
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) Organization11111111111111111111111I1111111111111i1111liiiii

International Bureau (10) International Publication Number

(43) International Publication Date W O 2020/154141 Al
30 July 2020 (30.07.2020) W IPO I PCT

(51) International Patent Classification: (74) Agent: TAYLOR, Michael W. et al.; Allen Dyer, Doppelt
G06F 9/451 (2018.01) H04L 29/06 (2006.01) & Gilchrist, P.A., 255 S. Orange Avenue, Suite 1401, Or
H03M 7/30 (2006.01) H04W28/06 (2009.01) lando, Florida 32802-3791 (US).
H04L29/08(2006.01) (81) Designated States (unless otherwise indicated, for every

(21) International Application Number: kind ofnational protection available): AE, AG, AL, AM,
PCT/US2020/013607 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
(22) International Filing Date: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

15January2020(15.01.2020) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
(25) Filing Language: English KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(26)PublicationLanguage: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(30) Priority Data: SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,

16/252,809 21 January 2019 (21.01.2019) US TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(71) Applicant: CITRIX SYSTEMS, INC. [US/US]; 851 W. (84) Designated States (unless otherwise indicated, for every

Cypress Creek Rd., Fort Lauderdale, Florida 33309 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(72) Inventors: RAMAREDDY, Shashidhar; 851 West Cy- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
press Creek Road, Fort Lauderdale, Florida 33309 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
MOMCHILOV, Georgy; 851 W. Cypress Creek Rd., Fort EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Lauderdale, Florida 33309 (US). MITTAL, Ankur; Pres- MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,
tige Dynasty, No. 33, UlsoorRoad, Bangalore 560 042 (IN). TR), OAI T(BF, BJ, CF,CG, CI, CM, GA, GN, GQ, GW,

KM, ML, MR, NE, SN, TD, TG).

(54) Title: COMPUTING SYSTEM WITH GATEWAY DATA TRANSFER BASED UPON DEVICE DATA FLOW CHARAC
TERISTICS AND RELATED METHODS

(57) Abstract: A computing system may include a server, client

GatwayDevice 336 (eg UsS dice, TMN computing devices, a gateway device in communication between
device, &martcarddevice) the server and the client computing devices, and a local device

Memory17 tob e coupled to a given client computing device and tob e oper
ClenappingTable able in a given virtual desktop instance associated with the giv

Packets338 ID ir3S en client computing device, thereby generating client initialization
packets. The gateway device may be configured to when the lo

cet Com30ag Dx e cal device is coupled to the given client computing device, deter
302v mine whether a client packet from a plurality of client initialization

packets is within a client mapping table, replace the client pack

CientComputgDevice et with a client mapping ID number to define compressed client
initialization packets, and send the compressed client initialization
packets to the server. The server may be configured to replace the
client mapping ID number with the client packet inthe compressed
client initialization packets based upon a server mapping table.

Server 306

Meoy 331

Sevr apigTal S FIG. 3B3

Knw0evr Sre apn

Pakt04 D ubr 4

W O 2020/154141 A11111|||||||||I|I|I|||||I|I|I|II ||I|II |||||||||||||||||||||||||||||||||

Published:
- with international search report (Art. 21(3))

WO 2020/154141 PCT/US2020/013607

COMPUTING SYSTEM WITH GATEWAY DATA TRANSFER BASED UPON DEVICE
DATA FLOW CHARACTERISTICS AND RELATED METHODS

Background

[0001]In virtual desktop infrastructure systems, a typical user uses a terminal or client

machine to connect to a remotely provided computing environment that provides a

desktop paradigm. The remote or "virtual" desktop is typically kept or stored on a

remote central server instead of on the hard-drive of the local client machine.

Accordingly, the remote desktop may execute a single user operating system (e.g.

Windows 10) or a multi-user operating system (e.g. Windows 10 Server), that allows

multiple independent connections to separate virtual desktops. In this arrangement, the

different users of the independent connections are capable of having different levels of

authorization privileges. For example, some users may be permitted access to all,

some or none of the applications, files, etc., of the computing environment.

[0002]Although client machines are often referred to as "dumb terminals", client

machines offer a full desktop experience when connecting in a virtual desktop

infrastructure environment, offering capabilities and performance, specifically designed

to best leverage and enhance the performance and functionality of the virtual desktop

infrastructure. For example, client machines are often highly configurable and perform

a high degree of local processing (e.g., management of local screen and keyboard,

management of locally connected devices, and handling of specific keys and/or key

combinations).

1

WO 2020/154141 PCT/US2020/013607

[0003]Because the virtual desktop infrastructure provides the perception that the client

machine is merely an extension of the remote computer, if a new device is attached to

the client machine, it is necessary to configure the client machine to recognize and

configure the device. In short, when the user connects a local device to the client

machine, the virtual desktop instance needs to recognize and use the local device as if

it was the client machine. Because of this, the virtual desktop infrastructure needs to

establish a communication link with the local device. Depending on the bandwidth of

the local device, this new link can be burdensome on the virtual desktop instance, and

may create latency issues.

Summary

[0004]Generally, a computing system may include a server, and a plurality of client

computing devices. The server may be configured to provide a corresponding plurality

of virtual desktop instances for the plurality of client computing devices. The computing

system may include a gateway device in communication between the server and the

plurality of client computing devices, and at least one local device to be coupled to a

given client computing device and to be operable in a given virtual desktop instance

associated with the given client computing device, thereby generating a plurality of

client initialization packets. The server may be configured to generate a server mapping

table comprising a plurality of known server packets associated with the at least one

local device, and a plurality of server mapping ID numbers respectively associated with

the plurality of known server packets. The gateway device may be configured to

generate a client mapping table comprising a plurality of known client packets

associated with the at least one local device, and a plurality of client mapping ID

numbers respectively associated with the plurality of known client packets.

[0005]The gateway device may be configured to, when the at least one local device is

coupled to the given client computing device, determine whether at least one client

packet from the plurality of client initialization packets is within the client mapping table,

replace the at least one client packet with at least one client mapping ID number to

define a plurality of compressed client initialization packets, and send the plurality of

compressed client initialization packets to the server. The server may be configured to

2

WO 2020/154141 PCT/US2020/013607

replace the at least one client mapping ID number with the at least one client packet in

the plurality of compressed client initialization packets based upon the server mapping

table.

[0006] Additionally, the server and the gateway device may be configured to

synchronize the server mapping table and the client mapping table. The server may be

configured to, when the at least one local device is coupled to the given client

computing device, determine whether at least one server packet from a plurality of

server initialization packets is within the server mapping table, replace the at least one

server packet with at least one server mapping ID number to define a plurality of

compressed server initialization packets, and send the plurality of compressed server

initialization packets to the gateway device. Also, the server and the gateway device

may be configured to, when the at least one local device is decoupled from the given

client computing device, perform the determining, the replacing, and the sending.

[0007]For example, the plurality of known server packets and the plurality of known

client packets each may comprise a communication standard initialization packet. The

plurality of known server packets and the plurality of known client packets may each

comprise at least one of a smart card initialization sequence packet, smart card

authentication packet, smart card digital signing packet, and smart card certificate

transmission packet.

[0008]The server mapping table and the client mapping table may each comprise a

plurality of local device types associated with the plurality of client mapping ID numbers

and the plurality of server mapping ID numbers. When the plurality of compressed

client initialization packets generates an error, the server and the gateway device may

be configured to initialize the at least one local device using the plurality of client

initialization packets.

[0009]For example, the at least one local device may comprise at least one of a

universal serial bus (USB) device, a TWAIN device, and a smart card device. In some

embodiments, the determining may be based upon at least one of client name, smart

card reader name, smart card reader state, smart card type, smart card Answer to

Reset (ATR) string, smart card ID, and smart card certificate hash.

3

WO 2020/154141 PCT/US2020/013607

[0010]Yet another aspect is directed to a method for operating a gateway device in

communication between a server and a plurality of client computing devices. The

server is to provide a corresponding plurality of virtual desktop instances for the plurality

of client computing devices, and at least one local device is to be coupled to a given

client computing device and to be operable in a given virtual desktop instance

associated with the given client computing device, thereby generating a plurality of

client initialization packets. The method may comprise generating a client mapping

table comprising a plurality of known client packets associated with the at least one

local device, and a plurality of client mapping ID numbers respectively associated with

the plurality of known client packets. The method may include when the at least one

local device is coupled to the given client computing device, determining whether at

least one client packet from the plurality of client initialization packets is within the client

mapping table, replacing the at least one client packet with at least one client mapping

ID number to define a plurality of compressed client initialization packets, and sending

the plurality of compressed client initialization packets to the server.

[0011]Another aspect is directed to a method for operating a server in communication

with a plurality of client computing devices via a gateway device. The server is to

provide a corresponding plurality of virtual desktop instances for the plurality of client

computing devices, and at least one local device is to be coupled to a given client

computing device and to be operable in a given virtual desktop instance associated with

the given client computing device, thereby generating a plurality of server initialization

packets. The method may comprise generating a server mapping table comprising a

plurality of known server packets associated with the at least one local device, and a

plurality of server mapping ID numbers respectively associated with the plurality of

known server packets. The method may include when the at least one local device is

coupled to the given client computing device, determining whether at least one server

packet from the plurality of server initialization packets is within the server mapping

table, replacing the at least one server packet with at least one server mapping ID

number to define a plurality of compressed server initialization packets, and sending the

plurality of compressed server initialization packets to the gateway device.

4

WO 2020/154141 PCT/US2020/013607

Brief Description of the Drawings

[0012]FIG. 1 is a schematic block diagram of a network environment of computing

devices in which various aspects of the disclosure may be implemented.

[0013]FIG. 2 is a schematic block diagram of a computing device useful for practicing

an embodiment of the client machines or the remote machines illustrated in FIG. 1.

[0014]FIG. 3A is a schematic block diagram of a first embodiment of a computing

system with data transfer between a server and a client computing device based upon

device data flow characteristics, according to the disclosure.

[0015]FIG. 3B is a schematic block diagram of a second embodiment of the computing

system with data transfer between a server and a gateway device based upon device

data flow characteristics, according to the disclosure.

[0016]FIG. 4A is a flowchart of a method for operating the computing system of FIG.

3A.

[0017]FIG. 4B is a flowchart of a method for operating the client computing device in

the computing system of FIG. 3A.

[0018]FIG. 4C is a flowchart of a method for operating the server in the computing

system of FIG. 3A.

[0019]FIG. 5 is a diagram of a server mapping table or a client mapping table in the

computing system according to the disclosure.

[0020]FIG. 6 is a diagram of communication flow between the client computing device

and the server in the computing system of FIG. 3A.

[0021]FIG. 7 is a diagram of local device descriptors in the computing system according

to the disclosure.

[0022]FIG. 8 is a diagram of a local device interrupt transfer sequence in the computing

system according to the disclosure.

[0023]FIGS. 9A-9B are diagrams of non-optimized and optimized local device

initialization data exchanges, respectively, in the computing system according to the

disclosure.

[0024]FIGS. 1OA-10D are diagrams of local device initialization data exchanges in the

computing system according to the disclosure.

5

WO 2020/154141 PCT/US2020/013607

[0025]FIG. 11 is a diagram of a local device initialization sequence in the computing

system according to the disclosure.

Detailed Description

[0026]The present description is made with reference to the accompanying drawings, in

which example embodiments are shown. However, many different embodiments may

be used, and thus the description should not be construed as limited to the particular

embodiments set forth herein. Like numbers refer to like elements throughout, and

base 100 reference numerals are used to indicate similar elements in alternative

embodiments.

[0027]As will be appreciated by one of skill in the art upon reading the following

disclosure, various aspects described herein may be embodied as a device, a method

or a computer program product (e.g., a non-transitory computer-readable medium

having computer executable instruction for performing the noted operations or steps).

Accordingly, those aspects may take the form of an entirely hardware embodiment, an

entirely software embodiment, or an embodiment combining software and hardware

aspects.

[0028]Furthermore, such aspects may take the form of a computer program product

stored by one or more computer-readable storage media having computer-readable

program code, or instructions, embodied in or on the storage media. Any suitable

computer readable storage media may be utilized, including hard disks, CD-ROMs,

optical storage devices, magnetic storage devices, solid-state storage devices, and/or

any combination thereof.

[0029]Referring initially to FIG. 1, a non-limiting network environment 101 (i.e. a

communication system) in which various aspects of the disclosure may be implemented

includes one or more client machines 102a-102n, one or more remote machines 106a

106n, one or more networks 104a, 104b, and one or more appliances 108 installed

within the computing environment 101. The client machines 102a-102n communicate

with the remote machines 106a-106n via the networks 104a, 104b.

[0030]In some embodiments, the client machines 102a-102n communicate with the

remote machines 106a-106n via an intermediary appliance 108. The illustrated

6

WO 2020/154141 PCT/US2020/013607

appliance 108 is positioned between the networks 104a, 104b and may also be referred

to as a network interface or gateway. In some embodiments, the appliance 108 may

operate as an application delivery controller (ADC) to provide clients with access to

business applications and other data deployed in a datacenter, the cloud, or delivered

as Software as a Service (SaaS) across a range of client devices, and/or provide other

functionality such as load balancing, etc. In some embodiments, multiple appliances

108 may be used, and the appliance(s) 108 may be deployed as part of the network

104a and/or 104b.

[0031]The client machines 102a-102n may be generally referred to as client

machines 102, local machines 102, clients 102, client nodes 102, client computers 102,

client devices 102, computing devices 102, endpoints 102, or endpoint nodes 102. The

remote machines 106a-106n may be generally referred to as servers 106 or a server

farm 106. In some embodiments, a client device 102 may have the capacity to function

as both a client node seeking access to resources provided by a server 106 and as a

server 106 providing access to hosted resources for other client devices 102a-102n.

The networks 104a, 104b may be generally referred to as a network. The networks

104a, 104b may be configured in any combination of wired and wireless networks.

[0032]A server 106 may be any server type such as, for example: a file server; an

application server; a web server; a proxy server; an appliance; a network appliance; a

gateway; an application gateway; a gateway server; a virtualization server; a

deployment server; a Secure Sockets Layer (SSL) or Transport Layer Security (TLS)

Virtual Private Network (VPN) server; a firewall; a web server; a server executing an

active directory; a cloud server; or a server executing an application acceleration

program that provides firewall functionality, application functionality, or load balancing

functionality.

[0033]A server 106 may execute, operate or otherwise provide an application that may

be any one of the following: software; a program; executable instructions; a virtual

machine; a hypervisor; a web browser; a web-based client; a client-server application; a

thin-client computing client; an ActiveX control; a Java applet; software related to voice

over internet protocol (VoIP) communications like a soft IP telephone; an application for

streaming video and/or audio; an application for facilitating real-time-data

7

WO 2020/154141 PCT/US2020/013607

communications; a HTTP client; a FTP client; an Oscar client; a Telnet client; or any

other set of executable instructions.

[0034]In some embodiments, a server 106 may execute a remote presentation services

program or other program that uses a thin-client or a remote-display protocol to capture

display output generated by an application executing on a server 106 and transmit the

application display output to a client device 102. In yet other embodiments, a server

106 may execute a virtual machine providing, to a user of a client device 102, access to

a computing environment. The client device 102 may be a virtual machine. The virtual

machine may be managed by, for example, a hypervisor, a virtual machine manager

(VMM), or any other hardware virtualization technique within the server 106.

[0035]In some embodiments, the network 104a, 104b may be: a local-area network

(LAN); a metropolitan area network (MAN); a wide area network (WAN); a primary

public network; and a primary private network. Additional embodiments may include a

network 104a, 104b of mobile telephone networks that use various protocols to

communicate among mobile devices. For short range communications within a wireless

local-area network (WLAN), the protocols may include IEEE 802.11, Bluetooth, and

Near Field Communication (NFC).

[0036]FIG. 2 depicts a block diagram of a computing device 100 useful for practicing an

embodiment of client devices 102, appliances 108 and/or servers 106. The computing

device 100 includes one or more processors 103, volatile memory 122 (e.g., random

access memory (RAM)), non-volatile memory 128, user interface (UI) 123, one or more

communications interfaces 118, and a communications bus 127. The non-volatile

memory 128 may include: one or more hard disk drives (HDDs) or other magnetic or

optical storage media; one or more solid state drives (SSDs), such as a flash drive or

other solid-state storage media; one or more hybrid magnetic and solid-state drives;

and/or one or more virtual storage volumes, such as a cloud storage, or a combination

of such physical storage volumes and virtual storage volumes or arrays thereof.

[0037]The user interface 123 may include a graphical user interface (GUI) 124 (e.g., a

touchscreen, a display, etc.) and one or more input/output (1/O) devices 126 (e.g., a

mouse, a keyboard, a microphone, one or more speakers, one or more cameras, one or

8

WO 2020/154141 PCT/US2020/013607

more biometric scanners, one or more environmental sensors, and one or more

accelerometers, etc.).

[0038]The non-volatile memory 128 stores an operating system 115, one or more

applications 116, and data 117 such that, for example, computer instructions of the

operating system 115 and/or the applications 116 are executed by processor(s) 103 out

of the volatile memory 122. In some embodiments, the volatile memory 122 may

include one or more types of RAM and/or a cache memory that may offer a faster

response time than a main memory. Data may be entered using an input device of the

GUI 124 or received from the I/O device(s) 126. Various elements of the computer 100

may communicate via the communications bus 127.

[0039]The illustrated computing device 100 is shown merely as an example client

device or server, and may be implemented by any computing or processing

environment with any type of machine or set of machines that may have suitable

hardware and/or software capable of operating as described herein.

[0040]The processor(s) 103 may be implemented by one or more programmable

processors to execute one or more executable instructions, such as a computer

program, to perform the functions of the system. As used herein, the term "processor"

describes circuitry that performs a function, an operation, or a sequence of operations.

The function, operation, or sequence of operations may be hard coded into the circuitry

or soft coded by way of instructions held in a memory device and executed by the

circuitry. A processor may perform the function, operation, or sequence of operations

using digital values and/or using analog signals.

[0041]In some embodiments, the processor can be embodied in one or more

application specific integrated circuits (ASICs), microprocessors, digital signal

processors (DSPs), graphics processing units (GPUs), microcontrollers, field

programmable gate arrays (FPGAs), programmable logic arrays (PLAs), multi-core

processors, or general-purpose computers with associated memory.

[0042]The processor 103 may be analog, digital or mixed-signal. In some

embodiments, the processor 103 may be one or more physical processors, or one or

more virtual (e.g., remotely located or cloud) processors. A processor including multiple

processor cores and/or multiple processors may provide functionality for parallel,

9

WO 2020/154141 PCT/US2020/013607

simultaneous execution of instructions or for parallel, simultaneous execution of one

instruction on more than one piece of data.

[0043]The communications interfaces 118 may include one or more interfaces to

enable the computing device 100 to access a computer network such as a Local Area

Network (LAN), a Wide Area Network (WAN), a Personal Area Network (PAN), or the

Internet through a variety of wired and/or wireless connections, including cellular

connections.

[0044]In described embodiments, the computing device 100 may execute an

application on behalf of a user of a client device. For example, the computing device

100 may execute one or more virtual machines managed by a hypervisor. Each virtual

machine may provide an execution session within which applications execute on behalf

of a user or a client device, such as a hosted desktop session. The computing device

100 may also execute a terminal services session to provide a hosted desktop

environment. The computing device 100 may provide access to a remote computing

environment including one or more applications, one or more desktop applications, and

one or more desktop sessions in which one or more applications may execute.

[0045]Additional descriptions of a computing device 100 configured as a client device

102 or as a server 106, or as an appliance intermediary to a client device 102 and a

server 106, and operations thereof, may be found in U.S. Patent Nos. 9,176,744 and

9,538,345, which are incorporated herein by reference in their entirety. The '744 and

'345 patents are both assigned to the current assignee of the present disclosure.

[0046]Referring now to FIG. 3A, a computing system 201 (FIG. 3A) according to the

disclosure is now described. Also, with reference to a flowchart 940 (FIG. 4A), a

method for operating the computing system 201 is also described. The computing

system 201 illustratively includes a server 206, and a plurality of client computing

devices 202a-202b in communication with the server. The server 206 is configured to

provide a corresponding plurality of virtual desktop instances 230a-230b for the plurality

of client computing devices 202a-202b.

[0047]The computing system 201 includes a plurality of local devices 235a-235b to be

coupled respectively to the plurality of client computing devices 202a-202b. The local

device 235a is coupled to a given client computing device 202a and to be operable in a

10

WO 2020/154141 PCT/US2020/013607

given virtual desktop instance 230a associated with the given client computing device,

thereby generating a plurality of client initialization packets. The server 206 is

configured to generate a server mapping table 245 comprising a plurality of known

server packets 242 associated with the local device 235a, and a plurality of server

mapping ID numbers 243 respectively associated with the plurality of known server

packets.

[0048]The given client computing device 202a is configured to generate a client

mapping table 244 comprising a plurality of known client packets 238 associated with

the local device 235a, and a plurality of client mapping ID numbers 239 respectively

associated with the plurality of known client packets. The given client computing device

202a is configured to, when the local device 235a is coupled to the given client

computing device, determine whether at least one client packet from the plurality of

client initialization packets is within the client mapping table 244, replace the at least

one client packet with at least one client mapping ID number 239 to define a plurality of

compressed client initialization packets, and send the plurality of compressed client

initialization packets to the server 206. The server 206 is configured to replace the at

least one client mapping ID number 239 with the at least one client packet in the

plurality of compressed client initialization packets based upon the server mapping table

245.

[0049]Referring now to FIG. 4A, the method for operating the computing system 201 is

now described with reference to the flowchart 940. (Block 941). The method includes

generating the server mapping table 245 at the server 206 (Block 943), and generating

the client mapping table 244 at the given client computing device 202a. (Block 945).

The method illustratively includes determining when the local device 235a is coupled to

the given client computing device 202a (Block 947), and then generating the plurality of

compressed client initialization packets (Block 949), and sending the plurality of

compressed client initialization packets to the server 206. (Blocks 951, 953).

[0050] Referring now again to FIG. 3A, the computing system 201 according to the

disclosure is now described in more detail. Also, with reference to flowcharts 960, 980

(FIGS. 4B-4C), the method for operating the computing system 201 is also described in

11

WO 2020/154141 PCT/US2020/013607

more detail. The computing system 201 illustratively includes a server 206, and a

plurality of client computing devices 202a-202b in communication with the server.

[0051]The server 206 is configured to provide a corresponding plurality of virtual

desktop instances 230a-230b for the plurality of client computing devices 202a-202b.

The server 206 illustratively comprises a memory 231, and a processor 232 cooperating

with the memory. Each of the plurality of client computing devices 202a-202b

illustratively comprises a memory 233, and a processor 234 cooperating with the

memory.

[0052]The computing system 201 illustratively comprises a plurality of local devices

235a-235b to be coupled respectively to the plurality of client computing devices 202a

202b and to be operable in a given virtual desktop instance 230a associated with the

given client computing device, thereby generating a plurality of client initialization

packets. Each local device 235a-235b may comprise one or more of a USB device, a

TWAIN device, and a smart card device. Of course, this coupling may comprise a wired

connection, or a wireless connection (e.g. Bluetooth, infrared, or some other local

wireless standard).

[0053]As will be appreciated, when the user of the given client computing device 202a

couples the local device 235a to the respective device providing the given virtual

desktop instance 230a, the user expects the local device to be operable similarly to the

local desktop environment. In particular, the user expects the resources of the local

device 235a to be fully accessible in the given virtual desktop instance 230a.

[0054]In typical local desktop environments, when the local device 235a is coupled or

decoupled, the local device and the local desktop environment (i.e. the local operating

system) exchange local device initialization/deinitialization communications. Given that

these local device communications standards were developed with local connections in

mind (i.e. typically wired, high bandwidth, low latency, low packet loss), these local

device communications standards are data heavy in nature.

[0055]Moreover, in the virtual desktop infrastructure space, these same local device

communications standards must now be implemented over the network (e.g. the

Internet) between the server 206 and the given client computing device 202a. The

computing system 201 provides an approach to this issue by compressing these local

12

WO 2020/154141 PCT/US2020/013607

device initialization/deinitialization communications at the server 206 and the given

client computing device 202a.

[0056] The server 206 is configured to generate a server mapping table 245 comprising

a plurality of known server packets 242 associated with the at least one local device,

and a plurality of server mapping ID numbers 243 respectively associated with the

plurality of known server packets. The given client computing device 202a is also

configured to generate a client mapping table 244 comprising a plurality of known client

packets 238 associated with the at least one local device, and a plurality of client

mapping ID numbers 239 respectively associated with the plurality of known client

packets.

[0057]The plurality of known server packets 242 and the plurality of known client

packets 238 may each comprise a communication standard initialization packet (e.g.

USB initialization/deinitialization packet). The plurality of known server packets 242 and

the plurality of known client packets 238 each may comprise at least one of a smart

card initialization sequence packet, smart card authentication packet, smart card digital

signing packet, and smart card certificate transmission packet. In other words, the

plurality of known server packets 242 and the plurality of known client packets 238 each

comprise commonly exchanged packets.

[0058]The given client computing device 202a is configured to, when the local device

235a is either coupled or decoupled to the given client computing device, determine

whether at least one client packet from the plurality of client initialization packets is

within the client mapping table 244. In other words, this determining step is performed

when the local device 235a initialization/deinitialization communications are about to be

exchanged between the given client computing device 202a and the server 206. The

determining may be based upon at least one of client name, smart card reader name,

smart card reader state, smart card type, smart card ATR string, smart card ID, and

smart card certificate hash.

[0059]If the at least one client packet is within the client mapping table 244, the given

client computing device 202a is configured to replace the at least one client packet with

at least one client mapping ID number 239 to define a plurality of compressed client

initialization packets. If the at least one client packet is not within the client mapping

13

WO 2020/154141 PCT/US2020/013607

table 244, then the given client computing device 202a is configured to move on to a

next packet, and repeat the analysis.

[0060]In some embodiments, the given client computing device 202a is configured to

examine each and every packet in the plurality of client initialization packets. In other

embodiments, the given client computing device 202a is configured to selectively review

only portions of the plurality of client initialization packets (e.g. portions more likely to

have repeating packets). In other words, with a generated sequence of packets, the

recognized packets are swapped out with respective client mapping ID numbers 239,

which reduces the size of the payload.

[0061]In some embodiments, the respective client mapping ID numbers 239 may each

represent a common sequence for initialization and/or deinitialization. For example,

instead of receiving a sequence of initialization packets from the given client computing

device 202a, the server 206 would receive a single mapping ID number mapped to the

same sequence, i.e. an effective instruction to playback the sequence of packets rather

than sending the sequence of packets (See, e.g., FIG. 11). Also, in some embodiments

where the local device 235a experiences a communication port change, the plurality of

compressed client initialization packets would include that new port information.

[0062]Then, the given client computing device 202a is configured to send the plurality

of compressed client initialization packets to the server 206. The server 206 is

configured to receive the plurality of compressed client initialization packets.

Subsequent to their receipt, the server 206 is configured to reconstitute the original

initialization packets by replacing the at least one client mapping ID number 239 with

the at least one client packet in the plurality of compressed client initialization packets

based upon the server mapping table 245. To this end, the server 206 and the given

client computing device 202a are configured to synchronize the server mapping table

245 and the client mapping table 244. As the server 206 and the given client computing

device 202a build their respective mapping tables, they need to reconcile

changes/additions so that the plurality of compressed client initialization packets can be

properly processed.

[0063]Also, in some embodiments, the server 206 is configured to perform the same

compression features with the server mapping table 245. In particular, the server 206 is

14

WO 2020/154141 PCT/US2020/013607

configured to, when the local device 235a is coupled to the given client computing

device 202a, determine whether at least one server packet from a plurality of server

initialization packets is within the server mapping table 245, replace the at least one

server packet with at least one server mapping ID number 243 to define a plurality of

compressed server initialization packets, and send the plurality of compressed server

initialization packets to the given client computing device. As will be appreciated, the

plurality of server initialization packets are exchanged in response to the plurality of

client initialization packets from the given client computing device 202a.

[0064]Moreover, the server 206 and the given client computing device 202a are

configured to, when the local device 235a is decoupled from the given client computing

device 202a, perform the determining, the replacing, and the sending. Indeed, as will

be appreciated, the server 206 and the given client computing device 202a are

configured to perform compression of local device deinitialization communications, and

is not limited to local device initialization communications. As will be appreciated, the

teachings of this disclosure could be expanded to any communications with reoccurring

packets.

[0065]As depicted in the exemplary embodiment, it should be appreciated that the other

client computing device 202b also has a local device 235b coupled thereto. Also, the

server 206 may be configured to monitor packets exchanged between the plurality of

client computing devices 202a-202b and respective local devices 235a-235b to

generate the server mapping table 245. In other words, the server 206 is configured to

learn reoccurring packet sequences from global communications in the computing

system 201 and add them to the server mapping table 245 and the client mapping table

244. Indeed, in some embodiments, the server 206 may utilize machine learning

techniques to predict packet sequences in communications between the server 206 and

the plurality of client computing devices 202a-202b and respective local devices 235a

235b.

[0066]As will be appreciated, the computing system 201 illustratively includes only two

client computing devices 202a-202b for drawing clarity. It should be appreciated that

the computing system 201 could accommodate a large number of client computing

15

WO 2020/154141 PCT/US2020/013607

devices. In fact, the server 206 may be configured to use big data analytics to further

build the server mapping table 245 and the client mapping table 244.

[0067]Referring briefly to FIG. 5 and a diagram 905 therein, an exemplary embodiment

of either the server mapping table 245 or the client mapping table 244 is shown. The

server mapping table 245 and the client mapping table 244 each may comprise a

plurality of local device types (device column) associated with the plurality of client

mapping ID numbers 239 (identifier column) and the plurality of server mapping ID

numbers 243 (identifier column).

[0068]Helpfully, when the plurality of compressed client initialization packets generates

an error, the server 206 and the given client computing device 202a may be configured

to initialize the at least one local device 235a-235b using the plurality of client

initialization packets. In other words, if the plurality of compressed initialization packets

causes an error, the server 206 and the given client computing device 202a revert to the

uncompressed sequences to remedy the error (e.g. the USB connection would be reset,

i.e. local USB device ejected, and then a reinitialization is performed).

[0069]Also, if the connection to the local device 235a-235b is lost, the server 206 and

the given client computing device 202a are configured to reinitialize the connection

automatically. If the local device 235a-235b is decoupled during the initialization, the

given client computing device 202a is configured to send an abort message to the

server 206 so that the server does not playout the initialization packets on its end.

[0070]As shown in the exemplary use application in FIG. 6, when the local device 235a

(e.g., the illustrated web camera) is coupled to the client computing device 202a, the

local device initialization is optimized. Indeed, in the illustrated step 4, no data is

exchanged since these packets are standardized and stored in respective mapping

tables. Here, the packets typically received at the server 206 from the client computing

device 202a are played back or recreated from the server mapping table 245. The

client computing device 202a does the same using the client mapping table 244.

[0071]ln some embodiments, the computing system further may include a bridge device

241 coupled between the client computing device 202b and the server 206 and

configured to generate a bridge mapping table comprising a plurality of known bridge

packets associated with the at least one local device, and a corresponding plurality of

16

WO 2020/154141 PCT/US2020/013607

bridge mapping ID numbers. In FIG. 3A, the bridge device 241 is depicted with dashed

lines, and may be omitted. The bridge device 241 may comprise one or more of a Citrix

Software-Defined Wide Area Network (SD-WAN) and a Citrix Gateway (NetScaler).

[0072] Referring now to FIG. 4B and the flowchart 960 therein, a method for operating a

given client computing device 202a in communication with a server 206 is now

described. (Block 961). The server 206 is to provide a given virtual desktop instance

230a for the given client computing device 202a, and at least one local device 235a is to

be coupled to the given client computing device and to be operable in the given virtual

desktop instance 230a associated with the given client computing device. The method

comprises generating a client mapping table 244 comprising a plurality of known client

packets associated with the at least one local device 235a, and a plurality of client

mapping ID numbers respectively associated with the plurality of known client packets.

(Block 963). The method includes when the at least one local device 235a is coupled to

the given client computing device 202a (Block 965), generating a plurality of client

initialization packets, determining whether at least one client packet from the plurality of

client initialization packets is within the client mapping table 244 (Block 967), replacing

the at least one client packet with at least one client mapping ID number to define a

plurality of compressed client initialization packets (Block 969), and sending the plurality

of compressed client initialization packets to the server 206. (Blocks 971, 973).

[0073]Referring now to FIG. 4C and the flowchart 980 therein, a method for operating

the server 206 is now described. (Block 981). The server 206 is in communication with

at least one client computing device 202a to provide a corresponding at least one virtual

desktop instance 230a-230b for the at least one client computing device. At least one

local device 235a is to be coupled to a given client computing device 202a and to be

operable in a given virtual desktop instance 230a associated with the given client

computing device, thereby generating a plurality of server initialization packets. The

method includes generating a server mapping table 245 comprising a plurality of known

server packets associated with the at least one local device 235a, and a plurality of

server mapping ID numbers respectively associated with the plurality of known server

packets. (Block 982). The method comprises when the at least one local device 235a

is coupled to the given client computing device 202a (Block 983), determining whether

17

WO 2020/154141 PCT/US2020/013607

at least one server packet from the plurality of server initialization packets is within the

server mapping table 245 (Block 984), replacing the at least one server packet with at

least one server mapping ID number to define a plurality of compressed server

initialization packets (Block 985), and sending the plurality of compressed server

initialization packets to the given client computing device. (Blocks 986, 987).

[0074]It should be appreciated that the above methods could be defined as a computer

executable instruction. From this computer executable instruction, a non-transitory

computer-readable medium having the computer executable instruction for performing

the noted operations or steps of these methods could be provided.

[0075]Referring now additionally to FIG. 3B, another embodiment of the computing

system 301 is now described. In this embodiment of the computing system 301, those

elements already discussed above with respect to FIG. 3A are incremented by 300 and

most require no further discussion herein. The computing system 301 illustratively

includes a server 306, and a plurality of client computing devices 302a-302b. The

server 306 is configured to provide a corresponding plurality of virtual desktop instances

330a-330b for the plurality of client computing devices 302a-302b. The server 306

illustratively comprises a memory 331, and a processor 332 cooperating with the

memory. This embodiment differs from the previous embodiment in that this computing

system 301 illustratively comprises a gateway device 336 in communication between

the server 306 and the plurality of client computing devices 302a-302b, and a local

device 335a to be coupled to a given client computing device 302a and to be operable

in a given virtual desktop instance 330a associated with the given client computing

device 302a, thereby generating a plurality of client initialization packets. In other

words, the communications between the plurality of client computing devices 302a-302b

and the server 306 are routed through the gateway device 336. The gateway device

336 illustratively comprises a memory 337, and a processor 340 cooperating with the

memory.

[0076]The server 306 is configured to generate a server mapping table 345 comprising

a plurality of known server packets 342 associated with the local device 335a, and a

plurality of server mapping ID numbers 343 respectively associated with the plurality of

known server packets. The gateway device 336 is configured to generate a client

18

WO 2020/154141 PCT/US2020/013607

mapping table 344 comprising a plurality of known client packets 338 associated with

the local device 335a, and a plurality of client mapping ID numbers 339 respectively

associated with the plurality of known client packets.

[0077]As packets from the plurality of client computing devices 302a-302b are sent

through the gateway device 336, the gateway device 336 is configured to, when the

local device 335a is either coupled or decoupled to the given client computing device

302a, determine whether at least one client packet from the plurality of client

initialization packets is within the client mapping table 344, replace the at least one

client packet with at least one client mapping ID number 339 to define a plurality of

compressed client initialization packets, and send the plurality of compressed client

initialization packets to the server 306. The server 306 is configured to replace the at

least one client mapping ID number 339 with the at least one client packet in the

plurality of compressed client initialization packets based upon the server mapping table

345.

[0078] Referring now additionally to FIGS. 7, 8, 10A-1OD, several diagrams 910, 915,

920, 925, 930, 935 relating to embodiments of the computing systems 201, 301 where

the local device 235a-235b, 335a comprises a USB device are now described. Of

course, this discussion regarding USB devices is exemplary, and is equally applicable

to other types of the local device 235a-235b, 335a.

[0079]With reference to FIG. 7, the diagram 910 includes a table showing the type of

data associated with different USB device descriptors. USB initialization goes through

standard set of USB request blocks (URB) exchanges of device descriptor, interface

descriptor, pipe details etc. For a given local device (or type of device), these packets

and sequence remains mostly the same with minor changes in certain fields. Because

of this, these exchanges may benefit from the teachings of this disclosure.

[0080]In particular, descriptors used in local device 235a-235b, 335a initialization are

shown. The descriptors are typically used for device enumeration in known order for

each kind of device. For example, this sequence is translated to uniformity in the

Independent Computing Architecture (ICA) protocol (USB Redirection Virtual Channel)

between the client computing device 202a-202b, 302a-302b and the server 206, 306.

Hence, with small exceptions of address, the data transfer will be predictable, and by

19

WO 2020/154141 PCT/US2020/013607

using cached data with variable fields, the computing system 201, 301 could achieve

packet replay at client computing device 202a-202b, 302a-302b and the server 206,

306.

[0081]With reference to FIG. 8, the diagram 915 aids in discussing USB interrupt pipe

control flow and interrupt transfers. In the USB standard, if the local device 235a-235b,

335a requires the attention of the host, it must wait until the host polls it. Interrupt

transfers are typically non-periodic, small device "initiated" communication requiring

bounded latency. An interrupt request is queued by the local device 235a-235b, 335a

until the host polls the USB device asking for data. According to the teachings of this

disclosure, the polling mechanism will be a cached operation on the client computing

device 202a-202b, 302a-302b, which may avoid chattiness of connection from the

server 206, 306 to client computing device.

[0082]Also, in embodiments of the computing systems 201, 301 where the local device

235a-235b, 335a comprises a smart card device, the teachings of the disclosure may

be used to optimize smart card logon operations. For example, for redirected smart

card authentication, the server 206, 306 is configured to create a smart card resource

manager context. The host re-enumerates smart card readers, gets smart card status

(e.g., empty, present, etc.), establishes smart card communication context, obtains the

CARD ATR, which maps to card type, finds the Cryptographic Service Provider (CSP),

retrieves the certificate from the card, and initiates a challenge-response mechanism,

which normally involves the user entering a PIN to unlock the private key on the card,

etc. In this case, the initialization sequence and, in particular, the retrieval of the

certificate are very expensive operations involving multiple round-trips, which could be

optimized. Some certificates may be several kilobytes in size. In addition, some smart

cards may only support 1-byte addressing thus limiting transactions to 256 bytes. An

optimization is possible, for example, by detecting repetitive logon patterns with

endpoint device/client name, reader name, reader state, card type, card ID, or certificate

hash, and mapping them to a mapping ID number. If no match is found on the server,

the normal processes could be performed.

[0083] Referring now to FIG. 9A and a diagram 916 therein, the following steps provide

an example illustration of a non-optimized smart card authentication sequence. A

20

WO 2020/154141 PCT/US2020/013607

similar sequence exists for other smart card scenarios, such as digitally signing

documents, e-mails, etc., in a Virtual Delivery Agent (VDA) session. The execution of

this sequence serves as a learning phase of the method to optimize smart card

operations. The client device has a smart card reader attached to it. In some

embodiments, the reader may be combined with a smart card into a single device, for

example, into a USB dongle containing the smart card, while a virtual smart card reader

is simulated by the client operating system (OS). Of course, this is an exemplary listing,

and other variants could be used.

[0084]Smart Card Authentication Sequence

-The client enumerates readers and their state (smart card empty, present, etc.).

-A user inserts their card into the reader, the reader state changes.

-The VDA Logon Process establishes Smart Card Resource Manager Context.

-The request is forwarded to the client's OS Smart Card Resource Manager (RM).

Note: The VDA Logon Process may involve multiple components or services, e.g.

Logon UI, WinLogon, Local Security Authority Subsystem Service (LSASS), etc. It may

also involve Smart Card/Personal Computer (SC/PC) application programming interface

(API) hooking and redirection components. For purposes of this description, they are

collectively referred to as VDA Logon Process.

-The client creates a RM Context and returns it to the server VDA Logon Process.

-Using the RM context, the VDA Logon Process enumerates readers and their state.

The request is forwarded to the client.

-The client returns to the VDA Logon Process the list of readers and their state.

-Using the RM context, if there is a card present in at least one reader, the VDA Logon

Process establishes smart card Communication Context. The request is forwarded to

the client's OS smart card RM.

-The client creates a smart card Communication Context and returns it to the server

VDA Logon Process.

-Using the smart card Communication Context, the VDA Logon Process retrieves the

card ATR string. Likewise, the request is forwarded to the client's smart card. Note:

The ATR string uniquely identifies the smart card type.

-The client returns to the VDA Logon Process the card ATR string. Note: The following

21

WO 2020/154141 PCT/US2020/013607

request is a modification of the normal sequence to facilitate the present disclosure, i.e.

to uniquely identify the card.

-The card ID string uniquely identifies the card. This is required, since an endpoint

client device may be shared between multiple users (Kiosk mode).

-The VDA Logon Process requests the card ID string.

-The client returns to the VDA Logon Process the card ID string.

-The VDA Logon Process looks up and loads the CSP, for example, based on the card

ATR string. A CSP may perform crypto operations specific to a card type.

-VDA Logon Process retrieves the smart card certificate over a series of transactions,

which are redirected to the client's smart card, and involve multiple roundtrips.

-The VDA Logon Process parses the certificate and extracts the User Principal Name

(UPN), the public key, etc.

-The VDA Logon Process then prompts the user for PIN, e.g. via a Logon UI. The PIN

prompt becomes visible at the client device via server-to-client graphics redirection.

-The user enters their PIN at the client, which is transferred to the server and into the

VDA Logon Process, e.g. Logon UI.

-The VDA Logon Process initiates a challenge required to determine if the user is the

true owner of the smart card. The challenge may involve creating a (random) nonce

sent to the card. The VDA Logon Process also sends the PIN to the card.

-The client device communicates both the PIN and the nonce to the card. The PIN is

used to unlock the use of the smart card's private key, which never leaves the card.

-The card uses the private key to sign the nonce and answer the challenge by sending it

to the server.

-The VDA Logon Process verifies the signature of the signed nonce using the public key

from certificate.

-The VDA Logon Process proceeds to log the user on.

[0085] Referring to FIG. 9B and a diagram 917 therein, the following steps provide an

example illustration of an optimized smart card authentication sequence. A similar

sequence exists for other smart card scenarios, such as digitally signing documents, e

mails, etc. in a VDA session.

22

WO 2020/154141 PCT/US2020/013607

[0086]The execution of this sequence illustrates another example of the use of the

previously discussed method of "Map ID" pointing to observed, cached and shared

client and server protocol sequences. In particular, a Map ID is used to identify and

look up previously communicated smart card initialization and certificate data. Light

weight differential data is also exchanged for purposes of efficient contextualization and

precise look up.

[0087]Optimized Smart Card Authentication Sequence

-The client enumerates readers and their state (smart card empty, present, etc.).

-A user inserts their card into the reader, the reader state changes.

-The client establishes Smart Card RM Context for the server.

-The client establishes smart card Communication Context for the server, based on the

RM context.

-Using the smart card Communication Context, the client retrieves the card ATR string,

ID string and certificate. Note: The ID string uniquely identifies the card. However,

some cards may hold more than one certificate, so the certificate may also be required

for further contextualization. The client computes a hash of the certificate.

-The client looks up the table with Map IDs based on at least one of ATR string, ID

string and certificate hash.

-The client sends to the server the matching Map ID and, if an exact match is not found,

also differential data, e.g. at least one of: RM context; Readers and their state; smart

card Context; and at least one of card ATR string, ID string, certificate hash.

-The server looks up its table of Map IDs based on at least one of Map ID and

differential data.

-If a match is not found, the VDA Logon Process proceeds as normal.

-If a match is found, the VDA Logon Process advantageously proceeds to short-circuit

all of the following operations by servicing them from the server's table with cached

protocol exchanges and the received contextual differential data, rather than using

transactions requiring round-trips to the client: establish Smart Card RM Context; using

the RM context, enumerate readers and their state; using the RM context, if there is a

card present in at least one reader, establish smart card Communication Context; using

the smart card Communication Context, retrieve the card ATR string; request the card

23

WO 2020/154141 PCT/US2020/013607

ID string (for consistency with the learning phase); look up and load the CSP, e.g.

based on the card ATR string; a CSP may perform crypto operations specific to a card

type. (Note: This operation does not have to go to the client anyway, even during the

learning phase.); and retrieve the smart card certificate.

[0088]For security reasons and due to the random nature of the challenge-response

mechanism, the rest of the logon process proceeds as normal:

-The VDA Logon Process parses the certificate and extracts the UPN, the public key,

etc. The VDA Logon Process then prompts the user for PIN, e.g. via a Logon UI. The

PIN prompt becomes visible at the client device via server-to-client graphics redirection.

-The user enters their PIN at the client, which is transferred to the server and into the

VDA Logon Process, e.g. Logon UI.

-The VDA Logon Process initiates a challenge required to determine if the user is the

true owner of the smart card. The challenge may involve creating a (random) nonce

sent to the card.

-The VDA Logon Process also sends the PIN to the card.

-The client device communicates both the PIN and the nonce to the card. The PIN is

used to unlock the use of the smart card's private key, which never leaves the card.

-The card uses the private key to sign the nonce and answer the challenge by sending it

to the server.

-The VDA Logon Process verifies the signature of the signed nonce using the public key

from certificate.

-The VDA Logon Process proceeds to log the user on.

[0089]Referring now to FIGS. 10A-1OD, USB-specific standard initialization data

exchange at bus level is shown in diagrams 920, 925, 930, 935. More specifically, the

diagrams 920, 925, 930, 935 show the standard descriptors and standard responses in

a USB device initialization sequence. In other words, these figures show the

initialization data exchange between local devices 235a-235b, 335a and client

computing devices 202a-202b, 302a-302b as per the USB protocol specification. For a

given local device, for example, local device 235a, and a given client computing device,

for example, client computing device 202a, the initialization data exchanges are

expected to remain consistent between different initialization occurrences as previously

24

WO 2020/154141 PCT/US2020/013607

discussed in the disclosure. As illustrated, it can be appreciated that examples of the

standard descriptors such as configuration, interface and endpoint will be consistently

repeated during each initialization sequence. Minor variations are possible in special

cases. For example, a connection port may change when a user plugs in the local

device 235a into a different USB port of the client computing device 202a. In these

special cases, the previously discussed technique of sending light-weight differential

data along with Map IDs may be applied. If significant changes occur, or an error

occurs, the previously discussed technique of reverting to sending the complete

uncompressed sequences may also be applied.

[0090]Thus, as described herein, the described embodiments provide improved

operation of virtual desktop infrastructure computing systems, for example by providing

an approach to data transfer when either coupling or decoupling the local device 235a

235b, 335a to the client computing devices 202a-202b, 302a-302b. Indeed, the

computing systems 201, 301 leverage the fact that data transfer, such as during local

device (e.g. USB device) redirection, has packets of data which are of a predictable

format and sequence during initialization, surprise removal, deinitialization (i.e.

termination of the local device communications). By storing the format and sequence,

mapping ID numbers could be exchanged instead of complete packet and/or packet

sequences between the client computing device 202a-202b, 302a-302b and the server

206, 306. This mapping ID numbers could be used to play the packet or packet

sequence at the server 206, 306 and the client computing device instead of complete

sequence transfer as it happens in typical approaches.

[0091]Typical approaches to data transfer using compression/encoding focus on the

relationship between the current frame and the next frame for compression/optimization.

The computing system 201, 301 of the disclosure is unique as it leverages behavior

patterns specific to the virtual channel under consideration.

[0092]By swapping out packets with mapping ID numbers, the computing systems 201,

301 reduce aggregate traffic, improving system performance. The prior knowledge of

data playback sequences may be used to create optimized packet sequences and

protocol optimizations by building a mapping database of ID numbers to protocol

sequence playback at the server 206, 306 and the client computing device 202a-202b,

25

WO 2020/154141 PCT/US2020/013607

302a-302b. In the client computing device 202a-202b, 302a-302b and the server 206,

306, special concise messages are used to send differential data and playback the

sequence of steps. Thus, this may optimize the overall data transfer requirements.

[0093]For example, the diagram 900 (FIG. 11) comprises a sequence diagram showing

an example of a client computing device 202a-202b, 302a-302b sending a mapping ID

number (id1) as an indicator for a server 206, 306 to play the initialization sequence in

the virtual desktop instance 230a-230b, 330a-330b to initialize the local device 235a

235b, 335a and return status to client computing device. Instead of the typical back and

forth for local device initialization, the client computing device 202a-202b, 302a-302b

and the server 206 may regenerate the sequence using their respective mapping tables.

[0094]Other features relating to computing systems are disclosed in co-pending

application: titled "COMPUTING SYSTEM WITH DATA TRANSFER BASED UPON

DEVICE DATA FLOW CHARACTERISTICS AND RELATED METHODS," Attorney

Docket No. ID1984US (96109), which is incorporated herein by reference in their

entirety.

[0095]Many modifications and other embodiments will come to the mind of one skilled

in the art having the benefit of the teachings presented in the foregoing descriptions and

the associated drawings. Therefore, it is understood that the foregoing is not to be

limited to the example embodiments, and that modifications and other embodiments are

intended to be included within the scope of the appended claims.

26

WO 2020/154141 PCT/US2020/013607

THAT WHICH IS CLAIMED IS:

1. A computing system comprising:

a server;

a plurality of client computing devices, said server configured to provide a

corresponding plurality of virtual desktop instances for said plurality of client computing

devices;

a gateway device in communication between said server and said plurality

of client computing devices; and

at least one local device to be coupled to a given client computing device

and to be operable in a given virtual desktop instance associated with said given client

computing device, thereby generating a plurality of client initialization packets;

said server configured to generate a server mapping table comprising a

plurality of known server packets associated with said at least one local device, and a

plurality of server mapping identification (ID) numbers respectively associated with said

plurality of known server packets;

said gateway device configured to generate a client mapping table

comprising a plurality of known client packets associated with said at least one local

device, and a plurality of client mapping ID numbers respectively associated with said

plurality of known client packets;

wherein said gateway device is configured to, when said at least one local

device is coupled to said given client computing device,

determine whether at least one client packet from the

plurality of client initialization packets is within the client mapping table,

replace the at least one client packet with at least one client

mapping ID number to define a plurality of compressed client initialization

packets, and

send the plurality of compressed client initialization packets

to said server,

said server configured to replace the at least one client

mapping ID number with the at least one client packet in the plurality of

compressed client initialization packets based upon the server mapping

27

WO 2020/154141 PCT/US2020/013607

table.

2. The computing system of claim 1 wherein said server and said

gateway device are configured to synchronize the server mapping table and the client

mapping table.

3. The computing system of claim 1 wherein said server is configured

to, when said at least one local device is coupled to said given client computing device:

determine whether at least one server packet from a plurality of server

initialization packets is within the server mapping table;

replace the at least one server packet with at least one server mapping ID

number to define a plurality of compressed server initialization packets; and

send the plurality of compressed server initialization packets to said

gateway device.

4. The computing system of claim 3 wherein said server and said

gateway device are configured to, when said at least one local device is decoupled from

said given client computing device, perform the determining, the replacing, and the

sending.

5. The computing system of claim 1 wherein the plurality of known

server packets and the plurality of known client packets each comprises a

communication standard initialization packet.

6. The computing system of claim 1 wherein the plurality of known

server packets and the plurality of known client packets each comprises at least one of

a smart card initialization sequence packet, smart card authentication packet, smart

card digital signing packet, and smart card certificate transmission packet.

7. The computing system of claim 1 wherein the server mapping table

and the client mapping table each comprises a plurality of local device types associated

28

WO 2020/154141 PCT/US2020/013607

with the plurality of client mapping ID numbers and the plurality of server mapping ID

numbers.

8. The computing system of claim 1 wherein when the plurality of

compressed client initialization packets generates an error, said server and said

gateway device are configured to initialize the at least one local device using the

plurality of client initialization packets.

9. The computing system of claim 1 wherein said at least one local

device comprises at least one of a universal serial bus (USB) device, a TWAIN device,

and a smart card device.

10. The computing system of claim 1 wherein the determining is based

upon at least one of client name, smart card reader name, smart card reader state,

smart card type, smart card Answer to Reset (ATR) string, smart card ID, and smart

card certificate hash.

11. A method for operating a gateway device in communication

between a server and a plurality of client computing devices, the server to provide a

corresponding plurality of virtual desktop instances for the plurality of client computing

devices, at least one local device to be coupled to a given client computing device and

to be operable in a given virtual desktop instance associated with the given client

computing device, thereby generating a plurality of client initialization packets, the

method comprising:

generating a client mapping table comprising a plurality of known client

packets associated with the at least one local device, and a plurality of client mapping

identification (ID) numbers respectively associated with the plurality of known client

packets; and

when the at least one local device is coupled to the given client computing

device,

29

WO 2020/154141 PCT/US2020/013607

determining whether at least one client packet from the

plurality of client initialization packets is within the client mapping table,

replacing the at least one client packet with at least one

client mapping ID number to define a plurality of compressed client

initialization packets, and

sending the plurality of compressed client initialization

packets to the server.

12. The method of claim 11 further comprising synchronizing a server

mapping table and the client mapping table.

13. The method of claim 11 further comprising when the at least one

local device is decoupled from the given client computing device, performing the

determining, the replacing, and the sending.

14. The method of claim 11 wherein the plurality of known client

packets each comprises a communication standard initialization packet.

15. The method of claim 11 wherein the plurality of known client

packets each comprises at least one of a smart card initialization sequence packet,

smart card authentication packet, smart card digital signing packet, and smart card

certificate transmission packet.

16. The method of claim 11 wherein the client mapping table comprises

a plurality of local device types associated with the plurality of client mapping ID

numbers.

17. A method for operating a server in communication with a plurality of

client computing devices via a gateway device, the server to provide a corresponding

plurality of virtual desktop instances for the plurality of client computing devices, at least

one local device to be coupled to a given client computing device and to be operable in

30

WO 2020/154141 PCT/US2020/013607

a given virtual desktop instance associated with the given client computing device,

thereby generating a plurality of server initialization packets, the method comprising:

generating a server mapping table comprising a plurality of known server

packets associated with the at least one local device, and a plurality of server mapping

identification (ID) numbers respectively associated with the plurality of known server

packets; and

when the at least one local device is coupled to the given client computing

device,

determining whether at least one server packet from the

plurality of server initialization packets is within the server mapping table,

replacing the at least one server packet with at least one

server mapping ID number to define a plurality of compressed server

initialization packets, and

sending the plurality of compressed server initialization

packets to the gateway device.

18. The method of claim 17 further comprising synchronizing the server

mapping table and a client mapping table.

19. The method of claim 17 further comprising when the at least one

local device is decoupled from the given client computing device, performing the

determining, the replacing, and the sending.

20. The method of claim 17 wherein the plurality of known server

packets each comprises a communication standard initialization packet.

21. The method of claim 17 wherein the plurality of known server

packets each comprises at least one of a smart card initialization sequence packet,

smart card authentication packet, smart card digital signing packet, and smart card

certificate transmission packet.

31

WO 2020/154141 PCT/US2020/013607

22. The method of claim 17 wherein the server mapping table

comprises a plurality of local device types associated with the plurality of server

mapping ID numbers.

32

	Abstract
	Description
	Claims
	Drawings

