
(19) United States
US 201700 9401 OA1

(12) Patent Application Publication (10) Pub. No.: US 2017/0094.010 A1
Dinan et al. (43) Pub. Date: Mar. 30, 2017

(54) TECHNOLOGIES FOR AUTOMATIC (52) U.S. Cl.
PROCESSOR CORE ASSOCATION CPC H04L 67/2852 (2013.01); H04L 41/046
MANAGEMENT AND COMMUNICATION
USING DIRECT DATA PLACEMENT IN
PRIVATE CACHES

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: James Dinan, Hudson, MA (US);
Venkata Krishnan, Ashland, MA (US);
Srinivas Sridharan, Bangalore (IN);
David A. Webb, Groton, MA (US)

(21) Appl. No.: 14/864,369

(22) Filed: Sep. 24, 2015

Publication Classification

(51) Int. Cl.
H04L 29/08 (2006.01)
G06F 9/455 (2006.01)
H04L 12/24 (2006.01)

200

(2013.01); G06F 9/45558 (2013.01); G06F
2009/45595 (2013.01)

(57) ABSTRACT

Technologies for communication with direct data placement
include a number of computing nodes in communication
over a network. Each computing node includes a many-core
processor having an integrated host fabric interface (HFI)
that maintains an association table (AT). In response to
receiving a message from a remote device, the HFI deter
mines whether the AT includes an entry associating one or
more parameters of the message to a destination processor
core. If so, the HFI causes a data transfer agent (DTA) of the
destination core to receive the message data. The DTA may
place the message data in a private cache of the destination
core. Message parameters may include a destination process
identifier or other network address and a virtual memory
address range. The HFI may automatically update the AT
based on communication operations generated by Software
executed by the processor cores. Other embodiments are
described and claimed.

102

COMPUTING NODE

202

COMMUNICATION SOFTWARE

2

COMMUNICATION MODULE

04

2O6

COMMAND MODULE

208

DATA TRANSFERAGENT
MODULE

HOST FABRIC INTERFACE

210

COMMUNICATION
MONITORING MODULE

COMMAND MONITORING
MODULE

ASSOCATION TABLE MODULE

Patent Application Publication Mar. 30, 2017. Sheet 1 of 4 US 2017/0094.01.0 A1

100

102 /
COMPUTING NODE

PROCESSOR

122
CORE CORE

PRIVATE 124 PRIVATE
CACHE CACHE

DTA DTA

CORE CORE

PRIVATE 124 PRIVATE
CACHE CACHE

DTA DTA

HOST FABRIC INTERFACE

ASSOCATIONTABLE

FO
SUBSYSTEM MEMORY

any DATA STORAGE
COMM

CIRCUITRY

104

COMPUTING NODE

FIG. 1

Patent Application Publication Mar. 30, 2017. Sheet 2 of 4 US 2017/0094.01.0 A1

102
200

COMPUTING NODE

2O2

COMMUNICATIONSOFTWARE HOST FABRIC INTERFACE

204 210

COMMUNICATIONMODULE COMMUNICATION
MONITORING MODULE

2O6

COMMAND MODULE colour COMMAND MONITORING
MODULE

DATA TRANSFERAGENT
MODULE ASSOCATIONTABLEMODULE

FIG. 2

Patent Application Publication Mar. 30, 2017. Sheet 3 of 4 US 2017/0094.01.0 A1

300

302 / MONITOR FOR COMMUNICATION OPERATION
ISSUED FROM PROCESSOR CORE

304

OPERATION?

YES

DETERMINE CORE ID, NETWORK ADDRESS, AND
VIRTUAL ADDRESSRANGE FOR MESSAGE

SEARCHFORNETWORKADDRESS AND WIRTUAL
ADDRESS RANGE INASSOCIATIONTABLE (AT)

310
ET ADDR 8

WADDRINAT

WADDRRANGEN ATP

NO

REMOVE OLDENTRY FROMAT

ADDENTRY TO AT FOR NETWORKADDRESS,
CORE, AND WIRTUAL ADDRESS RANGE

MONITOR FOR SOFTWARE COMMAND

312

UPDATE AT ENTRY WITH NEW
COREID

UPDATE AT ENTRY WITH NEW NET
ADDRESS AND/OR CORED

326

YES

UPDATE AT ENTRY BASED ON
SOFTWARE COMMAND

FIG 3

Patent Application Publication Mar. 30, 2017. Sheet 4 of 4 US 2017/0094.01.0 A1

400

402 M
MONITOR FOR INCOMING MESSAGE DATA

4.04

INCOMING DATAP

YES

DETERMINEDESTINATION NETWORKADDRESS
AND ADDRESS RANGE BASED ON MESSAGE DATA

SEARCH ASSOCIATIONTABLE (AT) FOR
DESTINATIONNET ADDRESS AND ADDR RANGE

410

DESTINATION IN ATP

DETERMINE DESTINATION PLACENCOMING MESSAGE DATA
PROCESSOR CORE FROM IN SHARED MEMORY

ATENTRY

406

408

CAUSE DATA TRANSFERAGENT OF 414
DESTINATION CORE TO RECEIVE

MESSAGE DATA

DETERMINE MEMORY HERARCHY
LEVEL FOR INCOMING DATA

PLACE INCOMING MESSAGE DATA
ATMEMORY HERARCHYLEVEL
PLACEN PRIVATECACHEO

FIG. 4

US 2017/0094.01.0 A1

TECHNOLOGES FOR AUTOMATIC
PROCESSOR CORE ASSOCATION

MANAGEMENT AND COMMUNICATION
USING DIRECT DATA PLACEMENT IN

PRIVATE CACHES

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

0001. This invention was made with Government support
under contract number H98230-13-D-0124 awarded by the
Department of Defense. The Government has certain rights
in this invention.

BACKGROUND

0002 High-performance computing (HPC) applications
typically execute calculations on computing clusters that
include many individual computing nodes connected by a
high-speed network fabric. Typical computing clusters may
include hundreds or thousands of individual nodes. Each
node may include one or more many-core processors, co
processors, processing accelerators, or other parallel com
puting resources. A typical computing job therefore may be
executed by a large number of individual processes distrib
uted across each computing node and across the entire
computing cluster.
0003 Processes within a job may communicate data with
each other using a message-passing communication para
digm. For computing clusters using high-speed network
fabrics, an increasingly large proportion of message pro
cessing time may be caused by internal latency associated
with moving message data across I/O or memory buses of
the individual computing node. Thus, overall performance
may be improved by improving communication locality, that
is, by delivering network data closer to the processor core or
other computing resources of the computing node. Current
technologies such as Intel(R) Data Direct I/O (DDIO) allow
I/O devices such as network controllers to place data directly
in a shared last-level cache, bypassing main memory. How
ever, DDIO may not be used for systems lacking a shared
last-level cache.

BRIEF DESCRIPTION OF THE DRAWINGS

0004. The concepts described herein are illustrated by
way of example and not by way of limitation in the accom
panying figures. For simplicity and clarity of illustration,
elements illustrated in the figures are not necessarily drawn
to scale. Where considered appropriate, reference labels
have been repeated among the figures to indicate corre
sponding or analogous elements.
0005 FIG. 1 is a simplified block diagram of at least one
embodiment of a system for communication using direct
data placement;
0006 FIG. 2 is a simplified block diagram of at least one
embodiment of an environment that may be established by
a computing node of FIG. 1;
0007 FIG. 3 is a simplified flow diagram of at least one
embodiment of a method for managing associations between
messages and processor cores that may be executed by a
computing node of FIGS. 1 and 2; and
0008 FIG. 4 is a simplified flow diagram of at least one
embodiment of a method for communication using direct
data placement that may be executed by a computing node
of FIGS. 1 and 2.

Mar. 30, 2017

DETAILED DESCRIPTION OF THE DRAWINGS

0009 While the concepts of the present disclosure are
Susceptible to various modifications and alternative forms,
specific embodiments thereof have been shown by way of
example in the drawings and will be described herein in
detail. It should be understood, however, that there is no
intent to limit the concepts of the present disclosure to the
particular forms disclosed, but on the contrary, the intention
is to cover all modifications, equivalents, and alternatives
consistent with the present disclosure and the appended
claims.
0010 References in the specification to “one embodi
ment,” “an embodiment,” “an illustrative embodiment,' etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may or may not necessarily include that par
ticular feature, structure, or characteristic. Moreover, Such
phrases are not necessarily referring to the same embodi
ment. Further, when a particular feature, structure, or char
acteristic is described in connection with an embodiment, it
is submitted that it is within the knowledge of one skilled in
the art to effect such feature, structure, or characteristic in
connection with other embodiments whether or not explic
itly described. Additionally, it should be appreciated that
items included in a list in the form of “at least one of A, B,
and C can mean (A); (B); (C); (A and B); (A and C); (Band
C); or (A, B, and C). Similarly, items listed in the form of
“at least one of A, B, or C can mean (A); (B); (C); (A and
B); (A and C); (B and C); or (A, B, and C).
0011. The disclosed embodiments may be implemented,
in Some cases, in hardware, firmware, Software, or any
combination thereof. The disclosed embodiments may also
be implemented as instructions carried by or stored on one
or more transitory or non-transitory machine-readable (e.g.,
computer-readable) storage media, which may be read and
executed by one or more processors. A machine-readable
storage medium may be embodied as any storage device,
mechanism, or other physical structure for storing or trans
mitting information in a form readable by a machine (e.g.,
a volatile or non-volatile memory, a media disc, or other
media device).
0012. In the drawings, some structural or method features
may be shown in specific arrangements and/or orderings.
However, it should be appreciated that such specific arrange
ments and/or orderings may not be required. Rather, in some
embodiments, such features may be arranged in a different
manner and/or order than shown in the illustrative figures.
Additionally, the inclusion of a structural or method feature
in a particular figure is not meant to imply that Such feature
is required in all embodiments and, in Some embodiments,
may not be included or may be combined with other
features.
0013 Referring now to FIG. 1, in an illustrative embodi
ment, a system 100 for communication using direct data
placement includes a number of computing nodes 102 in
communication over a network 104. In use, as discussed in
more detail below, each computing node 102 may execute
Software that generates communication operations, such as
message passing operations, one-sided operations, or other
operations. In response to those operations, a host fabric
interface of the computing node 102 maintains an associa
tion table that associates network addresses and virtual
memory address ranges with the particular processor cores
that originated the operations. When a message is received

US 2017/0094.01.0 A1

from a remote device, the host fabric interface looks up the
network address (e.g., MPI process rank or other networked
process identifier) and virtual memory address range of the
message in the association table and, if found, engages or
otherwise causes a data transfer agent of the associated
destination processor core to receive the message data. The
data transfer agent may copy the message data directly into
a private cache of the destination processor core. Thus, the
system 100 may enable direct data placement for processor
architectures that do not include a shared last-level cache.
Directly placing the message data into the private cache may
improve performance and energy consumption of the system
100 by reducing cache misses and otherwise improving
communication locality. Additionally, direct data placement
may be used to enable efficient implementations of thread
wakeups when data arrives in the private cache, which may
be used to implement certain parallel programming models.
0014 Each computing node 102 may be embodied as any
type of computation or computer device capable of perform
ing the functions described herein, including, without limi
tation, a computer, a multiprocessor System, a server, a
rack-mounted server, a blade server, a laptop computer, a
notebook computer, a network appliance, a web appliance,
a distributed computing system, a processor-based system,
and/or a consumer electronic device. As shown in FIG. 1,
each computing node 102 illustratively includes a processor
120, an input/output subsystem 132, a memory 134, a data
storage device 136, and a communication subsystem 138. Of
course, the computing node 102 may include other or
additional components, such as those commonly found in a
server device (e.g., various input/output devices), in other
embodiments. Additionally, in Some embodiments, one or
more of the illustrative components may be incorporated in,
or otherwise form a portion of another component. For
example, the memory 134, or portions thereof, may be
incorporated in the processor 120 in some embodiments.
0015 The processor 120 may be embodied as any type of
multi-core processor capable of performing the functions
described herein. The illustrative processor 120 is a four
core processor, however in other embodiments the processor
120 may be embodied as any multi-core processor, copro
cessor, digital signal processor, microcontroller, or other
processor or processing/controlling circuit. The processor
120 illustratively includes four processor cores 122, each of
which is an independent processing unit capable of execut
ing programmed instructions. In some embodiments, each of
the processor cores 122 may be capable of hyperthreading:
that is, each processor core 122 may support execution on
two or more logical processors or hardware threads.
Although the illustrative processor 120 includes four pro
cessor cores 122, in other embodiments the processor 120
may include many more cores (e.g., 61 cores, 72 cores, or
more). Additionally, although the illustrative computing
node 102 includes a single multi-core processor 120, the
technologies disclosed herein are also applicable to com
puting nodes 102 having two or more processors 120
(including two or more single-core processors 120).
0016 Each of the processor cores 122 is coupled to a
private cache 124. Each private cache 124 may be embodied
as any type of volatile or non-volatile storage capable of
performing the functions described herein. The private
cache 124 may store instructions, operands, or other data
accessed by the associated processor core 122. The contents
of the private cache 124 are not directly accessible by the

Mar. 30, 2017

other processor cores 122. In some embodiments, the private
cache 124 may be included within a larger memory hierar
chy including additional private and/or shared caches. Stor
ing data in the private cache 124, which may be logically
closer to the processor core 122 than other levels of the
memory hierarchy, may improve performance (e.g., by
providing faster memory access, reducing cache misses, or
providing other improvements). For example, the private
cache 124 may be embodied as a private L1 and/or L2 cache.
In some embodiments, the processor 120 may include a
separate cache shared by all of the processor cores 122 (e.g.,
a shared L3 cache or last-level cache). Updates to the private
cache 124 may be propagated to other private caches 124
and/or to other levels of the memory hierarchy using a cache
coherency protocol. Of course, in Some embodiments, the
processor 120 may not include a shared cache.
0017. As shown in the illustrative embodiment, each of
the processor cores 122 and/or private caches 124 is coupled
to a data transfer agent 126. Each data transfer agent 126
may place received message data into the private cache 124
of the associated processor core 122 or, in Some embodi
ments, into any other appropriate level of the memory
hierarchy of the computing node 102. Each data transfer
agent 126 may be embodied as hardware, firmware, soft
ware, or any combination of hardware, firmware, and/or
software capable of performing the functions described
herein. For example, the data transfer agent 126 may be
embodied as a functional block or other component coupled
to or integrated in the associated processor core 122. As
described further below, in some embodiments each data
transfer agent 126 may further interact with software
executed by the processor cores 122.
0018. The processor 120 further includes a host fabric
interface 128. The host fabric interface 128 may be embod
ied as any communication interface, such as a network
interface controller, communication circuit, hardware com
ponent, logic block, electronic circuitry, device, or collection
thereof, capable of enabling communications between the
processor cores 122 and other remote computing nodes 102
and/or other remote devices over the network 104. The host
fabric interface 128 may be configured to use any one or
more communication technology and associated protocols
(e.g., InfiniBandR, Intel(R. Omni-Path Architecture, Ether
net, etc.) to effect such communication. As further described
above, the host fabric interface 128 may cause message data
to be placed directly in a private cache 124 associated with
the appropriate processor core 122. For example, the host
fabric interface 128 may engage the hardware and/or soft
ware data transfer agent 126 associated with the destination
processor core 122 to place the data. The host fabric inter
face 128 maintains an association table 130 that associates
one or more message parameters with particular processor
cores 122. For example, the association table 130 may
associate network addresses (e.g., MPI process ranks or
other process identifiers) and virtual memory addresses to
processor cores 122. The association table 130 may be
embodied as any type of Volatile or non-volatile storage
(e.g., memory, registers, or other storage) capable of storing
associations between message data and the processor cores
122.

0019. The memory 134 may be embodied as any type of
Volatile or non-volatile memory or data storage capable of
performing the functions described herein. In operation, the
memory 134 may store various data and Software used

US 2017/0094.01.0 A1

during operation of the computing node 102 Such as oper
ating systems, applications, programs, libraries, and drivers.
The memory 134 may be positioned at the level of the
memory hierarchy that is logically furthest from the proces
sor cores 122 of the computing node 102. The memory 134
is communicatively coupled to the processor 120 via the I/O
subsystem 132, which may be embodied as circuitry and/or
components to facilitate input/output operations with the
processor 120, the memory 134, and other components of
the computing node 102. For example, the I/O subsystem
132 may be embodied as, or otherwise include, memory
controller hubs, input/output control hubs, firmware devices,
communication links (i.e., point-to-point links, bus links,
wires, cables, light guides, printed circuit board traces, etc.)
and/or other components and Subsystems to facilitate the
input/output operations. In some embodiments, the I/O
Subsystem 132 may form a portion of a system-on-a-chip
(SoC) and be incorporated, along with the processors 120,
the memory 134, and other components of the computing
node 102, on a single integrated circuit chip. The data
storage device 136 may be embodied as any type of device
or devices configured for short-term or long-term storage of
data such as, for example, memory devices and circuits,
memory cards, hard disk drives, Solid-state drives, or other
data storage devices. Thus, the computing node 102 includes
one or more computer-readable storage media that may
include one or more instructions that, when executed by the
processor 120, cause the computing node 102 to perform
various operations as described herein. The computer-read
able storage media may be embodied as, for example, the
memory 134, the data storage device 136, and/or other
storage media of the computing node 102.
0020. The communication subsystem 138 of the comput
ing node 102 may be embodied as any communication
interface. Such as a communication circuit, device, or col
lection thereof, capable of enabling communications
between the computing nodes 102 and/or other remote
devices over the network 104. The communication subsys
tem 138 may be configured to use any one or more com
munication technology (e.g., wired or wireless communica
tions) and associated protocols (e.g., InfiniBandR, Intel(R)
Omni-Path Architecture, Ethernet, Bluetooth R, Wi-FiR,
WiMAX, etc.) to effect such communication.
0021 Additionally, although the illustrative computing
node 102 shows the host fabric interface 128 as integrated in
the processor 120, it should be understood that in other
embodiments the host fabric interface 128 may be included
in or coupled to other components of the computing node
102. For example, in some embodiments the host fabric
interface 128 may be included in the I/O subsystem 132,
included in the communication subsystem 138, coupled
directly to the processor 120, or coupled to the I/O subsys
tem 132.

0022. As discussed in more detail below, the computing
nodes 102 may be configured to transmit and receive data
with each other and/or other devices of the system 100 over
the network 104. The network 104 may be embodied as any
number of various wired and/or wireless networks. For
example, the network 104 may be embodied as, or otherwise
include, a switched fabric network, a wired or wireless local
area network (LAN), a wired or wireless wide area network
(WAN), a cellular network, and/or a publicly-accessible,
global network Such as the Internet. As such, the network
104 may include any number of additional devices, such as

Mar. 30, 2017

additional computers, routers, and Switches, to facilitate
communications among the devices of the system 100.
0023 Referring now to FIG. 2, in an illustrative embodi
ment, each computing node 102 establishes an environment
200 during operation. The illustrative environment 200
includes communication software 202, a data transfer agent
module 208, a communication monitoring module 210, a
command monitoring module 212, and an association table
module 214. The various modules of the environment 200
may be embodied as hardware, firmware, Software, or a
combination thereof. For example, each of the modules,
logic, and other components of the environment 200 may
form a portion of, or otherwise be established by, the
processor 120, the host fabric interface 128, or other hard
ware components of the computing node 102. As such, in
Some embodiments, any one or more of the modules of the
environment 200 may be embodied as a circuit or collection
of electrical devices (e.g., a data transfer agent circuit 208,
a communication monitoring circuit 210, etc.).
0024. The communication software 202 may be embod
ied as any application Software, operating system software,
communication middleware, or other software configured to
send and receive communication messages with remote
computing devices. The communication Software 202 may
include one or more processes, threads, ranks, or other
Software entities that send and receive message data. Each of
those software entities may be associated with a network
address such as a process rank, process identifier, or other
network address that is used for sending and/or receiving
messages. The communication Software 202 may also
include system management software or other software to
configure and otherwise manage data communication. In
Some embodiments, those functions may be performed by
one or more Sub-modules. Such as a communication module
204 and/or a command module 206.

0025. The data transfer agent module 208 is configured to
determine a destination memory hierarchy level and to store
received message data at the determined destination memory
hierarchy level. As described above, the computing node
102 includes variety of different memory storage areas
organized into a hierarchy. The memory hierarchy generally
varies from relatively large and slow storage positioned at a
relatively large logical distance from the processor core 122
(e.g., the system memory 134 accessible across one or more
memory buses) to relatively small and fast storage posi
tioned at a relatively small logical distance from the pro
cessor core 122 (e.g., the private cache 124 which may be on
the same die as the processor core 122). In some embodi
ments, the computing node 102 may include other, interme
diate memory locations such as a shared L3 or last-level
cache. Thus, the data transfer agent module 208 may store
the received message data in one of the private caches 124.
in the system memory 134, in a shared cache, or in any other
appropriate location in the memory hierarchy. The data
transfer agent module 208 may determine the destination in
the memory hierarchy based on one or more cache place
ment policies, which may be configurable by a user of the
computing node 102.
0026. The communication monitoring module 210 is
configured to receive incoming communication messages
from remote computing devices such as remote computing
nodes 102. The communication monitoring module 210 may
receive the communication messages using the communi

US 2017/0094.01.0 A1

cation Subsystem 138. The communication monitoring mod
ule 210 may be embodied as hardware and/or software of the
host fabric interface 128.

0027. The command monitoring module 212 is config
ured to intercept or otherwise receive communication opera
tions originated by the communication software 202. The
communication operations may include, for example, mes
sage-passing operations such as send or receive operations,
as well as one-sided operations such as get or put. The
communication operations may also include software com
mands to manage the association table 130. The command
monitoring module 212 may be embodied as hardware
and/or software of the host fabric interface 128.

0028. The association table module 214 is configured to
match incoming message data against the association table
130, and to engage the data transfer agent 126 of matching
processor cores 122 to receive the incoming message data.
The association table 130 includes a number of association
entries. Each association entry associates one or more
parameters of the incoming message with a particular des
tination processor core 122. For example, each association
entry may associate a particular network address (e.g., an
MPI rank, a process ID, a thread ID, or other networked
process identifier) and a virtual memory address range (e.g.,
a receive buffer) with the destination processor core 122.
The association table module 214 may determine a process
identifier and virtual address range for an incoming message
and search the association table 130 for a matching asso
ciation entry. If an association entry is not found, the
association table module 214 may store the incoming mes
sage data in memory shared by all processor cores 122 of the
computing node 102. Such as the memory 134 and/or a
shared last-level cache.

0029. The association table module 214 is further con
figured to manage the association table 130 based on inter
cepted communication operations or Software commands.
The association table module 214 is configured to determine
the network address, virtual memory address range, and the
processor core 122 associated with each communication
operation. The association table module 214 is configured to
generate or update appropriate association entries in the
association table 130. The association table module 214 is
also configured to update the association table 130 based on
Software commands received from the communication Soft
ware 202. The association table module 214 may be embod
ied as hardware and/or software of the host fabric interface
128.

0030 Referring now to FIG. 3, in use, each computing
node 102 may execute a method 300 for managing associa
tions between communications and processor cores 122. The
method 300 may be executed using any combination of
hardware and/or Software resources of the computing node
102. For example, one or more parts of the method 300 may
be executed by the host fabric interface 128 of the comput
ing node 102. The method 300 begins in block 302, in which
the computing node 102 monitors for a communication
operation issued from a processor core 122. The communi
cation operation may be embodied as any request to send or
receive data with a remote computing device Such as another
computing node 102. For example, the communication
operation may be embodied as a message-passing operation
Such as a send message or receive message request, a
collective operation, a one-sided communication operation
Such as a get or put request, or other communication

Mar. 30, 2017

operation. The computing node 102 may use any technique
to monitor for communication operations. For example, the
computing node 102 may detect function calls or other
commands to initiate communication operations generated
by the communication Software 202. As another example,
the host fabric interface 128 may detect data associated with
communication operations as the data is transmitted by the
associated processor core 122.
0031. In block 304, the computing node 102 determines
whether a communication operation has been detected. If
not, the method 300 jumps ahead to block 322, described
below. If a communication operation is detected, the method
300 advances to block 306.

0032. In block 306, the computing node 102 determines
a processor core 122 identifier, a network address, and a
virtual address range in memory associated with the com
munication operation. The processor core 122 identifier
identifies the particular processor core 122 of the processor
120 associated with the communication operation, such as
the sending or receiving processor core 122. The network
address associates a Software process, thread, or other entity
executed by the computing node 102 with the communica
tion operation. The network address may be embodied as
any identifier that may be associated with the communica
tion operation and the executing entity, Such as a message
passing interface (“MPI) rank, an operating system process
identifier (“pid'), a thread identifier, or other identifier. The
virtual address range is associated with the Source and/or
destination of the data for the communication operation. For
example, the virtual address range may identify an in
memory buffer used to store data to be transmitted or
received. The computing node 102 may use any technique to
determine the processor core 122 identifier, the network
address, and the virtual memory address range. For example,
the computing node 102 may determine that information
from software such as the communication software 202. As
another example, the host fabric interface 128 may deter
mine that information from message data received from the
processor cores 122.
0033. In block 308, the computing node 102 searches the
association table 130 for the network address and the virtual
address range determined in block 306. In block 310, the
computing node 102 determines whether the association
table 130 includes an association entry matching the net
work address and the virtual address range. If not, the
method 300 branches ahead to block 314, described below.
If the association table 130 includes an association entry
matching the network address and the virtual address range,
the method 300 advances to block 312. In block 312, the
computing node 102 updates the association entry of the
association table 130 with the processor core 122 identifier,
if the processor core 122 identifier has changed. For
example, in Some embodiments a particular process or
thread associated with a network address and a virtual
address range may migrate between processor cores 122
during the lifetime of the process. Updating the association
entry of the association table 130 may ensure that message
data is placed in the proper private cache 124 after a process
or thread migrates to a new processor core 122. After
updating the association table 130 if needed, the method 300
advances to block 322, described below.
0034 Referring back to block 310, if an association entry
matching both the network address and the virtual address is
not found in the association table 130, the method 300

US 2017/0094.01.0 A1

advances to block 314, in which the computing node 102
determines whether the virtual address range determined in
block 306 is found in the association table 130. If not, the
method 300 advances to block 318, described below. If the
virtual address range is found in the association table 130,
the method 300 branches to block 316.

0035. In block 316, the computing node 102 updates the
association entry of the association table 130 matching the
virtual address range with the network address, if the net
work address has changed and/or with the processor core
122 identifier, if the processor core 122 identifier has
changed. For example, in Some embodiments a new process
or thread having a new network address may take ownership
of a particular virtual memory address range. Such as a
buffer. The new process or thread may be executed by a
different processor core 122. Updating the association entry
of the association table 130 may ensure that message data is
placed in the proper private cache 124. After updating the
association table 130 if needed, the method 300 advances to
block 322, described below.
0036 Referring back to block 314, if the virtual address
range is not found in the association table 130, the method
300 advances to block 318, in which the computing node
102 may remove one or more old association entries from
the association table 130. The computing node 102 may
remove an association entry if, for example, the association
table 130 is full or otherwise over capacity (e.g., all available
table entries have been filled). The computing node 102 may
remove association entries that have not matched received
data for some time. For example, as described below, the
association table 130 may include a timestamp for each
association entry, and that timestamp may be updated when
the association entry matches received data. The computing
node 102 may use any strategy for removing old association
entries, such as removing the oldest entries or removing
entries older than a threshold time.

0037. In block 320, the computing node 102 adds a new
association entry to the association table 130. The associa
tion entry associates the network address and the virtual
memory address range with the processor core 122 identifier
determined above in connection with block 306. As further
described below in connection with FIG. 4, the association
table 130 may be used to place incoming message data in the
private cache 124 associated with the proper processor core
122. After updating the association table 130, the method
300 advances to block 322.

0038. In block 322, the computing node 102 monitors for
a software command to update the association table 130. The
Software command may be generated by the communication
software 202 of the computing node 102. For example, the
Software command may be generated by application Soft
ware, communication middleware, operating system soft
ware, system management software, or other Software. In
block 324, the computing node 102 determines whether a
software command has been received. If not, the method 300
loops back to block 302 to continue monitoring for com
munication operations. If a software command is received,
the method 300 advances to block 326, in which the com
puting node 102 updates the association table 130 based on
the Software command. The computing node 102 may allow
Software to modify any or all data stored in the association
table 130. For example, when a process or thread is migrated
to a new processor core 122, Software such as the operating
system or communication middleware may invalidate or

Mar. 30, 2017

modify corresponding association entries in the association
table 130. After updating the association table 130, the
method 300 loops back to block 302 to continue monitoring
for communication operations.
0039 Referring now to FIG. 4, in use, each computing
node 102 may execute a method 400 for communication
using direct data placement in private caches 124. The
method 400 may be executed using any combination of
hardware and/or Software resources of the computing node
102. For example, one or more parts of the method 400 may
be executed by the host fabric interface 128 of the comput
ing node 102. The method 400 begins in block 402, in which
the computing node 102 monitors for incoming message
data received from a remote computing device Such as
another computing node 102. The message data may be
received by the computing node 102, for example, in
response to a message-passing operation Such as a message
receive request, a collective operation, a one-sided commu
nication operation Such as a get request or a put request, or
other communication operation. In some embodiments, the
host fabric interface 128 of the computing node 102 may
monitor for incoming message data. In block 404, the
computing node 102 determines whether message data has
been received. If not, the method 400 loops back to block
402 to continue monitoring for incoming message data. If
message data has been received, the method 400 advances to
block 406.

0040. In block 406, the computing node 102 determines
a destination network address and virtual address range
based on the received message data. The network address
identifies a software process, thread, or other entity executed
by the computing node 102 that is the destination of the
message data. The network address may be embodied as any
identifier that may be associated with the message data, Such
as a message passing interface (“MPI) rank, an operating
system process identifier (“pid'), a thread identifier, or other
identifier. The virtual address range is also associated with
the destination of the message data. For example, the virtual
address range may identify an in-memory buffer used to
store received message data. The computing node 102 may
use any technique to determine the network address and the
virtual memory address range. For example, the host fabric
interface 128 may extract or otherwise determine the net
work address and the virtual memory address range by
analyzing the message data itself.
0041. In block 408, the computing node 102 searches the
association table 130 for the destination network address and
virtual address range. The computing node 102 may use any
technique to search the association table 130. For example,
the host fabric interface 128 may search the association table
130 for an association entry matching the destination pro
cess identifier and the virtual address range. By matching
both network address and virtual memory address, the
computing node 102 may better Support multithreaded pro
grams that share a network address (e.g., an MPI rank or a
process identifier) but use separate communication buffers
for each thread. In block 410, the computing node 102
determines whether a matching association entry was found
in the association table 130. If not, the method 400 branches
to block 428, described below. If a matching association
entry was found in the association table 130, the method 400
branches to block 412.

0042. In block 412, the computing node 102 determines
the destination processor core 122 based on the matching

US 2017/0094.01.0 A1

association entry in the association table 130. Each associa
tion entry of the association table 130 may associate a
particular network address (e.g., a particular process iden
tifier) and virtual memory address to a processor core 122
identifier. As described above in connection with FIG. 3, the
computing node 102 may automatically update the contents
of the association table 130 based on past communication
activity of the processor cores 122. In some embodiments,
the host fabric interface 128 may identify the destination
processor core 122 based on the association entry of the
association table 130. Additionally, in some embodiments
the computing node 102 may update a timestamp associated
with the association entry, which may be used to identify old
association entries as described above in connection with
FIG. 3.

0043. In block 414, the computing node 102 causes the
data transfer agent 126 associated with the destination
processor core 122 to receive the message data. As described
above, each data transfer agent 126 may be embodied as
hardware, firmware, and/or software incorporated in or
associated with a particular processor core 122 and capable
of placing data in the private cache 124 of the associated
processor core 122. In some embodiments, the host fabric
interface 128 may engage the data transfer agent 126, for
example by issuing one or more hardware or software
commands to the data transfer agent 126.
0044. In block 416, the computing node 102 determines
a destination memory hierarchy level for the incoming
message data. As described above, the computing node 102
includes a hierarchy of memory storage at various logical
distances from the processor cores 122. For example, the
computing node 102 may include a private cache 124
relatively near each processor core 122, system memory 134
relatively far from each processor core 122, shared last-level
cache at an intermediate distance from each processor core
122, or other memory storage. Thus, in some embodiments,
the computing node 102 may determine to place the incom
ing data in the private cache 124 associated with the desti
nation processor core 122. In some embodiments, in block
418, the computing node 102 may apply one or more cache
placement policies to determine the destination memory
hierarchy level. Each cache placement policy may identify
particular memory hierarchy levels or combinations of
memory hierarchy levels based on process identifier and
virtual address range. In some embodiments, the cache
placement policies may be configured by Software, for
example by a user process, by an operation system, or by
communications middleware. For example, the cache place
ment policies may be configured by one or more users of the
computing node 102. In some embodiments, cache place
ment policies may include additional or more complicated
rules. For example, the computing node 102 may place
incoming data in the private cache 124 unless the destination
location in the private cache 124 already includes modified
data. As another example, if the incoming message data is
larger than the private cache 124, the computing node 102
may place part of the incoming data (e.g., the first part) in
the private cache 124 and the rest in the memory 134 or in
a shared cache. In some embodiments, the data transfer
agent 126 may determine the memory hierarchy level for the
incoming message data.
0045. In block 420, the computing node 102 places the
incoming data at the destination memory hierarchy level.
The data transfer agent 126 may copy, move, or otherwise

Mar. 30, 2017

place the data at the destination memory hierarchy level. In
block 422, in some embodiments, the computing node 102
places the message data in the private cache 124 associated
with the destination processor node 122. In some embodi
ments, the computing node 102 may transfer the incoming
data directly from the host fabric interface 128, without
storing an additional copy of the data in the memory 134.
Direct placement in the private cache 124 may improve
performance by reducing access latency or eliminating
cache misses. After being placed in the private cache 124.
the message data may propagate to other processor cores
122 and/or to the memory 134 using a cache coherency
protocol of the processor 120. Thus, placing the message
data in a private cache 124 associated with a processor core
122 that is no longer the proper destination of the message
data (e.g., as a result of process migration to another
processor core 122, a stale association entry in the associa
tion table 130, or otherwise) may not result in incorrect
behavior, but may negatively impact performance.
0046. In some embodiments, in block 424, the computing
node 102 places the message data in a shared cache Such as
a shared L3 cache or a shared last-level cache. In that
example, the message data may be accessed by any of the
processor cores 122, but access may require one or more
cache misses and/or additional latency compared to access
ing the private cache 124. As described above, the comput
ing node 102 may place the message data in the shared cache
based on one or more cache placement policies, if the private
cache 124 is full or contains modified data, or for any other
reason. Similarly, in some embodiments in block 426, the
computing node 102 may place the message data in the
system memory 134. When stored in the system memory
134, the message data may be accessed by any of the
processor cores 122, but access may require one or more
cache misses and/or additional latency compared to access
ing the private cache 124. Placing the message data in the
system memory 134 may be appropriate for computing
nodes 102 that include a processor 120 without any shared
cache. After placing the incoming message data, the method
400 loops back to block 402 to monitor for additional
incoming message data.
0047 Referring back to block 410, if the association table
130 does not include an association entry for the destination
process identifier and virtual address range, the method 400
branches to block 428. In block 428, the computing node
102 places the incoming message data in memory of the
computing node 102 that is shared by the processor cores
122, allowing any of the processor cores 122 to access the
message data. In some embodiments, the host fabric inter
face 128 may place the incoming message data in the shared
memory, for example by moving or copying the incoming
message data to the appropriate destination location. In
some embodiments, in block 430 the computing node 102
places the incoming data in the system memory 134. Placing
the incoming data in the system memory 134 may be highly
compatible with different hardware and software. For
example, placing the incoming data in the system memory
134 may be compatible with processors 120 that do not
include shared cache. In some embodiments, in block 432
the computing node 102 places the incoming data in a shared
cache, Such as a shared L3 cache or a shared last-level cache.
Placing the incoming data in a shared cache may increase
performance over placing the incoming data in the system
memory 134 while still being accessible by any of the

US 2017/0094.01.0 A1

processor cores 122. After placing the incoming data in the
shared memory, the method 400 loops back to block 402 to
continue monitoring for incoming message data.
0048. It should be appreciated that, in some embodi
ments, the method 300 and/or 400 may be embodied as
various instructions stored on a computer-readable media,
which may be executed by the processor 120, various cores
122 of the processor 120, and/or other components of each
computing node 102 to cause the respective computing
device 102 perform the method 300 and/or 400. The com
puter-readable media may be embodied as any type of media
capable of being read by the computing node 102 including,
but not limited to, the memory 134, the data storage 136,
local memory of the processor 120 such as the private
cache?s) 124, other memory or data storage devices of the
computing node 102, portable media readable by a periph
eral device of the computing node 102, and/or other media.

Examples

0049. Illustrative examples of the technologies disclosed
herein are provided below. An embodiment of the technolo
gies may include any one or more, and any combination of
the examples described below.
0050 Example 1 includes a computing device for data
communication, the computing device comprising a plural
ity of processor cores; and a host fabric interface to (i)
receive a first message via a communication interface, (ii)
determine whether an association table includes a first entry,
wherein the first entry associates one or more parameters of
the first message to a destination processor core of the
plurality of processor cores, and (iii) cause a data transfer
agent associated with the destination processor core to
obtain message data of the first message in response to a
determination that the association table includes the first
entry.
0051 Example 2 includes the subject matter of Example
1, and wherein to determine whether the association table
includes the first entry comprises to determine a first net
work address and a first virtual address range based on the
first message; and search the association table for the first
network address and the first virtual address range to iden
tify the destination processor core.
0052 Example 3 includes the subject matter of any of
Examples 1 and 2, and wherein the host fabric interface is
further to store the message data in a shared memory
accessible by the plurality of processor cores in response to
a determination that the association table does not include
the first entry.
0053 Example 4 includes the subject matter of any of
Examples 1-3, and wherein the shared memory comprises a
system memory or a shared cache memory.
0054 Example 5 includes the subject matter of any of
Examples 1-4, and wherein the data transfer agent is further
to store the message data at a destination memory hierarchy
level in response to an obtaining of the message data.
0055 Example 6 includes the subject matter of any of
Examples 1-5, and wherein to store the message data com
prises to store the message data in a private cache associated
with the destination processor core.
0056. Example 7 includes the subject matter of any of
Examples 1-6, and wherein the data transfer agent is further
to determine the destination memory hierarchy level based
on a cache placement policy, wherein the cache placement

Mar. 30, 2017

policy defines a memory hierarchy level based on a network
address and a virtual address range.
0057 Example 8 includes the subject matter of any of
Examples 1-7, and wherein the cache placement policy is
configurable by a user of the computing device.
0.058 Example 9 includes the subject matter of any of
Examples 1-8, and wherein the data transfer agent is further
to determine the destination memory hierarchy level based
on a determination of whether a first virtual address range
associated with the first message is modified in a private
cache associated with the destination processor core.
0059 Example 10 includes the subject matter of any of
Examples 1-9, and wherein the host fabric interface is
further to intercept a first communication operation, wherein
the first communication operation is originated by a thread
executed by the destination processor core; determine, in
response to interception of the first communication opera
tion, a first network address of the thread executed by the
destination processor core and a first virtual address range of
the first communication operation; and add the first entry to
the association table, wherein the first entry associates the
first network address and the first virtual address range to the
destination processor core.
0060 Example 11 includes the subject matter of any of
Examples 1-10, and wherein the host fabric interface is
further to determine whether the association table is full; and
remove an old association from the association table in
response to a determination that the association table is full.
0061 Example 12 includes the subject matter of any of
Examples 1-11, and wherein the host fabric interface is
further to update a timestamp associated with the first entry
in response to the determination that the association table
includes the first entry.
0062) Example 13 includes the subject matter of any of
Examples 1-12, and wherein the host fabric interface is
further to determine, in response to the interception of the
first communication operation, whether the association table
includes a second entry that associates the first network
address and the first virtual address range to a second
processor core; and update the second entry to associate the
first network address and the first virtual address range to the
destination processor core in response to a determination
that the association table includes the second entry.
0063 Example 14 includes the subject matter of any of
Examples 1-13, and wherein the host fabric interface is
further to determine, in response to the interception of the
first communication operation, whether the association table
includes a second entry that associates a second network
address and the first virtual address range to a processor
core; and update the second entry to associate the first
network address and the first virtual address range to the
destination processor core in response to a determination
that the association table includes the second entry.
0064. Example 15 includes the subject matter of any of
Examples 1-14, and wherein the host fabric interface is
further to receive a command from software of the comput
ing device; and update the association table in response to
receipt of the command.
0065. Example 16 includes the subject matter of any of
Examples 1-15, and further including a processor, wherein
the processor includes the plurality of processor cores and
the host fabric interface.

US 2017/0094.01.0 A1

0066 Example 17 includes the subject matter of any of
Examples 1-16, and wherein the host fabric interface com
prises the communication interface.
0067 Example 18 includes the subject matter of any of
Examples 1-17, and wherein the destination processor core
comprises the data transfer agent.
0068 Example 19 includes a method for data communi
cation, the method comprising receiving, by a host fabric
interface of a computing device, a first message via a
communication interface; determining, by the host fabric
interface, whether an association table includes a first entry,
wherein the first entry associates one or more parameters of
the first message to a destination processor core of a plurality
of processor cores of the computing device; and causing, by
the host fabric interface, a data transfer agent associated with
the destination processor core to obtain message data of the
first message in response to determining the association
table includes the first entry.
0069. Example 20 includes the subject matter of Example
19, and wherein determining whether the association table
includes the first entry comprises determining a first network
address and a first virtual address range based on the first
message; and searching the association table for the first
network address and the first virtual address range to iden
tify the destination processor core.
0070. Example 21 includes the subject matter of any of
Examples 19 and 20, and further including storing, by the
host fabric interface, the message data in a shared memory
accessible by the plurality of processor cores in response to
determining that the association table does not include the
first entry.
0071 Example 22 includes the subject matter of any of
Examples 19-21, and wherein storing the message data in
the shared memory comprises storing the message data in a
system memory or a shared cache memory.
0072 Example 23 includes the subject matter of any of
Examples 19-22, and further including storing, by the com
puting device, the message data at a destination memory
hierarchy level in response to causing the data transfer agent
to obtain the message data.
0073. Example 24 includes the subject matter of any of
Examples 19-23, and wherein storing the message data
comprises storing the message data in a private cache
associated with the destination processor core.
0074 Example 25 includes the subject matter of any of
Examples 19-24, and further including determining, by the
computing device, the destination memory hierarchy level
based on a cache placement policy, wherein the cache
placement policy defines a memory hierarchy level based on
a network address and a virtual address range.
0075 Example 26 includes the subject matter of any of
Examples 19-25, and wherein the cache placement policy is
configurable by a user of the computing device.
0076 Example 27 includes the subject matter of any of
Examples 19-26, and wherein determining the destination
memory hierarchy level further comprises determining
whether a first virtual address range associated with the first
message is modified in a private cache associated with the
destination processor core.
0077. Example 28 includes the subject matter of any of
Examples 19-27, and further including intercepting, by the
host fabric interface, a first communication operation,
wherein the first communication operation is originated by
a thread executed by the destination processor core; deter

Mar. 30, 2017

mining, by the host fabric interface in response to intercept
ing the first communication operation, a first network
address of the thread executed by the destination processor
core and a first virtual address range of the first communi
cation operation; and adding, by the host fabric interface, the
first entry to the association table, wherein the first entry
associates the first network address and the first virtual
address range to the destination processor core.
0078 Example 29 includes the subject matter of any of
Examples 19-28, and further including determining, by the
host fabric interface, whether the association table is full;
and removing, by the host fabric interface, an old association
from the association table in response to determining the
association table is full.

(0079. Example 30 includes the subject matter of any of
Examples 19-29, and further including updating, by the host
fabric interface, a timestamp associated with the first entry
in response to determining the association table includes the
first entry.
0080 Example 31 includes the subject matter of any of
Examples 19-30, and further including determining, by the
host fabric interface in response to intercepting the first
communication operation, whether the association table
includes a second entry that associates the first network
address and the first virtual address range to a second
processor core; and updating, by the host fabric interface,
the second entry to associate the first network address and
the first virtual address range to the destination processor
core in response to determining that the association table
includes the second entry.
I0081 Example 32 includes the subject matter of any of
Examples 19-31, and further including determining, by the
host fabric interface in response to intercepting the first
communication operation, whether the association table
includes a second entry that associates a second network
address and the first virtual address range to a processor
core; and updating, by the host fabric interface, the second
entry to associate the first network address and the first
virtual address range to the destination processor core in
response to determining that the association table includes
the second entry.
I0082 Example 33 includes the subject matter of any of
Examples 19-32, and further including receiving, by the host
fabric interface, a command from Software of the computing
device; and updating, by the host fabric interface, the
association table in response to receiving the command.
I0083. Example 34 includes the subject matter of any of
Examples 19-33, and wherein a processor of the computing
device comprises the host fabric interface.
I0084 Example 35 includes the subject matter of any of
Examples 19-34, and wherein the host fabric interface
comprises the communication interface.
I0085 Example 36 includes the subject matter of any of
Examples 19-35, and wherein the destination processor core
comprises the data transfer agent.
I0086 Example 37 includes a computing device compris
ing a processor, and a memory having stored therein a
plurality of instructions that when executed by the processor
cause the computing device to perform the method of any of
Examples 19-36.
I0087. Example 38 includes one or more machine read
able storage media comprising a plurality of instructions

US 2017/0094.01.0 A1

stored thereon that in response to being executed result in a
computing device performing the method of any of
Examples 19-36.
0088. Example 39 includes a computing device compris
ing means for performing the method of any of Examples
19-36.

0089. Example 40 includes a computing device for data
communication, the computing device comprising means for
receiving, by a host fabric interface of the computing device,
a first message via a communication interface; means for
determining, by the host fabric interface, whether an asso
ciation table includes a first entry, wherein the first entry
associates one or more parameters of the first message to a
destination processor core of a plurality of processor cores
of the computing device; and means for causing, by the host
fabric interface, a data transfer agent associated with the
destination processor core to obtain message data of the first
message in response to determining the association table
includes the first entry.
0090. Example 41 includes the subject matter of Example
40, and wherein the means for determining whether the
association table includes the first entry comprises means for
determining a first network address and a first virtual address
range based on the first message; and means for searching
the association table for the first network address and the
first virtual address range to identify the destination proces
SO CO.

0091 Example 42 includes the subject matter of any of
Examples 40 and 41, and further including means for
storing, by the host fabric interface, the message data in a
shared memory accessible by the plurality of processor cores
in response to determining that the association table does not
include the first entry.
0092. Example 43 includes the subject matter of any of
Examples 40-42, and wherein the means for storing the
message data in the shared memory comprises means for
storing the message data in a system memory or a shared
cache memory.
0093 Example 44 includes the subject matter of any of
Examples 40-43, and further including means for storing the
message data at a destination memory hierarchy level in
response to causing the data transfer agent to obtain the
message data.
0094. Example 45 includes the subject matter of any of
Examples 40-44, and wherein the means for storing the
message data comprises means for storing the message data
in a private cache associated with the destination processor
COC.

0095 Example 46 includes the subject matter of any of
Examples 40-45, and further including means for determin
ing the destination memory hierarchy level based on a cache
placement policy, wherein the cache placement policy
defines a memory hierarchy level based on a network
address and a virtual address range.
0096. Example 47 includes the subject matter of any of
Examples 40-46, and wherein the cache placement policy is
configurable by a user of the computing device.
0097 Example 48 includes the subject matter of any of
Examples 40-47, and wherein the means for determining the
destination memory hierarchy level further comprises means
for determining whether a first virtual address range asso
ciated with the first message is modified in a private cache
associated with the destination processor core.

Mar. 30, 2017

0098. Example 49 includes the subject matter of any of
Examples 40-48, and further including means for intercept
ing, by the host fabric interface, a first communication
operation, wherein the first communication operation is
originated by a thread executed by the destination processor
core; means for determining, by the host fabric interface in
response to intercepting the first communication operation,
a first network address of the thread executed by the desti
nation processor core and a first virtual address range of the
first communication operation; and means for adding, by the
host fabric interface, the first entry to the association table,
wherein the first entry associates the first network address
and the first virtual address range to the destination proces
SO CO.

(0099 Example 50 includes the subject matter of any of
Examples 40-49, and further including means for determin
ing, by the host fabric interface, whether the association
table is full; and means for removing, by the host fabric
interface, an old association from the association table in
response to determining the association table is full.
0100 Example 51 includes the subject matter of any of
Examples 40-50, and further including means for updating,
by the host fabric interface, a timestamp associated with the
first entry in response to determining the association table
includes the first entry.
0101 Example 52 includes the subject matter of any of
Examples 40-51, and further including means for determin
ing, by the host fabric interface in response to intercepting
the first communication operation, whether the association
table includes a second entry that associates the first network
address and the first virtual address range to a second
processor core; and means for updating, by the host fabric
interface, the second entry to associate the first network
address and the first virtual address range to the destination
processor core in response to determining that the associa
tion table includes the second entry.
0102) Example 53 includes the subject matter of any of
Examples 40-52, and further including means for determin
ing, by the host fabric interface in response to intercepting
the first communication operation, whether the association
table includes a second entry that associates a second
network address and the first virtual address range to a
processor core; and means for updating, by the host fabric
interface, the second entry to associate the first network
address and the first virtual address range to the destination
processor core in response to determining that the associa
tion table includes the second entry.
0103 Example 54 includes the subject matter of any of
Examples 40-53, and further including means for receiving,
by the host fabric interface, a command from software of the
computing device; and means for updating, by the host
fabric interface, the association table in response to receiv
ing the command.
0104 Example 55 includes the subject matter of any of
Examples 40-54, and wherein a processor of the computing
device comprises the host fabric interface.
0105 Example 56 includes the subject matter of any of
Examples 40-55, and wherein the host fabric interface
comprises the communication interface.
0106 Example 57 includes the subject matter of any of
Examples 40-56, and wherein the destination processor core
comprises the data transfer agent.
0107 Example 58 includes a computing device for data
communication, the computing device comprising a plural

US 2017/0094.01.0 A1

ity of processor cores; and a host fabric interface, wherein
the host fabric interface comprises communication monitor
ing circuitry to receive a first message via a communication
interface; and association table circuitry to (i) determine
whether an association table includes a first entry, wherein
the first entry associates one or more parameters of the first
message to a destination processor core of the plurality of
processor cores, and (ii) cause data transfer agent circuitry
associated with the destination processor core to obtain
message data of the first message in response to a determi
nation that the association table includes the first entry.
0108 Example 59 includes the subject matter of Example
58, and wherein to determine whether the association table
includes the first entry comprises to determine a first net
work address and a first virtual address range based on the
first message; and search the association table for the first
network address and the first virtual address range to iden
tify the destination processor core.
0109 Example 60 includes the subject matter of any of
Examples 58 and 59, and wherein the data transfer agent
circuitry is further to store the message data at a destination
memory hierarchy level in response to an obtaining of the
message data.
0110. Example 61 includes the subject matter of any of
Examples 58-60, and wherein to store the message data
comprises to store the message data in a private cache
associated with the destination processor core.
0111 Example 62 includes the subject matter of any of
Examples 58-61, and wherein the data transfer agent cir
cuitry is further to determine the destination memory hier
archy level based on a cache placement policy, wherein the
cache placement policy defines a memory hierarchy level
based on a network address and a virtual address range.
0112 Example 63 includes the subject matter of any of
Examples 58-62, and wherein the host fabric interface
further comprises command monitoring circuitry to inter
cept a first communication operation, wherein the first
communication operation is originated by a thread executed
by the destination processor core; and the association table
circuitry is further to determine, in response to interception
of the first communication operation, a first network address
of the thread executed by the destination processor core and
a first virtual address range of the first communication
operation; and add the first entry to the association table,
wherein the first entry associates the first network address
and the first virtual address range to the destination proces
SO CO.

0113. Example 64 includes the subject matter of any of
Examples 58–63, and wherein the association table circuitry
is further to determine, in response to the interception of the
first communication operation, whether the association table
includes a second entry that associates the first network
address and the first virtual address range to a second
processor core; and update the second entry to associate the
first network address and the first virtual address range to the
destination processor core in response to a determination
that the association table includes the second entry.
0114 Example 65 includes the subject matter of any of
Examples 58-64, and wherein the association table circuitry
is further to determine, in response to the interception of the
first communication operation, whether the association table
includes a second entry that associates a second network
address and the first virtual address range to a processor
core; and update the second entry to associate the first

Mar. 30, 2017

network address and the first virtual address range to the
destination processor core in response to a determination
that the association table includes the second entry.
0115 Example 66 includes the subject matter of any of
Examples 58-65, and further including a processor, wherein
the processor includes the plurality of processor cores and
the host fabric interface.
0116 Example 67 includes the subject matter of any of
Examples 58-66, and wherein the host fabric interface
comprises the communication interface.
0117 Example 68 includes the subject matter of any of
Examples 58-67, and wherein the destination processor core
comprises the data transfer agent circuitry.

1. A computing device for data communication, the com
puting device comprising:

a plurality of processor cores; and
a host fabric interface to (i) receive a first message via a

communication interface, (ii) determine whether an
association table includes a first entry, wherein the first
entry associates one or more parameters of the first
message to a destination processor core of the plurality
of processor cores, and (iii) cause a data transfer agent
associated with the destination processor core to obtain
message data of the first message in response to a
determination that the association table includes the
first entry.

2. The computing device of claim 1, wherein to determine
whether the association table includes the first entry com
prises to:

determine a first network address and a first virtual
address range based on the first message; and

search the association table for the first network address
and the first virtual address range to identify the des
tination processor core.

3. The computing device of claim 1, wherein the data
transfer agent is further to store the message data at a
destination memory hierarchy level in response to an obtain
ing of the message data.

4. The computing device of claim 3, wherein to store the
message data comprises to store the message data in a
private cache associated with the destination processor core.

5. The computing device of claim 3, wherein the data
transfer agent is further to determine the destination memory
hierarchy level based on a cache placement policy, wherein
the cache placement policy defines a memory hierarchy
level based on a network address and a virtual address range.

6. The computing device of claim 1, wherein the host
fabric interface is further to:

intercept a first communication operation, wherein the
first communication operation is originated by a thread
executed by the destination processor core;

determine, in response to interception of the first com
munication operation, a first network address of the
thread executed by the destination processor core and a
first virtual address range of the first communication
operation; and

add the first entry to the association table, wherein the first
entry associates the first network address and the first
virtual address range to the destination processor core.

7. The computing device of claim 6, wherein the host
fabric interface is further to:

determine, in response to the interception of the first
communication operation, whether the association
table includes a second entry that associates the first

US 2017/0094.01.0 A1

network address and the first virtual address range to a
second processor core; and

update the second entry to associate the first network
address and the first virtual address range to the desti
nation processor core in response to a determination
that the association table includes the second entry.

8. The computing device of claim 6, wherein the host
fabric interface is further to:

determine, in response to the interception of the first
communication operation, whether the association
table includes a second entry that associates a second
network address and the first virtual address range to a
processor core; and

update the second entry to associate the first network
address and the first virtual address range to the desti
nation processor core in response to a determination
that the association table includes the second entry.

9. The computing device of claim 1, further comprising a
processor, wherein the processor includes the plurality of
processor cores and the host fabric interface.

10. The computing device of claim 1, wherein the host
fabric interface comprises the communication interface.

11. The computing device of claim 1, wherein the desti
nation processor core comprises the data transfer agent.

12. A method for data communication, the method com
prising:

receiving, by a host fabric interface of a computing
device, a first message via a communication interface;

determining, by the host fabric interface, whether an
association table includes a first entry, wherein the first
entry associates one or more parameters of the first
message to a destination processor core of a plurality of
processor cores of the computing device; and

causing, by the host fabric interface, a data transfer agent
associated with the destination processor core to obtain
message data of the first message in response to deter
mining the association table includes the first entry.

13. The method of claim 12, wherein determining whether
the association table includes the first entry comprises:

determining a first network address and a first virtual
address range based on the first message; and

searching the association table for the first network
address and the first virtual address range to identify the
destination processor core.

14. The method of claim 12, further comprising storing,
by the computing device, the message data at a destination
memory hierarchy level in response to causing the data
transfer agent to obtain the message data.

15. The method of claim 14, wherein storing the message
data comprises storing the message data in a private cache
associated with the destination processor core.

16. The method of claim 12, further comprising:
intercepting, by the host fabric interface, a first commu

nication operation, wherein the first communication
operation is originated by a thread executed by the
destination processor core;

determining, by the host fabric interface in response to
intercepting the first communication operation, a first
network address of the thread executed by the destina
tion processor core and a first virtual address range of
the first communication operation; and

adding, by the host fabric interface, the first entry to the
association table, wherein the first entry associates the

Mar. 30, 2017

first network address and the first virtual address range
to the destination processor core.

17. The method of claim 16, further comprising:
determining, by the host fabric interface in response to

intercepting the first communication operation,
whether the association table includes a second entry
that associates the first network address and the first
virtual address range to a second processor core; and

updating, by the host fabric interface, the second entry to
associate the first network address and the first virtual
address range to the destination processor core in
response to determining that the association table
includes the second entry.

18. The method of claim 16, further comprising:
determining, by the host fabric interface in response to

intercepting the first communication operation,
whether the association table includes a second entry
that associates a second network address and the first
virtual address range to a processor core; and

updating, by the host fabric interface, the second entry to
associate the first network address and the first virtual
address range to the destination processor core in
response to determining that the association table
includes the second entry.

19. One or more computer-readable storage media com
prising a plurality of instructions that in response to being
executed cause a computing device to:

receive, by a host fabric interface of the computing
device, a first message via a communication interface;

determine, by the host fabric interface, whether an asso
ciation table includes a first entry, wherein the first
entry associates one or more parameters of the first
message to a destination processor core of a plurality of
processor cores of the computing device; and

cause, by the host fabric interface, a data transfer agent
associated with the destination processor core to obtain
message data of the first message in response to deter
mining the association table includes the first entry.

20. The one or more computer-readable storage media of
claim 19, whereinto determine whether the association table
includes the first entry comprises to:

determine a first network address and a first virtual
address range based on the first message; and

search the association table for the first network address
and the first virtual address range to identify the des
tination processor core.

21. The one or more computer-readable storage media of
claim 19, further comprising a plurality of instructions that
in response to being executed cause the computing device to
store the message data at a destination memory hierarchy
level in response to causing the data transfer agent to obtain
the message data.

22. The one or more computer-readable storage media of
claim 21, wherein to store the message data comprises to
store the message data in a private cache associated with the
destination processor core.

23. The one or more computer-readable storage media of
claim 19, further comprising a plurality of instructions that
in response to being executed cause the computing device
tO:

intercept, by the host fabric interface, a first communica
tion operation, wherein the first communication opera
tion is originated by a thread executed by the destina
tion processor core;

US 2017/0094.01.0 A1
12

determine, by the host fabric interface in response to
intercepting the first communication operation, a first
network address of the thread executed by the destina
tion processor core and a first virtual address range of
the first communication operation; and

add, by the host fabric interface, the first entry to the
association table, wherein the first entry associates the
first network address and the first virtual address range
to the destination processor core.

24. The one or more computer-readable storage media of
claim 23, further comprising a plurality of instructions that
in response to being executed cause the computing device
tO:

determine, by the host fabric interface in response to
intercepting the first communication operation,
whether the association table includes a second entry
that associates the first network address and the first
virtual address range to a second processor core; and

Mar. 30, 2017

update, by the host fabric interface, the second entry to
associate the first network address and the first virtual
address range to the destination processor core in
response to determining that the association table
includes the second entry.

25. The one or more computer-readable storage media of
claim 23, further comprising a plurality of instructions that
in response to being executed cause the computing device
tO:

determine, by the host fabric interface in response to
intercepting the first communication operation,
whether the association table includes a second entry
that associates a second network address and the first
virtual address range to a processor core; and

update, by the host fabric interface, the second entry to
associate the first network address and the first virtual
address range to the destination processor core in
response to determining that the association table
includes the second entry.

k k k k k

