US 20170300698A1

a2y Patent Application Publication o) Pub. No.: US 2017/0300698 A1

a9y United States

Chawla et al.

43) Pub. Date: Oct. 19, 2017

(54) DISTRIBUTED SYSTEM FOR DISCOVERY
OF VULNERABILITIES IN APPLICATIONS
INCLUDING DETECTING AND/OR
FILTERING OUT VULNERABILITY
DUPLICATES

(71) Applicant: Synack, Inc., Redwood City, CA (US)

(72) Inventors: Kirti Chawla, Redwood City, CA (US);
Mikhail Sosonkin, Redwood City, CA
(US); Liam Norris, Redwood City, CA
(US); Mark Kuhr, Redwood City, CA
(US)

(21) Appl. No.: 15/132,810
(22) Filed: Apr. 19, 2016

Publication Classification

(51) Int. CL
GOGF 21/57
GOGF 17/30

(2013.01)
(2006.01)

(52) US.CL
CPC ... GOGF 21/577 (2013.01); GOGF 17/30864
(2013.01)

(57) ABSTRACT

A vulnerability report evaluation system comprises a pre-
processor that takes as its input a data record representing a
vulnerability report and outputs a search record. The vul-
nerability report evaluation system further comprises a
search engine and a searchable corpus comprising records of
vulnerabilities, wherein the search engine is configured to
use the outputted search record to search the corpus. The
vulnerability report evaluation system can flag search result
hits resulting from the searched search record as an indica-
tion that the submitted vulnerability report is a duplicate of
an earlier vulnerability report or as a flag to trigger manual
review, while providing efficient processing of vulnerability
report data records.

Receive a New Vulnerability
Report

201
-~

Generate Search Record from |
the New Vuinerability Report

202

Submit Search Record to Search
Engine

203
L

A

Determine if Search Results | &
Match Tightly or Loosely

Search
Results Match
Tightly?

Search Results
Nonempty?

207

204

Add New Vulnerability 205

Report and Corresponding| -
Search Record to

Vulnerability Database

Discard Vulnerability
Report

209
~

Manually Evaluate ,_%10

Vulnerability Report

Send Message to | 206
Tester Computer On |~
Decision

l "OId

US 2017/0300698 A1

aseqgele
201 Ajjigessuinp
3
=)
S
=]
Y A 4
~N—
>
=
) wolsAg uonenjeas Jeindwio Jsisa]
~ uoday Aljigessuinp
= =
& (N)zol
=N
Y A
< ! Jeindwion Jsise |
o o
\..\
———— N = (2)z01
WwssAg ZlLi

swsebeuel 158 Ajunoeg
Jeindwio?) isyisa |

Vol (1)eoL

JapuUn We1sAS 19bie
(Lol Pun s 1

0oL

Patent Application Publication

Patent Application Publication Oct. 19,2017 Sheet 2 of 6 US 2017/0300698 A1

201

Receive a New Vulnerability |-
Report

Generate Search Record from 302

the New Vulnerability Report

v

Submit Search Record to Search
Engine

203
w

204

Search Results
Nonempty?

Determine if Search Results 307 Add New Vulnerability 205
Match Tightly or Loosely Report and Corresponding|~
Search Record to
Vulnerability Database
Search v

Results Match
Tightly?

Discard Vulnerability | 207
Report
Manually Evaluate 310
Vulnerability Report
g
A 4

Send Message to | 206
Tester Computer On |~
Decision

v
() FIG. 2

US 2017/0300698 A1

Oct. 19,2017 Sheet 3 of 6

Patent Application Publication

€ 'Old

abed siy) uo aindss Jou sl Sd11H LE0L 009F ' €OF L |wyy dewsys/doys/<utewiop> g
SSOO0E 9UI| PUBWIWOD MOjje sJaiorleyo adeosT LEOL G/SEE0rL | 1wy yotesseyo/Wwo a|dwexa puooss %
8ul| puewwoo jjays e el | i, 8dAy jusypmy| S/91 GGSP'EOrL | IWiY yosess/jeyd/woo sjdwexs puooss €
‘Alleusixs paJsjie agq ued spial) Wio4 GOS1L /S0L SO L Wiy uiewydoys oo sjduiexs z
‘2J8y ojgelipow sl 8pod JWIH 8YL| €211 AN |WiY Xapul/woo s|dwexs |
ai
13043y N3183L dINVLSINIL 74N # N1NA
\.\
Z0¢g

Patent Application Publication Oct. 19,2017 Sheet 4 of 6 US 2017/0300698 A1

Vulnerability
Database
Match/Search
APl Instance
408
’g04 jOZ

406
o

Match Evaluator |« Search Engine

A
A

Dicticnary

APl Calls

Management Interface | ©
(Web-Based)

A

JSONP Interaction

414

y

U/l Computer Browser ;”2
(executes U/l Code)

Operator
Interaction

FIG. 4

Patent Application Publication Oct. 19,2017 Sheet 5 of 6 US 2017/0300698 A1

501
Load Corpus ~
i 502
Load Search Record ~
503
—

Construct Dictionary (if needed)

Perform Search and Return ,§04

Search Results

v

(Return)

FIG. 5

601

Compare Searched Vulnerability Against |~
Each Returned Search Record

v

Compute Match Score for Each Pair of Searched
Vulnerability and Returned Search Record

602
-

¢ 603

Display Results to Operator [~
¢ 604

Take Operator Input ol

FIG. 6

US 2017/0300698 A1

Oct. 19,2017 Sheet 6 of 6

Patent Application Publication

94

MIOM}aN

B0

L 'Old

| 00Z

_ 81z —

! v0Z
AU SoBLS 10SS820.1d

0cl MIOMSN | uoniesIuNwWwon

_

_

_

_

_

B

| |20z

_

_ sng

_

_

_

_
557 |01z 80z 507
om_waom | soine(] Alowsp

_ ebeloig NOY SN

_

ol/
|0JJU0D
Josing

vz
aolIrne(
induyj

VL

Aeidsig

US 2017/0300698 Al

DISTRIBUTED SYSTEM FOR DISCOVERY
OF VULNERABILITIES IN APPLICATIONS
INCLUDING DETECTING AND/OR
FILTERING OUT VULNERABILITY
DUPLICATES

FIELD OF THE INVENTION

[0001] The present disclosure generally relates to testing
of computers relating to security issues. The disclosure
relates more particularly to techniques for performing secu-
rity testing of computer systems using a distributed group of
security testers and detecting and/or filtering out duplicate
vulnerability reports related to those computer systems.

BACKGROUND

[0002] Performing security testing on a computer system
might involve exercising parts of the functionality of the
computer system and evaluating whether an instance of
security vulnerability exists. For example, if a computer
system is supposed to be accessible only to authorized
persons and is supposed to block unauthorized persons, a
simple test might be for a tester to access the computer
system and at a login screen that asks for a user name and
a password, type in a known invalid name, such as “nobody”
and a known invalid password such as leaving the password
field blank and then submitting that as a login. If the
computer system responds by allowing the tester past the
login screen as if the tester were an authorized person, that
indicates that the computer system has a security vulner-
ability. If the computer system responds by displaying a
message such as “Unrecognized user name or password”
and remains at the login screen, that may indicate that the
computer system might not have that particular vulnerabil-
ity.

[0003] This is, of course, an extremely simple test and
fully testing a computer system for moderate complexity of
vulnerabilities can be quite involved. For example, a com-
puter system might have a vulnerability that is only noticed
if a tester inputs an unexpected string into a field, such as
entering “; DROP TABLE users” into a field that is used to
enter a user name. The computer system might have many
different locations in an application that ask for user name
and it might be that some of those correctly respond by
refusing to process the improper input while others would
process the improper input and perform actions that the
designers of the computer system assumed would not be
allowed to ordinary users.

[0004] A typical computer system might be executing a
complex application, such as a web banking application that
handles information display, transaction generation and
funds transfers, an e-commerce application that handles
product display, online shopping, purchasing and shipping,
or other complex systems. With such systems, it can be
useful to receive vulnerability reports from a great many of
testers who might be operating independently of other
testers. These testers might be security professionals testing
a target computer system on behalf of a security company
that provides compensation or rewards to testers who submit
vulnerability reports.

[0005] One problem with providing compensation or
rewards to testers who submit vulnerability reports is that
the award is typically limited to the first submitter and
multiple independent testers might report the same vulner-

Oct. 19, 2017

ability. An evaluator might manually read all of the incom-
ing vulnerability reports and determine that two or more
vulnerability reports are for the same vulnerability and then
determine which tester was first to report the vulnerability.
This is a considerable undertaking for a large system under
test and can sometimes be impractical. It is not a simple
matter to do a word-by-word comparison of the vulnerability
reports by multiple submitters, because not all testers would
use the same language or words.

SUMMARY

[0006] A vulnerability database management system man-
ages data records representing vulnerability reports submit-
ted by testers. The vulnerability database management sys-
tem might comprise an input memory for storing a candidate
vulnerability report submitted by a tester, a search record
generator that generates a candidate search record corre-
sponding to the candidate vulnerability report, a vulnerabil-
ity database for storing vulnerability report records and
corresponding search records, wherein a vulnerability report
record in the vulnerability database represents a previously
accepted vulnerability report and wherein a corresponding
search record represents a search record corresponding to
the previously accepted vulnerability report, a search engine
configured to receive the candidate search record and use the
candidate search record as a search query against the cor-
responding search records stored in the vulnerability data-
base, resulting in search results based on the candidate
search record, and an intake management computer interface
that, when a match between the candidate search record and
the search results is below a threshold match tightness
criteria, presents the search results to an operator and obtains
operator feedback at least as to whether to accept the
candidate vulnerability report into the vulnerability data-
base.

[0007] The intake management computer interface might
use different thresholds in addition to the threshold match
tightness criteria, such as heightened threshold match tight-
ness criteria that is used to identify candidate vulnerability
reports that can be rejected or flagged as duplicates without
requiring operator review and a lowered threshold match
tightness criteria that is used to identify candidate vulner-
ability reports that can be added to the vulnerability database
without requiring operator review. When the search results
returned by the search engine is an empty set, that is also a
case where the intake management computer might accept
the candidate vulnerability report into the vulnerability
database without requiring operator feedback.

[0008] Each matching record in the search results might be
assigned a similarity score value to indicate a similarity
between that matching record and the candidate search
record, perhaps in a manner similar to textual and/or struc-
tured text search engines. The similarity score values might
be compared to a threshold similarity score value to deter-
mine whether the candidate search record, and thus the
candidate vulnerability record, should be added to the vul-
nerability database or rejected as being a duplicate of an
existing vulnerability record. The search results might be
sorted based on the similarity score values for the matching
records of the search results. The search engine might use a
hierarchical feeder network to provide meta-scoring for
generating the similarity score values.

[0009] The vulnerability database might store the corre-
sponding search records natively as the vulnerability reports.

US 2017/0300698 Al

Alternatively, the vulnerability database might comprise
distinct data structures for storing vulnerability records and
corresponding search records. The corresponding search
records might be tokenized versions of their corresponding
vulnerability reports. The tokenized versions of the corre-
sponding vulnerability reports might include token weights,
wherein words on a noise words list are given lower weights
than words not on the noise words list. A tokenized version
of the corresponding vulnerability report might have repre-
sentations of tokens where at least one representation of a
token represents multiple distinct words that are synonyms
of each other.

[0010] The search results might be provided via a JSONP-
compliant application programming interface, wherein the
vulnerability database comprises a file-system based data
structure and/or an in-memory data structure. The vulner-
ability database management system might be configured
with logic for dynamically configuration using a stored
plurality of configurable parameters to be used by the intake
management computer interface and the search engine.
[0011] A vulnerability report evaluation system comprises
a preprocessor that takes as its input a data record repre-
senting a vulnerability report and outputs a search record.
The vulnerability report evaluation system further comprises
a search engine and a searchable corpus comprising records
of vulnerabilities, wherein the search engine is configured to
use the outputted search record to search the corpus. The
vulnerability report evaluation system can flag search result
hits resulting from the queried search record as an indication
that the submitted vulnerability report is a duplicate of an
earlier vulnerability report or as a flag to trigger manual
review, while providing efficient processing of vulnerability
report data records.

[0012] The following detailed description together with
the accompanying drawings will provide a better under-
standing of the nature and advantages of the present inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Various embodiments in accordance with the pres-
ent disclosure will be described with reference to the draw-
ings, in which:

[0014] FIG. 1 illustrates an example security test manage-
ment system arrangement that may be used for crowd-
sourced vulnerability discovery and evaluating vulnerabili-
ties for duplicates.

[0015] FIG. 2 is a flowchart of a vulnerability duplication
evaluation process.

[0016] FIG. 3 is a representation of a portion of a vulner-
ability database that might be evaluated in the process of
FIG. 2.

[0017] FIG. 4 is a block diagram of a search-and-match
system that might be used to identify duplicates.

[0018] FIG. 5 is a flowchart of a search process in greater
detail.
[0019] FIG. 6 is a flowchart of a match and scoring

process in greater detail.

[0020] FIG. 7 is a block diagram that illustrates a com-
puter system upon which an embodiment of the invention
may be implemented.

[0021] An Appendix is included herewith, comprising
source code examples.

Oct. 19, 2017

DETAILED DESCRIPTION

[0022] In the following description, various embodiments
will be described. For purposes of explanation, specific
configurations and details are set forth in order to provide a
thorough understanding of the embodiments. However, it
will also be apparent to one skilled in the art that the
embodiments may be practiced without the specific details.
Furthermore, well-known features may be omitted or sim-
plified in order not to obscure the embodiment being
described.

[0023] In many of the examples in this disclosure, a
computer system being evaluated in a security test is soft-
ware being executed by one or more processor and hardware
comprising the one or more processor, associated memory,
network connections, interfaces and the like. Such a com-
puter system might comprise multiple elements, such as
multiple computer servers, multiple database servers, net-
work equipment that facilitates data communications
between multiple elements and users of the computer sys-
tem, multiple processors and program instruction storage
devices that contain program code corresponding to one or
more application programs (applications) that are executed
by the computer system.

[0024] For simplicity in the explanations here, testers are
people or other computer systems that test the computer
system by interacting with an application that is executed by
the computer system. The term “application” need not be
limited to one monolithic program or a single purpose
program, but generally refers to that which is being tested
for possible security vulnerabilities. In an example security
test, a tester selects a particular security test to perform,
accesses the application through an available interface,
performs some interaction with the application, and the
response of the application can indicate whether the appli-
cation passes or fails (or partially passes, partially fails) that
security test.

[0025] Examples of available interfaces might be network
interfaces, input/output interfaces, computer-to-computer
interfaces, hardware interfaces or the like. The available
interfaces might include interfaces that are expected to
normally operate for the application or unexpected inter-
faces. In an extremely specific example, a tester is a security
researcher familiar with common misconfigurations of data-
base servers who executes commands on the tester’s com-
puter to access a maintenance interface of a database server
under test with the access being over the Internet, sends
certain messages to the maintenance interface and the main-
tenance interface responds with response messages contain-
ing sensitive information about the database server and/or its
contents that is not information that the designers and/or
managers of the database server under test intended to make
available over that maintenance interface.

[0026] The application could include human-facing inter-
faces, such as a web server that receives requests from user
browsers and responds with HTML pages. The application
could also include machine-facing interfaces, such as an
application program interface (API) that other programs can
use to interact with the application. It is not required that the
exact extent of what constitutes an application and its
boundaries. Some applications may be amenable to granular
division into parts that can be tested for security vulnerabili-
ties. For example, a web application might have function-
ality for authenticating users (login screens, etc.), serving up

US 2017/0300698 Al

static content to browsers on request, accepting user inputs
to perform commands, and the like. Each of these might be
tested for security separately.

[0027] When a tester discovers what they deem to be a
vulnerability instance, the test will submit a vulnerability
report using an interface provided for that purpose using the
tester computer or another system. Testers can be computer
security researchers, experts or others, working together or
working independently. Where testers are working indepen-
dently, possibly at different times in different places, they
might discover the same vulnerability and thus duplicate
vulnerability reports could be submitted. Thus it would be of
interest to the managers of a testing service to identify
duplicates for various reasons, such as ensuring that multiple
testers are not credited with the same vulnerability discov-
ery. This can be important where testers are compensated or
recognized based on discovery of as-yet undiscovered vul-
nerabilities.

[0028] Vulnerabilities are represented as vulnerability
records in a vulnerability database. The database can be a
structured database, unstructured data, or other form, dis-
tributed or otherwise, such that it is able to document
vulnerabilities. The vulnerability database might include
only unique vulnerability reports, but might also contain
duplicates, such as might be the case where the vulnerability
database houses both the accepted unique vulnerabilities as
well as other received vulnerability reports that have yet to
be processed for duplicate checking.

[0029] Additional details for particular embodiments of
security test management systems that facilitate distributed
testing of target systems for security vulnerabilities by
distributed testers and related methods of operation are
described below with reference to the figures.

[0030] FIG. 1 illustrates a security test management sys-
tem arrangement 100 that serves as a test hub with interfaces
to testers’ computers and interfaces to target systems under
test. The test hub might itself be distributed. Data described
as being stored by the test hub might be stored in database
systems, data structures, file structures, etc., fully main-
tained by the test hub or in some cases stored under the
control of a target system, such as when it is convenient to
store test data about a target system with the target system.
In some embodiments, the test hub is a launch point com-
puter that handles all of the traffic between tester computers
and the target system, as well as arrangements with testers
such as a compensation system, chat system, and resource
providing system. The test hub might thus be used for
crowd-sourced web application vulnerability discovery, pro-
viding globally distributed network penetration testing, and
determining incentives for promoting the discovery of vul-
nerabilities. The testers might be computer professionals
with particular security skill sets.

[0031] As illustrated in FIG. 1, tester computers 102 (e.g.,
102(1), 102(2), . . ., 102(N)) interface with a security test
management system 104 (a test hub) so as to keep track of
the various testers who (or that, in the case of non-human
testers) are using security test management system 104 and
their activities in testing target systems 110 (e.g., 110(1),
110(2), . . ., 110(M)). The security test management system
104 interfaces with a vulnerability report evaluation system
106 to pass it vulnerability reports generated by the testers,
which are then stored in a vulnerability database 108.
[0032] In this illustration, there are multiple tester com-
puters 102. It may be that there is one tester computer 102

Oct. 19, 2017

per tester or testers share computers, but this detail is not
necessary for full understanding of the system shown. The
number of tester computers might be in the hundreds or
thousands when crowdsourcing is being done to solve
security problems. The number of target systems 110 under
test need not be precisely specified and may vary from time
to time.

[0033] A test session might comprise a sequence of inter-
actions between a tester computer 102 under the control of
a tester, such as a security researcher attempting to identify
vulnerabilities in a specific target system or test for robust-
ness, possibly in exchange for incentives offered to testers.
One such session is illustrated by the dashed line 112
representing a test session wherein a tester using tester
computer 102(2) is testing target system 110(2).

[0034] Because security test management system 104 is
the interface between tester computers and target systems,
security test management system 104 can monitor interac-
tions, obfuscate interactions (such as to keep details of the
target systems unknown to the testers for security of the
target system, so that testing is a fair test of security, or for
other reasons), and to facilitate replay of detected vulner-
abilities for compensation operations, remediation opera-
tions, or other operations. The interconnections illustrated in
FIG. 1 might be by network connections, such as Internet
connections, LAN connections or other methods or means of
electronically interacting.

[0035] In an embodiment, each tester computer 102 is
associated with one of a plurality of distributed testers of the
type previously described. Tester computers 102 may com-
prise desktop computers, workstations, laptop computers,
netbook computers, ultrabook computers, tablet computers
or smartphones. Tester computers 102 are coupled indirectly
to security test management system 104 by any combination
of one or more local area networks, wide area networks,
internetworks and the like, which may include the public
Internet.

[0036] Security test management system 104 may execute
a separate process for each target system under test. In an
embodiment, security test management system 104 acts as a
terminal that is configured for the purposes of providing
network connectivity and monitoring for communications
between tester computers 102 and target systems 110. In
addition to providing an interface to tester computers, the
logical position of security test management system 104
between the tester computers and the target systems pro-
vides secure routing of tester communications to target
systems and provides a predictable source IP address for the
manager of the target systems. This allows the manager of
the target system under test to limit access to certain
elements of the target system to testers, such as by adjust-
ment of firewalls and/or IPS/IDS devices.

[0037] Security test management system 104 may be
configured to provide a particular tester computer with
access to a particular target system only under specified
circumstances including after assessment, testing, assign-
ment of a project, or other operations. Thus, tester computers
102 typically cannot contact the target systems at will, but
instead, security test management system 104 facilitates
access, grants access or provides credentials. Testers typi-
cally cannot add vulnerabilities to vulnerability database 108
directly, so that vulnerability database 108 might be avail-
able for use by others on a read-only basis where those

US 2017/0300698 Al

others only see unique vulnerabilities, due to the action of
the vulnerability report evaluation system 106.

[0038] In an embodiment, data comprising a vulnerability
report is received in the same view or user interface facility
that is used to obtain data about projects, target computers
and target networks. In an embodiment, to report a prospec-
tive vulnerability, the tester enters a category value and
optionally a sub-category value for the vulnerability that
they are reporting. The category and sub-category values are
deemed proposed and are subject to validation by the service
provider. In some embodiments, reporting a prospective
vulnerability may comprise receiving data values in fields of
a submission form.

[0039] As an example, a submission form may comprise
data fields for Title, Description, Vulnerability Category
(perhaps as a drop-down menu selection), text to indicate
steps needed to reproduce the vulnerability, an indication of
the impact of the vulnerability, recommended fixes, and
perhaps a URL at which the vulnerability exists. The secu-
rity test management system 104 provides the vulnerability
reports to the vulnerability report evaluation system 106.
[0040] FIG. 2 is a flowchart of a vulnerability duplication
evaluation process. This process might be executed by the
vulnerability report evaluation system 106 each time a
vulnerability report is received or when multiple candidate
vulnerability reports are received. In step 201, a new vul-
nerability report is received. That report might be stored in
an input memory. In step 202, as explained in more detail
below, a candidate search record is generated from the
candidate vulnerability report and, at step 203, the search
record is submitted to the search engine. The search record
might be generated by a search record generator that oper-
ates as a preprocessor separate from the search engine. If the
search results come up empty (step 204), then the vulner-
ability report is added to the vulnerability database 108.
Optionally, a message is sent to the tester computer that
submitted the new vulnerability report (206) and the pro-
cessing of that new vulnerability report is complete.
[0041] If, at step 204, the search results are not empty, the
process determines (207) if the search results match the new
vulnerability report tightly or loosely (208). If they tightly
match, the process results in the new vulnerability report
being discarded (209), and a message is sent to the tester
computer that submitted the new vulnerability report indi-
cating that the new vulnerability report is a duplicate.
However, if the search results match the new vulnerability
report loosely, the match is presented or stored (210) for
manual review by a human reviewer, following which a
message might be sent to the tester computer and the process
completes.

[0042] FIG. 3 is a representation of a portion of a vulner-
ability database that might evaluated in the process of FIG.
2. As illustrated there, some reports might be duplicates
(such as vulnerabilities #3 and #4) but are not identical. As
explained above, it is often preferable that in an incentive-
based vulnerability reporting system, only the first unique
report be compensated.

[0043] FIG. 4 is a block diagram of a search-and-match
system that might be used to identify duplicates. As shown
there, instance of a search-and-match API instance 402 can
access the vulnerability database 108 and comprises a match
evaluator 404 and a search engine 406. The match evaluator
can access a dictionary database 408. The search-and-match
API instance 402 is accessible to a management interface

Oct. 19, 2017

410. In one example, management interface 410 is web-
based and API calls are via HTTP or other protocol. A client
system, such as a U/l computer browser 412 executes U/l
code 414 obtained from an HTTP server. That HI'TP server
can be the same system as the management interface 410 or
a distinct source. The U/I code 414 might interact with the
management interface 410 using JSONP. An operator can
interact with various systems using the U/l code 414 as
described elsewhere herein.

[0044] In a typical operation, the operator might instruct
the search-and-match API instance 402 to find instances of
loosely matched vulnerability records. Once the operator
indicates a selected candidate vulnerability record, a corre-
sponding search record is generated (or, if already generated,
is retrieved), and search engine 406 is run using that search
record as a search query to find other vulnerability records,
which the match evaluator 404 will assess and provide
match scores for viewing by the operator. In this manner,
identifying duplicates is converted to a search operation,
which can thus benefit from existing technology available
for performing searches over text and data corpuses. The
operator can then provide operator feedback as to whether a
viewed vulnerability report is a duplicate.

[0045] For the sake of operator efficiency, an intake man-
agement computer interface used by the operator to accept
and decline candidate vulnerability records might use vari-
ous thresholds. For example, if the search result is the empty
set or the search results are all below a lowered threshold
match tightness criteria, the candidate vulnerability report
might be accepted without operator review. If any of the
matching records in the search results is above a heightened
threshold match tightness criteria, the candidate vulnerabil-
ity report might be declined without operator review. The
thresholds might correspond to similarity score values cal-
culated as described herein.

[0046] FIG. 5 is a flowchart of a search process in greater
detail. This process might be run by the instance 402 or a
separate process on the same or a separate machine. In a first
step 501, the corpus is loaded or made accessible. This
corpus can be the corresponding search records for the
vulnerability records already deemed to be for unique vul-
nerabilities. At step 502, the search engine loads a search
request. At step 503, the dictionary database 408 is con-
structed or accessed. At step 504, the search is performed
and the search results are provided. The search results can be
provided with scores and sorted and presented in scored
order or other order.

[0047] A searchable corpus might be a vulnerability data-
base that simply stores corresponding search records
natively as the vulnerability reports. Alternatively, the vul-
nerability database might comprise distinct data structures
for storing vulnerability records and corresponding search
records. The search results might be provided via a JSONP-
compliant application programming interface, wherein the
vulnerability database comprises a file-system based data
structure and/or an in-memory data structure. The vulner-
ability database management system might be configured
with logic for dynamically configuration using a stored
plurality of configurable parameters to be used by the intake
management computer interface and the search engine.
[0048] The process and system for structuring a duplicate
vulnerability determination as a search engine process will
now be described in further detail. The search engine uses
term frequency and inverse document frequency in its

US 2017/0300698 Al

processing, treating each vulnerability record (and/or its
corresponding search record) as a document in the corpus.

[0049] A preprocessor can take as its input a candidate
vulnerability report and output a corresponding search
record that can be used by a search engine to query against
search records for corresponding vulnerability reports that
are already accepted into the vulnerability database. When a
candidate vulnerability record is being processed to create
its corresponding search record, one of the initial prepro-
cessing steps might be to tokenize it into unique terms.
Tokenizing might include weighting tokens and overlaying
synonyms so that multiple distinct words that are synonyms
are represented by the same token. Noise words might be
given very low weights.

[0050] Term Frequency (or “TF”) can be represented by
the number of times a term occurs within a given document.
TF quantifies the occurrence of each of those terms or tokens
within the set of documents of the corpus. TF can be defined
as shown in Equation 1, wherein t refers to a term, d refers
to a document, tf refers to term frequency, and f refers to a
raw term frequency of term t in document d.

0.5- f@t, D)
max{f(z, D)t € d}

Eqn. 1
F0.D) =05+ Ean- 1)

[0051] There could be a minimal bias towards longer
documents when searching for a given term. Therefore, in
Equation 1, the raw term frequency (f) is divided by the
maximum term frequency (max(f)) and appropriate con-
stants are added to minimize the longer document bias. To
understand the existence of such a bias and the need to
minimize it, consider that different terms can have different
amounts of occurrence in a document. Thus, if the document
is longer, then there is a likelihood that raw term frequency,
on average, would increase. Thus, the size of document
would impact raw term frequency. To mitigate such a bias,
a double normalization technique is introduced with a lead-
ing constant term of 0.5. This tends to factor out the impact
of document size on the raw term frequency, which would
make it more independent of document size.

[0052] Inverse Document Frequency (or “IDF”) can cor-
respond to the amount of information a term provides. In
particular, it can measure the commonness or rareness of a
term across all the documents. Equation 2 provides a rep-
resentation of IDF, wherein t refers to a term, d refers to a
document, D refers to the set of all documents d, idf refers
to inverse document frequency, and N refers to the number
of documents.

Eqn. 2
idf (i, D) =log Ean-2)

{d € D:t e d}]|

[0053] The value of idf{t,D) corresponds to the fraction of
the documents that contain the term t. In particular, this is the
total number of documents, N, divided by the number of
documents that contain the term t. As the number of terms
approach zero, the value of IDF approaches infinity. To
avoid this issue, a correction is applied wherein the new
denominator adds a constant 1.0 to the existing denominator.
The ratio of numerator and denominator is logarithmically

Oct. 19, 2017

scaled to ensure that smaller steps can describe larger shifts
in document-wide terms’ presences and terms’ absences are
significantly penalized.

[0054] A Ranking Function can be a function belonging to
the TF-IDF family of functions (i.e., a function resulting
from the product of TF and IDF metrics). This ranking
function can be used in computing a score that can be used
to rank a set of documents based on their match-closeness to
the input query. In our case, the input query corresponds to
the candidate vulnerability report. To account for the score’s
variability, normalization is used, which ensures that the
ranking score remains in the interval [0.0, 1.0]. A score
closer to one indicates that a tight match has been found,
while a score approaching zero signifies that an approximate
match (a loosely matched record) is available. These fami-
lies of TF-IDF based ranking functions are sometimes
known as Best Matching (or BM) functions. Their general-
ized mathematical description is given by Equation 3,
wherein Q is the set of queries, D is the set of documents,
q is the query 1, fis the term frequency, k, is a free parameter
that belongs to the interval [0.0, 2.0], b is a free parameter
that belongs to the interval [0.0, 1.0], D,,, is the average
length in the set of documents, 8 is a free parameter that is
equal to either 0.0 or 1.0, n is the number of queries, and IDF
is the inverse document frequency.

score(D, Q) = (Eqn. 3)
IDF(g;, D)- fa. D)-th +1) B +8
=1 f(q;,D)+k1-{1—b+b-(§vg]}
[0055] For different values of the various free parameters,

the search engine can operate differently, deriving a variety
of BM ranking functions. Example BM ranking functions
include those known as BM11 (for k,=1.5, b=1.0, and $=0),
BM15 (for k,=1.5, b=0.0, and &0), BM25 (for k,=1.5,
b=0.75, and 6=0), and BM25+(for k,=1.5, b=0.75, and &=1).
[0056] Dictionary construction might proceed using the
BuildDictionary() procedure set forth in Appendix A, Sec-
tion 1. This procedure might be executed by any suitable
processor referenced herein. The construction of dictionary
can use file storage and/or in-memory based records. Herein,
records and documents might be used in certain contexts
interchangeably. The time complexity for BuildDictionary(
) procedure is on the order of the size of the corpus.
[0057] The document-wide TF-IDF values might be gen-
erated using the GenerateDocTFIDF Values() procedure set
forth in Appendix A, Section 2. This procedure might be
executed by any suitable processor referenced herein. This
procedure is responsible for computing TF-IDF values for
each term over all the vulnerability records. Additionally, it
also helps compute useful metrics, such as the number of
records in the corpus and average record length over the
entire set of records stored. The time complexity for Gen-
erateDoc TFIDF Values() procedure is O(ICorpus|xIBagOf-
Wordsl).

[0058] The term-wide TF-IDF values might be generated
using the GenerateTerm TFIDF Values() procedure set forth
in Appendix A, Section 3. This procedure might be executed
by any suitable processor referenced herein. This procedure
computes TF-IDF values for each term within a record. In
particular, for each term, the TF-IDF score is a 2-tuple of the

US 2017/0300698 Al

form <Term,, TermTF,xTermIDF>. Consequently, the out-
put of this procedure is a list of such 2-tuples for each term
in a record. The time complexity for GenerateTermTFID-
FValue() procedure is O(IDocTFI).

[0059] The BM Ranking Function based scores might be
generated using the ComputeBMScore() procedure set forth
in Appendix A, Section 4. This procedure might be executed
by any suitable processor referenced herein. This procedure
computes similarity scores for the candidate vulnerability
record (the record being tested for whether it is a duplicate
or not) by comparing the search records of the candidate
vulnerability record with pre-stored vulnerability records in
the corpus. The aforementioned ranking function can be
used to help compute these scores. The output of this
procedure is a list of similarity scores. Each such score in
that list results from a comparison between the input new
vulnerability and pre-stored vulnerability record from the
corpus. This procedure can dynamically modify itself in
order to behave as any one of the BM11, BM15, BM25, or
BM25+ ranking functions. The time complexity for Com-
puteBMScore() procedure is O(IDocTFIxICom-
monTermsl).

[0060] FIG. 6 is a flowchart of a match and scoring
process in greater detail. At step 601, the candidate vulner-
ability is compared against each returned search result. At
step 602, the match score is computed for each pair, which
can then be displayed to the operator (603) or stored and
then further operator input (604) can be obtained.

[0061] The match selection might be done using the
FullyFormedClosestMatchSelector() procedure set forth in
Appendix A, Section 5. This procedure might be executed by
any suitable processor referenced herein. This procedure
generates the closest pre-stored vulnerability record from the
corpus for a given input vulnerability record. It also provides
the similarity score for the input vulnerability record. Fur-
thermore, it constructs and returns a sorted list of a pre-
defined number of most closely matching pre-stored vulner-
ability records from the corpus for a given input
vulnerability record. An entry in this list is a 2-tuple of type
<Score, , 1...k> where k is the pre-defined number
of most closely matches solicited. The time complexity for
FullyFormedClosestMatchSelector() procedure is O(ICor-
puslx|ScoreListl).

[0062] In some embodiments, the tokenized terms of a
search record are used for the search process and in other
embodiments, the search query includes attributes that may
or may not correspond to text of a vulnerability report.
Tokenizing a vulnerability report into a search record might
also include canonicalization, such as by treating similar
words with different endings as being the same attribute.
[0063] By utilizing the aforementioned procedures, the
system can provide a list of most closely matching vulner-
ability records, along with their similarity scores from the
pre-stored corpus for any given set of new vulnerability
reports.

[0064] In a specific example vulnerability report evalua-
tion system, the aforementioned processes and interfaces are
combined. The system can operate on a corpus of vulner-
abilities to determine if a vulnerability in question is actually
a duplicate of another vulnerability in the database. This can
automate, or partially automate, the process of vulnerability
de-duplication. In operation, testers submit vulnerabilities to
be added to the database. An operator mediates the vulner-
ability approval process by evaluating loosely matched

Oct. 19, 2017

vulnerabilities, whereas tightly matched duplicates can be
dismissed automatically. The vulnerabilities database might
be implemented as a PostgreSQL. or another standard SQL.-
based database server. Communication can be established
via a standard SQL driver protocol.

[0065] An interface server for use by the operator might be
an HTTP server that supports simple JSONP requests as set
forth in Appendix A, Section 6. The user interface allows the
operator to see the server status prior to initiating a search
operation, and might include a search box to enable search-
ing for specific vulnerability IDs, and the number of poten-
tial matches desired.

[0066] According to one embodiment, the techniques
described herein are implemented by one or generalized
computing systems programmed to perform the techniques
pursuant to program instructions in firmware, memory, other
storage, or a combination. Special-purpose computing
devices may be used, such as desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

[0067] For example, FIG. 7 is a block diagram that illus-
trates a computer system 700 upon which an embodiment of
the invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for
communicating information, and a hardware processor 704
coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general purpose
Mmicroprocessor.

[0068] Computer system 700 also includes a main
memory 706, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 702 for storing
information and instructions to be executed by processor
704. Main memory 706 also may be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
704. Such instructions, when stored in non-transitory storage
media accessible to processor 704, render computer system
700 into a special-purpose machine that is customized to
perform the operations specified in the instructions.

[0069] Computer system 700 further includes a read only
memory (ROM) 708 or other static storage device coupled
to bus 702 for storing static information and instructions for
processor 704. A storage device 710, such as a magnetic disk
or optical disk, is provided and coupled to bus 702 for
storing information and instructions.

[0070] Computer system 700 may be coupled via bus 702
to a display 712, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
714, including alphanumeric and other keys, is coupled to
bus 702 for communicating information and command
selections to processor 704. Another type of user input
device is cursor control 716, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 704 and for
controlling cursor movement on display 712. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0071] Computer system 700 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system causes
or programs computer system 700 to be a special-purpose

US 2017/0300698 Al

machine. According to one embodiment, the techniques
herein are performed by computer system 700 in response to
processor 704 executing one or more sequences of one or
more instructions contained in main memory 706. Such
instructions may be read into main memory 706 from
another storage medium, such as storage device 710. Execu-
tion of the sequences of instructions contained in main
memory 706 causes processor 704 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

[0072] The term “storage media” as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 710.
Volatile media includes dynamic memory, such as main
memory 706. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, an EPROM, a FLASH-EPROM, NVRAM,
any other memory chip or cartridge.

[0073] Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 702. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.

[0074] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to
processor 704 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid state
drive of a remote computer. The remote computer can load
the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 700 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an infra-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 702. Bus 702 carries the
data to main memory 706, from which processor 704
retrieves and executes the instructions. The instructions
received by main memory 706 may optionally be stored on
storage device 710 either before or after execution by
processor 704.

[0075] Computer system 700 also includes a communica-
tion interface 718 coupled to bus 702. Communication
interface 718 provides a two-way data communication cou-
pling to a network link 720 that is connected to a local
network 722. For example, communication interface 718
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
718 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 718 sends and receives

Oct. 19, 2017

electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.

[0076] Network link 720 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 720 may provide a connection
through local network 722 to a host computer 724 or to data
equipment operated by an Internet Service Provider (ISP)
726. ISP 726 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 728. Local
network 722 and Internet 728 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 720 and through communication interface 718,
which carry the digital data to and from computer system
700, are example forms of transmission media.

[0077] Computer system 700 can send messages and
receive data, including program code, through the network
(s), network link 720 and communication interface 718. In
the Internet example, a server 730 might transmit a
requested code for an application program through Internet
728, ISP 726, local network 722 and communication inter-
face 718. The received code may be executed by processor
704 as it is received, and/or stored in storage device 710, or
other non-volatile storage for later execution.

[0078] As described herein, a vulnerability report evalu-
ation system might comprise a preprocessor that takes as its
input a data record representing a vulnerability report and
outputs a search record. The vulnerability report evaluation
system further comprises a search engine and a searchable
corpus comprising records of vulnerabilities, wherein the
search engine is configured to use the outputted search
record to search the corpus. The vulnerability report evalu-
ation system can flag search result hits resulting from the
searched search record as an indication that the submitted
vulnerability report is a duplicate of an earlier vulnerability
report or as a flag to trigger manual review, while providing
efficient processing of vulnerability report data records.

[0079] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

[0080] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. Pro-
cesses described herein (or variations and/or combinations
thereof) may be performed under the control of one or more
computer systems configured with executable instructions
and may be implemented as code (e.g., executable instruc-
tions, one or more computer programs or one or more
applications) executing collectively on one or more proces-
sors, by hardware or combinations thereof. The code may be
stored on a computer-readable storage medium, for example,
in the form of'a computer program comprising a plurality of
instructions executable by one or more processors. The
computer-readable storage medium may be non-transitory.

US 2017/0300698 Al

[0081] The use of any and all examples, or exemplary
language (e.g., “such as™) provided herein, is intended
merely to better illuminate embodiments of the invention
and does not pose a limitation on the scope of the invention
unless otherwise claimed. No language in the specification
should be construed as indicating any non-claimed element
as essential to the practice of the invention.

[0082] Further embodiments can be envisioned to one of
ordinary skill in the art after reading this disclosure. In other
embodiments, combinations or sub-combinations of the
above-disclosed invention can be advantageously made. The
example arrangements of components are shown for pur-
poses of illustration and it should be understood that com-
binations, additions, re-arrangements, and the like are con-
templated in alternative embodiments of the present
invention. Thus, while the invention has been described with
respect to exemplary embodiments, one skilled in the art will
recognize that numerous modifications are possible.

[0083] For example, the processes described herein may
be implemented using hardware components, software com-
ponents, and/or any combination thereof. The specification
and drawings are, accordingly, to be regarded in an illus-
trative rather than a restrictive sense. It will, however, be
evident that various modifications and changes may be made
thereunto without departing from the broader spirit and
scope of the invention as set forth in the claims and that the
invention is intended to cover all modifications and equiva-
lents within the scope of the following claims.

[0084] All references, including publications, patent appli-
cations, and patents, cited herein are hereby incorporated by
reference to the same extent as if each reference were
individually and specifically indicated to be incorporated by
reference and were set forth in its entirety herein.

APPENDIX A

Source Code Examples

Section 1: BuildDictionary() Process
1. InputCorpus = EMPTY_LIST
2. for each record R in the current file or in-memory source:
2.1. InputCorpus.Append(R)
3. Dictionary. Add(InputCorpus)
Section 2: GenerateDocTFIDFValues() Process
1. TotalDocLen = 0
2. for each record R in the current file or in-memory source:
2.1. CurrDoc =R
2.2. TotalDocLen = TotalDocLen + Length(CurrDoc)
2.3. DocLength. Append(Length(CurrDoc))
24. BagOfWords = Dictionary(<Term;, (CurrFreq x

Length(CurrDoc))>)
2.5. for each Term; and TermFreq in BagOfWords.ItemList:
2.5.1. if Term; not in DocFreq:

1. DocFreq[Term;] = 0
2.6. DocFreq[Term;] = DocFreq[Term,] + 1
2.7. DocTermFreq.Append(BagOfWords)
2.8. NumOfDocs = NumOfDocs + 1
3. for each Term, in DocFreq:
3.1. DocIDF[Term,;] = Log (NumOfDocs — DocFreq[Term;] +
0.5) / (DocFreq[Term;] + 0.5)
4. DocAvgLen = TotalDocLen / NumOfDocs
Section 3: GenerateTermTFIDFValues() Process
1. TermTFIDFList = EMPTY_LIST
2. for each document D in DocTF:
2.1. DocTFIDF = <Term;, TermFreq x DocIDF[Term,]> for
each D
3. DocTFIDE.Sort()
4. TermTFIDFList. Append(DocTFIDF)
5. return TermTFIDFList

Oct. 19, 2017

APPENDIX A-continued

Source Code Examples

Section 4: ComputeBMScore() Process

1. ScoreList = EMPTY_LIST

2. InputQueryBagOfWords =
Dictionary.DocToBagOfWords(NewVulnRecord)

3. for each Doc;, CurrDoc in DocTF:

3.1. CommonTerms =
Set(Dictionary(InputQueryBagOfWords) .Keys()) &
Set(CurrDoc.Keys())

3.2. TmpScoreList = EMPTY_LIST

3.3. DocTermsLen = DocLen[Doc;]

3.4. for each Term, in CommonTerms:

3.4.1. ScoreFuncNum = (CurrDoc[Term;] x (k; + 1))

3.4.2. ScoreFuncDen = ((CurrDoc[Term,] + k; x (1 — b +
(b x DocTermsLen / DocAvglLen)))

3.4.3. if (Algldentifier == ALGO_ BM25P):

3.4.3.1. TmpScoreList. Append(DocIDF[Term;] x
((ScoreFuncNum / ScoreFuncDen) + 1))

3.44. else:

3.44.1. TmpScoreList. Append(DocIDF[Term,] x

((ScoreFuncNum / ScoreFuncDen))
3.5. ScoreList. Append(Sum(TmpScoreList))
4. return ScoreList
Section 5: FullyFormedClosestMatchSelector() Process
1. CurrLineNum = 1
2. FinalResult = EMPTY_LIST
3. StatusEqual = True
4. for each record R in the current file or in-memory source:
4.1. if (Algldentifier == ALGO_ BM11):
411. k =15b=10,6=00
4.2. elif (Algldentifier == ALGO_ BM15):
421. k=15b=00,6=00
4.3. elif (Algldentifier == ALGO_BM25):
431. k =150b=07506=00
4.4. else:
441. k =15b=07506=10
4.5. ScoreList = ComputeBMScore(InputVulnRecord,
Algldentifier, k;, b)
4.6. for each Score;, ScoreValue in ScoreList:
4.6.1. if (ScoreValue != 0):
4.6.1.1. StatusEqual = False
4.7. if (StatusEqual):
4.7.1. FinalResult = ®
4.7.2. return FinalResult
4.8. ScoreList.Sort()
4.9. for each Curr; in range(0, NumOfClosestMatches):
4.9.1. ComputeMaxMin(ScoreList)
4.9.2. if (MaxValue — MinValue) > 0.0):

4.9.2.1. DiffMaxMin = (MaxValue - MinValue)

4.9.2.2. FinalResult. Append((ScoreList[Curr;][0],
((ScoreList[Curr;][1] - MinValue) / DiffMaxMin)))

4.9.3. else:

4.9.3.1. DiffMaxMin = ((MaxValue - MinValue) + 1.0)

4.9.3.2. FinalResult. Append((ScoreList[Curr;][0],

((ScoreList[Curr;][1] — MinValue) + 1.0) /
DiffMaxMin)))
5. CurrLineNum = CurrLineNum + 1
5.1. return FinalResult
Section 6: HTTP Server That Supports Simple JSONP Requests
1. HTTP Request:
2. /twinseeker/api/v1.0/info?callback=[callback function]
3. HTTP Response:

4 {“msg”: “OK”, // Response message
5. “code”: 200, // Response code

6. “data”: { // Response data

7 status: “Ready”, // Server status

8 age: 13610.589457035065, // Age of dictionary
9. version: “0.0.1b”, // API version

10. max__id: 6553......// Highest vulnid in the database
11. 1

12. HTTP Request:

13. /twinseeker/api/v1.0/duplicates?callback=[callback
function]&max__matches=[Max number of matches to
return]&vulnid=[Query duplicates for vulnid]

14. HTTP Response:

15. {“msg”: “OK”, // Response message

US 2017/0300698 Al

APPENDIX A-continued

Source Code Examples

16. “code”: 200, // Response code
17. “data”: { // Response data
18. “queried”: 33, // Which vuln was
queried
19. “matches™: [{ // List of duplicates
20. “duplicate”: null, // Already marked
duplicate?
21. “score”: “0.454520”, // Match score
22. “listing”: 7060, // Match belongs
to listing
23. “codename”: “TARGETNAME”, // Name of target
24, “accepted”: true, // Was submission
accepted?
25. “id”: 63}], J// 1D of vulnerability
26. “dedup__ms”: 167, // Time spent in
algorithm
27. “db_ms™: 9 // Time spent in
Database SQL
28. 1

What is claimed is:

1. A vulnerability database management system for man-
aging data records representing vulnerability reports sub-
mitted by testers, the vulnerability database management
system comprising:

an input memory for storing a candidate vulnerability
report submitted by a tester;

a search record generator that generates a candidate
search record corresponding to the candidate vulner-
ability report;

a vulnerability database for storing vulnerability report
records and corresponding search records, wherein a
vulnerability report record in the vulnerability database
represents a previously accepted vulnerability report
and wherein a corresponding search record represents a
search record corresponding to the previously accepted
vulnerability report;

a search engine configured to receive the candidate search
record and use the candidate search record as a search
query against the corresponding search records stored
in the vulnerability database, resulting in search results
based on the candidate search record; and

an intake management computer interface that, when a
match between the candidate search record and the
search results is below a threshold match tightness
criteria, presents the search results to an operator and
obtains operator feedback at least as to whether to
accept the candidate vulnerability report into the vul-
nerability database.

2. The vulnerability database management system of
claim 1, wherein the intake management computer interface
is further configured to designate the candidate vulnerability
report as a duplicate vulnerability report when the match
between the candidate search record and the search results is
above the threshold match tightness criteria.

3. The vulnerability database management system of
claim 1, wherein the intake management computer is further
configured to decline to accept the candidate vulnerability
report into the vulnerability database without requiring
operator feedback when the match between the candidate
search record and the search results is above a heightened
threshold match tightness criteria.

Oct. 19, 2017

4. The vulnerability database management system of
claim 1, wherein the intake management computer is further
configured to accept the candidate vulnerability report into
the vulnerability database without requiring operator feed-
back when the match between the candidate search record
and the search results is below a lowered threshold match
tightness criteria.

5. The vulnerability database management system of
claim 1, wherein the intake management computer is further
configured to accept the candidate vulnerability report into
the vulnerability database without requiring operator feed-
back when the search results returned by the search engine
is an empty set.

6. The vulnerability database management system of
claim 1, wherein the search results are sorted according to
similarity score values and the threshold match tightness
criteria comprises a threshold similarity score value.

7. The vulnerability database management system of
claim 6, wherein the search engine is configured to use a
hierarchical feeder network to provide meta-scoring for
generating the similarity score values.

8. The vulnerability database management system of
claim 1, wherein the corresponding search records are
natively the vulnerability reports stored in the vulnerability
database.

9. The vulnerability database management system of
claim 1, wherein the vulnerability database comprises a first
data structure for vulnerability records and a second data
structure, distinct from the first data structure, for the
corresponding search records.

10. The vulnerability database management system of
claim 1, wherein the corresponding search record is a
tokenized version of its corresponding vulnerability report.

11. The vulnerability database management system of
claim 10, wherein the tokenized version of the correspond-
ing vulnerability report includes token weights, wherein
words on a noise words list are given lower weights than
words not on the noise words list.

12. The vulnerability database management system of
claim 10, wherein the tokenized version of the correspond-
ing vulnerability report has representations of tokens and at
least one representation of a token represents multiple
distinct words that are synonyms of each other.

13. The vulnerability database management system of
claim 1, wherein the search results are provided via a
JSONP-compliant application programming interface.

14. The vulnerability database management system of
claim 1, wherein the vulnerability database comprises a
file-system based data structure.

15. The vulnerability database management system of
claim 1, wherein the vulnerability database comprises an
in-memory data structure.

16. The vulnerability database management system of
claim 1, wherein the search engine is configured to use a
hierarchical feeder network to provide meta-scoring for
generating similarity score values.

17. The vulnerability database management system of
claim 1, further comprising logic for dynamically configu-
ration using a stored plurality of configurable parameters to
be used by the intake management computer interface and
the search engine.

