wO 20207154141 A1 |0 00000 KO Y00 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
30 July 2020 (30.07.2020)

(10) International Publication Number

WO 2020/154141 Al

WIPO I PCT

(51) International Patent Classification:

GO6F 9/451 (2018.01) HO4L 29/06 (2006.01)
HO3M 7/30 (2006.01) HO4W 28/06 (2009.01)
HO4L 29/08 (2006.01)

(21) International Application Number:
PCT/US2020/013607

(22) International Filing Date:
15 January 2020 (15.01.2020)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
16/252,809 21 January 2019 (21.01.2019) UsS

(71) Applicant: CITRIX SYSTEMS, INC. [US/US]; 851 W.
Cypress Creek Rd., Fort Lauderdale, Florida 33309 (US).

(72) Inventors: RAMAREDDY, Shashidhar; 851 West Cy-
press Creek Road, Fort Lauderdale, Florida 33309 (US).
MOMCHILOYV, Georgy; 851 W. Cypress Creek Rd., Fort
Lauderdale, Florida 33309 (US). MITTAL, Ankur; Pres-
tige Dynasty, No. 33, Ulsoor Road, Bangalore 560 042 (IN).

(74) Agent: TAYLOR, Michael W. et al.; Allen Dyer, Doppelt
& Gilchrist, P.A., 255 S. Orange Avenue, Suite 1401, Or-
lando, Florida 32802-3791 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: COMPUTING SYSTEM WITH GATEWAY DATA TRANSFER BASED UPON DEVICE DATA FLOW CHARAC-

TERISTICS AND RELATED METHODS

Local Device 3352
{e.g. USB device, TWAIN
device, & smart card device}

Gateway Device 336

Memory 337

Client Mapping Table 344

Known Client
Packets 338

Client mapping
1D numbers 339

Coupling or Decoupling

Client Computing Device

VD! 330a 3023

Processor

Client Computing Device

340
— 302b

VDi 330h

w2
=4

Server

!

Memory 331

FIG. 3B

Server Mapping Table 345

Known Server
Packets 342,

Processor

Server Mapping
1D numbers 343

EE)

(57) Abstract: A computing system may include a server, client
computing devices, a gateway device in communication between
the server and the client computing devices, and a local device
to be coupled to a given client computing device and to be oper-
able in a given virtual desktop instance associated with the giv-
en client computing device, thereby generating client initialization
packets. The gateway device may be configured to when the lo-
cal device is coupled to the given client computing device, deter-
mine whether a client packet from a plurality of client initialization
packets is within a client mapping table, replace the client pack-
et with a client mapping ID number to define compressed client
initialization packets, and send the compressed client initialization
packets to the server. The server may be configured to replace the
client mapping ID number with the client packet in the compressed
client initialization packets based upon a server mapping table.

[Continued on next page]

WO 2020/1:54 141 AT [000000000 0 00 O 0

Published:
— with international search report (Art. 21(3))

WO 2020/154141 PCT/US2020/013607

COMPUTING SYSTEM WITH GATEWAY DATA TRANSFER BASED UPON DEVICE
DATA FLOW CHARACTERISTICS AND RELATED METHODS

Background
[0001]In virtual desktop infrastructure systems, a typical user uses a terminal or client

machine to connect to a remotely provided computing environment that provides a
desktop paradigm. The remote or “virtual” desktop is typically kept or stored on a
remote central server instead of on the hard-drive of the local client machine.
Accordingly, the remote desktop may execute a single user operating system (e.g.
Windows 10) or a multi-user operating system (e.g. Windows 10 Server), that allows
multiple independent connections to separate virtual desktops. In this arrangement, the
different users of the independent connections are capable of having different levels of
authorization privileges. For example, some users may be permitted access to all,
some or none of the applications, files, etc., of the computing environment.

[0002] Although client machines are often referred to as “dumb terminals”, client
machines offer a full desktop experience when connecting in a virtual desktop
infrastructure environment, offering capabilities and performance, specifically designed
to best leverage and enhance the performance and functionality of the virtual desktop
infrastructure. For example, client machines are often highly configurable and perform
a high degree of local processing (e.g., management of local screen and keyboard,
management of locally connected devices, and handling of specific keys and/or key

combinations).

WO 2020/154141 PCT/US2020/013607

[0003] Because the virtual desktop infrastructure provides the perception that the client
machine is merely an extension of the remote computer, if a new device is attached to
the client machine, it is necessary to configure the client machine to recognize and
configure the device. In short, when the user connects a local device to the client
machine, the virtual desktop instance needs to recognize and use the local device as if
it was the client machine. Because of this, the virtual desktop infrastructure needs to
establish a communication link with the local device. Depending on the bandwidth of
the local device, this new link can be burdensome on the virtual desktop instance, and

may create latency issues.

Summary
[0004] Generally, a computing system may include a server, and a plurality of client

computing devices. The server may be configured to provide a corresponding plurality
of virtual desktop instances for the plurality of client computing devices. The computing
system may include a gateway device in communication between the server and the
plurality of client computing devices, and at least one local device to be coupled to a
given client computing device and to be operable in a given virtual desktop instance
associated with the given client computing device, thereby generating a plurality of
client initialization packets. The server may be configured to generate a server mapping
table comprising a plurality of known server packets associated with the at least one
local device, and a plurality of server mapping ID numbers respectively associated with
the plurality of known server packets. The gateway device may be configured to
generate a client mapping table comprising a plurality of known client packets
associated with the at least one local device, and a plurality of client mapping 1D
numbers respectively associated with the plurality of known client packets.

[0005] The gateway device may be configured to, when the at least one local device is
coupled to the given client computing device, determine whether at least one client
packet from the plurality of client initialization packets is within the client mapping table,
replace the at least one client packet with at least one client mapping ID number to
define a plurality of compressed client initialization packets, and send the plurality of

compressed client initialization packets to the server. The server may be configured to

WO 2020/154141 PCT/US2020/013607

replace the at least one client mapping 1D number with the at least one client packet in
the plurality of compressed client initialization packets based upon the server mapping
table.

[0006] Additionally, the server and the gateway device may be configured to
synchronize the server mapping table and the client mapping table. The server may be
configured to, when the at least one local device is coupled to the given client
computing device, determine whether at least one server packet from a plurality of
server initialization packets is within the server mapping table, replace the at least one
server packet with at least one server mapping ID number to define a plurality of
compressed server initialization packets, and send the plurality of compressed server
initialization packets to the gateway device. Also, the server and the gateway device
may be configured to, when the at least one local device is decoupled from the given
client computing device, perform the determining, the replacing, and the sending.
[0007]For example, the plurality of known server packets and the plurality of known
client packets each may comprise a communication standard initialization packet. The
plurality of known server packets and the plurality of known client packets may each
comprise at least one of a smart card initialization sequence packet, smart card
authentication packet, smart card digital signing packet, and smart card certificate
transmission packet.

[0008] The server mapping table and the client mapping table may each comprise a
plurality of local device types associated with the plurality of client mapping ID numbers
and the plurality of server mapping ID numbers. When the plurality of compressed
client initialization packets generates an error, the server and the gateway device may
be configured to initialize the at least one local device using the plurality of client
initialization packets.

[0009]For example, the at least one local device may comprise at least one of a
universal serial bus (USB) device, a TWAIN device, and a smart card device. In some
embodiments, the determining may be based upon at least one of client name, smart
card reader name, smart card reader state, smart card type, smart card Answer to

Reset (ATR) string, smart card ID, and smart card certificate hash.

WO 2020/154141 PCT/US2020/013607

[0010] Yet another aspect is directed to a method for operating a gateway device in
communication between a server and a plurality of client computing devices. The
server is to provide a corresponding plurality of virtual desktop instances for the plurality
of client computing devices, and at least one local device is to be coupled to a given
client computing device and to be operable in a given virtual desktop instance
associated with the given client computing device, thereby generating a plurality of
client initialization packets. The method may comprise generating a client mapping
table comprising a plurality of known client packets associated with the at least one
local device, and a plurality of client mapping ID numbers respectively associated with
the plurality of known client packets. The method may include when the at least one
local device is coupled to the given client computing device, determining whether at
least one client packet from the plurality of client initialization packets is within the client
mapping table, replacing the at least one client packet with at least one client mapping
ID number to define a plurality of compressed client initialization packets, and sending
the plurality of compressed client initialization packets to the server.

[0011]Another aspect is directed to a method for operating a server in communication
with a plurality of client computing devices via a gateway device. The server is to
provide a corresponding plurality of virtual desktop instances for the plurality of client
computing devices, and at least one local device is to be coupled to a given client
computing device and to be operable in a given virtual desktop instance associated with
the given client computing device, thereby generating a plurality of server initialization
packets. The method may comprise generating a server mapping table comprising a
plurality of known server packets associated with the at least one local device, and a
plurality of server mapping ID numbers respectively associated with the plurality of
known server packets. The method may include when the at least one local device is
coupled to the given client computing device, determining whether at least one server
packet from the plurality of server initialization packets is within the server mapping
table, replacing the at least one server packet with at least one server mapping ID
number to define a plurality of compressed server initialization packets, and sending the

plurality of compressed server initialization packets to the gateway device.

WO 2020/154141 PCT/US2020/013607

Brief Description of the Drawings

[0012]FIG. 1 is a schematic block diagram of a network environment of computing
devices in which various aspects of the disclosure may be implemented.

[0013]FIG. 2 is a schematic block diagram of a computing device useful for practicing
an embodiment of the client machines or the remote machines illustrated in FIG. 1.
[0014]FIG. 3A is a schematic block diagram of a first embodiment of a computing
system with data transfer between a server and a client computing device based upon
device data flow characteristics, according to the disclosure.

[0015]FIG. 3B is a schematic block diagram of a second embodiment of the computing
system with data transfer between a server and a gateway device based upon device
data flow characteristics, according to the disclosure.

[0016]FIG. 4A is a flowchart of a method for operating the computing system of FIG.
3A.

[0017]FIG. 4B is a flowchart of a method for operating the client computing device in
the computing system of FIG. 3A.

[0018]FIG. 4C is a flowchart of a method for operating the server in the computing
system of FIG. 3A.

[0019]FIG. 5 is a diagram of a server mapping table or a client mapping table in the
computing system according to the disclosure.

[0020]FIG. 6 is a diagram of communication flow between the client computing device
and the server in the computing system of FIG. 3A.

[0021]FIG. 7 is a diagram of local device descriptors in the computing system according
to the disclosure.

[0022]FIG. 8 is a diagram of a local device interrupt transfer sequence in the computing
system according to the disclosure.

[0023]FIGS. 9A-9B are diagrams of non-optimized and optimized local device
initialization data exchanges, respectively, in the computing system according to the
disclosure. _

[0024]FIGS. 10A-10D are diagrams of local device initialization data exchanges in the

computing system according to the disclosure.

WO 2020/154141 PCT/US2020/013607

[0025]FIG. 11 is a diagram of a local device initialization sequence in the computing

system according to the disclosure.

Detailed Description

[0026] The present description is made with reference to the accompanying drawings, in
which example embodiments are shown. However, many different embodiments may
be used, and thus the description should not be construed as limited to the particular
embodiments set forth herein. Like numbers refer to like elements throughout, and
base 100 reference numerals are used to indicate similar elements in alternative
embodiments.

[0027] As will be appreciated by one of skill in the art upon reading the following
disclosure, various aspects described herein may be embodied as a device, a method
or a computer program product (e.g., a non-transitory computer-readable medium
having computer executable instruction for performing the noted operations or steps).
Accordingly, those aspects may take the form of an entirely hardware embodiment, an
entirely software embodiment, or an embodiment combining software and hardware
aspects.

[0028] Furthermore, such aspects may take the form of a computer program product
stored by one or more computer-readable storage media having computer-readable
program code, or instructions, embodied in or on the storage media. Any suitable
computer readable storage media may be utilized, including hard disks, CD-ROMs,
optical storage devices, magnetic storage devices, solid-state storage devices, and/or
any combination thereof.

[0029] Referring initially to FIG. 1, a non-limiting network environment 101 (i.e. a
communication system) in which various aspects of the disclosure may be implemented
includes one or more client machines 102a-102n, one or more remote machines 106a-
106n, one or more networks 104a, 104b, and one or more appliances 108 installed
within the computing environment 101. The client machines 102a-102n communicate
with the remote machines 106a-106n via the networks 104a, 104b.

[0030]In some embodiments, the client machines 102a-102n communicate with the

remote machines 106a-106n via an intermediary appliance 108. The illustrated

WO 2020/154141 PCT/US2020/013607

appliance 108 is positioned between the networks 104a, 104b and may also be referred
to as a network interface or gateway. In some embodiments, the appliance 108 may
operate as an application delivery controller (ADC) to provide clients with access to
business applications and other data deployed in a datacenter, the cloud, or delivered
as Software as a Service (SaaS) across a range of client devices, and/or provide other
functionality such as load balancing, etc. In some embodiments, multiple appliances
108 may be used, and the appliance(s) 108 may be deployed as part of the network
104a and/or 104b.

[0031] The client machines 102a-102n may be generally referred to as client

machines 102, local machines 102, clients 102, client nodes 102, client computers 102,
client devices 102, computing devices 102, endpoints 102, or endpoint nodes 102. The
remote machines 106a-106n may be generally referred to as servers 106 or a server
farm 106. In some embodiments, a client device 102 may have the capacity to function
as both a client node seeking access to resources provided by a server 106 and as a
server 106 providing access to hosted resources for other client devices 102a-102n.
The networks 104a, 104b may be generally referred to as a network. The networks
104a, 104b may be configured in any combination of wired and wireless networks.
[0032] A server 106 may be any server type such as, for example: a file server; an
application server; a web server; a proxy server; an appliance; a network appliance; a
gateway; an application gateway; a gateway server; a virtualization server; a
deployment server; a Secure Sockets Layer (SSL) or Transport Layer Security (TLS)
Virtual Private Network (VPN) server; a firewall; a web server; a server executing an
active directory; a cloud server; or a server executing an application acceleration
program that provides firewall functionality, application functionality, or load balancing
functionality.

[0033] A server 106 may execute, operate or otherwise provide an application that may
be any one of the following: software; a program; executable instructions; a virtual
machine; a hypervisor; a web browser; a web-based client; a client-server application; a
thin-client computing client; an ActiveX control; a Java applet; software related to voice
over internet protocol (VolP) communications like a soft IP telephone; an application for

streaming video and/or audio; an application for facilitating real-time-data

WO 2020/154141 PCT/US2020/013607

communications: a HTTP client; a FTP client; an Oscar client; a Telnet client; or any
other set of executable instructions.

[0034]In some embodiments, a server 106 may execute a remote presentation services
program or other program that uses a thin-client or a remote-display protocol to capture
display output generated by an application executing on a server 106 and transmit the
application display output to a client device 102. In yet other embodiments, a server
106 may execute a virtual machine providing, to a user of a client device 102, access to
a computing environment. The client device 102 may be a virtual machine. The virtual
machine may be managed by, for example, a hypervisor, a virtual machine manager
(VMM), or any other hardware virtualization technique within the server 106.

[0035]In some embodiments, the network 104a, 104b may be: a local-area network
(LAN); a metropolitan area network (MAN); a wide area network (WAN); a primary
public network; and a primary private network. Additional embodiments may include a
network 104a, 104b of mobile telephone networks that use various protocols to
communicate among mobile devices. For short range communications within a wireless
local-area network (WLAN), the protocols may include IEEE 802.11, Bluetooth, and
Near Field Communication (NFC).

[0036]FIG. 2 depicts a block diagram of a computing device 100 useful for practicing an
embodiment of client devices 102, appliances 108 and/or servers 106. The computing
device 100 includes one or more processors 103, volatile memory 122 (e.g., random
access memory (RAM)), non-volatile memory 128, user interface (Ul) 123, one or more
communications interfaces 118, and a communications bus 127. The non-volatile
memory 128 may include: one or more hard disk drives (HDDs) or other magnetic or
optical storage media; one or more solid state drives (SSDs), such as a flash drive or
other solid-state storage media; one or more hybrid magnetic and solid-state drives;
and/or one or more virtual storage volumes, such as a cloud storage, or a combination
of such physical storage volumes and virtual storage volumes or arrays thereof.

[0037] The user interface 123 may include a graphical user interface (GUI) 124 (e.g., a
touchscreen, a display, etc.) and one or more input/output (1/0) devices 126 (e.g., a

mouse, a keyboard, a microphone, one or more speakers, one or more cameras, one or

WO 2020/154141 PCT/US2020/013607

more biometric scanners, one or more environmental sensors, and one or more
accelerometers, etc.).

[0038] The non-volatile memory 128 stores an operating system 115, one or more
applications 116, and data 117 such that, for example, computer instructions of the
operating system 115 and/or the applications 116 are executed by processor(s) 103 out
of the volatile memory 122. In some embodiments, the volatile memory 122 may
include one or more types of RAM and/or a cache memory that may offer a faster
response time than a main memory. Data may be entered using an input device of the
GUI 124 or received from the 1/0 device(s) 126. Various elements of the computer 100
may communicate via the communications bus 127.

[0039] The illustrated computing device 100 is shown merely as an example client
device or server, and may be implemented by any computing or processing
environment with any type of machine or set of machines that may have suitable
hardware and/or software capable of operating as described herein.

[0040] The processor(s) 103 may be implemented by one or more programmable
processors to execute one or more executable instructions, such as a computer
program, to perform the functions of the system. As used herein, the term “processor”
describes circuitry that performs a function, an operation, or a sequence of operations.
The function, operation, or sequence of operations may be hard coded into the circuitry
or soft coded by way of instructions held in a memory device and executed by the
circuitry. A processor may perform the function, operation, or sequence of operations
using digital values and/or using analog signals.

[0041]In some embodiments, the processor can be embodied in one or more
application specific integrated circuits (ASICs), microprocessors, digital signal
processors (DSPs), graphics processing units (GPUs), microcontrollers, field
programmable gate arrays (FPGAs), programmable logic arrays (PLAs), multi-core
processors, or general-purpose computers with associated memory.

[0042] The processor 103 may be analog, digital or mixed-signal. In some
embodiments, the processor 103 may be one or more physical processors, or one or
more virtual (e.g., remotely located or cloud) processors. A processor including multiple

processor cores and/or multiple processors may provide functionality for parallel,

WO 2020/154141 PCT/US2020/013607

simultaneous execution of instructions or for parallel, simultaneous execution of one
instruction on more than one piece of data.

[0043] The communications interfaces 118 may include one or more interfaces to
enable the computing device 100 to access a computer network such as a Local Area
Network (LAN), a Wide Area Network (WAN), a Personal Area Network (PAN), or the
Internet through a variety of wired and/or wireless connections, including cellular
connections.

[0044] In described embodiments, the computing device 100 may execute an
application on behalf of a user of a client device. For example, the computing device
100 may execute one or more virtual machines managed by a hypervisor. Each virtual
machine may provide an execution session within which applications execute on behalf
of a user or a client device, such as a hosted desktop session. The computing device
100 may also execute a terminal services session to provide a hosted desktop
environment. The computing device 100 may provide access to a remote computing
environment including one or more applications, one or more desktop applications, and
one or more desktop sessions in which one or more applications may execute.

[0045] Additional descriptions of a computing device 100 configured as a client device
102 or as a server 106, or as an appliance intermediary to a client device 102 and a
server 106, and operations thereof, may be found in U.S. Patent Nos. 9,176,744 and
9,538,345, which are incorporated herein by reference in their entirety. The 744 and
‘345 patents are both assigned to the current assignee of the present disclosure.
[0046]Referring now to FIG. 3A, a computing system 201 (FIG. 3A) according to the
disclosure is now described. Also, with reference to a flowchart 940 (FIG. 4A), a
method for operating the computing system 201 is also described. The computing
system 201 illustratively includes a server 206, and a plurality of client computing
devices 202a-202b in communication with the server. The server 206 is configured to
provide a corresponding plurality of virtual desktop instances 230a-230b for the plurality
of client computing devices 202a-202b.

[0047] The computing system 201 includes a plurality of local devices 235a-235b to be
coupled respectively to the plurality of client computing devices 202a-202b. The local

device 235a is coupled to a given client computing device 202a and to be operable in a

10

WO 2020/154141 PCT/US2020/013607

given virtual desktop instance 230a associated with the given client computing device,
thereby generating a plurality of client initialization packets. The server 206 is
configured to generate a server mapping table 245 comprising a plurality of known
server packets 242 associated with the local device 235a, and a plurality of server
mapping ID numbers 243 respectively associated with the plurality of known server
packets.

[0048] The given client computing device 202a is configured to generate a client
mapping table 244 comprising a plurality of known client packets 238 associated with
the local device 235a, and a plurality of client mapping D numbers 239 respectively
associated with the plurality of known client packets. The given client computing device
202a is configured to, when the local device 235a is coupled to the given client
computing device, determine whether at least one client packet from the plurality of
client initialization packets is within the client mapping table 244, replace the at least
one client packet with at least one client mapping ID number 239 to define a plurality of
compressed client initialization packets, and send the plurality of compressed client
initialization packets to the server 206. The server 206 is configured to replace the at
least one client mapping ID number 239 with the at least one client packet in the
plurality of compressed client initialization packets based upon the server mapping table
245.

[0049]Referring now to FIG. 4A, the method for operating the computing system 201 is
now described with reference to the flowchart 940. (Block 941). The method includes
generating the server mapping table 245 at the server 206 (Block 943), and generating
the client mapping table 244 at the given client computing device 202a. (Block 945).
The method illustratively includes determining when the local device 235a is coupled to
the given client computing device 202a (Block 947), and then generating the plurality of
compressed client initialization packets (Block 949), and sending the plurality of
compressed client initialization packets to the server 206. (Blocks 951, 953).

[0050] Referring now again to FIG. 3A, the computing system 201 according to the
disclosure is now described in more detail. Also, with reference to flowcharts 960, 980

(FIGS. 4B-4C), the method for operating the computing system 201 is also described in

11

WO 2020/154141 PCT/US2020/013607

more detail. The computing system 201 illustratively includes a server 206, and a
plurality of client computing devices 202a-202b in communication with the server.
[0051] The server 206 is configured to provide a corresponding plurality of virtual
desktop instances 230a-230b for the plurality of client computing devices 202a-202b.
The server 206 illustratively comprises a memory 231, and a processor 232 cooperating
with the memory. Each of the plurality of client computing devices 202a-202b
illustratively comprises a memory 233, and a processor 234 cooperating with the
memory.

[0052] The computing system 201 illustratively comprises a plurality of local devices
235a-235b to be coupled respectively to the plurality of client computing devices 202a-
202b and to be operable in a given virtual desktop instance 230a associated with the
given client computing device, thereby generating a plurality of client initialization
packets. Each local device 235a-235b may comprise one or more of a USB device, a
TWAIN device, and a smart card device. Of course, this coupling may comprise a wired
connection, or a wireless connection (e.g. Bluetooth, infrared, or some other local
wireless standard).

[0053]As will be appreciated, when the user of the given client computing device 202a
couples the local device 235a to the respective device providing the given virtual
desktop instance 230a, the user expects the local device to be operable similarly to the
local desktop environment. In particular, the user expects the resources of the local
device 235a to be fully accessible in the given virtual desktop instance 230a.

[0054] In typical local desktop environments, when the local device 235a is coupled or
decoupled, the local device and the local desktop environment (i.e. the local operating
system) exchange local device initialization/deinitialization communications. Given that
these local device communications standards were developed with local connections in
mind (i.e. typically wired, high bandwidth, low latency, low packet loss), these local
device communications standards are data heavy in nature.

[0055] Moreover, in the virtual desktop infrastructure space, these same local device
communications standards must now be implemented over the network (e.g. the
Internet) between the server 206 and the given client computing device 202a. The

computing system 201 provides an approach to this issue by compressing these local

12

WO 2020/154141 PCT/US2020/013607

device initialization/deinitialization communications at the server 206 and the given
client computing device 202a.

[0056] The server 206 is configured to generate a server mapping table 245 comprising
a plurality of known server packets 242 associated with the at least one local device,
and a plurality of server mapping ID numbers 243 respectively associated with the
plurality of known server packets. The given client computing device 202a is also
configured to generate a client mapping table 244 comprising a plurality of known client
packets 238 associated with the at least one local device, and a plurality of client
mapping ID numbers 239 respectively associated with the plurality of known client
packets.

[0057] The plurality of known server packets 242 and the plurality of known client
packets 238 may each comprise a communication standard initialization packet (e.g.
USB initialization/deinitialization packet). The plurality of known server packets 242 and
the plurality of known client packets 238 each may comprise at least one of a smart
card initialization sequence packet, smart card authentication packet, smart card digital
signing packet, and smart card certificate transmission packet. In other words, the
plurality of known server packets 242 and the plurality of known client packets 238 each
comprise commonly exchanged packets.

[0058] The given client computing device 202a is configured to, when the local device
235a is either coupled or decoupled to the given client computing device, determine
whether at least one client packet from the plurality of client initialization packets is
within the client mapping table 244. In other words, this determining step is performed
when the local device 235a initialization/deinitialization communications are about to be
exchanged between the given client computing device 202a and the server 206. The
determining may be based upon at least one of client name, smart card reader name,
smart card reader state, smart card type, smart card ATR string, smart card ID, and
smart card certificate hash.

[0059] If the at least one client packet is within the client mapping table 244, the given
client computing device 202a is configured to replace the at least one client packet with
at least one client mapping ID number 239 to define a plurality of compressed client

initialization packets. If the at least one client packet is not within the client mapping

13

WO 2020/154141 PCT/US2020/013607

table 244, then the given client computing device 202a is configured to move on to a
next packet, and repeat the analysis.

[0060]In some embodiments, the given client computing device 202a is configured to
examine each and every packet in the plurality of client initialization packets. In other
embodiments, the given client computing device 202a is configured to selectively review
only portions of the plurality of client initialization packets (e.g. portions more likely to
have repeating packets). In other words, with a generated sequence of packets, the
recognized packets are swapped out with respective client mapping ID numbers 239,
which reduces the size of the payload.

[0061]In some embodiments, the respective client mapping ID numbers 239 may each
represent a common sequence for initialization and/or deinitialization. For example,
instead of receiving a sequence of initialization packets from the given client computing
device 202a, the server 206 would receive a single mapping ID number mapped to the
same sequence, i.e. an effective instruction to playback the sequence of packets rather
than sending the sequence of packets (See, e.g., FIG. 11). Also, in some embodiments
where the local device 235a experiences a communication port change, the plurality of
compressed client initialization packets would include that new port information.

[0062] Then, the given client computing device 202a is configured to send the plurality
of compressed client initialization packets to the server 206. The server 206 is
configured to receive the plurality of compressed client initialization packets.
Subsequent to their receipt, the server 206 is configured to reconstitute the original
initialization packets by replacing the at least one client mapping ID number 239 with
the at least one client packet in the plurality of compressed client initialization packets
based upon the server mapping table 245. To this end, the server 206 and the given
client computing device 202a are configured to synchronize the server mapping table
245 and the client mapping table 244. As the server 206 and the given client computing
device 202a build their respective mapping tables, they need to reconcile
changes/additions so that the plurality of compressed client initialization packets can be
properly processed.

[0063]Also, in some embodiments, the server 206 is configured to perform the same

compression features with the server mapping table 245. In particular, the server 206 is

14

WO 2020/154141 PCT/US2020/013607

configured to, when the local device 235a is coupled to the given client computing
device 202a, determine whether at least one server packet from a plurality of server
initialization packets is within the server mapping table 245, replace the at least one
server packet with at least one server mapping ID number 243 to define a plurality of
compressed server initialization packets, and send the plurality of compressed server
initialization packets to the given client computing device. As will be appreciated, the
plurality of server initialization packets are exchanged in response to the plurality of
client initialization packets from the given client computing device 202a.

[0064] Moreover, the server 206 and the given client computing device 202a are
configured to, when the local device 235a is decoupled from the given client computing
device 202a, perform the determining, the replacing, and the sending. Indeed, as will
be appreciated, the server 206 and the given client computing device 202a are
configured to perform compression of local device deinitialization communications, and
is not limited to local device initialization communications. As will be appreciated, the
teachings of this disclosure could be expanded to any communications with reoccurring
packets.

[0065] As depicted in the exemplary embodiment, it should be appreciated that the other
client computing device 202b also has a local device 235b coupled thereto. Also, the
server 206 may be configured to monitor packets exchanged between the plurality of
client computing devices 202a-202b and respective local devices 235a-235b to
generate the server mapping table 245. In other words, the server 206 is configured to
learn reoccurring packet sequences from global communications in the computing
system 201 and add them to the server mapping table 245 and the client mapping table
244. Indeed, in some embodiments, the server 206 may utilize machine learning
techniques to predict packet sequences in communications between the server 206 and
the plurality of client computing devices 202a-202b and respective local devices 235a-
235b.

[0066] As will be appreciated, the computing system 201 illustratively includes only two
client computing devices 202a-202b for drawing clarity. It should be appreciated that

the computing system 201 could accommodate a large number of client computing

15

WO 2020/154141 PCT/US2020/013607

devices. In fact, the server 206 may be configured to use big data analytics to further
build the server mapping table 245 and the client mapping table 244.

[0067] Referring briefly to FIG. 5 and a diagram 905 therein, an exemplary embodiment
of either the server mapping table 245 or the client mapping table 244 is shown. The
server mapping table 245 and the client mapping table 244 each may comprise a
plurality of local device types (device column) associated with the plurality of client
mapping 1D numbers 239 (identifier column) and the plurality of server mapping ID
numbers 243 (identifier column).

[0068] Helpfully, when the plurality of compressed client initialization packets generates
an error, the server 206 and the given client computing device 202a may be configured
to initialize the at least one local device 235a-235b using the plurality of client
initialization packets. In other words, if the plurality of compressed initialization packets
causes an error, the server 206 and the given client computing device 202a revert to the
uncompressed sequences to remedy the error (e.g. the USB connection would be reset,
i.e. local USB device ejected, and then a reinitialization is performed).

[0069]Also, if the connection to the local device 235a-235b is lost, the server 206 and
the given client computing device 202a are configured to reinitialize the connection
automatically. If the local device 235a-235b is decoupled during the initialization, the
given client computing device 202a is configured to send an abort message to the
server 206 so that the server does not playout the initialization packets on its end.
[0070]As shown in the exemplary use application in FIG. 6, when the local device 235a
(e.g., the illustrated web camera) is coupled to the client computing device 202a, the
local device initialization is optimized. Indeed, in the illustrated step 4, no data is
exchanged since these packets are standardized and stored in respective mapping
tables. Here, the packets typically received at the server 206 from the client computing
device 202a are played back or recreated from the server mapping table 245. The
client computing device 202a does the same using the client mapping table 244.
[0071]In some embodiments, the computing system further may include a bridge device
241 coupled between the client computing device 202b and the server 206 and
configured to generate a bridge mapping table comprising a plurality of known bridge

packets associated with the at least one local device, and a corresponding plurality of

16

WO 2020/154141 PCT/US2020/013607

bridge mapping ID numbers. In FIG. 3A, the bridge device 241 is depicted with dashed
lines, and may be omitted. The bridge device 241 may comprise one or more of a Citrix
Software-Defined Wide Area Network (SD-WAN) and a Citrix Gateway (NetScaler).
[0072] Referring now to FIG. 4B and the flowchart 960 therein, a method for operating a
given client computing device 202a in communication with a server 206 is now
described. (Block 961). The server 206 is to provide a given virtual desktop instance
230a for the given client computing device 202a, and at least one local device 235a is to
be coupled to the given client computing device and to be operable in the given virtual
desktop instance 230a associated with the given client computing device. The method
comprises generating a client mapping table 244 comprising a plurality of known client
packets associated with the at least one local device 235a, and a plurality of client
mapping 1D numbers respectively associated with the plurality of known client packets.
(Block 963). The method includes when the at least one local device 235a is coupled to
the given client computing device 202a (Block 965), generating a plurality of client
initialization packets, determining whether at least one client packet from the plurality of
client initialization packets is within the client mapping table 244 (Block 967), replacing
the at least one client packet with at least one client mapping ID number to define a
plurality of compressed client initialization packets (Block 969), and sending the plurality
of compressed client initialization packets to the server 206. (Blocks 971, 973).
[0073]Referring now to FIG. 4C and the flowchart 980 therein, a method for operating
the server 206 is now described. (Block 981). The server 206 is in communication with
at least one client computing device 202a to provide a corresponding at least one virtual
desktop instance 230a-230b for the at least one client computing device. At least one
local device 235a is to be coupled to a given client computing device 202a and to be
operable in a given virtual desktop instance 230a associated with the given client
computing device, thereby generating a plurality of server initialization packets. The
method includes generating a server mapping table 245 comprising a plurality of known
server packets associated with the at least one local device 235a, and a plurality of
server mapping ID numbers respectively associated with the plurality of known server
packets. (Block 982). The method comprises when the at least one local device 235a

is coupled to the given client computing device 202a (Block 983), determining whether

17

WO 2020/154141 PCT/US2020/013607

at least one server packet from the plurality of server initialization packets is within the
server mapping table 245 (Block 984), replacing the at least one server packet with at
least one server mapping ID number to define a plurality of compressed server
initialization packets (Block 985), and sending the plurality of compressed server
initialization packets to the given client computing device. (Blocks 986, 987).

[0074]1t should be appreciated that the above methods could be defined as a computer
executable instruction. From this computer executable instruction, a non-transitory
computer-readable medium having the computer executable instruction for performing
the noted operations or steps of these methods could be provided.

[0075]Referring now additionally to FIG. 3B, another embodiment of the computing
system 301 is now described. In this embodiment of the computing system 301, those
elements already discussed above with respect to FIG. 3A are incremented by 300 and
most require no further discussion herein. The computing system 301 illustratively
includes a server 306, and a plurality of client computing devices 302a-302b. The
server 306 is configured to provide a corresponding plurality of virtual desktop instances
330a-330b for the plurality of client computing devices 302a-302b. The server 306
illustratively comprises a memory 331, and a processor 332 cooperating with the
memory. This embodiment differs from the previous embodiment in that this computing
system 301 illustratively comprises a gateway device 336 in communication between
the server 306 and the plurality of client computing devices 302a-302b, and a local
device 335a to be coupled to a given client computing device 302a and to be operable
in a given virtual desktop instance 330a associated with the given client computing
device 302a, thereby generating a plurality of client initialization packets. In other
words, the communications between the plurality of client computing devices 302a-302b
and the server 306 are routed through the gateway device 336. The gateway device
336 illustratively comprises a memory 337, and a processor 340 cooperating with the
memory.

[0076] The server 306 is configured to generate a server mapping table 345 comprising
a plurality of known server packets 342 associated with the local device 335a, and a
plurality of server mapping ID numbers 343 respectively associated with the plurality of

known server packets. The gateway device 336 is configured to generate a client

18

WO 2020/154141 PCT/US2020/013607

mapping table 344 comprising a plurality of known client packets 338 associated with
the local device 335a, and a plurality of client mapping ID numbers 339 respectively
associated with the plurality of known client packets.

[0077]As packets from the plurality of client computing devices 302a-302b are sent
through the gateway device 336, the gateway device 336 is configured to, when the
local device 335a is either coupled or decoupled to the given client computing device
302a, determine whether at least one client packet from the plurality of client
initialization packets is within the client mapping table 344, replace the at least one
client packet with at least one client mapping ID number 339 to define a plurality of
compressed client initialization packets, and send the plurality of compressed client
initialization packets to the server 306. The server 306 is configured to replace the at
least one client mapping ID number 339 with the at least one client packet in the
plurality of compressed client initialization packets based upon the server mapping table
345.

[0078] Referring now additionally to FIGS. 7, 8, 10A-10D, several diagrams 910, 915,
920, 925, 930, 935 relating to embodiments of the computing systems 201, 301 where
the local device 235a-235b, 335a comprises a USB device are now described. Of
course, this discussion regarding USB devices is exemplary, and is equally applicable
to other types of the local device 235a-235b, 335a.

[0079] With reference to FIG. 7, the diagram 910 includes a table showing the type of
data associated with different USB device descriptors. USB initialization goes through
standard set of USB request blocks (URB) exchanges of device descriptor, interface
descriptor, pipe details etc. For a given local device (or type of device), these packets
and sequence remains mostly the same with minor changes in certain fields. Because
of this, these exchanges may benefit from the teachings of this disclosure.

[0080]In particular, descriptors used in local device 235a-235b, 335a initialization are
shown. The descriptors are typically used for device enumeration in known order for
each kind of device. For example, this sequence is translated to uniformity in the
Independent Computing Architecture (ICA) protocol (USB Redirection Virtual Channel)
between the client computing device 202a-202b, 302a-302b and the server 206, 306.

Hence, with small exceptions of address, the data transfer will be predictable, and by

19

WO 2020/154141 PCT/US2020/013607

using cached data with variable fields, the computing system 201, 301 could achieve
packet replay at client computing device 202a-202b, 302a-302b and the server 206,
306. |

[0081]With reference to FIG. 8, the diagram 915 aids in discussing USB interrupt pipe
control flow and interrupt transfers. In the USB standard, if the local device 235a-235b,
335a requires the attention of the host, it must wait until the host polls it. Interrupt
transfers are typically non-periodic, small device “initiated” communication requiring
bounded latency. An interrupt request is queued by the local device 235a-235b, 335a
until the host polls the USB device asking for data. According to the teachings of this
disclosure, the polling mechanism will be a cached operation on the client computing
device 202a-202b, 302a-302b, which may avoid chattiness of connection from the
server 206, 306 to client computing device.

[0082] Also, in embodiments of the computing systems 201, 301 where the local device
235a-235b, 335a comprises a smart card device, the teachings of the disclosure may
be used to optimize smart card logon operations. For example, for redirected smart
card authentication, the server 206, 306 is configured to create a smart card resource
manager context. The host re-enumerates smart card readers, gets smart card status
(e.g., empty, present, etc.), establishes smart card communication context, obtains the
CARD ATR, which maps to card type, finds the Cryptographic Service Provider (CSP),
retrieves the certificate from the card, and initiates a challenge-response mechanism,
which normally involves the user entering a PIN to unlock the private key on the card,
etc. In this case, the initialization sequence and, in particular, the retrieval of the
certificate are very expensive operations involving multiple round-trips, which could be
optimized. Some certificates may be several kilobytes in size. In addition, some smart
cards may only support 1-byte addressing thus limiting transactions to 256 bytes. An
optimization is possible, for example, by detecting repetitive logon patterns with
endpoint device/client name, reader name, reader state, card type, card ID, or certificate
hash, and mapping them to a mapping ID number. If no match is found on the server,
the normal processes could be performed.

[0083]Referring now to FIG. 9A and a diagram 916 therein, the following steps provide

an example illustration of a non-optimized smart card authentication sequence. A

20

WO 2020/154141 PCT/US2020/013607

similar sequence exists for other smart card scenarios, such as digitally signing
documents, e-mails, etc., in a Virtual Delivery Agent (VDA) session. The execution of
this sequence serves as a learning phase of the method to optimize smart card
operations. The client device has a smart card reader attached to it. In some
embodiments, the reader may be combined with a smart card into a single device, for
example, into a USB dongle containing the smart card, while a virtual smart card reader
is simulated by the client operating system (OS). Of course, this is an exemplary listing,
and other variants could be used.

[0084] Smart Card Authentication Sequence

-The client enumerates readers and their state (smart card empty, present, etc.).

-A user inserts their card into the reader, the reader state changes.

-The VDA Logon Process establishes Smart Card Resource Manager Context.

-The request is forwarded to the client's OS Smart Card Resource Manager (RM).
Note: The VDA Logon Process may involve multiple components or services, €.g.
Logon Ul, WinLogon, Local Security Authority Subsystem Service (LSASS), etc. It may
also involve Smart Card/Personal Computer (SC/PC) application programming interface
(API) hooking and redirection components. For purposes of this description, they are
collectively referred to as VDA Logon Process.

-The client creates a RM Context and returns it to the server VDA Logon Process.
-Using the RM context, the VDA Logon Process enumerates readers and their state.
The request is forwarded to the client.

-The client returns to the VDA Logon Process the list of readers and their state.

-Using the RM context, if there is a card present in at least one reader, the VDA Logon
Process establishes smart card Communication Context. The request is forwarded to
the client's OS smart card RM.

-The client creates a smart card Communication Context and returns it to the server
VDA Logon Process.

-Using the smart card Communication Context, the VDA Logon Process retrieves the
card ATR string. Likewise, the request is forwarded to the client's smart card. Note:
The ATR string uniquely identifies the smart card type.

-The client returns to the VDA Logon Process the card ATR string. Note: The following

21

WO 2020/154141 PCT/US2020/013607

request is a modification of the normal sequence to facilitate the present disclosure, i.e.
to uniquely identify the card.

-The card ID string uniquely identifies the card. This is required, since an endpoint
client device may be shared between multiple users (Kiosk mode).

-The VDA Logon Process requests the card ID string.

-The client returns to the VDA Logon Process the card 1D string.

-The VDA Logon Process looks up and loads the CSP, for example, based on the card
ATR string. A CSP may perform crypto operations specific to a card type.

-VDA Logon Process retrieves the smart card certificate over a series of transactions,
which are redirected to the client's smart card, and involve multiple roundtrips.

-The VDA Logon Process parses the certificate and extracts the User Principal Name
(UPN), the public key, etc.

-The VDA Logon Process then prompts the user for PIN, e.g. via a Logon Ul. The PIN
prompt becomes visible at the client device via server-to-client graphics redirection.
-The user enters their PIN at the client, which is transferred to the server and into the
VDA Logon Process, e.g. Logon Ul.

-The VDA Logon Process initiates a challenge required to determine if the user is the
true owner of the smart card. The challenge may involve creating a (random) nonce
sent to the card. The VDA Logon Process also sends the PIN to the card.

-The client device communicates both the PIN and the nonce to the card. The PIN is
used to unlock the use of the smart card’s private key, which never leaves the card.
-The card uses the private key to sign the nonce and answer the challenge by sending it
to the server.

-The VDA Logon Process verifies the signature of the signed nonce using the public key
from certificate.

-The VDA Logon Process proceeds to log the user on.

[0085] Referring to FIG. 9B and a diagram 917 therein, the following steps provide an
example illustration of an optimized smart card authentication sequence. A similar
sequence exists for other smart card scenarios, such as digitally signing documents, e-

mails, etc. in a VDA session.

22

WO 2020/154141 PCT/US2020/013607

[0086] The execution of this sequence illustrates another example of the use of the
previously discussed method of “Map ID” pointing to observed, cached and shared
client and server protocol sequences. In particular, a Map ID is used to identify and
look up previously communicated smart card initialization and certificate data. Light-
weight differential data is also exchanged for purposes of efficient contextualization and
precise look up.

[0087] Optimized Smart Card Authentication Sequence

-The client enumerates readers and their state (smart card empty, present, etc.).

-A user inserts their card into the reader, the reader state changes.

-The client establishes Smart Card RM Context for the server.

-The client establishes smart card Communication Context for the server, based on the
RM context.

-Using the smart card Communication Context, the client retrieves the card ATR string,
ID string and certificate. Note: The ID string uniquely identifies the card. However,
some cards may hold more than one certificate, so the certificate may also be required
for further contextualization. The client computes a hash of the certificate.

-The client looks up the table with Map IDs based on at least one of ATR string, ID
string and certificate hash.

-The client sends to the server the matching Map ID and, if an exact match is not found,
also differential data, e.g. at least one of: RM context; Readers and their state; smart
card Context: and at least one of card ATR string, ID string, certificate hash.

-The server looks up its table of Map IDs based on at least one of Map ID and
differential data.

-If a match is not found, the VDA Logon Process proceeds as normal.

-If a match is found, the VDA Logon Process advantageously proceeds to short-circuit
all of the following operations by servicing them from the server’s table with cached
protocol exchanges and the received contextual differential data, rather than using
transactions requiring round-trips to the client: establish Smart Card RM Context; using
the RM context, enumerate readers and their state; using the RM context, if there is a
card present in at least one reader, establish smart card Communication Context; using

the smart card Communication Context, retrieve the card ATR string; request the card

23

WO 2020/154141 PCT/US2020/013607

ID string (for consistency with the learning phase); look up and load the CSP, e.g.
based on the card ATR string; a CSP may perform crypto operations specific to a card
type. (Note: This operation does not have to go to the client anyway, even during the
learning phase.); and retrieve the smart card certificate.

[0088] For security reasons and due to the random nature of the challenge-response
mechanism, the rest of the logon process proceeds as normal:

-The VDA Logon Process parses the certificate and extracts the UPN, the public key,
etc. The VDA Logon Process then prompts the user for PIN, e.g. via a Logon Ul. The
PIN prompt becomes visible at the client device via server-to-client graphics redirection.
-The user enters their PIN at the client, which is transferred to the server and into the
VDA Logon Process, e.g. Logon UL

-The VDA Logon Process initiates a challenge required to determine if the user is the
true owner of the smart card. The challenge may involve creating a (random) nonce
sent to the card.

-The VDA Logon Process also sends the PIN to the card.

-The client device communicates both the PIN and the nonce to the card. The PIN is
used to unlock the use of the smart card’s private key, which never leaves the card.
-The card uses the private key to sign the nonce and answer the challenge by sending it
to the server.

-The VDA Logon Process verifies the signature of the signed nonce using the public key
from certificate.

-The VDA Logon Process proceeds to log the user on.

[0089]Referring now to FIGS. 10A-10D, USB-specific standard initialization data
exchange at bus level is shown in diagrams 920, 925, 930, 935. More specifically, the
diagrams 920, 925, 930, 935 show the standard descriptors and standard responses in
a USB device initialization sequence. In other words, these figures show the
initialization data exchange between local devices 235a-235b, 335a and client
computing devices 202a-202b, 302a-302b as per the USB protocol specification. For a
given local device, for example, local device 235a, and a given client computing device,
for example, client computing device 202a, the initialization data exchanges are

expected to remain consistent between different initialization occurrences as previously

24

WO 2020/154141 PCT/US2020/013607

discussed in the disclosure. As illustrated, it can be appreciated that examples of the
standard descriptors such as configuration, interface and endpoint will be consistently
repeated during each initialization sequence. Minor variations are possible in special
cases. For example, a connection port may change when a user plugs in the local
device 235a into a different USB port of the client computing device 202a. In these
special cases, the previously discussed technique of sending light-weight differential
data along with Map IDs may be applied. If significant changes occur, or an error
occurs, the previously discussed technique of reverting to sending the complete
uncompressed sequences may also be applied.

[0090] Thus, as described herein, the described embodiments provide improved
operation of virtual desktop infrastructure computing systems, for example by providing
an approach to data transfer when either coupling or decoupling the local device 235a-
235b, 335a to the client computing devices 202a-202b, 302a-302b. Indeed, the
computing systems 201, 301 leverage the fact that data transfer, such as during local
device (e.g. USB device) redirection, has packets of data which are of a predictable
format and sequence during initialization, surprise removal, deinitialization (i.e.
termination of the local device communications). By storing the format and sequence,
mapping ID numbers could be exchanged instead of complete packet and/or packet
sequences between the client computing device 202a-202b, 302a-302b and the server
206, 306. This mapping ID numbers could be used to play the packet or packet
sequence at the server 206, 306 and the client computing device instead of complete
sequence transfer as it happens in typical approaches.

[0091] Typical approaches to data transfer using compression/encoding focus on the
relationship between the current frame and the next frame for compression/optimization.
The computing system 201, 301 of the disclosure is unique as it leverages behavior
patterns specific to the virtual channel under consideration.

[0092] By swapping out packets with mapping ID numbers, the computing systems 201,
301 reduce aggregate traffic, improving 'system performance. The prior knowledge of
data playback sequences may be used to create optimized packet sequences and
protocol optimizations by building a mapping database of ID numbers to protocol
sequence playback at the server 206, 306 and the client computing device 202a-202b,

25

WO 2020/154141 PCT/US2020/013607

302a-302b. In the client computing device 202a-202b, 302a-302b and the server 206,
306, special concise messages are used to send differential data and playback the
sequence of steps. Thus, this may optimize the overall data transfer requirements.
[0093]For example, the diagram 900 (FIG. 11) comprises a sequence diagram showing
an example of a client computing device 202a-202b, 302a-302b sending a mapping ID
number (id1) as an indicator for a server 206, 306 to play the initialization sequence in
the virtual desktop instance 230a-230b, 330a-330b to initialize the local device 235a-
235b, 335a and return status to client computing device. Instead of the typical back and
forth for local device initialization, the client computing device 202a-202b, 302a-302b
and the server 206 may regenerate the sequence using their respective mapping tables.
[0094] Other features relating to computing systems are disclosed in co-pending
application: titted “COMPUTING SYSTEM WITH DATA TRANSFER BASED UPON
DEVICE DATA FLOW CHARACTERISTICS AND RELATED METHODS,” Attorney
Docket No. ID1984US (96109), which is incorporated herein by reference in their
entirety.

[0095] Many modifications and other embodiments will come to the mind of one skilled
in the art having the benefit of the teachings presented in the foregoing descriptions and
the associated drawings. Therefore, it is understood that the foregoing is not to be
limited to the example embodiments,‘ and that modifications and other embodiments are

intended to be included within the scope of the appended claims.

26

WO 2020/154141 PCT/US2020/013607

THAT WHICH IS CLAIMED IS:

1. A computing system comprising:

a server,

a plurality of client computing devices, said server configured to provide a
corresponding plurality of virtual desktop instances for said plurality of client computing
devices;

a gateway device in communication between said server and said plurality
of client computing devices; and

at least one local device to be coupled to a given client computing device
and to be operable in a given virtual desktop instance associated with said given client
computing device, thereby generating a plurality of client initialization packets;

said server configured to generate a server mapping table comprising a
plurality of known server packets associated with said at least one local device, and a
plurality of server mapping identification (ID) numbers respectively associated with said
plurality of known server packets;

said gateway device configured to generate a client mapping table
comprising a plurality of known client packets associated with said at least one local
device, and a plurality of client mapping ID numbers respectively associated with said
plurality of known client packets;

wherein said gateway device is configured to, when said at least one local
device is coupled to said given client computing device,

determine whether at least one client packet from the
plurality of client initialization packets is within the client mapping table,

replace the at least one client packet with at least one client
mapping ID number to define a plurality of compressed client initialization
packets, and

send the plurality of compressed client initialization packets
to said server,

said server configured to replace the at least one client
mapping ID number with the at least one client packet in the plurality of

compressed client initialization packets based upon the server mapping

27

WO 2020/154141 PCT/US2020/013607

table.

2. The computing system of claim 1 wherein said server and said
gateway device are configured to synchronize the server mapping table and the client

mapping table.

3. The computing system of claim 1 wherein said server is configured
to, when said at least one local device is coupled to said given client computing device:

determine whether at least one server packet from a plurality of server
initialization packets is within the server mapping table;

replace the at least one server packet with at least one server mapping 1D
number to define a plurality of compressed server initialization packets; and

send the plurality of compressed server initialization packets to said

gateway device.

4. The computing system of claim 3 wherein said server and said
gateway device are configured to, when said at least one local device is decoupled from
said given client computing device, perform the determining, the replacing, and the

sending.

5. The computing system of claim 1 wherein the plurality of known
server packets and the plurality of known client packets each comprises a

communication standard initialization packet.

6. The computing system of claim 1 wherein the plurality of known
server packets and the plurality of known client packets each comprises at least one of
a smart card initialization sequence packet, smart card authentication packet, smart

card digital signing packet, and smart card certificate transmission packet.

7. The computing system of claim 1 wherein the server mapping table

and the client mapping table each comprises a plurality of local device types associated

28

WO 2020/154141 PCT/US2020/013607

with the plurality of client mapping ID numbers and the plurality of server mapping ID

numbers.

8. The computing system of claim 1 wherein when the plurality of
compressed client initialization packets generates an error, said server and said
gateway device are configured to initialize the at least one local device using the

plurality of client initialization packets.

9. The computing system of claim 1 wherein said at least one local
device comprises at least one of a universal serial bus (USB) device, a TWAIN device,

and a smart card device.

10. The computing system of claim 1 wherein the determining is based
upon at least one of client name, smart card reader name, smart card reader state,
smart card type, smart card Answer to Reset (ATR) string, smart card ID, and smart

card certificate hash.

11. A method for operating a gateway device in communication
between a server and a plurality of client computing devices, the server to provide a
corresponding plurality of virtual desktop instances for the plurality of client computing
devices, at least one local device to be coupled to a given client computing device and
to be operable in a given virtual desktop instance associated with the given client
computing device, thereby generating a plurality of client initialization packets, the
method comprising:

generating a client mapping table comprising a plurality of known client
packets associated with the at least one local device, and a plurality of client mapping
identification (ID) numbers respectively associated with the plurality of known client
packets; and

when the at least one local device is coupled to the given client computing

device,

29

WO 2020/154141 PCT/US2020/013607

determining whether at least one client packet from the
plurality of client initialization packets is within the client mapping table,

replacing the at least one client packet with at least one
client mapping 1D number to define a plurality of compressed client
initialization packets, and

sending the plurality of compressed client initialization

packets to the server.

12. The method of claim 11 further comprising synchronizing a server

mapping table and the client mapping table.

13. The method of claim 11 further comprising when the at least one
local device is decoupled from the given client computing device, performing the

determining, the replacing, and the sending.

14. The method of claim 11 wherein the plurality of known client

packets each comprises a communication standard initialization packet.

15. The method of claim 11 wherein the plurality of known client
packets each comprises at least one of a smart card initialization sequence packet,
smart card authentication packet, smart card digital signing packet, and smart card

certificate transmission packet.

16. The method of claim 11 wherein the client mapping table comprises
a plurality of local device types associated with the plurality of client mapping 1D

numbers.

17. A method for operating a server in communication with a plurality of
client computing devices via a gateway device, the server to provide a corresponding
plurality of virtual desktop instances for the plurality of client computing devices, at least

one local device to be coupled to a given client computing device and to be operable in

30

WO 2020/154141 PCT/US2020/013607

a given virtual desktop instance associated with the given client computing device,
thereby generating a plurality of server initialization packets, the method comprising:
generating a server mapping table comprising a plurality of known server
packets associated with the at least one local device, and a plurality of server mapping
identification (ID) numbers respectively associated with the plurality of known server
packets; and
when the at least one local device is coupled to the given client computing
device,
determining whether at least one server packet from the
plurality of server initialization packets is within the server mapping table,
replacing the at least one server packet with at least one
server mapping ID number to define a plurality of compressed server
initialization packets, and
sending the plurality of compressed server initialization

packets to the gateway device.

18. The method of claim 17 further comprising synchronizing the server

mapping table and a client mapping table.

19. The method of claim 17 further comprising when the at least one
local device is decoupled from the given client computing device, performing the

determining, the replacing, and the sending.

20. The method of claim 17 wherein the plurality of known server

packets each comprises a communication standard initialization packet.

21. The method of claim 17 wherein the plurality of known server
packets each comprises at least one of a smart card initialization sequence packet,
smart card authentication packet, smart card digital signing packet, and smart card

certificate transmission packet.

31

WO 2020/154141 PCT/US2020/013607

22. The method of claim 17 wherein the server mapping table
comprises a plurality of local device types associated with the plurality of server

mapping ID numbers.

32

WO 2020/154141 PCT/US2020/013607

T — /§/(€)

CLIENT
MACHINE(S) _ : e 4
102 CLIENT CLIENT CLIENT
MACHINE MACHINE MACHINE
102a 102b 102n
v
NETWORK
Appliance
108
NETWORK
104b
~ v l l
= | = | = |
o [-
SERVER(S) = | Sl eoo |2}
106 =1 = = |
oy o £
REMOTE REMOTE REMOTE

MACHINE ~ MACHINE ~ MACHINE
106a 106b 106n

FIG. 1

1/17

PCT/US2020/013607

WO 2020/154141

¢ 9ld -
ele(]
9l o
; vamogmﬂ oA Amvco:momaa{
74} S
vel wajshs
9 Bunesedo
348 .
8¢l
EATEH ‘
198 Aiows}y 8j1B/0A-UON
S w
.l.w.rm\lw'u- il onr——
el ol
(s)eoepay|
LOIROIUNWWOY) \COEm§ 9EIoA Amvi_ommmoo_&
AN

001

2/17

WO 2020/154141

Client Computing Device 202a
Memory 233
Client Mapping Table 244

Known Client
Packets 238

Client mapping
ID numbers 239

PCT/US2020/013607

201

Coupling or Decoupling
(e.g. wired, wireless)

Processor
234 | e .
\ Bridge |
’ . I ‘ I

: Device '
i 241 |
! - [}

VDI

230a

Server 206
Memory 231

Server Mapping Table 245

Known Server
Packets 242

Server Mapping
ID numbers 243

Processor

232

3/17

Local Device 235a
{e.g. USB device, TWAIN
device, & smart card
device)

Client Computing Device
202b

AN

35b

Local Device

FIG. 3A

WO 2020/154141

o))

Gateway Device 3

Memory 337

Client Mapping Table 344

" Client mapping
ID numbers 339

Known Client
Packets 338

PCT/US2020/013607

Local Device 335a
{e.g. USB device, TWAIN
device, & smart card device)

Aling or Decoupling
\(eg]. wired, wireless)

Client Computing Device

VDI 330a > 3023
Processor
340 Client Computing Device
B— VDI 330b 302b
3
Server 306
Memory 331
FIG. 3B

Server Mapping Table 345

Known Server
Packets 342

Server Mapping
ID numbers 343

Processor

g

WO 2020/154141 PCT/US2020/013607

940

{ Start),./‘/M%}

A
Generate a server mapping table

943

3 //945
Generate a client mapping table

.
fa”

ocal device coupled or decoupled to the

~947
given client computing device? g

Yes

949
Generate compressed client initialization packets b

A P
—~G51
Send the compressed client initialization packets to the server -

5/17

WO 2020/154141 PCT/US2020/013607

260

(Start)y./’w%l“

h

Generate a client mapping table comprising known client packets associated with
the at least one local device, and client mapping ID numbers respectively associated

with the known client packets \
963

7

x

ocal device coupled or decoupled to thé
given client computing device?

Determine whether at least one client packet from client initialization packets is Mf’“"%?
within the client mapping table

h
Replace the at least one client packet with at least one client mapping ID numberto | 969
define compressed client initialization packets

. X Vel
Send the compressed client initialization packets to the server
v ~973

(End -

FIG. 4B

6/17

WO 2020/154141 PCT/US2020/013607

280

(Start)w/’ﬁgsl

k

Generate a server mapping table comprising known server packets associated with
the at least one local device, and server mapping ID numbers respectively associated
with the known server packets

P/,r-982

X

ocal device coupled or decoupled to thé
given client computing device?

983

Determine whether at least one server packet from server initialization packetsis | /™ 984
within the server mapping table
b4
Replace the at least one server packet with at least one server mapping 1D number fj’”985
to define compressed server initialization packets
A
Send the compressed server initialization packets to the given client computing wf"“936
device
i‘ 987

FIG. 4C

7117

WO 2020/154141 PCT/US2020/013607

905
IDENTIFIER DEVICE CLIENT SEQUENCE SERVER SEQUENCE
0 VID: 1234 PID: 5678 CAPTURED REQUEST RESPONSE | CAPTURED REQUEST RESPONSE
(WEBCAM) SEQUENCE, SEQUENCE.
07 VID: 2345 BPID: 6789 | CAPTURED REQUEST RESPONSE | CAPTURED REQUEST RESPONSE
(PEN) SEQUENCE, SEQUENCE.
03 VID: 1111 PID: 2222 CAPTURED REQUEST RESPONSE | CAPTURED REQUEST RESPONSE
(SENSOR) SEQUENCE. SEQUENCE.
D4 VID: 4444 PID: 5555 CAPTURED REQUEST RESPONSE | CAPTURED REQUEST RESPONSE
(WACOM DEVICE) SEQUENCE, SEQUENCE.
FIG. 5
201
2020\ 206\'
CLIENT SERVER

l
NDEVICE ARRIVAL

2350
@ o] I
2 DEVICE IDENTIFIED
3 MAP ID SENT TO SERVER: D1

4 DEVICE INITIALIZED CLIENT NO DATA 4 DEVICE INITIALIZER SERVER

————————————————————— -

-

‘5 DEVICE INITIALIZED RESULT EX(HANGE
6 DEVICE fNITIALIZED 6 DEVICE ||NITIAL|ZED

FIG. 6

8/17
SUBSTITUTE SHEET (RULE 26)

PCT/US2020/013607

WO 2020/154141

L 'Ol
woydings g 103d10se s0y3duose g mydusse g 1wopdsed ioyduvsag wduogag 1094 uss3 0
jurodpu gy wiedpug jurtedpuy wodpuy ndpun jodpuy witodpuy juredpuy
{ { { { i
spundpuWnNg w ﬁzma%cmﬁszam Ecmgwcwévzﬁ FHOdpUIMINNY m
wydussag 1durseg 1o3dunsag 1038955
pORP R BIEPBY BOPPRYY sopEag
SIOEPBJURLNH T SHORPHFUPLNNG
1egduosag royduossg
uonpeinbyuosn yoneinbiyjuon

!

016

SUOHPINEGUS WG M

1opdursa geomag

9/17

PCT/US2020/013607

WO 2020/154141

g 94

NOIDNNS

1SOH

Slé

AIX

1Dvd NI¥OL

1no

LDV DIVHSONVH | 1DDvdvva |
40443 ~= "
Ve =—{ TS =
W~ WN |
SIS =— WY g
4003 NINOL NI ~— m
INIONId LAMAUIINI ON =——{ WN =
IWH=—— VIS |~

4ON¥3 V1vQ = |
SIS =—| W = XYIYQ

NI

10/17

SUBSTITUTE SHEET (RULE 26)

WO 2020/154141

Smart Card

Reader

Clierd Server

PCT/US2020/013607

VDA Logon Process

st oarg

|

"

0
fary
(]

i o e e W s

Lrdock privals key with Pil
Sign nonce

Enurerate readers, $late) i

e i o e - et i my

Response (R84 Contexty >
,‘E%ummt@iwmsw ‘

e Response oaters,stile), >
¢ -Evianian Smat Carg Commuritation Cantest, __
H

Resporse (SC Context)

s Rt

o o o i i

Retrieve card ATR string |

s an o e o FRESFOTSE (G 1D S,

Rafrawe cordificate (pad 1)
e e
Bend cedifinate ot 1)

Redneve cartificate (Dot N

Qerwd catificate (pard M

v JEhiEnge-espancs (BIN, nonce)

Modlified W f@kﬁ%
Card 1 shing

Look up, fows CSP ¢ y
SnE—

e e e i .,_-w_-_,’.

Extract UPN, putiic key
Prompt for PIN

B

) ﬁﬂg‘m?m‘ww“ MWW-}E

o s A S W

e g e B e e e e e A R e

Veetify sigeadurs of skined inags g
with public key from cenificale

Oty UgBE o oy

Smart Card

Reader

Client

Server

VDA Logon Process

FIG. 9A

11/17

WO 2020/154141 PCT/US2020/013607

Qo
fard
~

|

Smart Card Reader Chent Server VDA Logon Process |

i e ENEAGETHE GBS, SLERY

Engent cang

Entavish Smod Swd Hosturce Mananes Contont prermmsen,
for fervns H

€ Gt Caed O i gt X
tor Senesr H
:

Faren Lavd ATR shivg, 1D slriegy covtinoty

Lok g LR prommimmm

‘,,_ —

Mo 1, Dfferenhial dota
YR

reatary, wlals

FEE,

Ll 2 BB P,

* Esbsbiish St Cond Bosguros Monager Cortaut

Bnparss TR Coetinl »

Errtviarade frosups . slate)

Resporss feadus, slatey — *

* . Estubasn Smaa Cand Conprimination Conboxd

Respengs (56 Cortestl ¥
4 Fadritdn S ATR ehitg

Rexgnose (ward ATR shiegy)(
Lok oy, load B8P E‘T«—mvx
N

Shitnive TRtoe

Provide carditoste ¥
Exrat LR, PR key o,
Prosnpt for Pig |
SR

Undon: prevate kit BING- .
Sl meanze] i

sgiesponss (sigid ranas] |

R |

Vetlly wiatin gl e p e ev
with pednie ke troen certiols H
;

EOpn sge pomm e +

Smart Card || Reader Client Server VDA Logon Process

FIG. 9B

12/17

WO 2020/154141 PCT/US2020/013607

920 1S 157 DESCRIPTOR
A RESET REQUESTTO LR 04 BYTES
L BYHUB BMAMPACKETS NEGUESTED
R 5308 ms 1"3%5}

) SEIUP ADIDR ENIDP bl BREQUEST WOMUE | wNDEX | wlENGTH || ACK || TME
TRANSACTION] B4 | 0 [0 JID->HIS{D] GET DESCRIPTOR | DEWCETYPE | 00000 | 64 | Oedf j[999.%0 1S

f
§
DATA JITRANSACTION [Fif N | ADDR | ENDP 1T DATA MK gL T
TRANSACTION T IS) 096 { 0 { 0 J[{11201000200 0000 081 0x48 | 1.999 ms
f
§

1
TRA Qur | ADDR A
punsiue ATAIOL L LI BB g0 ReseT AFTER RESOLVNG

e

SETUP | TRANSACTION

A~

TRANSACTION |2 W7 0 1 0
i DESCRIPTOR
RESET 25416 ms 5844}

TRANSACTON TF] SEP TADOR [NP 1[0 [TIRT WRGQugs] WIROE | wINOY [WIENGTH I A0 1 T
3 Islod T 0 | 0 DoRISID] ST ADDRESS | WEWADDRESST [GW00 | 0 || Ol |[999750 15
TRANSACTON TE) T ADGR T 6N0° [TOMA I A][TWE | NEW ADDRESS OF 1 IS ASSIGNED AND
RN EER Ox48 | 45389 ms | RE-REQUEST OF DEVICE DESCRIPTOR
TRANSACTON TE)[S0P TADOR [8NP 17 0 [T[R] DREQUEST WILDE | w0 [wlENGTH I 00 1 THE
5 [SICOGCT 1T {0 |[F>HISTD | GET_DESCRIFTOR” | DENCETPE | OONT| 18| 0B || F9750 1

[

NOW ADDRess, | TRASACTOR TF & TAODR [0P T 0k M T

]USEDFROMS 6 ISIT0x96] T 1 0 J[1[12010002 0 00 00 08 || 0x48 || 9097508

NOWON [TRawsacTon TFIT W Ao [BaOp 1T DAk W e
7 ISIT006 1 1 [0 |{o[340434 717 0000 02 07| 0:48 || 53975015
TRANSACTION TE)[W T A00R [A0 | [T DA I A][TiE
8 [SIode | 1 10 J[T{on o] 0xd8 || 500
TONSACTON TR ouT T ook T Ewp [T o) Ak J[TWE
0 Sl T 1 101 088 || 190 ms
TRANSACTION TFI[SE0P T ADOR [0P 1[0 [TIR] REQUEST WALUE WOE! T wWLENGTH][4K
10 SIT085T 1 | 0 |[D>HISID | GET DESCRIPTOR | (ONFGURMIORTVPE | G000 3 || 0f

SYNC | SETUP] ADDR | ENOP | CRCS [£0P |[T0EE] \ REQUEST FOR CONFIGURATION
PACKETS 00000001] 084 | 1 [0 [0a7j205]] 2 DESCRIPTOR- 15T REQUEST

(THESE 3 PACKETS ~ J| PACKET# | SYNC | DATAO DATA (RCI6 | EOP 1f IDLE

PACKET# | F
§
t
COMPRISE TRANSACTION L_T66 [100000001] 0xC3 [90 06 0002 00 00 09 00 [0x7520{3.00
F
§

SETUP TRANSACTION (™5

#31) WE TFI ST T AR 07| (]
T T e e G

TRANSACTION
1l

f

§

TRANSACTION | F
151036 1 0

f

§

N | ADDR | ENDP DATA K i TIME
Gde [1 1 0 09 0219 00 010100 80{ 0xd8 1| 999.150 s

|
I
N[ADDR [ENOP I T OATA || ACK f| TME
1
|
1

37 10048 905018

R
g [T m FIG. 10A

TRANSACTION | Fi{ OUT | ADDR | ENOP
13 87 1 1] 0

13/17
SUBSTITUTE SHEET (RULE 26)

WO 2020/154141

925
\

PCT/US2020/013607

TRANSHCTON [F[SETOP_T ADOR T EROF | D JTTR]SREQURYT WIAE T WD wlENGTH [ACK][THE
R D->H] 5 0 GET_DESCRIPTOR [CORFIGURATORTYPE] 0x0000 [155 || 0df | 999750 8
TRARSRCTION][W A00R T 80P [T DA N[THE
5 IS 0] 1 1109 079 00 01 07 00 80 J{ 0x48 |[999750 1S
TRARSHCTION][W[SO0k [EX0P | [T DA W] T
6 [S)ode T 10 J[0[3209 7400000155 00][0x48 || 59875 1S
TRARSACTION [F][8T A0GK S0P J[T i N
7 [S)0u96] T 10 J[TI000007 03 82 07 40 00| 0x48] 999750 165
TRRGACTON 1[0 00K [G0 [TTORAJ KK |[W | ReQUESTFORDEVICE ° STRING DESCRIPTOR
18 [s@a6] 1 [0 ol o0 |[0a@lTas] quALIFIER DESCRIPTOR REQUEST (LANGUAGE IDs)
TRARSHCTION [F) OUT [AOOR [ER0P T T ACK][THE
19 [S)o87] T [0 {0 {{6dB][199 ms
TRARSRCTON T FSETUP AO0R [ENOP][0 [TTRT BREQURST WlAlIE lNDEX [l ENGIR] [ACK][THE
20 ()[04l 1 |0 J(0->H] ST0 GET_DESCRIPTOR] DFAIE_QALFIERTIPL | 0| 10 |[0udl | (99975018
TRANSACTON TF][W T AODR T ENOF J[SALL][TWE | THIS IS A FULL SPEED ONLY DEVICE. AS RESULT.
0 [SHox86] 1 1 0 [{08][2000ms | ASTALL REQUEST ERROR IS ISSUED
TRANSACTON TP SETUP A00R [ENDP][D [TTRT BREQUEST WAl DR [WLENGTH|[ACK] THE
7 [5)(084] 1 | 0 J({0>H[S[0 [ET_DESCRIFTOR] _STRIG TYP ARG CODES EQUESTED | ANGUAGE D G | 155 [FR833 18
TRARSACTON T][NT 00R [Woe J(TT DR | AK][THi
2 [S)od6] 1 0 J(1104030904][0cd8][1.5%ms
TRARSACTION [0UT T ADOR] EXOP J T DATK][Ak J[Tk
2 [s]oa7] 1T T 0 I {[ond8 [1999ms
TRARSACTION][SETUPT ADOR JERDP 1 D [T[R]BREQUEST WALl WD TWlENTH [A][TE
25 (5084l 1 | 0 J(0>HS 0] GET_DESCRIPTOR | STRWGTPE OEKT | NGUAGE 00409 | 155 [0wl [999150
TRARSACTION T X T A0DR] £80¢ [T] M) T
26 [S]08] T 0 {[1{180355 00530042 00] 048 (990750 8
TRARSHCTON [F][_IN_[AO0R [ENDP][T DA M T
1 [SI(x86] 1 [0 J(0[20 00150079 0051 00} 0«48 |[999750 15
TRARSHCTIONF [IX_ T A00R | £80¢ |1] NI T
28 [SJ{ox981 T [0 J(0l60 007000 60 00T5 00] 048 [999750 1
CTRANSACTON)[R T ADOR RO J(TT OAtk J(Ack][T] FiIG. 10B
14/17

SUBSTITUTE SHEET (RULE 26)

WO 2020/154141

930
\

PCT/US2020/013607

SUBSTITUTE SHEET (RULE 26)

TRANSACTION [F {f OUT { ADDR [ENDP |(T} DATA || ACK ;| TIME RE-REQUEST OF DESCRIPTORS BY DRIVER
0 {507 11000 0x48 4| 1999 ms (
TRANSACTION | F 1| SETUP {ADDR [ENDP Y} D JTIR| BREQUET wiALLE wiNDBE | wLENGTH | ACK 1| T
31 TSIE0x84] 1 1 0 JID->H|S]D [GET_DESCRIPTOR | STRING TYPE, LANGID CODES REQUESTED [LANGUAGEDD 0x0000] 255 [0udd || 999.730 S
TRANSACTION | F (| N | AODR |ENDP|IT! DATA || ACK || TME
32 [SH0x96] 1 | 0 j|1j04030904]] Ox48 || 1999 ms
TRANSACTION | F || OUT | ADDR | ENDP }IT{ DATA | ACK)i TIME
33 15i(0x87} 1 10 411 0x48 1 1999 ms
TRANSACTION | F |1 SETUP [ADDR [HOP1Y D [TIR] BREQUEST wiALlE wiNDBE [wENGTH | ACK || TIME
34 1510:84] 1 1 0 J{D->H|S[D{GET DESCRIPTOR | STRINGTYPE, INDEK? [LANGUAGEID Oe0d09] 255 | 0udf |} 999750 118
TRANSACTION [F (] N | ADDR | ENDP i DATA AK || TME
35 [SH0x96) 1 | 0 [|1]1803350053504200]| 0x48 1{399.833 1S
TRANSACTION {F | N | ADDR | ENOP HIT 0ATA AK 1 TIHE
36 [SOx961 1 | 0 JI1120004500180061005| Oxd8 j{399.750 s
TRANSACTION [Fil N | ADDR | ENDP 11T DATA AK 1 TIME
3 15)(0x96] 1 1 0 J{1{60007000600069 001 0x48 1{395.750 s
TRANACTION | F {1 IN | ADDR {ENDP ||T/ DATA J| ACK) TWE
38 [Si0x900 T 104 0x48 1 1.993 ms
TRANSACTION | F }| OUT | ADDR [ENDP (1T DATA || ACK || TINE
39 (SHOx7L 1 10 gH 0x48 1129.993 ms
TRANSACTION | F {1 SETUP JADDR [ENDF|1 D |TVR| BREQUET wIALUE | wINDEX jwlENGTH)| ACK || T
40 1S[{0x841 T 10 JD->H|S|D{GET DESCRIPTOR { DEVICETYPE | 00000 | 18 [Oxd8 §| $99.730 1S
TRANSACTION [F1{l N | ADDR | ENOP (T DATA ME)L T
41 {Si0xd6) T 1 0 J{1112010002000002091] 0xd8 ||999.750 us
TRANCACTION {F | N | ADDR | ENDP {1 DATA AK |1 TIME
42 {S)|0x961 1 | 0 J{0}3404341200000102]i 0xd8 |1399.750 us
TRANSACTION | F |1 N | ADDR {ENOP|ITi DATA J ACK)| TIE
43 150(0x961 1 | 0 J{T10001}; Ox48 || 999.150 1S
TRANSACTION | F |1 OUT | AUDR | ENDP)| T{ DATA || ACK || TWE
L Y (U7 I) 0xd8 §|_1.999 ms
TRANSACTION [F [SETUP |ADDR [ENOPHY D [TIR| BREQUEST WALUE wNDEX | wlENGTH | ACK || TIME
45 15)1084] 1 | 0 J{D->H]S{D [GET DESCRIPTOR | CONFIGURATIONTYPE | 00000 | 9] 0udf]| 999750 uS
TRANSACTION [F{} N | ADDR | ENDP T DATA AK || TIHE
46 [SHOx96f 1 | 0 f10]09021900010100801| 0x48 j{399.730 s
TRANSACTION [F I IN | ADDR [ENDP {IT4 OATA Ji ACK {1 TIME
47 IS10x361 1 0 J{1j 12 J| Ox48 j{399.833 LS
TRANSACTION | F |1 OUT | ADDR | ENDP (T DATA || ACK || TIME
48 15)07) 1 100 Ox48 1 1.999 ms
15/17

WO 2020/154141

935
\

PCT/US2020/013607

(RE-REQUEST OF DESCRIPTORS BY DRIVER {CONTINUED)

FI6. 10D

16/17

SUBSTITUTE SHEET (RULE 26)

TRANSACTION TEI(S0P [AR [8NP 1 0 [TIR] RIS WLLE WNOE T WG [A 1 T
9S00 T 1 [0 \0>HISID] G DESCRIFTOR | CONFGURATIONTYEE | 000 | 55 || il || SRS
TRAVSKCTOR TEI W T 400K [E0P [T i W T
50 IS 0x9 | 1 1 0 |(1]09 0719 00 01 01 00 80]{ 0x48 || 990487 us
TRANSRCTON TEIT W [ADOR T &P |[T DIk W T
5 IS 0x% | 1 | 0 |0[37 09 0400 00 01 77 00)[0ud8 || 50750 1S
TRANSACTON TEI[W T A00R | P [T DUk W T
7 IS 096 [T [0 |(1]00°00 07 05 81 07 40 00][0xd8 || 999750 18
TRANSACTON TE) W T ADOR [eWop J[TT 0 I M | TWE
5 [SI096 1 T [0 (0] 00 | 0xd8 || 90975018
TRANSACTION TEI(00T 1 AD0K [eNop |1 oAl J[&6 J[T
S S odr 1 1 [o Tad_ || 1990 - REREQUEST FOR DEVCE STATLS
TRANSACTION TE][SEUP [M00R [ok0P J[0 [T]R] WRQUST | willlE WD WG [A1 T
55 SIC08d | T |0 |[D>HISID] GH _STATUS | 00000 | DEICE STATUS REQURTED TR IEDE
TONAGTON TEIT I T AD0R [oo |[TT D |[AGK | TE | B0 SELEPONERED B | - REAOTE WKL,
BOTH AR SET 70 ZERD SINCE DEVICE IS BUS 1) AND REMOTE WAKEUP 15 HOT SUPPORTED.
5651068 [1 10 J[T[00 00][0ud8 | 9975018 sm“umxouennmesmvmnos”nﬂ?%% —
TRANSACTION TF) o0 T 400K | &P | DAk |[A J[T CONFIGURATION IS SELECTED.
5 S| 087 1 i il 0x48 11 1999 ms (CONFIGURATION 1
TRANSKCTION TEI[SEP T MO0 [&P I D 1R WEET WLIE WIDEL T wlENGTH [A I T
5 1SU08 T 1 1 0 |0>HISID] ST CONFIGURATION | NEWCONFIGIRATIONT | 00000 | 7 || Ol || THJ5018
TRANGACTION 1 00T | ADOR | #NP |[TT ATk 1[Ak
9 S ode] 1 10l 048

WO 2020/154141 PCT/US2020/013607

g’

3 H
‘ Host
Ept o Wirgent Drelos

SR,

900

Sat-Derilop

Gat-Sw

; § i :

FIG. 11

17/17

	Abstract
	Description
	Claims
	Drawings

