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1
ROUTING ONLINE APPLICATION TRAFFIC
BASED ON PATH FATE SHARING METRICS

TECHNICAL FIELD

The present disclosure relates generally to computer net-
works, and, more particularly, to routing online application
traffic based on path fate sharing metrics.

BACKGROUND

Software-defined wide area networks (SD-WANSs) repre-
sent the application of software-defined networking (SDN)
principles to WAN connections, such as connections to
cellular networks, the Internet, and Multiprotocol Label
Switching (MPLS) networks. The power of SD-WAN is the
ability to provide consistent service level agreement (SLA)
for important application traffic transparently across various
underlying tunnels of varying transport quality and allow for
seamless tunnel selection based on tunnel performance
characteristics that can match application SLAs and satisfy
the quality of service (QoS) requirements of the traffic (e.g.,
in terms of delay, jitter, packet loss, etc.).

Unfortunately, SD-WAN deployments are complex net-
works that are rarely understood in their entirety, making
path fate sharing intractable. Manual policy routing may be
applied so as to select a series of service providers that have
a lower risk of fate sharing. However, an approach is also
extremely random in its results, unreliable, and, in many
cases, simply not practical.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIGS. 1A-1B illustrate an example communication net-
work;

FIG. 2 illustrates an example network device/node;

FIGS. 3A-3B illustrate example network deployments;

FIGS. 4A-4B illustrate example software defined network
(SDN) implementations;

FIG. 5 illustrates an example architecture for assessing
fate sharing among network paths;

FIG. 6 illustrates an example plot of path metrics indi-
cating fate sharing;

FIG. 7 illustrates an example correlation matrix showing
fate sharing paths; and

FIG. 8 illustrates an example simplified procedure for
routing online application traffic based on fate sharing
metrics.

DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

According to one or more embodiments of the disclosure,
a device identifies a plurality of paths between a pair of
network addresses, wherein one of the pair of network
addresses is associated with an online application. The
device obtains telemetry data from the plurality of paths for
the online application. The device computes, based on the
telemetry data, fate sharing metrics for the plurality of paths.
The device controls routing of application traffic between
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the pair of network addresses, based on the fate sharing
metrics for the plurality of paths.

DESCRIPTION

A computer network is a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types of networks are available, with
the types ranging from local area networks (LANs) to wide
area networks (WANSs). LANs typically connect the nodes
over dedicated private communications links located in the
same general physical location, such as a building or cam-
pus. WANSs, on the other hand, typically connect geographi-
cally dispersed nodes over long-distance communications
links, such as common carrier telephone lines, optical light-
paths, synchronous optical networks (SONET), or synchro-
nous digital hierarchy (SDH) links, or Powerline Commu-
nications (PLC) such as IEEE 61334, IEEE P1901.2, and
others. The Internet is an example of a WAN that connects
disparate networks throughout the world, providing global
communication between nodes on various networks. The
nodes typically communicate over the network by exchang-
ing discrete frames or packets of data according to pre-
defined protocols, such as the Transmission Control Proto-
col/Internet Protocol (TCP/IP). In this context, a protocol
consists of a set of rules defining how the nodes interact with
each other. Computer networks may be further intercon-
nected by an intermediate network node, such as a router, to
extend the effective “size” of each network.

Smart object networks, such as sensor networks, in par-
ticular, are a specific type of network having spatially
distributed autonomous devices such as sensors, actuators,
etc., that cooperatively monitor physical or environmental
conditions at different locations, such as, e.g., energy/power
consumption, resource consumption (e.g., water/gas/etc. for
advanced metering infrastructure or “AMI” applications)
temperature, pressure, vibration, sound, radiation, motion,
pollutants, etc. Other types of smart objects include actua-
tors, e.g., responsible for turning on/off an engine or perform
any other actions. Sensor networks, a type of smart object
network, are typically shared-media networks, such as wire-
less or PLC networks. That is, in addition to one or more
sensors, each sensor device (node) in a sensor network may
generally be equipped with a radio transceiver or other
communication port such as PL.C, a microcontroller, and an
energy source, such as a battery. Often, smart object net-
works are considered field area networks (FANs), neighbor-
hood area networks (NANSs), personal area networks
(PANS), etc. Generally, size and cost constraints on smart
object nodes (e.g., sensors) result in corresponding con-
straints on resources such as energy, memory, computational
speed and bandwidth.

FIG. 1A is a schematic block diagram of an example
computer network 100 illustratively comprising nodes/de-
vices, such as a plurality of routers/devices interconnected
by links or networks, as shown. For example, customer edge
(CE) routers 110 may be interconnected with provider edge
(PE) routers 120 (e.g., PE-1, PE-2, and PE-3) in order to
communicate across a core network, such as an illustrative
network backbone 130. For example, routers 110, 120 may
be interconnected by the public Internet, a multiprotocol
label switching (MPLS) virtual private network (VPN), or
the like. Data packets 140 (e.g., traffic/messages) may be
exchanged among the nodes/devices of the computer net-
work 100 over links using predefined network communica-
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tion protocols such as the Transmission Control Protocol/
Internet Protocol (TCP/IP), User Datagram Protocol (UDP),
Asynchronous Transfer Mode (ATM) protocol, Frame Relay
protocol, or any other suitable protocol. Those skilled in the
art will understand that any number of nodes, devices, links,
etc. may be used in the computer network, and that the view
shown herein is for simplicity.

In some implementations, a router or a set of routers may
be connected to a private network (e.g., dedicated leased
lines, an optical network, etc.) or a virtual private network
(VPN), such as an MPLS VPN thanks to a carrier network,
via one or more links exhibiting very different network and
service level agreement characteristics. For the sake of
illustration, a given customer site may fall under any of the
following categories:

1.) Site Type A: a site connected to the network (e.g., via

a private or VPN link) using a single CE router and a
single link, with potentially a backup link (e.g., a
3G/4G/5G/LTE backup connection). For example, a
particular CE router 110 shown in network 100 may
support a given customer site, potentially also with a
backup link, such as a wireless connection.

2.) Site Type B: a site connected to the network by the CE
router via two primary links (e.g., from different Ser-
vice Providers), with potentially a backup link (e.g., a
3G/4G/5G/LTE connection). A site of type B may itself
be of different types:

2a.) Site Type B1: a site connected to the network using
two MPLS VPN links (e.g., from different Service
Providers), with potentially a backup link (e.g., a
3G/4G/5G/LTE connection).

2b.) Site Type B2: a site connected to the network using
one MPLS VPN link and one link connected to the
public Internet, with potentially a backup link (e.g., a
3G/4G/5G/LTE connection). For example, a particular
customer site may be connected to network 100 via
PE-3 and via a separate Internet connection, potentially
also with a wireless backup link.

2c.) Site Type B3: a site connected to the network using
two links connected to the public Internet, with poten-
tially a backup link (e.g., a 3G/4G/5G/LTE connec-
tion).

Notably, MPLS VPN links are usually tied to a committed
service level agreement, whereas Internet links may either
have no service level agreement at all or a loose service level
agreement (e.g., a “Gold Package” Internet service connec-
tion that guarantees a certain level of performance to a
customer site).

3.) Site Type C: a site of type B (e.g., types B1, B2 or B3)
but with more than one CE router (e.g., a first CE router
connected to one link while a second CE router is
connected to the other link), and potentially a backup
link (e.g., a wireless 3G/4G/5G/LTE backup link). For
example, a particular customer site may include a first
CE router 110 connected to PE-2 and a second CE
router 110 connected to PE-3.

FIG. 1B illustrates an example of network 100 in greater
detail, according to various embodiments. As shown, net-
work backbone 130 may provide connectivity between
devices located in different geographical areas and/or dif-
ferent types of local networks. For example, network 100
may comprise local/branch networks 160, 162 that include
devices/nodes 10-16 and devices/nodes 18-20, respectively,
as well as a data center/cloud environment 150 that includes
servers 152-154. Notably, local networks 160-162 and data
center/cloud environment 150 may be located in different
geographic locations.
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Servers 152-154 may include, in various embodiments, a
network management server (NMS), a dynamic host con-
figuration protocol (DHCP) server, a constrained application
protocol (CoAP) server, an outage management system
(OMS), an application policy infrastructure controller
(APIC), an application server, etc. As would be appreciated,
network 100 may include any number of local networks,
data centers, cloud environments, devices/nodes, servers,
etc.

In some embodiments, the techniques herein may be
applied to other network topologies and configurations. For
example, the techniques herein may be applied to peering
points with high-speed links, data centers, etc.

According to various embodiments, a software-defined
WAN (SD-WAN) may be used in network 100 to connect
local network 160, local network 162, and data center/cloud
environment 150. In general, an SD-WAN uses a software
defined networking (SDN)-based approach to instantiate
tunnels on top of the physical network and control routing
decisions, accordingly. For example, as noted above, one
tunnel may connect router CE-2 at the edge of local network
160 to router CE-1 at the edge of data center/cloud envi-
ronment 150 over an MPLS or Internet-based service pro-
vider network in backbone 130. Similarly, a second tunnel
may also connect these routers over a 4G/5G/LTE cellular
service provider network. SD-WAN techniques allow the
WAN functions to be virtualized, essentially forming a
virtual connection between local network 160 and data
center/cloud environment 150 on top of the various under-
lying connections. Another feature of SD-WAN is central-
ized management by a supervisory service that can monitor
and adjust the various connections, as needed.

FIG. 2 is a schematic block diagram of an example
node/device 200 (e.g., an apparatus) that may be used with
one or more embodiments described herein, e.g., as any of
the computing devices shown in FIGS. 1A-1B, particularly
the PE routers 120, CE routers 110, nodes/device 10-20,
servers 152-154 (e.g., a network controller/supervisory ser-
vice located in a data center, etc.), any other computing
device that supports the operations of network 100 (e.g.,
switches, etc.), or any of the other devices referenced below.
The device 200 may also be any other suitable type of device
depending upon the type of network architecture in place,
such as IoT nodes, etc. Device 200 comprises one or more
network interfaces 210, one or more processors 220, and a
memory 240 interconnected by a system bus 250, and is
powered by a power supply 260.

The network interfaces 210 include the mechanical, elec-
trical, and signaling circuitry for communicating data over
physical links coupled to the network 100. The network
interfaces may be configured to transmit and/or receive data
using a variety of different communication protocols. Nota-
bly, a physical network interface 210 may also be used to
implement one or more virtual network interfaces, such as
for virtual private network (VPN) access, known to those
skilled in the art.

The memory 240 comprises a plurality of storage loca-
tions that are addressable by the processor(s) 220 and the
network interfaces 210 for storing software programs and
data structures associated with the embodiments described
herein. The processor 220 may comprise necessary elements
or logic adapted to execute the software programs and
manipulate the data structures 245. An operating system 242
(e.g., the Internetworking Operating System, or IOS®, of
Cisco Systems, Inc., another operating system, etc.), por-
tions of which are typically resident in memory 240 and
executed by the processor(s), functionally organizes the
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node by, inter alia, invoking network operations in support
of software processors and/or services executing on the
device. These software processors and/or services may com-
prise a predictive routing process 248 and/or a fate sharing
detection process 249, as described herein, any of which
may alternatively be located within individual network
interfaces.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
instructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, it is
expressly contemplated that various processes may be
embodied as modules configured to operate in accordance
with the techniques herein (e.g., according to the function-
ality of a similar process). Further, while processes may be
shown and/or described separately, those skilled in the art
will appreciate that processes may be routines or modules
within other processes.

In general, predictive routing process 248 and/or fate
sharing detection process 249 include computer executable
instructions executed by the processor 220 to perform rout-
ing functions in conjunction with one or more routing
protocols. These functions may, on capable devices, be
configured to manage a routing/forwarding table (a data
structure 245) containing, e.g., data used to make routing/
forwarding decisions. In various cases, connectivity may be
discovered and known, prior to computing routes to any
destination in the network, e.g., link state routing such as
Open Shortest Path First (OSPF), or Intermediate-System-
to-Intermediate-System (ISIS), or Optimized Link State
Routing (OLSR). For instance, paths may be computed
using a shortest path first (SPF) or constrained shortest path
first (CSPF) approach. Conversely, neighbors may first be
discovered (e.g., a priori knowledge of network topology is
not known) and, in response to a needed route to a destina-
tion, send a route request into the network to determine
which neighboring node may be used to reach the desired
destination. Example protocols that take this approach
include Ad-hoc On-demand Distance Vector (AODV),
Dynamic Source Routing (DSR), DYnamic MANET On-
demand Routing (DYMO), etc.

In various embodiments, as detailed further below, pre-
dictive routing process 248 and/or fate sharing detection
process 249 may include computer executable instructions
that, when executed by processor(s) 220, cause device 200
to perform the techniques described herein. To do so, in
some embodiments, predictive routing process 248 and/or
fate sharing detection process 249 may utilize machine
learning. In general, machine learning is concerned with the
design and the development of techniques that take as input
empirical data (such as network statistics and performance
indicators), and recognize complex patterns in these data.
One very common pattern among machine learning tech-
niques is the use of an underlying model M, whose param-
eters are optimized for minimizing the cost function asso-
ciated to M, given the input data. For instance, in the context
of classification, the model M may be a straight line that
separates the data into two classes (e.g., labels) such that
M=a*x+b*y+c and the cost function would be the number of
misclassified points. The learning process then operates by
adjusting the parameters a,b,c such that the number of
misclassified points is minimal. After this optimization
phase (or learning phase), the model M can be used very
easily to classify new data points. Often, M is a statistical
model, and the cost function is inversely proportional to the
likelihood of M, given the input data.
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In various embodiments, predictive routing process 248
and/or fate sharing detection process 249 may employ one or
more supervised, unsupervised, or semi-supervised machine
learning models. Generally, supervised learning entails the
use of a training set of data, as noted above, that is used to
train the model to apply labels to the input data. For
example, the training data may include sample telemetry
that has been labeled as being indicative of an acceptable
performance or unacceptable performance. On the other end
of the spectrum are unsupervised techniques that do not
require a training set of labels. Notably, while a supervised
learning model may look for previously seen patterns that
have been labeled as such, an unsupervised model may
instead look to whether there are sudden changes or patterns
in the behavior of the metrics. Semi-supervised learning
models take a middle ground approach that uses a greatly
reduced set of labeled training data.

Example machine learning techniques that predictive
routing process 248 and/or fate sharing detection process
249 can employ may include, but are not limited to, nearest
neighbor (NN) techniques (e.g., k-NN models, replicator
NN models, etc.), statistical techniques (e.g., B ayesian
networks, etc.), clustering techniques (e.g., k-means, mean-
shift, etc.), neural networks (e.g., reservoir networks, artifi-
cial neural networks, etc.), support vector machines (SVMs),
logistic or other regression, Markov models or chains,
principal component analysis (PCA) (e.g., for linear mod-
els), singular value decomposition (SVD), multi-layer per-
ceptron (MLP) artificial neural networks (ANNs) (e.g., for
non-linear models), replicating reservoir networks (e.g., for
non-linear models, typically for timeseries), random forest
classification, or the like.

The performance of a machine learning model can be
evaluated in a number of ways based on the number of true
positives, false positives, true negatives, and/or false nega-
tives of the model. For example, consider the case of a
model that predicts whether the QoS of a path will satisfy the
service level agreement (SLA) of the traffic on that path. In
such a case, the false positives of the model may refer to the
number of times the model incorrectly predicted that the
QoS of a particular network path will not satisfy the SLA of
the traffic on that path. Conversely, the false negatives of the
model may refer to the number of times the model incor-
rectly predicted that the QoS of the path would be accept-
able. True negatives and positives may refer to the number
of times the model correctly predicted acceptable path
performance or an SLA violation, respectively. Related to
these measurements are the concepts of recall and precision.
Generally, recall refers to the ratio of true positives to the
sum of true positives and false negatives, which quantifies
the sensitivity of the model. Similarly, precision refers to the
ratio of true positives the sum of true and false positives.

As noted above, in software defined WANs (SD-WANS),
traffic between individual sites are sent over tunnels. The
tunnels are configured to use different switching fabrics,
such as MPLS, Internet, 4G or 5G, etc. Often, the different
switching fabrics provide different QoS at varied costs. For
example, an MPLS fabric typically provides high QoS when
compared to the Internet, but is also more expensive than
traditional Internet. Some applications requiring high QoS
(e.g., video conferencing, voice calls, etc.) are traditionally
sent over the more costly fabrics (e.g., MPLS), while
applications not needing strong guarantees are sent over
cheaper fabrics, such as the Internet.

Traditionally, network policies map individual applica-
tions to Service Level Agreements (SLAs), which define the
satisfactory performance metric(s) for an application, such



US 12,010,017 B2

7

as loss, latency, or jitter. Similarly, a tunnel is also mapped
to the type of SLA that is satisfies, based on the switching
fabric that it uses. During runtime, the SD-WAN edge router
then maps the application traffic to an appropriate tunnel.
Currently, the mapping of SLLAs between applications and
tunnels is performed manually by an expert, based on their
experiences and/or reports on the prior performances of the
applications and tunnels.

The emergence of infrastructure as a service (IaaS) and
software-as-a-service (SaaS) is having a dramatic impact of
the overall Internet due to the extreme virtualization of
services and shift of traffic load in many large enterprises.
Consequently, a branch office or a campus can trigger
massive loads on the network.

FIGS. 3A-3B illustrate example network deployments
300, 310, respectively. As shown, a router 110 located at the
edge of a remote site 302 may provide connectivity between
a local area network (LAN) of the remote site 302 and one
or more cloud-based, SaaS providers 308. For example, in
the case of an SD-WAN, router 110 may provide connec-
tivity to SaaS provider(s) 308 via tunnels across any number
of networks 306. This allows clients located in the LAN of
remote site 302 to access cloud applications (e.g., Office
365™ Dropbox™, etc.) served by SaaS provider(s) 308.

As would be appreciated, SD-WANs allow for the use of
a variety of different pathways between an edge device and
an SaaS provider. For example, as shown in example net-
work deployment 300 in FIG. 3A, router 110 may utilize two
Direct Internet Access (DIA) connections to connect with
SaaS provider(s) 308. More specifically, a first interface of
router 110 (e.g., a network interface 210, described previ-
ously), Int 1, may establish a first communication path (e.g.,
a tunnel) with SaaS provider(s) 308 via a first Internet
Service Provider (ISP) 306qa, denoted ISP 1 in FIG. 3A.
Likewise, a second interface of router 110, Int 2, may
establish a backhaul path with SaaS provider(s) 308 via a
second ISP 3065, denoted ISP 2 in FIG. 3A.

FIG. 3B illustrates another example network deployment
310 in which Int 1 of router 110 at the edge of remote site
302 establishes a first path to SaaS provider(s) 308 via ISP
1 and Int 2 establishes a second path to SaaS provider(s) 308
via a second ISP 3065. In contrast to the example in FIG. 3A,
Int 3 of router 110 may establish a third path to SaaS
provider(s) 308 via a private corporate network 306¢ (e.g.,
an MPLS network) to a private data center or regional hub
304 which, in turn, provides connectivity to SaaS
provider(s) 308 via another network, such as a third ISP
306d.

Regardless of the specific connectivity configuration for
the network, a variety of access technologies may be used
(e.g., ADSL, 4G, 5G, etc.) in all cases, as well as various
networking technologies (e.g., public Internet, MPLS (with
or without strict SLA), etc.) to connect the LAN of remote
site 302 to SaaS provider(s) 308. Other deployments sce-
narios are also possible, such as using Colo, accessing SaaS
provider(s) 308 via Zscaler or Umbrella services, and the
like.

FIG. 4A illustrates an example SDN implementation 400,
according to various embodiments. As shown, there may be
a LAN core 402 at a particular location, such as remote site
302 shown previously in FIGS. 3A-3B. Connected to LAN
core 402 may be one or more routers that form an SD-WAN
service point 406 which provides connectivity between LAN
core 402 and SD-WAN fabric 404. For instance, SD-WAN
service point 406 may comprise routers 110a-1105.

Overseeing the operations of routers 110a-1105 in SD-
WAN service point 406 and SD-WAN fabric 404 may be an
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SDN controller 408. In general, SDN controller 408 may
comprise one or more devices (e.g., a device 200) configured
to provide a supervisory service, typically hosted in the
cloud, to SD-WAN service point 406 and SD-WAN fabric
404. For instance, SDN controller 408 may be responsible
for monitoring the operations thereof, promulgating policies
(e.g., security policies, etc.), installing or adjusting IPsec
routes/tunnels between LAN core 402 and remote destina-
tions such as regional hub 304 and/or SaaS provider(s) 308
in FIGS. 3A-3B and the like.

As noted above, a primary networking goal may be to
design and optimize the network to satisfy the requirements
of the applications that it supports. So far, though, the two
worlds of “applications” and “networking” have been fairly
siloed. More specifically, the network is usually designed in
order to provide the best SLA in terms of performance and
reliability, often supporting a variety of Class of Service
(CoS), but unfortunately without a deep understanding of
the actual application requirements. On the application side,
the networking requirements are often poorly understood
even for very common applications such as voice and video
for which a variety of metrics have been developed over the
past two decades, with the hope of accurately representing
the Quality of Experience (QoE) from the standpoint of the
users of the application.

More and more applications are moving to the cloud and
many do so by leveraging an SaaS model. Consequently, the
number of applications that became network-centric has
grown approximately exponentially with the raise of SaaS
applications, such as Office 365, ServiceNow, SAP, voice,
and video, to mention a few. All of these applications rely
heavily on private networks and the Internet, bringing their
own level of dynamicity with adaptive and fast changing
workloads. On the network side, SD-WAN provides a high
degree of flexibility allowing for efficient configuration
management using SDN controllers with the ability to
benefit from a plethora of transport access (e.g., MPLS,
Internet with supporting multiple CoS, LTE, satellite links,
etc.), multiple classes of service and policies to reach private
and public networks via multi-cloud SaaS.

Furthermore, the level of dynamicity observed in today’s
network has never been so high. Millions of paths across
thousands of Service Provides (SPs) and a number of SaaS
applications have shown that the overall QoS(s) of the
network in terms of delay, packet loss, jitter, etc. drastically
vary with the region, SP, access type, as well as over time
with high granularity. The immediate consequence is that the
environment is highly dynamic due to:

New in-house applications being deployed;

New SaaS applications being deployed everywhere in the
network, hosted by a number of different cloud pro-
viders;

Internet, MPLS, LTE transports providing highly varying
performance characteristics, across time and regions;

SaaS applications themselves being highly dynamic: it is
common to see new servers deployed in the network.
DNS resolution allows the network for being informed
of a new server deployed in the network leading to a
new destination and a potentially shift of traffic towards
a new destination without being even noticed.

According to various embodiments, application aware
routing usually refers to the ability to rout traffic so as to
satisfy the requirements of the application, as opposed to
exclusively relying on the (constrained) shortest path to
reach a destination IP address. Various attempts have been
made to extend the notion of routing, CSPF, link state
routing protocols (ISIS, OSPF, etc.) using various metrics
(e.g., Multi-topology Routing) where each metric would
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reflect a different path attribute (e.g., delay, loss, latency,
etc.), but each time with a static metric. At best, current
approaches rely on SLLA templates specifying the application
requirements so as for a given path (e.g., a tunnel) to be
“eligible” to carry traffic for the application. In turn, appli-
cation SLAs are checked using regular probing. Other
solutions compute a metric reflecting a particular network
characteristic (e.g., delay, throughput, etc.) and then select-
ing the supposed ‘best path,” according to the metric.

The term ‘SLA failure’ refers to a situation in which the
SLA for a given application, often expressed as a function of
delay, loss, or jitter, is not satisfied by the current network
path for the traffic of a given application. This leads to poor
QoE from the standpoint of the users of the application.
Modern SaaS solutions like Viptela, CloudonRamp SaaS,
and the like, allow for the computation of per application
QoE by sending HyperText Transfer Protocol (HTTP)
probes along various paths from a branch office and then
route the application’s traffic along a path having the best
QoE for the application. At a first sight, such an approach
may solve many problems. Unfortunately, though, there are
several shortcomings to this approach:

The SLA for the application is ‘guessed,” using static

thresholds.

Routing is still entirely reactive: decisions are made using
probes that reflect the status of a path at a given time,
in contrast with the notion of an informed decision.

SLA failures are very common in the Internet and a good
proportion of them could be avoided (e.g., using an
alternate path), if predicted in advance.

In various embodiments, the techniques herein allow for

a predictive application aware routing engine to be
deployed, such as in the cloud, to control routing decisions
in a network. For instance, the predictive application aware
routing engine may be implemented as part of an SDN
controller (e.g., SDN controller 408) or other supervisory
service, or may operate in conjunction therewith. For
instance, FIG. 4B illustrates an example 410 in which SDN
controller 408 includes a predictive application aware rout-
ing engine 412 (e.g., through execution of predictive routing
process 248). Further embodiments provide for predictive
application aware routing engine 412 to be hosted on a
router 110 or at any other location in the network.

During execution, predictive application aware routing
engine 412 makes use of a high volume of network and
application telemetry (e.g., from routers 110a-1105, SD-
WAN fabric 404, etc.) so as to compute statistical and/or
machine learning models to control the network with the
objective of optimizing the application experience and
reducing potential down times. To that end, predictive
application aware routing engine 412 may compute a variety
of models to understand application requirements, and pre-
dictably route traffic over private networks and/or the Inter-
net, thus optimizing the application experience while dras-
tically reducing SLA failures and downtimes.

In other words, predictive application aware routing
engine 412 may first predict SLA violations in the network
that could affect the QoE of an application (e.g., due to
spikes of packet loss or delay, sudden decreases in band-
width, etc.). In other words, predictive application aware
routing engine 412 may use SLA violations as a proxy for
actual QoE information (e.g., ratings by users of an online
application regarding their perception of the application),
unless such QoF information is available from the provider
of the online application (e.g., via an API, etc.). In turn,
predictive application aware routing engine 412 may then
implement a corrective measure, such as rerouting the traffic
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of the application, prior to the predicted SLA violation. For
instance, in the case of video applications, it now becomes
possible to maximize throughput at any given time, which is
of utmost importance to maximize the QoE of the video
application. Optimized throughput can then be used as a
service triggering the routing decision for specific applica-
tion requiting highest throughput, in one embodiment. In
general, routing configuration changes are also referred to
herein as routing “patches,” which are typically temporary in
nature (e.g., active for a specified period of time) and may
also be application-specific (e.g., for traffic of one or more
specified applications).

As would be appreciated, identifying fate sharing condi-
tions among network paths can help to aid in ensuring
acceptable application experience for an online application.
However, doing so is becoming increasingly challenging for
network administrators as critical applications move to
public cloud environments or are delivered in a SaaS model
causing the network perimeter to expand.

Traditionally, many protection mechanisms such as opti-
cal 1:1 and 1+1 heavily rely on the ability to find diverse
paths so that a single failure cannot impact both the primary
and the secondary path at the same time. MPLS Traffic
Engineering path protection made use of similar approach,
either by using a 2-step approach or simultaneous compu-
tation of diverse path. Indeed, the 2-step approach would
lead to many situations where no solution can be found
although a solution exists especially in presence of band-
width constraint).

The most common solution to fate sharing has been to
carry out a link (e.g., IP) attribute so as to reflect the
underlying topology. For example, Shared Link Risk Group
(SRLG) is a link attribute manually set by a user to reflect
lower layer topology. Two links sharing the same SRLG are
thus sharing a common resource (e.g., lambda) whose fail-
ure would simultaneously impact both links. This allows for
protection mechanisms to improve the degree of diversity by
avoiding SRLG (usually at extra-cost). More advanced
options have been made to signal via UNI such as SRLG.
For IGP, probes have been captured so as to perform
correlation of events reflecting simultaneous failures thus
revealing some level of fate sharing.

For paths crossing the Internet, such as over an SD-WAN,
fate sharing among paths becomes intractable. To address
this, manual policies are sometimes defined, to utilize ser-
vice providers that have a lower risk of exhibiting fate
sharing. However, this approach is also extremely random in
its results, is often unreliable, and, in many cases, not even
feasible.

Routing Online Application Traffic Based on Fate
Sharing Metrics

The techniques introduced herein allow for the dynamic
computation of fate sharing metrics across different network
paths, to control routing decisions for application traffic. In
some aspects, the techniques herein allow a network admin-
istrator to simply specify a pair of nodes/addresses or set of
application(s) of interest. For each node/application of inter-
est, several metrics may be retrieved reflecting the traffic
experience along such paths and used to determine their
degree of fate sharing. In further aspects, on detecting a
sufficiently high degree of fate sharing among paths, reme-
diation actions can be taken, such as by informing the
network administrator or employing a closed-loop control
mechanism, to adapt the routing of the application traffic.
For instance, in some aspects, the application traffic could be
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load balanced using paths with low fate sharing. Doing so
helps to reduce the impact of any single failure on the
application experience, while allowing for a tradeoff to be
made between the degree of path diversity and overall
application performance.

Tlustratively, the techniques described herein may be
performed by hardware, software, and/or firmware, such as
in accordance with fate sharing detection process 249, which
may include computer executable instructions executed by
the processor 220 (or independent processor of interfaces
210) to perform functions relating to the techniques
described herein, such as in conjunction with the operation
of predictive routing process 248.

Specifically, according to various embodiments, a device
identifies a plurality of paths between a pair of network
addresses, wherein one of the pair of network addresses is
associated with an online application. The device obtains
telemetry data from the plurality of paths for the online
application. The device computes, based on the telemetry
data, fate sharing metrics for the plurality of paths. The
device controls routing of application traffic between the
pair of network addresses, based on the fate sharing metrics
for the plurality of paths.

Operationally, FIG. 5 illustrates an example architecture
for assessing fate sharing among network paths, according
to various embodiments. At the core of architecture 500 is
fate sharing detection process 249, which may be executed
by a controller for a network or another device in commu-
nication therewith. For instance, fate sharing detection pro-
cess 249 may be executed by a controller for a network (e.g.,
SDN controller 408 in FIGS. 4A-4B), a particular network-
ing device in the network (e.g., a router, etc.), another device
or service in communication therewith, or the like. In some
embodiments, for instance, fate sharing detection process
249 may be used to implement a predictive application
aware routing engine, such as predictive application aware
routing engine 412, or another supervisory service for the
network.

As shown, fate sharing detection process 249 may include
any or all of the following components: a path selector 502,
a telemetry collector 504, a fate sharing metric (FSM)
generator 506, a user interface module 508, and/or a routing
adjuster 510. As would be appreciated, the functionalities of
these components may be combined or omitted, as desired.
In addition, these components may be implemented on a
singular device or in a distributed manner, in which case the
combination of executing devices can be viewed as their
own singular device for purposes of executing fate sharing
detection process 249.

During execution, path selector 502 may be operable to
identify a plurality of network paths that should be analyzed
by fate sharing detection process 249, in various embodi-
ments. In some embodiments, path selector 502 may do so
based in part on user input received via user interface
module 508. For instance, a user may specify a set of critical
destinations (e.g., data centers hosting critical online appli-
cations) towards which many other sites connect using a set
of paths (e.g., with load balancing). In yet another example,
paths between data centers exchanging a high volume of
data may be of high interest and the user may explicitly
specify a pair of IP addresses. In either case, the main
objective of path selector 502 is to identity the paths
between two addresses, such as an end-user site and a SaaS
application.

Control over which paths are selected/identified by path
selector 502 may also be based on other parameters, as well.
For instance, in one embodiment, path selector 502 may
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identify paths based on those paths being associated with a
particular online application (e.g., Office 365, a voice-
related application, etc.). In another embodiment, path selec-
tor 502 may also base its selection on the volume of
application traffic conveyed by those paths. In other words,
path selector 502 may only select paths for the fate sharing
analysis between two addresses, if those paths convey at
least a threshold volume of traffic for that application.

In some embodiments, such as in the case of SD-WANS,
path selector 502 may also need to perform path discovery,
to identify all of the paths between to addresses to analyze.
For instance, if a pair of edges is of interest (e.g., based on
their application traffic, traffic volumes, etc.), then path
selector 502 may determine the number of paths available
between those pairs. Consider the case of a remote device E
and a central Hub H in an SD-WAN. In such a case, path
selector 502 may dynamically discover the list of paths
between these sites by inspecting the routing information
base (RIB) on edge E. Each path between E and H is then
added by path selector 502 to the list of paths for analysis.

In various embodiments, telemetry collector 504 may be
responsible for obtaining telemetry data for all of the paths
selected/identified by path selector 502. Such telemetry data
may comprise end-to-end path metrics reflecting the path
performance characteristics of a given path, such as its delay,
loss, jitter, etc., from which fate sharing among the paths can
be inferred. This can be done either on a pull basis in which
telemetry collector 504 requests the collection of this infor-
mation from one or more nodes along the paths or on a push
basis in which telemetry collection nodes simply provide
their collected telemetry to telemetry collector 504 without
first receiving a request to do so. Telemetry collector 504
may also normalize any telemetry data obtained from the
various paths (e.g., via BFD probes for an end-to-end tunnel,
HTTP probes, etc.).

Fate sharing metric (FSM) generator 506 may be config-
ured to compute fate sharing metrics between the different
paths identified by path selector 502, according to various
embodiments. In a simple case, FSM generator 506 may
compute the fate sharing metrics directly from the telemetry
data collected by telemetry collector 504. However, in other
embodiments, FSM generator 506 may base the fate sharing
metrics in whole, or in part, on metrics derived therefrom.
For instance, in one embodiment, FSM generator 506 may
base its fate sharing metrics on SLA violations along the
paths for the online application. In another embodiment,
FSM generator 506 may base its fate sharing metrics on SLA
violations that are predicted by a machine learning model to
occur along the paths (e.g., using the prediction mechanism
of predictive routing process 248), such as for the percentage
of time the SLA is predicted to be violated.

In general, a fate sharing metric generated by FSM
generator 506 reflects the degree of fate sharing between a
set of n paths for a pair of IP addresses. Such metrics may,
for instance, indicate how often the paths are likely to
provide acceptable or unacceptable application experience
during any given time period.

It is also important to note that the fate sharing metrics
computed by FSM generator 506 may be for each pair of IP
addresses, a well as potentially on a per-application basis.
Indeed, different application flows may follow different
paths between a pair of nodes, especially in the presence of
load balancing. In this case, the path metrics are used as
proxy for the path being used between the pair of nodes.

One way for FSM generator 506 to compute the fate
sharing metrics between the paths is to use correlation
coeflicients for the metrics. For instance, FIG. 6 illustrates
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an example plot 600 of path metrics indicating fate sharing.
More specifically, assume that the fate sharing metric is
computed based on the percentage of time that two paths
jointly exhibit SLA violations for the application. Time
periods 602 reflect such behaviors across the measured
latency, jitter, and loss along the paths, indicating that the
paths are exhibiting fate sharing behaviors. In this case, also
assume that the probability of SLA violations correlates
almost perfectly, as well, indicating a very high degree of
fate sharing.

Note that two paths P1 and P2 with high degree of fate
sharing may not ALWAYS have underlying metrics with
high degree of correlation, simply because paths do change
within the Internet and the metric may not always be a
perfect proxy. For example, if the probability of an SLA
violation is used to compute the fate sharing metrics, two
paths may be at the border of an SLA violation. This can lead
to one path having a predicted SLLA violation and the other
path not having a predicted SLA violation, leading to a low
correlation between their predictions. So, even if they share
the same fate, their respective metric may not perfectly
correlate. Still, if there exists some period of time during
which correlation is high then the fate sharing metric should
be adjusted, accordingly.

Referring again to FIG. 5, FSM generator 506 may also
construct a correlation matrix can be constructed between all
the time-series for the paths. For example, time-series of
QoS metric like loss, jitter, latency, etc. for all paths may be
considered for all fate sharing paths. Then, FSM generator
506 may compute the correlation coeflicient, such as Pear-
son’s, Kendall’s, or Spearman’s correlation coefficient,
between all pairs of time-series. Such a matrix provides all
pairs of paths that have high correlation.

FIG. 7 illustrates an example correlation matrix 700
showing fate sharing paths, according to various embodi-
ments. More specifically, correlation matrix 700 shows the
correlation coefficients between a pair of paths for a given
QoS metric. In some embodiments, FSM generator 506 may
also perform time-series clustering, such as by using clus-
termap or another clustering approach, to detect strong
clusters of paths that have a high correlation. This allows
FSM generator 506 to identify paths that have similar QoS
time-series, such as those associated with clusters 702
shown. In other instances, each time-series can be consid-
ered as a vector by FSM generator 506, which then applies
dimensionality reduction to the vectors (e.g., using principal
component analysis, t-sne, auto-encoders, etc.), to first
reduce their dimensionality. In turn, FSM generator 506 may
then apply a clustering algorithm such as DBSCAN or
k-means, to form the clusters.

The above embodiments introduce ways to cluster against
a single QoS metric, resulting in clusters of paths where
there is fate sharing according to only that single QoS
metric. However, in further embodiments, this can be gen-
eralized to compute fate sharing metrics for a set of QoS
metrics or other metrics (e.g., predicted or observed SLA
violations, etc.). To generalize across multiple user selected
metrics, FSM generator 506 may iteratively compute cor-
relation for each metric, and then a select the set of paths
which share fate across all majority of the metrics.

User interface module 508 may be configured to allow a
user, such as a network administrator, to interact with fate
sharing detection process 249. For instance, in some
embodiments, user interface module 508 may be responsible
for providing indications of the fate sharing metrics for the
identified paths for display to the user. This can be done, in
some cases, when the degree of fate sharing has crossed
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some thresholds for some path of interest (e.g., between
some pair of edges, for some interesting traffic, etc.). Said
differently, user interface module 508 may notify the user
that a pair of paths do have strong fate sharing.

User interface module 508 may also provide additional
contextual information for display to a user, as well. For
example, trace route may be triggered on the fly upon
detecting a high value for a fate sharing metric, in order to
discover the shared nodes/AS in the Internet (e.g., although
the first two hops are AS from different SP, they share the
same route (AS) towards a given destination). Such infor-
mation may advantageously be utilized by the user in order
to increase the degree of diversity of Internet paths in their
network.

According to various embodiments, fate sharing detection
process 249 may also include routing adjuster 510, which
controls the routing of application traffic via the identified
paths, based on their fate sharing metrics. This can be done
either automatically or in response to a request from a user
via user interface module 508. In some embodiments, the
routing decisions by routing adjuster 510 may entail load
balancing the application across paths having low or no fate
sharing.

For example, if three paths exist between a pair of nodes,
routing adjuster 510 may decide to load balance traffic
between the subset of paths that exhibit low fate sharing
metrics. Thus, instead of load balancing traffic between P1,
P2 and P3, for example, the system may choose to load
balance between the one of the three possibilities (P1,P2),
(P2,P3) or (P1, P3) if their fate sharing metrics are below a
given value, so as to minimize the impact of any single-point
failures for the traffic between two nodes.

Note that any load balancing by routing adjuster 510 may
reduce the number of paths over which the application traffic
is sent, thus reducing the overall throughput. In some
embodiments, routing adjuster 510 may also take this into
account and perform a tradeoff between using fewer paths
and increase the risk of impact of a single failure. To this
end, routing adjuster 510 may also monitor the impact on
application QoE while using fewer paths, in order to meet
the diversity constraint (e.g., lower fate sharing). If the
application QoE degrades, then routing adjuster 510 may
relax the constraint of using fewer paths at the risk of
increasing the impact of a single failure.

FIG. 8 illustrates an example simplified procedure 800
(e.g., a method) for routing online application traffic based
on fate sharing metrics, in accordance with one or more
embodiments described herein. For example, a non-generic,
specifically configured device (e.g., device 200), such as
controller for a network (e.g., an SDN controller, an edge
router, or other device in communication therewith) or other
supervisory device, may perform procedure 800 by execut-
ing stored instructions (e.g., fate sharing detection process
249 and/or predictive routing process 248). The procedure
800 may start at step 805, and continues to step 810, where,
as described in greater detail above, the device may identify
a plurality of paths between a pair of network addresses,
wherein one of the pair of network addresses is associated
with an online application. In some embodiments, the online
application is a SaaS application. In various embodiments,
the device may identify the plurality of paths based in part
on the identity of the online application (e.g., the fate sharing
mechanisms herein may be applied on a per-application
basis), an amount of the application traffic for the online
application that the paths convey, combinations thereof, or
the like.
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At step 815, as detailed above, the device may obtain
telemetry data from the plurality of paths for the online
application. In various embodiments, the telemetry data may
be indicative of one or more of: latency, jitter, or loss. For
instance, the device may request probing of the plurality of
paths, to measure such path metrics. In other cases, the
device may receive the telemetry data from existing telem-
etry collection mechanisms in the network that already
collect path metrics for the plurality of paths.

At step 820, the device may compute, based on the
telemetry data, fate sharing metrics for the plurality of paths,
as described in greater detail above. In one embodiment, the
device may do so by computing correlations between the
telemetry data from the plurality of paths for the online
application. In one embodiment, the fate sharing metrics
may be based on SLA violations indicated by the telemetry
data. In other embodiments, the fate sharing metrics may be
based on service level agreement violations predicted by a
machine learning model from the telemetry data. In some
embodiments, the device may also provide an indication of
the fate sharing metrics for display. For instance, the device
may provide such an indication for display when one or
more of the fate sharing metrics crosses a threshold.

At step 825, as detailed above, the device may control
routing of application traffic for the online application
between the pair of network addresses, based on the fate
sharing metrics for the plurality of paths. In one embodi-
ment, the device may do so by causing the application traffic
to be load balanced over two or more of the plurality of
paths, based on those paths having fate sharing metrics
indicating low or no fate sharing among them. Procedure
800 then ends at step 830.

While there have been shown and described illustrative
embodiments that provide for routing online application
traffic based on fate sharing metrics, it is to be understood
that various other adaptations and modifications may be
made within the spirit and scope of the embodiments herein.
For example, while certain embodiments are described
herein with respect to using certain models for purposes of
predicting application experience metrics, SLA violations,
or other disruptions in a network, the models are not limited
as such and may be used for other types of predictions, in
other embodiments. In addition, while certain protocols are
shown, other suitable protocols may be used, accordingly.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that
the components and/or elements described herein can be
implemented as software being stored on a tangible (non-
transitory) computer-readable medium (e.g., disks/CDs/
RAM/EEPROM/etc.) having program instructions execut-
ing on a computer, hardware, firmware, or a combination
thereof. Accordingly, this description is to be taken only by
way of example and not to otherwise limit the scope of the
embodiments herein. Therefore, it is the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
embodiments herein.

The invention claimed is:

1. A method comprising:

identifying, by a device, a plurality of paths between a
pair of network addresses, wherein one of the pair of
network addresses is associated with an online appli-
cation;
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obtaining, by the device, telemetry data from the plurality

of paths for the online application;

computing, by the device and based on the telemetry data,

fate sharing metrics for the plurality of paths, wherein
the fate sharing metrics indicate how likely the plurality
of paths are to provide acceptable or unacceptable
application experience during any given time period;
and

controlling, by the device, routing of application traffic for

the online application between the pair of network
addresses, based on the fate sharing metrics for the
plurality of paths.

2. The method as in claim 1, wherein the telemetry data
is indicative of one or more of: latency, jitter, or loss.

3. The method as in claim 1, further comprising:

providing, by the device, an indication of the fate sharing

metrics for display.

4. The method as in claim 3, wherein the device provides
the indication when one or more of the fate sharing metrics
crosses a threshold.

5. The method as in claim 1, wherein controlling routing
of application traffic for the online application between the
pair of network addresses comprises:

causing the application traffic to be load balanced over

two or more of the plurality of paths, based on those
paths having fate sharing metrics indicating low or no
fate sharing among them.

6. The method as in claim 1, wherein computing the fate
sharing metrics comprises:

computing correlations between the telemetry data from

the plurality of paths for the online application.

7. The method as in claim 1, wherein the fate sharing
metrics are based on service level agreement violations
indicated by the telemetry data.

8. The method as in claim 1, wherein the fate sharing
metrics are based on service level agreement violations
predicted by a machine learning model from the telemetry
data.

9. The method as in claim 1, wherein the device identifies
the plurality of paths based in part on an amount of the
application traffic for the online application that they convey.

10. The method as in claim 1, wherein the online appli-
cation is a software-as-a-service (SaaS) application.

11. An apparatus, comprising:

one or more network interfaces;

a processor coupled to the one or more network interfaces

and configured to execute one or more processes; and

a memory configured to store a process that is executable

by the processor, the process when executed configured

to:

identify a plurality of paths between a pair of network
addresses, wherein one of the pair of network
addresses is associated with an online application;

obtain telemetry data from the plurality of paths for the
online application;

compute, based on the telemetry data, fate sharing
metrics for the plurality of paths, wherein the fate
sharing metrics indicate how likely the plurality of
paths are to provide acceptable or unacceptable
application experience during any given time period;
and

control routing of application traffic for the online
application between the pair of network addresses,
based on the fate sharing metrics for the plurality of
paths.

12. The apparatus as in claim 11, wherein the telemetry
data is indicative of one or more of: latency, jitter, or loss.
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13. The apparatus as in claim 11, wherein the process
when executed is further configured to:

provide an indication of the fate sharing metrics for

display.

14. The apparatus as in claim 13, wherein the apparatus
provides the indication when one or more of the fate sharing
metrics crosses a threshold.

15. The apparatus as in claim 11, wherein the apparatus
controls routing of application traffic for the online appli-
cation between the pair of network addresses by:

causing the application traffic to be load balanced over

two or more of the plurality of paths, based on those
paths having fate sharing metrics indicating low or no
fate sharing among them.

16. The apparatus as in claim 11, wherein the apparatus
computes the fate sharing metrics by:

computing correlations between the telemetry data from

the plurality of paths for the online application.

17. The apparatus as in claim 11, wherein the fate sharing
metrics are based on service level agreement violations
indicated by the telemetry data.

18. The apparatus as in claim 11, wherein the fate sharing
metrics are based on service level agreement violations
predicted by a machine learning model from the telemetry
data.
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19. The apparatus as in claim 11, wherein the apparatus
identifies the plurality of paths based in part on an amount
of the application traffic for the online application that they
convey.

20. A tangible, non-transitory, computer-readable medium
storing program instructions that cause a device to execute
a process comprising:

identifying, by the device, a plurality of paths between a

pair of network addresses, wherein one of the pair of
network addresses is associated with an online appli-
cation;

obtaining, by the device, telemetry data from the plurality

of paths for the online application;

computing, by the device and based on the telemetry data,

fate sharing metrics for the plurality of paths, wherein
the fate sharing metrics indicate how likely the plurality
of paths are to provide acceptable or unacceptable
application experience during any given time period;
and

controlling, by the device, routing of application traffic for

the online application between the pair of network
addresses, based on the fate sharing metrics for the
plurality of paths.
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