
US 20180077063A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0077063 A1

Kurabayashi (43) Pub . Date : Mar . 15 , 2018

(54) INFORMATION PROCESSING SYSTEM ,
SERVER , AND PROGRAM , AND TERMINAL
AND PROGRAM

(71) Applicant : CYGAMES , INC . , Tokyo (JP)
(72) Inventor : Shuichi Kurabayashi , Tokyo (JP)

(73) Assignee : CYGAMES , INC . , Tokyo (JP)

(21) Appl . No . : 15 / 820 , 330

Publication Classification
(51) Int . Ci .

H04L 12 / 801 (2006 . 01)
A63F 13 / 352 (2006 . 01)
A63F 13 / 52 (2006 . 01)

(52) U . S . CI .
CPC H04L 47 / 12 (2013 . 01) ; A63F 13 / 52

(2014 . 09) ; A63F 13 / 352 (2014 . 09)
(57) ABSTRACT
At a server , a load monitoring unit monitors whether or not
a predetermined condition regarding processing of requests
is satisfied . In the case where the predetermined condition is
not satisfied , a wait - time calculating unit calculates a wait
time as a time parameter for controlling the speed of time
flow at a player terminal side . A request executing unit
executes requests in the order of arrival and generates
responses . A response sending control unit executes control
to send responses to the player terminals that have sent the
corresponding requests and to also send to the player ter
minals information representing the wait time in the case
where the wait time has been calculated .

(22) Filed : Nov . 21 , 2017

Related U . S . Application Data
(63) Continuation of application No . PCT / JP2016 / 064611 ,

filed on May 17 , 2016 .
(30) Foreign Application Priority Data
May 22 , 2015 (JP) 2015 - 104218

1 - 1

1 - m

Patent Application Publication Mar . 15 , 2018 Sheet 1 of 10 US 2018 / 0077063 A1

FIG . 1

W 1 - 2 D 0 -

FIG . 2 PLAYER TERMINAL

Patent Application Publication

CPU

ROM $ $ $

RAM

Mar . 15 , 2018 Sheet 2 of 10

.

INPUT / OUTPUT INTERFACE

www w

wa maneno mesmo - -

INPUT UNIT

STORAGE COMMUNICATION
UNIT

UNIT

DRIVE

TOUCH OPERATION INPUT UNIT DISPLAY UNIT TOUCHSCREEN
- - - - -

28

. . . w ww

REMOVABLE MEDIUM

-

w

w

w

.

.

-

US 2018 / 0077063 A1

FIG . 3 - 1

Patent Application Publication

SERVER 52

53

CPU

ROM

RAM

54

55

INPUT / OUTPUT INTERFACE

Mar . 15 , 2018 Sheet 3 of 10

OUTPUT UNIT
INPUT UNIT

STORAGE UNIT
COMMUNICATION UNIT

DRIVE

ro

56

57

58

REMOVABLE MEDIUM

US 2018 / 0077063 A1

FIG . 4

-

-

-

-

- - - - -

-

- -

-

- - - - - -

- - - - - -

-

-

-

more - -

-

-

amesema wew

121

123 !

106 !

Patent Application Publication

wwwwwww w

! i

ww

TOUCH OPERATION INPUT UNIT

COMMAND ACCEPTING UNIT
REQUEST SENDING CONTROL UNIT

| REQUEST RECEIVING CONTROL UNIT
LOAD MONITORING UNIT
FRAUD MONITORING UNIT

-

11

mambon for men are

-

11

- -

101

122

103

102

are

-

1

somewn mwa mwingine

WAIT - TIME

11

WAIT - TIME CALCULATING UNIT

WAIT - TIME SETTING UNIT
11

DB

COMMUNICATION UNIT

COMMUNICATION UNIT

11 il

-

mention there were never remeni umuman

125

-

105

1041

-

27 11

124

Mar . 15 , 2018 Sheet 4 of 10

-

Il

-

- -

DISPLAYLI UNIT

RESPONSE RECEIVING CONTROL UNIT
DISPLAY CONTROL UNIT

RESPONSE SENDING CONTROL UNIT

-

REQUEST EXECUTING UNIT

-

wwwwwwwwwwwwwww

-

126

- wwwwwwww www !

TOUCHSCREEN !

CPU

! I STORAGE
UNIT

-

w

noch

weitere

-

COMMAND EXECUTING UNIT CPU

30
- -

SERVER

PLAYER TERMINAL

US 2018 / 0077063 A1

Patent Application Publication Mar . 15 , 2018 Sheet 5 of 10 US 2018 / 0077063 A1

FIG . 5
201 202

delay :
3000msec

Delay - time
expired

req

delay :
3000msec ELAPSE OF TIME Delay - time

expired

reg

delay :
3000msec

Delay - time
expired

req

1A

FIG . 6
CLIENT ID ARRIVAL TIME OF LAST REQUEST ASSIGNED WAIT TIME

9000000000001 2014 08 / 12 23 : 00 : 21 : 921 3000msec
9000000000002 2014 08 / 12 23 : 00 : 22 : 632 3000msec
9000000000003 2014 08 / 12 23 : 00 : 22 : 997 3000msec

Patent Application Publication Mar . 15 , 2018 Sheet 6 of 10 US 2018 / 0077063 A1

FIG . 7
210

| X

70 - 221 221 221

< Back (Attacky

? - 222 222

JG - 23

Patent Application Publication Mar . 15 , 2018 Sheet 7 of 10 US 2018 / 0077063 A1

FIG . 8

223

FIG . 9

251

252

253

221

221

Patent Application Publication

GOX

QOX e
ass
rista

Attack

Attack

Back

< Back

Back

Mar . 15 , 2018 Sheet 8 of 10

4 B7

14222 A4223

222

JOH1B9 - 1333
- 222

Vnvokes

H

223

B8c7c8
c7

C8

C9

US 2018 / 0077063 A1

Patent Application Publication Mar . 15 , 2018 Sheet 9 of 10 US 2018 / 0077063 A1

FIG . 10
START OF PROCESSING AT

SERVER SIDE

1
LARGE LOAD ?

S1
YES NO

CALCULATE WAIT TIME WAIT TIME = 0 WAIT TIME
REQUEST RECEIVED ?

YES ~ 85
NO WAIT TIME FOR REQUEST

APPROPRIATE ?
YES 56

PENALIZING
PROCESSING - S7

EXECUTE REQUEST AND GENERATE RESPONSE
58

| SEND RESPONSE AND WAIT TIME TO PLAYER TERMINAL

PROCESSING TERMINATION
INSTRUCTION ISSUED ? -

YES
NO

(END OF PROCESSING

Patent Application Publication Mar . 15 , 2018 Sheet 10 of 10 US 2018 / 0077063 A1

FIG . 11
STARTER PROCESSINGAT

S21
DISPLAY GAME SCREEN INCLUDING COMMAND

SELECTING UI AND QUEUE
S22

NO
COMMAND ENTERED ?

| YES - S23
NO YES

S24
WAIT - TIME NOTIFICATION
RECEIVED FROM SERVER ? S25

SET DICTATED
WAIT TIME

SET WAIT TIME
FROM SERVER

CALCULATE SPEED OF MOVEM
OF COMMAND ICONS

START DISPLAYING MOVEMEN hs27 OF COMMAND ICONS

S28
OPERATION PERFORMED

COMMAND ICON ?
YES

NO
S29

COMMAND EDITING PROCESSING

NO / WAIT TIME ELAPSED ? ED ? TS30
YES ~ 531

SEND COMMAND AS REQUEST TO SERVER

RECEIVE RESPONSE FROM SERVER

EXECUTE COMMAND
w h atsotne

AWAM

PROCESSING TERMINATION TS34 INSTRUCTION ISSUED ?
YES

END OF PROCESSING

US 2018 / 0077063 A1 Mar . 15 , 2018

INFORMATION PROCESSING SYSTEM ,
SERVER , AND PROGRAM , AND TERMINAL

AND PROGRAM

TECHNICAL FIELD
[0001] The present invention relates to information pro
cessing systems , servers and programs , and terminals and
programs .

BACKGROUND ART
[0002] As games that can be executed on terminals such as
smartphones , games in which a plurality of players can
participate , such as multi - battle games , have existed in the
past (e . g . , see Patent Literature 1) .
[0003] In such games , the following request and response
method is often adopted . Specifically , when a player oper
ates a terminal to enter a command , the terminal sends the
command as a request to a server . The server executes the
request and sends the result of execution , etc . as a response
to the terminal .
[0004] Patent Literature 1 : Pamphlet of WO 2014 / 098237

I / O , a function for preventing congestion in the case where
the number of clients (terminals) increases rapidly is not
provided .
[0010] . As described above , as a technology for preventing
server congestion , there is no suitable technology for appli
cation to games in which the request and response method
is adopted . It is to be noted that the request and response
method is not particularly limited to games . That is , to state
the above situation in other words , as a technology for
preventing server congestion , there is no suitable technology
for application to information processing systems in which
the request and response method is adopted .
[0011] Furthermore , even if it becomes possible to prevent
server congestion per se , it is necessary to avoid a situation
in which a user (a player in the case of a game) operating a
terminal feels unnecessary stress or gets bored as a result .
[0012] The present invention has been made in view of the
situation described above , and it is an object thereof to
establish a technology that can be suitably applied to an
information processing system in which a request and
response method is adopted , as a technology that prevents
congestion at a server side and that prevents a user at a
terminal side (a player in the case of a game) from feeling
stress or getting bored . DISCLOSURE OF THE INVENTION

Problems to be Solved by the Invention
[0005] With the recent advances in mobile computing , the
number of clients (terminals) in games is increasing at an
accelerating rate . Thus , a game is executed simultaneously
by a huge number of terminals , so that there is a risk that
requests from a large number of terminals become concen
trated at a server , whereby the server becomes congested .
Therefore , a technology for preventing server congestion is
necessary in games in which the request and response
method is adopted . However , there is no suitable technology
for this purpose .
[0006] Specifically , for example , a method that is different
from the request and response method is adopted in the
technology disclosed in Patent Literature 1 .
[0007] As other examples , parallelization and asynchro
nous I / O exist as existing technologies for decreasing server
loads . However , these technologies are not suitable for
games in which the request and response method is adopted .
[0008] Specifically , parallelization is a technology in
which the number of computer resources (nodes) in a server
infrastructure is increased . With this technology , additional
servers are provided as the number of clients increases ,
thereby improving the processing ability of the server infra
structure as a whole so that a greater number of requests can
be processed . Thus , in the case where parallelization is
adopted , servers are additionally provided in an ad - hoc
fashion as the server loads increase . However , it is not
practical to provide additional servers in the field of games ,
in which the number of clients (terminals) is increasing at an
extremely rapid pace . Furthermore , in the case where par
allelization is adopted , it is necessary to prepare a huge
number of computing nodes in the server infrastructure in
advance . This would considerably increase the costs for
maintaining the infrastructure and thus is not economical .
[0009] Asynchronous I / O is a technology in which a single
thread or process carries out communications with a plural
ity of clients by utilizing wait times associated with I / O .
With this technology , it is possible to improve the efficiency
of CPU utilization by a server . However , with asynchronous

Means for Solving the Problems
[0013] In order to achieve the above object , an informa
tion processing system according to an aspect of the present
invention is : an information processing system including a
server and a plurality of terminals that send certain requests
to the server , wherein the server includes : monitoring means
that monitors whether or not a predetermined condition
regarding processing of requests is satisfied ; wait - time cal
culating means that calculates a wait time before a request
is sent at a terminal side in a case where the predetermined
condition is not satisfied ; request executing means that
executes requests in the order of arrival thereof and that
generates responses ; and first sending control means that
executes control to send the responses to the terminals that
have sent the corresponding requests and to also send to the
terminals information representing the wait time in a case
where the wait time has been calculated , and wherein the
terminal includes : command accepting means that accepts a
certain command ; wait - time setting means that sets a wait
time identified from information representing the wait time
in a case where the information is transmitted from the
server and that sets a predetermined time as a wait time in
a case where the information is not transmitted ; display
control means that controls the speed of time flow at the
terminal side in accordance with the set wait time so as to
control display of an image that changes at the speed of time
flow ; and second sending control means that executes con
trol to send the command as a request to the server after the
elapse of the set wait time .
10014] A server according to an aspect of the present
invention is : a server that carries out communications with
a plurality of terminals that send certain requests , the server
comprising : first monitoring means that monitors whether or
not a predetermined condition regarding processing of
requests is satisfied ; wait - time calculating means that cal
culates a wait time as a time parameter for controlling the
speed of time flow at a terminal side in a case where the
predetermined condition is not satisfied ; request executing
means that executes requests in the order of arrival thereof

US 2018 / 0077063 A1 Mar . 15 , 2018

[0026] FIG . 8 is a schematic illustration for explaining
editing of commands .
[0027] FIG . 9 is an illustration of the transition of the
game screen , showing a specific example of asynchronous
command input .
[0028] FIG . 10 is a flowchart for explaining an example of
the flow of processing executed at the side of the server
having the functional configuration in FIG . 4 .
[0029] FIG . 11 is a flowchart for explaining an example of
the flow of processing executed at the player terminal having
the functional configuration in FIG . 4 .

and that generates responses ; and sending control means that
executes control to send the responses to the terminals that
have sent the corresponding requests and to also send to the
terminals information representing the wait time in a case
where the wait time has been calculated .
[0015] A first program according to an aspect of the
present invention is a program corresponding to the server
according to the above - described aspect of the present
invention .
[0016] A terminal according to an aspect of the present
invention is : a terminal that carries out communications with
a server that sends a response to a request to a terminal that
has sent the request and that also sends to the terminal
information representing a wait time before a next request is
sent in a case where a predetermined condition is satisfied ,
the terminal comprising : command accepting means that
accepts a certain command ; wait - time setting means that sets
a wait time identified from information representing the wait
time in a case where the information is transmitted from the
server and that sets a predetermined time as a wait time in
a case where the information is not transmitted ; display
control means that controls the speed of time flow at the
terminal side in accordance with the set wait time so as to
control display of an image that changes at the speed of time
flow ; and sending control means that executes control to
send the command as a request to the server after the elapse
of the set wait time .
[0017] A second program according to an aspect of the
present invention is a program corresponding to the terminal
according to the above - described aspect of the present
invention .

Effects of the Invention
[0018] According to the present invention , as a technology
that prevents congestion at a server side and that prevents a
user at a terminal side (a player in the case of a game) from
feeling stress or getting bored , it is possible to establish a
technology that can be suitably applied to an information
processing system in which a request and response method
is adopted .

PREFERRED MODE FOR CARRYING OUT
THE INVENTION

100301 An embodiment of the present invention will be
described below with reference to the drawings .
10031] It is to be understood that what are simply referred
to as " images " hereinafter should be construed to include
both “ moving images ” and “ still images ” . Furthermore ,
" moving images ” should be construed to include images that
are displayed individually through the following first pro
cessing to third processing . First processing refers to pro
cessing for displaying a series of still images , while con
tinuously switching among them as time passes , for
individual actions of objects (e . g . , game characters) in planar
images (2D images) . Specifically , two - dimensional anima
tion , i . e . , processing similar to what is called book flipping ,
is an example of first processing . Second processing refers
to processing for presetting motions corresponding to indi
vidual actions of objects (e . g . , game characters) in stereo
scopic images (images based on 3D models) and displaying
the objects while changing the motions as time passes .
Specifically , three - dimensional animation is an example of
second processing . Third processing refers to processing for
preparing videos (i . e . , moving images) corresponding to
individual actions of objects (e . g . , game characters) and
rendering the videos as time passes .
[0032] FIG . 1 shows the configuration of an information
processing system according to an embodiment of the pres
ent invention . The information processing system shown in
FIG . 1 is a system including player terminals 1 - 1 to 1 - m
individually used by m players (m is an arbitrary integer
greater than or equal to 1) and also including a server 2 . The
individual player terminals 1 - 1 to 1 - m and the server 2 are
connected to each other via a predetermined network N ,
such as the Internet .
[0033] The server 2 provides the individual player termi
nals 1 - 1 to 1 - m with a game execution environment to
provide various services relating to a game that is executed
at the individual player terminals 1 - 1 to 1 - m .
[0034] Hereinafter , in the case where there is no need for
distinction among the individual player terminals 1 - 1 to 1 - m ,
these will be referred to collectively as “ player terminals 1 ” .
[0035] FIG . 2 is a block diagram showing , in the infor
mation processing system in FIG . 1 , the hardware configu
ration of a player terminal 1 as an embodiment of a terminal
according to the present invention .
[0036] The player terminal 1 is implemented by a smart
phone or the like . The player terminal 1 includes a CPU
(Central Processing Unit) 21 , a ROM (Read Only Memory)
22 , a RAM (Random Access Memory) 23 , a bus 24 , an
input / output interface 25 , a touch - operation input unit 26 , a
display unit 27 , an input unit 28 , a storage unit 29 , a
communication unit 30 , and a drive 31 .

BRIEF DESCRIPTION OF THE DRAWINGS
[0019] FIG . 1 is a block diagram showing the configura
tion of an information processing system according to an
embodiment of the present invention .
10020] FIG . 2 is a block diagram showing , in the infor
mation processing system in FIG . 1 , the hardware configu
ration of a player terminal as an embodiment of a terminal
according to the present invention .
0021] FIG . 3 is a block diagram showing , in the infor

mation processing system in FIG . 1 , the hardware configu
ration of a server according to an embodiment of the present
invention .
[0022] FIG . 4 is a functional block diagram showing an
example of the functional configurations of the player ter
minal in FIG . 2 and the server in FIG . 3 .
[0023] FIG . 5 is a schematic illustration for explaining an
overview of proactive load balancing processing executed
by the server having the functional configuration in FIG . 4 .
[0024] FIG . 6 is a diagram showing an example of a list
stored in a wait - time DB in FIG . 5 .
10025) FIG . 7 is an illustration showing an example of a
game screen in the embodiment .

US 2018 / 0077063 A1 Mar . 15 , 2018

[0037] The CPU 21 executes various kinds of processing
according to programs recorded in the ROM 22 or programs
loaded from the storage unit 29 into the RAM 23 . The RAM
23 also stores , as appropriate , data , etc . that are needed when
the CPU 21 executes various kinds of processing .
[0038] The CPU 21 , the ROM 22 , and the RAM 23 are
connected to each other via the bus 24 . The input / output
interface 25 is also connected to the bus 24 . The touch
operation input unit 26 , the display unit 27 , the input unit 28 ,
the storage unit 29 , the communication unit 30 , and the drive
31 are connected to the input / output interface 25 .
[0039] The touch - operation input unit 26 is constituted of ,
for example , capacitive or resistive (pressure - sensitive)
position input sensors that are laid over the display surface
of the display unit 27 , which detect the coordinates of a
position at which a touch operation is performed . The touch
operation here refers to bringing something into contact with
or in proximity to the touch - operation input unit 26 . What is
brought into contact with or in proximity to the touch
operation input unit 26 is , for example , a player ' s finger or
a stylus . Hereinafter , a position at which a touch operation
is performed will be referred to as a “ touched position " , and
the coordinates of the touched position will be referred to as
" touched coordinates ” . The display unit 17 is implemented
by a display , such as a liquid crystal display , and displays
various kinds of images , such as images related to the game .
As described above , in this embodiment , a touchscreen is
constituted of the touch - operation input unit 26 and the
display unit 27 .
[0040] The input unit 28 is constituted of various kinds of
hardware buttons , etc . and allows input of various kinds of
information in accordance with instruction operations per
formed by the player . The storage unit 29 is implemented by
a DRAM (Dynamic Random Access Memory) or the like
and stores various kinds of data . The communication unit 30
controls communications carried out with other devices (the
server 2 and the other player terminals 1 in the example in
FIG . 1) via the network N , including the Internet .
10041] The drive 31 is provided as needed . A removable
medium 41 implemented by a magnetic disk , an optical disk ,
a magneto - optical disk , a semiconductor memory , or the like
is loaded in the drive 31 as appropriate . A program read from
the removable medium 41 by the drive 31 is installed in the
storage unit 29 as needed . The removable medium 41 can
also store various kinds of data stored in the storage unit 29 ,
similarly to the storage unit 29 .
[0042] FIG . 3 is a block diagram showing , in the infor
mation processing system in FIG . 1 , the hardware configu
ration of the server 2 according to an embodiment of the
present invention .
[0043] The server 2 includes a CPU 51 , a ROM 52 , a
RAM 53 , a bus 54 , an input / output interface 55 , an output
unit 56 , an input unit 57 , a storage unit 58 , a communication
unit 59 , and a drive 60 . Since the configuration of the server
2 is basically the same as that of the player terminal 1 with
the touchscreen thereof removed , a description thereof will
be omitted here .
[0044] Through cooperation between the various kinds of
hardware and various kinds of software in the player termi
nal 1 in FIG . 2 and the server 2 in FIG . 3 , it becomes possible
to execute the game on the player terminal 1 . This embodi
ment is directed to a game in which a plurality of players
participate , such as a multi - battle game , and a request and
response method is adopted . Specifically , in this embodi -

ment , the individual player terminals 1 execute a game
simultaneously and send commands for the game as requests
to the server 2 from one to another . The server 2 receives the
requests from the individual player terminals 1 , sequentially
executes the individual requests , and sends the individual
execution results , etc . as responses to the individual player
terminals 1 . The individual player terminals 1 execute
commands after receiving the responses .
[0045] Here , when requests are sent from a large number
of player terminals 1 such that the amount of processing that
can be executed by the server 2 during a unit time (peak) is
exceeded , uncontrollable congestion occurs at the server 2 .
In this case , for the player terminals 1 , the arrival of
responses to the requests is delayed . Since this delay is not
anticipated , there are cases where the users perceive that
game commands are not being executed or are being
executed very slowly , thus getting bored or feeling stress .
[0046] Accordingly , the player terminals 1 and the server
2 in this embodiment have functionality for preventing
congestion at the server side and for preventing players on
the terminal side from feeling stress or getting bored . FIG .
4 is a functional block diagram showing an example of the
functional configurations of the player terminals 1 and the
server 2 for exhibiting such functionality .
10047] As shown in FIG . 4 , the CPU 51 of the server 2 has
functions for a request receiving control unit 101 , a load
monitoring unit 102 , a wait - time calculating unit 103 , a
request executing unit 104 , a response sending control unit
105 , and a fraud monitoring unit 106 . Furthermore , a wait
time DB 111 is provided in an area of the storage unit 58 of
the server 2
[0048] The request receiving control unit 101 controls the
reception of requests sent from the player terminals 1 by the
communication unit 59 . The load monitoring unit 102 moni
tors whether or not a predetermined condition regarding
request processing is satisfied . The predetermined condition
may be any condition relating to requests . For example , it is
possible to adopt a condition that the number of current
requests does not exceed a predetermined threshold . Specific
examples of the predetermined threshold , the predetermined
condition , etc . will be described later .
[0049] In the case where the predetermined condition is
not satisfied (e . g . , in the case where a threshold for the
number of requests that can be processed per unit time is
exceeded) , the wait - time calculating unit 103 calculates wait
times before requests may be sent at the player terminals 1
and stores the results of calculation in the wait - time DB 111 .
Here , the " wait times ” refer to time parameters before the
player terminals 1 are permitted to send a next request ,
which serve to control the elapse of time (the speed of time
flow) in the game being executed at the player terminals 1 .
For example , the wait times are calculated as relative values
in the form of " current time plus a certain number of
seconds ” . Specifically , the wait - time DB 111 stores a list of
information about wait times , etc . for the individual player
terminals 1 (the player terminals 1 - 1 to 1 - m in this embodi
ment) . A specific example of the list stored in the wait - time
DB 111 will be described later with reference to FIG . 6 .
[0050] The request executing unit 104 executes requests in
the order of arrival and generates responses . The response
sending control unit 105 executes control to send responses
to the player terminals 1 that have sent the associated

US 2018 / 0077063 A1 Mar . 15 , 2018

requests and to also send information representing wait
times , if wait times have been calculated , to the player
terminals 1 .
[0051] As will be described later in detail , in the case
where information representing a wait time is received
together with a response , each of the plurality of player
terminals 1 sends a next request to the server 2 after the
elapse of the wait time from the timing at which a command
or the like is accepted . As described above , the server 2 sets
wait times for the individual player terminals 1 before
uncontrollable congestion occurs (as a result of the prede
termined condition no longer being satisfied) . That is , the
server 2 controls the frequency at which requests are sent
from the individual player terminals 1 . Accordingly , proac
tive load balancing processing along the time - axis direction
(hereinafter referred to as “ proactive load balancing pro
cessing ") , in which the plurality of player terminals 1 are
individually assigned short wait times , is realized .
[0052] The proactive load balancing processing will be
further described below with reference to FIG . 5 . FIG . 5 is
a schematic diagram for explaining an overview of the
proactive load balancing processing .
[0053] A request buffer 201 on the left side of FIG . 5 is a
buffer for processing requests and actually exists at the
server 2 . For example , although not shown in FIG . 4 and
other figures , the request buffer 201 exists in the storage unit
58 in this embodiment . The black circles in the request
buffer 201 represent requests that have been sent by certain
player terminals 1 and received by the server 2 . That is , the
black circles represent requests that are being executed or
waiting to be executed by the request executing unit 104 at
the server 2 . Here , the signs in the black circles represent the
player terminals that have sent the requests . That is , the
black circle labeled as 1A represents a request sent from the
player terminal 1 - A . The black circle labeled as 1B repre
sents a request sent from the player terminal 1 - B . The black
circle labeled as 1C represents a request sent from the player
terminal 1 - C . The request buffer 201 is an FIFO queue that
stores requests in the order of arrival at the server 2 and that
outputs the requests in the order of arrival to the request
executing unit 104 for execution .
[0054] A virtual queue 202 on the right side of FIG . 5 is
a queue that is configured virtually by notifying the indi
vidual player terminals 1 (the player terminals 1 - A , 1 - B , and
1 - C for convenience of explanation in the example in FIG .
5) of wait times from the server 2 . The white circles in the
virtual queue 202 represent requests yet to be sent from
certain player terminals 1 . That is , the white circles represent
requests that are delayed for delay times before being sent
after commands are entered at the player terminals 1 .
Requests for which delay times have elapsed and that are
allowed to be sent are labeled with “ Delay - time expired ” .
That is , the virtual queue 202 is not constructed by consum
ing a memory area or disk area on the server 2 . Instead , the
virtual queue 202 is configured by the operation wherein the
individual player terminals 1 wait to send next requests
before the elapse of wait times included in notifications from
the server 2 , whereby the individual player terminals 1
essentially behave as if lining up in a single queue .
[0055] In the example in FIG . 5 , a wait time of 3000 ms
is set for each of the plurality of player terminals 1 - A , 1 - B ,
and 1 - C . The requests are executed in the order of storage in
the request buffer 201 . In other words , at least one request
is executed at a single particular timing . In the case where

the requests do not have mutual dependencies , the server 2
may fetch a plurality of requests at once from the request
buffer 201 and execute the requests in parallel . For example ,
the second request from the top of the virtual queue 202 is
a request for which a wait time has elapsed at the player
terminal 1 - B . Thus , the request is sent from the player
terminal 1 - B to the server 2 , is stored in the request buffer
201 of the server 2 , and is executed by the request executing
unit 104 when requests stored prior to that request no longer
exist in the request buffer 201 . When the request (the second
request from the top of the request buffer 201) is executed
by the request executing unit 104 in this way , the response
sending control unit 105 sends a response to the player
terminal 1 - B and also notifies the player terminal 1 - B of a
wait - time value “ 3000 ms ” . The wait - time value that the
player terminal 1 - B is notified of in this way is the greatest
among wait - time values for all the player terminals 1 (the
player terminals 1 - A , 1 - B , and 1 - C in the example in FIG .
5) from the viewpoint of time remaining before it becomes
possible to send a request . Thus , the next request is added at
the tail of the virtual queue 202 (the fifth white circle from
the top in the example in FIG . 5) .
[0056] What needs attention here is that P2P communica
tion between player terminals 1 is not involved in the
proactive load balancing processing described with refer
ence to FIG . 5 , and the frequency of access to the server 2
is determined for each of the plurality of player terminals 1
autonomously and in a distributed fashion at the server 2 .
Accordingly , the total number of requests arriving at the
server 2 during a unit time is regulated , whereby congestion
at the server 2 is prevented .
[0057] Specifically , in this embodiment , in order to regu
late the total number of requests arriving at the server 2
during a unit time , the number of requests that the server 2
can process during the unit time (hereinafter referred to as
the “ capacity number ”) is estimated in advance . Further
more , a certain threshold (e . g . , a value corresponding to 80 %
of the capacity number) is predefined on the basis of the
capacity number , and the condition that the current number
of requests does not exceed the threshold is also preset . That
is , the load monitoring unit 102 monitors the load status of
the server 2 by monitoring whether or not the condition is
satisfied .
[0058] In the case where the above condition is not
satisfied , i . e . , in the case where the number of current
requests exceeds the threshold (such a case will hereinafter
be referred to as a case of “ large load ”) , the wait - time
calculating unit 103 calculates a wait time , for example ,
according to equation (1) below .

[Eq . 1] requests _ per _ sec delay _ sec : = 1 capacity _ per _ sec

In equation (1) , delay _ sec signifies a wait time , request _
per _ sec signifies the number of requests arriving at the
server 2 per second , and capacity _ per _ sec signifies the
number of requests that the server 2 can process per second .
That is , in this embodiment , a value obtained by dividing the
number of current requests (request _ per _ sec) by the capac
ity number (capacity _ per _ sec) is adopted as a wait time
(delay _ sec) . By adopting this value , in the case where a
number of requests exceeding the capacity number are to
arrive during a unit time (i . e . , in the case of large load) ,

US 2018 / 0077063 A1 Mar . 15 , 2018

excess requests are stored in the virtual queue 202 in FIG .
5 . Accordingly , as described earlier with reference to FIG . 5 ,
control with which only requests that can be processed
during the unit time arrive at the server is realized .
[0059] The method of calculating a wait time is not
particularly limited to the method according to equation (1)
in this embodiment . For example , a method in which dif
ferent wait times are calculated for individual requests in
consideration of the performance of the network N , the DB
write performance , etc . may be adopted .
[0060] The request executing unit 104 executes the
requests in the order of storage (in the order of arrival) in the
request buffer 201 in FIG . 5 and generates responses . The
response sending control unit 105 sends the responses to the
player terminals 1 that have sent the associated requests and
notifies the player terminals 1 of the wait time described
above .
[0061] Each of the plurality of player terminals 1 (the
player terminals 1 - A , 1 - B , and 1 - C in the example in FIG .
5) accesses the server 2 after the elapse of the wait time
included in the notification when sending a next request .
10062] In this way , a wait time is set for each of the
plurality of player terminals 1 when a response is sent . Here ,
the timing of sending a response slightly varies among the
individual player terminals 1 . As a result , as shown in FIG .
5 , described earlier , the individual player terminals 1 have
slightly different wait times (times remaining before sending
next requests) . That is , it appears as if a huge number of
player terminals 1 (requests to be sent) were stored in the
huge virtual queue 202 . This prevents congestion at the
server 2 .
[0063] It is to be noted that the positions in the virtual
queue 202 are not strict and may slightly vary depending on
the performance of the network N used for sending wait
time notifications and requests ; however , this does not
particularly raise any problem in the case of application to
the field of games . Furthermore , the calculations for queuing
for sending requests from the virtual queue 202 to the
request buffer 201 on the server 2 do not involve compari
sons between player terminals 1 and are realized just by
setting wait times . Thus , the queuing can always be per
formed at 0 (n) cost .
[0064] However , if the plurality of player terminals 1 are
just notified of such wait times , there is a risk that illegiti
mate player terminals 1 that do not observe the wait times
might arise . Thus , the server 2 in this embodiment also has
the function of the fraud monitoring unit 106 , as shown in
FIG . 4 . The fraud monitoring unit 106 monitors whether or
not a wait time has been observed when a request received
under the control of the request receiving control unit 101
was sent from a player terminal 1 .
[0065] Specifically , for example , in this embodiment , a list
shown in FIG . 6 is stored in the wait - time DB 111 . A certain
single line of the list in FIG . 6 corresponds to a certain single
player terminal 1 . That is , in a certain single line , the client
ID , the arrival time of the last request , and the assigned wait
time for the corresponding player terminal 1 are stored . In
other words , the wait - time DB 111 manages the arrival time
of the immediately preceding request (the arrival time of the
last request) and the wait time in association with each other .
Thus , the fraud monitoring unit 106 searches the wait - time
DB 111 by using the client ID included in a request and
compares “ the arrival time of the last request " + " the assigned
wait time ” with the actual arrival time of the request . Then ,

the fraud monitoring unit 106 determines whether or not the
player terminal 1 that has sent the request is illegitimate on
the basis of the comparison result . For a player terminal 1
determined as being illegitimate , predetermined penalizing
processing is executed . The specifics of the penalizing
processing are not particularly limited . For example , in the
processing adopted in this embodiment , requests from an
illegitimate player terminal 1 are discarded , and responses
are not sent .
10066] . It is to be noted that , from a viewpoint such as large
costs that would be incurred if the legitimacy of all requests
were verified , for example , the fraud monitoring unit 106
may verify only some of the requests , more specifically ,
about 10 % randomly extracted from all the requests . In this
case , as the penalizing processing , for example , it is possible
to adopt processing in which requests from a player terminal
1 recognized as conducting fraud are discarded for a pre
determined period (e . g . , five minutes) .
10067] The functional configuration of the server 2 for
realizing the proactive load balancing processing (see FIG .
5) has been described above . Next , the functional configu
ration of the player terminal 1 when the proactive load
balancing processing is executed will be described .
[0068] As shown in FIG . 4 , the CPU 21 of the player
terminal 1 has the functions of a command accepting unit
121 , a wait - time setting unit 122 , a request sending control
unit 123 , a display control unit 124 , a response receiving
control unit 125 , and a command executing unit 126 .
[0069] While the game is being executed , a player enters
predefined commands by performing predetermined touch
operations (e . g . , tap operations) on the touch - operation input
unit 26 in a state where a screen that allows input of
commands (which will be described later with reference to
FIGS . 7 to 9) is displayed on the display unit 27 . The
command accepting unit 121 accepts such predefined com
mands .
[0070] . In the case where information representing a wait
time is transmitted from the server 2 , the wait - time setting
unit 122 sets a wait time identified from the information . On
the other hand , in the case where such information is not
transmitted , the wait - time setting unit 122 sets a certain time
as a wait time . Here , the certain time is not particularly
limited and may be a preset fixed time or a variable time .
Furthermore , the certain time includes 0 . Here , a wait time
of O means that when a command is accepted , the command
is sent immediately as a request .
10071 After the elapse of the wait time set by the wait
time setting unit 122 , the request sending control unit 123
sends a command as a request to the server 2 via the
communication unit 30 .
10072] The proactive load balancing processing is realized
with these functions of the command accepting unit 121 , the
wait - time setting unit 122 , and the request sending control
unit 123 working at the player terminal 1 side , as described
above .
[0073] However , the player nonetheless has to wait for the
wait time after entering a certain command until the certain
command is executed . In this case , unless some measure is
taken at the player terminal 1 side , the player might get
bored or feel some stress .
[0074] What is important here is that it has hitherto been
presupposed that the input of a command and the execution
of the command are synchronized at the player terminal side .
That is , it has hitherto been the case for players to believe

US 2018 / 0077063 A1 Mar . 15 , 2018

that a command entered will be executed immediately . Thus ,
for a terminal or a player , if it takes a long time after a
command is entered until a request corresponding to the
command is transmitted to a server , a response from the
server arrives , and the command is executed on the basis of
the response , the time is considered as an “ unanticipated
wait time ” . That is , the occurrence of the “ unanticipated wait
time ” due to the occurrence of congestion at a conventional
server is not anticipated by the terminal or the player . It is
difficult to take some measure on the terminal side against
such " unanticipated wait time ” in advance . Thus , a conven
tional terminal at which no measure is taken is kept in a wait
state until the elapse of the " unanticipated wait time ” . That
is , for the player or the terminal , the time during which the
wait state continues after a command is entered instead of
the command being executed immediately is the “ unantici
pated wait time ” . Moreover , the duration of the " unantici
pated wait time ” varies depending on the congestion status
at the server side , which is not known to the player or the
terminal . Thus , when an “ unanticipated wait time ” occurs
and the terminal enters a wait state , the player cannot predict
when the command will be executed . This makes the player
get bored or feel some stress .
[0075] In contrast , the “ wait time ” in this embodiment is
a time parameter intentionally generated at the server 2 side ,
which is an idea essentially different from the conventional
“ unanticipated wait time ” . That is , it is anticipated by the
player terminal 1 that such a “ wait time (time parameter) "
will arrive . Thus , it becomes possible to take a measure on
the player terminal 1 side by using the “ wait time (time
parameter) " so that the player will not get bored or feel
stress . Specifically , in this embodiment , at the player termi
nal 1 , the input of a command and the execution of the
command are not synchronized with each other , and the
speed of time flow from the input of the command to the
execution of the command is controlled in accordance with
the " wait time (time parameter) " . Furthermore , the player
terminal 1 visually presents the player with the speed of time
flow . With this measure , it becomes possible to prevent the
player from getting bored or feeling stress . More specifi
cally , in this embodiment , the display control unit 124
prevents the player from getting bored or feeling stress by
executing control so as to display game screens shown in
FIGS . 7 to 9 on the display unit 27 .
[0076] FIG . 7 is an illustration showing an example of a
game screen in this embodiment . In an upper part of a game
screen 210 in FIG . 7 , for example , a battle screen 221 in an
RPG (Role Playing Game) is displayed . Under the battle
screen 221 , a button - set area 222 including buttons for
allowing the player to select commands (hereinafter referred
to as " command selecting buttons ”) is displayed . Further
more , under the button - set area 222 , a command queue 223
in which icons representing commands (hereinafter referred
to as " command icons ”) appear to flow in one direction is
displayed .
[0077] The player performs a tap operation on a desired
command selecting button among the one or more command
selecting buttons disposed in the button - set area 222 to enter
a corresponding command . The command queue 223 is
implemented as an FIFO (First - in , First - out) queue . Thus ,
the command icon corresponding to the command entered
by the player (the tapped command selecting button) is
added at the tail of the command queue 223 (the right end
in the example in FIG . 7) . That is , when the player performs

tap operations on a plurality of kinds of command selecting
buttons , a plurality of kinds of command icons are sequen
tially stored in the command queue 223 in the order of the
tap operations and are sequentially moved leftward in the
command queue 223 . Then , the commands corresponding to
the command icons are executed in the order of arrival at the
left end (the end labeled with the text string “ Invoke ” in the
example in FIG . 7) . Here , the speed of movement of the
command icons in the command queue 223 is not constant
but changes depending on the wait time . That is , the speed
of movement of the command icons becomes slower as the
wait time set from the server 2 becomes longer . In other
words , considering the wait - time notification from the server
2 as an instruction from the server 2 , the speed of movement
of the command icons in the command queue 223 is adjusted
according to the instruction from the server 2 .
[0078] As described above , the speed of movement of the
command icons in the command queue 223 corresponds to
the speed of time flow at the player terminal 1 side , which
is controlled according to the " wait time (time parameter) "
set by the server 2 . Thus , the speed of time flow up to the
invocation (execution of a command is visualized for the
player . That is , the player can readily recognize visually the
time to wait before the command gets invoked . This pre
vents the player from feeling much stress and enables the
player to wait until the command gets invoked without
getting bored .
[0079] In other words , by introducing the command queue
223 described above , asynchronous input of commands and
speed control of the time flow at the player terminal 1 side
as well as visualization thereof are realized . As a result , it
becomes possible to realize proactive load balancing pro
cessing without making the player feel stress or get bored .
Now , asynchronous input of commands will be described .
10080] The command selecting buttons themselves , dis
posed in the button - set area 222 , are those that have con
ventionally been used in ordinary games , such as RPGs .
Conventionally , when a command selecting button is
pressed at a client (a conventional terminal corresponding to
the player terminal 1 in this embodiment) , a request is sent
to a conventional server , and a command is executed after a
response is received from the server . Since the time taken
from the sending of the request to the receiving of the
response is usually short , the player perceives that the
pressing of the command selecting button and the execution
of the command are synchronized with each other . Thus ,
when the loads of the server becomes large and a time lag
occurs between the pressing of the command selecting
button and the execution of the command , the player feels
stress or gets bored .
[0081] In contrast , in this embodiment , a UI (User Inter
face) that presupposes that there is a time lag between the
timing of pressing a command selecting button and the
execution of a command is adopted . Such a UI enables
asynchronous input of commands . Furthermore , the duration
of the time lag is controlled variably depending on the wait
time (time parameter) assigned by the server 2 , and the result
of this variable control , i . e . , the speed of time flow , is
visualized . Specifically , when a command selecting button is
pressed , a corresponding command icon is stored in the
command queue 223 and begins to move leftward . The
speed of movement of the command icon corresponds to the
speed of time flow at the terminal 1 side , which is controlled
variably in accordance with the wait time designated from

US 2018 / 0077063 A1 Mar . 15 , 2018

the server 2 . Then , after the elapse of the wait time desig
nated from the server 2 , a request is sent to the server 2 .
Since the proactive load balancing processing is being
executed at the server 2 side , a response is sent in a short
time , without the server 2 suffering from large loads . Then ,
the response receiving control unit 125 in FIG . 4 executes
control to receive the response . Here , in the case where
information representing a wait time is also transmitted , the
response receiving control unit 125 also receives the infor
mation and supplies the information to the wait - time setting
unit 122 . When the response is received , the command
executing unit 126 executes a command .
[0082] The player can readily recognize the current pro
ceeding of the above series of processing steps , i . e . , the time
that will be taken before the command is executed , by
viewing the status of movement of the corresponding com
mand icon in the command queue 223 . Thus , the player can
wait for the execution of the command without feeling stress
or getting bored .
[0083] Furthermore , by adopting such asynchronous com
mand input , it also becomes possible to edit commands .
Specifically , when asynchronous command input is adopted ,
after entering a certain first command , the player can further
enter a second command before the first command is
executed . That is , it becomes possible to enter a plurality of
kinds of commands before one kind of command is
executed . Thus , it becomes possible to edit a command
before the command is sent as a request .
[0084] FIG . 8 is a schematic illustration for explaining
editing of commands . In the example in FIG . 8 , first to sixth
commands of six kinds are sequentially entered in that order ,
and command icons C1 to C6 respectively corresponding to
the first to sixth commands are stored in that order in the
command queue 223 . Here , the position at which a com
mand icon is stored when a command is entered will
hereinafter be referred to as a “ first position " . The individual
command icons C1 to C6 are sequentially moved leftward in
that order at a movement speed corresponding to the wait
time (time parameter) .
100851 Here , since the movement speed of command icons
(the speed of time flow at the player terminal 1 side) is
changed in accordance with the wait time , it becomes
possible to send a request when a command icon reaches a
predetermined position in the command queue 223 . The
predetermined position that a command icon reaches when
a request is sent will hereinafter be referred to as a “ second
position " . In the command queue 223 , command icons
existing in a right - side range R from the first position to the
second position correspond to commands for which requests
have not been sent . Thus , the player can freely edit these
commands . That is , in the example in FIG . 8 , the second to
sixth commands corresponding to the command icons C2 to
C6 can be edited . On the other hand , command icons
existing in a left - side range L from the second position to a
position at which a command is executed (the position
labeled with the text string “ Invoke ” in the example in FIG .
8 and hereinafter referred to as a " third position ") corre
spond to commands for which requests have already been
sent and responses are being awaited . Thus , the player
cannot edit these commands . That is , in the example in FIG .
8 , the first command corresponding to the command icon C1
cannot be edited .
[0086] The operation , etc . for editing a command is not
particularly limited . For example , in this embodiment , as

shown in FIG . 8 , the player can edit a command correspond
ing to a command icon by performing a predetermined touch
operation on the command icon . Specifically , for example ,
the player can cancel the fifth command corresponding to
the command icon C5 by moving the command icon C5
outside of the command queue 223 by a drag operation . As
another example , the player can change the order of execu
tion (invocation) of the second and fourth commands respec
tively corresponding to the command icons C2 and C4 by
exchanging the orders (positions) of the command icons C2
and C4 by a drag operation .
[0087] As described above , when the speed of movement
of the command icons in the command queue 223 is
decreased , i . e . , when a wait time is set from the server 2 , the
player can perform tap operations on the command selecting
buttons disposed in the button - set area 222 or perform drag
operations on the command icons in the command queue
223 to add or edit the corresponding commands . Here , the
kinds of command editing are not particularly limited , and
arbitrary kinds may be adopted , such as the cancelling and
order changing described above .
[0088] Accordingly , compared with the conventional
method , in which asynchronous command input is not
adopted , the player can enter a plurality of kinds of com
mands at high speed and change them as appropriate in
accordance with the game status , etc . , thereby constructing
deeper strategies for the game .
[0089] FIG . 9 is an illustration showing game screen
transitions in a specific example of asynchronous command
input .
[0090] In a state where a game screen on the left side of
FIG . 9 is displayed , the player can select a first character
inside a frame 251 (the frame 251 need not actually be
displayed) among characters displayed in the battle screen
221 by performing a tap operation on the first character .
Then , the button - set area 222 including a plurality of com
mand selecting buttons is displayed as a list of a plurality of
commands possessed by the first character . Here , let it be
supposed that the player performs a tap operation on a
command selecting button B7 . Then , a command icon C7
corresponding to the command selecting button B7 is added
at the first position at the tail of the command queue 223 and
begins to move leftward .
[0091] Then , as shown in a game screen at the middle of
FIG . 9 , the player can select a second character inside a
frame 252 (the frame 252 need not actually be displayed)
among the characters displayed in the battle screen 221 by
performing a tap operation on the second character . Then ,
the button - set area 222 including a plurality of command
selecting buttons is displayed as a list of a plurality of
commands possessed by the second character . Here , let it be
supposed that the player performs a tap operation on a
command selecting button B8 . Then , a command icon C8
corresponding to the command selecting button B8 is added
at the first position at the tail of the command queue 223 and
begins to move leftward . In the meantime , the command
icon C7 is moved further leftward . As described above , by
adopting asynchronous command input , it becomes possible
to enter a next command even before a command entered
earlier is sent to the server 2 as a request .
10092) Then , as shown in a game screen on the right side
of FIG . 9 , the player can select a third character inside a
frame 253 (the frame 253 need not actually be displayed)
among the characters displayed in the battle screen 221 by

US 2018 / 0077063 A1 Mar . 15 , 2018

performing a tap operation on the third character . Then , the
button - set area 222 including a plurality of command select
ing buttons is displayed as a list of a plurality of commands
possessed by the third character . Here , let it be supposed that
the player performs a tap operation on a command selecting
button B9 . Then , a command icon C9 corresponding to the
command selecting button B9 is added at the first position at
the tail of the command queue 223 and begins to move
leftward . In the meantime , the command icon C8 is moved
further leftward . The command icon C7 passes by the
second position , which is located further leftward (as a
result , a corresponding command is sent to the server 2 as a
request , and a response from the server 2 is received) , and
arrives at the third position . Thus , the command entered in
the game screen on the left side of FIG . 8 , i . e . , the command
corresponding to the command icon C7 (the command
selecting button B7) , is executed at this time .
10093] The functional configurations of the player termi
nal 1 and the server 2 for realizing the proactive load
balancing processing and asynchronous command input
have been described above with reference to FIGS . 4 to 9 .
Next , the flows of processing executed by the player termi
nal 1 and the server 2 having the above functional configu
rations will be described with reference to FIGS . 10 and 11 .
[0094] FIG . 10 is a flowchart for explaining the flow of
processing executed at the server 2 side . In step 91 , the load
monitoring unit 102 determines whether or not the loads are
large . Specifically , the load monitoring unit 102 monitors on
the basis of the resource usage status of the server 2 whether
or not the condition that the number of current requests does
not exceed the predetermined threshold based on the capac
ity number is satisfied . In the case where the above condition
is satisfied , i . e . , in the case where the number of current
requests does not exceed the threshold , the determination in
step S1 results in NO , and the processing proceeds to step
S3 . In step S3 , the wait - time calculating unit 103 calculates
the wait time as 0 . On the other hand , in the case where the
above condition is not satisfied , i . e . , the number of current
requests exceeds the threshold , considering that the loads are
large , the determination in step S1 results in YES , and the
processing proceeds to step S2 . In step S2 , the wait - time
calculating unit 103 calculates a wait time , for example ,
according to equation (1) given earlier .
[0095] In step S4 , the request receiving control unit 101
determines whether or not there is any request .
[0096] In the case where there is no request , the determi
nation in step S4 results in NO , and the processing proceeds
to step S9 . In step S9 , the CPU 51 of the server 2 determines
whether or not a processing termination instruction has been
received . Here , although the processing termination instruc
tion is not particularly limited , a power shutoff of the server
2 is adopted in this embodiment . That is , when the power is
shut off at the server 2 , the determination in step S9 results
in YES , and the processing at the server 2 is terminated . On
the other hand , unless the power is shut off at the server 2 ,
the determination in step S9 results in NO , and the process
ing returns to step Si , and the subsequent processing is
repeated .
10097] Here , when a request is sent from a certain one of
the plurality of player terminals 1 (the player terminals 1 - 1
to 1 - m in the example in FIG . 1) , the determination in step
S4 results in YES , and the processing proceeds to step S5 .

[0098] In step S5 , the fraud monitoring unit 106 deter
mines whether or not the wait time for the request is
appropriate .
[0099] Specifically , the fraud monitoring unit 106 searches
the list stored in the wait - time DB 111 (see FIG . 9) for a wait
time , etc . associated with the client ID included in the
request . In the case where the request is transmitted at a
timing earlier than an appropriate time identified on the basis
of the search result , considering that the request is illegiti
mate , the determination in step S5 results in NO , and the
processing proceeds to step S6 . In step S6 , the fraud moni
toring unit 106 executes penalizing processing for the ille
gitimate player terminal 1 that has sent the request . Then , the
processing proceeds to step S9 , and the subsequent process
ing is repeated . On the other hand , in the case where the wait
time for the request is appropriate , the determination in step
S5 results in YES , and the processing proceeds to step S7 .
In step S7 , the request executing unit 104 executes the
request and generates a response . In step S8 , the response
sending control unit 105 sends the response and the wait
time to the player terminal 1 . Then , the processing proceeds
to step S9 , and the subsequent processing is repeated .
[0100] As opposed to the above - described processing
executed at the server 2 side , FIG . 11 shows the flow of
processing executed at the player terminal 1 side . FIG . 11 is
a flowchart for explaining the flow of the processing
executed at the player terminal 1 side . The processing
executed at the player terminal 1 side , shown in FIG . 11 , is
triggered by a certain event during the execution of the
game , such as a battle event in an RPG .
[0101] In step S21 , the display control unit 124 displays a
game screen including a command selecting UI and a queue
on the display unit 27 . Here , the command selecting UI
corresponds to , for example , the button - set area including
command selecting buttons , described earlier with reference
to FIGS . 7 to 9 . The queue corresponds to , for example , the
command queue 223 .
10102] In step S22 , the command accepting unit 121
determines whether or not a command has been entered .
[0103] In the case where no command has been entered ,
the determination in step S22 results in NO , and the pro
cessing proceeds to step S34 . In step S34 , the CPU 21 of the
player terminal 1 determines whether or not a processing
termination instruction has been received . Here , although
the processing termination instruction is not particularly
limited , an instruction for terminating the above certain
event (e . g . , a battle event) is adopted in this embodiment .
That is , when the certain event is terminated , the determi
nation in step S34 results in YES , and the processing at the
player terminal 1 side is terminated . On the other hand , in
the case where the certain event is being continued , the
determination in step S34 results in NO , and the processing
returns to step S21 , and the subsequent processing is
repeated .
[0104] When a certain command selecting button is tapped
and the corresponding command is accepted by the com
mand accepting unit 121 , the determination in step S22
results in YES , and the processing proceeds to step S23 . In
step S23 , the wait - time setting unit 122 determines whether
or not a wait - time notification has been received from the
server 2 . In the case where a wait - time notification has not
been received from the server 2 (including the case where
the wait time is set to be o in step S3 in FIG . 10) , the
determination in step S23 results in NO , and the processing

US 2018 / 0077063 A1 Mar . 15 , 2018

m

proceeds to step S24 . In step S24 , the wait - time setting unit
122 sets a dictated wait time . Here , the dictated wait time
refers to a time parameter indicating a " reference speed ” for
the speed of time flow at the player terminal 1 side . When
the processing in step S24 ends , the processing proceeds to
step S26 . On the other hand , in the case where a wait - time
notification has been received (in the case where information
representing a wait time is attached to the response received
in step S32 in the immediately preceding iteration) , the
determination in step S23 results in YES , and the processing
proceeds to step S25 . In step S25 , the wait - time setting unit
122 sets the wait time from the server 2 . Here , as described
earlier , the wait time from the server 2 refers to a time
parameter for changing the speed of time flow at the player
terminal 1 side relative to the reference speed , which is set
by the server 2 . When the processing in step S25 ends , the
processing proceeds to step S26 .
[0105] In step S26 , the display control unit 124 calculates
the speed of movement of command icons (the speed of time
flow at the player terminal 1 side) by using the wait time set
in step S24 or S25 . Specifically , for example , in the case
where a frame drawing method , which is adopted in many
game systems , is adopted as the method of drawing com
mand icons , the display control unit 124 calculates the
number of pixels corresponding to movement per frame as
the movement speed . More specifically , for example , let it be
supposed that a notification including information represent
ing a wait time of “ 1000 ms ” has been received from the
server 2 in a game system in which the screen is updated
every 50 ms . In this case , the display control unit 124
calculates the movement speed such that a command icon
moves from the first position at the tail of the command
queue 223 to the second position at which a request is sent
in one second in the example given earlier . That is , the
display control unit 124 calculates a value obtained by
dividing the number of pixels from a command icon placed
at the first position to the second position by (1000 / 50) as the
number of pixels corresponding to movement per frame
(movement speed) .
[0106] In step S27 , the display control unit 124 starts the
display of movement of a command icon . Specifically , in the
example given earlier , the command icon is placed at the
first position at the tail of the command queue 223 and
begins to move leftward .
[0107] In step S28 , the command accepting unit 121
determines whether or not an operation has been performed
on a command icon . In the case where a drag operation or
the like has been performed on a command icon , the
determination in step S28 results in YES , and the processing
proceeds to step S29 . In step S29 , the display control unit
124 executes editing processing for deleting a command ,
changing the order , etc . Then , the processing proceeds to
step S30 . On the other hand , in the case where a drag
operation or the like has not been performed on a command
icon , the determination in step S28 results in NO , and the
processing proceeds to step S30 without executing com
mand editing processing (the processing in step S29) .
[0108] In step S30 , the display control unit 124 determines
whether or not the wait time has elapsed . In the case where
the wait time has not elapsed , since the timing for sending
a request has not yet arrived , the processing returns to step
S28 , and the subsequent processing is repeated . That is ,

before a request is sent , it is possible to execute command
editing processing by performing operation on command
icons .
[0109] After the elapse of the wait time , the determination
in step S30 results in YES , and the processing proceeds to
step S31 . In step S31 , the request sending control unit 123
sends the command as a request to the server 2 . Thus , if the
determination in step S4 results in YES , unless the request
is illegitimate , a response and a wait time are sent to the
player terminal 1 in step S8 . In step S32 , the response
receiving control unit 125 receives the response and the wait
time . In step S33 , the command executing unit 126 executes
the command . Then , the processing proceeds to step S34 ,
and the subsequent processing is repeated .
[0110] For convenience of explanation , in the flowchart in
FIG . 11 , the processing in steps S27 to S33 is shown as
processing within steps S21 to $ 34 . Actually , however , since
asynchronous command input is realized in this embodi
ment , as described earlier , the processing in steps S27 to S33
is executed each time a plurality of commands are input ,
concurrently as processing for the individual commands .
[0111] Although an embodiment of the present invention
has been described above , it is to be noted that the present
invention is not limited to the above - described embodiment
and that modifications , improvements , etc . within a scope in
which it is possible to achieve the object of the present
invention are encompassed in the present invention .
[0112] For example , the functional configuration in FIG . 4
is only an example , and there is no particular limitation to
this example . That is , it suffices that an information pro
cessing system be provided with functions that enable the
execution of the above - described series of processing steps
as a whole , and the choice of functional blocks for imple
menting the functions is not particularly limited to the
example in FIG . 4 . Furthermore , the locations of the func
tional blocks are not particularly limited to those in FIG . 4
and may be arbitrarily set . For example , the functional
blocks of the server 2 may be transferred to the player
terminal 1 , etc . , and conversely , the functional blocks of the
terminal 1 may be transferred to the server 2 , etc . Further
more , each functional block may be implemented by hard
ware alone , by software alone , or by a combination of
hardware and software .
[0113] In a case where the processing by each functional
block is executed by software , a program constituting the
software is installed on a computer , etc . via a network or
from a recording medium . The computer may be a computer
embedded in special hardware . Alternatively , the computer
may be a computer that can execute various functions when
various programs are installed thereon , such as a server or a
general - purpose smartphone or personal computer .
[0114] recording medium including such a program is
implemented by a removable medium (not shown) that is
distributed separately from the main unit of the apparatus in
order to provide the program to a player , a recording
medium that is provided to a player as embedded in the main
unit of the apparatus , etc .
[0115] . In this specification , steps dictated in the program
recorded on the recording medium may include not only
processing that is executed sequentially in order of time but
also processing that is not executed sequentially in order of
time but is executed in parallel or individually . Furthermore ,
in this specification , the term " system ” should be construed

US 2018 / 0077063 A1 Mar . 15 , 2018
10

to mean an overall apparatus constituted of a plurality of
devices , a plurality of means , etc .
[0116] In other words , an information processing system
according to the present invention may be embodied in
various forms configured as follows , including the informa
tion processing system according to the above - described
embodiment in FIG . 1 . Specifically , an information process
ing system according to this embodiment includes a server
(e . g . , the server 2 in FIG . 1) and a plurality of terminals (e . g . ,
the player terminals 1 - 1 to 1 - m in FIG . 1) that send certain
requests to the server . The server includes : monitoring
means (e . g . , the load monitoring unit 102 in FIG . 4) that
monitors whether or not a predetermined condition regard
ing processing of requests is satisfied ; wait - time calculating
means (e . g . , the wait - time calculating unit 103 in FIG . 4)
that calculates a wait time before a request is sent at a
terminal side in a case where the predetermined condition is
not satisfied ; request executing means (e . g . , the request
executing unit 104 in FIG . 4) that executes requests in the
order of arrival thereof and that generates responses ; and
first sending control means (e . g . , the response sending
control unit 105 in FIG . 4) that executes control to send the
responses to the terminals that have sent the corresponding
requests and to also send to the terminals information
representing the wait time in a case where the wait time has
been calculated . The terminal includes : command accepting
means (e . g . , the command accepting unit 121 in FIG . 4) that
accepts a certain command ; wait - time setting means (e . g . ,
the wait - time setting unit 122 in FIG . 4) that sets a wait time
identified from information representing the wait time in a
case where the information is transmitted from the server
and that sets a predetermined time as a wait time in a case
where the information is not transmitted ; display control
means (e . g . , the display control unit 124 in FIG . 4) that
controls the speed of time flow at the terminal side in
accordance with the set wait time so as to control display of
an image that changes at the speed of time flow ; and second
sending control means (the request sending control unit 123
in FIG . 4) that executes control to send the command as a
request to the server after the elapse of the set wait time .
[0117] Here , it is possible to set the “ predetermined con
dition ” , for example , by recognizing in advance the process
ing capabilities of finite computer resources at the server
side and presupposing that requests within the processing
capabilities arrive . This makes it possible to distribute the
arrival of requests from the individual terminals in the
temporal direction before requests exceeding the processing
capabilities arrive and the server loads reach a peak . That is ,
it becomes possible to realize proactive load balancing
processing . That is , when requests exceeding the processing
ability of the server infrastructure are coming , wait times are
set for the individual terminals , and requests are sequentially
transmitted to the server in the order of the elapse of the wait
times . This enables the server to process the requests without
experiencing critical congestion . Accordingly , as a technol
ogy for preventing congestion at a server , a technology that
can be suitably applied to an information processing system
in which a request and response method is adopted is
established .
[0118] Furthermore , at the terminal side , since it is pre
supposed that there is a time lag between when a certain
command is accepted and when a request for the command
is sent , the asynchronous command input described earlier is
realized . Furthermore , the speed of time flow at the terminal

side is controlled in accordance with a " wait time ” set by the
server as a time parameter or a “ predetermined time ” that
serves as a reference , and the speed of time flow is visualized
and presented to the user (the player in the case of a game) .
This prevents the user from getting bored or feeling stress
from when a command is entered until the command is
executed .
[0119] Furthermore , since the information processing sys
tem according to the present invention does not particularly
require additional server hardware or network equipment for
load - balancing , it can be realized at extremely low imple
mentation costs compared with before . Furthermore , since
the information processing system according to the present
invention can be implemented by using existing application
protocols (http , https , Web Socket , etc .) , it is possible to use
existing load balancers in combination without modifica
tions .
[0120] Here , the wait - time calculating means of the server
may calculate the wait time on the basis of the number of
requests arriving per unit time and the number of requests
that can be processed per unit time . Accordingly , an appro
priate time based on the number of requests that can be
processed per unit time capacity) and the number of
requests arriving per unit time (record) is set as a wait time .
This makes it possible to realize the proactive load - balanc
ing processing more efficiently .
[0121] Furthermore , the server may further include : man
agement means (e . g . , the wait - time DB 111 and the CPU 51
in FIG . 4) that manages the arrival time of an immediately
preceding request and the wait time for each of the plurality
of terminals ; and second monitoring means (e . g . , the fraud
monitoring unit 106 in FIG . 4) that monitors , at the time of
arrival of a request , whether or not the terminal that has sent
the request has observed the wait time on the basis of the
information managed by the management means . This
makes it possible to readily execute various kinds of penal
izing processing for an illegitimate terminal (the user , or the
player in the case of a game) that does not observe the wait
time .
[0122] Here , as described earlier , the display control
means of the terminal controls the speed of time flow at the
terminal side in accordance with the set wait time so as to
control display of an image that changes at the speed of time
flow . Furthermore , the sending control means executes con
trol to send the command as a request to the server after the
elapse of the set wait time .
[0123] Here , “ the image that changes at the speed of time
flow ” is not limited to that in the above - described embodi
ment , and an arbitrary moving image may be adopted . For
example , in the case where a game is adopted , an animation
in which a character in the game moves may be adopted . In
this case , the " wait time ” set at the terminal side is a
parameter for controlling the speed of time flow at the
terminal side and is used in the following two methods . In
a first method , the wait time is used as a parameter for
controlling the rendering time of a moving image . This
makes it possible to realize " an image that changes at the
speed of time flow ” . In a second method , the wait time is
used as a parameter for controlling the timing at which the
next request is sent from the terminal to the server . This
makes it possible to realize control by the sending control
means .
(0124] As described above , an arbitrary moving image
suffices for “ the image that changes at the speed of time

US 2018 / 0077063 A1 Mar . 15 , 2018

EXPLANATION OF REFERENCE NUMERALS
[0129] 1 , 1 - 1 to 1 - m Player terminals
10130] 2 Server
[0131] 21 CPU
10132] 51 CPU
[0133] 101 Request receiving control unit
[0134] 102 Load monitoring unit
10135] 103 Wait - time calculating unit
[0136] 104 Request executing unit
10137] 105 Response sending control unit
10138] 106 Fraud monitoring unit
0139] 111 Wait - time DS
10140] 121 Command accepting unit
[0141] 122 Wait - time setting unit
[0142 123 Request sending control unit
[0143] 124 Display control unit
[0144] 125 Response receiving control unit
10145] 126 Command executing unit
1 . An information processing system comprising a server

and a plurality of terminals that send certain requests to the
server ,

wherein the server includes :
monitoring means that monitors whether or not a prede

termined condition regarding processing of requests is
satisfied ;

wait - time calculating means that calculates a wait time
before a request is sent at a terminal side in a case
where the predetermined condition is not satisfied ;

request executing means that executes requests in the
order of arrival thereof and that generates responses ;
and

flow ” . However , an image showing a process in which a
symbol representing a command is moved from a first
position to a second position is preferable , as in the above
described embodiment . In this case , the speed of movement
of the symbol corresponds to the speed of time flow at the
terminal side . That is , the image that changes at the speed of
time flow is an image showing a process in which the
symbol is moved toward the second position at the move
ment speed . By viewing this image , it becomes possible for
the user (the player in the case of a game) to immediately
and clearly recognize the speed of time flow . That is , the user
can immediately and clearly recognize the time that will be
taken before the command is executed . This further prevents
the user from getting bored or feeling stress .
[0125] Specifically , the display control means of the ter
minal may execute , as control for displaying an image
showing a process in which a symbol representing a com
mand is moved from a first position to a second position ,
control for displaying an image showing a process in which :
the symbol is placed at the first position when the command
is accepted ; the speed of movement of the symbol is
determined such that the symbol will be moved from the first
position to the second position in the set wait time ; and the
symbol is moved toward the second position at the move
ment speed , and the sending control means may send the
command as a request to the server when the symbol has
arrived at the second position .
[0126] Here , a request is sent from the terminal to the
server when the symbol has arrived at the second position .
Even if the proactive load balancing processing is executed ,
a certain time lag , although short , occurs between sending a
request and receiving a response . That is , a certain time lag
occurs until the command is executed (invoked) after the
symbol arrives at the second position . Thus , the display
control means may control display of an image showing a
process in which the symbol is moved from the first position
to a third position via the second position , and the terminal
may further include command executing means that
executes processing corresponding to the command on the
basis of the response from the server associated with the
command when the symbol has arrived at the third position .
[0127] The command accepting means may sequentially
accept a plurality of commands , the display control means
may display an image showing a process in which a plurality
of symbols individually corresponding to the plurality of
commands are individually moved from the first position to
the second position in the order of acceptance of the com
mands , and the terminal may further include command
order changing means that accepts an operation for exchang
ing the order of a symbol before reaching the second
position with another symbol as an instruction for changing
the order of execution of a command corresponding to the
symbol . Furthermore , the terminal may further include :
command cancelling means that accepts an operation for
deleting a symbol before reaching the second position from
the image as an instruction for cancelling a command
corresponding to the symbol .
[0128] This makes it possible for the user (the player in the
case of a game) to readily perform editing operations , such
as entering another command after entering a command , to
change the order of execution (invocation) of commands or
deleting a command . This makes it possible to realize the
proactive load balancing processing , while further prevent
ing the user from feeling stress or getting bored .

first sending control means that executes control to send
the responses to the terminals that have sent the cor
responding requests and to also send to the terminals
information representing the wait time in a case where
the wait time has been calculated , and

wherein the terminal includes :
command accepting means that accepts a certain com
mand ;

wait - time setting means that sets a wait time identified
from information representing the wait time in a case
where the information is transmitted from the server
and that sets a predetermined time as a wait time in a
case where the information is not transmitted ;

display control means that controls the speed of time flow
at the terminal side in accordance with the set wait time
so as to control display of an image that changes at the
speed of time flow ; and

second sending control means that executes control to
send the command as a request to the server after the
elapse of the set wait time .

2 . A server that carries out communications with a plu
rality of terminals that send certain requests , the server
comprising :

first monitoring means that monitors whether or not a
predetermined condition regarding processing of
requests is satisfied ;

wait - time calculating means that calculates a wait time as
a time parameter for controlling the speed of time flow
at a terminal side in a case where the predetermined
condition is not satisfied ;

request executing means that executes requests in the
order of arrival thereof and that generates responses ;
and

US 2018 / 0077063 A1 Mar . 15 , 2018

sending control means that executes control to send the
responses to the terminals that have sent the corre
sponding requests and to also send to the terminals
information representing the wait time in a case where
the wait time has been calculated .

3 . The server according to claim 2 , wherein the wait - time
calculating means calculates the wait time on the basis of the
number of requests arriving per unit time and the number of
requests that can be processed per unit time .

4 . The server according to claim 2 , further comprising :
management means that manages the arrival time of an

immediately preceding request and the wait time for
each of the plurality of terminals ; and

second monitoring means that monitors , at the time of
arrival of a request , whether or not the terminal that has
sent the request has observed the wait time on the basis
of the information managed by the management means .

5 . A non - transitory computer readable medium storing a
program for causing a computer to execute control process
ing , the computer carrying out communications with a
plurality of terminals that send certain requests , the control
processing comprising :

a monitoring step of monitoring whether or not a prede
termined condition regarding processing of requests is
satisfied ;

a wait - time calculating step of calculating a wait time as
a time parameter for controlling the speed of time flow
at a terminal side in a case where the predetermined
condition is not satisfied ;

a request executing step of executing requests in the order
of arrival thereof and generating responses ; and

a sending control step of executing control to send the
responses to the terminals that have sent the corre
sponding requests and to also send to the terminals
information representing the wait time in a case where
the wait time has been calculated .

6 . A terminal that carries out communications with a
server that sends a response to a request to a terminal that has
sent the request and that also sends to the terminal infor
mation representing a wait time before a next request is sent
in a case where a predetermined condition is satisfied , the
terminal comprising :

command accepting means that accepts a certain com
mand ;

wait - time setting means that sets a wait time identified
from information representing the wait time in a case
where the information is transmitted from the server
and that sets a predetermined time as a wait time in a
case where the information is not transmitted ;

display control means that controls the speed of time flow
at the terminal side in accordance with the set wait time
so as to control display of an image that changes at the
speed of time flow ; and

sending control means that executes control to send the
command as a request to the server after the elapse of
the set wait time .

7 . The terminal according to claim 6 ,
wherein the display control means executes , as control for

displaying an image showing a process in which a
symbol representing a command is moved from a first
position to a second position , control for displaying an
image showing a process in which :

the symbol is placed at the first position when the com
mand is accepted ;

the speed of movement of the symbol is determined such
that the symbol will be moved from the first position to
the second position in the set wait time ; and

the symbol is moved toward the second position at the
movement speed , and

wherein the sending control means sends the command as
a request to the server when the symbol has arrived at
the second position .

8 . The terminal according to claim 7 ,
wherein the display control means controls display of an

image showing a process in which the symbol is moved
from the first position to a third position via the second
position , and

wherein the terminal further comprises a command
executing means that executes processing correspond
ing to the command on the basis of the response from
the server associated with the command when the
symbol has arrived at the third position .

9 . The terminal according to claim 7 ,
wherein the command accepting means sequentially

accepts a plurality of commands ,
wherein the display control means displays an image

showing a process in which a plurality of symbols
individually corresponding to the plurality of com
mands are individually moved from the first position to
the second position in the order of acceptance of the
commands , and

wherein the terminal further comprises a command - order
changing means that accepts an operation for exchang
ing the order of a symbol before reaching the second
position with another symbol as an instruction for
changing the order of execution of a command corre
sponding to the symbol .

10 . The terminal according to claim 7 , further comprising :
command cancelling means that accepts an operation for

deleting a symbol before reaching the second position
from the image as an instruction for cancelling a
command corresponding to the symbol .

11 . A non - transitory computer readable medium storing a
program for causing a computer to execute control process
ing , the computer controlling communications with a server
that sends a response to a request to a terminal that has sent
the request and that also sends to the terminal information
representing a wait time before a next request is sent in a
case where a predetermined condition is satisfied , the con
trol processing comprising :

a command accepting step of accepting a certain com
mand ;

a wait - time setting step of setting a wait time identified
from information representing the wait time in a case
where the information is transmitted from the server
and setting a predetermined time as a wait time in a
case where the information is not transmitted ;

a display control step of controlling the speed of time flow
at the terminal side in accordance with the set wait time
so as to control display of an image that changes at the
speed of time flow ; and

a sending control step of executing control to send the
command as a request to the server after the elapse of
the set wait time .

* * * * *

