US 20230401070A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0401070 A1

TREMBLAY et al.

43) Pub. Date: Dec. 14, 2023

(54)

(71)

(72)

@
(22)

(63)

(1)

PERFORMANCE BENCHMARKING-BASED
SELECTION OF PROCESSOR FOR
GENERATING GRAPHIC PRIMITIVES

Applicant: COREL CORPORATION, OTTAWA
(CA)

Inventors: CHRISTOPHER TREMBLAY,
CANTLEY (CA); JOHN JASON

KURCZAK, OTTAWA (CA)
Appl. No.: 18/457,112
Filed: Aug. 28, 2023
Related U.S. Application Data

Continuation of application No. 17/962,277, filed on
Oct. 7, 2022, now Pat. No. 11,755,332, which is a
continuation of application No. 16/870,051, filed on
May 8, 2020, now Pat. No. 11,474,824.

Publication Classification

Int. CL.
GO6F 9/38 (2006.01)
GO6F 11/30 (2006.01)

Badiug
{hwaing

GO6T 1/20 (2006.01)
GOGF 9/30 (2006.01)
GOGF 11/34 (2006.01)
(52) US.CL
CPC ... GOGF 9/3877 (2013.01); GOGF 11/3024
(2013.01); GO6T 1/20 (2013.01); GO6F
9/30065 (2013.01); GOGF 11/3428 (2013.01)
(57) ABSTRACT

Systems and methods for performance benchmarking-based
selection of processor for generating graphic primitives. An
example method comprises: initializing, by a computer
system comprising a plurality of processors of a plurality of
processor types, a current value of a graphic primitive
parameter; for each processor type of the plurality of pro-
cessor types, computing a corresponding value of a perfor-
mance metric by generating, using at least one processor of
a currently selected processor type, a corresponding graphic
primitive of a specified graphic primitive type, wherein the
graphic primitive is characterized by the current value of the
graphic primitive parameter; and estimating, based on the
computed performance metric values, a threshold value of
the graphic primitive parameter.

o 450

£=<sa,,mwa> yiig i}y%z-»i

]

US 2023/0401070 A1

Dec. 14,2023 Sheet 1 of 4

004 k

Patent Application Publication

s

Patent Application Publication

Dec. 14,2023 Sheet 2 of 4 US 2023/0401070 A1

200

Vs

/

210 Receive GUI command to render
graphic primitive with specified
parameter value

yes 220

230 Determine
threshold parameter value

yes

260 Select second processor type

%

processor of sedected processor type

288 Render generated graphic primitive

FIG. 2

Patent Application Publication Dec. 14, 2023 Sheet 3 of 4 US 2023/0401070 A1

310 Initialize current value of specified
graphic primitive parameter

>y

320 Determineg first performance metric
value using first processor type

v

330 Determine second performance
metric value using second processor

fype
350 Update current value of specified ///// 340 \“‘*\\\\>
graphic primitive parametey WQ condition satisfied?
e //_/”/

v

360 Determing, based on first
performance metric value and second
performance metric value, threshold
vatue of specified graphic primitive
parameter

FIG. 3

Patent Application Publication Dec. 14, 2023 Sheet 4 of 4 US 2023/0401070 A1
-~ 1000
/1002
cPy
- . 1010
METHODS 200, 306 N 1025
- > VIDED DISPLAY
1022
GPY . 1012
y | ALPHA-NUMERIC INPUT
0 h > DEVICE
MAIN MEMORY
N bl
METHODS 200,300 |7
4
& »| CURSOR CONTROL DEVICE
1008
1030
STATIC MEMORY | Ve 1018
DATA STORAGE DEVICE
1008 COMPUTER-READABLE .
- MEDIUM - 1028
NETWORK INTERFACE | N _ - 1026
DEVICE METHODS 206, 300 b
“\/ 1016
‘ ‘
4
i - | ACOUSTIC SIGNAL
R = ™1 GENERATION DEVICE
/’*'/ o \>.»~~~\S.
{ NETWORK
. 1020 A
\"\T 5\’! ./";
’\.,_'ﬁw',} f

S /-';.,,w,/

S

US 2023/0401070 Al

PERFORMANCE BENCHMARKING-BASED
SELECTION OF PROCESSOR FOR
GENERATING GRAPHIC PRIMITIVES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application claims the benefit of prior-
ity as a continuation of U.S. patent application Ser. No.
17/962,277 filed Oct. 7, 2022; which itself claims the benefit
of priority from U.S. patent application Ser. No. 16/870,051
filed May 8, 2020 which has issued as U.S. Pat. No.
11,474,824; the entire contents of each being incorporated
herein by reference.

TECHNICAL FIELD

[0002] The present disclosure is generally related to com-
puter systems, and is specifically related to systems and
methods for performance benchmarking-based selection of a
processor for generating graphic primitives.

BACKGROUND

[0003] Modern computing devices, ranging from smart-
phones to desktop computers, are often equipped not only
with multiple processors, but also with multiple processor
types. A typical configuration includes both general purpose
processors, or central processing units (CPUs), and graphics
processing units (GPUs).

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present disclosure is illustrated by way of
examples, and not by way of limitation, and may be more
fully understood with references to the following detailed
description when considered in connection with the figures,
in which:

[0005] FIG. 1 schematically illustrates an example work-
flow for performance benchmarking-based selection of pro-
cessor for generating graphic primitives, in accordance with
one or more aspects of the present disclosure;

[0006] FIG. 2 depicts a flow diagram of an example
method 200 for generating graphic primitives based on
performance benchmarking-based processor selection tech-
nique;

[0007] FIG. 3 depicts a flow diagram of an example
method 300 for determining the threshold parameter value
for generating graphic primitives of a certain type, in accor-
dance with one or more aspects of the present disclosure;
and

[0008] FIG. 4 depicts a block diagram of an example
computer system operating in accordance with one or more
aspects of the present disclosure.

DETAILED DESCRIPTION

[0009] Described herein are systems and methods for
performance benchmarking-based selection of a processor
for generating graphic primitives.

[0010] A typical configuration of a modern computing
device (e.g., a smartphone, a desktop computer) includes
processors of multiple processor types, including, e.g., gen-
eral purpose processors (CPUs) and graphics processing
units (GPUs). In various illustrative examples, computing
devices may further include digital signal processors
(DSPs), tensor cores, and/or various other application-spe-

Dec. 14, 2023

cific integrated circuits (ASIC) chips designed to efficiently
perform respective specified tasks. Often, rasterized repre-
sentations of some graphic primitives (such as brushstrokes,
fill patterns, shading patterns, digital image filters and
effects, point model simulations, textures, etc.) may be
generated by various processor types. For example, while
one processor type (e.g., a CPU) may often exhibit lower
latency as compared to another processor type (e.g., a GPU),
on the other hand, the CPU would also exhibit lower
throughput. Furthermore, the relative performance of one
processor type vs. another processor type (e.g., CPU vs.
GPU) may depend upon various parameters (such as the
size) of the graphic primitives being generated. In other
words, the same graphic primitive may be more efficiently
generated by a certain processor type depending upon the
size and/or other parameters of the graphic primitive.

[0011] The systems and methods of the present disclosure
allow benchmark-based selection of a processor type among
multiple processor types available on a given computer
system (e.g., a CPU or a GPU) for generating a certain
graphic primitive of a specified size. In some implementa-
tions, performance benchmarking may be run for a graphic
primitive of a specified type (e.g., a brushstroke, a fill
pattern, a shading pattern, a digital image filter, a digital
image effect, or a texture). The performance benchmarking
may involve generating the graphic primitive using different
available processor types, while varying the values of one or
more specified parameters of the graphic primitive (e.g.,
varying the size of graphic primitive) in order to determine
the threshold value(s) of the parameter(s), at which two or
more processors being compared (i.e., the CPU and the
GPU) would demonstrate substantially equal performance
(i.e., their respective performance metrics would differ by no
more than a predetermined performance metric threshold).
Therefore, one of the processors being compared (e.g., the
CPU) would outperform other processors (e.g., the GPU) if
the parameter value(s) of the graphic primitive being gen-
erated are below the identified threshold value(s), while
another processor (e.g., the GPU) would outperform the first
one (e.g., the CPU) if the parameter value(s) exceed the
identified threshold value(s).

[0012] In an illustrative example, a computer system
including multiple processors of several processor types,
may iterate through two or more processor types in order to
generate, using at least one processor of the currently
selected processor type, multiple graphic primitives of a
predefined primitive type (e.g., a brushstroke) that would
differ by a value of a predefined graphic primitive parameter
(e.g., the size of the brushstroke), thus yielding a corre-
sponding value of a predefined performance metric for the
currently selected processor type. The computer system may
then estimate, based the computed performance metric val-
ues, the threshold value of the graphic primitive parameter,
at which one processor type would outperform other pro-
cessor types. Accordingly, when a command is received to
render a graphic primitive of the same graphic primitive
type, the computer system may compare the graphic primi-
tive parameter value to the pre-computed threshold value
and select the processor type that is most suitable for
efficiently generated the specified graphic primitive, as
described in more detail herein below.

[0013] The systems and methods described herein may be
implemented by hardware (e.g., general purpose and/or
specialized processing devices, and/or other devices and

US 2023/0401070 Al

associated circuitry), software (e.g., instructions executable
by a processing device), or a combination thereof. Various
aspects of the above referenced methods and systems are
described in detail herein below by way of examples, rather
than by way of limitation.
[0014] FIG. 1 schematically illustrates an example work-
flow for performance benchmarking-based selection of pro-
cessor for generating graphic primitives, in accordance with
one or more aspects of the present disclosure. The example
workflow may be implemented by a computer system (e.g.,
the computer system 1000 of FIG. 4) that includes both
general purpose processors (CPUs) and graphics processing
units (GPUs). In some implementations, the computer sys-
tem implementing the example workflow of FIG. 1, may run
various graphics-rendering applications, such as an interac-
tive graphics editor that receives the input via one or more
input devices (e.g., a touchscreen, a pointing device, and/or
a keyboard), generates various graphics objects based on the
received input, and renders the generated graphics objects on
one or more graphical user interface (GUI) output devices,
such as displays, printers, etc.
[0015] The computer system running a graphics-rendering
application may receive, via the GUI, a command for
generating and rendering a certain graphic primitive.
Examples of graphic primitive types and other workloads
that can be analyzed by the systems and methods of the
present disclosure include:
[0016] brushstrokes;
[0017] digital image filters and effects (e.g., Gaussian
blur, color transform);

[0018] rendering paint layers using various shading
algorithms (e.g., Phong, Lambert, ambient occlusion,
etc.);

[0019] combining layered images together for render-
ing; and

[0020] texture synthesis (e.g., generating new images

that appear similar to a smaller input image).

[0021] The command may further specify the values of
one or more parameters of the graphic primitive (e.g., the
graphic primitive size, the distance between adjacent
graphic primitives, painting destination, paint blending,
etc.).

[0022] As noted herein above, rasterized representations
of some graphic primitives may be generated by different
processor types. Furthermore, the relative performance of a
one processor type vs. another processor type may depend
upon various parameters (such as the size) of the graphic
primitives being generated.

[0023] In an illustrative example, the graphics-rendering
application may perform stamp-brushing, which refers to a
technique of sequentially applying multiple partially over-
lapping “stamps” of a specified pattern to the digital canvas,
along a specified direction, thus producing visual appear-
ance of a continuous brush stroke. The stamp may be
characterized by its radius (e.g., measured in pixels), which
is also referred to as “brush radius.” The graphic primitive
may be further characterized by the spacing (i.e., the dis-
tance between the adjacent primitives), the painting desti-
nation (e.g., a canvas or a layer), the paint blending, the
presence of selection masks in the document, the type of
graphic algorithm being used (e.g., the “pen type” setting,
such as wet, alpha blend, subtractive). In some implemen-
tations, the graphic primitive may be further characterized
by various other parameters, such as the computer power

Dec. 14, 2023

status (operating on battery vs. plugged into an electric grid),
or existing computational load on each processor.

[0024] The computer system may select the processor type
among the available two or more processor types (e.g., GPU
or CPU) for generating the specified graphic primitive in the
most efficient manner. In some implementations, the selec-
tion may be performed based on processor performance
benchmarking comparing the performance of two or more
processor types (e.g., GPU and CPU) in generating graphic
primitives of the specified type with various values of one or
more parameters characterizing the graphic primitive (e.g.,
the graphic primitive size).

[0025] In an illustrative example, the performance bench-
marking may be performed responsive to receiving a GUI
command to render a specified primitive. In another illus-
trative example, the performance benchmarking may be
performed upon initialization of the graphic-rendering appli-
cation running on the computer system. In yet another
illustrative example, the performance benchmarking may be
performed upon detecting a hardware configuration event in
the computer system (e.g., a processor being hot-plugged or
removed, or a memory device being hot-plugged or
removed).

[0026] The performance benchmarking may involve gen-
erating the graphic primitive multiple times, while varying
the values of one or more specified parameters of the graphic
primitive (e.g., varying the radius of the brushstroke) in
order to determine the threshold value(s) of the parameter(s),
at which two or more processors being compared (i.e., the
CPU and the GPU) would demonstrate substantially equal
performance (i.e., their respective performance metrics
would differ by no more than a certain performance metric
accuracy threshold), such that the following condition would
be satisfied:

IPi(v)-P;(v)<T for i=1, . . . nj=1,. .. wi=j
[0027] where P, and P, are performance metrics of the
processors being compared,
[0028] n is the number of processor types,

[0029] v is the vector of parameter values of the graphic
primitive being generated,

[0030] T is the performance metric accuracy threshold,
and

[0031] IxIdenotes the absolute value of the argument x.

[0032] In various illustrative examples, the performance

metric may be represented by the period of time for gener-
ating the specified graphic primitive, the total size of one or
more memory buffers utilized for generating the first graphic
primitive. In some implementations, the performance metric
may be represented by a specified function reflecting each of
the above-referenced metrics or their combination (e.g., a
weighted sum of the period of time for generating the
specified graphic primitive and the total size of one or more
memory buffers utilized for generating the first graphic
primitive).

[0033] Therefore, one of the two or more processors being
compared (e.g., the CPU) would outperform other processor
(s) (e.g., the GPU) if the parameter value(s) of the graphic
primitive being generated are below the identified threshold
value(s), while the other processor(s) (e.g., the GPU) would
outperform the first one (e.g., the CPU) if the parameter
value(s) exceed the identified threshold value(s). Stated
differently, the identified threshold value(s) of the graphic
primitive being generated would define a dividing hyper-

US 2023/0401070 Al

plane within the hyperspace of the parameters, such that one
of the two or more processors being compared (e.g., the
CPU) would outperform other processor(s) (e.g., the GPU)
if the parameter value(s) are located on one side of the
hyperplane within the parameter hyperspace, while the other
processor(s) (e.g., the GPU) would outperform the first one
(e.g., the CPU) if the parameter value(s) are located on the
other side of the hyperplane within the parameter hyper-
space.

[0034] In some implementations, the computer system
may implement a bisection-based method for identifying the
threshold value(s) of the parameter(s), at which the proces-
sors being compared (i.e., the CPU and the GPU) would
demonstrate substantially equal performance. The method
involves specifying an initial interval defined by two param-
eter values of the graphic primitive being generated, such
that the difference between performance metrics of the two
processors changes the sign (e.g., from positive to negative
or vice versa) within the initial interval, and iteratively
bisecting the interval and then selecting the subinterval in
which the difference between performance metrics of the
processors changes the sign, and therefore contains the
threshold performance metric value. The iterations may
continue until the specified number of iterations have been
performed and/or until the size of the interval falls below a
predetermined accuracy threshold.

[0035] As schematically illustrated by FIG. 1, the example
workflow for determining the threshold brushstroke radius at
which two or more processors (e.g., the GPU and the CPU)
exhibit substantially similar performance metrics, starts (op-
eration 110) by measuring the performance metric of the
CPU generating the specified graphic primitive (i.e., the
brushstroke) having the initial brushstroke radius of 512
pixels and the performance metric of the GPU generating the
specified graphic primitive having the initial brushstroke
radius, under the assumption that the difference between
performance metrics of the two processors changes the sign
within the brushstroke radius interval of [0; 512] pixels.
[0036] In some implementations, the computer system
may, at each iteration, generate the graphic primitive with
the specified parameter values two or more times, and then
determine an aggregate value (e.g., the average, minimum,
or maximum value) representative of the processor perfor-
mance at the specified parameter value, thus decreasing the
adverse effect on the result of possible fluctuations in
availability of various hardware resources (e.g., processor,
memory) at the time of performing the benchmarking.
[0037] Responsive to determining that the performance
metric value exhibited by the GPU falls below the perfor-
mance metric value exhibited by the CPU, the computer
system may bisect the initial interval of [0; 512], thus
producing the brushstroke radius of 256 pixels to be utilized
by the next iteration.

[0038] The next iteration (operation 120) may involve
measuring the performance metric of the CPU generating
the specified graphic primitive (i.e., the brushstroke) having
the brushstroke radius of 256 pixels and the performance
metric of the GPU generating the specified graphic primitive
having the same brushstroke radius.

[0039] Responsive to determining (operation 120) that the
performance metric value exhibited by the GPU falls below
the performance metric value exhibited by the CPU, the
computer system may determine that the difference between
performance metrics of the two processors changes the sign

Dec. 14, 2023

within the brushstroke radius interval of [0; 256] pixels.
Accordingly, the computer system may bisect the interval of
[0; 256], thus producing the brushstroke radius of 128 pixels
to be utilized by the next iteration.

[0040] Accordingly, the next iteration (operation 130) may
involve measuring the performance metric of the CPU
generating the specified graphic primitive (i.e., the brush-
stroke) having the brushstroke radius of 128 pixels and the
performance metric of the GPU generating the specified
graphic primitive having the same brushstroke radius.
[0041] Responsive to determining that the performance
metric value exhibited by the GPU exceeds the performance
metric value exhibited by the CPU, the computer system
may determine that the difference between performance
metrics of the two processors changes the sign within the
brushstroke radius interval of [128; 256] pixels. Accord-
ingly, the computer system may bisect the identified interval
of [128; 256], thus producing the brushstroke radius of 192
pixels to be utilized by the next iteration.

[0042] Therefore, the next iteration (operation 140) may
involve measuring the performance metric of the CPU
generating the specified graphic primitive (i.e., the brush-
stroke) having the brushstroke radius of 192 pixels and the
performance metric of the GPU generating the specified
graphic primitive having the same brushstroke radius.
[0043] Responsive to determining that the performance
metric value exhibited by the GPU falls below the perfor-
mance metric value exhibited by the CPU, the computer
system may determine that the difference between perfor-
mance metrics of the two processors changes the sign within
the brushstroke radius interval of [128; 192] pixels. Accord-
ingly, the computer system may bisect the identified interval
of [128; 192], thus producing the brushstroke radius of 160
pixels.

[0044] Responsive to determining that a predetermined
number of iterations have been performed and/or the size of
the interval falls below a predetermined accuracy threshold,
the computer system may break the cycle of iterations and
utilize the brushstroke radius of 160 pixels as the threshold
value of the brushstroke radius.

[0045] The graphics rendering application may utilize the
identified threshold parameter value for selecting the pro-
cessor type for generating one or more graphic primitives of
the specified type. In an illustrative example, the graphics
rendering application may compare the desired value of the
parameter of the graphic primitive to be rendered (e.g., as
specified by a GUI command) to the computed threshold
parameter value, and select the processor type (e.g., CPU or
GPU) based on the result of the comparison (e.g., if the
desired parameter value exceeds the threshold parameter
value, a GPU is selected, otherwise, a CPU is selected, or
vice versa).

[0046] White the illustrative example of FIG. 1 compares
performance of a GPU and a CPU, the systems and methods
of the present disclosure are also applicable to other types of
processors (e.g., DSPs, tensor cores, and/or various other
ASIC chips designed to efficiently perform respective speci-
fied tasks) and/or to computer systems including processors
of multiple processor types (e.g., tWo or more processor
types).

[0047] FIG. 2 depicts a flow diagram of an example
method 200 for generating graphic primitives based on
performance benchmarking-based processor selection tech-
nique, in accordance with one or more aspects of the present

US 2023/0401070 Al

disclosure. Method 200 and/or each of its individual func-
tions, routines, subroutines, or operations may be performed
by one or more processors of the computer system (e.g.,
computer system 1000 of FIG. 4) implementing the method.
In some implementations, method 200 may be performed by
a single processing thread. Alternatively, method 200 may
be performed by two or more processing threads, each
thread executing one or more individual functions, routines,
subroutines, or operations of the method. In an illustrative
example, the processing threads implementing method 200
may be synchronized (e.g., using semaphores, critical sec-
tions, and/or other thread synchronization mechanisms).
Alternatively, the processing threads implementing method
200 may be executed asynchronously with respect to each
other.

[0048] At block 210, the computer system implementing
the method receives, via a GUI, a command to render a
graphic primitive. The command may specify the type of the
graphic primitive (e.g., a brushstroke, a fill patterns, or a
shadow pattern). The command may further specify values
of one or more parameters of the graphic primitive (e.g., the
size of the graphic primitive).

[0049] Responsive to determining, at block 220, that a
valid threshold parameter value exists for the specified type
of the graphic primitive, the method branches to block 240;
otherwise, the processing continues at block 230.

[0050] At block 230, the computer system performs per-
formance benchmarking for determining a threshold param-
eter value for the specified type of the graphic primitive, i.e.,
a parameter value. The performance benchmarking may
involve generating multiple graphic primitives of the speci-
fied type, while varying the values of the specified parameter
of the graphic primitive (e.g., varying the brushstroke size),
until a parameter value is identified at which the processors
being compared (i.e., a CPU and a GPU) would demonstrate
substantially equal performance (i.e., their respective per-
formance metrics would differ by no more than a predeter-
mined performance metric threshold).

[0051] Responsive to determining, at block 240, that the
specified parameter value exceeds the threshold parameter
value, the method branches to block 260; otherwise, the
processing continues at block 250.

[0052] A block 250, the computer system selects the first
processor type (e.g., a GPU) for generating the specified
graphic primitive, and the processing continues at block 270.
[0053] A block 260, the computer system selects the
second processor type (e.g., a CPU) for generating the
specified graphic primitive.

[0054] At block 270, the computer system generates the
specified graphic primitive using the selected processor
type.

[0055] At block 280, the computer system renders, via the
GUI, the generated graphic primitive, and the method ter-
minates.

[0056] White the illustrative example of FIG. 2 compares
performance of a GPU and a CPU, the systems and methods
of the present disclosure are also applicable to other types of
processors (e.g., DSPs, tensor cores, and/or various other
ASIC chips designed to efficiently perform respective speci-
fied tasks) and/or to computer systems including processors
of multiple processor types (e.g., tWo or more processor
types). In some implementations, a computer system includ-
ing multiple processors of several processor types, may
iterate through two or more processor types in order to

Dec. 14, 2023

generate, using at least one processor of the currently
selected processor type, multiple graphic primitives of a
predefined primitive type (e.g., a brushstroke) that would
differ by a value of a predefined graphic primitive parameter
(e.g., the size of the brushstroke), thus yielding a corre-
sponding value of a predefined performance metric for the
currently selected processor type. The computer system may
then estimate, based the computed performance metric val-
ues, the threshold value of the graphic primitive parameter,
at which one processor type would outperform other pro-
cessor types. Accordingly, when a command is received to
render a graphic primitive of the same graphic primitive
type, the computer system may compare the graphic primi-
tive parameter value to the pre-computed threshold value
and select the processor type that is most suitable for
efficiently generated the specified graphic primitive.

[0057] FIG. 3 depicts a flow diagram of an example
method 300 for determining the threshold parameter value
for generating graphic primitives of a certain type, in accor-
dance with one or more aspects of the present disclosure.
Method 300 and/or each of its individual functions, routines,
subroutines, or operations may be performed by one or more
processors of the computer system (e.g., computer system
1000 of FIG. 4) implementing the method. In some imple-
mentations, method 300 may be performed by a single
processing thread. Alternatively, method 300 may be per-
formed by two or more processing threads, each thread
executing one or more individual functions, routines, sub-
routines, or operations of the method. In an illustrative
example, the processing threads implementing method 300
may be synchronized (e.g., using semaphores, critical sec-
tions, and/or other thread synchronization mechanisms).
Alternatively, the processing threads implementing method
300 may be executed asynchronously with respect to each
other.

[0058] At block 310, the computer system implementing
the method initializes the current value of a parameter (e.g.,
the size) of a specified graphic primitive type (e.g., a
brushstroke).

[0059] At block 320, the computer system implementing
the method determines the first processor performance met-
ric value by generating, using the first processor type (e.g.,
a GPU), a graphic primitive of the specified type (e.g., a
brushstroke), using the current value of the specified param-
eter (e.g., the size of the brushstroke).

[0060] At block 330, the computer system determines the
second processor performance metric value by generating,
using the second processor type (e.g., a CPU), a graphic
primitive of the specified type, using the current value of the
specified parameter.

[0061] Responsive to determining, at block 340, that a
terminating condition has been satisfied, the processing
continues at block 360; otherwise, the method branches to
block 350. In an illustrative example, the terminating con-
dition may specify the maximum number of iterations to be
performed. In another illustrative example, the terminating
condition may specify the desired accuracy threshold of the
performance metric, as explained in more detail herein
above.

[0062] At block 350, the computer system determines, by
comparing the first performance metric value and the second
performance metric value, a new current value of the speci-
fied parameter of the graphic primitive, and the method
loops back to block 320. In an illustrative example, the

US 2023/0401070 Al

computer system may implement a bisection-based method
for identifying the threshold value of the specified parameter
of'the graphic primitive. The method may involve specifying
an initial interval defined by two parameter values of the
graphic primitive being generated, such that the difference
between performance metrics of the two processors changes
the sign (e.g., from positive to negative or vice versa) within
the initial interval, and iteratively bisecting the interval and
then selecting the subinterval in which the difference
between performance metrics of the two processors changes
the sign, and therefore contains the threshold performance
metric value, as described in more detail herein above.
[0063] At block 360, the computer system determines,
based on the first performance metric value and the second
performance metric value, a threshold value of the specified
parameter, at which the two processors being compared (i.e.,
the CPU and the GPU) would demonstrate substantially
equal performance (i.e., their respective performance met-
rics would differ by no more than a predetermined perfor-
mance metric threshold). In an illustrative example, the
computer system may select the average of the previous
parameter value and the current parameter value as the
threshold parameter value. Responsive to completing the
operations of block 360, the method terminates.

[0064] White the illustrative example of FIG. 3 compares
performance of a GPU and a CPU, the systems and methods
of the present disclosure are also applicable to other types of
processors (e.g., DSPs, tensor cores, and/or various other
ASIC chips designed to efficiently perform respective speci-
fied tasks) and/or to computer systems including processors
of multiple processor types (e.g., tWo or more processor
types).

[0065] FIG. 4 schematically illustrates a component dia-
gram of an example computer system 1000 which may
perform any one or more of the methods described herein.
Example computer system 1000 may be connected to other
computer systems in a LAN, an intranet, an extranet, and/or
the Internet. Computer system 1000 may operate in the
capacity of a server in a client-server network environment.
Computer system 1000 may be a personal computer (PC), a
set-top box (STB), a server, a network router, switch or
bridge, or any device capable of executing a set of instruc-
tions (sequential or otherwise) that specify actions to be
taken by that device. Further, while only a single example
computer system is illustrated, the term “computer” shall
also be taken to include any collection of computers that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methods
discussed herein.

[0066] Example computer system 1000 may comprise a
central processing unit (CPU) 1002 (also referred to as a
processor), a graphics processing unit (GPU) 1022, a main
memory 1004 (e.g., read-only memory (ROM), flash
memory, dynamic random access memory (DRAM) such as
synchronous DRAM (SDRAM), etc.), a static memory 1006
(e.g., flash memory, static random access memory (SRAM),
etc.), and a secondary memory (e.g., a data storage device
1018), which may communicate with each other via a bus
1030.

[0067] CPU 1002 represents one or more general-purpose
processing devices such as a microprocessor, central pro-
cessing unit, or the like. More particularly, CPU 1002 may
be a complex instruction set computing (CISC) micropro-
cessor, reduced instruction set computing (RISC) micropro-

Dec. 14, 2023

cessor, very long instruction word (VLIW) microprocessor,
processor implementing other instruction sets, or processors
implementing a combination of instruction sets.

[0068] CPU 1002 and/or GPU 1022 may be employed to
execute instructions implementing method 200 of generat-
ing graphic primitives based on performance benchmarking-
based processor selection technique and/or method 300 of
determining the threshold parameter value for generating
graphic primitives of a certain type, in accordance with one
or more aspects of the present disclosure.

[0069] Example computer system 1000 may further com-
prise a network interface device 1008, which may be com-
municatively coupled to a network 1020. Example computer
system 1000 may further comprise a video display 1010
(e.g., a liquid crystal display (LCD), a touch screen, or a
cathode ray tube (CRT)), an alphanumeric input device 1012
(e.g., a keyboard), a cursor control device 1014 (e.g., a
mouse), and an acoustic signal generation device 1016 (e.g.,
a speaker).

[0070] Data storage device 1018 may include a computer-
readable storage medium (or more specifically a non-tran-
sitory computer-readable storage medium) 1028 on which is
stored one or more sets of executable instructions 1026.
Executable instructions 1026 may comprise executable
instructions encoding various functions of method 200 of
generating graphic primitives based on performance bench-
marking-based processor selection technique and/or method
300 of determining the threshold parameter value for gen-
erating graphic primitives of a certain type, in accordance
with one or more aspects of the present disclosure.

[0071] Executable instructions 1026 may also reside, com-
pletely or at least partially, within main memory 1004 and/or
within processing device 1002 during execution thereof by
example computer system 1000, main memory 1004 and
processing device 1002 also constituting computer-readable
storage media. Executable instructions 1026 may further be
transmitted or received over a network via network interface
device 1008.

[0072] While computer-readable storage medium 1028 is
shown in FIG. 4 as a single medium, the term “computer-
readable storage medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of VM operating instructions.
The term “computer-readable storage medium” shall also be
taken to include any medium that is capable of storing or
encoding a set of instructions for execution by the machine
that cause the machine to perform any one or more of the
methods described herein. The term “computer-readable
storage medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, and optical and
magnetic media.

[0073] Some portions of the detailed descriptions above
are presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing
arts to most effectively convey the substance of their work
to others skilled in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of
operations leading to a desired result. The operations are
those requiring physical manipulations of physical quanti-
ties. Usually, though not necessarily, these quantities take
the form of electrical or magnetic signals capable of being

US 2023/0401070 Al

stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally
for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
or the like.

[0074] It should be borne in mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated other-
wise, as apparent from the following discussion, it is appre-
ciated that throughout the description, discussions utilizing
terms such as “identifying,” “determining,” “storing,”
“adjusting,” “causing,” “returning,” “comparing,” “creat-
ing,” “stopping,” “loading,” “copying,” “throwing,”
“replacing,” “performing,” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

[0075] Examples of the present disclosure also relate to an
apparatus for performing the methods described herein. This
apparatus may be specially constructed for the required
purposes, or it may be a general purpose computer system
selectively programmed by a computer program stored in
the computer system. Such a computer program may be
stored in a computer readable storage medium, such as, but
not limited to, any type of disk including optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROM:s,
EEPROMs, magnetic disk storage media, optical storage
media, flash memory devices, other type of machine-acces-
sible storage media, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

[0076] The methods and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus
to perform the required operations, functions, or methods.
The required structure for a variety of these systems will
appear as set forth in the description below. In addition, the
scope of the present disclosure is not limited to any particu-
lar programming language. It will be appreciated that a
variety of programming languages may be used to imple-
ment the teachings of the present disclosure.

[0077] It is to be understood that the above description is
intended to be illustrative, and not restrictive. Many other
implementation examples will be apparent to those of skill
in the art upon reading and understanding the above descrip-
tion. Although the present disclosure describes specific
examples, it will be recognized that the systems and methods
of the present disclosure are not limited to the examples
described herein, but may be practiced with modifications
within the scope of the appended claims. Accordingly, the
specification and drawings are to be regarded in an illustra-
tive sense rather than a restrictive sense. The scope of the
present disclosure should, therefore, be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

Dec. 14, 2023

What is claimed is:
1. A method, comprising:
receiving upon a computer system comprising a pair of
processors a command to render a graphic primitive,
the command specifying a type of the graphic primitive
and values of one or more parameters of the graphic
primitive;
determining whether a threshold parameter value exists
with respect to a parameter of the one or more param-
eters of the graphic primitive;
upon a positive determination that a threshold parameter
value exists with respect to a parameter of the one or
more parameters of the graphic primitive determining
whether the value of the parameter for which the
threshold parameter value exists exceeds the threshold
parameter value; and
upon determining the value of the parameter for which the
threshold parameter value exists exceeds the threshold
parameter value selecting a processor of the pair of
processors for generating the graphic primitive; and
upon determining the value of the parameter for which the
threshold parameter value exists does not exceed the
threshold parameter value selecting the other processor
of the pair of processors for generating the graphic
primitive.
2. The method according to claim 1, wherein
the processor of the pair of processors and the other
processor of the pair of processors are different pro-
cessor types.
3. The method according to claim 1, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-
lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprising:
generating the graphic primitive multiple times with the
pair of processors of the computer system whilst
varying the parameter of the one or more parameters
of the graphic primitive in order to determine the
threshold parameter value of the parameter of the
one or more parameters of the graphic primitive; and
storing the threshold parameter value of the parameter of
the one or more parameters of the graphic primitive and
the parameter of the one or more parameters of the
graphic primitive threshold value within a memory
accessible to the computer system; wherein
below the threshold value the other processor of the pair
of processors outperforms the processor of the pair of
processors and above the threshold value the processor
of the pair of processors outperforms the other proces-
sor of the pair of processors; and
the determination of whether one of the processor of the
pair of processors and the other processor of the pair of
processors outperforms the one of the other processor
of the pair of processors and the processor of the pair
of processors is established in dependence upon a
performance metric for generating and rendering the
graphic primitive for a value of the parameter value.
4. The method according to claim 1, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-
lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprising:

US 2023/0401070 Al

generating the graphic primitive multiple times whilst
varying the one or more other parameters of the
graphic primitive in order to determine one or more
other threshold values of the one or more other
parameters of graphic primitive at which the pair of
processors demonstrate values of a performance
metric differing by less than a performance metric
accuracy threshold;
the parameter of the one or more parameters of the
graphic primitive is one of the one or more other
parameters of the graphic primitive; and
the processor of the pair of processors and the other
processor of the pair of processors are different pro-
cessor types.
5. The method according to claim 1, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-
lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprising:
generating the graphic primitive multiple times whilst
varying the one or more other parameters of the
graphic primitive in order to determine one or more
other threshold values of the one or more other
parameters of graphic primitive at which the pair of
processors demonstrate values of a performance
metric differing by less than a performance metric
accuracy threshold; and
the parameter of the one or more parameters of the
graphic primitive is one of the one or more other
parameters of the graphic primitive.
6. The method of claim 1, wherein
the threshold parameter value is defined in dependence
upon a value of the parameter of the one or more
parameters at which the pair of processors demonstrate
values of a performance metric differing by less than a
performance metric accuracy threshold.
7. The method of claim 1, wherein
the threshold parameter value is defined in dependence
upon a value of the parameter of the one or more
parameters at which the pair of processors demonstrate
values of a performance metric differing by less than a

Dec. 14, 2023

generating the graphic primitive with a current set of
parameters of the graphic primitive for each proces-
sor of the plurality of processors in an iteration
before proceeding to generate the graphic primitive
with a new set of parameters of the graphic primitive
for each processor of the plurality of processors in a
next iteration; and
terminating the performance benchmarking process
upon a terminating condition being met;
the sets of parameters for each iteration are established in
dependence upon the performance metrics for the plu-
rality of processors such that the performance bench-
marking process iterates towards a common perfor-
mance metric for the plurality of processors; and
the terminating condition is a maximum number of itera-
tions.
10. The method according to claim 1, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-
lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprises:
generating the graphic primitive with a current set of
parameters of the graphic primitive for each proces-
sor of the plurality of processors in an iteration
before proceeding to generate the graphic primitive
with a new set of parameters of the graphic primitive
for each processor of the plurality of processors in a
next iteration; and
terminating the performance benchmarking process
upon a terminating condition being met;
the sets of parameters for each iteration are established in
dependence upon the performance metrics for the plu-
rality of processors such that the performance bench-
marking process iterates towards a common perfor-
mance metric for the plurality of processors; and
the terminating condition is the performance metrics for
the plurality of processors differ by less than the
performance metric accuracy threshold.

11. A non-transitory memory storing computer executable

instructions which when executed by a microprocessor of a
computer systems configure the computer system to execute
a process comprising the steps of:

performance metric accuracy threshold; and
the performance metric reflects at least one of a period of
time for generating the graphic primitive; and

a total size of one or more memory buffers of the
computer system utilized for generating the graphic
primitive.

8. The method according to claim 1, wherein
the graphic primitive is one of:

a brushstroke within the graphic-rendering application;

rendering a paint layer within the graphic-rendering
application using a shading algorithm;

combining layered images within the graphic rendering
application for rendering;

a digital image filter;

a digital image effect; and.

a texture synthesis.

9. The method according to claim 1, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-

lished by executing, upon the computer system, a

performance benchmarking process, the performance

benchmarking process comprises:

receiving upon the computer system a command to render
a graphic primitive, the command specifying a type of
the graphic primitive and values of one or more param-
eters of the graphic primitive;

determining whether a threshold parameter value exists
with respect to a parameter of the one or more param-
eters of the graphic primitive;

upon a positive determination that a threshold parameter
value exists with respect to a parameter of the one or
more parameters of the graphic primitive determining
whether the value of the parameter for which the
threshold parameter value exists exceeds the threshold
parameter value; and

upon determining the value of the parameter for which the
threshold parameter value exists exceeds the threshold
parameter value selecting a processor of the pair of
processors for generating the graphic primitive; and

upon determining the value of the parameter for which the
threshold parameter value exists does not exceed the

US 2023/0401070 Al

threshold parameter value selecting the other processor
of the pair of processors for generating the graphic
primitive; wherein
the computer system comprises the pair of processors.
12. The memory according to claim 11, wherein
at least one of:
the processor of the pair of processors and the other
processor of the pair of processors are different
processor types; and
the microprocessor is one of the processor of the pair of
processors and the other processor of the pair of
processors.
13. The memory according to claim 11, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-
lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprising:
generating the graphic primitive multiple times with the
pair of processors of the computer system whilst
varying the parameter of the one or more parameters
of the graphic primitive in order to determine the
threshold parameter value of the parameter of the
one or more parameters of the graphic primitive; and
storing the threshold parameter value of the parameter of
the one or more parameters of the graphic primitive and
the parameter of the one or more parameters of the
graphic primitive threshold value within a memory
accessible to the computer system; wherein
below the threshold value the other processor of the pair
of processors outperforms the processor of the pair of
processors and above the threshold value the processor
of the pair of processors outperforms the other proces-
sor of the pair of processors; and
the determination of whether one of the processor of the
pair of processors and the other processor of the pair of
processors outperforms the one of the other processor
of the pair of processors and the processor of the pair
of processors is established in dependence upon a
performance metric for generating and rendering the
graphic primitive for a value of the parameter value.
14. The memory according to claim 11, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-
lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprising:
generating the graphic primitive multiple times whilst
varying the one or more other parameters of the
graphic primitive in order to determine one or more
other threshold values of the one or more other
parameters of graphic primitive at which the pair of
processors demonstrate values of a performance
metric differing by less than a performance metric
accuracy threshold;
the parameter of the one or more parameters of the
graphic primitive is one of the one or more other
parameters of the graphic primitive; and
the processor of the pair of processors and the other
processor of the pair of processors are different pro-
cessor types.
15. The memory according to claim 11, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-

Dec. 14, 2023

lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprising:
generating the graphic primitive multiple times whilst
varying the one or more other parameters of the
graphic primitive in order to determine one or more
other threshold values of the one or more other
parameters of graphic primitive at which the pair of
processors demonstrate values of a performance
metric differing by less than a performance metric
accuracy threshold; and
the parameter of the one or more parameters of the
graphic primitive is one of the one or more other
parameters of the graphic primitive.
16. The memory of claim 11, wherein
the threshold parameter value is defined in dependence
upon a value of the parameter of the one or more
parameters at which the pair of processors demonstrate
values of a performance metric differing by less than a
performance metric accuracy threshold.
17. The memory of claim 11, wherein
the threshold parameter value is defined in dependence
upon a value of the parameter of the one or more
parameters at which the pair of processors demonstrate
values of a performance metric differing by less than a
performance metric accuracy threshold; and
the performance metric reflects at least one of
a period of time for generating the graphic primitive;
and
a total size of one or more memory buffers of the
computer system utilized for generating the graphic
primitive.
18. The memory according to claim 11, wherein
the graphic primitive is one of:
a brushstroke within the graphic-rendering application;
rendering a paint layer within the graphic-rendering
application using a shading algorithm;
combining layered images within the graphic rendering
application for rendering;
a digital image filter;
a digital image effect; and.
a texture synthesis.
19. The memory according to claim 11, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-
lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprises:
generating the graphic primitive with a current set of
parameters of the graphic primitive for each proces-
sor of the plurality of processors in an iteration
before proceeding to generate the graphic primitive
with a new set of parameters of the graphic primitive
for each processor of the plurality of processors in a
next iteration; and
terminating the performance benchmarking process
upon a terminating condition being met;
the sets of parameters for each iteration are established in
dependence upon the performance metrics for the plu-
rality of processors such that the performance bench-
marking process iterates towards a common perfor-
mance metric for the plurality of processors; and
the terminating condition is a maximum number of itera-
tions.

US 2023/0401070 Al

20. The memory according to claim 11, wherein
the threshold parameter value of the parameter of the one
or more parameters of the graphic primitive was estab-
lished by executing, upon the computer system, a
performance benchmarking process, the performance
benchmarking process comprises:
generating the graphic primitive with a current set of
parameters of the graphic primitive for each proces-
sor of the plurality of processors in an iteration
before proceeding to generate the graphic primitive
with a new set of parameters of the graphic primitive
for each processor of the plurality of processors in a
next iteration; and
terminating the performance benchmarking process
upon a terminating condition being met;
the sets of parameters for each iteration are established in
dependence upon the performance metrics for the plu-
rality of processors such that the performance bench-
marking process iterates towards a common perfor-
mance metric for the plurality of processors; and
the terminating condition is the performance metrics for
the plurality of processors differ by less than the
performance metric accuracy threshold.

#* #* #* #* #*

Dec. 14, 2023

