US 20240045713A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0045713 A1

WEBB et al. 43) Pub. Date: Feb. 8, 2024
(54) DYNAMIC SCHEDULING PLATFORM FOR (52) US. CL
AUTOMATED COMPUTING TASKS CPC ... GO6F 9/4881 (2013.01); GOGF 9/5055
(2013.01)
(71) Applicant: Accenture Global Solutions Limited,
Dublin (IE) (57) ABSTRACT
(72) Inventors: Anthony R. WEBB, Point Cook (AU); In some implementations, a scheduling platform may
Luke HIGGINS, West Pymble (AU); receive task information regarding a set of tasks for execu-
Badrinath PARAMESWAR, Chennai tion using a set of computing resources, wherein the task
(IN); Aditi KULKARNI, Bangalore information includes, for the set of tasks, at least one of: a
(IN); Genevieve Elizabeth Kuai Ying run time parameter, a priority parameter, or a success rate
LEE, Dulwich Hill (AU); Rajendra parameter. The scheduling platform may communicate with
PRASAD TANNIRU, Basking Ridge, a computing resource management device to obtain first
NJ (US); Koushik M. computing resource information regarding the set of com-
VIJAYARAGHAVAN, Chennai (IN) puting resources. The scheduling platform may generate a
first assignment of the set of tasks to the set of computing
(21) Appl. No.: 17/817,880 resources. The scheduling platform may transmit assign-
) ment information identifying the first assignment. The
(22) Filed: Aug. 5, 2022 scheduling platform may receive second computing
.. . . resource information. The scheduling platform may generate
Publication Classification a second assignment of the set of tasks to the set of
(51) Int. CL computing resources. The scheduling platform may transmit
GO6F 9/48 (2006.01) second assignment information identifying the second
GO6F 9/50 (2006.01) assignment.
100 ~—
Resource Availability Type Capacity
Server 1 Yes CPU 16 cores, 2.5 GHz, 4 GB RAM, ...
Server 2 Yes GPU 256 cores, 1.1 GHz, 8 GB RAM, ...
Computing Server 3 No CPU 16 cores, 2.5 GHz, 4 GB RAM, ...
Resource Server 4 Yes CPU 16 cores, 2.5 GHz, 4 GB RAM, ...
Management
Device 104
152
First computing resource
information
Computing '
Resources 106
Scheduling Platform
150 102
Client Task {nformation:
Device
108 Task Run time Success Rate Priority
Task 1 25u 62% Medium
Task 2 4.8 u 99% High
Task 3 25u 94% High
Task 4 724 12% Low

Feb. 8,2024 Sheet 1 of 9 US 2024/0045713 Al

Patent Application Publication

Vi "9Old
MO %21 ngl pse]
ybiH %6 ngz gysel
ybiH %66 ng zsey
WINIpay %29 nge | sel
Aol sley SS820Ng au} unNy ysey
/
LUOBULIOU| YSB |

wopeld Buynpayog

uolBLLIOUY
80inosas Bunndwiod 184
Zsl

“NYY 89 ¥ ZHD 62 'Sei00 9L NdD SBA ¥ JaAles
TUAVE 89 ¥ ZHD 62 'sRu00 gL NdD ON € JoAlRS
TNV €9 8 ZHD LU 'S8I00 962 NdD SOA Z 19AIRS
TUNVH IO P ZHD G2 'Seiod 9L NdD SAA | JoARS
Aoeden adAj AjjigejieAy 92inosey

JOT Se0IN0sSay
Bupnduwion

¥01 9omneq
Wweuwsbeueiy
20IN0SoY
Bunndwon

301
801N8(]

sy

Feb. 8,2024 Sheet 2 of 9 US 2024/0045713 Al

Patent Application Publication

gl "Old

G071 seoinosoy
Bugnduw

P01 9diAe(
wewebeuepy

80In0saY
Bunndwon

00

saainosal Bunnduios jo
19s 8y Buisn $H)se) JO 18S dY} O UONJBXS asnen) gG|

)

$804nosay Bunndwoo jo jos
aY] 0} SYSE} JO 188 By} Jo Juswubisse 184y 8jeIauUsD) 19G|

i

SYSE} JO J8S 8Y) JO UOINDBXD SZIWNdOo O] LUORBLUIO
20n0sal BuNdWon puE UOHBWIOUI ¥SE) SleNnjead (4G

20l
wnope|ld Buiinpayos

Feb. 8,2024 Sheet 3 of 9 US 2024/0045713 Al

Patent Application Publication

J1 "Old

otl
801A8(]

wesns Moeqpoa4 oegpes4

201 091
usogield Buynpeyog

JOT Se0IN0sSay
Bupnduwion

UoNOBIa(] INHE / UONBULIONE
224nosa) Bunndwoo puoseg

091
P01 891A8(
\ HCQEQGNCNE

"UNYY 89 ¥ 'ZHO G2 'S9400 9L NdD SOA pJenieg 92In0seY

TUNVY €9 ¥ ZHD 6 '$8100 9L NdD I8 ¢ JONIOG Bunndwon
TAVY €9 8 ZHO L) ‘Sai00 967 NdD ON Z JoALS
TUNVE G99 P ZHD 7 'Si03 9 NdD SOA | JoAIOS
Aoeden adAj AujigejieAy 90inosey

Feb. 8,2024 Sheet 4 of 9 US 2024/0045713 Al

Patent Application Publication

at 'old

G071 seoinosoy
Bugnduw

P01 9diAe(
wewebeuepy

80In0saY
Bunndwon

00

saainosal Bunnduios jo
19s 8y Buisn $H)se) JO 18S 9y} O UONJBXS asnen) 199}

)

$90n0saJ Bunpndwioo o 19s By}
01 $)s8) JO 198 8y} Jo Juswubisse puooes sjesBueD H9|

i

SYSE} JO J8S 8Y) JO UOINDBXD SZIWNdOo O] LUORBLUIO
204nosal BuNdWwon pue UOHBWIOUI ¥SE) Sjenjead :Z9}

20l
wnope|ld Buiinpayos

Feb. 8,2024 Sheet 5 of 9 US 2024/0045713 Al

Patent Application Publication

ped

(44
|SPOW pauled]

JOPOWN UIBLL
0cc

¢ 9Old " — y
UONBAISSO MaU " _ﬂ oww\mww%ww_no “
» 10} seisnp auuisled | ¢ uopeniesap !
Buiuies] ovz i . A SLL (O B
posiednsun o e SEEEEE T
| € uoneAIgean _ (f o
| Tz 9 uoneAssqQ | | “ 6 UoneAIBSqO "
i T [GoneatasqO
" ¢ oIsn|D " i _ |
iiiiiiiiii | £ UoBenI9sao I man;y |
Boes UoHeAIBSGO MBU 10} anjeA I T e e e 4
: 1 s|geueA 19bie) auwisieq
pasiniedng
gee
c-uawubissy
- O-sislalieled v'eCy WTIDMTTH |uoBeAIBSAQ MON
(eniep eiqeueA 1981 ON)
LONBAISSAQ) MON ! _
! |
0€e | s |9pow |
UV T Buwmesy epown Ty
Z-swubissy g-sislpwieied rA) 5°4‘3g Z UOHRAIISHO
< L-1uewiubissy e-siojoweied ezl gy | uoneAlasqo
juswubissy siojoweled $924N0SdY syse}
— A ~ J)
(Buiuwies) pasiniadns 10y) 189G aimead s0¢
a|qeuep 10bie] oLe
sz *— 00¢

L0g
wiopeld Buinpayos Y 00¢

- |]
< € 'Old
(o]
Y-
r~
W
oy
S
m
= 60T — —
o
K sjusuodwio) £ 80Ut 205

JOWd $10$59201
W BunjiomiseN

€0t

4| asempiey Bupndwod
2 C " see T
e | ______ (souasisbugeisdoson _ _ _ _ _ |
< 0T
m [1NS jusuodwion) Juswabeuep a0INosay
aoinag L e 2 e
S weiD : — : 90€ |eee| O0C
< ; AL S — mE :
N i seureiuo RS)53 :
=3 m BT jaurgguon WA EAN /
= UM A . P e
© : b SLIDISAS
sweysAg Bunndwon \.... mc_wﬂﬂ_(,c% 9

< : fenuip ejdwexy i/ .
E e Y —
2 ove
m adiaag ;N..Qw.u. ..O.W.W.
= Juswebeuep WaISAS $90IN0STY
S 80iN0S8Y Bunndwos pnoin Bugndwio)
s Bunndwiod
=
=%
«
=
=
=
A

Feb. 8,2024 Sheet 7 of 9 US 2024/0045713 Al

Patent Application Publication

09%

Wsuoduwin)
UolESIUNWIWOoD

¥ "Old

[e1°%

wauodwon
ndino

(0147

weuoduwon
nduy

O
[ap/
<f

Aowop

0¢

108580014

»/ oLy

sng

Patent Application Publication Feb. 8, 2024 Sheet 8 of 9 US 2024/0045713 A1

500 —

Receive task information regarding a set of tasks for execution using
a set of computing resources, wherein the task information includes,
for the set of tasks, at least one of: a run time parameter, a priority
parameter, or a success rate parameter

!

4 '

Communicate with a computing resource management device to
obtain first computing resource information regarding the set of
computing resources, wherein the first computing resource
information includes, for the set of computing resources, at least one
of. an availability parameter, a type parameter, or a capacity
parameter

'

Generate a first assignment of the set of tasks to the set of computing
resources using an evaluation algorithm applied to the task
information and the first computing resource information to optimize
the execution of the set of tasks using the set of computing resources

¢

Transmit assignment information identifying the first assignment of

the set of tasks to the computing resource management device to

cause the execution of the set of tasks using the set of computing
resources

510

520 ~

530

540

FIG. 5A

Patent Application Publication Feb. 8, 2024 Sheet 9 of 9 US 2024/0045713 A1

500 —y

®
550-2

550-1 550-3

r ya e

Receive secqnd computmg Detect a failure of a (Detect feedback
resource information task
y
Generate a second assignment of the set of tasks to the set of
560 computing resources to re-optimize the execution of the set of tasks

using the set of computing resources

l

Transmit second assignment information identifying the second
assignment of the set of tasks to the computing resource
management device to cause the execution of the set of tasks using
the set of computing resources

570

FIG. 5B

US 2024/0045713 Al

DYNAMIC SCHEDULING PLATFORM FOR
AUTOMATED COMPUTING TASKS

BACKGROUND

[0001] Computing tasks may be scheduled and assigned to
a set of computing resources. For example, computational
tasks may be assigned to processors for processing, com-
munication tasks may be assigned to network links for
communication, or automation tasks may be assigned to a
robotic process automation system for automatic comple-
tion. Computing systems may have limited and/or changing
resource sets. For example, a computing system may have a
particular amount of processing capability in a resource pool
for completing processing tasks and, periodically, some of
the processing capability in the resource pool may go offline
as a result of errors, maintenance, or re-assignment to other
resource pools.

SUMMARY

[0002] Some implementations described herein relate to a
method. The method may include receiving, by a scheduling
platform, task information regarding a set of tasks for
execution using a set of computing resources, wherein the
task information includes, for the set of tasks, at least one of:
a run time parameter, a priority parameter, or a success rate
parameter. The method may include communicating, by the
scheduling platform, with a computing resource manage-
ment device to obtain first computing resource information
regarding the set of computing resources, wherein the first
computing resource information includes, for the set of
computing resources, at least one of: an availability param-
eter, a type parameter, or a capacity parameter. The method
may include generating, by the scheduling platform, a first
assignment of the set of tasks to the set of computing
resources using an evaluation algorithm applied to the task
information and the first computing resource information to
optimize the execution of the set of tasks using the set of
computing resources. The method may include transmitting,
by the scheduling platform, assignment information identi-
fying the first assignment of the set of tasks to the computing
resource management device to cause the execution of the
set of tasks using the set of computing resources. The
method may include receiving, by the scheduling platform
and during the execution of the set of tasks using the set of
computing resources, second computing resource informa-
tion, wherein the second computing resource information
and the first computing resource information include at least
one common parameter with a different value. The method
may include generating, by the scheduling platform, a
second assignment of the set of tasks to the set of computing
resources using the evaluation algorithm applied to the task
information and the second computing resource information
to re-optimize the execution of the set of tasks using the set
of computing resources. The method may include transmit-
ting, by the scheduling platform, second assignment infor-
mation identifying the second assignment of the set of tasks
to the computing resource management device to cause the
execution of the set of tasks using the set of computing
resources.

[0003] Some implementations described herein relate to a
scheduling platform. The scheduling platform may include
one or more memories and one or more processors coupled
to the one or more memories. The scheduling platform may

Feb. 8, 2024

be configured to receive task information regarding a set of
tasks for execution using a set of computing resources,
wherein the task information includes, for the set of tasks, at
least one of: a run time parameter, a priority parameter, or a
success rate parameter. The scheduling platform may be
configured to communicate with a computing resource man-
agement device to obtain first computing resource informa-
tion regarding the set of computing resources, wherein the
first computing resource information includes, for the set of
computing resources, at least one of: an availability param-
eter, a type parameter, or a capacity parameter. The sched-
uling platform may be configured to generate a first assign-
ment of the set of tasks to the set of computing resources
using an evaluation algorithm applied to the task informa-
tion and the first computing resource information to opti-
mize the execution of the set of tasks using the set of
computing resources. The scheduling platform may be con-
figured to transmit assignment information identifying the
first assignment of the set of tasks to the computing resource
management device to cause the execution of the set of tasks
using the set of computing resources. The scheduling plat-
form may be configured to detect a failure of a task, of the
set of tasks, on a computing resource of the set of computing
resources. The scheduling platform may be configured to
generate, based on the failure of the task, a second assign-
ment of the set of tasks to the set of computing resources to
re-optimize the execution of the set of tasks using the set of
computing resources. The scheduling platform may be con-
figured to transmit second assignment information identify-
ing the second assignment of the set of tasks to the com-
puting resource management device to cause the execution
of the set of tasks using the set of computing resources.

[0004] Some implementations described herein relate to a
non-transitory computer-readable medium that stores a set
of instructions for a scheduling platform. The set of instruc-
tions, when executed by one or more processors of the
scheduling platform, may cause the scheduling platform to
receive task information regarding a set of tasks for execu-
tion using a set of computing resources, wherein the task
information includes, for the set of tasks, at least one of: a
run time parameter, a priority parameter, or a success rate
parameter. The set of instructions, when executed by one or
more processors of the scheduling platform, may cause the
scheduling platform to communicate with a computing
resource management device to obtain first computing
resource information regarding the set of computing
resources, wherein the first computing resource information
includes, for the set of computing resources, at least one of:
an availability parameter, a type parameter, or a capacity
parameter. The set of instructions, when executed by one or
more processors of the scheduling platform, may cause the
scheduling platform to generate a first assignment of the set
of tasks to the set of computing resources using an evalu-
ation algorithm applied to the task information and the first
computing resource information to optimize the execution of
the set of tasks using the set of computing resources. The set
of instructions, when executed by one or more processors of
the scheduling platform, may cause the scheduling platform
to transmit assignment information identifying the first
assignment of the set of tasks to the computing resource
management device to cause the execution of the set of tasks
using the set of computing resources. The set of instructions,
when executed by one or more processors of the scheduling
platform, may cause the scheduling platform to monitor a

US 2024/0045713 Al

feedback stream to detect feedback relating to the set of
computing resources. The set of instructions, when executed
by one or more processors of the scheduling platform, may
cause the scheduling platform to generate, based on the
feedback relating to the set of computing resources, a second
assignment of the set of tasks to the set of computing
resources to re-optimize the execution of the set of tasks
using the set of computing resources. The set of instructions,
when executed by one or more processors of the scheduling
platform, may cause the scheduling platform to transmit
second assignment information identifying the second
assignment of the set of tasks to the computing resource
management device to cause the execution of the set of tasks
using the set of computing resources.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIGS. 1A-1D are diagrams of an example imple-
mentation associated with dynamic scheduling for auto-
mated computing tasks.

[0006] FIG. 2 is a diagram illustrating an example of
training and using a machine learning model in connection
with dynamic scheduling for automated computing tasks.
[0007] FIG. 3 is a diagram of an example environment in
which systems and/or methods described herein may be
implemented.

[0008] FIG. 4 is a diagram of example components of a
device associated with dynamic scheduling for automated
computing tasks.

[0009] FIGS. 5A and 5B depict a flowchart of an example
process associated with dynamic scheduling for automated
computing tasks.

DETAILED DESCRIPTION

[0010] The following detailed description of example
implementations refers to the accompanying drawings. The
same reference numbers in different drawings may identity
the same or similar elements.

[0011] Robotic process automation (RPA) is a process
automation technology in which computing resources com-
plete a set of actions to automate a task associated with a
computing system. The set of actions may be generated by
monitoring a user’s use of a graphical user interface to detect
the set of actions being performed by the user and generating
scripting to enable the computing resource to recreate the set
of actions when instructed by a task scheduler. RPA can
reduce a difficulty in automating task completion relative to
other methods for task automation, such as using application
programming interfaces or dedicated scripting languages.
Additionally, RPA may enable cross-system automation. For
example, although other techniques for automation may be
limited to a single software environment, RPA may enable
automation of tasks involving interaction between multiple
software environments. Moreover, RPA may reduce cost,
increase speed, increase accuracy, increase consistency, and
improve quality relative to manual completion of tasks or
other techniques for automation. However, RPA can be
resource intensive. For example, a scheduler may need to
assign computing resources to complete RPA tasks. The
scheduler may generate a static schedule, such as having a
set of computing resources perform a set of tasks (e.g., RPA
tasks) sequentially at a configured time of day.

[0012] However, during completion of the set of tasks
using the set of computing resources, the set of computing

Feb. 8, 2024

resources may change, such as based on a computing
resource becoming unavailable, failing, updating, or going
down for maintenance. Moreover, in complex computing
environments, task completion may fail as a result of unex-
pected changes. For example, when a computing resource is
simulating a set of actions in a computing environment, an
unexpected pop-up in the computing environment may
result in an interruption to the set of actions (e.g., a com-
puting-resource initiated mouse click occurring within the
pop-up rather than on a button behind the pop-up), which
can result in a task failing to be completed. Furthermore,
when computing resources are assigned toward task comple-
tion, other system processes may be slowed down based on
not having access to the assigned computing resources,
resulting in poor user experience or errors within a resource
pool.

[0013] Some implementations described herein provide
for dynamic scheduling for automated computing tasks. For
example, a scheduling platform may generate a first assign-
ment of tasks to a set of computing resources based on a
machine learning model trained for optimizing task assign-
ment based on characteristics, such as task run time, task
priority, task success rate, resource availability, resource
type, or resource capacity, among other examples. In this
way, the scheduling platform optimizes resource assignment
to maximize a likelihood of task completion without any
negative impacts to a system that includes a resource pool
from which the scheduling platform is scheduling resources.
Additionally, or alternatively, the scheduling platform may
monitor the resource pool and the system to detect a change
to the resource pool, a failure of a task, or a negative impact
to the system. In this case, when a triggering event is
detected, the scheduling platform may generate a second
assignment of tasks to the set of computing resources to
re-optimize the task assignment based on the triggering
event. In this way, the scheduling platform enables dynamic
updating of scheduling of computing resources for task
completion, thereby increasing a likelihood of task comple-
tion relative to a static assignment of computing resources
and a static schedule.

[0014] FIGS. 1A-1D are diagrams of an example imple-
mentation 100 associated with dynamic scheduling for auto-
mated computing tasks. As shown in FIGS. 1A-1D, example
implementation 100 includes a scheduling platform 102, a
computing resource management device 104, a set of com-
puting resources 106, and a client device 108. These devices
are described in more detail below in connection with FIG.
3 and FIG. 4.

[0015] As shown in FIG. 1A, and by reference number
150, the scheduling platform 102 may obtain task informa-
tion. For example, the scheduling platform 102 may com-
municate with the client device 108 to receive the task
information regarding a set of tasks for scheduling and
assignment to the set of computing resources 106. In some
implementations, the task information may include infor-
mation regarding a set of parameters or characteristics of the
set of tasks. For example, the task information may include
information identifying an expected run time or duration for
each task (e.g., 2.5 units (u) of time), a success rate at
completing each task, or a priority for each task, among
other examples. Additionally, or alternatively, the task infor-
mation may include information regarding on which com-
puting resources, software resources, operating systems, or
types of devices a task may be run. In some implementa-

US 2024/0045713 Al

tions, the scheduling platform 102 may determine a run time
parameter based on run time information included in the task
information. For example, the scheduling platform 102 may
apply a probability density function to a set of historical run
times (e.g., previously observed or measured run times) for
a set of historical tasks (e.g., previously completed or failed
tasks). In this case, the scheduling platform 102 may use the
probability density function to generate an ordering of
possible outcomes for run time based on a likelihood of each
possible outcome. In some implementations, the task infor-
mation may include information regarding when the tasks
are to be scheduled for, such as a particular period of day.
[0016] As further shown in FIG. 1A, and by reference
number 152, the scheduling platform 102 may obtain first
computing resource information. For example, the schedul-
ing platform 102 may communicate with the computing
resource management device 104 (e.g., an orchestrator of a
cloud computing network) to receive computing resource
information regarding the set of computing resources 106. In
some implementations, the computing resource information
may include information regarding a set of parameters or
characteristics of the set of computing resources 106. For
example, the computing resource information may include
information identifying an availability of each computing
resource 106 for task assignment, a type of each computing
resource 106 (e.g., whether a computing resource 106 is
associated with a central processing unit (CPU), a graphical
processing unit (GPU), a network card (e.g., network inter-
face card (NIC)), an audio processing unit (APU), a field
programmable gate array (FPGA), or a system-on-chip
(So()), or a capacity of each computing resource 106 (e.g.,
a quantity of cores, a processor frequency, or a memory),
among other examples. Additionally, or alternatively, the
computing resource information may include information
identifying whether a computing resource 106 can attempt to
auto-heal or auto-recover after a failure or a maximum
quantity of permitted attempts at an auto-recovery after a
failure, among other examples.

[0017] In some implementations, the scheduling platform
102 may classity a computing resource 106 into a particular
classification, such as classifying the computing resource
106 based on a type of hardware. In this case, the scheduling
platform 102 may assign tasks to the computing resource
106 based on the particular classification, such as by assign-
ing computational tasks to a CPU type of computing
resource 106, image processing tasks to a GPU type of
computing resource 106, or communication tasks to a net-
work card type of computing resource 106, among other
examples.

[0018] In some implementations, the scheduling platform
102 may receive health information regarding the set of
computing resources 106. For example, the scheduling plat-
form 102 may receive information identifying a CPU utili-
zation, a memory utilization, or an available disk space,
among other examples (e.g., with respect to other uses to
which the computing resources 106 may be assigned). In this
case, the scheduling platform 102 may determine whether to
assign a task to a computing resource 106 based on the
health information of the computing resource 106.

[0019] In some implementations, the scheduling platform
102 may query one or more computing resources 106 to
obtain computing resource information, such as the first
computing resource information. For example, the schedul-
ing platform 102 may query, via the computing resource

Feb. 8, 2024

management device 104, a computing resource 106 to
determine status information for the computing resource 106
(e.g., whether the computing resource 106 is available,
whether the computing resource 106 will become available
at a particular time, or whether a computing device associ-
ated with the computing resource 106 is locked, logged on,
or offline). In this case, the scheduling platform 102 may use
the status information for assigning a task to the computing
resource 106. For example, when a task is an RPA task that
includes the computing resource 106 simulating cursor
movements to navigate a set of graphical user interfaces
(GUIs), the scheduling platform 102 may select a computing
resource 106 associated with a computing device that is
logged on. In this way, by deploying the computing device
associated with computing resource 106, the computing
resource 106 can simulate cursor movements on the com-
puting device to complete the RPA task. Alternatively, when
the computing resource 106 is locked or offline, the sched-
uling platform 102 may determine to modify a task to
include RPA-based simulated cursor movements or key-
board keystrokes to transfer the computing device from the
locked or offline state to the logged on state. Similarly, the
scheduling platform 102 may query the computing resource
106 to determine whether a software resource, which is to be
controlled as part of an RPA task, is present on a computing
device associated with the computing resource 106. In this
case, the scheduling platform 102 may select the computing
resource 106 that includes the software resource for com-
pleting a task that includes usage of the software resource.
Alternatively, the scheduling platform 102 may cause the
software resource to be deployed and/or installed on the
computing resource 106 to enable assignment of a task to the
computing resource 106. Additionally, or alternatively, the
scheduling platform 102 may reassign a task from a first
computing resource 106 to a second computing resource 106
when the scheduling platform 102 determines that a soft-
ware resource on the first computing resource 106 has
become unavailable (e.g., as a result of received update
information), thereby reducing a likelihood of a failure
resulting from an unavailable software resource.

[0020] As shown in FIG. 1B, and by reference number
154, the scheduling platform 102 may evaluate task infor-
mation and computing resource information to optimize
execution of the set of tasks. For example, the scheduling
platform 102 may use an evaluation algorithm to evaluate
the task information and the first computing resource infor-
mation to generate a first assignment of the set of tasks to the
set of computing resources 106, as shown by reference
number 156. In this case, the evaluation algorithm may be a
machine learning model trained for generating optimized
assignments of tasks to computing resources, as described in
more detail with regard to FIG. 2. For example, the sched-
uling platform 102 may use an artificial intelligence algo-
rithm and/or an advanced statistical algorithm (e.g., a prob-
ability density function or low pass filtering function) to
predict a likelihood of a set of scenarios for execution of the
set of tasks using the set of computing resources 106. In this
case, the scheduling platform 102 may detect anomalies in
process execution times and perform impact analysis on
possible schedule changes to determine an optimized sched-
ule. The probability density function or low pass filtering
function may be applied to managing a capacity of the set of
computing resources 106, predicted run times for complet-
ing tasks using the set of computing resources 106, or

US 2024/0045713 Al

predicting a delay associated with automated completion of
the set of tasks, among other examples. In some implemen-
tations, the scheduling platform 102 may use a cost function
to calculate a relative level of optimization for different
possible assignments of tasks to computing resources 106.
[0021] In some implementations, the scheduling platform
102 may generate an assignment of tasks to computing
resources 106 based on resource information. For example,
the scheduling platform 102 may determine an expected
resource utilization for a task, may identify a computing
resource 106 with a threshold level of resource availability
(e.g., the threshold level may correspond to the expected
resource utilization), and may assign the task to the com-
puting resource 106 based on the computing resource 106
having the threshold level of resource availability.

[0022] In some implementations, the scheduling platform
102 may assign a task to a computing resource 106 based on
status information associated with the computing resource
106. For example, as described above, the scheduling plat-
form 102 may assign a task that includes control of a cursor
of a computing device associated with the computing
resource 106 based on the computing device being logged
on. Additionally, or alternatively, the scheduling platform
102 may cause a modification of the task to enable the
computing device to be logged on by the computing
resource 106 to complete the task (e.g., when the computing
device is not already logged on). In some implementations,
as described above, the scheduling platform 102 may assign
a task to a computing resource 106 that includes a software
resource associated with the task. Additionally, or alterna-
tively, the scheduling platform 102 may cause the software
resource to be deployed to and/or installed on the computing
resource 106 to enable completion of the task on the
computing resource 106.

[0023] In some implementations, the scheduling platform
102 may execute a genetic algorithm on one or more
parameters to generate an assignment of tasks to the com-
puting resources 106, such as the first assignment of tasks to
the computing resources 106. For example, the scheduling
platform 102 may execute the genetic algorithm on a priority
parameter, a run time parameter, a success rate parameter, or
a failure reason parameter (e.g., an identified reason that a
task has failed previously) to determine a scheduling and
assignment of the set of tasks. For example, the genetic
algorithm may be used (e.g., with schedule permutations as
chromosomes of the genetic algorithm) with a cost function,
to analyze a process priority, a historical run time (e.g., from
a probability density function), a failure reason (e.g., a type
of process that is more likely than others to fail), and a
historical failure rate to determine an optimized assignment
of a task to a computing resource 106. In this case, when
evaluating the genetic algorithm, the scheduling platform
102 may select a chromosome based on a fitness value, the
scheduling platform 102 performs a crossover procedure to
produce a new schedule, and the process is repeated until a
most optimized schedule is generated.

[0024] As further shown in FIG. 1B, and by reference
number 158, the scheduling platform 102 may cause execu-
tion or completion of the set of tasks using the set of
computing resources 106. For example, the scheduling plat-
form 102 may communicate with the computing resource
management device 104 to transmit the first assignment of
the set of tasks to the set of computing resources 106. In this
case, the computing resource management device 104 may

Feb. 8, 2024

communicate with each computing resource 106 to cause
execution of each task in accordance with the first assign-
ment of the set of tasks.

[0025] As shown in FIG. 1C, and by reference number
160, the scheduling platform 102 may detect an event, based
on monitoring an automated digital input feed, triggering
update of an assignment of a set of tasks to a set of
computing resources 106. For example, the scheduling plat-
form 102 may receive second computing resource informa-
tion identifying a change from the first computing resource
information. In this case, the second computing resource
information may indicate that a computing resource 106 has
become available, a computing resource 106 has become
unavailable, or an amount of resources of a computing
resource 106 that are available has changed (e.g., at a first
time 25% of a computing resource 106’s capacity was
available for completing the set of tasks, and at a second
time 50% of the computing resource 106’s capacity is
available for completing the set of tasks, such as based on
other computing tasks assigned to the computing resource
106 being completed), among other examples.

[0026] Additionally, or alternatively, the scheduling plat-
form 102 may detect a failure associated with completion of
a task. For example, as described above, when completing
an RPA task that includes simulated cursor movements, an
unexpected popup on a computing device can result in the
RPA task causing an incorrect cursor selection, which can
cause completion of the RPA task to fail. In some imple-
mentations, the scheduling platform 102 may detect a failure
based on monitoring a data stream for one or more data
anomalies. For example, the scheduling platform 102 may
monitor a health of a set of RPA bots (e.g., from monitoring
a log), a CPU utilization of a computing resource 106, a
bandwidth utilization associated with a network connection,
or a memory utilization of a computing resource 106. In this
case, the scheduling platform 102 may analyze the health of
the one or more data anomalies using an analysis algorithm,
such as a low pass duration algorithm (e.g., an algorithm
based on a low pass filter), to predict whether completion of
the tasks will occur successtully or whether a failure will
occur. Additionally, or alternatively, the scheduling platform
102 may determine whether an error will occur that will
prevent the set of tasks from being completed (e.g., resulting
in an infinite run time for the set of tasks), in which case the
scheduling platform 102 may break execution of the set of
tasks and determine that a failure has occurred. In some
implementations, the scheduling platform 102 may maintain
a timer for a task and may, after the timer exceeds a
threshold, determine that an error has occurred resulting in
a task failure. In this case, the timer may be based on the
expected run time for the task, such as having the threshold
set at a 99th percentile for the expected run time for the task
(or any other threshold level).

[0027] In some implementations, the scheduling platform
102 may perform image processing based on detecting the
failure of a task. For example, the scheduling platform 102
may detect a failure of a task and obtain a screenshot of a
screen or GUI in which the task was being attempted when
the task failed. In this case, the scheduling platform 102 may
apply an optical character recognition (OCR) algorithm to
parse the image of the screen or GUI and may apply a natural
language processing algorithm to an output of the OCR
algorithm. The scheduling platform 102 may use the output
of the natural language processing algorithm to identify a

US 2024/0045713 Al

characteristic of the failure of the task, such as a failure
reason (e.g., a presence of a pop-up or a login failure in an
authentication system). In another example, the scheduling
platform 102 may apply an object recognition algorithm to
parse the image of the screen or GUI, such as to identify a
pop-up object in the screen, from which the scheduling
platform 102 may identify the characteristic of the failure of
the task. The scheduling platform 102 may modify the task
and/or determine a second assignment of tasks to computing
resources 106 based on the characteristic of the failure of the
task. For example, the scheduling platform 102 may change
an order of tasks to avoid the pop-up or modify the task to
enable authentication to continue after a login failure (e.g.,
via another login attempt or a password recovery attempt).

[0028] In another example, the scheduling platform 102
may obtain an error log associated with the failure of the task
and may parse the error log (e.g., using natural language
processing or another technique) to identify the character-
istic of the failure of the task, from which the scheduling
platform 102 may modify the task and/or determine a second
assignment of tasks to computing resources 106. For
example, the error log may include unstructured text, such as
a file path, a code line number, or a string, and the scheduling
platform 102 may apply a natural language processing
algorithm to classify the failure of the task into an error
category based on the unstructured text (e.g., a login failure
category or a pop-up interruption category). In this case, the
scheduling platform 102 may modify the task and/or deter-
mine the second assignment of tasks to computing resources
106 based on the error category.

[0029] Additionally, or alternatively, the scheduling plat-
form 102 may receive feedback information from a feedback
stream. For example, feedback device 110 may provide the
feedback information, which may be a natural language
stream of comments (e.g., a chat log) regarding usage of
computing resources 106. In this case, scheduling platform
102 may apply natural language processing and/or sentiment
analysis to classify the feedback information. For example,
the scheduling platform 102 may determine whether there is
a negative sentiment (e.g., using a sentiment analysis algo-
rithm) associated with a computing resource 106 (e.g., the
computing resource 106 is running slowly, as a result of task
completion, for other users of computing resource 106). In
this case, the scheduling platform 102 may re-assign tasks
from the computing resource 106 to reduce an impact on
other users of computing resource 106, thereby improving
user experience and/or reducing a likelihood of delays
and/or failures associated with user-performed tasks.

[0030] As shown in FIG. 1D, and by reference numbers
162, 164, and 166, the scheduling platform 102 may re-
evaluate task information and computing resource informa-
tion to re-optimize execution of the set of tasks, generate a
second assignment of the set of tasks to the set of computing
resources 106, and cause execution of the set of tasks using
the set of computing resources 106 in accordance with the
second assignment. In some implementations, the schedul-
ing platform 102 may transmit one or more alerts associated
with the second assignment. For example, the scheduling
platform 102 may transmit error information identifying an
error or failure that triggered the second assignment or
scheduling information identifying the second assignment.
Additionally, or alternatively, the scheduling platform 102
may transmit an alert that negative performance issues
associated with a computing resource 106 are expected to be

Feb. 8, 2024

resolved by the second assignment and may close a trouble
ticket generated based on the feedback information from the
feedback stream.

[0031] In some implementations, the scheduling platform
102 may provide a user interface view. For example, the
scheduling platform 102 may provide a user interface view
identifying a status of the set of tasks being executed by the
set of computing resources 106. For example, the scheduling
platform 102 can indicate whether a task is scheduled,
queued, in progress, or finished and may provide informa-
tion regarding the task and/or a result of completing the task.
[0032] In this way, the scheduling platform 102 dynami-
cally updates an assignment of a set of tasks to a set of
computing resources 106, thereby ensuring an efficient
completion of the set of tasks. Moreover, based on more
efficiently assigning the set of tasks to the set of computing
resources 106 relative to a static assignment, the scheduling
platform 102 may enable utilization of fewer computing
resources 106 than a less efficient assignment, thereby
reducing a utilization of resources to complete the set of
tasks, an energy usage to complete the set of tasks, or a time
to complete the set of tasks.

[0033] As indicated above, FIGS. 1A-1D are provided as
an example. Other examples may differ from what is
described with regard to FIGS. 1A-1D. The number and
arrangement of devices shown in FIGS. 1A-1D are provided
as an example. In practice, there may be additional devices,
fewer devices, different devices, or differently arranged
devices than those shown in FIGS. 1A-1D. Furthermore,
two or more devices shown in FIGS. 1A-1D may be
implemented within a single device, or a single device
shown in FIGS. 1A-1D may be implemented as multiple,
distributed devices. Additionally, or alternatively, a set of
devices (e.g., one or more devices) shown in FIGS. 1A-1D
may perform one or more functions described as being
performed by another set of devices shown in FIGS. 1A-1D.
[0034] FIG. 2 is a diagram illustrating an example 200 of
training and using a machine learning model in connection
with dynamic scheduling for automated computing tasks.
The machine learning model training and usage described
herein may be performed using a machine learning system.
The machine learning system may include or may be
included in a computing device, a server, a cloud computing
environment, or the like, such as the scheduling platform
102 of the cloud computing system 302 described in more
detail elsewhere herein.

[0035] As shown by reference number 205, a machine
learning model may be trained using a set of observations.
The set of observations may be obtained from training data
(e.g., historical data), such as data gathered during one or
more processes described herein. In some implementations,
the machine learning system may receive the set of obser-
vations (e.g., as input) from client device 330, computing
resource management device 340, or computing resources
350, as described elsewhere herein.

[0036] As shown by reference number 210, the set of
observations includes a feature set. The feature set may
include a set of variables, and a variable may be referred to
as a feature. A specific observation may include a set of
variable values (or feature values) corresponding to the set
of'variables. In some implementations, the machine learning
system may determine variables for a set of observations
and/or variable values for a specific observation based on
input received from client device 330, computing resource

US 2024/0045713 Al

management device 340, or computing resources 350. For
example, the machine learning system may identify a feature
set (e.g., one or more features and/or feature values) by
extracting the feature set from structured data, by perform-
ing natural language processing to extract the feature set
from unstructured data, and/or by receiving input from an
operatotr.

[0037] As an example, a feature set for a set of observa-
tions may include a first feature of a set of tasks for
execution, a second feature of a set of computing resources
to execute the set of tasks, a third feature of a set of
parameters of the set of tasks and the set of resources (e.g.,
the computing resource information and the task informa-
tion), and so on. As shown, for a first observation, the first
feature may have a value of “A, B, C”, the second feature
may have a value of “1, 2, 3”, the third feature may have a
value of “Parameters-a”, and so on. These features and
feature values are provided as examples, and may differ in
other examples. For example, the feature set may include
one or more of the following features: a success rate, an
availability, a capacity, a failure reason, or a result of a
sentiment analysis, among other examples.

[0038] As shown by reference number 215, the set of
observations may be associated with a target variable. The
target variable may represent a variable having a numeric
value, may represent a variable having a numeric value that
falls within a range of values or has some discrete possible
values, may represent a variable that is selectable from one
of multiple options (e.g., one of multiples classes, classifi-
cations, or labels) and/or may represent a variable having a
Boolean value. A target variable may be associated with a
target variable value, and a target variable value may be
specific to an observation. In example 200, the target vari-
able is an assignment of a task to a resource in a particular
order, which has a value of “Assignment-1”’ (e.g., tasks A, B,
and C are assigned to resources 1, 2, and 3 for execution in
a particular order and/or mapping) for the first observation.

[0039] The target variable may represent a value that a
machine learning model is being trained to predict, and the
feature set may represent the variables that are input to a
trained machine learning model to predict a value for the
target variable. The set of observations may include target
variable values so that the machine learning model can be
trained to recognize patterns in the feature set that lead to a
target variable value. A machine learning model that is
trained to predict a target variable value may be referred to
as a supervised learning model.

[0040] In some implementations, the machine learning
model may be trained on a set of observations that do not
include a target variable. This may be referred to as an
unsupervised learning model. In this case, the machine
learning model may learn patterns from the set of observa-
tions without labeling or supervision, and may provide
output that indicates such patterns, such as by using clus-
tering and/or association to identify related groups of items
within the set of observations.

[0041] As shown by reference number 220, the machine
learning system may train a machine learning model using
the set of observations and using one or more machine
learning algorithms, such as a regression algorithm, a deci-
sion tree algorithm, a neural network algorithm, a k-nearest
neighbor algorithm, a support vector machine algorithm, or
the like. After training, the machine learning system may

Feb. 8, 2024

store the machine learning model as a trained machine
learning model 225 to be used to analyze new observations.

[0042] As an example, the machine learning system may
obtain training data for the set of observations based on
communicating with computing resource management
device 340 (e.g., to receive computing resource information)
and client device 330 (e.g., to receive task information). For
example, the machine learning system may receive histori-
cal computing resource information, task information, and
assignments to train a model for assigning tasks to resources
to optimize an amount of time and/or resources used to
successfully complete execution of the tasks.

[0043] As shown by reference number 230, the machine
learning system may apply the trained machine learning
model 225 to a new observation, such as by receiving a new
observation and inputting the new observation to the trained
machine learning model 225. As shown, the new observation
may include a first feature of a set of tasks “D, E, F, G”, a
second feature of 3a set of resources “1, 27, a third feature
of a set of parameters “Parameters-b”, and so on, as an
example. The machine learning system may apply the
trained machine learning model 225 to the new observation
to generate an output (e.g., a result). The type of output may
depend on the type of machine learning model and/or the
type of machine learning task being performed. For
example, the output may include a predicted value of a target
variable, such as when supervised learning is employed.
Additionally, or alternatively, the output may include infor-
mation that identifies a cluster to which the new observation
belongs and/or information that indicates a degree of simi-
larity between the new observation and one or more other
observations, such as when unsupervised learning is
employed.

[0044] As an example, the trained machine learning model
225 may predict a value of “an assignment-3” for a set of
tasks “H, 1, J, K, L., M to a set of computing resources “1,
2, 3, 4” and with a set of parameters “Parameters-c”, as
shown by reference number 235. Based on this prediction,
the machine learning system may provide a first recommen-
dation, may provide output for determination of a first
recommendation, may perform a first automated action,
and/or may cause a first automated action to be performed
(e.g., by instructing another device to perform the automated
action), among other examples. The first recommendation
may include, for example, recommending execution of the
set of tasks in accordance with the assignment, recommend-
ing modifying a task, or recommending modifying a com-
puting resource, among other examples. The first automated
action may include, for example, executing the set of tasks
in accordance with the assignment, automatically modifying
a task, automatically modifying a computing resource, or
setting a threshold time for determining a task failure,
among other examples.

[0045] In some implementations, the trained machine
learning model 225 may classity (e.g., cluster) the new
observation in a cluster, as shown by reference number 240.
The observations within a cluster may have a common
parameter. As an example, the machine learning system may
use clustering to assign tasks (e.g., the observations 1
through 9, as shown) into clusters, which correspond to
computing resources on which the tasks are to be executed.
In this case, each cluster may also be associated with, for
example, an order with which the tasks are to be executed.

US 2024/0045713 Al

[0046] In some implementations, the recommendation
and/or the automated action associated with the new obser-
vation may be based on a target variable value having a
particular label (e.g., classification or categorization), may
be based on whether a target variable value satisfies one or
more threshold (e.g., whether the target variable value is
greater than a threshold, is less than a threshold, is equal to
a threshold, falls within a range of threshold values, or the
like), and/or may be based on a cluster in which the new
observation is classified.

[0047] In some implementations, the trained machine
learning model 225 may be re-trained using feedback infor-
mation. For example, feedback may be provided to the
machine learning model. The feedback may be associated
with actions performed based on the recommendations pro-
vided by the trained machine learning model 225 and/or
automated actions performed, or caused, by the trained
machine learning model 225. In other words, the recom-
mendations and/or actions output by the trained machine
learning model 225 may be used as inputs to re-train the
machine learning model (e.g., a feedback loop may be used
to train and/or update the machine learning model). For
example, the feedback information may include a result of
executing the set of tasks in accordance with an assignment
(e.g., a success in executing the set of tasks, a failure in
executing a task, an amount of time to execute the set of
tasks, or an amount of computing resources to execute the
set of tasks).

[0048] Inthis way, the machine learning system may apply
a rigorous and automated process to generate an assignment
of tasks to computing resources for execution. The machine
learning system enables recognition and/or identification of
tens, hundreds, thousands, or millions of features and/or
feature values for tens, hundreds, thousands, or millions of
observations, thereby increasing accuracy and consistency
and reducing delay associated with executing tasks using a
set of computing resources relative to requiring computing
resources to be allocated for tens, hundreds, or thousands of
operators to manually generate a static assignment of tasks
to the set of computing resources using the features or
feature values.

[0049] As indicated above, FIG. 2 is provided as an
example. Other examples may differ from what is described
in connection with FIG. 2.

[0050] FIG. 3 is a diagram of an example environment 300
in which systems and/or methods described herein may be
implemented. As shown in FIG. 3, environment 300 may
include a scheduling platform 301, which may include one
or more elements of and/or may execute within a cloud
computing system 302. The cloud computing system 302
may include one or more elements 303-312, as described in
more detail below. As further shown in FIG. 3, environment
300 may include a network 320, a client device 330, a
computing resource management device 340, and/or a set of
computing resources 350 (e.g., which may correspond to
computing hardware 303 and/or virtual computing systems
306, among other examples). Although the computing
resource management device 340 and the set of computing
resources 350 are shown as part of cloud computing system
302 and scheduling platform 301, the computing resource
management device 340 and the set of computing resources
350 may be implemented in a different computing environ-
ment (e.g., another cloud computing environment or a
non-cloud computing environment). Devices and/or ele-

Feb. 8, 2024

ments of environment 300 may interconnect via wired
connections and/or wireless connections.

[0051] The cloud computing system 302 includes com-
puting hardware 303, a resource management component
304, a host operating system (OS) 305, and/or one or more
virtual computing systems 306. The cloud computing sys-
tem 302 may execute on, for example, an Amazon Web
Services platform, a Microsoft Azure platform, or a Snow-
flake platform. The resource management component 304
may perform virtualization (e.g., abstraction) of computing
hardware 303 to create the one or more virtual computing
systems 306. Using virtualization, the resource management
component 304 enables a single computing device (e.g., a
computer or a server) to operate like multiple computing
devices, such as by creating multiple isolated virtual com-
puting systems 306 from computing hardware 303 of the
single computing device. In this way, computing hardware
303 can operate more efficiently, with lower power con-
sumption, higher reliability, higher availability, higher uti-
lization, greater flexibility, and lower cost than using sepa-
rate computing devices.

[0052] Computing hardware 303 includes hardware and
corresponding resources from one or more computing
devices. For example, computing hardware 303 may include
hardware from a single computing device (e.g., a single
server) or from multiple computing devices (e.g., multiple
servers), such as multiple computing devices in one or more
data centers. As shown, computing hardware 303 may
include one or more processors 307, one or more memories
308, and/or one or more networking components 309.
Examples of a processor, a memory, and a networking
component (e.g., a communication component) are
described elsewhere herein.

[0053] The resource management component 304 includes
a virtualization application (e.g., executing on hardware,
such as computing hardware 303) capable of virtualizing
computing hardware 303 to start, stop, and/or manage one or
more virtual computing systems 306. For example, the
resource management component 304 may include a hyper-
visor (e.g., a bare-metal or Type 1 hypervisor, a hosted or
Type 2 hypervisor, or another type of hypervisor) or a virtual
machine monitor, such as when the virtual computing sys-
tems 306 are virtual machines 310. Additionally, or alterna-
tively, the resource management component 304 may
include a container manager, such as when the virtual
computing systems 306 are containers 311. In some imple-
mentations, the resource management component 304
executes within and/or in coordination with a host operating
system 305.

[0054] A virtual computing system 306 includes a virtual
environment that enables cloud-based execution of opera-
tions and/or processes described herein using computing
hardware 303. As shown, a virtual computing system 306
may include a virtual machine 310, a container 311, or a
hybrid environment 312 that includes a virtual machine and
a container, among other examples. A virtual computing
system 306 may execute one or more applications using a
file system that includes binary files, software libraries,
and/or other resources required to execute applications on a
guest operating system (e.g., within the virtual computing
system 306) or the host operating system 305.

[0055] Although the scheduling platform 301 may include
one or more elements 303-312 of the cloud computing
system 302, may execute within the cloud computing system

US 2024/0045713 Al

302, and/or may be hosted within the cloud computing
system 302, in some implementations, the scheduling plat-
form 301 may not be cloud-based (e.g., may be implemented
outside of a cloud computing system) or may be partially
cloud-based. For example, the scheduling platform 301 may
include one or more devices that are not part of the cloud
computing system 302, such as device 400 of FIG. 4, which
may include a standalone server or another type of comput-
ing device. The scheduling platform 301 may perform one or
more operations and/or processes described in more detail
elsewhere herein.

[0056] Network 320 includes one or more wired and/or
wireless networks. For example, network 320 may include a
cellular network, a public land mobile network (PLMN), a
local area network (LAN), a wide area network (WAN), a
private network, the Internet, and/or a combination of these
or other types of networks. The network 320 enables com-
munication among the devices of environment 300.

[0057] The client device 330 includes one or more devices
capable of receiving, generating, storing, processing, and/or
providing information associated with an assignment of a set
of tasks to a set of computing resources for execution, as
described elsewhere herein. The client device 330 may
include a communication device and/or a computing device.
For example, the client device 330 may include a wireless
communication device, a mobile phone, a user equipment, a
laptop computer, a tablet computer, a desktop computer, a
wearable communication device (e.g., a smart wristwatch, a
pair of smart eyeglasses, a head mounted display, or a virtual
reality headset), or a similar type of device.

[0058] The computing resource management device 340
may include one or more devices capable of receiving,
generating, storing, processing, and/or providing informa-
tion associated with the set of computing resources 350. For
example, the computing resource management device 340
may correspond to resource management component 304.
[0059] The computing resources 350 may include one or
more computing resources capable of automatically com-
pleting a task, such as an RPA task. For example, the
computing resources 350 may correspond to the computing
hardware 303 (e.g., the processors 307, the memory 308, or
the network components 309), the virtual computing sys-
tems 306, or a set of physical computing systems (not
shown), such as a set of personal computing devices (e.g.,
via a remote access communication link).

[0060] The number and arrangement of devices and net-
works shown in FIG. 3 are provided as an example. In
practice, there may be additional devices and/or networks,
fewer devices and/or networks, different devices and/or
networks, or differently arranged devices and/or networks
than those shown in FIG. 3. Furthermore, two or more
devices shown in FIG. 3 may be implemented within a
single device, or a single device shown in FIG. 3 may be
implemented as multiple, distributed devices. Additionally,
or alternatively, a set of devices (e.g., one or more devices)
of environment 300 may perform one or more functions
described as being performed by another set of devices of
environment 300.

[0061] FIG. 4 is a diagram of example components of a
device 400 associated with dynamic scheduling for auto-
mated computing tasks. Device 400 may correspond to
scheduling platform 301, client device 330, computing
resource management device 340, and/or computing
resources 350. In some implementations, scheduling plat-

Feb. 8, 2024

form 301, client device 330, computing resource manage-
ment device 340, and/or computing resources 350 include
one or more devices 400 and/or one or more components of
device 400. As shown in FIG. 4, device 400 may include a
bus 410, a processor 420, a memory 430, an input compo-
nent 440, an output component 450, and a communication
component 460.

[0062] Bus 410 includes one or more components that
enable wired and/or wireless communication among the
components of device 400. Bus 410 may couple together
two or more components of FIG. 4, such as via operative
coupling, communicative coupling, electronic coupling,
and/or electric coupling. Processor 420 includes a central
processing unit, a graphics processing unit, a microproces-
sor, a controller, a microcontroller, a digital signal processor,
a field-programmable gate array, an application-specific
integrated circuit, and/or another type of processing com-
ponent. Processor 420 is implemented in hardware, firm-
ware, or a combination of hardware and software. In some
implementations, processor 420 includes one or more pro-
cessors capable of being programmed to perform one or
more operations or processes described elsewhere herein.
[0063] Memory 430 includes volatile and/or nonvolatile
memory. For example, memory 430 may include random
access memory (RAM), read only memory (ROM), a hard
disk drive, and/or another type of memory (e.g., a flash
memory, a magnetic memory, and/or an optical memory).
Memory 430 may include internal memory (e.g., RAM,
ROM,; or a hard disk drive) and/or removable memory (e.g.,
removable via a universal serial bus connection). Memory
430 may be a non-transitory computer-readable medium.
Memory 430 stores information, instructions, and/or soft-
ware (e.g., one or more software applications) related to the
operation of device 400. In some implementations, memory
430 includes one or more memories that are coupled to one
or more processors (e.g., processor 420), such as via bus
410.

[0064] Inputcomponent 440 enables device 400 to receive
input, such as user input and/or sensed input. For example,
input component 440 may include a touch screen, a key-
board, a keypad, a mouse, a button, a microphone, a switch,
a sensor, a global positioning system sensor, an accelerom-
eter, a gyroscope, and/or an actuator. Output component 450
enables device 400 to provide output, such as via a display,
a speaker, and/or a light-emitting diode. Communication
component 460 enables device 400 to communicate with
other devices via a wired connection and/or a wireless
connection. For example, communication component 460
may include a receiver, a transmitter, a transceiver, a
modem, a network interface card, and/or an antenna.

[0065] Device 400 may perform one or more operations or
processes described herein. For example, a non-transitory
computer-readable medium (e.g., memory 430) may store a
set of instructions (e.g., one or more instructions or code) for
execution by processor 420. Processor 420 may execute the
set of instructions to perform one or more operations or
processes described herein. In some implementations,
execution of the set of instructions, by one or more proces-
sors 420, causes the one or more processors 420 and/or the
device 400 to perform one or more operations or processes
described herein. In some implementations, hardwired cir-
cuitry is used instead of or in combination with the instruc-
tions to perform one or more operations or processes
described herein. Additionally, or alternatively, processor

US 2024/0045713 Al

420 may be configured to perform one or more operations or
processes described herein. Thus, implementations
described herein are not limited to any specific combination
of hardware circuitry and software.

[0066] The number and arrangement of components
shown in FIG. 4 are provided as an example. Device 400
may include additional components, fewer components,
different components, or differently arranged components
than those shown in FIG. 4. Additionally, or alternatively, a
set of components (e.g., one or more components) of device
400 may perform one or more functions described as being
performed by another set of components of device 400.
[0067] FIGS. 5A and 5B depict a flowchart of an example
process 500 associated with dynamic scheduling for auto-
mated computing tasks. In some implementations, one or
more process blocks of FIG. 5 are performed by a sched-
uling platform (e.g., scheduling platform 102 or scheduling
platform 301). In some implementations, one or more pro-
cess blocks of FIGS. 5A and 5B are performed by another
device or a group of devices separate from or including the
scheduling platform, such as a client device (e.g., client
device 108 or client device 330), a computing resource
management device (e.g., computing resource management
device 104 or computing resource management device 340),
and/or a computing resource (e.g., computing resources 106
or computing resources 350). Additionally, or alternatively,
one or more process blocks of FIGS. 5A and 5B may be
performed by one or more components of device 400, such
as processor 420, memory 430, input component 440, output
component 450, and/or communication component 460.
[0068] As shown in FIG. 5A, process 500 may include
receiving task information regarding a set of tasks for
execution using a set of computing resources, wherein the
task information includes, for the set of tasks, at least one of:
a run time parameter, a priority parameter, or a success rate
parameter (block 510). For example, the scheduling plat-
form may receive task information regarding a set of tasks
for execution using a set of computing resources, wherein
the task information includes, for the set of tasks, at least one
of: a run time parameter, a priority parameter, or a success
rate parameter, as described above.

[0069] As further shown in FIG. 5A, process 500 may
include communicating with a computing resource manage-
ment device to obtain first computing resource information
regarding the set of computing resources, wherein the first
computing resource information includes, for the set of
computing resources, at least one of: an availability param-
eter, a type parameter, or a capacity parameter (block 520).
For example, the scheduling platform may communicate
with a computing resource management device to obtain
first computing resource information regarding the set of
computing resources, wherein the first computing resource
information includes, for the set of computing resources, at
least one of: an availability parameter, a type parameter, or
a capacity parameter, as described above.

[0070] As further shown in FIG. 5A, process 500 may
include generating a first assignment of the set of tasks to the
set of computing resources using an evaluation algorithm
applied to the task information and the first computing
resource information to optimize the execution of the set of
tasks using the set of computing resources (block 530). For
example, the scheduling platform may generate a first
assignment of the set of tasks to the set of computing
resources using an evaluation algorithm applied to the task

Feb. 8, 2024

information and the first computing resource information to
optimize the execution of the set of tasks using the set of
computing resources, as described above.

[0071] As further shown in FIG. 5A, process 500 may
include transmitting assignment information identifying the
first assignment of the set of tasks to the computing resource
management device to cause the execution of the set of tasks
using the set of computing resources (block 540). For
example, the scheduling platform may transmit assignment
information identifying the first assignment of the set of
tasks to the computing resource management device to cause
the execution of the set of tasks using the set of computing
resources, as described above.

[0072] As shown in FIG. 5B, process 500 may include
receiving second computing resource information (block
550-1), detecting a failure of a task (block 550-2), or
detecting feedback (block 550-3). For example, the sched-
uling platform may receive, during the execution of the set
of tasks using the set of computing resources, second
computing resource information, wherein the second com-
puting resource information and the first computing resource
information include at least one common parameter with a
different value, as described above. Additionally, or alter-
natively, the scheduling platform may determine that a task
has failed to execute successfully, as described above.
Additionally, or alternatively, the scheduling platform may
detect feedback indicating a negative sentiment regarding
operation of a set of computing resources, as described
above.

[0073] As further shown in FIG. 5B, process 500 may
include generating a second assignment of the set of tasks to
the set of computing resources to re-optimize the execution
of the set of tasks using the set of computing resources
(block 560). For example, the scheduling platform may
generate a second assignment of the set of tasks to the set of
computing resources using the evaluation algorithm applied
to the task information and the second computing resource
information to re-optimize the execution of the set of tasks
using the set of computing resources, as described above.
[0074] As further shown in FIG. 5B, process 500 may
include transmitting second assignment information identi-
fying the second assignment of the set of tasks to the
computing resource management device to cause the execu-
tion of the set of tasks using the set of computing resources
(block 570). For example, the scheduling platform may
transmit second assignment information identifying the sec-
ond assignment of the set of tasks to the computing resource
management device to cause the execution of the set of tasks
using the set of computing resources, as described above.
[0075] Process 500 may include additional implementa-
tions, such as any single implementation or any combination
of implementations described below and/or in connection
with one or more other processes described elsewhere
herein.

[0076] In a first implementation, generating the first
assignment of the set of tasks to the set of computing
resources comprises determining a resource utilization for a
task of the set of tasks, determining a threshold resource
availability for a computing resource of the set of computing
resources, and assigning the task to the computing resource
based on the resource utilization and the threshold resource
availability.

[0077] In a second implementation, alone or in combina-
tion with the first implementation, communicating with the

US 2024/0045713 Al

computing resource management device to obtain the first
computing resource information comprises querying one or
more computing devices to determine status information for
the one or more computing devices, wherein the status
information includes information identifying whether a
computing device is locked, online, logged on, or offline,
and determining whether to deploy the computing device for
task execution based on the status information, and wherein
generating the first assignment of the set of tasks to the set
of computing resources comprises assigning a task, of the set
of tasks, to a computing resource based on determining
whether to deploy the computing device for task execution.
[0078] In a third implementation, alone or in combination
with one or more of the first and second implementations,
communicating with the computing resource management
device to obtain the first computing resource information
comprises querying one or more computing devices to
determine whether a software resource is present on the one
or more computing devices, and generating the first assign-
ment of the set of tasks to the set of computing resources
comprises assigning a task, of the set of tasks, to a comput-
ing resource based on querying the one or more computing
devices to determine whether the software resource is pres-
ent on the one or more computing devices.

[0079] In a fourth implementation, alone or in combina-
tion with one or more of the first through third implemen-
tations, process 500 includes deploying the software
resource to a computing device, of the one or more com-
puting devices, based on querying the one or more comput-
ing devices to determine whether the software resource is
present on the one or more computing devices, and assigning
the task comprises assigning the task based on deploying the
software resource to the computing device.

[0080] In a fifth implementation, alone or in combination
with one or more of the first through fourth implementations,
generating the first assignment of the set of tasks to the set
of computing resources using the evaluation algorithm com-
prises executing a genetic algorithm on at least one of the
priority parameter, the run time parameter, the success rate
parameter, or a failure reason parameter to determine a
scheduling of the set of tasks.

[0081] In a sixth implementation, alone or in combination
with one or more of the first through fifth implementations,
process 500 includes determining the run time parameter
based on a probability density function applied to a set of
historical run times for a set of historical tasks.

[0082] In a seventh implementation, alone or in combina-
tion with one or more of the first through sixth implemen-
tations, process 500 includes detecting a failure of a task, of
the set of tasks, on a computing resource of the set of
computing resources, and generating the second assignment
comprises generating the second assignment based on
detecting the failure of the task.

[0083] In an eighth implementation, alone or in combina-
tion with one or more of the first through seventh imple-
mentations, process 500 includes detecting a failure of a
task, of the set of tasks, on a computing resource of the set
of computing resources, obtaining an image of a screen
associated with the failure of the set of tasks, applying an
optical character recognition algorithm to parse the image of
the screen, and applying a natural language processing
algorithm to an output of the optical character recognition
algorithm, wherein an output of the natural language pro-
cessing algorithm includes information identifying a char-

Feb. 8, 2024

acteristic of the failure of the task, and wherein generating
the second assignment comprises generating the second
assignment based on the characteristic of the failure of the
task.

[0084] In a ninth implementation, alone or in combination
with one or more of the first through eighth implementa-
tions, process 500 includes detecting a failure of a task, of
the set of tasks, on a computing resource of the set of
computing resources, and obtaining an error log associated
with the failure of the set of tasks, wherein the error log
includes information identifying a characteristic of the fail-
ure of the task, and wherein generating the second assign-
ment comprises generating the second assignment based on
the characteristic of the failure of the task.

[0085] In atenth implementation, alone or in combination
with one or more of the first through ninth implementations,
the error log includes unstructured text, wherein the unstruc-
tured text includes at least one of a file path, a code line
number, or a descriptive string.

[0086] In an eleventh implementation, alone or in combi-
nation with one or more of the first through tenth imple-
mentations, process 500 includes applying a natural lan-
guage processing algorithm to classify the failure of the task
into an error category based on the unstructured text, and
generating the second assignment comprises generating the
second assignment based on classitying the failure of the
task into the error category.

[0087] In a twelfth implementation, alone or in combina-
tion with one or more of the first through eleventh imple-
mentations, process 500 includes detecting a failure of a
task, of the set of tasks, on a computing resource of the set
of computing resources, obtaining an image of a screen
associated with the failure of the set of tasks, and applying
an object recognition algorithm to parse the image of the
screen, wherein an output of the object recognition algo-
rithm includes information identifying a characteristic of the
failure of the task, and wherein generating the second
assignment comprises generating the second assignment
based on the characteristic of the failure of the task.

[0088] In a thirteenth implementation, alone or in combi-
nation with one or more of the first through twelfth imple-
mentations, process 500 includes classifying a computing
resource, of the set of computing resources, based on the first
computing resource information, and generating the first
assignment comprises generating the first assignment based
on classifying the computing resource.

[0089] In a fourteenth implementation, alone or in com-
bination with one or more of the first through thirteenth
implementations, a classification of the computing resource
includes a type of hardware providing the computing
resource, wherein the type of hardware includes at least one
of a central processing unit, a graphical processing unit, an
audio processing unit, a network card, a field programmable
gate array, or a system-on-chip.

[0090] In a fifteenth implementation, alone or in combi-
nation with one or more of the first through fourteenth
implementations, process 500 includes monitoring a feed-
back stream to detect feedback relating to the set of com-
puting resources, and classifying the feedback relating to the
set of computing resources, and generating the second
assignment comprises generating the second assignment
based on the feedback relating to the set of computing
resources.

US 2024/0045713 Al

[0091] In a sixteenth implementation, alone or in combi-
nation with one or more of the first through fifteenth
implementations, classifying the feedback comprises
executing a sentiment analysis algorithm to determine a
sentiment associated with a computing resource of the set of
computing resources, and generating the second assignment
comprises generating the second assignment based on the
sentiment associated with the computing resource.

[0092] In a seventeenth implementation, alone or in com-
bination with one or more of the first through sixteenth
implementations, process 500 includes transmitting an alert
associated with the second assignment, wherein the alert
includes information identifying at least one of error infor-
mation regarding a task, of the set of tasks, or scheduling
information regarding the second assignment.

[0093] Although FIGS. 5A and 5B show example blocks
of process 500, in some implementations, process 500
includes additional blocks, fewer blocks, different blocks, or
differently arranged blocks than those depicted in FIGS. 5A
and 5B. Additionally, or alternatively, two or more of the
blocks of process 500 may be performed in parallel.
[0094] The foregoing disclosure provides illustration and
description, but is not intended to be exhaustive or to limit
the implementations to the precise forms disclosed. Modi-
fications may be made in light of the above disclosure or
may be acquired from practice of the implementations.
[0095] As used herein, the term “component” is intended
to be broadly construed as hardware, firmware, or a com-
bination of hardware and software. It will be apparent that
systems and/or methods described herein may be imple-
mented in different forms of hardware, firmware, and/or a
combination of hardware and software. The actual special-
ized control hardware or software code used to implement
these systems and/or methods is not limiting of the imple-
mentations. Thus, the operation and behavior of the systems
and/or methods are described herein without reference to
specific software code—it being understood that software
and hardware can be used to implement the systems and/or
methods based on the description herein.

[0096] As used herein, satisfying a threshold may, depend-
ing on the context, refer to a value being greater than the
threshold, greater than or equal to the threshold, less than the
threshold, less than or equal to the threshold, equal to the
threshold, not equal to the threshold, or the like.

[0097] Although particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
various implementations. In fact, many of these features
may be combined in ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one claim, the disclosure of various implementations
includes each dependent claim in combination with every
other claim in the claim set. As used herein, a phrase
referring to “at least one of” a list of items refers to any
combination of those items, including single members. As
an example, “at least one of: a, b, or ¢” is intended to cover
a, b, ¢, a-b, a-c, b-c, and a-b-c, as well as any combination
with multiple of the same item.

[0098] No element, act, or instruction used herein should
be construed as critical or essential unless explicitly
described as such. Also, as used herein, the articles “a” and
“an” are intended to include one or more items, and may be
used interchangeably with “one or more.” Further, as used

Feb. 8, 2024

herein, the article “the” is intended to include one or more
items referenced in connection with the article “the” and
may be used interchangeably with “the one or more.”
Furthermore, as used herein, the term “set” is intended to
include one or more items (e.g., related items, unrelated
items, or a combination of related and unrelated items), and
may be used interchangeably with “one or more.” Where
only one item is intended, the phrase “only one” or similar
language is used. Also, as used herein, the terms “has,”
“have,” “having,” or the like are intended to be open-ended
terms. Further, the phrase “based on” is intended to mean
“based, at least in part, on” unless explicitly stated other-
wise. Also, as used herein, the term “or” is intended to be
inclusive when used in a series and may be used inter-
changeably with “and/or,” unless explicitly stated otherwise
(e.g., if used in combination with “either” or “only one of™).
What is claimed is:
1. A method, comprising:
receiving, by a scheduling platform, task information
regarding a set of tasks for execution using a set of
computing resources, wherein the task information
includes, for the set of tasks, at least one of: a run time
parameter, a priority parameter, or a success rate
parameter;
communicating, by the scheduling platform, with a com-
puting resource management device to obtain first
computing resource information regarding the set of
computing resources, wherein the first computing
resource information includes, for the set of computing
resources, at least one of: an availability parameter, a
type parameter, or a capacity parameter;
generating, by the scheduling platform, a first assignment
of the set of tasks to the set of computing resources
using an evaluation algorithm applied to the task infor-
mation and the first computing resource information to
optimize the execution of the set of tasks using the set
of computing resources;
transmitting, by the scheduling platform, assignment
information identifying the first assignment of the set of
tasks to the computing resource management device to
cause the execution of the set of tasks using the set of
computing resources;
receiving, by the scheduling platform and during the
execution of the set of tasks using the set of computing
resources, second computing resource information,
wherein the second computing resource information
and the first computing resource information include at
least one common parameter with a different value;

generating, by the scheduling platform, a second assign-
ment of the set of tasks to the set of computing
resources using the evaluation algorithm applied to the
task information and the second computing resource
information to re-optimize the execution of the set of
tasks using the set of computing resources; and

transmitting, by the scheduling platform, second assign-
ment information identifying the second assignment of
the set of tasks to the computing resource management
device to cause the execution of the set of tasks using
the set of computing resources.

2. The method of claim 1, wherein generating the first
assignment of the set of tasks to the set of computing
resources comprises:

determining a resource utilization for a task of the set of

tasks;

US 2024/0045713 Al

determining a threshold resource availability for a com-
puting resource of the set of computing resources; and

assigning the task to the computing resource based on the
resource utilization and the threshold resource avail-
ability.

3. The method of claim 1, wherein communicating with
the computing resource management device to obtain the
first computing resource information comprises:

querying one or more computing devices to determine

status information for the one or more computing
devices, wherein the status information includes infor-
mation identifying whether a computing device is
locked, online, logged on, or offline; and

determining whether to deploy the computing device for

task execution based on the status information; and
wherein generating the first assignment of the set of tasks
to the set of computing resources comprises:
assigning a task, of the set of tasks, to a computing
resource based on determining whether to deploy the
computing device for task execution.

4. The method of claim 1, wherein communicating with
the computing resource management device to obtain the
first computing resource information comprises:

querying one or more computing devices to determine

whether a software resource is present on the one or
more computing devices; and

wherein generating the first assignment of the set of tasks

to the set of computing resources comprises:

assigning a task, of the set of tasks, to a computing
resource based on querying the one or more com-
puting devices to determine whether the software
resource is present on the one or more computing
devices.

5. The method of claim 4, further comprising:

deploying the software resource to a computing device, of

the one or more computing devices, based on querying
the one or more computing devices to determine
whether the software resource is present on the one or
more computing devices; and

wherein assigning the task comprises:

assigning the task based on deploying the software
resource to the computing device.

6. The method of claim 1, wherein generating the first
assignment of the set of tasks to the set of computing
resources using the evaluation algorithm comprises:

executing a genetic algorithm on at least one of the

priority parameter, the run time parameter, the success
rate parameter, or a failure reason parameter to deter-
mine a scheduling of the set of tasks.

7. The method of claim 6, further comprising:

determining the run time parameter based on a probability

density function applied to a set of historical run times
for a set of historical tasks.

8. A scheduling platform, comprising:

one or more memories; and

one or more processors, coupled to the one or more

memories, configured to:

receive task information regarding a set of tasks for
execution using a set of computing resources,
wherein the task information includes, for the set of
tasks, at least one of: a run time parameter, a priority
parameter, or a success rate parameter,

communicate with a computing resource management
device to obtain first computing resource informa-

Feb. 8, 2024

tion regarding the set of computing resources,
wherein the first computing resource information
includes, for the set of computing resources, at least
one of: an availability parameter, a type parameter,
or a capacity parameter;

generate a first assignment of the set of tasks to the set
of computing resources using an evaluation algo-
rithm applied to the task information and the first
computing resource information to optimize the
execution of the set of tasks using the set of com-
puting resources;

transmit assignment information identifying the first
assignment of the set of tasks to the computing
resource management device to cause the execution
of the set of tasks using the set of computing
resources;

detect a failure of a task, of the set of tasks, on a
computing resource of the set of computing
resources;

generate, based on the failure of the task, a second
assignment of the set of tasks to the set of computing
resources to re-optimize the execution of the set of
tasks using the set of computing resources; and

transmit second assignment information identifying the
second assignment of the set of tasks to the comput-
ing resource management device to cause the execu-
tion of the set of tasks using the set of computing
resources.

9. The scheduling platform of claim 8, wherein the one or
more processors, to generate the second assignment, are
configured to:

generate the second assignment based on a type of the

failure of the task.

10. The scheduling platform of claim 8, wherein the one
or more processors are further configured to:

obtain an image of a screen associated with the failure of

the set of tasks;

apply an optical character recognition algorithm to parse

the image of the screen; and

apply a natural language processing algorithm to an

output of the optical character recognition algorithm,

wherein an output of the natural language processing
algorithm includes information identifying a charac-
teristic of the failure of the task; and

wherein the one or more processors, to generate the

second assignment, are configured to:
generate the second assignment based on the charac-
teristic of the failure of the task.

11. The scheduling platform of claim 8, wherein the one
or more processors are further configured to:

obtain an error log associated with the failure of the set of

tasks,
wherein the error log includes information identifying
a characteristic of the failure of the task; and
wherein the one or more processors, to generate the
second assignment, are configured to:
generate the second assignment based on the charac-
teristic of the failure of the task.

12. The scheduling platform of claim 11, wherein the error
log includes unstructured text,

wherein the unstructured text includes at least one of:

a file path,
a code line number, or
a descriptive string.

US 2024/0045713 Al
13

13. The scheduling platform of claim 12, wherein the one
or more processors are further configured to:
apply a natural language processing algorithm to classify
the failure of the task into an error category based on
the unstructured text, and
wherein the one or more processors, to generate the
second assignment, are configured to:
generate the second assignment based on classifying
the failure of the task into the error category.
14. The scheduling platform of claim 8, wherein the one
or more processors are further configured to:
obtain an image of a screen associated with the failure of
the task; and
apply an object recognition algorithm to parse the image
of the screen,
wherein an output of the object recognition algorithm
includes information identifying a characteristic of
the failure of the task; and
wherein the one or more processors, to generate the
second assignment, are configured to:
generate the second assignment based on the charac-
teristic of the failure of the task.
15. A non-transitory computer-readable medium storing a
set of instructions, the set of instructions comprising:
one or more instructions that, when executed by one or
more processors of a scheduling platform, cause the
scheduling platform to:
receive task information regarding a set of tasks for
execution using a set of computing resources,
wherein the task information includes, for the set of
tasks, at least one of: a run time parameter, a priority
parameter, or a success rate parameter,
communicate with a computing resource management
device to obtain first computing resource informa-
tion regarding the set of computing resources,
wherein the first computing resource information
includes, for the set of computing resources, at least
one of: an availability parameter, a type parameter,
or a capacity parameter;
generate a first assignment of the set of tasks to the set
of computing resources using an evaluation algo-
rithm applied to the task information and the first
computing resource information to optimize the
execution of the set of tasks using the set of com-
puting resources;
transmit assignment information identifying the first
assignment of the set of tasks to the computing
resource management device to cause the execution
of the set of tasks using the set of computing
resources;
monitor a feedback stream to detect feedback relating
to the set of computing resources;
generate, based on the feedback relating to the set of
computing resources, a second assignment of the set
of tasks to the set of computing resources to re-
optimize the execution of the set of tasks using the
set of computing resources; and

Feb. 8, 2024

transmit second assignment information identifying the
second assignment of the set of tasks to the comput-
ing resource management device to cause the execu-
tion of the set of tasks using the set of computing
resources.

16. The non-transitory computer-readable medium of
claim 15, wherein the one or more instructions further cause
the scheduling platform to:

classify a computing resource, of the set of computing

resources, based on the first computing resource infor-
mation; and

wherein the one or more instructions, that cause the

scheduling platform to generate the first assignment,

cause the scheduling platform to:

generate the first assignment based on classifying the
computing resource.

17. The non-transitory computer-readable medium of
claim 16, wherein a classification of the computing resource
includes a type of hardware providing the computing
resource, and

wherein the type of hardware includes at least one of a

central processing unit, a graphical processing unit, an
audio processing unit, a network card, a field program-
mable gate array, or a system-on-chip.

18. The non-transitory computer-readable medium of
claim 15, wherein the one or more instructions further cause
the scheduling platform to:

classify the feedback relating to the set of computing

resources; and

wherein the one or more instructions, that cause the

scheduling platform to generate the second assignment,

cause the scheduling platform to:

generate the second assignment based on classifying
the feedback relating to the set of computing
resources.

19. The non-transitory computer-readable medium of
claim 18, wherein the one or more instructions, that cause
the scheduling platform to classify the feedback, cause the
scheduling platform to:

execute a sentiment analysis algorithm to determine a

sentiment associated with a computing resource of the
set of computing resources; and

wherein the one or more instructions, that cause the

scheduling platform to generate the second assignment,

cause the scheduling platform to:

generate the second assignment based on the sentiment
associated with the computing resource.

20. The non-transitory computer-readable medium of
claim 15, wherein the one or more instructions further cause
the scheduling platform to:

transmit an alert associated with the second assignment,

wherein the alert includes information identifying at least

one of error information regarding a task, of the set of
tasks, or scheduling information regarding the second
assignment.

