative execution. In case a branch is specula-
tively taken, instructions might be issued to the AL Us of the
ALU Block, with a speculation-flag set. Data produced by
such instructions are transmitted within the ALU Block, but
not written back to the register file, unless the speculation
has proven correct. In case the speculation was wrong, the
produced data in the ALU Block is not written to the register
file, but overwritten by new data of the correctly taken
branch.

Conditional Execution

[0548] For efficient execution of an algorithm on the ALU
Block, e.g. in loop mode, it is beneficial to keep data
streaming as long as possible through the AL Us of the ALU
Block. Conditional jumps would destroy the instruction
pattern mapped onto the ALU Blocks and require fetching
and issuing of new instructions. However, ideally condition-
ally executed code is inlined and issued together with the
surrounding code to the ALUs of the ALU Block. This
inlined conditional code is then conditionally executed on a
cycle-by-cycle basis, depending on the currently processed
data during execution.

[0549] Various approaches can be used to achieve the
required inlining, some are exemplary described:

[0550] Each instruction may have a token defining the
condition on which it is executed. Such condition fields
within instructions are for example known from the ARM
instruction set, e.g. reference is made to [8] chapter 4 “ARM
Instruction Set”.

[0551] However, in most other assembly languages, con-
ditional jumps are used to exclude code from processing.
However, code analysis e.g. at the Instruction Decoder (ID)
stage or based in the Trace Cache (e.g. CAQ) are able to
detect such code exclusions. For example:

The C -code
it (i >))
i-=j;
else
J-=1i
compiles to an assembly code as such

cmp Ri, Rj ; set condition "NE" if (i !=j),
; "GTif (i >),
; or "LT" if (i <j)
jle .L1 ; jump if less or equal
sub Ri, Ri, Rj ; if "GT" (greater than), i = i-j;
jmp L2
.L1: sub Rj, Rj, Ri ; if "LT" (less than), j = j-i;
L2 ; Label reached from both branches:

; common code

Oct. 20, 2016

[0552] The execution graph is analyzed. It splits at instruc-
tion jle and merges again at label .L.2. Conditional execution
control is attached to the respective instructions of the
branches, jump instructions can be removed. Respectively
the original code comprising jump instructions is trans-
formed (e.g. at the Instruction Decoder (ID) stage or based
in the Trace Cache (e.g. CAQ)) into the following assembly
code using condition fields:

emp Ri, Rj ; set condition "NE" if (i != j),

; "GT" if (i >),
; or "LT" if (i < j)

subgt Ri, Ri, Rj ; if "GT" (greater than), i = i-j;

suble Rj, Rj, Ri 3 if "LT” (less than), j = j-I;

; common code

[0553] At execution time each ALU of the ALU Block
decides based on incoming status flags produced by previ-
ously executed instructions if the condition is met and
executes the instruction in this case.

[0554] The respective model can also be applied for
multi-level conditional execution. This is subsequently
described on more abstract code:

uncond_op ; unconditional opcode
uncond_op (set flags) ; unconditional opcode setting status flags
branch .L1 ; branch to .L1 depending on status

; depending on set flags
uncond_op ; unconditional opcode omitted by jump .L1
uncond_op ; unconditional opcode omitted by jump .L1

uncond_op (set flags) ; unconditional opcode omitted by jump .L1

; setting status flags

branch .L2 ; branch to .L2 depending on status
; depending on set flags
; omitted by jump .L1

uncond_op ; unconditional opcode omitted by
; jump .L1 and/or .L2

uncond_op ; unconditional opcode omitted by

; jump .L1 and/or .L2

; unconditional opcode omitted by jump .L1
; unconditional opcode omitted by jump .L1
; unconditional opcode

.L2: uncond_op
uncond_op
.L1: uncond_op

[0555] The code example comprises unconditionally
executed instructions having no condition field (uncond_
op). The branch instructions (branch) do also not comprise
condition fields, they branch to the given label if the
received status information meets the branching condition.
[0556] Within the first conditionally executed branch
(branch .I.1 to .LL1:) a second conditionally executed branch
is located (branch .2 to .1.2:). The second branch is tested
and potentially executed only, if the respective code is
enabled by the first branch. At .L1 all branches merge again.

[0557] The exemplary code and respective graph is shown
in FIG. 3a.
[0558] In the following the ARM architecture condition

codes are used as an example. The condition code according
to the table are set in the condition fields of ARM instruc-
tions and enable the execution of the respective instruction
depending on the received status flags:

condition code mnemonic Execute, if flag(s):

zero set
zero not set

0000 EQ
0001 NE

US 2016/0306631 Al

-continued
condition code mnemonic Execute, if flag(s):
0010 CS carry set
0011 CcC carry not set
0100 MI negative set
0101 PL negative not set
0110 VS overflow set
0111 vC overflow not set
1000 HI carry set and zero not set
1001 LS carry not set and zero not set
1010 GE negative equals overflow
1011 LT negative not equal overflow
1100 GT zero not set and (negative not
equal overflow)
1101 LE zero set and
(negative not equal overflow)
1110 AL execute always
1111 BK/AB back one level/as before
Note:
The additional condition code (1111 = BK) is implemented at a formerly unused position.

This code terminates the conditional execution, as always would. However, BK does not
switch to unconditional execution, but goes back to the previous level of conditional
execution as will be described subsequently.

[0559] The exemplary code (e.g. FIG. 3a) is optimized
such, that two condition fields are generated processor
internally. Depending on the processor implementation, not
only two but a plurality of condition fields (e.g. 4, 7, 8 or
more) can be used.

[0560] The first field (0301) defined the first or lowest
condition level. Only if a condition is used at this level, the
next higher condition level will be checked, in this example
the second field (0302). If a further level (e.g. a third) is
implemented, this will be checked only if a condition is
already placed into the second condition field, and so on.
[0561] The condition fields 0301 and 0302 show, how the
conditions are set depending on the instruction flow.
[0562] InFIG. 35 the same graph is implemented using an
assembly set providing condition fields. Jump instructions
are redundant.

[0563] After status flags are set for the second time (set
flags 2) the subsequent instructions are conditionally
executed on the basis of the newly set flags. This advances
the condition level one level higher. At some time, a special
back (back_2) instruction might be used, quasi to close the
branch and go back to the previous condition level. Subse-
quent code is then again executed according to the first
condition. Finally a second back instruction (back_1) ter-
minates the conditional execution.

[0564] Obviously the status information is newly set dur-
ing the execution and the original information is eliminated.
This will jeopardize any conditional execution of a previous
level after a level is finished. For example the cond_1
instruction (0311) would not process correctly after the
status flags have been set (0312) for the second time. Various
implementation alternatives exist to avoid this problem.
[0565] For example:

[0566] Ca) At each level status flags may be saved and
made available (e.g. by transmitting them via a bus or
network) to all AL Us operating at the respective level.
Each ALU get the correct status information in accor-
dance with the condition level it is operating at and is
able to check those status flags in accordance with the
condition code.

[0567] Cb) In another implementation, an Level-En-
able-Disable (LED) signal is generated by the ALU
performing the first conditional operation. The LED

28

Oct. 20, 2016

signal is condition level specific, each condition level
has its respective dedicated LED signal. It is then
evaluated by all subsequent ALUs operating at the
same level.

[0568] For example may 0313 set the enable signal for
the first level and 0312 for the second level. If condi-
tional execution is used, just the enable signal at the
respective level is evaluated.

[0569] Obvious for one skilled in the art various other
implementations exist.

[0570] The back instruction would require additional
space in the instruction set, decrease the code density and
takes additional time and energy to fetch and decode. In one
implementation an additional condition code called back
(BK) is implemented as shown in the table above. BK (back)
set has the same effect as a back instruction. However the
current instruction, which could be any instruction, is
effected and retreated one condition level (e.g. 0321, 0322).
This replaces the back instruction by a useful instruction. It
shall be noted, that instruction 0322, which goes back to
non-condition execution, may alternatively use the AL con-
dition code (always).

[0571] This leads to another possible implementation, in
which the Always condition code (AL) is given a slightly
different semantics: It is actually not enabling entirely
unconditional execution, but retreating one condition level
back, as the back condition code (BK) does. The back
condition code (BK) is therefore eliminated, which may
increase the compatibility with existing processor architec-
tures and/or instruction sets.

[0572] However in case Cb) is implemented and the LED
signals are used, instructions executed after the status flags
are newly set cannot check the original status flags their
condition may depend on. While this is no problem in a
implementation of the type Ca), the respective status infor-
mation is available at each level, only the LED signals are
transmitted in the Cb) implementation.

[0573] Therefore, a condition code might be used, called
As-Before (AB). This code simply checks the respective
LED signal and enables the execution in accordance to the
original condition which generated the LED signal, respec-
tively enabling or disabling all further operation having the
AB condition code set.

[0574] The condition codes As-Before (AB) and Back
(BK) might be both implemented. However, this would not
fit into the space of the condition table shown above. A fifth
bit would be required. In a preferred implementation, either
AB or BK are implemented. In case AB is used, Back (BK)
is not implemented, but the Always (AL) condition code has
the modified semantics described above: retreating one
condition level back.

Managing the FIFO Register File, e.g. FIFO Data Registers
(FDR)

[0575] Special instructions might be used to manage FIFO
Register File, e.g. the FIFO Data Registers (FDR). [3]
comprises a detailed description of the FIFO Register File,
e.g. “Each single register (for instance 0401) consist of a
FIFO and may operate in one of at least two modes, as single
register or as First-In-First-Out memory (FIFO).” Particu-
larly it is important to switch between the FIFO stages,
respectively the entries in the FIFOs. As described in [3]
each iteration of a loop may use—and typically does use—
another entry in the e.g. FDR.

US 2016/0306631 Al

[0576] During the first loop run, e.g. a first Catena (see [
1), the register entries for each iteration (i.e. the FIFO
entries) must be initialized. Various methods may be used,
for example:

[0577] a) Before the first loop run, for each single
register a copy of the currently selected register is
copied into all its respective FIFOs entries, so that the
value of the currently active register is duplicated for
all FIFO stages of that register. By doing so, all
subsequent loop iterations get access to the respective
starting value.

[0578] b) Only before a new loop iteration starts, the
FIFO entries for this respective loop entries is initial-
ized. In this case, this might be a copy of the each final
register value of the previous loop iteration into its
respective FIFO entry for the new loop iteration.

[0579] While those functions may be controlled by dedi-
cated instructions, in one embodiment, loop instructions
(e.g. as the previously discussed bass, boss, bala, bola
instructions) may be used to implement the respective
features.

Context Switching

[0580] ERF and/or PRF and/or SRF may exist in a plu-
rality of instances. Preferably only one instance is active at
a time.

[0581] A context switch is detected, if the pointer to the
address translation table (i.e. PML4) is changed by resetting
the respective register (i.e. CR3) of the processor pointing to
the address translation table. For the description of PMIL4
and CR3 reference is made to [1].

[0582] The active ERF and/or PRF and/or SRF instance is
moved to the PUSH pipeline, in which formerly used
instances are lined up for being pushed to the memory
hierarchy in the background by a DMA-like mechanism.
[0583] ERF and/or PRF and/or SRF instances might be
speculatively prefetched (popped from memory hierarchy)
in the background by a DMA-like mechanism using various
mechanisms. Those prefetched instances are checked, if one
of them meets the new CR3 entry. If so, the respective
instance is selected as active set.

[0584] If no prefetched instance fits or the feature is not
implemented, the newly selected instance is fetched
(popped) from the memory hierarchy.

[0585] The prefetching strategy may depend on the sched-
uling algorithm of the Operating System. Some strategies,
such as e.g. Round-Robin or Priority scheduling are widely
predictable, so that the hardware can prefetch at high accu-
racy. Other strategies may require the scheduler to explicitly
inform the hardware, which ERF instances shall be
prefetched.

[0586] An exemplary sequence is shown in FIG. 6. The
active set (0601) is the register file (e.g. ERF and/or PRF
and/or SRF) currently in use. Formerly used register files
(0602 and 0603) are in a push pipeline for being spilled
(pushed) to the memory hierarchy.

[0587] Register files (0604, 0606, 0606, 0607) for subse-
quent future use might be preloaded into register file reser-
vation unit (or pop pipeline), having the register files avail-
able for fast context switching. Depending on the processors
implementation, this might be one register file, or a plurality
of register files (e.g. 4 as shown in the figure). They might
be preloaded on a speculative basis, or—as preferred—
under the control of a task and/or thread scheduler located in

Oct. 20, 2016

the operating system and/or in the application. (Note: typi-
cally the task scheduler is located in the operating system,
but task schedulers might be located within the application).
Those register files (0604, 0606, 0606, 0607) arc loaded
from the memory hierarchy, or if necessary directly from the
push pipeline (0602 or 0603).

[0588] In some embodiments an immediate slot (0608)
might be available for immediate preload and subsequent
use. This slot is for example very useful in realtime envi-
ronment, in which fast or time critical task and/or thread
switches are necessary. This register file is usually kept free
and only used for time critical context switches.

[0589] It shall be mentioned, that the register file slots are
preferably addressed by pointers. There is a pointer locating
the active slot (0601), one or more pointer locating slots to
be off-loaded to memory (0602, 0603) and one or more
pointer locating slots to be pre-loaded from memory (0604,
0606, 0606, 0607). Particularly the slots might be arranged
in linked lists, with a section defining the active set and
sections for being loaded or off-loaded.

[0590] Addressing the slots using pointers or a linked list
might be faster and is energy saving compared to copying
the data in the register files of the slots from one slot to
another.

Z7YX Matrix Mode

Two Options:

[0591] using the 1A instructions, with all limitations (e.g.
requiring aliasing)

as the instructions space has to be limited in Matrix mode
anyhow, e.g. complex instructions cannot be executed but
only simple, a dedicated instruction set (HYP instructions)
makes sense, i.e. the HYPERION instruction set.

[0592] The instruction set is changed when switching
between the modes.

Option ii) opens up to an additional variant for the register
file:

[0593] Only the dedicated instructions according to option
ii) use the full register file. The 1A registers are physically
mapped into the file, e.g. to the first 8 registers. The
remaining registers (24 more according to the HYP spec) are
only accessible through the HYP instructions.

ALU Block Architecture and Shape

[0594] In a variety of executed software algorithms plac-
ers may not be able to fill an array of AL Us within the ALU
Block entirely or sufficiently. To the contrary, the lower rows
may show significant lower usage than higher rows, closer
to the register file. While optimizing the placer and analyser
algorithms will improve the usage, algorithmic limitations
apply. For example often instructions in the lower rows
combine processing results produced by higher rows. As
instructions have usually 2 inputs and one output, the
number of combinable operands may shrink by per %2 row.
[0595] For saving silicon area and static power dissipa-
tion, a quadratic or rectangular arrangement of ALLUs in the
ALU Block array may be inefficient. Analysis shows, that
depending on the application space and markets it might be
preferred in some embodiments to arrange the ALUs in a
triangular fashion. One extreme could be a perfect triangle,
such as e.g. 4 ALUs in the top (1¥%) row, 3 ALUs in the 2"¢
row, 2 ALUs in the 3" row and only one ALU in the 4%,
However other arrangement may implement less “perfect”
triangles, e.g. 4 ALUs in the top (1°) row, 3 ALUs in the 2”4
row, 3 ALUs in the 3" row and 2 ALUs in the 47 or even

US 2016/0306631 Al

4 ALUs in the top (1°%) row, 4 ALUs in the 2nd row, 4 ALUs
in the 3rd row and 3 AL Us in the 4” Structures in which each
lower ALU row comprise equal or less ALUs than the
respective higher ALU row are regarded inventive.

[0596] It shall be noted, that enhanced implementations as
e.g. discussed in FIG. 22, may provide additional connec-
tivity (e.g. 2299) increasing the placeability if instruction on
the ALU Block array and by such eliminating the efficiency
benefits of triangular arrangements.

Type of Execution Units (e.g. ALUs)

[0597] Most processors tend to have instructions of dif-
ferent complexity, some requiring rather little hardware,
others are highly complex to implement. However, analysis
shows that in most cases the less complex instructions are
used far more often than the complex ones.

[0598] In one preferred embodiment not all ALUs of the
ALU-Block are exactly identical. Some may only support a
limited set of instructions for reducing area size, power
dissipation and/or hardware complexity. In a preferred
embodiment rows or columns may use the same ALUs
supporting the same instructions. So, for example, in one
embodiment all ALUs of the first row may support the
complete instruction set, while the AL Us of all subsequent
rows, may only support a limited set. In another embodiment
each even row may support all instructions, while all odd
rows have a limited set. In again another implementation the
first and last row support all instructions, while the rows
in-between support only a limited set. Furthermore, some
instructions might be almost never used. Examples are
instructions forcing the processor to trap, e.g. for debugging
purposes and/or system calls, or instructions changing the
protections modes, e.g. from one ring to another. Such
instructions might be implemented on one single ALU only.
In some embodiments, even an AL U might be implemented
separated from the ALU-Block for supporting the most
complex and/or seldom used instructions. In one embodi-
ment, this separated ALU might be able to process all
instructions. It might even be the main ALU, e.g. after a
processor reset, and the AL U-Block is only switched on and
used optionally, e.g. when required.

[0599] In other embodiments, specialized functions may
be arranged in columns, e.g. one column supports Load/
Store functions, while another supports multipliers. In one
embodiment, at least some cells may have connection to
their horizontal neighbours (e.g. FIG. 22, 2299). Preferably
in such an embodiment, the most left column may support
load instructions, the right column may support store
instructions and at least some of the middle columns may
support multiplication.

[0600] In yet another embodiment, the functions might be
distributed triangularly, e.g. a triangle spanning the top row
and the left column may support e.g. load instructions while
another triangle spanning the bottom row and the right
column may support e.g. store instructions.

[0601] Some processors support highly specialized
instructions, such as e.g. protection mode switching, special
load/store functions, complex ALU functions, etc.

[0602] As already described, such functions may be sup-
ported by only one or a few of the AL Us in the ALU Block;
even jump, call, and return instructions may not be sup-
ported by all ALUs.

[0603] Furthermore some instructions (limited-instruc-
tion) may not be usable for Out-of-Order execution or loop

Oct. 20, 2016

acceleration. For example block load or block store instruc-
tions (such as e.g. 1dm and stm of the ARM instruction set)
might be not supported.

[0604] In case such a limited-instruction is decoded, the
issue may be delayed until all previously issued instructions
have been completely executed and have terminated in the
ALU-Block. No other instruction after the limited-instruc-
tion is issued, but instruction issue is blocked until the
limited-instruction has been issued (and in some implemen-
tations even has terminated).

[0605] For example, the implementation of block load/
store instructions (such as ldm and stm of the ARM instruc-
tion set) might be too expensive for supporting Out-of-Order
processing, as many time stamps for the plurality of registers
have to be stored within the ALU, dramatically increasing
the number of registers. Such instructions may be imple-
mented as limited-instructions, e.g. not supporting time-
stamps. As a result, it must be ensured that all previous
instructions have been executed, so that either the register
content is correct for block store or block load does not
destroy registers still in use. Also the issue of subsequent
instructions has to be delayed until the limited-instruction
terminates, so that either the register content to be stored is
not destroyed in case of a block store instruction or the
correct data has actually been loaded in case of a block load
instruction).

Applicability on Operating Systems and Compilers

[0606] The inventive algorithms for optimizing standard
processor code (e.g. Code for Intel x86 (IA) processors) can
not only be implemented in hardware but also in software.
For example the following software platforms may use the
invention: Compilers (e.g. GCC) may do the respective
analysis and optimize and/or generate and/or emit the binary
code accordingly. Separately run code optimizing tools for
existing binaries (e.g. legacy code and/or newly compiled
code) may do the respective analysis and optimize and/or
generate and/or emit the binary code accordingly. The code
optimizing tools may be executed e.g. by a programmer for
porting/generating the code, a system administrator when
updating/upgrading a computer system or e.g. by the oper-
ating system, e.g. after installing the operating system, after
installing the respective software and/or at runtime before
executing the software.

More Examples

[0607] Further examples are discussed in this section. The
source code is written in plain C, the discussed assembly
code is based on the ARM instruction set architecture.

1. FIR Filter

[0608] The previously discussed FIR filter written in C is
compiled using a compiler generating code optimized for a
Z77YX processor.

[0609] For discussing some of the differences between
optimized and non-optimized code, first the non-optimized
assembly code is provided:

_start:
stmfd sp!, {r4, 5, 16, 17, 18, Ir}
sub 16, rl, #5
cmp 16, #0

US 2016/0306631 Al

-continued

str 16, [13, #0]

mov 18, 12

Idmeqfd sp!, {r4, 15, 16, 17, 18, pc}

mov 15, #0

Idr r4, .18

mov lIr, r0

mov 17, 15

b 14
.L4:

Idr ip, [lr, #12]

Idr 13, [r4, #4]

mul 10, 13, ip

Idr 12, [lr, #16]

Idr 1, [r4, #0]

mla ip, 1l, 12, 10

Idr 13, [r4, #8]

Idr 1, [lr, #8]

mla 10, 13, 11, ip

Idr 12, [r4, #12]

Idr 1, [lr, #4]

mla ip, 12, rl, 10

Idr 13, [r4, #16]

ldr 12, [lr], #4

mla rl, 13, 2, ip

add 15, r5, #1 /* Loop Control */

cmp 15, 16 /* Loop Control */

str 1, [18, 17, asl #2]

mov 17, 15

bne .L4

Idmfd sp!, {r4, 13, 16, 17, 18, pc}
.L9:

[0610] The respective optimized assembly code may look

as follows:
_start:
stmfd sp!, {r4, 15, 16, 17, 18, Ir}
sub 16, 1l, #4 /* */
cmp 16, #0
str 16, [13, #0]
mov 18, 12
Idmeqfd sp!, {r4, 15, 16, 17, 18, pc}
mov 15, #0
Idr 14, 1.8
mov Ir, 10
mov 17, 15
bala L4 /* Enter Loop, switch to loop acceleration mode™*/
.L4:
add 15, 5, #1 /* Modified loop control */
cmp 15, r6/* Modified loop control */
basseq.L.10 /* Exit Loop, switch to superscalar mode*/
ldr ip, [lr, #12]
lep 13, [r4, #4]
mul 10, 13, ip
ldr 12, [1r, #16]
lep rl, [r4, #0]
mla ip, 11, 12, 10
lep 13, [r4, #8]
ldr rl, [1r, #8]
mla 10, 13, r1, ip
lep 12, [r4, #12]
ldr rl, [1r, #4]
mla ip, 12, 11, 10
lep 13, [r4, #16]
ldr 12, [1r], #4
mla rl, 13, 12, ip
str rl, [18, 17, asl #2]
mov 17, 15
b L4
.L10:
Idmfd sp!, {r4, 15, 16, 17, 18, pc}

Oct. 20, 2016

[0611] In this example the optimized code differed from

the non-optimized in the following points:

[0612] Icp: The state-of-the-art load instructions (ldr)
are replaced by Load-Constant-Pre (lcp) instructions
when loading constant data for avoiding unnecessary
memory accesses for already loaded constants.

[0613] bala: The loop is entered via the bala instruction,
switching into loop-accelerator mode.

[0614] Dass: The loop is left via the bass instruction,
switching back into superscalar mode. According to the
ARM instruction set architecture ‘eq’ is added to the
bass instruction, so that the instruction is conditionally
executed if r5 equals r6 in the compare instruction (cmp
5, 16).

[0615] Modified Loop Control: Loop Control is moved
from the tail of the loop body to its head. Such, the loop
exit criteria is checked at the very beginning of each
loop iteration. This is beneficial for large loop which do
not entirely fit into the ALU-Block but has to be
partitioned into a plurality of Catenae sequentially
executed on the ALU-Block. The loop exit criteria is
evaluated within the first Catena, correctly determined
and forwarded to all subsequent Catenae, so that they
terminate correctly.

2. Quicksort

[0616] Exemplary Quicksort implementations have
already been discussed e.g. in FIG. 4 and FIG. 5.

[0617] For the sake of completeness the C-Code of an
exemplary implementation is listed below:

main_string.c:
#include "gsort2.h"
static const char *data[] =1

"Tree", "Beach”,
"Desert", "Ocean”,
"Sky”, "Creek”,

"Redwood", "Ridge",
"Mountain”, "River”

void _start ()

int n = ARRAYSIZE(data);
sort((void*)data, 0, n-1, cmp string);

cmp_string.c:

#include "gsort2.h"

#include <string.h>

int cmp_string(void *a, void *b)

return (stremp(a, b));

stremp.c:
/* Nonzero if either X or Y is not aligned on a "long" boundary. */
#define UNALIGNED(X, Y) \

(((long)X & (sizeof (long) - 1)) I ((long)Y & (sizeof (long) - 1)))
/* DETECTNULL returns nonzero if (long)X contains a NULL byte. */
#define DETECTNULL(X) (((X) - Ox01010101) & -(X) & 0x80808080)
#ifndef DETECTNULL
#error long int is not a 32bit or 64bit byte
#endif
int stremp(const char *sl, const char *s2)

{
#if defined(PREFER_SIZE_OVER_SPEED) | | defined(_ OPTIMIZE_
SIZE)

while (*sl 1= "\0" && *sl == *s2)

sl++;
S2++;

return (*(unsigned char *) sl) - (*(unsigned char *) s2);
#else

US 2016/0306631 Al Oct. 20, 2016
-continued [0618] Respective non-optimized ARM assembly code
may look as such:
unsigned long *al;
unsigned long *a2;
/* If sl or s2 are unaligned, then compare bytes. */ start:
if ({UNALIGNED (sl, s2)) 8000: 1dr 1O, [pe, #12] ; 8014 <.text+0x14>
{ 8004: 1dr 13, [pc, #12] ; 8018 <Aext+0x18>
/* If sl and s2 are word-aligned, compare them a word at a time. */ 8008: mov 1l, #0 ; 0x0
al = (unsigned long*)sl; 800c: mov 12, #9 ; 0x9
a2 = (unsigned long*)s2; 8010: b 8030 <sort>
while (*al == *a2) 8014: streqh r8, [r0], -18
8018: andeqr8, 10, ip, 1s1 10
/* To get here, *al == *a2, thus if we find a null in *al, cmp_string:

then the strings must be equal, so return zero. */ 80lLc: b 818c <stremp>

if (DETECTNULL (*al))
return 0;

al++;

a2++;

/* A difference was detected in last few bytes of sl, so search

bytewise */
sl = (char*)al;
s2 = (char*)a2;

while (*sl 1="0" && *sl == *s2)
{
sl++;
S2++;
¥
return (*(unsigned char *) sl) - (*(unsigned char *) s2);
#endif
¥
gsort2.c
#include <string.h>
static inline void swap(void **a, void **b)

{
void *t=*a; *a=*b; *b=t;
}
int choose_pivot(int i,int j)
{

return((i+j) /2);

void sort(void *list[],int m,int n, int (*emp) (void *a, void *b)

{
int i,j,k;
ifl m <n)
{

k = choose_pivot(m,n);
swap(&list[m],&list[k]);
void *key = list[m];
i=m+l;
j=n
while(i <= j)

// while((i <= n) && (list[i] <= key))
while((i <= n) && (cmp(list[i], key)) <= 0)
i++;
// while((j >= m) && (list[j] > key))
while((j >= m) && (cmp(list[j], key)) > 0)
i3
i<y
swap (&list[i],&list[]]);
¥
// swap two elements
swap(&list[m],&list[j]);
// recursively sort the lesser list
sort(list, m, j-1, cmp);
sort(list, j+1, n, cmp);

choose_pivot:

8020
8024:
8028:
802c:
sort:
8030:
8034:
8038:

s add 1, 10, 1l

add rl, l, 1l, Isr #31
mov 10, rl, asr #1
bx Ir

stmdb sp!, {14, 15, 16, 17, 18, 19, sl, 1p, Ir}
cmp 12, 1l
sub sp, sp, #8 ; 0x8

:mov 19, rl

s mov sl, 12

: str 10, [sp]

:mov 17, 13

: ble 8178 <sort+0x148>
s mov 1l, sl

: mov 10, 19

: bl 8020 <choose_pivot>
s Idr 13, [sp]

rmov 12, 19, 1sl #2

s ldr 1l [12, 13]

s 1dr ip, [sp]

:ldr 13, [13, 10, 1s1 #2]

s str 13, [r2, ip]

s strrl, [ip, 10, 1s1 #2]
add 5, 19, #1 ; Oxl

s emp 15, sl

: 1dr 18, [12, ip]

radd 12, 2, ip

:str 12, [sp, #4]

: movie r6, sl

: movie fp, sl, 1s1 #2

: bgt 8180 <sort+0x150>
s emp 15, sl

: Idrle 10, [sp]

: addle r4, 10, 15, 1s1 #2

: ble 80b& <sort+0x88>
1 b 80d4 <sort+0xad>

s add 15, 15, #1 ; Oxl
remp s, 15

: bit 80d4 <sort+0Oxa4>
: 1dr rO, [r4]

:mov rl, 18

: mov 1r, pc

1 bx 17

: cmp 10, #0 ; 0x0
cadd 4, r4, #4 ; Ox4

: ble 80ac <sort+0x7c>
:cmp 16, 19

: ldrge 10, [sp]

: addge r4, rO, fp

: bge 80f4 <sort+0xc4>
1 b 8114 <sort+0xed>

s sub 16, 16, #1 ; Ox1
: cmp 16, 19

: blt 8110 <sort+0xe0>
: 1dr 10, [r4]

:mov rl, 18

: mov 1r, pc

1 bx 17

: cmp 10, #0 ; 0x0
s sub rd, 4, #4 ; Ox4
: bgt 80e® <sort+0xb&>
s mov p, 16, 1s1 #2

: cmp 15, 16

US 2016/0306631 Al

Oct. 20, 2016

-continued -continued
8118: bge 813¢ <sort+0x10c> 8244: bx Ir
811c: ldr 12, [sp] 8248: 1drb 10, [r1]
8120: mov 13, r5, 1s1 #2 824c: rsb 10, 10, 13
8124: 1dr 11, [r2, 13] 8250: bx Ir
8128: 1dr ip, [sp] 8254: mov 10, #0 ; 0x0
812¢: Idr 12, [12, fp] 8258: bx Ir
8130: str 12, [ip, 3]
8134: str 11, [ip, fp]
ggif EIS%%SQ; i‘;ﬁ;ﬂ’éii; [0619] The further discussion concentrates on the sort and
8140: Idr 11, [sp, #4] string compare loops.
gijgf ﬁ E [[?H [0620] A first optimization targets the inner loops of the
814c: Idr 13, [, ip] Quicksort algorithm.
ggif :;);/;0[}1;]; [0621] The branch opcodes are replaced with respective
8158: str 12, [fp, ip] ones controlling the loop accelerations:
815¢: mov rl, r9
8160: sub 12, 16, #1 ; Ox1
8164: add 19, r6, #1 ; Ox1 8098: cmp 13, sl
8168: mov 13, 17 809c¢: Idrle 10, [sp]
816c: bl 8030 <sort> 80a0: addle 14, r0, 15, Isl #2
8170: emp sl, 9 80a4: balale80b8 <sort+0x88>
8174: bgt 8050 <sort+0x20> 80a8: b 80d4 <sort+0xad>

81fc:

8200:
8204:
8208:
820c:
8210:
8214:
8218:
821c:
8220:
8224:
8228:
822c:
8230:

8234

8238:
823c:
8240:

radd sp, sp, #8 ; 0x8

: Idmia sp!, {r4, 15, 16, 17, 18, 19, s, fp, pc}
: mov 16, sl

s mov fp, sl, 1s1 #2

1 b 8140 <sort+0x110>

rorr 13, 10, rl

T tst 13, #3 ; 0x3

:mov 12, 10

: bne 8214 <stromp+0x88>

s Idr 12, [10]

:Idr 13, [r1]

:cmp 12, 13

: bne 8210 <stromp+0x84>

:add 13, 12, #-16777216 ; 0xff000000
:sub 13, 13, #65536 ; 0x10000

:sub 13, 13, #256 ; 0x100

s sub 13, 3, #1 ; O0x1

: bic 13, r3, #2130706432 ; 0x7f000000
: bic 3, r3, #8323072 ; 0x7f0000

: bic 3, r3, #32512 ; 0x7100

: bic 3, 13, #127 ; Ox7f

: bias 12, 13, 12

: beq 81e0 <stromp+0x54>

1 b 8254 <stromp+0xc8>

: bios ip, 12, ip

: bne 8254 <stromp+0xc8>

: Idr ip, [r0, #4]!

: add 13, ip, #-16777216 ; 0xff000000
: sub r3, r3, #65536 ; 0x10000

s sub r3, 13, #256 ; 0x100

:sub 13, r3, #1 ; Ox1

: bic 12, r3, #2130706432 ; 0x7f000000
ldr 13, [r1, #4]!

bic 12, 12, #8323072 ; 0x7f0000
bic 12, r2, #32512 ; 0x7100
cmp ip, 13

bic 12, 12, #127 ; Ox7f
beq 81d8 <stromp+0x4c>

mov 12, 10

Ldrb 13, [12]

cmp 13, #0 ; 0x0

bne 8234 <stromp+0xa8>

b 8248 <strcmp+0xbe>

ldrb 13, [r2, #1]!

cmp 13, #0 ; 0x0

add r1, r1, #1 ; Ox1

beq 8248 <stremp+0xbe>
: 1drb 10, [r1]

cmp 10, r3

beq 8224 <stromp+0x98>

rsb 10, 10, r3

80ac: add r5, r5, #1 ; Ox1
80b0: cmp sl, 15

80b4: basslt80d4 <sort+0xad>
80b8: Idr 10, [r4]

80bec: mov rl, 8

80c0: mov lIr, pc

80c4: bx 17
80c8: cmp 10, #0 ; 0x0
80cc: add r4, r4, #4 ; Ox4

80d0: bossle80ac <sort+0x7c¢>
80d4: cmp 16, 19

80d8: ldrge 10, [sp]

80dc: addge r4, 10, fp

80e0: balage80f4 <sort+0xc4d>
80e4: b 8114 <sort+0xed>
80e8: sub r6, 16, #1 ; Ox1
80ec: cmp 16, 19

8010: basslt8110 <sort+0xe0>
80f4: Idr 10, [r4]

8018: mov rl, 18

80fc: mov Ir, pe

8100: bx 17
8104: cmp 10, #0 ; 0x0
8108: sub 14, r4, #4 ; Ox4

810c: bossgt80e8 <sort+0xb8>
8110: mov fp, 16, Isl #2
8114: cmp 15, 16

8118: bge 813¢ <sort+0xl0c>
811c: Idr 12, [sp]

8120: mov 13, 15, Isl #2
8124: Idr 11, [r2, r3]

8128: Idr ip, [sp]

812¢: Idr 12, [r2, fp]

8130: str 12, r3]

8134: str rl, [ip, fp]

8138: b 8098 <sort+0x68>

[0622] In line 80a4 the first loop is conditionally if less or
equal (-le) entered via the bala instruction, which switches
into loop acceleration mode. The loop is left in lines 80b4
and 80d0. Line 80b4 uses the bass instruction, leaving the
loop and switching back to superscalar execution mode if
the condition less-then (-1t) is met. Line 80d0 continues the
loop in loop acceleration mode if the condition less-equal
(~le) is met with the boss instructions. If the condition is not
met, the loop is left and operation is switched into super-
scalar mode.

[0623] The second loop is respectively optimized in lines
80e0, 8010 and 810c.

US 2016/0306631 Al

[0624] Also the loops of the string compare algorithm are
respectively optimized:

81d0: balaeq 81le0 <stromp+0x54>
81d4: b 8254 <stromp+0xc8>
81d8: bios ip, 12, ip
81de: bassne 8254 <stromp+0xc8>
81e0: ldr ip, [r0, #4]!
8led: add 13, Ip, #-16777216 ; 0xff000000
81e8: sub 13, r3, #65536; 0x10000
8lec: sub 13, 13, #256 ; 0x100
8110: sub 13, 13, #1 ; Ox1
81f4: bic 12, 3, #2130706432 ; 0x7f000000
8118: ldr 13, [r1, #4]!
81fc: bic 12, 12, #8323072 ; 0x7f0000
8200: bic 12, 12, #32512; 0x7f00
8204: cmp ip, 3
8208: bic 12, 12, #127 ; 0x7f
820c bosseq 81d8 <stromp+0xdc>
8210 mov 12, r0
8214 ldrb 13, [12]
8218 cmp 13, #0 ; 0x0
821c balane 8234 <stromp+0xa8>
8220: b 8248 <stremp+0xbe>
8224: ldrb 13, [12, #1]!
8228: cmp 13, #0 ; 0x0
822¢c: add rl, rl, #1 ; Oxl
8230: basseq 8248 <stremp+0xbe>
8234: ldrb 10, [r1]
8238: cmp 10, 13
823c: bosseq 8224 <stromp+0x98>
8240: rsb 10, 10, 13
8244: bx Ir
8248: ldrb 10, [r1]
824c: rsb 10, 10, 13
8250: bx Ir
8254: mov 10, #0 ; 0x0
8258: bx Ir
[0625] The first loop is conditionally entered in line 81d0

with the condition equal (-eq) with the bala instruction
which switches to loop acceleration mode. The loop is
conditionally left in line 81dc or line 820c. In line 81dc the
loop is left via the bass instruction if the condition not-equal
(-ne) is met and the execution mode is switched to super-
scalar. Line 820c continues the loop if the condition equal
(-eq) is met, if not the instruction boss switches back to
superscalar mode and exits the loop.

[0626] The second loop is accordingly optimized.

[0627] Optimizing conditional executions have been dis-
cussed and accordingly a second optimization might be
performed. For the sake of effort we solely concentrate on
the Quicksort code. One skilled in the art understands that
the methods are obviously also applicable on the string-
compare code as to any other code.

[0628] The Quicksort loops have been modified for
extended conditional execution and partitioned into Catenae

(see [9]):

<Catena n>
8098: cmp 15, sl
809¢: ldrle 10, [sp]
80a0: addle r4, 10, 15, 1s1 #2
80a4: balale 80b8 <sort+0x88>
80a8: b 80d4 <sort+Oxa4>
<Catena n+1>
80ac: add r5, r5, #1 ; Ox1
80b0: cmp sl, r5
80b8: ge ldr 10, [r4]
80bc: ge mov rl, 18

34

Oct. 20, 2016

-continued

80c0: ge mov lr, pc

80cc: ge add r4, r4, #4 ; Ox4

80b4: basslt 80d4 <sort+Oxad>

80c4: bx 17
<Catena n+2>

80c8: cmp 10, #0 ; 0x0

80d0: bossle 80ac <sort+0x7c>
<Catena n+3>

80d4: cmp 16, 19

80d8: ldrge 10, [sp]

80dc: addge 4, 10, fp

80e0: balage 80f4 <sort+Oxc4>

80e4: b 8114 <sort+0xed>
<Catena n+4>

80e8: sub 16, 16, #1 ; 0x1

80ec: cmp 16, 19

80f4: ge ldr 10, [r4]

8018: ge mov rl, 18

80fc: ge mov 11, pc

8108: ge sub 4, r4, #4 ; Ox4

8010: basslt 8110 <sort+0xe0>

8100: bx 17
<Catena n+5>

8104: cmp 10, #0; 0x0

810c: bossgt 80e8 <sort+0xb8>
<Catena n+6>

8110: mov fp, 16, 1s1 #2

8114: cmp 15, 16

8118: bge 813¢ <sort+0x10c>

8llc: ldr 12, [sp]

8120: mov 13, 35, 1sl #2

8124: Idr 11, [r2, 13]

8128: Idr ip, [sp]

812¢: ldr 12, [r2, fp]

8130: str 12, [ip, 13]

8134: strrl, [ip, fp]

8138: b 8098 <sort+0x68>

[0629] Beginning with the basslt instruction in line 80b4
an additional conditional execution level has been intro-
duced, so that the instructions 80b8, 80bc, and 80cO are
conditionally executed if the condition less-then (-1t) of the
basslt instruction is not met. Respectively those instructions
are executed if the inverted instruction greater (ge)—which
is not-less-then (!less-then)—is met. This additional condi-
tional execution level is defined in the exemplary assembly
code in the second column, right after the line number and
in front of the instruction mnemonic. A plurality of levels
can be defined in that column, separated by comma and
growing from right to left. The used conditional execution
optimization algorithm optimizes conditional execution
such, that all jumps are moved directly in front of a barrier
instruction. Barrier instructions define a barrier which is not
crossed during optimization. Therefore a first optimization
must end in front of the barrier instruction, while a second
subsequent optimization my start right after the barrier. For
example, jumps to outside of a respective loop (line 80c4
(bx)) qualify as such a barrier. Different kind of instructions
may qualify as a barrier, depending on the instruction set of
the processor, the optimizer strategy and/or the algorithms
being optimized. However, i) jumps to functions outside a
routine being optimized and/or ii) jumps leaving the loop
body (e.g. after loop termination) typically define such
barriers.

[0630] Just for visualization purposes line 80b4 has been
moved directly in front of line 80c4.

[0631] The same optimization is done in lines 80f0 to
8100, with bx in line 8100 being the barrier.

US 2016/0306631 Al

[0632] The Catenae are preferably partitioned such, that
each can be iterated a plurality of times depending on the
capability of the processor (e.g. the ALU Block and/or
register file), before processing continues with the next
Catena. For that purpose, instructions are moved (if pos-
sible), so that each Catena becomes self-contained. For
example line 80cc is moved to Catena n+1. As the execution
of this instruction depends on the jump basslt in line 80b4,
a conditional execution flag inverse to less-then (basslt in
line 80b4), which is “eq”, is added. The same optimization
is done with line 8108 in Catena n+4. It shall be noted, that
the optimizer preferably changes the line numbering for
consistency, but for sake of simplicity and reference the
original line numbers are kept in this example.

[0633] With that optimization Catena n+1 and Catena n+4
become self-contained, capable of preparing input data of
each iteration for calling the string compare function in line
80c4 and line 8100 respectively.

[0634] The resulting code performs the inner loops very
efficiently. However, the switching back from loop accel-
eration mode into superscalar mode (as it is e.g. done for
Catena n+3 and/or Catena n+6) might be a waste of perfor-
mance, particularly if the code is embedded within an outer
loop as it is the case in this exemplary Quicksort algorithm.
This deficit becomes even more critical as Catena n+2 and
Catena n+5 are very short and may not make adequate use
of the processor hardware resources (e.g. an ALU-Block).

[0635] Therefore, in one optimization step only one time
executed code (in superscalar mode) might be tied into
existing Catenae operating in loop acceleration more and/or
switched into one time executed code in loop acceleration
mode. Respective code is shown below:

<Catena m>

8098: cmp 15, sl
809¢: ldrle 10, [sp]
80a0: addle r4, 10, 15, 1s1 #2
80a4: balale80b8 <sort+0x88>
80a8: b 80d4 <sort+0xa4>
<Catena m+1>
80ac: add r5, r5, #1 ; Ox1
80b0: cmp sl, 15
80b8: ge ldr 10, [r4]
80bc: ge mov rl, 18
80c0: ge mov lr, pc
80cc: ge add r4, r4, #4 ; Ox4
80b4: bass1t80d4 <sort+0xad>
80c4: bx 17
<Catena m+2>
80c8: cmp 10, #0 ; 0x0
80d0: ble 80ac <sort+0x7c>
80d4: gt cmp 16, 19
80d8: gt ldrge 10, [sp]
80dc: gt addge 14, 10, fp
80e0: gt balage80f4 <sort+0xc4>
80e4: gt b 8114 <sort+0xed>
<Catena m+3>
80e8: sub 16, 16, #1 ; Oxl
80ec: cmp 16, 19
80f4: ge ldr 10, [r4]
8018: ge mov rl, 18
80fc: ge mov lr, pc
8108: ge sub 4, r4, #4 ; Ox4
8010: basslt8110 <sort+0xe0>
8100: bx 17
<Catena m+4>
8104: cmp 10, #0 ; 0x0
810c: bgt 80e® <sort+0xb8>
8110: le mov fp, 16, 1s1 #2
8114: le cmp 15, 16

Oct. 20, 2016

-continued
81lc: ltle Idr 12, [sp]
8120: Itle mov 13, 3, 1sl #2
8124: It le Idr 11, [r2, 3]
8128: ltle Idr ip, [sp]
812c: Itle ldr 12, [r2, fp]
8130: ltle str 12, [ip, 3]
8134: ltle str rl, [ip, fp]
8118: le bge 813¢ <sort+0x10c>
8138: b 8098 <sort+0x68>

[0636] Catena n becomes Catena m; Catena n+1 becomes
Catena m+1; Catenae n+2 and n+3 are combined into Catena
m+2; Catena n+4 becomes Catena m+4 and Catenae n+5 and
n+6 are combined into Catena m+4.

[0637] As the execution mode is not switched to super-
scalar, but remains in loop acceleration, the boss instructions
in line 80d0 and 810c are replaced by normal branch
instructions b again. The bala instruction in line 80e0 may
remain bala or be changed into an ordinary branch instruc-
tion b, this does not matter as the processor remains in loop
acceleration mode. However it might be beneficial to
instruct to processor that another loop is entered. Therefore,
in this example, the bala instruction remains in the code.
[0638] Lines 80d4 to 80e4 in Catena m+2 can only
executed if the condition for the jump instruction in line
80d0 is not met. Therefore, respectively a conditional level
is added, which is the invers of less-equal (not-less-
equal=greater-then “gt).

[0639] In Catena m+4 the whole code below the condition
execution in line 810c, which are lines 8110 to 8138, are
conditionally executed only if the condition of line 810c is
not met. Therefore an additional conditional level is added
to those instructions, which is less-equal “le” (the invers of
greater-then).

[0640] In accordance to the previously discussed optimi-
zations, line 8118 is moved in front of the barrier instruction,
which is in this exemplary case the branch instruction
exiting the loop in line 8138. This instruction has been
changed into bass, switching back from loop acceleration
into superscalar mode. The conditional jump in line 8118
requires to add another conditional level controlling the
instructions in lines 811c to 8134, which is the invers of
greater-equal (notgreater-equal=less-then “It”).

[0641] The discussed optimizations might be performed
with or on basis of algorithms previously described in this
patent. The optimization might be performed within a com-
piler (e.g. as optimization pass or in the back-end), as a
separated postprocessing tool (e.g. before linking and/or
assembly), as part of the operation system (e.g. the loader)
and/or within the processor hardware.

[0642] The invention and its capabilities have been dem-
onstrated with two well-known algorithms a FIR filter and
Quicksort. Those algorithms have been carefully selected to
disclose the invention and show its capabilities. On this basis
it becomes obvious for one skilled in the art how the
invention applies on other even more complex algorithms.

Applicability on State-of-the-Art Processors

[0643] One skilled in the art understands that many of the
disclosed inventions are applicable on standard RISC, CISC
and VLIW processors, even without requiring an array of
ALUs (ALU Block). Examples for using ARM and Intel
instruction sets have been disclosed.

US 2016/0306631 Al

[0644] Respective optimizers might be partially or com-
pletely implemented in hardware and/or partially or com-
pletely implemented in software, e.g. compilers, linkers,
separated optimizer tools or steps and/or the operation
system.

Applicability on Compilers and Operating Systems

[0645] Respective optimizers might be partially or com-
pletely implemented in compilers (e.g. JAVA, C, C++,
Fortran, etc) or compilation tools. Alternatively or addition-
ally the optimizers or part of the optimizers might be
implemented as a part of an operating system (e.g. Linux,
Windows, Android, etc) being executed on the target pro-
cessor. It shall be noted, that even with extensive software
support, some modifications of the processor hardware
according to this patent might be required of beneficial.

EMBODIED LITERATURE AND
PATENTS/PATENT APPLICATIONS

[0646] The following references fully embodied into the

patent for complete disclosure. It is expressively noted, that

claims may comprise elements of any reference embodied

into the specification:

[0647] [1] x86 Instruction Set Architecture; Tom Shanley;
Mindshare Inc.; ISBN978-0-9770878-5-3

[0648] [2] Pentium PRO and Pentium II System Architec-
ture; Second Edition; Tom Shanley; Mindshare Inc.;
ISBN978-0-201-30973-7

[0649] [3] PCT/EP 2009/007415 (W02010/043401); M.
Vorbach
[0650] [4] The unabridged Pentium 4; 1A32 Processor

Genealogy; Tom Shanley; Mindshare Inc.; ISBNO-321-
25656-X

[0651] [5] Compilers Principles, Techniques, & Tools;
Second Edition; Alfred V. Aho, Monica S. Lam, Ravi
Sethi, Jeffrey D. Ullman, Addison Wesley; ISBN 0-321-
48681-1; (The purple dragon)

[0652] [6] Trace Cache: a Low Latency Approach to High
Bandwidth Instruction Fetching; Rotenberg, Bennett,
Smith; IEEE; Proceedings of the 29th Annual Interna-
tional Symposium on Microarchitecture, Dec. 2-4, 1996,
Paris

[0653] [7] PCT/EP 2010/003459 (WO 2010/142432), M.
Vorbach
[0654] [8] ARM7TDMI-S Data Sheet (ARM DDI 0084D),

ARM Limited, UK

[0655] [9] EP 10 007 074.7, M. Vorbach (ZZYX09c)
[0656] [10] EP 10 007 437.6, M. Vorbach (ZZYX09d)
[0657] [11] EP 10 007 657.9, M. Vorbach (ZZYX0%)
[0658] [12] EP 10 008 734.5, M. Vorbach (ZZYXO09{/EP-

dp)

Oct. 20, 2016

[0659] [13] EP 10 010 803.4, M. Vorbach (ZZYX09g)
[0660] [14] EP 10 013 253.9, M. Vorbach (ZZYX0%h)
[0661] [15] EP 10 013 932.8, M. Vorbach (ZZYX091)
[0662] [16] EP 10 016 117.3, M. Vorbach (ZZYX09k)
[0663] [17] EP 11 000 597.2, M. Vorbach (ZZYX10)
[0664] [18] EP 11 001 305.9, M. Vorbach (ZZYX10b)
[0665] [19] EP 11 004 033.4, M. Vorbach (ZZYX10c)
[0666] [20] Optimizing compilers for modern architec-

tures; Randy Allen & Ken Kennedy; Moran Kaufmann

Publishers; ISBN-13:978-1-55860-286-1; ISBN-10:1-

55860-286-0

1. (canceled)

2. A method to process loops in a processor, the method
comprising:

in a processor having a plurality of execution units:

fetching instructions from an instruction memory;

detecting and analyzing loop code within the fetched
instructions;

determining a portion of the loop code that is at least
one of loop counter code and loop exit criterion code
based on the analyzing; and

moving the determined portion of loop code to a
dedicated loop code processing unit inside the pro-
Cessor.

3. The method of claim 2 wherein, during further pro-
cessing of the loop code, the loop code processing unit
counts iterations of a loop defined by the loop code, the
counting based on the portion of the loop code.

4. The method of claim 2 wherein, during further pro-
cessing of the loop code, the loop code processing unit
compares data for determining a loop exit criterion.

5. A processor comprising:

at least one instruction fetch unit configured to fetch

instructions from an instruction memory;

at least one loop code detector unit configured to detect

loop code in the fetched instructions;

at least one loop code analyzer unit configured to analyze

the detected loop code to determine at least one of loop
counter code and loop exit criterion code;

at least one dedicated unit processing at least one of the

loop counter code and loop exit criterion code; and

a plurality of execution units configured to execute the

instructions.

6. The processor of claim 5 wherein the loop code
processing unit comprises a loop iteration counter config-
ured to count iterations of a loop defined by the loop code,
the counting based on the loop counter code.

7. The processor of claim 5 wherein the loop code
processing unit comprises a comparator determining a loop
exit criterion of the loop code based on the loop exit criterion
code.

