wo 20197006556 A1 | I0K 000 O OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
10 January 2019 (10.01.2019)

(10) International Publication Number

WO 2019/006556 A1

WIPO I PCT

(51) International Patent Classification:
GO6F 17/00 (2006.01) HO041 12/16 (2006.01)
GO6F 9/44 (2006.01)

(21) International Application Number:
PCT/CA2018/050825

(22) International Filing Date:
05 July 2018 (05.07.2018)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
62/529,617 07 July 2017 (07.07.2017) UsS
15/906,846 27 February 2018 (27.02.2018) US

(71) Applicant: OPEN TEXT CORPORATION [CA/CA];
275 Frank Tompa Drive, Waterloo, Ontario N2L 0A1 (CA).

(72) Inventors: RAO, Mahesh Bangalore Shankar; 2275
Credit Valley Road, #26, Mississauga, Ontario LSM 6N5

(CA). KUMAR, Pardeep; D 554, Krishvi Gavakshi apart-
ments, Kadubeesanhalli, Bangalore, Karataka 560103
(IN). PRAMOD, Panchakshrappa; 147, Adarsh Vista,
Vibhuthipura, Basavanagar Main Road, Bangalore, Kar-
nataka 560037 (IN). HANUMANTHAPPA, Prashantha;
#1328, Esha Residency, 7th cross, D block, AECS layout,
Kundalahalli, Marathahalli, Bangalore, Karnataka 560037
(IN). SHARMA, Vikash; Flat # 2C-214, Shilpitha Splen-
dour Apartment, Chinappa Layout, Mahadevapura, Banga-
lore, Karnataka 560048 (IN). GUKANTI, Minu; No. 37,
First Main Road, Hemanth Nagar, Marathahalli, Bangalore,
Karnataka 560037 (IN).

Agent: ROBIC LLP; 1001 Square-Victoria, Bloc E, 8th
floor, Montréal, Québec H2Z 2B7 (CA).

74

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA,CH,CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,

(54) Title: SYSTEMS AND METHODS FOR CONTENT SHARING THROUGH EXTERNAL SYSTEMS

EXTERNAL SYSTEM
ADAPTERS
REPOSITORY 130
ADAPTERS
120 EXTERNAL | 190
150 152 122 132 | SYSTEM
¢ S / |
S
SHARING SHARING | EXTERNAL | 192
REPOSITORY |— REPgiIJIORY MODULE |— MODULE | SYSTEM |
A API APL APL
T
P
SHARING (SHARING | EXTERNAL
REPOSITORY || REPgiIPTIORY MODULE SMHS\SLIJ["S MODULE | SYSTEM
B API \ API API ™-182
T % % S
160 164 124 110 112
SHARING
REPOSITORY || REPgiIgIORY MODULE |—!
c API
A ; %
170 176 126
FIG. 1

100

(57) Abstract: Disclosed are mechanisms for sharing managed content through external systems. A sharing module publishes content
in a share and metadata associated therewith to an external system. The share represents a folder or directory in a repository managed
by an information system such as an enterprise content management system. The publication is made possible through application
programming interface (API) calls handled by a first sharing module API, a repository API, a second sharing module API, and an
external system API. These APIs together provide a one-to-one mapping of communications protocols used by the managed repository
and the external system. The share in the managed repository and the share published to the external system are synced and any conflict
between the two is detected and resolved. The shared content can be repatriated back to the managed repository and the shared version

deleted from the external system.

[Continued on next page]

WO 2019/006556 A1 { I 10000000 RO A

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KI, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

[G001]

[0002]

[0003]

WO 2019/006556 PCT/CA2018/050825

-1-

SYSTEMS AND METHODS FOR CONTENT SHARING THROUGH
EXTERNAL SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims a benefit of priority from U.S. Provisional Application No. 62/529,617,
filed July 7, 2017, entitled “SYSTEMS AND METHODS FOR CONTENT SHARING
THROUGH EXTERNAL SYSTEMS,” and claims a benefit of priority under 35 U.S.C. § 120,
of U.S. Patent Application No. 15/906,846, filed February 27, 2018, entitled “SYSTEMS AND
METHODS FOR CONTENT SHARING THROUGH EXTERNAL SYSTEMS,” both of which
are hereby fully incorporated by reference in their entireties.

TECHNICAL FIELD

This disclosure relates generally to the field of enterprise information management (EIM).
More particularly, this disclosure relates to EIM systems operating in networked computing
environments. Even more particularly, this disclosure relates to sharing, through external
systems that operate in a cloud computing environment, content or any information that is
managed by a restricted storage system, repository, or an EIM system that operates in an
enterprise computing environment.

BACKGROUND OF THE RELATED ART

Enterprise information management (EIM) is a particular technical field in Information
Technology (IT). EIM combines many enterprise class systems such as enterprise content
management (ECM), business process management (BPM), customer experience
management (CEM), and business intelligence (Bl). An EIM system may utilize a content
server to, among other things, store, and manage an organization or enterprise’s digital
assets such as content and documents (which are collectively referred to herein as
‘managed objects”). To protect these managed objects, the content server would operate
behind the enterprise’s firewall and be particularly configured so that only authorized users
may have secure access to the managed objects. Often, content servers are located on the

premises (e.g., a server machine or machines on which a content server is implemented

[0004]

[3005]

[0006]

[0007]

WO 2019/006556 PCT/CA2018/050825

-2.

would be physically installed in a building) of the organization or enterprise. This is
sometimes referred to as “on-prem.”

As an enterprise continues to grow, so does the need for enterprise users to collaborate
and/or share files with external users. Since external users are generally not authorized to
access the enterprise’s EIM system, they cannot view and/or edit any file managed by the
enterprise’s content server. When a need arises for an external user to review and/or edit a
file, one common option is for an enterprise user to log into the enterprise content server
from within the enterprise network where the content server resides, retrieve the file, and
share a copy the file with an external user by email or through a cloud-based storage system

that is open to the public.

Once that copy is shared outside of the enterprise network, it is no longer under
management by the content server. The content server has no way of tracking the shared
copy, getting the shared copy back to the content server, and/or updating the original file to
reflect any changes made to the shared copy. Since this kind of “copy-and-set-free sharing”
can pose a security risk, the sharing feature may be disabled in a content server to prevent
sharing certain files, folders, directories, etc. However, this means that the need to share
externally is not addressed. Embodiments disclosed herein can address this need and

more.

SUMMARY OF THE DISCLOSURE

A goal of the invention is to improve EIM systems by providing a safe and secure way to
expose content managed by an “on-prem” EIM system operating in an enterprise computing
environment. This goal can be achieved in a sharing module running on a feature rich
content server platform where content server users can safely and securely share and
collaborate on EIM-managed content with external participants through an external system
such as a cloud-based storage system. In this disclose, the term “platform” broadly refers to
a particular structure on which multiple software products (i.e., applications) can be built
within the same technical framework. The structure, in this case, includes both hardware

and software components.

Embodiments disclosed herein can be implemented on many suitable EIM systems.
Documentum, available from OpenText, headquartered in Canada, can be a non-limiting
example of a feature rich ECM platform on which some embodiments disclosed herein can
be implemented. For the purpose of illustration, and not of limitation, OpenText™ Core

(“Core”) can be a non-limiting example of an external system (i.e., a system that is external

[0008]

[3009]

[0010]

WO 2019/006556 PCT/CA2018/050825

-3-

to an EIM system or content server operating in an enterprise computing environment, e.g.,
a cloud-based storage system operating in a network computing environment that is external
to the enterprise computing environment). Core operates in a cloud computing environment
and provides personal cloud storage for securely sharing and collaborating on files. These
files are stored by Core in the cloud computing environment (e.g., on a tenant server
computer in a multitenancy platform operated by a cloud-hosting service provider such as
OpenText™ Cloud) which is separate and independent from the enterprise computing
environment. Skilled artisans appreciate that embodiments disclosed herein are not limited
to Core and can work well with any external systems, including any third-party cloud storage
system operating in a cloud computing environment external to an EIM system disclosed
herein operating in an enterprise computing environment behind a firewall thereof.

In today’s highly connected world, enterprise users often collaborate with other individuals
and organizations for various purposes. This collaboration requires the sharing of
authorized content (e.g., managed enterprise content that has been reviewed and approved
for sharing outside of the enterprise) in the repository with collaborators at the systems of
content consumption. This demography of collaborators would otherwise not have access to
the content because of system limitations. For example, an EIM system operating at the
backend of an enterprise computing environment is not directly connected to a frontend
content delivery application such as a faxing application. Further, restrictions such as user
privileges with respect to external users may limit how content can be exchanged/shared
between collaboration participants. For instance, User John may prefer to get information in
a fax, but existing EIM systems are not directly connected with a faxing application. As
another example, User Cathy who is a co-author of an artifact may want to work on the latest
copy of the artifact and may want to use a file sync-n-share system to work from different
devices. However, her publisher’s repository is not directly connected with an external file
sync-n-share application. These limitations and restrictions can adversely affect

collaboration and reduce productivity/performance.

A previous solution attempted to address these issues by allowing a user to transfer content
out of a repository using an external file sync-and-share service. However, this requires a
complicated, hard-coded custom set up between a single repository and a single external
system. Once set up, the single repository and the single external system have a tightly
coupled relationship - the file sync-and-share service can only transfer content between the

single repository and the single external system.

This kind of content sharing approach can limit the number of systems of content
consumption (e.g., external systems to which content can be transferred). There is also a

[G011]

[3012]

[0013]

WO 2019/006556 PCT/CA2018/050825

-4-

restriction on the number of repositories from where content can be transferred to these
systems of content consumption. Another limitation is that it does not provide for transferring
any metadata associated with the content that is being shared. Generally, an external
system will create their own metadata, so they do not use source metadata.

In some embodiments, a method for sharing content managed by an EIM system through an
external system may comprise receiving, by a sharing module, an instruction to publish a
share to an external system, the share representing a folder or directory in a managed
repository, the sharing module running on a server machine operating in an enterprise
computing environment, the managed repository residing in the enterprise computing
environment, the external system operating independently and external to the managed
repository, the server machine having a processor and a non-transitory computer readable
medium. The method may further comprise publishing, by the sharing module from the
managed repository to the external system, objects in the share and metadata associated
with the objects. In some embodiments, the metadata associated with the objects are
generated in the EIM system that manages the managed repository to provide context to the
objects. These are sometimes referred to as “source” metadata. Previously, when
managed content is shared externally, such source metadata are not shared with and/or

used by an external system.

In some embodiments, publication by the sharing module may include making a first
application programming interface (API) call to retrieve the objects and the metadata from
the share in the managed repository and making a second API call to communicate the
objects and the metadata to the external system. In some embodiments, the first API call is
made through a first sharing module API and a repository API, the first sharing module API
interfacing the sharing module and the repository API, the repository API interfacing the first
sharing module and the managed repository. In some embodiments, the second API call is
made through a second sharing module API and an external system API, the second sharing
module API interfacing the sharing module and the external system API, the external system
APl interfacing the second sharing module API and the external system. The repository API,
the first sharing module API, the second sharing module API, and the external system API
together provide a one-to-one mapping of communications protocols used by the managed
repository and the external system.

In some embodiments, the instruction to publish is received by the sharing module
automatically and programmatically from a scheduler in accordance with a share profile
defined by an administrator of the managed repository. The share profile contains content
sharing rules specified by the administrator as being applicable to the share, the scheduler

[0014]

[0015]

[0018]

[C017]

WO 2019/006556 PCT/CA2018/050825

-5-

running on the server machine. The content sharing rules may be characterized as a one-

way sync rule set or a two-way sync rule set.

In some embodiments, responsive to the instruction to publish the share to the external
system. A graph builder, which may be part of the sharing module, may build a first graph
for the share. The first graph contains nodes representing the objects in the share at the

time of publication.

In some embodiments, after the share is published to the external system, the sharing
module monitors any changes to the share by performing a one-way sync or a two-way
sync, on demand, continuously, or per a predetermined time interval, to sync the share in the
managed repository and the shared published to the external system. The syncing
operation returns an update to the share from the managed repository or the external system
if a share profile dictates a one-way sync, or updates from both the managed repository and
the external system if a share profile dictates a two-way sync.

In some embodiments, the method may further comprise building a second graph for the
share based on a result from the syncing operation, detecting any change to the share by
comparing the first graph for the share and the second graph for the share, determining
whether any change to the share causes a versioning conflict for an object in the share, and
if a versioning conflict for an object in the share is found, communicating conflicting versions
of the object involved in the versioning conflict to a conflict resolver for conflict resolution. In
some embodiments, a conflict resolution may include renaming a file extension of a first
version of the conflicting versions of the object to thereby change a file type of the first
version, presenting at least the first version of the object to a user through a user interface
running on a user device, prompting the user to make a selection, through the user interface,
on one of the conflicting versions of the object, and determining a resolved version of the
object based on the user selection. The resolved version of the object can then be synced
back to the managed repository, the external system, or both. This is so that the externally
shared content will be in-sync with the version residing in the backend. When the need to
externally share the content no longer exists, the externally shared content can be
repatriated back to the managed repository. After the final sync operation, the version that
had been published to the external system by the sharing module is deleted by the external
system responsive to a request from the sharing module. The external system notifies its
user(s) that the content at issue is no longer shared.

In some embodiments, the external system can be one of a plurality of external systems
connected to the managed repository through the sharing module. Each external system of

the plurality of external systems would have a one-on-one mapping between the managed

[0018]

[0019]

[0020]

[C021]

WO 2019/006556 PCT/CA2018/050825

-6-

repository and the each external system through a pair of sharing module APIs, a repository
API specific to the managed repository, and an external system API specific to the each
external system. Likewise, the managed repository can be one of a plurality of managed
repositories connected to the sharing module. Each managed repository of the plurality of
managed repositories would be connected to the sharing module through a repository API
specific to the each managed repository and a sharing module API such that, although the
sharing module allows for multiple-to-multiple connections among managed repositories and
external systems, each pair of a managed repository and an external system can have a
specific one-to-one mapping relationship. This arrangement makes the underlying
architecture extensible, adaptive, and flexible.

One embodiment comprises a system comprising a processor and a non-transitory
computer-readable storage medium that stores computer instructions translatable by the
processor to perform a method substantially as described herein. Another embodiment
comprises a computer program product having a non-transitory computer-readable storage
medium that stores computer instructions translatable by a processor to perform a method

substantially as described herein. Numerous other embodiments are also possible.

These, and other, aspects of the disclosure will be better appreciated and understood when
considered in conjunction with the following description and the accompanying drawings. It
should be understood, however, that the following description, while indicating various
embodiments of the disclosure and numerous specific details thereof, is given by way of
illustration and not of limitation. Many substitutions, modifications, additions and/or
rearrangements may be made within the scope of the disclosure without departing from the
spirit thereof, and the disclosure includes all such substitutions, modifications, additions

and/or rearrangements.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings accompanying and forming part of this specification are included to depict
certain aspects of the invention. A clearer impression of the invention, and of the
components and operation of systems provided with the invention, will become more readily
apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in
the drawings, wherein identical reference numerals designate the same components. Note
that the features illustrated in the drawings are not necessarily drawn to scale.

FIG. 1 depicts a diagrammatical representation of sharing content stored in managed

repositories in an enterprise computing environment through a sharing module that connects

WO 2019/006556 PCT/CA2018/050825

-7-

the managed repositories with an external system according to some embodiments
disclosed herein.

[0022] FIG. 2 depicts a diagrammatical representation of an exemplary sharing module’s system

architecture according to some embodiments disclosed herein.

[0023] FIG. 3 depicts a diagrammatical representation of an exemplary sharing module’s system
components and operation flows according to some embodiments disclosed herein.

[0024] FIG. 4 depicts a flow chart illustrating a method for content sharing through an external
systems according to some embodiments disclosed herein.

[0025] FIG. 5 depicts a diagrammatic representation of a distributed network computing
environment where embodiments disclosed can be implemented.

DETAILED DESCRIPTION

[0026] The invention and the various features and advantageous details thereof are explained more
fully with reference to the non-limiting embodiments that are illustrated in the accompanying
drawings and detailed in the following description. Descriptions of well-known starting
materials, processing techniques, components, and equipment are omitted so as not to
unnecessarily obscure the invention in detail. It should be understood, however, that the
detailed description and the specific examples, while indicating some embodiments of the
invention, are given by way of illustration only and not by way of limitation. Various
substitutions, modifications, additions, and/or rearrangements within the spirit and/or scope
of the underlying inventive concept will become apparent to those skilled in the art from this
disclosure.

[0027] A goal of this disclosure is to provide a feature-rich EIM platform operating in an enterprise
computing environment where enterprise users can safely and securely share and
collaborate on managed content (e.g., documents stored in a repository managed by an EIM
system operating, safely and securely behind the enterprise’s firewall, in the enterprise
computer environment) with users who otherwise have no access to the managed content
(e.g., external Core users and/or enterprise users who are not authorized users of the EIM

system).

[0028] Sharing content with external participants/collaborators should not burden existing EIM users
with having to learn how to navigate and use an external system. For security reasons,
interactions between EIM users and the external system should be kept to a minimum.

Instead, EIM administrators should control (e.g., through content sharing rules) how or when

[0029]

[0030]

[0031]

[0032]

WO 2019/006556 PCT/CA2018/050825

-8-

content is to be shared, who has access to sharing privileges, etc. Preferably, sharing
content with external participants/collaborators should have a minimum or negligible impact
on the EIM functionality, usability of the EIM system/repository by EIM users, and/or
managed documents that have been shared.

In some embodiments, this and other goals can be realized in a sharing module strategically
positioned between a repository layer and an external system layer. The sharing module
can be located “on-prem” in an enterprise computing environment or hosted in a cloud
computing environment.

The repository layer has one or more repositories, usually operating at the backend of an
enterprise computing environment. These can be any suitable storage systems configured
for storing managed objects, including managed content such as files, documents,
applications, and any digital assets owned by the enterprise. These storage systems can be
used and/or managed by various enterprise software systems, including various types of
EIM systems, for instance, OpenText™ Content Server, Documentum, ApplicationXtender
(AX), etc.

The external system layer has one or more external systems with which the sharing module
is connected. As discussed above, a system external to a repository managed by an EIM
system can be an on-prem external system or a cloud-based external system. An external
system has the necessary hardware (e.g., server machine(s)) and software (e.g., a cloud- or
web-based user interface) with storage(s) accessible by user devices, each of which having
its own data storage such as a non-transitory computer readable-medium.

As discussed above, in some cases, an enterprise user may need to collaborate and/or
share files with external users. For example, an employee “Engineer” of the enterprise may
try to create a design specification for a new pump that will be delivered to a customer. The
pump specification document is stored in a repository managed by Documentum that is
owned and operated on-prem by the enterprise. However, Engineer needs some input from
an external user “Contractor” who will be supplying parts to the pump. Contractor does not
have access to Engineer's document in the Documentum repository, but Engineer needs
Contractor to be able to edit and make changes to the pump specification document to
include/update information on the parts supplied by Contractor. To solve this dilemma,
Engineer could make a copy of the pump specification document stored in the Documentum
repository and upload the copy to an external system accessible by Contractor. Additionally
or alternatively, Engineer could email the copy of the pump specification document to
Contractor.

[0033]

[0034]

[0035]

[0036]

WO 2019/006556 PCT/CA2018/050825

-9-

Once a copy of managed content (e.g., the pump specification document in the above
example) is made and shared (e.g., by email and/or uploading to an external system)
outside of the enterprise, it is no longer under management by the ECM system (e.g.,
Documentum in the above example). Thus, an external user (e.g., Contractor in the above
example) could freely view, modify, copy, store (e.g., in a storage of the external system
and/or in a storage on the external user’s device), and even share it with other users who
otherwise would have no access to the managed content (e.g., Engineer’s document in the
above example) stored in the repository. Since the shared copy is not stored in the
repository, the ECM system has no way of tracking the shared copy, getting the shared copy
back to the repository, and/or updating the original file to reflect any changes made to the
shared copy.

To an enterprise (or any entity with content management needs), this kind of “copy-and-set-
free sharing” poses a security risk. Therefore, the sharing feature is usually disabled or
turned off by default in an EIM system to prevent unauthorized sharing of certain files,
folders, directories, etc. An administrator of the EIM system can enable sharing and assign
sharing privileges to EIM users through an administrator user interface (“UI”) of the sharing
module.

Following the above example, suppose Engineer is granted a sharing privilege to share the
pump specification document stored in the Documentum repository with Contractor through
a designated external system such as Core. Engineer may place the pump specification
document in a folder in the Documentum repository designated for sharing and provides
information that identifies Contractor (i.e., information that identifies an external system user
with whom the managed content is shared by an EIM user), for instance, an email address
of Contractor. In this example, from the perspective of the sharing module, Engineer is the
“shared-by” user and Contractor is the “shared-to” user. Alternatively, Engineer may
designate a folder containing the pump specification document in the Documentum
repository as a share that should be published to Core (or multiple external systems, as
explained below) and accessible by “shared-to” user(s).

An administrator of the Documentum may specify to the sharing module, through the
administrator Ul, a share profile containing a list of shares (e.g., designated folders or
directories in the Documentum repository) subject to certain content sharing rule(s) (e.g.,
content sharing rules that govern when content in a share is to be published or otherwise
shared externally, when syncing is to occur, how often syncing is to occur, whether it is a
one-way sync or a two-way sync, when the shared content is to be repatriated back into the
repository, etc.). Such a share profile is created and maintained through the administrator

[0037]

[0038]

[0039]

[0040]

WO 2019/006556 PCT/CA2018/050825

-10-

Ul. The sharing module’s sharing and syncing functionality, further explained below, can be
implemented as a sync-n-share service that can be included in many frontend user

applications (e.g., client applications of EIM systems).

Using Core as an example of an external system, when content in a share in the
Documentum repository is published by the sharing module to Core, everything in the share
is provided to Core, along with information identifying “shared-to” user(s) and corresponding
role(s). Depending upon the role assigned to a shared-to user, the shared-to user is allowed
to view only (e.g., as a viewer) or edit (e.g., as a collaborator or contributor) the shared
content. Core may store the shared content (e.g., in storage location(s) associated with the
“shared-to” user(s)), notify the “shared-to” user(s) about the shared content, and return
identifier(s) (internally used by Core) associated with the shared content to the sharing
module. The unique identifier generated by Core to identify the copy internally can be stored
by the sharing module in a database local to the sharing module for syncing purposes. Core
is operable to notify any and all participants associated with the shared content and handle
registration of any new Core users.

At this point, the shared content in the Documentum repository is the same as the shared
content in Core (i.e., the content is shared between the Documentum repository and Core).
Depending upon the shared content’s share profile, the shared content may be subject to a
one-way sync or a two-way sync performed by the sharing module. Syncing may occur
continuously or at a time interval.

In a one-way sync, changes to the shared content can only be made on either the repository
side or the external system side. In a two-way sync, changes to the shared content can be
made on both the repository side and the external system side. That is, in a two-way sync,
any modifications done to a version of the shared content in the external system by an
external recipient can be retracted back to the repository. In some embodiments,
modifications to a version of the shared content in the repository are also allowed. However,
in a one-way sync, only one of the versions of the shared content can be modified or
changed. In some embodiments, changes to the version of the shared content in the
repository are moved to the external system, but no changes to the version of the shared
content in the external system are allowed (i.e., the version of the shared content in the

external system is read-only).

In some embodiments, once shared/published, the version of the shared content in the
repository is prevented from being altered (i.e., the version of the shared content in the
repository becomes read-only while it is shared externally) and changes to the version of the

[0041]

[C042]

[0043]

WO 2019/006556 PCT/CA2018/050825

-11-

shared content in the external system are moved back to the repository. This scenario is
illustrated in an example below.

Suppose the pump specification document that Engineer shared with Contractor through
Core is subject to a one-way sync. This means that, in this example, once published by the
sharing module to Core for Contractor to edit, the pump specification document stored in the
share in the Documentum repository is made read-only and changes thereto can only be
made through Core. This means that Engineer (or any user of Documentum) is not able to
modify the pump specification document stored in the share in the Documentum repository,
but Contractor (and Engineer, if Engineer is also a user of Core) can edit the copy through
Core.

When Contractor has completed their inputs to the copy stored in Core, any final change is
synced back by the sharing module to the Documentum repository to update the pump
specification document. The copy stored in Core is then deleted. This process is referred to
as repatriation. Repatriation of shared content can be triggered by a “shared-by” user (e.qg.,
Engineer) or a content sharing rule set forth in the sharing profile associated with the shared
content (e.g., a content sharing rule specifying a repatriation date, a time limit of external
content sharing, or a condition that revokes a “shared-to” user’s access to the shared
content).

Skilled artisans recognize that, in another example of a one-way sync, the copy of the pump
specification document stored in Core can be ready-only so that Contractor can view, but not
alter or modify, the copy of the pump specification document stored in Core. Rather,
changes are allowed to be made through Documentum (e.g., by Engineer or an authorized
user of Documentum) and the changes are then synced by the sharing module to Core to
update the copy of the pump specification document stored in Core.

[0044] As discussed above, it is very difficult to enable and manage external sharing from an ECM

system to an external system outside of the ECM system. This is because enterprise file
synchronization and sharing (EFSS) is a highly complex functionality and requires
complicated integration between a repository inside of an enterprise and an endpoint system
outside of the enterprise, as well as lengthy user setups for all involved. The sharing module
disclosed herein can significantly reduce this complexity and minimize impact on existing
repositories and ECM systems alike. The sharing module makes it possible for an ECM
system repository to connect to an external system without requiring a fixed connection
between the ECM system repository and the external system. This is further explained
below with reference to FIG. 1.

[0045]

[0046]

[0047]

[0048]

WO 2019/006556 PCT/CA2018/050825

-12-

It should be noted here that, while the example above describes sharing managed content
between an employee of an enterprise and a contractor outside of the enterprise, sharing
with internal users will also work seamlessly. That is, users internal to the enterprise
computing environment can share documents with internal users who are also a member of
the external system. Accordingly, an aspect of this invention is to utilize an external system
as an extension of an EIM system that resides in an enterprise computing environment and
operates behind a firewall of the enterprise. This extension allows sharing from a managed
repository and using the external system as a secure, user-friendly collaboration platform to
provide participants (external and/or internal to the enterprise) access to shared documents.
For example, in a cloud-hosted external system such as Core, participants (internal as well
as external) can readily access Core and collaborate on a document through Core, using

Core’s web client, mobile client, and desktop client apps running on disparate user devices.

To ensure security, all communications between the sharing module and the external system
may utilize the Representational State Transfer (REST) protocol. In some embodiments, the
sharing module may utilize the external system’s REST layer as the API of choice for server-
to-server interactions such as user lookup, share initiation, share revoke, etc. In some
embodiments of a one-way sync, the sharing module makes all the outbound calls (e.g.,
REST API calls) to the external system. In such cases, no inbound connection from the
external system back into the sharing module maybe required. In some embodiments,
sharing scenarios maybe performed by the sharing module, driven manually by end users.
In some embodiments, sharing scenarios maybe performed by the sharing module
programmatically and automatically through a rules-based engine executing rules set forth in
the sharing profile(s) stored in a database accessible by the sharing module (e.g., a local

database).

In some embodiments, the sharing module (also referred to herein as a “sync-n-share
connector”) include new types of adapters (also referred to herein as “connecting interfaces”)
residing between the repository layer and the sharing module and between the sharing
module and the external system layer. The sharing module enables movement of content
between a managed repository and an external point of content consumption, for example,
Core, Microsoft® OneDrive, Google Drive, and/or any cloud-based storage

solutions/systems.

Embodiments described below leverage a new approach to enable enterprise users to share
the content to a targeted demography of collaborators within and/or outside of an enterprise
or organization. This new approach is realized in a new architecture where a standalone
sharing module (also referred to as a centralized content delivery bus or controller, a file

[0049]

[0050]

[0051]

[0052]

WO 2019/006556 PCT/CA2018/050825

-13-

sync-n-share connector, or a synchronizer) can connect multiple repositories to multiple
external systems. On the one hand, the sharing module is connected to one or more
repositories through a layer of adapters referred to herein as repository adapters. On the
other hand, the sharing module is connected to one or more external systems through a
layer of adapters referred to herein as external system adapters. An example of this new
architecture is illustrated in FIG. 1.

In the example of FIG. 1, architecture 100 comprises sharing module 110 that interfaces or
otherwise connects managed repositories 150, 160, 170 with external systems 180, 190
through repository adapters 120 and external system adapters 130. Each repository adapter
comprises a repository API (e.g., 152, 164, 176) and a sharing module API (e.g., 122, 124,
126). The repository APl is configured for communicating with a respective repository and
the sharing module APl is configured for communicating with sharing module 110. Likewise,
each external system adapter comprises a sharing module API (e.g., 112, 132) and an
external system API (e.g., 182, 192). The external system APl is configured for
communicating with a particular external system, while the sharing module API is configured

for communicating with sharing module 110.

In this way, repository adapters 120 represents a first interface layer between a sharing
module and a content repository of an information management (IM) system operating in an
enterprise computing environment, while external system adapters 130 represents a second
interface layer between the sharing module and an external system operating in a network

computing environment external to the enterprise computing environment.

Each of the first interface layer and the second interface layer has a pair of APls, each of
which is configured for a particular function. In the first interface layer, one APl is configured
for communicating with the content repository and another API is configured for
communicating with the sharing module. In the second interface layer, one API is configured
for communicating with the sharing module and another API is configured for communicating
with the external system. That is, the first interface layer has a pair of APIs for each
connection/interface between a content repository and the sharing module, as illustrated in
FIG. 1. Similarly, the second interface layer has a pair of APIs for each connection/interface
between the sharing module and an external system, as illustrated in FIG. 1.

In architecture 100, there are no fixed connections in between a managed repository and an
external system. Rather, through the sharing module, multiple-to-multiple content sharing
connections are possible among managed repositories and external systems, with a one-on-
one mapping between each pair of a managed repository and an external system. In this

way, a new managed repository can be readily added to architecture 100 by interfacing the

[0053]

[0054]

[0055]

[0056]

[0057]

[0058]

WO 2019/006556 PCT/CA2018/050825

- 14 -

new managed repository with the sharing module (independently of any external system)
through a pair of APIs, one for communicating with the new managed repository and one for
communicating with the sharing module. Likewise, an external system can be readily added
to architecture 100 by interfacing the external system with the sharing module
(independently of any managed repository at the backend) through a pair of APIs, one for
communicating with the external system and one for communicating with the sharing
module. Skilled artisans appreciate that architecture 100 is extensible and can be readily
adapted to accommodate multiple managed repositories (managed by the same EIM system

or different EIM systems), as well as multiple external systems.

Before describing the sharing module in detail, it may be helpful to understand a file sync-n-
share service provided by the sharing module. Example use cases can include, but are not

limited to, the following:
Use Case 1: Collaboration through a file sync-n-share service

Enigma is a publishing company that publishes journals in the public health care. Jane is an
employee of Enigma, and works as an editor at Enigma. Jane collaborates with a group of
reviewers at Enigma to review the journals that Enigma publishes. Bob is one of the

reviewers with Enigma and works from a home office.

Enigma stores the drafts and other versions of these journals in a repository (e.g.,
Repository B in FIG. 1). Only employees of Enigma are given access to the repository. The
repository is connected with an external file share system (e.g., external system 180). A
user interface to the Journal library provides Jane with the ability to select and push the draft
journals (through repository adapter 120, sharing module 110, and external system adapter
130) to specific recipients in the external file share system. To do so, Jane picks the content
she wants Bob to review, select “share” and identify Bob as a reviewer of the content using
the file sync and share service, and this journal is now available for Bob to view in the
external system, also using the file sync-n-share service. Once Bob has completed the

review, Jane repatriates the content back into the repository.
Use Case 2: Transmission of managed content as a fax

Modicum is a mortgage agency that provides mortgage to qualifying applicants. Modicum
stores the mortgage applications and related collaterals in an applications repository.
Modicum services its customers through its field agents. Modicum arranges the mortgage
for its customers through its lending partners’ network. Anitha is a field agent with Modicum,
works closely with Leon, a lending partner, and is now working on the mortgage application

of Meera.

[0059]

[0060]

[0061]

[0062]

[0063]

[0064]

WO 2019/006556 PCT/CA2018/050825

-15-

Through the period of processing the mortgage application for Meera, the agents for
Modicum fax various documents for the applicants to sign, and also receive faxes of signed
documents from applicants. These documents are stored in the applications repository at
Modicum. Such applications and related collaterals are typically shared with one or more
lending partners to get customers the best deal. The lending partners and mortgage

agencies perform exchange of documents over a fax network.

Anita uses a web interface of a mortgage software system to review all the applications she
is working on. The mortgage software system is configured with a file sync-n-share service
provided by architecture 100. Anita believes that Leon can offer the best deal for Meera and
contacts Leon. Leon wants to view the associated collaterals and verify that these
documents are vetted by Meera. Since the repository at Modicum is connected with a cloud
fax system through the file sync-n-share service provided by architecture 100, Anita can fax
the mortgage application for Meera and associated collaterals to Leon using the same web

interface that implements the file sync-n-share service.
Use Case 3: Publication of content and metadata to portlets

Pure Pipes sells pipes and flanges. The sales team of Pure Pipes manages the sales-
pipeline and opportunities using their Enterprise Resource Planning (ERP) system. This
ERP system also provides links to a product catalog and pricing information of different
products sold by Pure Pipes. The sales team relies on this catalog to arrive at product
fitment for their customers and offering any discounts.

The product catalog and discounting at Pure Pipes is managed through a pricing and
packaging work-flow in the company. Once approved in the pricing and packaging work-
flow, a product catalog is released through the ERP system. Pure Pipes manages the
pricing and packaging work-flow using an EIM system. Approved product catalogs are
stored in a ‘Product Catalog’ repository. The Product Catalog repository is connected to the
ERP system in an arrangement similar to that of architecture 100. In this example, while the
ERP system is an external system in the sense that it is external to the Product Catalog

repository.

Once connected, every time a product catalog is approved in the EIM system, it is published
along with the associated metadata of the product catalog, to the ERP system. The sales
team can now get to work with the latest product catalog and price list and learn about the
various discounting available. The metadata that is published along with the product catalog

allows for easy searching and categorizing of the product catalog.

WO 2019/006556 PCT/CA2018/050825

-16 -

[0065] As this example illustrates, an external system in this disclosure can refer to a content
consumption system that operates within the same enterprise computing environment where
the content provider system (e.g., a managed repository) resides or a content consumption
system that operates outside of the enterprise computing environment where the managed
repository resides. In addition to connecting complex enterprise software systems,
embodiments can also connect applications that otherwise would not be directly
communicating and/or sharing content with one another.

[0066] Use Case 4: Publication of content and metadata to custom applications

[0067] The Citizen Health Cover (CHC) covers for the medical needs of the citizens of Pandora.

CHC stores all of the patient medical histories (patient records) in a Patient Health Records
(PHR) content repository. Healthcare providers can access the patient records in the PHR
content repository using a clinical patient record (CPR) software application running on their
laptop computers. The PHR system is connected with the CPR system in an arrangement
similar to that of architecture 100. CHC has mandated that a patient record be available on
CPR only for a period of one week before and one week after the scheduled appointment,
and all content related to patient should be removed from a healthcare provider’s laptop

computer after that period.

[0068] Peter, a citizen of Pandora, is consulting with Dr. Dean, a family doctor. Dr. Dean has
recommended Peter to Dr. Olaf, an orthopedic. Peter has an appointment with Dr. Olaf next
Friday. A week before the appointment, PHR pushes (which is a form of automated sharing
by a rules-based engine) the history of Peter’s x-ray records and MRI records to CPR. Dr.
Olaf is able to gain a case history of the upcoming appointment with Peter. The metadata
associated with the automated sharing allowed CPR to organize the x-ray and MRI images
into a clear category and helped Dr. Olaf to conduct the appointment with Peter effectively.

[0069] As the above examples of use cases illustrate, embodiments disclosed herein can facilitate
exchange of content between diverse content repositories and external systems of content

consumption, collaboration, and storage. Benefits and advantages can include:

[0070] - Content stored in repositories with previously restricted accesses can now be made
available to expanded demography. Metadata published (shared) along with the content can
add context to the shared content. The capabilities and feature-set of each connected

system can be exposed within a variety of applications.

[0071] As the above examples alluded to, the standalone sharing module approach can
automatically push or “publish” managed content to content consumption systems external

[0072]

[0073]

[0074]

[0075]

WO 2019/006556 PCT/CA2018/050825

-17 -

to managed repositories. In some embodiments, this is achieved utilizing rule-based

analyses and synchronization.

As illustrated in FIG. 2, administrators may access sharing module 210 and create rule set
223 through admin console 221. Rule set 223 may dictate how sharing can be performed by
sharing module 210 programmatically and automatically. In the example of FIG. 2, both
sharing module 210 and managed repository 260 (which can be a content repository,
content server, etc. managed by an EIM system) reside in enterprise computing environment
200 and external system 280 operates in a cloud computing environment outside of
enterprise computing environment 200. However, in some cases, external system 280 may
also operate in enterprise computing environment 200, but external to (and independently of)
managed repository 260. Further, any cloud-based storage system can be an external
system. An external system can be any system that operates in a network computing

environment that is external to enterprise computing environment 200.

In the example of FIG. 2, managed repository 260 is communicatively connected to
repository connector interface 224 of sharing module 210 through repository-specific API
264 and external system 280 is communicatively connected to external system connector
interface 212 of sharing module 210 through REST API 282. Separately, admin console 221
may be operable to make API calls to sync-n-share controller or connector 211 though sync-
n-share API| 225.

In some embodiments, sync-n-share connector 211 may implement the execution logic
(which can include a rules-based engine configured for applying rule set 223) of sharing
module 210 and store tracking information (e.g., information identifying a shared item such
as a content file or object, a user of an external system, a role granted to the user of the
external system by a user of the managed repository, a change to the shared item, etc.) in
local database 227 (local to sharing module 210). Components of sync-n-share connector
211 are further described below with reference to FIG. 3.

In some embodiments, connector interfaces 212 and 224 of sharing module 210 comprise
implementations of a connecting interface that defines how to connect to sharing module
210. As a non-limiting example, in Java™, an “implements” clause can be included in a
class definition to declare a class that implements an interface. This class can then be used
to implement multiple interfaces, for example, by using the “implements” keyword followed
by a comma-separated list of the interfaces implemented by the class. Such
implementations are known to those skilled in the art and thus are not further described
herein.

[0076]

[0077]

[0078]

[0079]

WO 2019/006556 PCT/CA2018/050825

-18 -

Here, each adapter utilized by sharing module 210 can be an implementation of a
connecting interface defined in sharing module 210. Each such implementation (an instance
of the connecting interface) can correspond to a one-to-one relationship between sharing
module 210 and a repository (or between sharing module 210 and an external system). To
this end, sharing module 210 can be characterized as an “interface” between managed
repositories and content consumption systems in an adaptive content sharing architecture.

The extensible and adaptive content sharing architecture described above with reference to
FIGS. 1 and 2 can be implemented in many ways. An example of adaptive content sharing
architecture 300 is illustrated in FIG. 3. In the example of FIG. 3, an “interface” (or a
standalone sharing module) 310 may have admin Ul 321, connector agents 382, 364, and
synchronizer 340. Although interface 310 is shown to interface with one content repository
360 and with one external system 380, this is for illustrative purpose only. Similar to sharing
module 110 discussed above with reference to FIG. 1, interface 310 can be readily
configured to interface with or otherwise connect to multiple repositories and multiple
external systems, with each connection between a managed repository and an external
system having a pair of connector agents respectively implemented for the managed
repository and the external system to provide a one-on-one mapping between the managed

repository and the external system.

Each repository adapter (e.g., repository adaptor 363) can be configured to map a common
triage language (e.g., through a graph built by graph builder 342 of synchronizer 340). This
mapping can be triggered by analyzer 344 due to changes made at one side (one-way sync)
or both sides (two-way sync) of synchronizer 340. Changes may be caused by technical
needs (e.g., versioning, editions, technical changes, etc.) at a repository (e.g., repository

360) or repositories.

At the content consumption side (e.g., external system 380), content-consumption adapters
maybe utilized. This tier (or layer) of adapters can map (by configuration) to the protocols
needed (e.g., communications protocols) to provide for content hand-over at each content
consumption system connected to interface 310. In addition, analyzer 344 may operate as a
content triaging module and together with connector agents (e.g., connector agent for
external system 382, connector agent for repository 364), adapters (e.g., repository adaptor
363), and connector interfaces (external system connector interface 312 and repository
connector interface 362, which are specific to synchronizer 340) can provide the ability to
seek and transfer both the desired content and its associated metadata such as associated

document identifiers and/or object identifiers (e.g., DocID, ObjectID, etc.).

[0080]

[0081]

[0082]

[0083]

[0084]

WO 2019/006556 PCT/CA2018/050825

-19-

In some embodiments, the repository (source) metadata is streamed with the content. As
discussed above, an external system generally creates their own (target system) metadata,
so they are not using the source metadata. Through this invention, users can now consume
the capabilities of other attached systems of content consumption (e.g., EFSS, fax, etc.)
from within the applications they are using. The ability to share the content can be
integrated with existing applications and/or workflows. The metadata that is transferred
along with the content can provide context to the published content and derive related

benefits

In some embodiments, admin Ul 321 is communicatively connected to local database 327
which stores share profiles 329. An administrator can set up content sharing rules
applicable to share profiles. These are not user profiles. Each share has a rule set. A
share can represent a folder or directory in a managed repository or any data source
selected by the administrator. Different shares may have different rule sets, or share the
same rules, for controlling when and how content can be shared. The rules may also specify
content types. For example, a rule may specify that a share should have only PDF files.

Shares scheduler 331 may also reside on local database 327 and may contain schedules
specifying how and when content can be automatically and programmatically shared per
share profiles or rules 329. Shares scheduler 331 may also be used for scheduling when
syncing is to occur, although the type of syncing is dictated by the type of rule set (e.g., one-
way sync or two-way sync) applicable to the share being synced. The instruction received
by admin Ul 321 from an administrator is communicated to synchronizer 340 through shares
scheduler 331 in the form of a list of shares. The list of shares may contain information on a

folder (one share) of files of what can be shared per rules that are applicable to the share.

In response, graph builder 342 of synchronizer 340 is operable to build a graph of objects
(e.g., content files) per share in the list of shares received from shares scheduler 331. This
graph is used by synchronizer 340 to track changes to the objects in a corresponding share.

This is explained further below.

Once a share in a managed repository (e.g., a folder in managed repository 360) is specified
(e.g., through admin 321) for sharing through an external system (e.g., external system 380),
everything in the share is published from the managed repository to the external system
through interface 310. More specifically, content and its associated metadata may be
retrieved by synchronizer 340 from managed repository 360 through connector agent for
repository 364, repository adaptor 363, and repository connector interface 362 and provide
to external system 380 through external system connector interface 312 and connector

agent for external system 382.

[0085]

[0086]

[0087]

[0088]

WO 2019/006556 PCT/CA2018/050825

-20-

As discussed above, once a share is published, synchronizer 340 may operate to monitor
and determine whether any change is made to the shared content. Determination of
whether any change occurred to the shared content can be done by polling. In some
embodiments, polling can be triggered by one-way sync or two-way sync. Whether a one-
way sync or a two-way sync is performed may depend on whether a one-way sync rule set
or a two-way sync rule set is applicable to the share to be synced. For example, if a one-
way sync rule set dictates that only the version of the shared content in external system 380
can be modified (e.g., the version of the shared content in managed repository 360 is locked
from editing), synchronizer 340 may operate to ping external system 380 to get an update on
the share. When this happens, graph builder 342 is operable to build another graph for the
share. The two graphs built by graph builder 342 for the same share at different times are

compared by analyzer 344 to detect any differences.

In some embodiments, when a change to the share is detected, analyzer 344 operate to
determine any conflict exists (e.g., what files in the share have been changed since the last
sync (publish), what are the changes, etc.). For example, if a file name has been changed
by a user at external system 380 from “XYZ.doc” to “ABC.doc,” managed repository 360 will
not recognize “ABC.doc.” Analyzer 344 is operable to communicate its finding to conflict
resolver 346. Conflict resolver 346 is operable to find a solution to correct a version miss-
match.

Version miss-matches may also occur in a two-way sync scenario. That is, shared content
may be modified by a user using external system 380, a user using managed repository 360,
or users on both sides. Synchronizer 340 may operate to poll the list of shares from local
database 327 and also poll external system 380 to get an update on the shares that had
been published from managed repository 360 to external system 380.

Suppose a file (*XYZ.doc” version 1.0) in a share subject to a two-way sync rule set was first
published from managed repository 360 to external system 380. After that, a user of
external system 380 created a new version of the file in external system 380 and named it
“ABC.doc.” At this time, managed repository 360 does not have any version of the file
named “ABC.doc.” Meanwhile, a user of managed repository 360 updated the file
(“XYZ.doc” version 2.0) stored in managed repository 360. By analyzing the graphs that
graph builder 342 has built for the share at different times for different systems (in this
example, two for managed repository 360 and one for external system 380), analyzer 344 is
operable to determine that the shared content (*XYZ.doc” version 1.0) in managed repository

360 has been changed (to “XYZ.doc” version 2.0) in managed repository 360 and also that

[0089]

[03090]

[G091]

[2092]

[0093]

WO 2019/006556 PCT/CA2018/050825

-21-

the shared content in external system 380 has been modified as “ABC.doc.” This detection
is possible by traversing each graph and compare nodes (objects) in the respective graphs.

Because the file name has been changed, managed repository 360 does not recognize the
file. Likewise, because the file in managed repository 360 has been updated to version 2.0,
external system 380 does not recognize the updated file. Thus, the updated file (version 2)
in managed repository 360 needs to be synced to external system 380 and the file with the
modified name needs to be synced from external system 380 to managed repository 360.
This is an example of a two-way sync. Analyzer 344 can identify conflicts such as these and

communicate them to conflict resolver 346.

In some embodiments, conflict resolver 346 is operable to handle finding a resolution for a
conflict detected by analyzer 344. In some embodiments, conflict resolver 346 may create a
new object or conflict file. This conflict file can have a specific file type, for instance, a
particular file extension (e.g., “.conflict”). As a non-limiting example, conflict resolver 346
may change the extension from “ABC.doc” to “ABC.conflict” and send the “ABC.conflict” file
to a user (or notify the user) who can then review and resolve the conflict. These mappings,
conflicts, and tasks 352 are performed by conflict resolver 346 per tasks scheduler 354.

Executors 356 are handlers for conflict resolver 346.

FIG. 4 depicts a flow chart illustrating a method for content sharing through an external
systems according to some embodiments disclosed herein. In some embodiments, method
400 may comprise receiving, by a sharing module embodied on a non-transitory computer
readable medium, an instruction to publish a share (401). As discussed above, a share may
represent a folder or a directory in a managed repository. The managed repository may be
managed by an EIM system operating in an enterprise computing environment.

The sharing module may implement an embodiment of sharing module 110, sync-n-share
connector 211, or synchronizer 340 described above. The instruction to publish a share may
be received through an administrator Ul such as admin console 221 or admin Ul 321. The
instruction may be stored in a local database such as database 227 or database 327
accessible by the sharing module and may be provided to the sharing module using a
scheduler such as shares scheduler 331. The instruction may contain a share profile (e.g.,
share profile 329) for a list of share(s) and content sharing rules (e.g., rule set 223) defined

by an administrator as applicable to the list of shares.

In response, a graph builder (e.g., graph builder 342) may build graphs for the list of shares
on a per-share basis (403). Each graph contains objects representing files in a particular

share and their relationships. The graph builder may be part of the sharing module.

[0094]

[0095]

[00986]

[G097]

WO 2019/006556 PCT/CA2018/050825

-22-

The sharing module then publishes the share to an external system as described above
(405), with everything in it, including the files and metadata associated with the files.
Publication by the sharing module to an external system may include providing information
identifying a user of the external system and a role granted to the user of the external
system by a user of the EIM system, for example, when the user of the EIM system places a
file in the share.

Responsive to a user instruction (e.g., to update a share) or automatically (e.g., per a
scheduled event), the sharing module may operate to communicate with the managed
repository and/or the external system and obtain (sync) a current version of the share (407).
Whether to communicate with the managed repository, the external system, or both, may
depend on whether the share is subject to a one-way sync rule set or a two-way sync rule
set.

As discussed above, communication between the sharing module and the managed
repository is done through two special APIs — a sharing module APl and a repository-specific
API. The sharing module APl is configured for interfacing between the sharing module and
the repository-specific APl. The repository-specific APl is configured for interfacing the
sharing module API and the managed repository. Likewise, communication between the
sharing module and the external system is done through two special APIs — a sharing
module API and an external system-specific APl. The sharing module APl is configured for
interfacing between the sharing module and the external system-specific APl. The external
system-specific APl is configured for interfacing the sharing module APl and the external

system.

For each share that has been synced back to the sharing module, the graph builder is
operable to build a new graph (409). An analyzer (e.g., analyzer 344) of the sharing module
is operable to compare the graphs built for the same share at different times (e.g., when the
share was first published to the external system and when the share is synced back to the
sharing module from the external system or the managed repository) and/or synced from
different sources. As described above, the analyzer may operate to detect any changes
made to content in the share (411) and determine if any conflict caused by such changes
exists (413). If so, the analyzer may call a conflict resolver (e.g., conflict resolver 346) to
revolve any conflict (e.g., a version miss-match) found by the analyzer. In turn, the conflict
resolver may operable to process versions of the same file (e.g., by creating a conflict file
with a special file extension) for conflict resolution (415). For example, the conflict resolver
may prepare a request containing information about and/or links to both versions for a user
of the managed repository (e.g., an owner of the file at issue) to decide which, if any, version

[0098]

[0099]

[G100]

[0101]

[0102]

WO 2019/006556 PCT/CA2018/050825

-23-

is to be stored (synced) back to the managed repository (417). The correct version is then
synced to the backend to update the version in the managed repository (419).

FIG. 5 depicts a diagrammatic representation of a distributed network computing
environment where embodiments disclosed can be implemented. In the example of FIG. 5,
network computing environment 500 may include network 514 that can be bi-directionally
coupled to user computer 512, user computer 515, server computer 514, and server
computer 516. Server computer 514 can be bi-directionally coupled to database 538 and
server computer 516 can be bi-directionally coupled to database 518. Network 530 may
represent a combination of wired and wireless networks that network computing environment
500 may utilize for various types of network communications known to those skilled in the
art.

For the purpose of illustration, a single system is shown for each of user computer 512, user
computer 515, server computer 514, and server computer 516. However, within each of
user computer 512, user computer 515, server computer 514, and server computer 516, a
plurality of computers (not shown) may be interconnected to each other over network 530.
For example, a plurality of user computers may be communicatively connected over network
530 to server computer 514 that operates an IM system in an enterprise computing
environment and a plurality of user computers may be communicatively connected over
network 530 to server computer 516 implementing an external system external to the
enterprise computing environment, the IM system, and/or database 538 managed by the IM

system.

User computers 512 may include data processing systems for communicating with server
computer 514. Likewise, user computers 515 may include data processing systems for

communicating with server computer 516.

User computer 512 can include central processing unit ("CPU") 520, read-only memory
("ROM") 522, random access memory ("RAM") 524, hard drive ("HD") or storage memory
526, and input/output device(s) ("I/O") 528. 1/O 529 can include a keyboard, monitor, printer,
electronic pointing device (e.g., mouse, trackball, stylus, etc.), or the like. User computer
512 can include a desktop computer, a laptop computer, a personal digital assistant, a
cellular phone, or nearly any device capable of communicating over a network. User
computer 515 may be similar to user computer 512 and can comprise CPU 550, ROM 552,
RAM 554, HD 556, and I/O 558.

Likewise, server computer 514 may include CPU 540, ROM 542, RAM 544, HD 546, and I/O
548 and server computer 516 may include CPU 560, ROM 562, RAM 564, HD 566, and I/O

[0103]

[0104]

[0109]

WO 2019/006556 PCT/CA2018/050825

- 24 -

568. Server computers 514 and 516 may each include one or more backend systems
configured for providing an instance of an application to user computers 512 over network

530. Many other alternative configurations are possible and known to skilled artisans.

Each of the computers in FIG. 5 may have more than one CPU, ROM, RAM, HD, /O, or
other hardware components. For the sake of brevity, each computer is illustrated as having
one of each of the hardware components, even if more than one is used. Each of computers
512, 514, 515, and 516 is an example of a data processing system. ROM 522, 542, 552,
and 562; RAM 524, 544, 554, and 564; HD 526, 546, 556, and 566; and database 518 and
538 can include media that can be read by CPU 520, 540, 550, or 560. Therefore, these
types of memories include non-transitory computer-readable storage media. These
memories may be internal or external to computers 512, 514, 515, or 516.

Portions of the methods described herein may be implemented in suitable software code that
may reside within ROM 522, 542, 552, or 562; RAM 524, 544, 554, or 564; or HD 526, 546,
556, or 566. In addition to those types of memories, the instructions in an embodiment
disclosed herein may be contained on a data storage device with a different computer-
readable storage medium, such as a hard disk. Alternatively, the instructions may be stored
as software code elements on a data storage array, magnetic tape, floppy diskette, optical
storage device, or other appropriate data processing system readable medium or storage

device.

Those skilled in the relevant art will appreciate that the invention can be implemented or
practiced with other computer system configurations, including without limitation multi-
processor systems, network devices, mini-computers, mainframe computers, data
processors, and the like. The invention can be embodied in a computer, or a special
purpose computer or data processor that is specifically programmed, configured, or
constructed to perform the functions described in detail herein. The invention can also be
employed in distributed computing environments, where tasks or modules are performed by
remote processing devices, which are linked through a communications network such as a
local area network (LAN), wide area network (WAN), and/or the Internet. In a distributed
computing environment, program modules or subroutines may be located in both local and
remote memory storage devices. These program modules or subroutines may, for example,
be stored or distributed on computer-readable media, including magnetic and optically
readable and removable computer discs, stored as firmware in chips, as well as distributed
electronically over the Internet or over other networks (including wireless networks).
Example chips may include Electrically Erasable Programmable Read-Only Memory
(EEPROM) chips. Embodiments discussed herein can be implemented in suitable

[A106]

[0107]

[0108]

[3109]

WO 2019/006556 PCT/CA2018/050825

-25-

instructions that may reside on a non-transitory computer readable medium, hardware
circuitry or the like, or any combination and that may be translatable by one or more server
machines. Examples of a non-transitory computer readable medium are provided below in

this disclosure.

As is known to those skilled in the art, a suitable computer system can include a central
processing unit (“CPU”), at least one read-only memory (‘ROM”), at least one random
access memory (‘RAM”), at least one hard drive (“HD”), and one or more input/output (“I/O”)
device(s). The I/O devices can include a keyboard, monitor, printer, electronic pointing
device (for example, mouse, trackball, stylus, touch pad, etc.), or the like. ROM, RAM, and
HD are non-transitory computer memories for storing computer-executable instructions
executable by the CPU or capable of being compiled or interpreted to be executable by the
CPU.

Suitable computer-executable instructions may reside on a non-transitory computer readable
medium (e.g., ROM, RAM, and/or HD), hardware circuitry or the like, or any combination
thereof. Within this disclosure, the term “non-transitory computer readable medium” is not
limited to ROM, RAM, and HD and can include any type of data storage medium that can be
read by a processor. Examples of non-transitory computer-readable storage media can
include, but are not limited to, volatile and non-volatile computer memories and storage
devices such as random access memories, read-only memories, hard drives, data
cartridges, direct access storage device arrays, magnetic tapes, floppy diskettes, flash
memory drives, optical data storage devices, compact-disc read-only memories, and other
appropriate computer memories and data storage devices. Thus, a computer-readable
medium may refer to a data cartridge, a data backup magnetic tape, a floppy diskette, a
flash memory drive, an optical data storage drive, a CD-ROM, ROM, RAM, HD, or the like.

The processes described herein may be implemented in suitable computer-executable
instructions that may reside on a computer readable medium (for example, a disk, CD-ROM,
a memory, etc.). Alternatively, the computer-executable instructions may be stored as
software code components on a direct access storage device array, magnetic tape, floppy
diskette, optical storage device, or other appropriate computer-readable medium or storage

device.

Any suitable programming language can be used to implement the routines, methods or
programs of embodiments of the invention described herein, including C, C++, Java,
JavaScript, HTML, or any other programming or scripting code, etc. Other
software/hardware/network architectures may be used. For example, the functions of the

disclosed embodiments may be implemented on one computer or shared/distributed among

[3110]

[3111]

[0112]

WO 2019/006556 PCT/CA2018/050825

-26 -

two or more computers in or across a network. Communications between computers
implementing embodiments can be accomplished using any electronic, optical, radio
frequency signals, or other suitable methods and tools of communication in compliance with
known network protocols.

Different programming techniques can be employed such as procedural or object oriented.
Any particular routine can execute on a single computer processing device or multiple
computer processing devices, a single computer processor or multiple computer processors.
Data may be stored in a single storage medium or distributed through multiple storage
mediums, and may reside in a single database or multiple databases (or other data storage
techniques). Although the steps, operations, or computations may be presented in a specific
order, this order may be changed in different embodiments. In some embodiments, to the
extent multiple steps are shown as sequential in this specification, some combination of such
steps in alternative embodiments may be performed at the same time. The sequence of
operations described herein can be interrupted, suspended, or otherwise controlled by
another process, such as an operating system, kernel, etc. The routines can operate in an
operating system environment or as stand-alone routines. Functions, routines, methods,
steps, and operations described herein can be performed in hardware, software, firmware or

any combination thereof.

Embodiments described herein can be implemented in the form of control logic in software
or hardware or a combination of both. The control logic may be stored in an information
storage medium, such as a computer-readable medium, as a plurality of instructions adapted
to direct an information processing device to perform a set of steps disclosed in the various
embodiments. Based on the disclosure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to implement the invention.

It is also within the spirit and scope of the invention to implement in software programming or
code an of the steps, operations, methods, routines or portions thereof described herein,
where such software programming or code can be stored in a computer-readable medium
and can be operated on by a processor to permit a computer to perform any of the steps,
operations, methods, routines or portions thereof described herein. The invention may be
implemented by using software programming or code in one or more digital computers, by
using application specific integrated circuits, programmable logic devices, field
programmable gate arrays, optical, chemical, biological, quantum or nano-engineered
systems, components, and mechanisms may be used. In general, the functions of the
invention can be achieved by any means as is known in the art. For example, distributed, or
networked systems, components, and circuits can be used. In another example,

[0113]

[0114]

[0115]

[0116]

WO 2019/006556 PCT/CA2018/050825

-27 -

communication or transfer (or otherwise moving from one place to another) of data may be

wired, wireless, or by any other means.

A "computer-readable medium" may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in connection with the instruction execution
system, apparatus, system, or device. The computer readable medium can be, by way of
example only but not by limitation, an electronic, magnetic, optical, electromagnetic, infrared,
or semiconductor system, apparatus, system, device, propagation medium, or computer
memory. Such computer-readable medium shall generally be machine readable and include
software programming or code that can be human readable (e.g., source code) or machine
readable (e.g., object code). Examples of non-transitory computer-readable media can
include random access memories, read-only memories, hard drives, data cartridges,
magnetic tapes, floppy diskettes, flash memory drives, optical data storage devices,
compact-disc read-only memories, and other appropriate computer memories and data
storage devices. In an illustrative embodiment, some or all of the software components may
reside on a single server computer or on any combination of separate server computers. As
one skilled in the art can appreciate, a computer program product implementing an
embodiment disclosed herein may comprise one or more non-transitory computer readable
media storing computer instructions translatable by one or more processors in a computing

environment.

A "processor"” includes any, hardware system, mechanism or component that processes
data, signals or other information. A processor can include a system with a central
processing unit, multiple processing units, dedicated circuitry for achieving functionality, or
other systems. Processing need not be limited to a geographic location, or have temporal
limitations. For example, a processor can perform its functions in "real-time," "offline," in a
"batch mode," etc. Portions of processing can be performed at different times and at

different locations, by different (or the same) processing systems.

As used herein, the terms “comprises,” “comprising,” "includes," "including," "has," "having,"
or any other variation thereof, are intended to cover a non-exclusive inclusion. For example,
a process, product, article, or apparatus that comprises a list of elements is not necessarily
limited only those elements but may include other elements not expressly listed or inherent

to such process, product, article, or apparatus.

Furthermore, the term "or" as used herein is generally intended to mean "and/or" unless
otherwise indicated. For example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not present), A is false (or not present) and

B is true (or present), and both A and B are true (or present). As used herein, including the

[0117]

WO 2019/006556 PCT/CA2018/050825

-28-

accompanying appendices, a term preceded by "a" or "an" (and "the" when antecedent basis
is "a" or "an") includes both singular and plural of such term, unless clearly indicated
otherwise (i.e., that the reference "a" or "an" clearly indicates only the singular or only the
plural). Also, as used in the description herein and in the accompanying appendices, the

meaning of "in" includes "in" and "on" unless the context clearly dictates otherwise.

Although the foregoing specification describes specific embodiments, numerous changes in
the details of the embodiments disclosed herein and additional embodiments will be
apparent to, and may be made by, persons of ordinary skill in the art having reference to this
disclosure. In this context, the specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are intended to be included within
the scope of this disclosure. The scope of the present disclosure should be determined by

the following claims and their legal equivalents.

WO 2019/006556 PCT/CA2018/050825

-29-

WHAT IS CLAIMED IS:

1. A method for content sharing through external systems, comprising:
receiving, by a sharing module, an instruction to publish a share to an external
system, the share representing a folder or directory in a managed repository, the sharing
module running on a server machine operating in an enterprise computing environment, the
managed repository residing in the enterprise computing environment, the external system
operating independently and external to the managed repository, the server machine having
a processor and a non-transitory computer readable medium; and
publishing, by the sharing module from the managed repository to the external
system, objects in the share and metadata associated with the objects, the publishing
including:
making a first application programming interface (API) call to retrieve the
objects and the metadata from the share in the managed repository; and
making a second API call to communicate the objects and the metadata to
the external system;
wherein the first API call is made through a first sharing module APl and a
repository AP, the first sharing module AP interfacing the sharing module and the
repository API, the repository AP interfacing the first sharing module and the
managed repository;
wherein the second AP call is made through a second sharing module API
and an external system API, the second sharing module AP! interfacing the sharing
module and the external system API, the external system API interfacing the second
sharing module AP| and the external system; and
wherein the repository AP, the first sharing module API, the second sharing
module API, and the external system API together provide a one-to-one mapping of

communications protocols used by the managed repository and the external system.

2. The method according to claim 1, wherein the instruction is received automatically
and programmatically from a scheduler in accordance with a share profile defined by an
administrator of the managed repository, the share profile comprising content sharing rules

applicable to the share, the scheduler running on the server machine.

SUBSTITUTE SHEET (RULE 26)

WO 2019/006556 PCT/CA2018/050825

-30-

3. The method according to claim 1, further comprising:

responsive to the instruction to publish the share to the external system, building, by
a graph building running on the server machine, a first graph for the share, the first graph
containing nodes representing the objects in the share;

subsequent to the publishing, syncing, by the sharing module, the share in the
managed repository and the shared published to the external system by the sharing module,
the syncing returning an update to the share from the managed repository or the external
system, or updates from both the managed repository and the external system;

building, by the graph builder, a second graph for the share based on a result from
the syncing;

detecting, by an analyzer running on the server machine, any change to the share by
comparing the first graph for the share and the second graph for the share;

determining, by the analyzer, whether any change to the share causes a versioning
conflict for an object in the share; and

if a versioning conflict for an object in the share is found, communicating, by the
analyzer, conflicting versions of the object involved in the versioning conflict to a conflict

resolver for conflict resolution.

4. The method according to claim 3, wherein conflict resclution comprises:

renaming a file extension of a first version of the conflicting versions of the object to
thereby change a file type of the first version;

presenting at least the first version of the object to a user through a user interface
running on a user device;

prompting the user to make a selection, through the user interface, on one of the
conflicting versions of the object; and

determining a resolved version of the object based on the user selection, wherein the
resolved version of the object is synced back to the managed repository, the external
system, or both.

5. The method according to claim 1, further comprising:
building a graph for the share, the graph containing nodes representing the objects in
the share; and

tracking any changes to the objects in the share using the graph.

6. The method according to claim 5, further comprising:

detecting a change to a file in the share using the graph;

SUBSTITUTE SHEET (RULE 26)

WO 2019/006556 PCT/CA2018/050825

-31-

analyzing the change to the file;

determining, based on the analyzing, that the change to the file presents a conflict
between the file in the managed repository and a version of the file published to the external
system; and

resolving the conflict between the file in the managed repository and the version of
the file published to the external system, the resolving comprising creating a conflict version
of the file based on the version of the file published to the external system, the conflict
version of the file having a conflict file type.

7. The method according to claim 6, further comprising:
notifying a user of the conflict between the file in the managed repository and the
version of the file published to the external system; or

sending the conflict version of the file to the user for conflict resolution.

8. The method according to claim 1, wherein the metadata associated with the objects
are generated in an information system that manages the managed repository and wherein

the metadata provide context to the objects.

9. The method according to claim 1, wherein the external system is one of a plurality of
external systems connected to the managed repository through the sharing module, each
external system of the plurality of external systems having a one-on-one mapping between
the managed repository and the each external system through a pair of sharing module
APls, the repository API specific to the managed repository, and an external system AP|
specific to the each external system.

10. The method according to claim 9, wherein the managed repository is one of a
plurality of managed repositories connected to the sharing module, each managed
repository of the plurality of managed repositories connected to the sharing module through
a repository API specific to the each managed repository and a sharing module AP!.

1. A system for content sharing through external systems, comprising:

a server machine operating in an enterprise computing environment, the server
machine having a processor, a non-transitory computer readable medium, and stored
instructions translatable by the processor for implementing a sharing module, the server
machine connected to a managed repository residing in the enterprise computing

SUBSTITUTE SHEET (RULE 26)

WO 2019/006556 PCT/CA2018/050825

-32-

environment and an external system operating independently and external to the managed
repository, the sharing module configured for:
receiving an instruction to publish a share to the external system, the share
representing a folder or directory in the managed repository; and
publishing, from the managed repository to the external system, objects in the share
and metadata associated with the objects, the publishing including:
making a first application programming interface (API) call to retrieve the
objects and the metadata from the share in the managed repository; and
making a second API call to communicate the objects and the metadata to
the external system;
wherein the first API call is made through a first sharing module API and a
repository API, the first sharing module APl interfacing the sharing module and the
repository API, the repository AP interfacing the first sharing module and the
managed repository;
wherein the second API call is made through a second sharing module API
and an external system API, the second sharing module AP! interfacing the sharing
module and the external system API, the external system API interfacing the second
sharing module AP| and the external system; and
wherein the repository AP, the first sharing module API, the second sharing
module API, and the external system API together provide a one-to-one mapping of

communications protocols used by the managed repository and the external system.

12. The system of claim 11, wherein the instruction is received automatically and
programmatically from a scheduler in accordance with a share profile defined by an
administrator of the managed repository, the share profile comprising content sharing rules

applicable to the share, the scheduler running on the server machine.

13. The system of claim 11, wherein the stored instructions are further translatable by the
processor for:

responsive to the instruction to publish the share to the external system, building a
first graph for the share, the first graph containing nodes representing the objects in the
share;

subsequent to the publishing, syncing the share in the managed repository and the

shared published to the external system, the syncing returning an update to the share from

SUBSTITUTE SHEET (RULE 26)

WO 2019/006556 PCT/CA2018/050825

-33-

the managed repository or the external system, or updates from both the managed
repository and the external system;

building a second graph for the share based on a result from the syncing;

detecting any change to the share by comparing the first graph for the share and the
second graph for the share;

determining whether any change to the share causes a versioning conflict for an
object in the share; and

if a versioning conflict for an object in the share is found, communicating conflicting
versions of the object involved in the versioning conflict to a conflict resolver for conflict

resolution.

14. The system of claim 13, wherein conflict resolution comprises:

renaming a file extension of a first version of the conflicting versions of the object to
thereby change a file type of the first version;

presenting at least the first version of the object to a user through a user interface
running on a user device;

prompting the user to make a selection, through the user interface, on one of the
conflicting versions of the object; and

determining a resolved version of the object based on the user selection, wherein the
resolved version of the object is synced back to the managed repository, the external
system, or both.

15. The system of claim 11, wherein the stored instructions are further translatable by the
processor for:

building a graph for the share, the graph containing nodes representing the objects in
the share; and

tracking any changes to the objects in the share using the graph.
16. The system of claim 15, wherein the stored instructions are further translatable by the
processor for:

detecting a change to a file in the share using the graph;

analyzing the change to the file;

determining, based on the analyzing, that the change to the file presents a conflict
between the file in the managed repository and a version of the file published to the external
system; and

resolving the conflict between the file in the managed repository and the version of

the file published to the external system, the resolving comprising creating a conflict version

SUBSTITUTE SHEET (RULE 26)

WO 2019/006556 PCT/CA2018/050825

-34 -

of the file based on the version of the file published to the external system, the conflict

version of the file having a conflict file type.

17. The system of claim 16, wherein the stored instructions are further translatable by the
processor for;

notifying a user of the conflict between the file in the managed repository and the
version of the file published to the external system; or

sending the conflict version of the file to the user for conflict resolution.

18. The system of claim 11, wherein the metadata associated with the objects are
generated in an information system that manages the managed repository and wherein the

metadata provide context to the objects.

19. The system of claim 11, wherein the external system is one of a plurality of external
systems connected to the managed repository through the sharing module, each external
system of the plurality of external systems having a one-on-one mapping between the
managed repository and the each external system through a pair of sharing module APIs,
the repository API specific to the managed repository, and an external system API specific to
the each external system.

20. The system of claim 19, wherein the managed repository is one of a plurality of
managed repositories connected to the sharing module, each managed repository of the
plurality of managed repositories connected to the sharing module through a repository API
specific to the each managed repository and a sharing module API.

SUBSTITUTE SHEET (RULE 26)

PCT/CA2018/050825

WO 2019/006556

1/5

¢l
R
28~ | Idv Idv
WALSAS IINAOW
TYNYILXT | ONIMVHS
Idv IdV
| W3LSAS IINAOW
26l vNyaLX3 | ONIMVHS
/
| W3LSAS cel
0611 TvNY¥3LX3
o€l
SY3Ldvav

W3LSAS TVYNY3LX3

0Ll

3TNAONW

ONIYVHS

001

['DIA e
acl 9/l 01
/ : /
Idv 9
Idv 9
371NAON AHO1ISOd3d
ONIMVHS AHO1ISOd3Y
174" 1] 091
i /
Idv 4
Idv 9
JINAON AHOLISOd3d
ONIMVHS AYOLISOd3y
<
Idv v
Idvv
J1NAON AHOL1ISOd3y
ONIMVHS AYO1ISOd3y
\ N
ccl ¢Sl 0G1
0cl
Sy3ldvavy
AH0L1ISOd3d

WO 2019/006556

PCT/CA2018/050825

2/5

ADMIN
EXTERNAL
CO;“;?LE SYSTEM
280
4 282 ~_| EXTERNAL
SYSTEM REST

rr-—-—-—r-—-—m="=m=-m==-=-=--""-"="-""="=-="=-= |

| Y |

I 212~ EXTERNAL SYSTEM |

| CONNECTOR INTERFACE |

RULE | SYNC-N-SHARE ,
SET | API (]w |
223 I 225 211 |
\ | |

| | SYNC-N-SHARE |

| CONNECTOR ,

] 7 - |

| |

| | |

| |

| |

| |

| &I) |

| REPOSITORY |

| 224-"| CONNECTOR INTERFACE |

| |

e e e e e o e e o o o o e e e — — — — — .;\ _____ |

264 210
200
260
-

PCT/CA2018/050825

WO 2019/006556

3/5

A

- oMovL

P
9gGe

HOLvdSId

Y3TNA3HIOS
SASVL

- S)SYL

(
3

ONAS

_
_
_
I
I
I
_
_
I
I
_
_
I
“ SH0LNJ3AX3
_
I _
I
_
_
I
_
_
I
I
_
_
I
I

. 09¢ 00€
cou Cym
_—~¥9¢
»| AYOLISOdTY ¥O4 INIOY HOLOINNOD .
. 0LE
HOLdVAY AMOLISOdTY | ~€9¢
A
30V4HILNT HOLOINNOD AYOLISOd3Y |-~ ©9€
1CE
| SO | oot
SYSVL NV Phe Zve ' Tee
»| SLITENOD | N e) - " ¥3INAIHOS
'SONIAdYIN | SI19TTANOD | Mme oo T To 1 o 1 | STHVHS
. oygyL | LSFZATNY | B3QINEHAVED | 1y o1 “ STUVHS
"SONIddYW Y3ZINOYHONAS OPE
ZG¢ Ove " \w}
A | 6C¢
3OV443INT HOLOINNOD || ST40¥d
NILSAS TVNMALXT [N2LE || JuvHS
A |
A
W3LSAS TYNYILX3 4
404 INFOVHOLIANNOD N\ 790 |—m="
A EDE —
A i
XE0) e
— e — o — — o — — —]
NALSAS WNMALE R gge

WO 2019/006556

4/5

PCT/CA2018/050825

| RESOLUTION

CONFLICT

RECEIVE INSTRUCTION
401~ TO PUBLISH SHARE FROM
MANAGED REPOSITORY
TO EXTERNAL SYSTEM
Y
403 ~]" BUILD GRAPH FOR SHARE
A
405 - | PUBLISH SHARE (CONTENT
™ AND METADATA) TO
EXTERNAL SYSTEM
A
SYNC CONTENT IN
407~ SHARE (ONE-WAY OR
TWO-WAY SYNC)
Y
BUILD NEW GRAPH
409-"| FOR SYNC'D SHARE
A
DETECT IF CONTENT
411-"| HAS BEEN MODIFIED
A
DETERMINE IF ANY
413 CONFLICT EXISTS
Y
415 RESOLVE ANY CONFLICT
A
SYNC AND UPDATE
419-"| MANAGED REPOSITORY
g FIG. 4

400

N
417

WO 2019/006556

i
DATABASE

538

5/5

USER
COMPUTER

512
520~ [CPU

522~1 rom

524 ~ [y

528~ [1/0

SERVER
COMPUTER

514

542 | ROM

544 T RAM

546 -1 D
548 T 1O

A
500

PCT/CA2018/050825

USER
COMPUTER

515

CPU]-550

ROM 1992

10 + 558

SERVER
COMPUTER

016

ROM 562

RAM - 564

HD 566

0 1568

FIG. 5

i
DATABASE

518

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2018/050825

A CLASSIFICATION OF SUBJECT MATTER

IPC: GOGF 17/00 (2006.01),

GO6F 9/44 (2018.01), HO4L 12/16 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 17/00 (2006.01) , GOOF 9/44 (2018.01) , HO4L 12/16 (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Databases: Questel Orbit, Canadian Patent Database (Intellect), IEEE Xplore
Keywords: enterprise, information, management, share, module, api, sharing, metadata, content, remote, external, system, publish, repository,

second, interface

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US2016277374A1, 22 September 2016 (22-09-2016)
A US2016277368A1, 22 September 2016 (22-09-2016)

Further documents are listed in the continuation of Box C.

See patent family annex.

* |Special categories of cited documents:
“A” |document defining the general state of the art which is not considered
to be of particular relevance

“E” |earlier application or patent but published on or after the international
filing date

“L” |document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” |document referring to an oral disclosure, use, exhibition or other means

“P” |document published prior to the international filing date but later than

the priority date claimed

“T” |later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

wy?

oy

g

Date of the actual completion of the international search
10 September 2018 (10-09-2018)

Date of mailing of the international search report
17 September 2018 (17-09-2018)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage 1, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 819-953-2476

Authorized officer

Darren Cassidy (819) 635-4278

Form PCT/ISA/210 (second sheet) (January 2015)

Page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/CA2018/050825

Patent Document Publication Patent Family Publication

Cited in Search Report Date Member(s) Date

US2016277374A1 22 September 2016 (22-09-2016) US2016277374A1 22 September 2016 (22-09-2016)
US9973484B2 15 May 2018 (15-05-2018)
AU2015346644A1 29 June 2017 (29-06-2017)
EP3219048A1 20 September 2017 (20-09-2017)
EP3219048A4 16 May 2018 (16-05-2018)
1L.252133D0 31 July 2017 (31-07-2017)
US9378380B1 28 June 2016 (28-06-2016)
US2015074409A1 12 March 2015 (12-03-2015)
US9390228B2 12 July 2016 (12-07-2016)
US2018232526A1 16 August 2018 (16-08-2018)
WO02016077219A1 19 May 2016 (19-05-2016)
WO02017210563A1 07 December 2017 (07-12-2017)

US2016277368A1 22 September 2016 (22-09-2016) US2016277368A1 22 September 2016 (22-09-2016)
EP3272100A2 24 January 2018 (24-01-2018)
JP2018516025A 14 June 2018 (14-06-2018)
US2016275303A1 22 September 2016 (22-09-2016)
US9928377B2 27 March 2018 (27-03-2018)
US2018218167A1 02 August 2018 (02-08-2018)
WO02016186703A2 24 November 2016 (24-11-2016)
WO02016186703A3 27 April 2017 (27-04-2017)

Form PCT/ISA/210 (patent family annex) (January 2015)

Page 3 of 3

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report

