
US 20210232371A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0232371 A1

WAITE et al . (43) Pub . Date : Jul . 29 , 2021

(52) U.S. CI .
CPC

(54) COMPOSITION ENABLEMENT FOR
PARTNER AND CUSTOMER
EXTENSIBILITY OF INVERSION OF
CONTROL OBJECTS

GO6F 8/36 (2013.01)

(57) ABSTRACT

(71) Applicant : Toshiba Global Commerce Solutions
Holdings Corporation , Tokyo (JP)

(72) Inventors : Jonathan WAITE , Cary , NC (US) ;
Zachary M. DARDEN , New Hill , NC
(US)

(21) Appl . No .: 16 / 750,333

The present disclosure provides techniques for composition
enablement for extensibility of a system . The techniques
include delivering an interface to a first downstream pro
vider , where the interface includes a bean implementation
format . Then performing at least one of : (i) receiving a
provider level (POL) selection from the first downstream
provider , where the POL selection corresponds to a POL
stored in an extender , and delivering a first bean implemen
tation to the first downstream provider based on the POL ,
and (ii) receiving a constructed bean implementation from
the downstream provider , determining a POL of the down
stream provider , and storing the constructed bean imple
mentation in the extender at the determined POL .

(22) Filed : Jan. 23 , 2020

Publication Classification
(51) Int . CI .

G06F 8/36 (2006.01)

SERVER 102
-100

PROCESSOR 104

MEMORY

COMPILER 108

122 INTERFACE DOWNSTREAM
PROVIDER DEVICE 1401 - N

STORAGE 112

SERVER APPLICATION
DOWNSTREAM
PROVIDER CODE 142

BASE
CODE

MODULE

EXTENDER
MODULE

118

NETWORK INTERFACE 120 NETWORK 130

SERVER

102

100

PROCESSOR

104

Patent Application Publication

MEMORY

106

COMPILER

108

122

INTERFACE

110

DOWNSTREAM PROVIDER DEVICE

140
1 - N

STORAGE

112

SERVER APPLICATION

114

DOWNSTREAM PROVIDER CODE

142

Jul . 29 , 2021 Sheet 1 of 5

BASE CODE MODULE 116

EXTENDER MODULE 118

NETWORK INTERFACE 120

NETWORK 130

US 2021/0232371 A1

FIG . 1

Patent Application Publication Jul . 29 , 2021 Sheet 2 of 5 US 2021/0232371 A1

OBJECT GRAPH 200

202

204 206

208 210 212

FIG . 2A

APPLICATION 250

} C CONTAINER 252 256 254

BEAN BEAN BEAN OBJECT

BEAN BEAN BEAN OBJECT

FIG . 2B

-300

POL SETTER 304 INTERFACE
306

302

Patent Application Publication

BEAN 307A

BEAN 307B

BEAN 307C

POL GETTER

310

-308

BEAN 312A

BEAN 312B

314

Jul . 29 , 2021 Sheet 3 of 5

POL GETTER

316

BEAN 318A

BEAN 318B

BEAN 3180

FIG . 3

320

328

336

POL GETTER

322

POL GETTER

330

POL GETTER

338

US 2021/0232371 A1

BEAN 324

PIL SETTER

326

BEAN 332

PIL SETTER

334

BEAN 340

PIL SETER

342

Patent Application Publication Jul . 29 , 2021 Sheet 4 of 5 US 2021/0232371 A1

400
402

START CONFIGURE APPLICATION WITH
CODE FROM A BASE PROVIDER

DELIVER AN
INTERFACE TO A
DOWNSTREAM
PROVIDER

408

404
YES DETERMINE A

POL OF THE
DOWNSTREAM
PROVIDER

403
RECEIVE 406
BEAN

IMPLEMENTATION
CONSTRUCTED BY THE

DOWNSTREAM
PROVIDER

?
414

NO 412

RECEIVE POL
SELECTION ?

DELIVER
DEFAULT BEAN

IMPLEMENTATION
TO THE

DOWNSTREAM
PROVIDER YES

420
416

BEAN
IMPLEMENTATIONS
FROM MULTIPLE
DOWNSTREAM

PROVIDERS STORED
AT THE POL

CORRESPONDING
TO THE POL
SELECTION

YES DETERMINE A PIL
WITH HIGHEST

PRIORITY

422

410 ?

STORE THE
CONSTRUCTED

BEAN
IMPLEMENTATION

AT THE
DETERMINED POL
IN THE EXTENDER

s
DELIVER BEAN

IMPLEMENTATION
CORRESPONDING TO THE

POL FROM THE
DOWNSTREAM PROVIDER

DELIVER BEAN
IMPLEMENTATION
CORRESPONDING
TO THE PIL WITH
THE HIGHEST

PRIORITY TO THE
DOWNSTREAM
PROVIDER

424

SERVICED LAST
DOWNSTREAM
PROVIDER ? 426

YES END

FIG . 4

504

502

500

START

RECEIVE AN INTERFACE

516

Patent Application Publication

508

506

YES

NO

SELECT A POL

SELECTING A BEAN IMPLEMENTATION ?

CONSTRUCT A BEAN IMPLEMENTATION CORRESPONDING TO THE INTERFACE

510

520

DELIVER THE POL SELECTION TO AN EXTENDER

518

MULTIPLE DOWNSTREAM PROVIDERS EXIST AT THE SAME HIERARCHICAL LEVEL ?
YES

SET PIL FOR THE CONSTRUCTED BEAN IMPLEMENTATION

512

Jul . 29 , 2021 Sheet 5 of 5

526

RECEIVE BEAN IMPLEMENTATION CORRESPONDING TO THE SELECTED POL

522

524

NO

514

DELIVER CONSTRUCTED BEAN IMPLEMENTATION TO THE EXTENDER

IMPLEMENT CONSTRUCTED BEAN IMPLEMENTATION

DELIVER THE PIL TO THE EXTENDER

IMPLEMENT RECEIVED BEAN IMPLEMENTATION

528

US 2021/0232371 A1

END

FIG . 5

US 2021/0232371 A1 Jul . 29 , 2021
1

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

COMPOSITION ENABLEMENT FOR
PARTNER AND CUSTOMER

EXTENSIBILITY OF INVERSION OF
CONTROL OBJECTS

BACKGROUND

[0001] The present invention relates to microservice soft
ware , and more specifically , to extending the functionality of
a framework to support microservice software . Microservice
software is decomposed , modularly structured business ser
vices software where base code of the software is developed
by a first party . Each module of the software may be
developed by other parties , independent of the first party , to
extend the functionality of the software to provide improved
business service functionality .
[0002] A framework is a code set that streamlines coding
by offering reusable , preset patterns of code that provide
outlines for accomplishing common programming tasks . A
developer adds code to the preset patterns of code provided
by the framework in order to complete a programming task .
Using a framework can standardize the structure of an
application , allowing for easier code interpretation and
extensibility .

[0006] FIG . 1 illustrates a computing environment includ
ing an extendable microservice application , according to one
embodiment .
[0007] FIG . 2A illustrates an object graph , according to
one embodiment .
[0008] FIG . 2B illustrates objects within an application
and inversion of control container , according to one embodi
ment .
[0009] FIG . 3 illustrates downstream providers ' imple
mentation of the microservice application , according to one
embodiment .
[0010] FIG . 4 illustrates a flowchart of a method for
operating a software application , according to one embodi
ment .
[0011] FIG . 5 illustrates a flowchart of a method for a
downstream provider using a software application , accord
ing to one embodiment .

DETAILED DESCRIPTION

SUMMARY
[0003] According to one embodiment of the present inven
tion , a method is provided . The method comprises delivering
an interface to a first downstream provider , where the
interface includes a bean implementation format , and per
forming at least one of : (i) receiving a provider level (POL)
selection from the first downstream provider , where the POL
selection corresponds to a POL stored in an extender , and
delivering a first bean implementation to the first down
stream provider based on the POL , and (ii) receiving a
constructed bean implementation from the downstream pro
vider , determining a POL of the downstream provider , and
storing the constructed bean implementation in the extender
at the determined POL .
[0004] According to another embodiment of the present
invention , a computer program product comprising a non
transitory computer - readable storage medium having com
puter - readable program code embodied therewith , where the
computer - readable program code is executable by one or
more computer processors , is provided . The computer - read
able program code is configured to deliver an interface to a
first downstream provider , where the interface includes a
bean implementation format , and perform at least one of the
following : (i) receive a provider level (POL) selection from
the first downstream provider , where the POL selection
corresponds to a POL stored in an extender , and deliver a
first bean implementation to the first downstream provider
based on the POL , and (ii) receive a constructed bean
implementation from the downstream provider , determine a
POL of the downstream provider , and store the constructed
bean implementation in the extender at the determined POL .
[0005] According to another embodiment of the present
invention , a method is provided . The method comprises
receiving an interface comprising a bean implementation
format , and performing at least one of : (i) constructing a first
bean implementation , and delivering the first bean imple
mentation to an extender , and (ii) selecting a provider level
(POL) for a second bean implementation , and delivering the
POL selection to an extender .

[0012] So that features of the present disclosure can be
understood in detail , embodiments of the present invention
disclosed herein may reference Spring framework (Spring) ,
and features thereof , as software tools to perform function
ality described herein . However , the functionality of the
present disclosure is not limited to using Spring framework ,
Spring beans , or any other framework or accompanying
features , and may instead be implemented by any frame
work or code implementing dependency injection or the
concept of Inversion of Control .
[0013] A base provider is a party that develops the base
code of a microservice software . A downstream provider is
a party that develops a module or portion of the software
independent from the base provider or other downstream
providers . Currently available microservice software does
not allow a present downstream provider to substitute
objects from a base provider or previous downstream pro
viders with same - type objects selected from among the
previous providers .
[0014] In some embodiments , functionality of a frame
work is extended such that an object from a base provider ,
and objects of the same type from a first downstream
provider , can be selected for implementation by a second
downstream provider .
[0015] FIG . 1 illustrates a computing environment includ
ing an extendable microservice application , according to one
embodiment . In one embodiment , the computing environ
ment 100 can include one or more virtual devices and / or
physical devices , which can be arranged in a cloud envi
ronment , in a distributed network , or the like . In another
embodiment , the computing environment includes a single
computer .
[0016] In yet another embodiment , the computing envi
ronment 100 includes a server 102 that is communicatively
coupled to one or more other downstream provider devices

via a network 130. Although not included in the
illustrated embodiment , each of the downstream provider
devices 140 , 1 - n may generally include processors , memory ,
storage , network interfaces , input / output (1/0) devices , and
the like . The network 130 may include , for example , a
telecommunications network , a local or wide area network ,
the Internet , and the like .

1401 - N

US 2021/0232371 A1 Jul . 29 , 2021
2

[0017] In the illustrated embodiment , the server 102
includes a processor 104 , memory 106 , storage 112 , a
network interface 120 , and one or more I / O devices (not
shown) , communicatively coupled by one or more buses
122. The server 102 is generally controlled by an operating
system (not shown) .
[0018] The processor 104 is a programmable logic device
that can perform instruction , logic , and mathematical pro
cessing . The processor 104 may retrieve and execute pro
gramming instructions stored in memory 106 , or store and
retrieve application data residing in storage 112. The pro
cessor 104 is generally representative of a single CPU or
GPU , multiple CPUs or GPUs , a single CPU or GPU having
multiple processing cores , and the like .
[0019] The memory 106 may be representative of a ran
dom access memory . The storage 112 may be representative
of hard - disk drives , solid state drives , flash memory devices ,
optical media and the like . The storage 112 can include fixed
or removable storage devices , such as fixed disk drives ,
removable memory cards , caches , optical storage , network
attached storage (NAS) , or storage area networks (SAN) .
The memory 106 and the storage 112 can also include
memory or storage physically located away from the server
102. For example , the memory 106 or storage 112 may be
located on another computer coupled to server 102 via the
bus 122 , or the network 130 .
[0020] The network interface 120 can include any type of
network communications interface allowing the server 102
to communicate with other computers or devices via the
network 130. Although not included in the illustrated
embodiment , the system can further include one or more
input devices , which can include any device for providing
input to the server 102. For example , the input device may
include keyboards , mice , controllers , buttons , switches , or
other physical device mechanisms for controlling the server
102. Output devices (not shown) may include output devices
such as monitors , touch screen displays , and the like .
[0021] The memory 106 includes a compiler 108 , and an
interface 110. Additionally , the storage 112 includes a server
application 114 comprising a base code module 116 and an
extender module 118. The base code module 116 includes
code for the interface 110 , which can be loaded into memory
106. The base code module 116 and the extender module 118
are made available to one or more downstream provider
devices 140 ,
[0022] The interface 110 defines one or more formats or
parameters for objects that are compatible with storage in
the extender module 118. The interface 110 is made avail
able to one or more downstream provider devices 140 , -N .
[0023] Generally , a downstream provider uses a down
stream provider device 1401 - n to develop downstream pro
vider code 1421 - n . The downstream provider code 1421 - n is
software that generates or implements objects adhering to
the parameters and formats defined in the interface 110. The
downstream provider can create unique objects in its code ,
or can implement objects from the base code module 116 or
the extender module 118 in lieu of creating objects unique to
the downstream provider .
[0024] In some embodiments , the downstream provider
code 142 is delivered to the server 120 and stored in the
extender module 118. The extender module 118 can store the
downstream provider code 1421 - n from each downstream
provider at a respective provider level (POL) . Downstream
provider code 1421 - N from multiple downstream providers

can be stored at the same POL . Objects provided in the base
code module 116 can be referenced by a POL . A downstream
provider who wishes to implement objects from the base
provider or another downstream provider can select a POL
to implement objects from that POL , in lieu of hard - coding
objects received from the base code module 116 or extender
module 118 .
[0025] For example , the extender module 118 can refer
ence objects from the base code module 116 as POL 0 .
Downstream provider code 1421 from Provider 1 may be
stored in the extender module 118 at POL 1 , while down
stream provider code 1427 from Provider N may be stored
in the extender module 118 at POL N. Provider X can select
POL 1 to implement objects from Provider 1 .
[0026] FIG . 2A illustrates an object graph , according to
one embodiment . In object - oriented programming , when a
first class references a second class , an object instantiated
from the second class is a dependency of the first class .
Hence , when objects are instantiated based on the classes ,
each of these objects is a dependency of any class that
implements the object .
[0027] As used herein , an object graph depicts a snapshot
of a network of objects showing the objects ' dependency
relationships . As illustrated , object graph 200 depicts depen
dency relationships between objects 202 , 204 , 206 , 208 ,
210 , and 212. Object 202 is directly dependent on objects
204 and 206 ; hence , objects 204 and 206 are dependencies
of object 202. Thus , the class that generates object 202
references , in its class definition , the classes that generate
object 204 and object 208. Object 204 is dependent on object
208 ; hence , object 208 is a dependency of objects 202 and
204. Thus , the class that generates object 204 references , in
its class definition , the class that generates object 208 .
Object 206 is dependent on objects 210 and 212 ; hence ,
objects 210 and 212 are dependencies of objects 202 and
206. Thus , the class that generates object 206 references , in
its class definition , the classes that generate object 210 and
object 212 .
[0028] The dependency relationships in the object graph
200 indicate that the objects are tightly coupled to the classes
from which objects were instantiated . For example , object
202 is tightly coupled to the classes that generate objects
204 , 206 , 208 , 210 , and 212. Tight coupling refers to a group
of classes that are directly dependent , or otherwise highly
dependent , on one another .
[0029] Tight coupling is not ideal in settings where addi
tional functionality for the objects may be added indepen
dently from the initial software application release , because
such additional functionality may require changing the code
to all the objects involved in the additional functionality .
[0030] For example , in a business services setting , objects
may be used for purposes such as storing data (data objects)
or providing functionality (function objects) . Data objects
may include , for example , customer account information or
purchase records . Function objects may contain methods to
fetch or manipulate data from the data objects , such as
retrieving a customer's account number or setting a data
object property to reflect the number of customer purchases
for a fiscal quarter . If the functionality of a function object
that fetches a customer's account number from a data object
is extended to include the customer's name , then each data
object containing a customer's account number may need to
be modified to include the customer's name .

1 - N

1 - N

US 2021/0232371 A1 Jul . 29 , 2021
3

[0031] FIG . 2B illustrates objects within an application
and inversion of control , according to one embodiment .
Inversion of control (IOC) refers to the concept of that code
should depend on abstractions , such that dependencies may
be substituted for one another so long as they fit the
respective abstraction format .
[0032] A framework implementing IoC (referred to herein
as an IoC framework) , can create different types of loC
containers 252. As used herein , objects included in the IOC
container 252 are referred to as beans . The IoC framework
can manage the complete life cycle of the beans . For
example , an IoC framework can create beans , dynamically
connect (wire) beans to one another , or dispose of beans ,
based on instructions received from configuration metadata .
The configuration metadata may be found , for example , in
the source code or in an XML file .
[0033] The use of beans allows for the decoupling of
objects . For example , in a scenario not implementing beans
such as in the embodiment illustrated in FIG . 2A , object 202
and object 204 are tightly coupled . Hence , the class used to
generate object 204 may be hard coded into the class used
to generate object 202. In contrast , in a scenario implement
ing beans , such as in the embodiment illustrated in FIG . 2B ,
the IoC framework can generate bean 254 in the loc
container 252 , and dynamically make a reference between
bean 254 and object 256. Hence , bean 254 and object 256
become loosely coupled .
[0034] The IoC framework can implement dependency
injection (DI) to ensure that each class dynamically refer
ences all of its bean dependencies . DI is an implementation
of IoC whereby decoupled bean dependencies are wired to
their dependent class , as opposed to being hard - coded into
the class . The IoC framework is able to dynamically manage
the dependency connections for the decoupled beans . One
advantage of DI is that it allows for easier extension of bean
functionality by downstream providers since each bean does
not require modification to accommodate the extended func
tionality , and substituting a bean only requires an update in
the IoC container 252 .
[0035] Returning to the aforementioned business services
example , if the functionality of a function object that fetches
a customer's account number is extended to include the
customer's name , then each data object containing a cus
tomer's account number may pass in a bean dependency
representing a customer name as a parameter for the bean
definition , after which a constructor or setter may set the
customer name .
[0036] In another embodiment , annotations may be used
to implement DI . For example , a class (receiving class) that
receives a bean may be accompanied with an “ @Autowired ”
annotation , which enables the IoC framework to automati
cally locate and integrate beans accompanied by a “ @ Com
ponent " annotation into the receiving class .
[0037] FIG . 3 illustrates downstream providers ' imple
mentation of the microservice application , according to one
embodiment . In some embodiments , downstream providers
can select beans for use from any POL (provider level) , or
construct their own bean implementation . In some embodi
ments , downstream providers select beans from a POL , and
then modify the selected beans .
[0038] In the illustrated embodiment , a base provider
develops a base code module 302 that includes a POL setter
304 , an interface 306 , and one or more bean implementa
tions (e.g. , bean implementation 307) . The base code mod

ule 302 is made available to downstream provider 1 , pro
vider 2 , provider N1 , provider N2 , and provider NM . For
example , the base code module 302 can be stored on a
database that is accessible by the aforementioned down
stream providers .
[0039] The POL setter 304 is used to designate a POL that
references a bean implementation created by a base provider
or downstream provider . For example , the base provider can
construct a bean implementation and set POL O as the
provider level referencing the bean implementation . A
downstream provider can then select POL 0 , enabling the
downstream provider to use the base provider's bean imple
mentation .
[0040] The base provider can create the interface 306
defining parameters and formats for bean implementations
that are compatible with the microservice application . The
interface is delivered to downstream providers . Thus , by
constructing a bean implementation that complies with the
interface , a downstream provider is ensuring that the bean
implementation is compatible with the microservice appli
cation .
[0041] A downstream provider can select a bean imple
mentation based on a POL , or construct its own bean
implementation . When a downstream provider constructs or
modifies a bean implementation , the bean implementation
can be delivered to a database accessible by the base
provider or any downstream provider . In some embodi
ments , a first downstream provider constructs a bean imple
mentation , which is delivered to an extender module stored
on a server . In some embodiments , the first downstream
provider selects a bean implementation based on a POL ,
receives the bean implementation from the extender module ,
and then modifies the bean implementation , which is deliv
ered to the extender module stored the server .
[0042] The extender module can store the constructed or
modified bean implementation at a POL corresponding to
the first downstream provider . The extender module can also
store bean implementations from multiple downstream pro
viders at the same POL . Bean implementations stored in the
extender can then be accessed by a second downstream
provider , enabling the second downstream provider to use
the bean implementation from the first downstream provider
in lieu of constructing its own bean implementation .
[0043] In some embodiments , the base provider and
downstream providers have a hierarchical flow structure .
For example , the base provider could be a business services
team of a corporation ; a first downstream provider could be
a software development team of a business partner of the
corporation ; a second downstream provider could be a
programmer at a retail shop that is contracted to the business
partner of the corporation .
[0044] Hence , in this example , the business services team
of the corporation can create bean implementations that are
used by the first downstream provider . The first downstream
provider may construct its own bean implementation , or
select a bean implementation from the corporation . The
second downstream provider may construct its own bean
implementation , or select a bean implementation from either
the corporation or the business partner .
[0045] In another example , a downstream provider that is
furthest downstream is a computer retail business . If a base
provider has a bean implementation for a base hard drive ,
and the first downstream provider has a bean implementa
tion for a first hard drive , the retail business may select the

US 2021/0232371 A1 Jul . 29 , 2021
4

bean implementation for the first hard drive for use in its
code module . This code module can be used as part of a
microservice application running on the retail business's
point of sale system . Thus , when used by a customer , the
customer sees a computer with the first hard drive .
[0046] In the illustrated embodiment , a hierarchical flow
structure is depicted by arrows connecting a base provider's
code module 302 to a first downstream provider's code
module 308 , connecting the first downstream provider's
code module 308 to a second downstream provider's code
module 314 , and connecting the second downstream pro
vider's code module 314 to a third downstream provider's
code module 320 , a fourth downstream provider's code
module 328 , and a fifth downstream provider's code module
336 .
[0047] The first downstream provider develops a code
module 308 that includes a POL getter 310 , bean imple
mentation 302A , and bean implementation 302B . The POL
getter 310 is used to select the base provider's POL from
which a bean implementation is retrieved for use as bean
implementation 302A by the first downstream provider . The
first downstream provider constructs its own bean imple
mentation for bean 302B , which is stored in a database or the
like at POL 1 .
[0048] For example , assuming the base provider's bean
implementation is stored at or referenced by POL 0 of an
extender , if the first downstream provider wants to use the
base provider's bean implementation for bean implementa
tion 302A , then the first downstream provider can select
POL O via the POL getter 310 , and develop code module 308
using the base provider's bean implementation as bean
implementation 302A . The first downstream provider's bean
construction (bean implementation 302B) is stored in the
extender at POL 1 .
[0049] In at least one embodiment , a first downstream
provider selects a bean implementation from a second
provider by using an “ @Provider ” annotation specifying the
POL of the second provider . The second provider may be a
base provider or another downstream provider . At runtime ,
a software application uses , for the second provider , the
selected bean implementation corresponding to the “ @ Pro
vider " annotation specified by the first provider .
[0050] In the illustrated embodiment , the second down
stream provider develops a code module 314 that includes a
POL getter 316 , bean implementation 318A , bean imple
mentation 318B , and bean implementation 318C . The POL
getter 316 can be used to select the base provider's POL , or
a downstream provider's POL , from which a bean imple
mentation is retrieved for use as a bean implementation by
the second downstream provider . The second downstream
provider uses the base provider's bean implementation for
bean implementation 318A , uses the first downstream pro
vider's bean implementation for bean implementation 318B ,
and constructs its own bean implementation 318C .
[0051] Returning to the previous example , the second
downstream provider can select POL 0 via the POV getter
316 , and develop code module 314 using the base provider's
bean implementation as bean implementation 318A . Simi
larly , the second downstream provider can select POL 1 via
the POV getter 316 , and develop code module 314 using the
base provider's bean implementation as bean implementa
tion 318B . The second downstream provider's bean con
struction (bean implementation 318C) is stored in the
extender at POL 2 .

[0052] In some embodiments , when no bean implementa
tion is selected or constructed , the bean from the greatest
priority POL is used by default . The greatest priority POL
may be a POL with the largest number , or a POL with the
furthest ascended alphabetical letter , or any ordered desig
nation to indicate a bean implementation from a downstream
provider that is furthest downstream . In some embodiments ,
when no bean implementation is selected or constructed , a
bean implementation from the base provider is used by
default .
[0053] In the illustrated embodiment , the third down
stream provider develops a code module 320 that includes a
POL getter 322 , bean implementation 324 , and priority level
(PIL) setter 326. The third downstream provider constructs
its own bean implementation as bean implementation 324 ,
which is stored at POL 3 .
[0054] The fourth downstream provider develops a code
module 328 that includes a POL getter 330 , bean imple
mentation 332 , and PIL setter 334. The fourth downstream
provider constructs its own bean implementation as bean
implementation 332 , which is also stored at POL 3 .
[0055] The fifth downstream provider develops a code
module 336 that includes a POL getter 338 , bean imple
mentation 340 , and PIL setter 342. The fifth downstream
provider constructs its own bean implementation as bean
implementation 340 , which is also stored at POL 3 .
[0056] When bean implementations from multiple down
stream providers exists at the same POL , each of these
downstream providers may set a PIL that is used to deter
mine priority among their bean implementations at runtime .
However , in some embodiments , PILS only have priority
within a shared POL . That is , PILs do not have priority over
POLs . A PIL may have any ordered designation to indicate
priority . For instance , PILs can be numbered sequentially
from highest to lowest priority .
[0057] In the illustrated embodiment , the third down
stream provider uses PIL setter 326 to set the PIL of its bean
implementation 324 as PIL 1 ; the fourth downstream pro
vider uses PIL setter 334 to set the PIL of its bean imple
mentation 332 as PIL 2 ; the fifth downstream provider uses
PIL setter 342 to set the PIL of its bean implementation 340
as PIL 3 .
[0058] As mentioned above , bean implementation 324 ,
bean implementation 332 , bean implementation 340 are
stored at POL 3. Assuming these bean implementations are
identical in name and type , attempting to implement any of
the bean implementations , absent use of the PILs , may throw
an error or cause the microservice application to cease
execution . The PILs allow only one of these bean imple
mentations to be used by a downstream provider , thereby
preventing any such errors from occurring .
[0059] In some embodiments , PIL 1 indicates the PIL with
the greatest priority . Hence , if a downstream provider selects
a bean implementation at POL 3 , the bean implementation
324 associated with PIL 1 is selected by default . In some
embodiments , the downstream provider can specify which
PIL is used to resolve a bean implementation selected from
POL 3 .
[0060] FIG . 4 illustrates a flowchart of a method for
operating a software application , according to one embodi
ment . The method 400 beings at block 402. In the illustrated
embodiment , a base provider develops a software applica
tion including one or more bean implementations , an inter
face , and an extender .

US 2021/0232371 A1 Jul . 29 , 2021
5

[0061] The interface defines one or more formats or
parameters for beans that are compatible with storage in the
extender . Hence , by constructing a bean implementation that
complies with the interface , a downstream provider can
ensure that its bean implementation is compatible with the
software application .
[0062] The extender allows downstream providers to
extend functionality of the software application by storing
bean implementations from the downstream providers at a
POL . The extender can also store or reference bean imple
mentations from the base provider at a POL . Each POL
corresponds to bean implementations from one or more
downstream providers . For example , bean implementations
from downstream provider N can be stored in the extender
at POL N. Bean implementations from another downstream
provider can also be stored at POL N.
[0063] In some embodiments , the extender is a software
module with a fixed amount of POLs . In some embodiments ,
the amount of POLs grows dynamically as the extender
stores bean implementations from downstream providers . In
some embodiments , the extender stores references or point
ers to POLs .
[0064] In some embodiments , the extender , or the bean
implementations in the extender , are made available to the
base provider and downstream providers . For example , the
extender can be stored in a database on the cloud .
[0065] At block 403 , the software application is config
ured using the one or more bean implementations , the
interface , and the extender from the base provider . At block
404 , the interface is delivered to a downstream provider . A
downstream provider may construct one or more bean
implementations complying with the parameters and for
mats defined in the interface .
[0066] At block 406 , if the software application receives a
bean implementation constructed by the downstream pro
vider , it proceeds to block 408. The bean implementation
may be a newly constructed bean implementation , be
modified from an existing bean implementation . In some
embodiments , the existing bean implementation was previ
ously constructed by another downstream provider or the
base provider .
[0067] At block 408 , the software application determines
a POL of the downstream provider . In some embodiments ,
the software application determines the POL based on a POL
indicator received from the downstream provider .
[0068] At block 410 , the software application stores the
constructed bean implementation at the determined POL in
the extender . For example , if the software application deter
mines that the downstream provider is the Nth downstream
provider , then bean implementations from the downstream
provider may be stored at POL N.
[0069] In some embodiments , the constructed bean imple
mentation is stored based on an accompanying annotation
that indicates the base provider or downstream provider that
constructed the bean implementation . For example , an anno
tation such as “ @Provider (ProviderLevel.Name_of_Pro
vider) , ” which indicates a POL and the name of a base
provider or downstream provider , can be used to determine
the POL of the downstream provider . The POL or provider
name may be set by the base provider , or a downstream
provider .
[0070] At block 424 , if the software application has ser
viced the last downstream provider , the software application
ends the method at block 426. If the software applicant has

not serviced the last downstream provider , the software
application proceeds to block 406. At block 406 , if the
software application does not receive a bean implementation
constructed by the downstream provider , it proceeds to
block 412 .
[0071] At block 412 , if the software application receives a
POL selection from the downstream provider , it proceeds to
block 416. In some embodiments , the downstream provider
uses an indicator to designate a POL from which the
downstream provider intends to use a bean implementation .
For example , an annotation such as " @Provider (Provider
Level.Name_of_Provider) , ” can indicate a POL and / or the
base provider or downstream provider whose bean imple
mentation is to be used . The POL or provider name may be
set by the base provider , or a downstream provider .
[0072] At block 416 , if bean implementations from mul
tiple downstream providers are not stored at the POL
corresponding to the POL selection , the software application
proceeds to block 418. At block 418 , the software applica
tion delivers the bean implementation corresponding to the
POL from the downstream provider .
[0073] At block 424 , if the software application has ser
viced the last downstream provider , the software application
ends the method at block 426. If the software applicant has
not serviced the last downstream provider , the software
application proceeds to block 406 .
[0074] Returning to block 412 , if the software application
does not receive a POL selection from the downstream
provider (but the downstream provider has requested a bean
implementation) , it proceeds to block 414. At block 414 , the
software application delivers a default bean implementation
to the downstream provider . The base provider can set the
default bean implementation .
[0075] In some embodiments , the default bean implemen
tation is a bean implementation of the base provider . In some
embodiments , the default bean implementation is a bean
implementation from another downstream provider that is
the furthest downstream before the downstream provider
receiving the default bean implementation .
[0076] At block 424 , if the software application has ser
viced the last downstream provider , the software application
ends the method at block 426. If the software applicant has
not serviced the last downstream provider , the software
application proceeds to block 406 .
[0077] Returning to block 416 , if bean implementations
from multiple providers are stored at the POL corresponding
to the POL selection , the software application proceeds to
block 420. As mentioned above , bean implementations from
multiple downstream providers can be stored at the same
POL . In some embodiments , bean implementations from
multiple downstream providers being stored at the same
POL occurs when multiple downstream providers exist at
the same hierarchical level .
[0078] For example , the base provider could be a business
services team of a corporation ; a first downstream provider
could be a software development team of a business partner
of the corporation ; a second downstream provider could be
a programmer at a retail shop that is contracted to the
business partner of the corporation . There may be multiple
downstream providers that exists at the same hierarchical
level of the second downstream provider . For instance , there
may be a third and fourth downstream provider , each of
which are also retail shops . If the second , third , and fourth
downstream providers each construct at least one bean

or may

US 2021/0232371 A1 Jul . 29 , 2021
6

implementation , then the bean implementations from these
three downstream providers can be stored at the same POL .
[0079] At block 420 , the software application determines
a PIL with the highest priority within PILs stored at the POL
corresponding to the POL selection . The downstream pro
vider can set a PIL for a bean implementation that it
constructs . The software application uses the PILs to deter
mine priority among bean implementations from multiple
downstream providers at a shared POL .
[0080] PILS may have any ordered designation to indicate
priority . In some embodiments , PILs are numbered sequen
tially from highest to lowest priority . As used herein , the
highest priority for a PIL refers to a predetermined priority .
In some embodiments , the PIL with the highest priority may
be the PIL with the highest ranking . In some embodiments ,
the PIL with the highest priority may be the PIL with the
lowest ranking . In some embodiments , the PIL with the
highest priority may be the PIL with the median ranking .
[0081] At block 422 , the software application delivers the
bean implementation corresponding to the PIL with the
highest priority to the downstream provider . For example ,
assume downstream providers 1 , 2 , and 3 each construct
bean implementations that are stored at POL A. Downstream
provider 1 set a PIL of 1 for its bean implementation ;
downstream provider 2 set a PIL of 2 for its bean imple
mentation ; downstream provider 3 set a PIL of 3 for its bean
implementation . A further downstream provider , down
stream provider 4 , can select a bean implementation from
POL A with a specified PIL . However , if downstream
provider 4 requests a bean implementation from POL A
without specifying the PIL , then the bean implementation
corresponding to the PIL with the highest priority is deliv
ered to downstream provider 4. The PIL with the highest
priority is this instance may be the bean implementation
with a PIL of 2 , which is the bean implementation from
downstream provider 2 .
[0082] At block 424 , if the software application has ser
viced the last downstream provider , the software application
ends the method at block 426. If the software applicant has
not serviced the last downstream provider , the software
application proceeds to block 406 .
[0083] FIG . 5 illustrates a flowchart of a method for a
downstream provider using a software application , accord
ing to one embodiment . The method 500 begins at block
502. At block 504 , the downstream provider receives an
interface , which defines one or more formats or parameters
for beans that are compatible with storage in an extender .
[0084] At block 506 , if the downstream provider intends
to make use of a bean implementation constructed by a base
provider or another downstream provider , then the down
stream provider proceeds to block 508 .
[0085] At block 508 , the downstream provider selects a
POL corresponding to a bean implementation from a base
provider or another downstream provider . For example , if a
downstream provider wants to use a bean implementation
from the base provider instead of constructing its own
implementation , the downstream provider can select a POL
corresponding to the base provider .
[0086] In some embodiments , the downstream provider
uses a POL Getter select the POL . In some embodiments , the
downstream provider uses an annotation to select the POL .
For example , the annotation can be “ @Provider (Provider
Level.Name_of_Provider) , ” which indicates a POL and / or

the base provider or downstream provider whose bean
implementation is to be used .
[0087] At block 510 , the downstream provider delivers the
POL selection to the extender . The software application
returns to the downstream provider a bean implementation
corresponding to the selected POL . At block 512 , the
downstream provider receives the bean implementation cor
responding to the selected POL .
[0088] At block 514 , the downstream provider implements
the received bean implementation . In some embodiments ,
the downstream provider uses the bean implementation to
develop a code module for the software application . In some
embodiments , the bean implementation is modified for use
in the code module . In some embodiments , the software
application with the downstream provider's code module is
run on a computer system , such as a point of sale device . At
block 526 , if the received bean implementation was modi
fied , then the modified bean implementation is delivered to
the extender . The method ends at block 528 .
[0089] Returning to block 506 , if the downstream provider
does not intend to make use of a bean implementation
constructed by the base provider or another downstream
provider , then the downstream provider proceeds to block
516 .
[0090] At block 516 , the downstream provider constructs a bean implementation corresponding to the interface . At
block 518 , if multiple downstream providers do not exist at
the same hierarchical level , the downstream provider pro
ceeds to block 524 .
[0091] At block 524 , the downstream provider implements
the constructed bean implementation . In some embodi
ments , the downstream provider uses the bean implementa
tion to develop a code module for the software application .
In some embodiments , the software application with the
downstream provider's code module is run on a computer
system , such as a point of sale device . At block 526 , the
downstream provider delivers the constructed bean imple
mentation to the extender . The method ends at block 528 .
[0092] Returning to block 518 , if multiple downstream
providers do exist at the same hierarchical level , the down
stream provider proceeds to block 520 .
[0093] As an example of hierarchical levels , the base
provider could be a business services team of a corporation ;
a first downstream provider could be a software develop
ment team of a business partner of the corporation ; a second
downstream provider could be a programmer at a retail shop
that is contracted to the business partner of the corporation .
There may be multiple downstream providers that exists at
the same hierarchical level of the second downstream pro
vider . For instance , there may be a third and fourth down
stream provider , each of which are also retail shops . If the
second , third , and fourth downstream providers each con
struct at least one bean implementation , then the bean
implementations from these three downstream providers can
be stored at the same POL .
[0094] At block 520 , the downstream provider sets a PIL
for the constructed bean implementation . PILs may have any
ordered designation to indicate priority . The ordered desig
nation indicating priority can be defined by the base pro
vider .
[0095] In some embodiments , PILs are numbered sequen
tially from highest to lowest priority . As used herein , the
highest priority for a PIL refers to a predetermined priority .
In some embodiments , the PIL with the highest priority may

US 2021/0232371 A1 Jul . 29 , 2021
7

(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e.g. , light pulses passing
through a fiber optic cable) , or electrical signals transmitted
through a wire .
[0102] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing processing
device .

be the PIL with the highest ranking . In some embodiments ,
the PIL with the highest priority may be the PIL with the
lowest ranking . In some embodiments , the PIL with the
highest priority may be the PIL with the median ranking .
[0096] At block 522 , the downstream provider delivers the
PIL to the extender . At block 524 , the downstream provider
implements the constructed bean implementation , as
described above . At block 526 , the downstream provider
delivers the constructed bean implementation to the
extender . The method ends at block 528 .
[0097] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration , but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to best explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein .
[0098] In the following , reference is made to embodiments
presented in this disclosure . However , the scope of the
present disclosure is not limited to specific described
embodiments . Instead , any combination of the following
features and elements , whether related to different embodi
ments or not , is contemplated to implement and practice
contemplated embodiments . Furthermore , although embodi
ments disclosed herein may achieve advantages over other
possible solutions or over the prior art , whether or not a
particular advantage is achieved by a given embodiment is
not limiting of the scope of the present disclosure . Thus , the
following aspects , features , embodiments and advantages
are merely illustrative and are not considered elements or
limitations of the appended claims except where explicitly
recited in a claim (s) . Likewise , reference to “ the invention ”
shall not be construed as a generalization of any inventive
subject matter disclosed herein and shall not be considered
to be an element or limitation of the appended claims except
where explicitly recited in a claim (s) .
[0099] Aspects of the present invention may take the form
of an entirely hardware embodiment , an entirely software
embodiment (including firmware , resident software , micro
code , etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a " circuit , ” “ module ” or “ system . ”
[0100] The present invention may be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention .
[0101] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory

[0103] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or
either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C ++ or
the like , and conventional procedural programming lan
guages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user's computer ,
partly on the user's computer , as a stand - alone software
package , partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user's computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present invention .
[0104] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of

US 2021/0232371 A1 Jul . 29 , 2021
8

blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0105] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0106] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0107] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .
[0108] While the foregoing is directed to embodiments of
the present invention , other and further embodiments of the
invention may be devised without departing from the basic
scope thereof , and the scope thereof is determined by the
claims that follow .
What is claimed is :
1. A method comprising :
delivering an interface to a first downstream provider ,

wherein the interface includes a bean implementation
format ; and

performing at least one of : (i) receiving a provider level
(POL) selection from the first downstream provider ,
wherein the POL selection corresponds to a POL stored
in an extender , and delivering a first bean implemen
tation to the first downstream provider based on the

POL , and (ii) receiving a constructed bean implemen
tation from the downstream provider , determining a
POL of the downstream provider , and storing the
constructed bean implementation in the extender at the
determined POL .

2. The method of claim 1 , further comprising :
upon receiving the POL selection from the first down

stream provider :
locating a plurality of bean implementations stored at

the POL ;
determining a priority level (PIL) for each of the

plurality of bean implementations stored at the POL ;
and

resolving the POL to one of the plurality of bean
implementations based on the determined PILs .

3. The method of claim 2 , wherein the determined PILS
indicate a priority among bean implementations at a shared
provider level .

4. The method of claim 1 , further comprising :
upon receiving a modified first bean implementation from

the downstream provider :
determining a POL of the downstream provider ; and
storing the modified first bean implementation in the

extender at the determined POL .
5. The method of claim 1 , further comprising :
upon determining that the downstream provider has

requested a bean implementation and no constructed
bean or POL selection has been received :
making a default bean implementation available to the

downstream provider .
6. The method of claim 1 , wherein the extender is a

software module accessible by a base provider and down
stream providers , wherein the extender stores one or more
bean implementations from the base provider and the down
stream providers at one or more POLs .

7. The method of claim 6 , wherein a maximum amount of
POLs that can be stored in the extender grows dynamically
as the extender stores the one or more bean implementations .

8. A computer program product comprising :
a non - transitory computer - readable storage medium hav

ing computer - readable program code embodied there
with , the computer - readable program code , executable
by one or more computer processors , configured to :
deliver an interface to a first downstream provider ,

wherein the interface includes a bean implementa
tion format ; and

perform at least one of : (i) receive a provider level
(POL) selection from the first downstream provider ,
wherein the POL selection corresponds to a POL
stored in an extender , and deliver a first bean imple
mentation to the first downstream provider based on
the POL , and (ii) receive a constructed bean imple
mentation from the downstream provider , determine
a POL of the downstream provider , and store the
constructed bean implementation in the extender at
the determined POL .

9. The computer program product of claim 8 , the com
puter - readable program code further configured to :
upon receiving the POL selection from the first down

stream provider :
locate a plurality of bean implementations stored at the
POL ;

determine a priority level (PIL) for each of the plurality
of bean implementations stored at the POL ; and

US 2021/0232371 A1 Jul . 29 , 2021
9

resolve the POL to one of the plurality of bean imple
mentations based on the determined PILS .

10. The computer program product of claim 9 , wherein
the determined PILs indicate a priority among bean imple
mentations at a shared provider level .

11. The computer program product of claim 8 , the com
puter - readable program code further comprising :
upon receiving a modified first bean implementation from

the downstream provider :
determine a POL of the downstream provider ; and
store the modified first bean implementation in the

extender at the determined POL .
12. The computer program product of claim 8 , the com

puter - readable program code further comprising :
upon determining that the downstream provider has

requested a bean implementation and no constructed
bean or POL selection has been received :
make a default bean implementation available to the

downstream provider .
13. The computer program product of claim 8 , wherein

the extender is a software module accessible by a base
provider and downstream providers , wherein the extender
stores one or more bean implementations from the base
provider and the downstream providers at one or more
POLs .

14. The computer program product of claim 13 , wherein
a maximum amount of POLs that can be stored in the
extender grows dynamically as the extender stores the one or
more bean implementations .

15. A method comprising :
receiving an interface comprising a bean implementation

format ; and
performing at least one of : (i) constructing a first bean

implementation , and delivering the first bean imple
mentation to an extender , and (ii) selecting a provider
level (POL) for a second bean implementation , and
delivering the POL selection to an extender .

16. The method of claim 15 , further comprising :
upon receiving the second bean implementation from the

extender :
modifying the second bean implementation , and
delivering the modified second bean implementation to

the extender .
17. The method of claim 15 , further comprising :
setting a priority level (PIL) corresponding to the first

bean implementation , and
delivering the PIL to the extender .
18. The method of claim 15 , further comprising :
receiving the second bean implementation from the

extender , wherein the second bean is constructed by a
base provider or a downstream provider .

19. The method of claim 18 , further comprising :
implementing the second bean implementation in a code
module developed by a downstream provider .

20. The method of claim 15 , further comprising :
implementing the first bean implementation in a code

module developed by a downstream provider .

