(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
23 November 2023 (23.11.2023)

(10) International Publication Number

WO 2023/222889 Al

WIPO I PCT

(51) International Patent Classification:
GO6N 3/045 (2023.01) GO6N 3/084 (2023.01)
GO6N 3/0464 (2023.01) GO6N 3/0895 (2023.01)

(21) International Application Number:
PCT/EP2023/063496

(22) International Filing Date:
19 May 2023 (19.05.2023)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

63/344,026 19 May 2022 (19.05.2022) UsS

(71) Applicant: DEEPMIND TECHNOLOGIES LIMITED
[GB/GB]; 5 New Street Square, London EC4A 3TW (GB).

(72) Inventors: MITROVIC, Jovana, 6 Pancras Square, Lon-
don N1C 4AG (GB). BOSNJAK, Matko;, 6 Pancras
Square, London N1C 4AG (GB). RICHEMOND, Pierre; 6
Pancras Square, London N1C 4AG (GB). TOMASEYV, Ne-
nad; 6 Pancras Square, London N1C 4AG (GB). STRUB,

Florian; 8 Rue de Londres, 75009 Paris (FR). WALKER,
Jacob Charles; 6 Pancras Square, London N1C 4AG (GB).
HILL, Felix George; 6 Pancras Square, London N1C 4AG
(GB). BUESING, Lars; 6 Pancras Square, London N1C
4AG (GB). PASCANU, Razvan; 6 Pancras Square, Lon-
don N1C 4AG (GB). BLUNDELL, Charles; 6 Pancras
Square, London N1C 4AG (GB).

Agent: FISH & RICHARDSON P.C.; Highlight Business
Towers, Mies-van-der-Rohe-Str. 8, 80807 Munich (DE).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ,DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,

(54) Title: CONTRASTIVE LEARNING USING POSITIVE PSEUDO LABELS

Output
12

FIG. 1

Neural Network
110

Task Sub Neural
Network 130

Training System 100

SEMPPL Training Engine
140

Embeddings

Online Projection
Bub Neural Network
120

A

Y

Queue
145

Input
102

TN

|

Hybrid Training Dataset
150

Labeled
Training

Unlabeled
Training

Inputs Inputs
152 154

N

wo 20237222889 A1 |0 0000 AP0 0 0 0 0

(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training
a neural network to perform a machine learning task on one or more received inputs by using a hybrid training dataset with a semi-su-
pervised learning technique. The hybrid training dataset includes multiple unlabeled training inputs and multiple labeled training inputs
and, in some cases, more unlabeled training inputs than labeled training inputs.

[Continued on next page]

WO 2023/222889 A |10 00 000 00RO 00 0 00O

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE,LR,LS, MW, MZ NA,RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2023/222889 PCT/EP2023/063496

CONTRASTIVE LEARNING USING POSITIVE PSEUDO LABELS

CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to U.S. Provisional Application No. 63/344,026,
filed on May 19, 2022. The disclosure of the prior application is considered part of and is

incorporated by reference in the disclosure of this application.

BACKGROUND

This specification relates to training neural networks.

Neural networks are machine learning models that employ one or more layers of
nonlinear units to predict an output for a received input. Some neural networks include one
or more hidden layers in addition to an output layer. The output of each hidden layer is used
as input to the next layer in the network, i.e., the next hidden layer or the output layer. Each
layer of the network generates an output from a received input in accordance with current

values of a respective set of parameters.

SUMMARY

This specification describes a system implemented as computer programs on one or
more computers in one or more locations that implements and trains a neural network by
using a semi-supervised learning technique with both labeled and unlabeled data. Once
trained, the neural network can perform a machine learning task on one or more received
inputs.

According to an aspect, there is provided a computer-implemented method
comprising: obtaining a batch of training inputs from a hybrid training dataset, wherein the
batch of training inputs comprises one or more unlabeled training inputs and one or more
labeled training inputs, each labeled training input having a respective ground truth label;
generating a respective first augmented view of each training input in the batch; processing,
using an online neural network and in accordance with online network parameter values, the
respective first augmented view of each training input to generate a respective online
embedding of the training input; generating a respective second augmented view of each
training input in the batch, wherein, for each training input in the batch, the respective second
augmented view is different from the respective first augmented view, processing, using a
target neural network and in accordance with target network parameter values, the respective

second augmented view of each training input to generate a respective target embedding of

WO 2023/222889 PCT/EP2023/063496

the training input; updating a queue of embeddings to include respective target embeddings
generated by using the target neural network for the one or more labeled training inputs in the
batch; generating, for each of the one or more unlabeled training inputs in the batch, a pseudo
label based on a measure of similarity between an online embedding of the unlabeled training
input and each respective target embedding in the queue of embeddings; determining, for
each training input in the batch, a respective semantic positive sample, comprising sampling,
from the queue of embeddings and as the semantic positive sample, an embedding that has
been generated for a labeled training input having the same pseudo label or the same ground
truth label as the training input; determining a gradient with respect to the online network
parameter values of a loss function that includes a first term that encourages similarity
between the respective online embedding and the respective semantic positive sample for
each training input; and determining, based on the gradient of the loss function with respect
to the online network parameter values, an update to the online network parameter values.

The loss function may include a second term that encourages similarity between the
respective online and target embeddings for each training input.

The online neural network may comprise an online projection sub neural network and
an online prediction sub neural network, the online projection sub neural network and the
target neural network having a same network architecture but different parameter values.

The target network parameter values may be an exponential moving average of online
projection sub network parameter values of the online projection sub neural network . The
queue of embeddings may have a fixed capacity which is dependent on a size of the batch of
training inputs.

The queue of embeddings may include respective target embeddings generated by
using the target neural network for one or more labeled training inputs in a previously
obtained batch.

The training inputs may comprise image data.

The training inputs may comprise audio data.

Generating the respective first augmented view of each training input in the batch
may comprise: sampling one or more augmentation policies from a set of augmentation
policies; and sequentially applying the one or more sampled augmentation policies to each
training input in the batch.

The set of augmentation policies may comprise a random cropping policy followed by

resizing policy, a random color distortion policy, or a random Gaussian blur policy.

WO 2023/222889 PCT/EP2023/063496

Generating, for each of the one or more unlabeled training inputs in the batch, the
pseudo label may comprises: using a k-nearest neighbors model to determine k nearest
embeddings of the unlabeled training input from the queue of embeddings, where k is a
positive integer; and generating the pseudo label for the unlabeled training input from the
ground truth labels associated with the k nearest embeddings.

In some cases, k =1, and the pseudo label may be the same as the ground truth label
associated with the determined nearest embedding.

In some cases, k >= 2, and the pseudo label may be a highest occurring ground truth
label among the determined nearest embeddings.

The k-nearest neighbors model may be configured to use cosine similarity to
determine the k nearest embeddings of each unlabeled training input.

Generating, for each of the one or more unlabeled training inputs in the batch, the
pseudo label may comprise: selecting, from among multiple k-nearest neighbors models that
each correspond to a different augmentation policy, one or more k-nearest neighbors models;
and using each selected k-nearest neighbors model to determine k nearest embeddings of the
unlabeled training input from the queue of embeddings.

The hybrid training dataset may comprise more unlabeled training inputs than labeled
training inputs.

The method may further comprise training a task sub neural network together with the
online projection sub neural network to optimize a supervised, task-specific loss for a
downstream task, wherein, for a training input from the hybrid training dataset, the task sub
neural network may be configured to process a projection embedding generated by the online
projection sub neural network in accordance with task sub network parameter values to
generate a downstream task output for the training input.

The downstream task may comprise a classification task, and wherein the supervised,
task-specific loss may comprise a cross-entropy loss.

According to another aspect, there is provided one or more computer-readable storage
media encoded with instructions that, when executed by one or more computers, cause the
one or more computers to perform the operations of the above method aspect.

According to yet another aspect, there is provided a system comprising one or more
computers and one or more storage devices storing instructions that when executed by one or
more computers cause the one or more computers to perform the respective operations of the

above method aspect.

WO 2023/222889 PCT/EP2023/063496

According to a further aspect, there is provided a method comprising: receiving a
network input; and processing the network input using a neural network comprising an online
projection sub neural network and a task sub neural network trained by the method of any
above aspect to generate one or more network outputs for the network input, comprising:
processing the network input using the online projection sub neural network to generate a
projection embedding; and processing the projection embedding using the task sub neural
network to generate the one or more network outputs.

It will be appreciated that features described in the context of one aspect may be
combined with features described in the context of another aspect.

The subject matter described in this specification can be implemented in particular
embodiments so as to realize one or more of the following advantages. The system as
described in this specification pre-trains a neural network by using a semi-supervised learning
technique that effectively combines labeled and unlabeled data to generate informative
representations that may later be useful in a specific downstream task. The system uses a
relatively small amount of labeled data to impute the pseudo label information for a vastly
larger amount of unlabeled data, and subsequently incorporates the imputed pseudo label
information into a contrastive learning scheme to train the neural network to generate similar
representations for each pair of training inputs having the same ground truth or pseudo labels.
In particular, unlike many existing semi-supervised learning techniques which use the
available label information as supervision within a cross-entropy objective, the described
system uses this label information to determine which training inputs should have similar
representations.

Further, the pre-trained neural network can then be used to effectively adapt to a
specific machine learning task using orders of magnitude less data than was used to pre-train
the network. For example, while pre-training the network may utilize billions of unlabeled
training inputs, adapting the network for a specific task may require merely a few thousand
labeled training inputs. Compared with other conventional training approaches, the system
can thus make more efficient use of computational resources, e.g., processor cycles, memory,
or both during training. The system can also train the neural network using orders of
magnitude smaller amount of labeled data and, correspondingly, at orders of magnitude lower
human labor cost associated with data labeling, while still ensuring a competitive
performance of the trained neural network on a range of tasks that match or even exceed the

state—of—the—art while additionally being generalizable and easily adaptable to new tasks.

WO 2023/222889 PCT/EP2023/063496

Pre-training large neural networks that can be used for real-world tasks generally
results in significant carbon dioxide (COz) emissions and a significant amount of electricity
usage. By decreasing the number of FLOPs required to be performed and performing fewer
training iterations for the reasons described above, the described techniques significantly
reduce the CO: footprint of the pre-training process while also significantly reducing the
amount of electricity consumed by the pre-training process.

The details of one or more embodiments of the subject matter of this specification are
set forth in the accompanying drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent from the description, the

drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example training system.

FIG. 2 is an example illustration of a semantic positives via pseudo-labels (SEMPPL)
training process.

FIG. 3 is a flow diagram of an example process for training an online neural network.

FIG. 4 shows a quantitative example of the performance gains that can be achieved by
using the SEMPPL process described in this specification.

Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION

This specification describes a system implemented as computer programs on one or
more computers in one or more locations that implements and trains a neural network that
can perform a machine learning task on one or more received inputs. Depending on the task,
the neural network can be configured to receive any kind of digital data input and to generate
any kind of score, classification, or regression output based on the input.

For example, the neural network can be configured to perform an image processing
task, e.g., to receive an input comprising image data which includes a plurality of pixels. The
image data may for example comprise one or more images or features that have been
extracted from one or more images. The neural network can be configured to process the

image data to generate an output for the image processing task.

WO 2023/222889 PCT/EP2023/063496

For example, if the task is image classification, the outputs generated by the neural
network for a given image may be scores for each of a set of object categories, with each
score representing an estimated likelihood that the image contains an image of an object
belonging to the category.

As another example, if the task is object detection, the outputs generated by the neural
network for a given image may be one or more bounding boxes each associated with
respective scores, with each bounding box representing an estimated location in the image
and the respective score representing an estimated likelihood that an object is depicted at the
location in the image, 1.e., within the bounding box.

As another example, if the task is semantic segmentation, the outputs generated by the
neural network for a given image may be labels for each of a plurality of pixels in the image,
with each pixel being labeled as belonging to one of a set of object categories. Alternatively,
the outputs can be, for each of the plurality of pixels, a set of scores that includes a respective
score for each of the set of object categories that represents the likelihood that the pixel
belongs to an object from the object category.

As another example, if the inputs to the neural network are Internet resources
(e.g., web pages), documents, or portions of documents or features extracted from Internet
resources, documents, or portions of documents, the output generated by the neural network
for a given Internet resource, document, or portion of a document may be a score for each of
a set of topics, with each score representing an estimated likelihood that the Internet resource,
document, or document portion is about the topic.

As another example, if the inputs to the neural network are features of an impression
context for a particular advertisement, the output generated by the neural network may be a
score that represents an estimated likelihood that the particular advertisement will be clicked
on.

As another example, if the inputs to the neural network are features of a personalized
recommendation for a user, e.g., features characterizing the context for the recommendation,
e.g., features characterizing previous actions taken by the user, the output generated by the
neural network may be a score for each of a set of content items, with each score representing
an estimated likelihood that the user will respond favorably to being recommended the
content item.

As another example, the task can be a health prediction task, where the inputis a
sequence derived from electronic health record data for a patient and the output is a

prediction that is relevant to the future health of the patient, e.g., a predicted treatment that
6

WO 2023/222889 PCT/EP2023/063496

should be prescribed to the patient, the likelihood that an adverse health event will occur to
the patient, or a predicted diagnosis for the patient.

As another example, the task can be an agent control task, where the input is a
sequence of observations or other data characterizing states of an environment (such as a real-
world or simulated environment) and the output defines an action to be performed by the
agent in response to the most recent data in the sequence. The agent can be, e.g., a real-world
or simulated robot, a control system for an industrial facility (e.g. a temperature control
system for the facility, or a system which partitions tasks among units of the facility), or a
control system that controls a different kind of agent. The observations may be the outputs of
sensors (e.g. cameras) monitoring the environment.

FIG. 1 shows an example training system 100. The training system 100 is an example
of a system implemented as computer programs on one or more computers in one or more
locations, in which the systems, components, and techniques described below are
implemented.

The training system 100 includes a neural network 110 and a semantic positives via
pseudo-labels (SEMPPL) training engine 120, or “training engine” for short. The neural
network 110 is configured to receive an input 102 and generate one or more outputs 112
based on the received input 102 and on values of the network parameters of the neural
network 110.

At a high level, the neural network 110 includes an online projection sub neural
network 120 and a task sub neural network 130. During each forward pass for inference
computation, the online projection sub neural network 120 processes the input 102 to
generate a projection embedding, which is then received and processed by the task sub neural
network 130 to generate the one or more network outputs 112. An embedding refers to an
ordered collection of numerical values, e.g., a vector, matrix, or other tensor of numerical
values.

A sub neural network of a neural network refers to a group of one or more neural
network layers in the neural network. Each sub neural network can be implemented with any
appropriate neural network architecture that enables it to perform its described function. A
projection embedding means an embedding produced by successively applying the functions
of the successive layer(s) of the sub neural network 120 to the input 102.

In some examples, when the input 102 to the neural network 110 includes images, the
online projection sub neural network 120 can be a convolutional sub neural network, i.e., that

includes one or more convolutional layers, that is configured to process the image to generate

7

WO 2023/222889 PCT/EP2023/063496

an embedding for the image. When the input 102 includes text data or other lower-
dimensional data, the online projection sub neural network 120 can additionally or
alternatively include one or more fully-connected layers. The task sub neural network 130
can include one or more output layers that are configured to process the embedding to
generate the output. For example, when the task is a classification task, the task sub neural
network 130 can include one or more fully-connected layers followed by a softmax layer that
generates a score distribution over a set of categories. As another example, when the task is a
regression task, the task sub neural network 130 can include one or more linear layer that
generate the output value(s).

Before the neural network 110 can be used to perform any of the tasks, the training
engine 140 of the training system 100 trains the neural network 110 on a hybrid training
dataset 150, i.e., so that the neural network 110 can effectively perform the task on new data.

A hybrid training dataset 150 is a dataset which includes both labeled training inputs
152 for which known, ground truth labels, e.g., a ground truth classification of a training
input, that should be generated by the neural network 110 are available to the training system
100, and unlabeled training inputs 154 for which no known, ground truth labels are available.
In various cases, the training inputs (either labeled 152 or unlabeled 154) can be or include
image data, audio data, textual data, or some combination thereof. In various cases, because
unlabeled training data is relatively more easily obtainable in massive volumes across a wide
range of tasks, i.e., compared with labeled (e.g., human or machine annotated) training data,
the hybrid training dataset 150 will include more, sometimes multiple times more, unlabeled
training inputs 154 than labeled training inputs 152.

By leveraging a semi-supervised learning technique (a “semantic positives via
pseudo-labels” or “SEMPPL” technique) and the abundance of the unlabeled training data,
the training engine 140 of the training system 100 pre-trains the online projection sub neural
network 120 on the hybrid training dataset 150 to determine trained parameter values of the
online projection sub neural network 120. The purpose of the pre-training process may be
viewed as learning to generate meaningful embeddings that could be useful in a wide range
of downstream tasks and to make the adaptation of a larger neural network 110 having the
online projection sub neural network 120 to a particular downstream task faster and more
computing resource efficient.

In particular, by maintaining a queue of embeddings 145 generated from the labeled
training inputs 152 during the pre-training stage, the training engine 140 is able to select one

or more similar embeddings from the queue for an unlabeled training input and

8

WO 2023/222889 PCT/EP2023/063496

correspondingly use the ground truth labels of the selected similar embeddings to generate a
pseudo label for the unlabeled training input. The selection of similar embeddings includes
querying the queue of embeddings 145 using a k-nearest neighbor (“k-NN”) algorithm or a
similar technique. In this way, the training engine 140 ensures that any training input from
the hybrid training dataset 150 is labeled, i.e., either has an already available ground truth
label, or has an imputed pseudo label.

After the pre-training has completed, the pre-trained online projection sub neural
network 120 may be adapted for a downstream task. The downstream task can be any of the
tasks mentioned above. In particular, the training system 100 may train the online projection
sub neural network 120 together with the task sub neural network 130, which in some cases is
an untrained neural network, e.g., a neural network that has randomly initialized parameter
values, that has not previously been trained during pre-training stage. During the adaptation
process, the parameter values of the task sub neural network 130 and, in some cases, the
parameter values of the online projection sub neural network 120 learned during the pre-
training are adjusted so that the neural network 110 having both sub neural networks 120 and
130 1s adapted to the downstream task.

The training engine 140 can adjust the parameter values based on optimizing a
supervised, task-specific loss for the downstream task. In some examples, if the downstream
task is a classification task, the supervised loss can be a cross-entropy loss; if the downstream
task is a regression task, the supervised loss can be a mean squared error (MSE) loss function.
The adaptation process can use labeled training inputs 152 within the same hybrid training
dataset 150, or alternatively use a different labeled training dataset that is specifically curated
for that downstream task.

Once both pre-training and adaptation processes have completed, the training system
100 can provide data specifying the trained neural network 110, e.g., the trained values of the
network parameters of the online projection sub neural network 120 and the task sub neural
network 130 and data specifying the architectures of sub neural networks 120 and 130, to
another system, e.g., an inference system in a deployment environment, for use in processing
new inputs. Instead of or in addition to providing the data specifying the trained neural
network 110, the training system 100 can use the trained neural network to process new
inputs 102 and generate corresponding outputs 112.

FIG. 2 is an example illustration of a semantic positives via pseudo-labels (SEMPPL)
training process. In general, one iteration of this SEMPPL training process can be performed

on each training input 201 within a batch of training inputs sampled from the hybrid training

9

WO 2023/222889 PCT/EP2023/063496

dataset 250. As illustrated, the SEMPPL training process includes three stages: a contrastive
learning stage during which an (optional) augmentation-based contrastive learning loss term
is computed, followed by a pseudo label generation stage (which is performed for each
unlabeled training input), followed by a semantic positive query stage during which a
semantic positive-based contrastive learning loss term is computed. After performing one
SEMPPL training iteration for each training input 201 within the batch, the parameters of an
online neural network can then be updated based on optimizing a SEMPPL loss function,
which includes both contrastive learning loss terms that have been computed with respect to
the entire batch of training inputs.

The contrastive learning stage begins with using one or more different augmentation
policies to transform each training input 201 within the batch of training inputs to generate a
first augmented view 203 and a second augmented view 205 of the training input 201. The
training input 201 can be either labeled, or unlabeled. The specific operations to be performed
to transform each training input may vary from one implementation to another, e.g.,
depending on the data modality of the training input 201.

By way of illustration and not limitation, when the training inputs include image data,

the following set of augmentation policies can be used to transform each training input.

Random cropping Crop the image at a randomly selected point, e.g., at the center

or at one of the four corners

Random resizing Randomly select a patch of the image, between a minimum
and maximum crop area of the image, with aspect ratio
sampled log-uniformly in [3/4, 4/3]. Upscale the patch, via

bicubic interpolation, to a square image of size s X s

Horizontal flipping —

Color distortion Randomly adjust brightness, contrast, saturation and hue of
the image, in a random order, uniformly by a value in [—a, a]

where a is the maximum adjustment

Gray scaling Combine the channels into one channel with value 0.2989r +

0.5870g + 0.1140b

Random blur Apply a 23 x 23 Gaussian kernel with standard deviation
sampled uniformly in [0.1, 2.0]

10

WO 2023/222889 PCT/EP2023/063496

Random solarization Threshold each channel value such that all values less than 0.5
are replaced by 0 and all values above or equal to 0.5 are

replaced with 1

Saliency masking Remove at least some of the background with homogeneous
grayscale noise having a randomly sampled the grayscale

level

Table 1

Analogously, when the training inputs include text data, augmentation policies that
can be used to transform each training input can for example include synonym replacement,
random insertion, random swap, random deletion, and so on; when the training inputs include
audio data, augmentation policies that can be used to transform each training input can for
example include noise injection, time shifting, pitch changing, and so on.

To transform each training input 201 within a sampled batch to generate the first
augmented view 203 and the second augmented view 205 of the training input, the training
engine can sample a first sequence of one or more augmentation policies (“al”) and a second
sequence of one or more augmentation policies (“a2”) from the set of augmentation policies.
The training engine can then sequentially apply the first sequence of one or more sampled
augmentation policies within the first sequence to the training input to generate the first
augmented view and apply the second sequence of one or more sampled augmentation
policies within the second sequence to the training input to generate the second augmented
view.

When sampled from the set of augmentation policies with at least some measure of
randomness, the first and second sequences of augmentation policies, and hence, the resulting
augmented views of the same training input, will usually be different from each other. For
example, the first augmented view 203 is generated from the training input 201 as a result of
applying a random cropping policy followed by a resizing policy followed by a random
Gaussian blur policy, while the second augmented view 205 is generated from the training
input 201 as a result of applying a random cropping policy followed by a random color
distortion policy followed by a random solarization policy.

For each training input 201 within the sampled batch, the training engine provides the
first augmented view 203 of the training input as input to the online neural network 210. As

illustrated in FIG. 2, the online neural network 210 includes an online projection sub neural

11

WO 2023/222889 PCT/EP2023/063496

network 220 and an online prediction sub neural network 215. The online projection sub
neural network 220, in turn, includes an encoder backbone 211 and a projector head 213.

The online neural network 210 processes, in accordance with the current values of the
parameters of the online neural network (“online network parameter values”), the first
augmented view 203 to generate an online embedding 216 of the training input 201.

Specifically, the online neural network 210 first uses the encoder backbone 211 to
encode the first augmented view 203 into an encoded embedding 212, then uses the projector
head 213 to project the encoded embedding 212 into a projection embedding space to
generate a projection embedding 214, and finally uses the online prediction sub neural
network 215 to process the projection embedding 214 to generate the online embedding 216.
In some implementations, the output of the online prediction sub neural network 215 is
directly used as the online embedding 216 while in other implementations, the online
embedding 216 is a further transformed, e.g., L-2 normalized, output of the online prediction
sub neural network 215.

For each training input 201 within the sampled batch, the training engine provides the
second augmented view 205 of the training input as input to the target neural network 240,
which is another instance of the online projection sub neural network 220 that is used to assist
in the SEMPPL training process. Thus, as illustrated in FIG. 2, the target neural network 240
includes a target encoder backbone 231 and a target projector head 233.

In particular, the target neural network 240 has the same network architecture but, at
at least some points during the training, different parameter values than the online projection
sub neural network 220.

The training engine can make the values of the parameters of the target neural
network 240 (“the target network parameter values”) different from the online projection sub
network parameter values in any of a variety of ways.

For example, the training engine uses the target neural network 240 to mimic the
online projection sub neural network 220 in that, at intervals, online projection sub network
parameter values from the online projection sub neural network 220 are copied across to the
target neural network 240.

As another example, the training engine can make the target network parameter
values to be an exponential moving average of online projection sub network parameter
values of the online projection sub neural network 220. That is, rather than copying the online
projection sub network parameter values to the target neural network, the target network

parameter values slowly track the online projection sub network parameter values according

12

WO 2023/222889 PCT/EP2023/063496

to 8’ « 70 + (1 — 7)8' where 8’ denotes the target network parameter values and 8 denotes
the online projection sub network parameter values and 7 < 1.

The target neural network 240 processes, in accordance with the target network
parameter values, the second augmented view 205 to generate a target embedding 234 of the
training input 201. Specifically, the target neural network 240 first uses the target encoder
backbone 231 to encode the second augmented view 205 into an encoded embedding 232,
then uses the target projector head 233 to project the encoded embedding 232 into a
projection embedding space to generate the target embedding 234. Like the online neural
network 210, in some implementations, the output of the target sub neural network 240 is
directly used as the target embedding 234 while in other implementations, the target
embedding 234 is the further transformed, e.g., L-2 normalized, output of the target sub
neural network 240.

The augmentation-based contrastive learning loss term, which is optionally used by
the system, can now be calculated. For each training input 201, this loss term encourages
similarity—i.e., reduces the distance in the embedding space—between the online embedding
216 and the target embedding 234 that have been generated by the online neural network 210
and the target neural network 240, respectively. As described above, the two embeddings
have been generated from different augmented views 203 and 205 of each training input 201,
where each augmented view is generated by applying different data augmentation policies to
the training input.

On the other hand, this loss term encourages dissimilarity—i.e., increases the distance
in the embedding space—between the online embedding 216 and the target embedding 234
that have been generated by the online neural network 210 and the target neural network 240
from the training input 201 and any other training input within the batch different (that is
different than the training input 201), respectively.

The augmentation-based contrastive learning loss term thus trains the encoder
backbone 211 of the online neural network 210 to generate similar embeddings (that are close
to each other in the embedding space) for a pair of different augmented views of the same
training input, and to generate distinct embeddings (that are apart from each other in the
embedding space) for different training inputs.

The augmentation-based contrastive learning loss term, when used, can for example

be computed as:

13

WO 2023/222889 PCT/EP2023/063496

(p(zm ’ m Wt
L = log ————
e n; p(&m ; Zmt) +Z:x:n€N(m) p(2m m)’

where B represents the batch of training inputs x; — x,,,; @(x1,%,) = 7 exp(< x4, X, >/7)
is the scoring function, T > 0 is a scalar temperature and <-,»> denotes the Euclidean dot
product; Z,t = h(g(f(x,1))) is the online embedding (the hat operator indicates that it’s L-2
normalized), where h denotes the parameters of the online prediction sub neural network, g
denotes the parameters of the projector head, and f denotes the parameters of the encoder

backbone of the online neural network; 222, = g.(f;(x,2)) is the target embedding, where g,

> m t
denotes the parameters of the target projector head, and f; denotes the parameters of the
target encoder backbone of the target neural network; NV (x;) is the set of negative samples

(different training inputs randomly sampled from the same batch), and Z Naz = g:(fe(x)) 18

the target embedding generated by the target neural network for each such negative sample.

Moreover, if the training input 201 is a labeled training input, the training engine will
update a first-in-first-out (FIFO) queue 250 to include (a copy of) the target embedding 234
of the training input 201. In this way, the FIFO queue 250, which will be accessed during the
subsequent stages of the SEMPPL training iteration, stores the target embeddings have been
generated by using the target neural network 240 for the one or more labeled training inputs
within the batch. Although logically described as a first-in-first-out (FIFO) queue, it will be
appreciated that any another type of data structure (e.g., buffer or list) can be used.

At the beginning of the SEMPPL training, the FIFO queue 250 can be initialized with
random vectors. And then for each subsequent SEMPPL training iteration, the target
embeddings that are generated by using the target neural network 240 for the labeled training
inputs within the batch of training inputs sampled for the SEMPPL training iteration will be
appended to the FIFO queue 250.

The FIFO queue 250 of embeddings in the example of FIG. 2 can have a fixed
capacity C, which is usually dependent on a size B of the batch of training inputs. For
example, the capacity C can be set to be no smaller than size B of the batch of training inputs,
such that the queue 250 is capable of storing not only the target embeddings generated for the
labeled training inputs within the currently sampled batch, but also the target embeddings
generated for the labeled training inputs within one or more previously sampled batches. For
example, C = 10B, or 20B, where B = 2048, 4096 or the like. As the amount and diversity

of the available target embeddings increase, the training effectiveness may also be improved.

14

WO 2023/222889 PCT/EP2023/063496

Proceeding now to the pseudo label generation stage, the training engine accesses the
FIFO queue 250 of target embeddings to generate the pseudo label 252 for each of the one or
more unlabeled training inputs within the batch.

In particular, for each unlabeled training input, the training engine can do this by
using a k-nearest neighbors algorithm (“k-NN”) or a similar technique (e.g., a support vector
machine (SVM), a random forest technique, etc.) to identify, from among this FIFO queue
250 of target embeddings, k nearest embeddings (with k being a positive integer) that are
most similar to an online embedding that has been generated by the online neural network
from the unlabeled training input, and then generating the pseudo label 252 for the unlabeled
training input from the ground truth label(s) associated with the k nearest embeddings. Here,
the “similarity” is defined in terms of a distance in an embedding space. The distance can be
computed in any appropriate way, such as with Euclidean distance, Hamming distance,
cosine similarity, to name just a few examples.

Depending on the exact number of nearest embeddings that is being selected, the
training engine can generating the pseudo label 252 for the unlabeled training input in any of
a variety of ways. For example, when k = 1, the pseudo label can be the same as the ground
truth label associated with the single determined nearest embedding; when k >= 2, the
pseudo label 252 can be the highest occurring ground truth label among the multiple
determined nearest embeddings.

Moreover, some implementations of the system can maintain multiple k-nearest
neighbors models that each correspond to a different augmentation policy. Accordingly, the
training engine first selects, from among the multiple k-nearest neighbors models, a k-nearest
neighbors model for each augmentation policy that was used to transform the unlabeled
training input, and then uses each selected k-nearest neighbors model to determine k nearest
embeddings of the unlabeled training input from the FIFO queue 250 of target embeddings.
In these implementations, the pseudo label 252 can similarly be the highest occurring ground
truth label among all of the nearest embeddings collectively selected by the multiple k-
nearest neighbors models.

Proceeding now to the semantic positive query stage (during which the pseudo labels
will be used), the training engine determines a respective semantic positive sample 262 for
each training input within the batch. In particular, unlike the pseudo label generation stage in
which pseudo labels are generated for just the unlabeled training inputs, at the semantic
positive query stage, the semantic positive samples are determined for the entire batch of
training inputs.

15

WO 2023/222889 PCT/EP2023/063496

For each training input 201 within the batch, the training engine uniformly and
randomly samples, from among the FIFO queue 250 of target embeddings, and as the
semantic positive sample 262, an embedding that has been generated for a labeled training
input having the same label as the training input 201. That is, if the training input 201 is a
labeled training input, then an embedding that has been generated for a labeled training input
having the same ground truth label as the training input 201 will be selected; alternatively, if
the training input 201 is an unlabeled training input, then an embedding that has been
generated for a labeled training input having the same pseudo label as the training input 201
will be selected.

The semantic positive-based contrastive learning loss term can now be calculated.
For each training input 201, this loss term encourages similarity—i.e., reduces the distance in
the embedding space—between the online embedding 216 of the training input 101 and a
corresponding semantic positive sample 262 obtained from the queue 205. The semantic
positive sample 262 is a target embedding that has been generated for a labeled training input
having the same pseudo label or the same ground truth label as the training input 201,

On the other hand, this loss term encourages dissimilarity—i.e., increases the distance
in the embedding space—between the online embedding 216 and the target embedding 234
that have been generated by the online neural network 210 and the target neural network 240
from the training input 201 and any other training input within the batch, respectively.

The semantic positive-based contrastive learning loss term thus trains the encoder
backbone 211 of the online neural network 210 to generate similar embeddings (that are close
to each other in the embedding space) for a pair of different training inputs that both have the
same label, and to generate distinct embeddings (that are apart from each other in the
embedding space) for different training inputs.

The semantic positive-based contrastive learning loss term can for example be

computed as:

B oSG =02, +
,C, N log (p(Zml 3 Zm,t)
SEMPOS — T say1 =02,+ 201 a2
m—1 @(Zm 1 2t) + ZmneN(a:m) @(Zm ' it

a2+ saz —
where “m.t U<{<Zlat vy € Q |y = pl(zm)}) represents the semantic positive
sample for each training input x,,, within the batch B, where pl(x,,) = y,, if x,,, is a labeled
training input and pl(x,,) = V., 1S X, 1s an unlabeled training input, with y,, being the

ground truth label and the bar notation indicating that it’s a pseudo label.

16

WO 2023/222889 PCT/EP2023/063496

When the optional augmentation-based contrastive learning loss term was not
computed, the SEMPPL loss function can include just the semantic positive-based contrastive
learning loss term.

Alternatively, when taking the two loss terms together, the SEMPPL loss function can

for example be computed as:

‘CSEMPPL = 'C'AUGM + aLsempos

where a is a tunable hyperparameter that controls the ratio between the two loss terms. For
example, a can take a value that is smaller than one, e.g., 1/5. Setting a to a value smaller
than one accounts for the situations where, when computing the semantic positive-based
contrastive learning loss term, some other training input within the batch might possibly have
the same label as the training input 201.

FIG. 3 is a flow diagram of an example process 300 for training an online neural
network. For convenience, the process 300 will be described as being performed by a system
of one or more computers located in one or more locations. For example, a training system,
e.g., the training system 100 of FIG.1, appropriately programmed, can perform the process
300.

The system obtains a batch of training inputs from a hybrid training dataset (step
302). The batch of training inputs, which can be obtained by randomly sampling from the
hybrid training dataset, includes one or more unlabeled training inputs and one or more
labeled training inputs. Each labeled training input is associated with a respective ground
truth label.

The system generates a respective first augmented view of each training input in the
batch (step 304). This can include sampling, with at least some measure of randomness, one
or more augmentation policies from a set of augmentation policies, and then sequentially
applying the one or more sampled augmentation policies to each training input in the batch.

The system generates, using the online neural network, a respective online embedding
of each training input in the batch (step 306). The online neural network includes an online
projection sub neural network and an online prediction sub neural network. For each training
input, the online neural network is configured to process, in accordance with online network
parameter values, the first augmented view of the training input to generate the online
embedding.

The system generates a respective second augmented view of each training input in

the batch (step 308). The system can do this by using a similar approach as described above

17

WO 2023/222889 PCT/EP2023/063496

at step 304. By virtue of the randomness in the sampling of the augmentation policies, the
respective second augmented view will typically be different from the respective first
augmented view for each training input in the batch.

The system generates, using the target neural network, a respective target embedding
of each training input in the batch (step 310). The target neural network has the same network
architecture as the online projection sub neural network but different parameter values. For
each training input, the target neural network is configured to process, in accordance with
target network parameter values, a second augmented view of the training input to generate
the target embedding.

The system updates a queue of embeddings to include respective target embeddings
generated by using the target neural network for the one or more labeled training inputs in the
batch (step 312). For example, when implemented as a FIFO queue, the system can append
the target embedding that has been generated for each labeled training input to the queue
(potentially overwriting one or more already stored embeddings).

The system generates, for each of the one or more unlabeled training inputs in the
batch, a pseudo label based on a measure of similarity between an online embedding of the
unlabeled training input and each respective target embedding in the queue of embeddings
(step 314). This can include using a k-nearest neighbors algorithm or a similar technique to
determine k nearest embeddings of the unlabeled training input from the queue of
embeddings, where k is a positive integer, and then generating the pseudo label for the
unlabeled training input from the ground truth labels associated with the k nearest
embeddings. In other words, the system determines which target embedding(s) are similar to
the online embedding of each unlabeled training input and, because the similar target
embedding(s) are each generated from a labeled training input, the system can use the ground
truth labels associated those similar target embedding(s) to determine which pseudo label
among a possible set of labels can be assigned to the unlabeled training input.

The system determines a respective semantic positive sample for each training input
in the batch (step 316). This can include sampling, from the queue of embeddings and as the
semantic positive sample, an embedding that has been generated for a labeled training input
that has either the same pseudo label, or the same ground truth label, as the training input.

The system evaluates a SEMPPL loss function and determines a gradient of the
SEMPPL loss function with respect to the online network parameter values (step 318).

The SEMPPL loss function includes a semantic positive-based contrastive learning

loss term that encourages similarity between the respective online embedding and the

18

WO 2023/222889 PCT/EP2023/063496

respective semantic positive sample for each training input within the batch, but discourages
similarity between the respective online embedding and target embedding that have been
generated for different training inputs within the batch. Optionally, the SEMPPL loss
function also includes an augmentation-based contrastive learning loss term that encourages
similarity between the respective online embedding and target embedding that have been
generated for each training input within the batch, but discourages similarity between the
respective online embedding and target embedding that have been generated for different
training inputs within the batch.

The system determines, based on the gradient of the SEMPPL loss function with
respect to the online network parameter values, an update to the online network parameter
values (step 320). The system can then determine the update by applying an optimizer to
gradient, e.g., an Adam optimizer, an rmsProp optimizer, or a Layer-wise Adaptive Rate
Scaling (LARS) optimizer, that is appropriate for the training of the online neural network.

The system can continue performing iterations of the process 300 to train the online
neural network by repeatedly adjusting the online network parameter values until termination
criteria for the training of the online neural network have been satisfied, e.g., until the
parameters have converged, until a threshold amount of wall clock time has elapsed, or until
a threshold number of iterations of the process 300 have been performed.

FIG. 4 shows a quantitative example of the performance gains that can be achieved by
using the SEMPPL process described in this specification. In particular, FIG. 4 shows the
Top-1 accuracy (in %, the higher the better) for images from ImageNetV2 (on its three
variants: matched frequency (MF), Threshold 0.7 (T-0.7), and Top Images (TI), described in
more detail in Benjamin Recht, et al. Do imagenet classifiers generalize to imagenet? In Proc.
of International Conference on Machine Learning (ICML), 2019), ImageNet-R (described in
more detail in Dan Hendrycks, et al. The many faces of robustness: A critical analysis of out-
ofdistribution generalization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 8340-8349, 2021), and ObjectNet (described in more detail in Andrei
Barbu, et al. A large-scale bias-controlled dataset for pushing the limits of object recognition
models. Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2019).

It can be appreciated that, a neural network trained using the SEMPPL process
generally has improved robustness and out-of-distribution generalization capabilities over a
neural network trained using a PAWS process (described in more detail in Mahmoud Assran,
et al. Semi-supervised learning of visual features by non-parametrically predicting view

assignments with support samples. In Proc. of Conference on Computer Vision and Pattern

19

WO 2023/222889 PCT/EP2023/063496

Recognition (CVPR), 2021), a SimMatch process (described in more detail in Mingkai
Zheng, et al. Simmatch: Semi-supervised learning with similarity matching. In Proc. of
Conference on Computer Vision and Pattern Recognition (CVPR), 2022), or even a
supervised baseline.

This specification uses the term “configured” in connection with systems and
computer program components. For a system of one or more computers to be configured to
perform particular operations or actions means that the system has installed on it software,
firmware, hardware, or a combination of them that in operation cause the system to perform
the operations or actions. For one or more computer programs to be configured to perform
particular operations or actions means that the one or more programs include instructions
that, when executed by data processing apparatus, cause the apparatus to perform the
operations or actions.

Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware, including the structures disclosed in
this specification and their structural equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specification can be implemented as one
or more computer programs, i.e., one or more modules of computer program instructions
encoded on a tangible non transitory storage medium for execution by, or to control the
operation of, data processing apparatus. The computer storage medium can be a machine-
readable storage device, a machine-readable storage substrate, a random or serial access
memory device, or a combination of one or more of them. Alternatively or in addition, the
program instructions can be encoded on an artificially generated propagated signal, e.g., a
machine-generated electrical, optical, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus for execution by a data processing
apparatus.

The term “data processing apparatus” refers to data processing hardware and
encompasses all kinds of apparatus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or multiple processors or computers.
The apparatus can also be, or further include, special purpose logic circuitry, e.g., an FPGA
(field programmable gate array) or an ASIC (application specific integrated circuit). The
apparatus can optionally include, in addition to hardware, code that creates an execution

environment for computer programs, e.g., code that constitutes processor firmware, a

20

WO 2023/222889 PCT/EP2023/063496

protocol stack, a database management system, an operating system, or a combination of one
or more of them.

A computer program, which may also be referred to or described as a program,
software, a software application, an app, a module, a software module, a script, or code, can
be written in any form of programming language, including compiled or interpreted
languages, or declarative or procedural languages; and it can be deployed in any form,
including as a stand alone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A program may, but need not, correspond to a
file in a file system. A program can be stored in a portion of a file that holds other programs
or data, e.g., one or more scripts stored in a markup language document, in a single file
dedicated to the program in question, or in multiple coordinated files, e.g., files that store one
or more modules, sub programs, or portions of code. A computer program can be deployed
to be executed on one computer or on multiple computers that are located at one site or
distributed across multiple sites and interconnected by a data communication network.

In this specification, the term “database” is used broadly to refer to any collection of
data: the data does not need to be structured in any particular way, or structured at all, and it
can be stored on storage devices in one or more locations. Thus, for example, the index
database can include multiple collections of data, each of which may be organized and
accessed differently.

Similarly, in this specification the term “engine” is used broadly to refer to a
software-based system, subsystem, or process that is programmed to perform one or more
specific functions. Generally, an engine will be implemented as one or more software
modules or components, installed on one or more computers in one or more locations. In
some cases, one or more computers will be dedicated to a particular engine; in other cases,
multiple engines can be installed and running on the same computer or computers.

The processes and logic flows described in this specification can be performed by one
or more programmable computers executing one or more computer programs to perform
functions by operating on input data and generating output. The processes and logic flows
can also be performed by special purpose logic circuitry, e.g., an FPGA or an ASIC, or by a
combination of special purpose logic circuitry and one or more programmed computers.

Computers suitable for the execution of a computer program can be based on general
or special purpose microprocessors or both, or any other kind of central processing unit.
Generally, a central processing unit will receive instructions and data from a read only

memory or a random access memory or both. The essential elements of a computer are a

21

WO 2023/222889 PCT/EP2023/063496

central processing unit for performing or executing instructions and one or more memory
devices for storing instructions and data. The central processing unit and the memory can be
supplemented by, or incorporated in, special purpose logic circuitry. Generally, a computer
will also include, or be operatively coupled to receive data from or transfer data to, or both,
one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such devices. Moreover, a computer can
be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a Global Positioning System (GPS) receiver,
or a portable storage device, e.g., a universal serial bus (USB) flash drive, to name just a few.

Computer readable media suitable for storing computer program instructions and data
include all forms of non volatile memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks;
and CD ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the subject matter described in
this specification can be implemented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can
provide input to the computer. Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the user can be any form of sensory
feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the
user can be received in any form, including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to and receiving documents from a
device that is used by the user; for example, by sending web pages to a web browser on a
user’s device in response to requests received from the web browser. Also, a computer can
interact with a user by sending text messages or other forms of message to a personal device,
e.g., a smartphone that is running a messaging application, and receiving responsive
messages from the user in return.

Data processing apparatus for implementing machine learning models can also
include, for example, special-purpose hardware accelerator units for processing common and
compute-intensive parts of machine learning training or production, i.e., inference,
workloads.

Machine learning models can be implemented and deployed using a machine learning

framework, e.g., a TensorFlow framework or a JAX framework.

22

WO 2023/222889 PCT/EP2023/063496

Embodiments of the subject matter described in this specification can be implemented
in a computing system that includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server, or that includes a front end
component, e.g., a client computer having a graphical user interface, a web browser, or an
app through which a user can interact with an implementation of the subject matter described
in this specification, or any combination of one or more such back end, middleware, or front
end components. The components of the system can be interconnected by any form or
medium of digital data communication, e.g., a communication network. Examples of
communication networks include a local area network (LAN) and a wide area network
(WAN), e.g., the Internet.

The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication network.
The relationship of client and server arises by virtue of computer programs running on the
respective computers and having a client-server relationship to each other. In some
embodiments, a server transmits data, e.g., an HTML page, to a user device, e.g., for
purposes of displaying data to and receiving user input from a user interacting with the
device, which acts as a client. Data generated at the user device, e.g., a result of the user
interaction, can be received at the server from the device.

While this specification contains many specific implementation details, these should
not be construed as limitations on the scope of any invention or on the scope of what may be
claimed, but rather as descriptions of features that may be specific to particular embodiments
of particular inventions. Certain features that are described in this specification in the context
of separate embodiments can also be implemented in combination in a single embodiment.
Conversely, various features that are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as acting in certain combinations and
even initially be claimed as such, one or more features from a claimed combination can in
some cases be excised from the combination, and the claimed combination may be directed to
a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings and recited in the claims in a
particular order, this should not be understood as requiring that such operations be performed
in the particular order shown or in sequential order, or that all illustrated operations be
performed, to achieve desirable results. In certain circumstances, multitasking and parallel

processing may be advantageous. Moreover, the separation of various system modules and

23

WO 2023/222889 PCT/EP2023/063496

components in the embodiments described above should not be understood as requiring such
separation in all embodiments, and it should be understood that the described program
components and systems can generally be integrated together in a single software product or
packaged into multiple software products.

Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions recited
in the claims can be performed in a different order and still achieve desirable results. As one
example, the processes depicted in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desirable results. In some cases,
multitasking and parallel processing may be advantageous.

What is claimed is:

24

WO 2023/222889 PCT/EP2023/063496

CLAIMS

1. A computer-implemented method comprising:

obtaining a batch of training inputs from a hybrid training dataset, wherein the batch
of training inputs comprises one or more unlabeled training inputs and one or more labeled
training inputs, each labeled training input having a respective ground truth label;

generating a respective first augmented view of each training input in the batch;

processing, using an online neural network and in accordance with online network
parameter values, the respective first augmented view of each training input to generate a
respective online embedding of the training input;

generating a respective second augmented view of each training input in the batch,
wherein, for each training input in the batch, the respective second augmented view is
different from the respective first augmented view;

processing, using a target neural network and in accordance with target network
parameter values, the respective second augmented view of each training input to generate a
respective target embedding of the training input;

updating a queue of embeddings to include respective target embeddings generated by
using the target neural network for the one or more labeled training inputs in the batch,;

generating, for each of the one or more unlabeled training inputs in the batch, a
pseudo label based on a measure of similarity between an online embedding of the unlabeled
training input and each respective target embedding in the queue of embeddings;

determining, for each training input in the batch, a respective semantic positive
sample, comprising

sampling, from the queue of embeddings and as the semantic positive sample,

an embedding that has been generated for a labeled training input having the same pseudo
label or the same ground truth label as the training input;

determining a gradient with respect to the online network parameter values of a loss
function that includes a first term that encourages similarity between the respective online
embedding and the respective semantic positive sample for each training input; and

determining, based on the gradient of the loss function with respect to the online

network parameter values, an update to the online network parameter values.

2. The method of claim 1, wherein the loss function includes a second term that
encourages similarity between the respective online and target embeddings for each training
input.

25

WO 2023/222889 PCT/EP2023/063496

3. The method of any one of claims 1-2, wherein the online neural network comprises an
online projection sub neural network and an online prediction sub neural network, the online
projection sub neural network and the target neural network having a same network

architecture but different parameter values.

4. The method of claim 3, wherein the target network parameter values are an
exponential moving average of online projection sub network parameter values of the online

projection sub neural network.

5. The method of any one of claims 1-4, wherein the queue of embeddings has a fixed

capacity which is dependent on a size of the batch of training inputs.

6. The method of any one of claims 1-5, wherein the queue of embeddings includes
respective target embeddings generated by using the target neural network for one or more

labeled training inputs in a previously obtained batch.

7. The method of any one of claims 1-6, wherein the training inputs comprise image
data.

8. The method of any one of claims 1-6, wherein the training inputs comprise audio data.
9. The method of any one of claims 1-8, wherein generating the respective first

augmented view of each training input in the batch comprise:
sampling one or more augmentation policies from a set of augmentation policies; and
sequentially applying the one or more sampled augmentation policies to each training

input in the batch.

10. The method of claim 9, wherein the set of augmentation policies comprises a random
cropping policy followed by resizing policy, a random color distortion policy, or a random

Gaussian blur policy.

11. The method of any one of claims 1-10, wherein generating, for each of the one or
more unlabeled training inputs in the batch, the pseudo label comprises:
using a k-nearest neighbors model to determine k nearest embeddings of the unlabeled

training input from the queue of embeddings, where k is a positive integer; and

26

WO 2023/222889 PCT/EP2023/063496

generating the pseudo label for the unlabeled training input from the ground truth

labels associated with the k nearest embeddings.

12. The method of claim 11, wherein k = 1, and wherein the pseudo label is the same as

the ground truth label associated with the determined nearest embedding.

13. The method of claim 11, wherein k >= 2, and wherein the pseudo label is a highest

occurring ground truth label among the determined nearest embeddings.

14. The method of any one of claims 11-13, wherein the k-nearest neighbors model is
configured to use cosine similarity to determine the k nearest embeddings of each unlabeled

training input.

15. The method of any one of claims 11-14, wherein generating, for each of the one or
more unlabeled training inputs in the batch, the pseudo label comprises:

selecting, from among multiple k-nearest neighbors models that each correspond to a
different augmentation policy, one or more k-nearest neighbors models; and

using each selected k-nearest neighbors model to determine k nearest embeddings of

the unlabeled training input from the queue of embeddings.

16. The method of any one of claims 1-15, wherein the hybrid training dataset comprises

more unlabeled training inputs than labeled training inputs.

17. The method of any one of claim 3, or any of claims 4-16 when dependent on claim 3,
further comprising training a task sub neural network together with the online projection sub
neural network to optimize a supervised, task-specific loss for a downstream task, wherein,
for a training input from the hybrid training dataset, the task sub neural network is configured
to process a projection embedding generated by the online projection sub neural network in
accordance with task sub network parameter values to generate a downstream task output for

the training input.

18. The method of claim 17, wherein the downstream task comprises a classification task,

and wherein the supervised, task-specific loss comprises a cross-entropy loss.

19. A system comprising one or more computers and one or more storage devices storing

instructions that are operable, when executed by the one or more computers, to cause the one

27

WO 2023/222889 PCT/EP2023/063496

or more computers to perform the operations of the respective method of any preceding

claim.

20. A computer storage medium encoded with instructions that, when executed by one or
more computers, cause the one or more computers to perform the operations of the respective

method of any preceding claim.

21. A method comprising:
receiving a network input; and
processing the network input using a neural network comprising an online projection
sub neural network and a task sub neural network trained by the method of any one of claims
17-18 to generate one or more network outputs for the network input, comprising:
processing the network input using the online projection sub neural network to
generate a projection embedding; and
processing the projection embedding using the task sub neural network to

generate the one or more network outputs.

28

PCT/EP2023/063496

WO 2023/222889

1/4

L ©OId

~

—

Sl
anany

sButppaquig

vl

aulbug butuies] 1ddiNIS

Iz 25l
sinduj sinduj
Butuiel | Butuiel |
palege|un psjegen
051

1oseiec] Buiuiel | pUghAM
201
\ } nduj

y
y

0cl

JIOMISN [BINON qng
uonosloid suljuo

0ET }omieN
|einaN gng ysel

001 wojsAg Bujuies |

oIl
ylomjeN |eInaN

Y

it
ndino

PCT/EP2023/063496

WO 2023/222889

2/4

ST e T ams e W W

S e G S WA W W WSRO OWR S WA w W

% l}aseljed
Buiuies| pughH

102
nduj
Butuiel |

¢ 9ld
v
Zoz e n
sdwesg —
SAIlSOd s0¢
Jnuewog MBIA poluswbny
puooses

514
MBIA pajuswbny

jsitd

e e e G e

>
>

h 4
abeig Ausnd
BAIlISOd oluBWeS

h 4
abeig uonessusn)
[ege] opnesd

abe)g Buluies aAlSBIIUOD

WO 2023/222889

3/4

PCT/EP2023/063496

Obtain a batch of training inputs from a hybrid training dataset
302

Y

Generate a respective first augmented view of each training input in the batch
304

Y

Generate a respective online embedding of the training input
306

Y

Generate a respective second augmented view of each training input in the batch
308

Y

Generate a respective target embedding of the training input
310

Y

Update a queue of embeddings to include respective target embeddings
312

!

Generate, for each of the one or more unlabeled training inputs, a pseudo label
314

Y

Determine, for each training input in the batch, a respective semantic positive sample
316

Y

Determine a gradient of a loss function
318

Y

Determine an update to the online network parameter values
320

FIG. 3

o

PCT/EP2023/063496

WO 2023/222889

4/4

v Old
€'ST 0 96L TPL VvS9 Tddwas
¥ 0°ST €8L TEL €9 YOI WIS
8¢ C€T 6'8L LEL ST9 SMVd
(s12qD] %01) pasiatadns-nuag
9°97 0v2 v'8L 6¢€L 1S9 (s12qe1 2%001) pasiatadng
PNRIQO ¥-1eNPSew] 1L L0l AW POUISIN
uonezierduad (qOO ssauIsSnqoy

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2023/063496

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6N3/045 G06N3/0464

ADD.

GO6N3/084

GO6N3/0895

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Matching”,

Retrieved from the Internet:
[retrieved on 2023-08-08]

abstract
section 4.1

Semi-supervised Learning with Similarity

17 March 2022 (2022-03-17), XP093071854,
URL:https://arxiv.org/abs/2203.06915v2

Algorithm 1, sections 3.2, 3.3

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2021/319266 Al (CHEN TING [CA] ET AL) 1-21

14 October 2021 (2021-10-14)

claim 1

paragraphs [0044], [0110]; figures 2A,9

paragraph [0118] - paragraph [0119]
X Zheng Mingkai ET AL: "SimMatch: 1-21

I:‘ Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

8 August 2023

Date of mailing of the international search report

25/08/2023

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Thielemann, Benedikt

Form PCT/ASA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2023/063496
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2021319266 Al 14-10-2021 Us 2021319266 Al 14-10-2021
Us 2022374658 Al 24-11-2022

Form PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

