
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
36

9
25

1
A

1
EP004369251A1

(11) EP 4 369 251 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
15.05.2024 Bulletin 2024/20

(21) Application number: 22383087.8

(22) Date of filing: 11.11.2022

(51) International Patent Classification (IPC):
G06N 3/044 (2023.01) G06N 3/045 (2023.01)

G06N 3/0464 (2023.01) G06N 3/0495 (2023.01)

G06N 3/048 (2023.01) G06N 3/084 (2023.01)

(52) Cooperative Patent Classification (CPC):
G06N 3/0464; G06N 3/044; G06N 3/045;
G06N 3/0495; G06N 3/048; G06N 3/084;
G06N 3/09

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL
NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA
Designated Validation States:
KH MA MD TN

(71) Applicant: Multiverse Computing S.L.
20014 Donostia-San Sebastian (ES)

(72) Inventors:
• S. JAHROMI, Saeed

San Sebastián (ES)
• ORUS, Roman

San Sebastián (ES)

(74) Representative: Balder IP Law, S.L.
Paseo de la Castellana 93
5ª planta
28046 Madrid (ES)

(54) SYSTEMS AND METHODS FOR TENSORIZING CONVOLUTIONAL NEURAL NETWORKS

(57) A system and method for improving a convolu-
tional neural network (CNN) are described herein. The
system includes a processor receiving a weight tensor
having N parameters, the weight tensor corresponding
to a convolutional layer of the CNN. The processor fac-
torizes the weight tensor to obtain a corresponding fac-
torized weight tensor, the factorized weight tensor having
M parameters, where M<N. The processor supplies the
factorized weight tensor to a classification layer of the
CNN, thereby generating an improved CNN. In an em-
bodiment, the processor (a) determines a rank of the
weight tensor and (b) decomposes the weight tensor into
a core tensor and a number R of factor matrices, where
R corresponds to the rank of the weight tensor. In another
embodiment, the processor (a) determines a decompo-
sition rank R and (b) factorizes the weight tensor as a
sum of a number R of tensor products.

EP 4 369 251 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD

[0001] Various embodiments are described herein that
generally relate to systems and methods for tensorizing
convolutional neural networks.

BACKGROUND

[0002] The following paragraphs are provided by way
of background to the present disclosure. They are not,
however, an admission that anything discussed therein
is prior art or part of the knowledge of persons skilled in
the art.
[0003] Deep Neural Networks (DNN) have been used
in applications both in science and engineering, for ex-
ample in those that involve large amounts of data. Prob-
lems such as image classification and object detection
can be highly demanding in many industrial applications.
Among different machine learning (ML) approaches for
image classification, convolutional neural networks
(CNN) can be used.
[0004] CNNs have been useful in the field of image
classification for their ability to extract and learn the most
relevant features (e.g., colors, shapes, and other pat-
terns) of images from different classes. However, in order
to detect very small and sensitive features in image data,
usually modern architectures with a large number of pa-
rameters are used. Despite their success in image vision
tasks, CNNs are known to be over-parametrized, and
they may contain a significant number of parameters
when working with large amounts of complex data. This
represents a bottleneck on the speed and the accuracy
of CNNs, increasing the amount of computational re-
sources required for training, the training and inference
times, and sometimes reducing the quality of results. In
industrial applications such as defect detection, models
must show high performance and accuracy.
[0005] There is a need for a system and method that
addresses the challenges and/or shortcomings de-
scribed above.

SUMMARY OF VARIOUS EMBODIMENTS

[0006] Various embodiments of a system and method
for tensorizing convolutional neural networks (tensor
CNN) are provided according to the teachings herein.
[0007] According to one aspect of the invention, there
is disclosed a system for improving a convolutional neural
network. The system comprises at least one processor
configured to: receive at least one weight tensor having
N parameters, each of the at least one weight tensor
corresponding to a convolutional layer of the convolu-
tional neural network; factorize the at least one weight
tensor to obtain a corresponding factorized weight ten-
sor, the factorized weight tensor having M parameters,
wherein M < N; and supply the factorized weight tensor

to a classification layer of the convolutional neural net-
work, thereby generating an improved convolutional neu-
ral network.
[0008] In at least one embodiment, the at least one
processor configured to determine a rank of the at least
one weight tensor and decompose the at least one weight
tensor into a core tensor and a number R of factor ma-
trices, where R corresponds to the rank of the weight
tensor.
[0009] In at least one embodiment, the at least one
processor configured to: provide a number R of factori-
zation ranks χi for i = 1 ... R, where R corresponds to the
rank of the weight tensor such that each χi is upper-
bounded by a size of a corresponding dimension Di.
[0010] In at least one embodiment, the factor matrices
and the core tensor have (D1 3 χ1 + D2 3 χ2 + ··· + DR
3 χR) + (χ1 3 χ2 3 ... 3 χR) trainable parameters.
[0011] In at least one embodiment, the rank of the
weight tensor R = 4 and the dimensions Di are T, W, H,
and C, where T is a number of output channels, W is a
width of features in the classification layer, H is a height
of features in the classification layer, and C is a number
of input channels.
[0012] In at least one embodiment, the at least one
processor is configured to determine a decomposition
rank R and factorize the weight tensor as a sum of a
number R of tensor products.
[0013] In at least one embodiment, the sum of the
number R of tensor products is equal to

 , where r is a summa-

tion index from 1 to R, and each of
is a one-dimensional vector.
[0014] In at least one embodiment, the at least one
processor is configured to define the classification layer
as a rank-N tensor, where N corresponds to a rank of a
feature network of the convolutional neural network,
where the feature network is comprised of the factorized
weight tensor corresponding to each of the at least one
weight tensor.
[0015] In at least one embodiment, the at least one
processor is configured to contract the factorized weight
tensor with a weight tensor of the classification layer to
obtain a tensorized regression layer.
[0016] In at least one embodiment, the at least one
processor is configured to produce a class of an input
using the improved convolutional neural network.
[0017] According to another aspect of the invention,
there is disclosed a method for improving a convolutional
neural network. The method involves receiving at least
one weight tensor having N parameters, each of the at
least one weight tensor corresponding to a convolutional
layer of the convolutional neural network; factorizing the
at least one weight tensor to obtain a corresponding fac-
torized weight tensor, the factorized weight tensor having
M parameters, wherein M < N; and supplying the factor-

1 2

EP 4 369 251 A1

3

5

10

15

20

25

30

35

40

45

50

55

ized weight tensor to a classification layer of the convo-
lutional neural network, thereby generating an improved
convolutional neural network.
[0018] In at least one embodiment, the method in-
volves determining a rank of the at least one weight ten-
sor and decomposing the at least one weight tensor into
a core tensor and a number R of factor matrices, where
R corresponds to the rank of the weight tensor.
[0019] In at least one embodiment, the method in-
volves providing a number R of factorization ranks χi for
i = 1 ... R, where R corresponds to the rank of the weight
tensor such that each χi is upper-bounded by a size of a
corresponding dimension Di.
[0020] In at least one embodiment, the factor matrices
and the core tensor have (D1 3 χ1 + D2 3 χ2 + ··· + DR
3 χR) + (χ1 3 χ2 3 ··· 3 χR) trainable parameters.
[0021] In at least one embodiment, the rank of the
weight tensor R = 4 and the dimensions Di are T, W, H,
and C, where T is a number of output channels, W is a
width of features in the classification layer, H is a height
of features in the classification layer, and C is a number
of input channels.
[0022] In at least one embodiment, the method in-
volves determining a decomposition rank R and factor-
izing the weight tensor as a sum of a number R of tensor
products.
[0023] In at least one embodiment, the sum of the
number R of tensor products is equal to

 , where r is a summa-

tion index from 1 to R, and each of
is a one-dimensional vector.
[0024] In at least one embodiment, the method in-
volves defining the classification layer as a rank-N tensor,
where N corresponds to a rank of a feature network of
the convolutional neural network, where the feature net-
work is comprised of the factorized weight tensor corre-
sponding to each of the at least one weight tensor.
[0025] In at least one embodiment, the method in-
volves contracting the factorized weight tensor with a
weight tensor of the classification layer to obtain a ten-
sorized regression layer.
[0026] In at least one embodiment, the method in-
volves producing a class of an input using the improved
convolutional neural network.
[0027] Other features and advantages of the present
application will become apparent from the following de-
tailed description taken together with the accompanying
drawings. It should be understood, however, that the de-
tailed description and the specific examples, while indi-
cating preferred embodiments of the application, are giv-
en by way of illustration only, since various changes and
modifications within the spirit and scope of the application
will become apparent to those skilled in the art from this
detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] For a better understanding of the various em-
bodiments described herein, and to show more clearly
how these various embodiments may be carried into ef-
fect, reference will be made, by way of example, to the
accompanying drawings which show at least one exam-
ple embodiment, and which are now described. The
drawings are not intended to limit the scope of the teach-
ings described herein.

FIG. 1 shows a block diagram of an example em-
bodiment of a system for tensorizing a convolutional
neural network (CNN).

FIG. 2 shows a block diagram of an example em-
bodiment of a CNN architecture.

FIG. 3 shows a flow chart of an example embodiment
of a method for tensorizing a CNN.

FIG. 4 shows a schematic diagram of an example of
a rank-4 convolution weight tensor.

FIG. 5 shows a schematic diagram of an example
factorization of the convolution weight tensor of FIG.
4.

FIG. 6 shows a block diagram of an example decom-
position of a rank-3 tensor.

FIG. 7 shows a block diagram of an example em-
bodiment of a CNN showing a tensor regression lay-
er (TRL).

[0029] Further aspects and features of the example
embodiments described herein will appear from the fol-
lowing description taken together with the accompanying
drawings.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0030] Various embodiments in accordance with the
teachings herein will be described below to provide an
example of at least one embodiment of the claimed sub-
ject matter. No embodiment described herein limits any
claimed subject matter. The claimed subject matter is not
limited to devices, systems, or methods having all of the
features of any one of the devices, systems, or methods
described below or to features common to multiple or all
of the devices, systems, or methods described herein. It
is possible that there may be a device, system, or method
described herein that is not an embodiment of any
claimed subject matter. Any subject matter that is de-
scribed herein that is not claimed in this document may
be the subject matter of another protective instrument,
for example, a continuing patent application, and the ap-
plicants, inventors, or owners do not intend to abandon,

3 4

EP 4 369 251 A1

4

5

10

15

20

25

30

35

40

45

50

55

disclaim, or dedicate to the public any such subject matter
by its disclosure in this document.
[0031] It will be appreciated that for simplicity and clar-
ity of illustration, where considered appropriate, refer-
ence numerals may be repeated among the figures to
indicate corresponding or analogous elements. In addi-
tion, numerous specific details are set forth in order to
provide a thorough understanding of the embodiments
described herein. However, it will be understood by those
of ordinary skill in the art that the embodiments described
herein may be practiced without these specific details.
In other instances, well-known methods, procedures,
and components have not been described in detail so as
not to obscure the embodiments described herein. Also,
the description is not to be considered as limiting the
scope of the embodiments described herein.
[0032] It should also be noted that the terms "coupled"
or "coupling" as used herein can have several different
meanings depending in the context in which these terms
are used. For example, the terms coupled or coupling
can have a mechanical or electrical connotation. For ex-
ample, as used herein, the terms coupled or coupling
can indicate that two elements or devices can be directly
connected to one another or connected to one another
through one or more intermediate elements or devices
via an electrical signal, electrical connection, or a me-
chanical element depending on the particular context.
[0033] It should also be noted that, as used herein, the
wording "and/or" is intended to represent an inclusive-
or. That is, "X and/or Y" is intended to mean X or Y or
both, for example. As a further example, "X, Y, and/or Z"
is intended to mean X or Y or Z or any combination there-
of.
[0034] It should be noted that terms of degree such as
"substantially", "about" and "approximately" as used
herein mean a reasonable amount of deviation of the
modified term such that the end result is not significantly
changed. These terms of degree may also be construed
as including a deviation of the modified term, such as by
1%, 2%, 5%, or 10%, for example, if this deviation does
not negate the meaning of the term it modifies.
[0035] Furthermore, the recitation of numerical ranges
by endpoints herein includes all numbers and fractions
subsumed within that range (e.g., 1 to 5 includes 1, 1.5,
2, 2.75, 3, 3.90, 4, and 5). It is also to be understood that
all numbers and fractions thereof are presumed to be
modified by the term "about" which means a variation of
up to a certain amount of the number to which reference
is being made if the end result is not significantly
changed, such as 1%, 2%, 5%, or 10%, for example.
[0036] It should also be noted that the use of the term
"window" in conjunction with describing the operation of
any system or method described herein is meant to be
understood as describing a user interface for performing
initialization, configuration, or other user operations.
[0037] The example embodiments of the devices, sys-
tems, or methods described in accordance with the
teachings herein may be implemented as a combination

of hardware and software. For example, the embodi-
ments described herein may be implemented, at least in
part, by using one or more computer programs, executing
on one or more programmable devices comprising at
least one processing element and at least one storage
element (i.e., at least one volatile memory element and
at least one non-volatile memory element). The hardware
may comprise input devices including at least one of a
touch screen, a keyboard, a mouse, buttons, keys, slid-
ers, and the like, as well as one or more of a display, a
printer, and the like depending on the implementation of
the hardware.
[0038] It should also be noted that there may be some
elements that are used to implement at least part of the
embodiments described herein that may be implemented
via software that is written in a high-level procedural lan-
guage such as object-oriented programming. The pro-
gram code may be written in C++, C#, JavaScript, Python,
or any other suitable programming language and may
comprise modules or classes, as is known to those skilled
in object-oriented programming. Alternatively, or in ad-
dition thereto, some of these elements implemented via
software may be written in assembly language, machine
language, or firmware as needed. In either case, the lan-
guage may be a compiled or interpreted language.
[0039] At least some of these software programs may
be stored on a computer readable medium such as, but
not limited to, a ROM, a magnetic disk, an optical disc,
a USB key, and the like that is readable by a device having
a processor, an operating system, and the associated
hardware and software that is necessary to implement
the functionality of at least one of the embodiments de-
scribed herein. The software program code, when read
by the device, configures the device to operate in a new,
specific, and predefined manner (e.g., as a specific-pur-
pose computer) in order to perform at least one of the
methods described herein.
[0040] At least some of the programs associated with
the devices, systems, and methods of the embodiments
described herein may be capable of being distributed in
a computer program product comprising a computer
readable medium that bears computer usable instruc-
tions, such as program code, for one or more processing
units. The medium may be provided in various forms,
including non-transitory forms such as, but not limited to,
one or more diskettes, compact disks, tapes, chips, and
magnetic and electronic storage. In alternative embodi-
ments, the medium may be transitory in nature such as,
but not limited to, wire-line transmissions, satellite trans-
missions, internet transmissions (e.g., downloads), me-
dia, digital and analog signals, and the like. The computer
useable instructions may also be in various formats, in-
cluding compiled and non-compiled code.
[0041] In accordance with the teachings herein, there
are provided various embodiments of systems and meth-
ods for tensorizing convolutional neural networks, and
computer products for use therewith.

5 6

EP 4 369 251 A1

5

5

10

15

20

25

30

35

40

45

50

55

1 Overview

[0042] In some cases, CNNs can be over-para-
metrized and contain a significant number of parameters
when working with large amounts of complex data. This
represents a bottleneck on the speed and the accuracy
of CNNs, increasing the amount of computational re-
sources required for training, the training and inference
times, and sometimes reducing the quality of results. In
industrial applications such as defect detection, models
must show high performance and accuracy. For this rea-
son, it may be beneficial or necessary to reduce the
number of parameters in a CNN without sacrificing their
accuracy. In at least one of the embodiments described
in accordance with the teachings herein, quantum-in-
spired tensor network methods and other ideas from
quantum physics are leveraged to improve the architec-
ture of CNNs.

2.1 Basic Definitions

[0043] Tensor: A multidimensional array of complex
numbers.
[0044] Tensor Rank: Number of the dimensions of a
tensor.
[0045] Bond dimension: Size of the dimensions of the
tensors which is also called virtual dimension; controls
the size of the input and output of a CNN as well as the
amount of correlation between data.
[0046] Tensor network diagrams: A graphical notation
in which each tensor is replaced by an object such as a
circle or square, and its dimensions denoted by links (or
"legs") connected to the object.
[0047] Tensor contraction: Multiplication of tensors
along their shared dimension, i.e., summation over their
shared indices.
[0048] Tensor factorization: Decomposition of a tensor
to two or more pieces by singular value decomposition
(SVM) or other numerical techniques.
[0049] Factorization rank: Size of the truncated dimen-
sions of the factorized tensors.

2.2 System Structure

[0050] Reference is first made to FIG. 1, showing a
block diagram of an example embodiment of system 100
for tensorizing convolutional neural networks. The sys-
tem 100 includes at least one server 120. The server 120
may communicate with one or more user devices (not
shown), for example, wirelessly or over the Internet. The
system 100 may also be referred to as a machine learning
system when used as such.
[0051] The user device may be a computing device
that is operated by a user. The user device may be, for
example, a smartphone, a smartwatch, a tablet compu-
ter, a laptop, a virtual reality (VR) device, or an augment-
ed reality (AR) device. The user device may also be, for
example, a combination of computing devices that oper-

ate together, such as a smartphone and a sensor. The
user device may also be, for example, a device that is
otherwise operated by a user, such as a drone, a robot,
or remote-controlled device; in such a case, the user de-
vice may be operated, for example, by a user through a
personal computing device (such as a smartphone). The
user device may be configured to run an application (e.g.,
a mobile app) that communicates with other parts of the
system 100, such as the server 120.
[0052] The server 120 may run on a single computer,
including a processor unit 124, a display 126, a user in-
terface 128, an interface unit 130, input/output (I/O) hard-
ware 132, a network unit 134, a power unit 136, and a
memory unit (also referred to as "data store") 138. In
other embodiments, the server 120 may have more or
less components but generally function in a similar man-
ner. For example, the server 120 may be implemented
using more than one computing device.
[0053] The processor unit 124 may include a standard
processor, such as the Intel Xeon processor, for exam-
ple. Alternatively, there may be a plurality of processors
that are used by the processor unit 124, and these proc-
essors may function in parallel and perform certain func-
tions. The display 126 may be, but not limited to, a com-
puter monitor or an LCD display such as that for a tablet
device. The user interface 128 may be an Application
Programming Interface (API) or a web-based application
that is accessible via the network unit 134. The network
unit 134 may be a standard network adapter such as an
Ethernet or 802.11x adapter.
[0054] The processor unit 124 may execute a predic-
tive engine 152 that functions to provide predictions by
using machine learning models 146 stored in the memory
unit 138. The predictive engine 152 may build a predictive
algorithm through machine learning. The training data
may include, for example, image data, video data, audio
data, and text.
[0055] The processor unit 124 can also execute a
graphical user interface (GUI) engine 154 that is used to
generate various GUIs. The GUI engine 154 provides
data according to a certain layout for each user interface
and also receives data input or control inputs from a user.
The GUI then uses the inputs from the user to change
the data that is shown on the current user interface, or
changes the operation of the server 120 which may in-
clude showing a different user interface.
[0056] The memory unit 138 may store the program
instructions for an operating system 140, program code
142 for other applications, an input module 144, a plurality
of machine learning models 146, an output module 148,
and a database 150. The machine learning models 146
may include, but are not limited to, image recognition and
categorization algorithms based on deep learning mod-
els and other approaches. The database 150 may be,
for example, a local database, an external database, a
database on the cloud, multiple databases, or a combi-
nation thereof.
[0057] In at least one embodiment, the machine learn-

7 8

EP 4 369 251 A1

6

5

10

15

20

25

30

35

40

45

50

55

ing models 146 include a combination of convolutional
and recurrent neural networks. Convolutional neural net-
works (CNNs) may be designed to recognize images or
patterns. CNNs can perform convolution operations,
which, for example, can be used to classify regions of an
image, and see the edges of an object recognized in the
image regions. Recurrent neural networks (RNNs) can
be used to recognize sequences, such as text, speech,
and temporal evolution, and therefore RNNs can be ap-
plied to a sequence of data to predict what will occur next.
Accordingly, a CNN may be used to read what is hap-
pening on a given image at a given time, while an RNN
can be used to provide an informational message.
[0058] The programs 142 comprise program code that,
when executed, configures the processor unit 124 to op-
erate in a particular manner to implement various func-
tions and tools for the system 100.

3 Tensorizing Convolutional Neural Networks

3.1 Convolutional Neural Networks

[0059] FIG. 2 shows an example of a CNN 200 to be
tensorized by the system 100. The CNN 200 takes an
input 210, which contains, for example, an input image
or data. The CNN 200 can be divided into two major com-
ponents: convolutional layers 220 (also referred to as
"future learning") and classification layers 230.
[0060] The convolutional layers 220 comprise one or
more convolutional and pooling layers, where the con-
volution is supplemented by a rectified linear unit (ReLU).
The convolutional layers 220 may comprise, for example,
a first convolution + ReLU 222, a first pooling 224, a sec-
ond convolution + ReLU 226, and a second pooling 228,
as well as optional additional convolution + ReLU or pool-
ing. The convolutional layers 220 may extract features
in different channels of the input 210. For example, one
layer can detect edges, another can detect circles, an-
other can detect sharpness of color. Each convolutional
layer may include a weight tensor associated with the
layer, such as a rank-4 tensor. Alternatively, the weight
tensors associated with each respective convolutional
layer may be stored in a separate data structure.
[0061] The classification layers 230 are a classification
(regression) network that comprises one or more
processing steps in one or more layers, labelled as flatten
232, fully connected 234, and Softmax 236. For example,
a single or multilayer feature extraction network in which
the most relevant features of the input 210 is extracted
via the convolutional layers 220 (e.g., a series of convo-
lutional and pooling layers), as well as the classification
layers 230 (e.g., flatten, fully connected, and Softmax),
in which the learned features are processed by a stand-
ard neural network (NN) to predict the label of the input
210. The classification layers 230 may classify the input
210, putting it into a class, such as cat or dog.

3.2 Method Overview

[0062] FIG. 3 shows a flow chart of an example em-
bodiment of a method 300 for tensorizing a CNN. The
method 300 may be performed by the system 100. The
CNN tensorized by the method 300 may be the CNN 200
shown in FIG. 2.
[0063] At 310, the system 100 receives a weight tensor
for use with a type of decomposition for tensorizing a
CNN. The weight tensor may correspond to a weight ten-
sor of a convolutional layer of the CNN.
[0064] At 320, the system 100 selects a type of decom-
position. The types comprise Tucker decomposition
(comprising steps 330 and 335), Canonical Polyadic (CP)
decomposition (comprising steps 340 and 345). The
method 300 may treat block 320 as a decision block. In
the case block 320 is a decision block, the system 100
may, for example, obtain an input that identifies whether
to carry out Tucker decomposition, or CP decomposition.
Alternatively, block 320 may be optional, as the system
100 may already be instructed to carry out one particular
type of decomposition in advance.
[0065] At 330, the system 100 begins Tucker decom-
position by determining the rank of a weight tensor. The
rank of the weight tensor is determined to be rank-4, ac-
cording to the structure of a convolutional network. The
steps for Tucker decomposition are described in further
detail herein under section 3.3.
[0066] At 335, the system 100 continues Tucker de-
composition by decomposing the weight tensor into a
core tensor and factor matrices. In at least one embodi-
ment, step 330 is optional, and the system 100 may begin
Tucker decomposition at step 335.
[0067] At 340, the system 100 begins CP decomposi-
tion by determining a decomposition rank R. The steps
for CP decomposition are described in further detail here-
in under section 3.4.
[0068] At 345, the system 100 continues CP decom-
position by factorizing the weight tensor.
[0069] At 350, the system 100 supplies the factorized
weight tensor to the classification layer of the CNN.
[0070] At 355, optionally, the system 100 begins TRL
processing by defining a classification layer as a rank-N
tensor. The steps for TRL processing are described in
further detail herein under section 3.5.
[0071] At 360, optionally, the system 100 continues
TRL processing by contracting the factorized weight ten-
sor of the regression (classification) layer with the factor-
ized weight tensor supplied at 350 to obtain a tensorized
regression layer.
[0072] At 370, the system 100 produces a class of an
input fed into the CNN. Block 370 in an optional step, as
a possible use case for the method 300 is to optimize the
architecture of the CNN to an end-user that will then use
the CNN to classify its own inputs.
[0073] The system 100 may carry out some or all of
the steps of method 300 iteratively to optimize the CNN.
For example, the system 100 may carry out steps 330

9 10

EP 4 369 251 A1

7

5

10

15

20

25

30

35

40

45

50

55

and 335 iteratively multiple layers. The system 100 may
carry out some or all of the steps of method 300 in parallel.
For example, the system 100 may carry out steps 330
and 335 on one processor for one layer while carrying
out steps 330 and 335 on another processor for another
layer.

3.3 Tucker Decomposition

[0074] FIG. 4 shows a rank-4 weight tensor 400 (which
may also be referred to as a "convolution tensor" or "con-
volution weight tensor"). Suppose each convolutional
layer of the CNN 200 contains a rank-4 weight tensor
400. The four dimensions of the rank-4 weight tensor
400, i.e., T 410, W 420, and H 430, and C 440, correspond
respectively to the output channels 410, width 420 of the
features in that layer, height 430 of the features in that
layer, and number of input channels (filters) 440.
[0075] Training of the CNN amounts to finding the op-
timum parameters for the weight tensors in each layer.
For example, where the four dimensions are T, W, H,
and C, the number of parameters is T 3 W 3 H 3 C.
Depending on the complexity and size of the problem,
the convolutional weight tensors can be both numerous
and large, implying a huge number of trainable parame-
ters. For example, each of T, W, H, and C can be integers
from 1 to 256. Storing the parameters in memory and
fine-tuning and training over such a large parameter
space can in principle be computationally very expensive
and, at some point, beyond the reach of many devices
such as mobile phones or electronic instruments with
small memory and a small battery. It may therefore be
beneficial or necessary to reduce the number of param-
eters without sacrificing the accuracy (or with minimal
sacrificing of accuracy).
[0076] The convolution weight tensors 400 of the CNN
can be replaced by a factorized tensor structure, which
helps keep the most relevant information learned by the
network while discarding the irrelevant parts. The factor-
ized tensor may be obtained from tensor decomposition
of the original weight tensor by applying high-order sin-
gular value decomposition (HOSVD), also called Tucker
decomposition. In the Tucker decomposition, the original
tensor is approximated by the contraction of a core tensor
and a number of factor matrices corresponding to the
rank of the weight tensor, for example, four factor matri-
ces for a rank-4 weight tensor, each of which has a trun-
cated dimension, as shown in FIG. 5. The truncated di-
mensions, which are also called the factorization ranks
of the weight tensor, control the data compression rate
and the size of the reduced parameter space after fac-
torization.
[0077] FIG. 5 shows the Tucker factorization of the
convolution weight tensor to a core tensor and four factor
matrices. The χi values are the factorization (truncation)
ranks of the weight tensor. In particular, the four dimen-
sions of the weight tensor, T 510, W 520, H 530, and C
540 each have associated factorization ranks χ1 515, χ2

525, χ3 535, and χ4 545.
[0078] As shown in FIG. 5, there are four factorization
ranks for each of the dimensions of the factor matrices
which are upper-bounded by the size of that dimension,
i.e.,

[0079] While the original convolution tensor has T 3
W 3 H 3 C parameters, there exist T 3 χ1 + W 3 χ2 +
H 3 χ3 + C 3 χ4 + χ1 3 χ2 3 χ3 3 χ4 trainable parameters
in the factor matrices and their core tensor. In application,
the reduction of factors may be, for example, by a factor
of 6 or 7, while the final accuracy may be reduced by only
1% or 2%. The memory footprint after factorization may
be reduced by a factor of 200, such as from 2MB to 8KB,
which may be useful when fitting a CNN into smaller de-
vices (e.g., onto a smaller mobile device).

3.4 Canonical Polyadic (CP) Decomposition

[0080] FIG. 6 shows an example CP decomposition
600 of a rank-3 tensor 610 that can be tensorized by the
system 100. CP decomposition can be used as an alter-
native to Tucker decomposition and similarly involves ap-
plying decomposition to the convolution weight tensor.
Defining the CP decomposition rank as R, an N-dimen-
sional tensor is factorized as the sum of the tensor prod-
uct of N one-dimensional vectors ur (rank-1 tensors) ac-
cording to equation (1) below:

[0081] The CP decomposition 600 shown in FIG. 6 is
for a rank-3 tensor 610 with factorization rank R. How-
ever, the CP decomposition may be extended to a higher
rank tensor (such as rank-4). In FIG. 6, the CP decom-
position of rank R factorizes an N-dimensional tensor as
the sum of the tensor product of N vectors.
[0082] The system 100 takes the rank-3 tensor 510
and applies equation (1) to decompose it into the sum of

 ,

and so on, up to, .

3.5 Tensor Regression Layer

[0083] FIG. 7 shows a block diagram of an example
embodiment of a CNN 700 showing a tensor regression
layer (TRL) 760 that can be tensorized by the system
100 and used in combination with the decomposition
techniques described above. The CNN 700 takes an in-

11 12

EP 4 369 251 A1

8

5

10

15

20

25

30

35

40

45

50

55

put 710, which contains, for example, an input image or
data. Similar to the CNN 200, the CNN 700 may be com-
posed of a feature extraction network 720 and a classi-
fication (regression) layer 760. In classical CNNs, the
classification layer is a flattened dense layer of the type
which is used in classification tasks in standard neural
networks. To feed the information from the feature net-
work to the classification network, data is typically flat-
tened to match the input dimension of the dense layer.
Flattening of the feature can destroy the correlation be-
tween some parts of the data and influence the overall
training and classification accuracy.
[0084] As shown in FIG. 7, the CNN 700 processes
the input 710 by a feature extraction network 720 to obtain
the extracted features 730. The extracted features 730
are then input into a tensor contraction layer (TCL) 740
which produces a low-rank weight convolution tensor
745. The convolution tensor 745 can be obtained, for
example, using the method steps 330 and 335, or 340
and 345, described above. The convolution tensor 745
is fed directly to the tensor regression layer (TRL) 760
by contracting the convolution tensor 745 and a low-rank
weight tensor of the regression layer 750 to produce the
output 770.
[0085] One of the motivations for a tensor regression
layer (TRL) is to avoid data flattening and feed the data
out of the feature network as a multidimensional tensor
to the classification layer. To this end, it is beneficial to
have a regression layer with a rank-N tensor such that it
matches the rank (or ranks, such as when there are dif-
ferent indices for the tensors) of the feature network of
the CNN, shown herein as TRL 760. The feature network
of the CNN contains the convolution weight tensors, for
example, the factorized convolution weight tensors,
which may be obtained using Tucker decomposition or
CP decomposition, as described above. The rank of the
feature network corresponds to the rank of the weight
convolution tensors of each of the convolutional layers.
In this way, the extracted feature from different channels
of the CNN is fed directly to the regression layer by con-
tracting the weight convolution tensor (through TCL 740)
and the weight tensor of the TRL (through low-rank
weights 750) to obtain a tensorized regression layer. This
can then enhance the training and overall quality of the
tensor CNN (TCNN) model.

4 Applications

[0086] Implementing the factorization and training of
the tensors in standard high-level machine learning pack-
ages such as Tensorflow or PyTorch, the system 100
can design systematic training algorithms based on back-
propagation and automatic differentiation for finding the
optimum values for the parameters of the factorized con-
volution tensor.
[0087] The approaches described herein target the
trainable weights of the CNN. However, higher levels of
tensorization can also be applied to the classification lay-

ers of the CNN which is a standard NN. The trainable
weights of the classification layers may be rank-2 matri-
ces which can further be tensorized through matrix prod-
uct operator MPO (or tensor train) decomposition.
[0088] In this setting, the system 100 (or more specif-
ically, machine learning applications of the system 100)
may utilize different tensor decompositions (such as
Tucker or CP decomposition) to compress the kernels of
the convolutional layers and thus reduce the number of
parameters in the network. As a result, the new tenso-
rized CNN (TCNN) contains a smaller number of param-
eters, requires less memory, and can be trained faster,
and it would keep a similar accuracy as that in the original
CNN. Furthermore, TCNNs can have both scientific and
industrial applications for various image processing tasks
ranging from production lines of different companies to
designing fast, small, and energy-efficient TCNNs for
small devices such as mobile phones or FGPAs.
[0089] While the applicant’s teachings described here-
in are in conjunction with various embodiments for illus-
trative purposes, it is not intended that the applicant’s
teachings be limited to such embodiments as the em-
bodiments described herein are intended to be exam-
ples. On the contrary, the applicant’s teachings described
and illustrated herein encompass various alternatives,
modifications, and equivalents, without departing from
the embodiments described herein, the general scope of
which is defined in the appended claims.

Claims

1. A system for improving a convolutional neural net-
work, the system comprising at least one processor
configured to:

- receive at least one weight tensor having N
parameters, each of the at least one weight ten-
sor corresponding to a convolutional layer of the
convolutional neural network;
- factorize the at least one weight tensor to obtain
a corresponding factorized weight tensor, the
factorized weight tensor having M parameters,
wherein M < N; and
- supply the factorized weight tensor to a clas-
sification layer of the convolutional neural net-
work, thereby generating an improved convolu-
tional neural network.

2. The system of claim 1, wherein the at least one proc-
essor is further configured to:

- determine a rank of the at least one weight
tensor; and
- decompose the at least one weight tensor into
a core tensor and a number R of factor matrices,
where R corresponds to the rank of the weight
tensor.

13 14

EP 4 369 251 A1

9

5

10

15

20

25

30

35

40

45

50

55

3. The system of claim 2, wherein the at least one proc-
essor is further configured to:

- provide a number R of factorization ranks χi for
i = 1 ... R, where R corresponds to the rank of
the weight tensor such that each χi is upper-
bounded by a size of a corresponding dimension
Di.

4. The system of claim 3, wherein the factor matrices
and the core tensor have (D1 3 χ1 + D2 3 χ2 + ··· +
DR 3 χR) + (χ1 3 χ2 3 ... 3 χR) trainable parameters.

5. The system of claim 4, wherein the rank of the weight
tensor R = 4 and the dimensions Di are T, W, H, and
C, where T is a number of output channels, W is a
width of features in the classification layer, H is a
height of features in the classification layer, and C
is a number of input channels.

6. The system of claim 1, wherein the at least one proc-
essor is further configured to:

- determine a decomposition rank R; and
- factorize the weight tensor as a sum of a
number R of tensor products.

7. The system of claim 5, wherein the sum of the
number R of tensor products is equal to

 , where r is a
summation index from 1 to R, and each of

 is a one-dimensional vector.

8. The system of claim 1, wherein the at least one proc-
essor is configured to:

- define the classification layer as a rank-N ten-
sor, where N corresponds to a rank of a feature
network of the convolutional neural network,
where the feature network is comprised of the
factorized weight tensor corresponding to each
of the at least one weight tensor.

9. The system of claim 8, wherein the at least one proc-
essor is further configured to:

- contract the factorized weight tensor with a
weight tensor of the classification layer to obtain
a tensorized regression layer.

10. The system of any one of claims 1 to 9, wherein the
at least one processor is further configured to:

- produce a class of an input using the improved
convolutional neural network.

11. A method for improving a convolutional neural net-
work, the method comprising:

- receiving at least one weight tensor having N
parameters, each of the at least one weight ten-
sor corresponding to a convolutional layer of the
convolutional neural network;
- factorizing the at least one weight tensor to
obtain a corresponding factorized weight tensor,
the factorized weight tensor having M parame-
ters, wherein M < N; and
- supplying the factorized weight tensor to a clas-
sification layer of the convolutional neural net-
work, thereby generating an improved convolu-
tional neural network.

12. The method of claim 11, further comprising:

- determining a rank of the at least one weight
tensor; and
- decomposing the at least one weight tensor
into a core tensor and a number R of factor ma-
trices, where R corresponds to the rank of the
weight tensor.

13. The method of claim 12, further comprising:

- providing a number R of factorization ranks χi
for i = 1 ... R, where R corresponds to the rank
of the weight tensor such that each χi is upper-
bounded by a size of a corresponding dimension
Di.

14. The method of claim 13, wherein the factor matrices
and the core tensor have (D1 3 χ1 + D2 3 χ2 + ··· +
DR 3 χR) + (χ1 3 χ2 3 ... 3 χR) trainable parameters.

15. The method of claim 14, wherein the rank of the
weight tensor R = 4 and the dimensions Di are T, W,
H, and C, where T is a number of output channels,
W is a width of features in the classification layer, H
is a height of features in the classification layer, and
C is a number of input channels.

15 16

EP 4 369 251 A1

10

EP 4 369 251 A1

11

EP 4 369 251 A1

12

EP 4 369 251 A1

13

EP 4 369 251 A1

14

EP 4 369 251 A1

15

EP 4 369 251 A1

16

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

