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RE-TRIGGERING WAKE-UP TO HANDLE
TIME SKEW BETWEEN SCALAR AND
VECTOR SIDES

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to and the benefit
of U.S. Provisional Patent Application Ser. No. 63/429,930
filed on Dec. 2, 2022, the entire disclosure of which is
hereby incorporated by reference.

TECHNICAL FIELD

[0002] This disclosure relates generally to integrated cir-
cuits and, more specifically, scalar and vector pipeline
processing.

BACKGROUND

[0003] A central processing unit (CPU) or processor core
may be implemented according to a particular microarchi-
tecture. As used herein, a “microarchitecture” refers to the
way an instruction set architecture (ISA) (e.g., the RISC-V
instruction set) is implemented by a processor core. A
microarchitecture may be implemented by various compo-
nents, such as decode units, rename units, dispatch units,
execution units, registers, caches, queues, data paths, and/or
other logic associated with instruction flow. A processor core
may execute instructions in a pipeline based on the micro-
architecture that is implemented.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The disclosure is best understood from the follow-
ing detailed description when read in conjunction with the
accompanying drawings. It is emphasized that, according to
common practice, the various features of the drawings are
not to-scale. On the contrary, the dimensions of the various
features are arbitrarily expanded or reduced for clarity.
[0005] FIG. 1 is a block diagram of an example of a
system for facilitating generation and manufacture of inte-
grated circuits.

[0006] FIG. 2 is a block diagram of an example of a
system for facilitating generation of a circuit representation.
[0007] FIG. 3 is a block diagram of an example of an
integrated circuit with a re-triggering wake-up circuitry,
primary pipeline, and a vector pipeline.

[0008] FIG. 4 is a block diagram illustrating a relationship
between a load store unit (LSU), a Baler unit (Baler), and a
Vector Unit or Processor (VU).

[0009] FIG. 5 is a block diagram illustrating a timing of a
slow path pipeline flow.

[0010] FIG. 6 is a block diagram illustrating a timing of a
fast-path pipeline flow with re-triggering wakeup.

[0011] FIG. 7 is a flowchart diagram of a method of
re-triggering wakeup to handle time skew between a scalar
operation and a vector operation.

[0012] FIG. 8 is a flowchart diagram of an example
implementation of re-triggering wakeup to handle time skew
between a scalar operation and a vector operation.

DETAILED DESCRIPTION

[0013] A processor or processor core may execute instruc-
tions in a pipeline based on the microarchitecture that is
implemented. The pipeline may be implemented by various
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components, such as decode units, rename units, dispatch
units, execution units, registers, caches, queues, data paths,
and/or other logic associated with instruction flow. In imple-
mentations, the processor may support out-of-order opera-
tion. In order to support out-of-order architecture and pro-
cessing, scalar-side and/or scalar pipeline and vector-side
and/or vector pipeline are decoupled as much as possible or
should be less dependent on each other. This implies that the
timing between the scalar-side and the vector-side can’t be
guaranteed.

[0014] Fast-path refers to a scenario where the load opera-
tion in the Load (LD) pipeline is initiated before the corre-
sponding load operation in the L.oad-Store tag (e.g, Load and
Store tag) (LST) pipeline finishes execution. This fast-path
approach enhances parallelism between scalar and vector
operations, which can improve overall performance. Slow-
path, on the other hand, refers to a scenario where the load
operation in the LD pipeline starts only after the correspond-
ing load operation in the LST pipeline has completed
execution. This approach ensures that there is no speculative
behavior, as the LD pipeline action is triggered after resolv-
ing the LST pipeline operation.

[0015] Issues arise in the fast-path scenario, where the
timing difference between scalar and vector operations can
cause potential delays in the execution of vector micro-
operations due to missed wakeup signals. For instance,
consider a situation where the LD pipeline initiates a load
operation before the LST pipeline has completed its corre-
sponding load operation, and the LD pipeline sending a
speculative wakeup signal to the vector micro-operation in
the Baler issue queue before the vector micro-operation has
even arrived at the queue.

[0016] Such issues can be addressed by introducing a
re-triggering wakeup mechanism that ensures the vector
micro-operation is woken up even if the initial speculative
wakeup signal is missed due to the timing difference
between scalar and vector operations. This mechanism helps
maintain efficient execution of vector micro-operations
without being delayed by the time skew between scalar and
vector operations.

[0017] Described are methods and circuitry to mitigate the
time skew by including re-triggering wake-up circuitry.
[0018] To describe some implementations in greater
detail, reference is first made to examples of hardware and
software structures used to implement a system including
components that may incorporate the re-triggering wakeup
mechanism. FIG. 1 is a block diagram of an example of a
system 100 for generation and manufacture of integrated
circuits. The system 100 includes a network 106, an inte-
grated circuit design service infrastructure 110 (e.g., inte-
grated circuit generator), a field programmable gate array
(FPGA)/emulator server 120, and a manufacturer server
130. For example, a user may utilize a web client or a
scripting application program interface (API) client to com-
mand the integrated circuit design service infrastructure 110
to automatically generate an integrated circuit design based
on a set of design parameter values selected by the user for
one or more template integrated circuit designs. In some
implementations, the integrated circuit design service infra-
structure 110 may be configured to generate an integrated
circuit design like the integrated circuit design shown and
described in FIGS. 3-6.

[0019] The integrated circuit design service infrastructure
110 may include a register-transfer level (RTL) service
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module configured to generate an RTL data structure for the
integrated circuit based on a design parameters data struc-
ture. For example, the RTL service module may be imple-
mented as Scala code. For example, the RTL service module
may be implemented using Chisel. For example, the RTL
service module may be implemented using flexible interme-
diate representation for register-transfer level (FIRRTL)
and/or a FIRRTL compiler. For example, the RTL service
module may be implemented using Diplomacy. For
example, the RTL service module may enable a well-
designed chip to be automatically developed from a high
level set of configuration settings using a mix of Diplomacy,
Chisel, and FIRRTL. The RTL service module may take the
design parameters data structure (e.g., a java script object
notation (JSON) file) as input and output an RTL data
structure (e.g., a Verilog file) for the chip.

[0020] In some implementations, the integrated circuit
design service infrastructure 110 may invoke (e.g., via
network communications over the network 106) testing of
the resulting design that is performed by the FPGA/emula-
tion server 120 that is running one or more FPGAs or other
types of hardware or software emulators. For example, the
integrated circuit design service infrastructure 110 may
invoke a test using a field programmable gate array, pro-
grammed based on a field programmable gate array emula-
tion data structure, to obtain an emulation result. The field
programmable gate array may be operating on the FPGA/
emulation server 120, which may be a cloud server. Test
results may be returned by the FPGA/emulation server 120
to the integrated circuit design service infrastructure 110 and
relayed in a useful format to the user (e.g., via a web client
or a scripting API client).

[0021] The integrated circuit design service infrastructure
110 may also facilitate the manufacture of integrated circuits
using the integrated circuit design in a manufacturing facil-
ity associated with the manufacturer server 130. In some
implementations, a physical design specification (e.g., a
graphic data system (GDS) file, such as a GDSII file) based
on a physical design data structure for the integrated circuit
is transmitted to the manufacturer server 130 to invoke
manufacturing of the integrated circuit (e.g., using manu-
facturing equipment of the associated manufacturer). For
example, the manufacturer server 130 may host a foundry
tape-out website that is configured to receive physical design
specifications (e.g., such as a GDSII file or an open artwork
system interchange standard (OASIS) file) to schedule or
otherwise facilitate fabrication of integrated circuits. In
some implementations, the integrated circuit design service
infrastructure 110 supports multi-tenancy to allow multiple
integrated circuit designs (e.g., from one or more users) to
share fixed costs of manufacturing (e.g., reticle/mask gen-
eration, and/or shuttles wafer tests). For example, the inte-
grated circuit design service infrastructure 110 may use a
fixed package (e.g., a quasi-standardized packaging) that is
defined to reduce fixed costs and facilitate sharing of reticle/
mask, wafer test, and other fixed manufacturing costs. For
example, the physical design specification may include one
or more physical designs from one or more respective
physical design data structures in order to facilitate multi-
tenancy manufacturing.

[0022] In response to the transmission of the physical
design specification, the manufacturer associated with the
manufacturer server 130 may fabricate and/or test integrated
circuits based on the integrated circuit design. For example,
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the associated manufacturer (e.g., a foundry) may perform
optical proximity correction (OPC) and similar post-tape-
out/pre-production processing, fabricate the integrated cir-
cuit(s) 132, update the integrated circuit design service
infrastructure 110 (e.g., via communications with a control-
ler or a web application server) periodically or asynchro-
nously on the status of the manufacturing process, perform
appropriate testing (e.g., wafer testing), and send to a
packaging house for packaging. A packaging house may
receive the finished wafers or dice from the manufacturer
and test materials and update the integrated circuit design
service infrastructure 110 on the status of the packaging and
delivery process periodically or asynchronously. In some
implementations, status updates may be relayed to the user
when the user checks in using the web interface, and/or the
controller might email the user that updates are available.
[0023] In some implementations, the resulting integrated
circuit(s) 132 (e.g., physical chips) are delivered (e.g., via
mail) to a silicon testing service provider associated with a
silicon testing server 140. In some implementations, the
resulting integrated circuit(s) 132 (e.g., physical chips) are
installed in a system controlled by the silicon testing server
140 (e.g., a cloud server), making them quickly accessible to
be run and tested remotely using network communications
to control the operation of the integrated circuit(s) 132. For
example, a login to the silicon testing server 140 controlling
a manufactured integrated circuit(s) 132 may be sent to the
integrated circuit design service infrastructure 110 and
relayed to a user (e.g., via a web client). For example, the
integrated circuit design service infrastructure 110 may be
used to control testing of one or more integrated circuit(s)
132.

[0024] FIG. 2 is a block diagram of an example of a
system 200 for facilitating generation of integrated circuits,
for facilitating generation of a circuit representation for an
integrated circuit, and/or for programming or manufacturing
an integrated circuit. The system 200 is an example of an
internal configuration of a computing device. The system
200 may be used to implement the integrated circuit design
service infrastructure 110, and/or to generate a file that
generates a circuit representation of an integrated circuit
design like the integrated circuit design shown and described
in FIGS. 3-6.

[0025] The processor 202 can be a central processing unit
(CPU), such as a microprocessor, and can include single or
multiple processors having single or multiple processing
cores. Alternatively, the processor 202 can include another
type of device, or multiple devices, now existing or hereafter
developed, capable of manipulating or processing informa-
tion. For example, the processor 202 can include multiple
processors interconnected in any manner, including hard-
wired or networked, including wirelessly networked. In
some implementations, the operations of the processor 202
can be distributed across multiple physical devices or units
that can be coupled directly or across a local area or other
suitable type of network. In some implementations, the
processor 202 can include a cache, or cache memory, for
local storage of operating data or instructions.

[0026] The memory 206 can include volatile memory,
non-volatile memory, or a combination thereof. For
example, the memory 206 can include volatile memory, such
as one or more dynamic random access memory (DRAM)
modules such as double data rate (DDR) synchronous
DRAM (SDRAM), and non-volatile memory, such as a disk
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drive, a solid-state drive, flash memory, Phase-Change
Memory (PCM), or any form of non-volatile memory
capable of persistent electronic information storage, such as
in the absence of an active power supply. The memory 206
can include another type of device, or multiple devices, now
existing or hereafter developed, capable of storing data or
instructions for processing by the processor 202. The pro-
cessor 202 can access or manipulate data in the memory 206
via the bus 204. Although shown as a single block in FIG.
2, the memory 206 can be implemented as multiple units.
For example, a system 200 can include volatile memory,
such as random access memory (RAM), and persistent
memory, such as a hard drive or other storage.

[0027] The memory 206 can include executable instruc-
tions 208, data, such as application data 210, an operating
system 212, or a combination thereof, for immediate access
by the processor 202. The executable instructions 208 can
include, for example, one or more application programs,
which can be loaded or copied, in whole or in part, from
non-volatile memory to volatile memory to be executed by
the processor 202. The executable instructions 208 can be
organized into programmable modules or algorithms, func-
tional programs, codes, code segments, or combinations
thereof to perform various functions described herein. For
example, the executable instructions 208 can include
instructions executable by the processor 202 to cause the
system 200 to automatically, in response to a command,
generate an integrated circuit design and associated test
results based on a design parameters data structure. The
application data 210 can include, for example, user files,
database catalogs or dictionaries, configuration information
or functional programs, such as a web browser, a web server,
a database server, or a combination thereof. The operating
system 212 can be, for example, Microsoft Windows®,
macOS®, or Linux®; an operating system for a small
device, such as a smartphone or tablet device; or an oper-
ating system for a large device, such as a mainframe
computer. The memory 206 can comprise one or more
devices and can utilize one or more types of storage, such as
solid-state or magnetic storage.

[0028] The peripherals 214 can be coupled to the proces-
sor 202 via the bus 204. The peripherals 214 can be sensors
or detectors, or devices containing any number of sensors or
detectors, which can monitor the system 200 itself or the
environment around the system 200. For example, a system
200 can contain a temperature sensor for measuring tem-
peratures of components of the system 200, such as the
processor 202. Other sensors or detectors can be used with
the system 200, as can be contemplated. In some implemen-
tations, the power source 216 can be a battery, and the
system 200 can operate independently of an external power
distribution system. Any of the components of the system
200, such as the peripherals 214 or the power source 216,
can communicate with the processor 202 via the bus 204.

[0029] The network communication interface 218 can also
be coupled to the processor 202 via the bus 204. In some
implementations, the network communication interface 218
can comprise one or more transceivers. The network com-
munication interface 218 can, for example, provide a con-
nection or link to a network, such as the network 106 shown
in FIG. 1, via a network interface, which can be a wired
network interface, such as Ethernet, or a wireless network
interface. For example, the system 200 can communicate
with other devices via the network communication interface
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218 and the network interface using one or more network
protocols, such as Ethernet, transmission control protocol
(TCP), Internet protocol (IP), power line communication
(PLC), Wi-Fi, infrared, general packet radio service (GPRS),
global system for mobile communications (GSM), code
division multiple access (CDMA), or other suitable proto-
cols.

[0030] A user interface 220 can include a display; a
positional input device, such as a mouse, touchpad, touch-
screen, or the like; a keyboard; or other suitable human or
machine interface devices. The user interface 220 can be
coupled to the processor 202 via the bus 204. Other interface
devices that permit a user to program or otherwise use the
system 200 can be provided in addition to or as an alterna-
tive to a display. In some implementations, the user interface
220 can include a display, which can be a liquid crystal
display (LCD), a cathode-ray tube (CRT), a light emitting
diode (LED) display (e.g., an organic light emitting diode
(OLED) display), or other suitable display. In some imple-
mentations, a client or server can omit the peripherals 214.
The operations of the processor 202 can be distributed
across multiple clients or servers, which can be coupled
directly or across a local area or other suitable type of
network. The memory 206 can be distributed across multiple
clients or servers, such as network-based memory or
memory in multiple clients or servers performing the opera-
tions of clients or servers. Although depicted here as a single
bus, the bus 204 can be composed of multiple buses, which
can be connected to one another through various bridges,
controllers, or adapters.

[0031] A non-transitory computer readable medium may
store a circuit representation that, when processed by a
computer, is used to program or manufacture an integrated
circuit. For example, the circuit representation may describe
the integrated circuit specified using a computer readable
syntax. The computer readable syntax may specify the
structure or function of the integrated circuit or a combina-
tion thereof. In some implementations, the circuit represen-
tation may take the form of a hardware description language
(HDL) program, a register-transfer level (RTL) data struc-
ture, a flexible intermediate representation for register-trans-
fer level (FIRRTL) data structure, a Graphic Design System
1T (GDSII) data structure, a netlist, or a combination thereof.
In some implementations, the integrated circuit may take the
form of a field programmable gate array (FPGA), applica-
tion specific integrated circuit (ASIC), system-on-a-chip
(SoC), or some combination thereof. A computer may pro-
cess the circuit representation in order to program or manu-
facture an integrated circuit, which may include program-
ming a field programmable gate array (FPGA) or
manufacturing an application specific integrated circuit
(ASIC) or a system on a chip (SoC). In some implementa-
tions, the circuit representation may comprise a file that,
when processed by a computer, may generate a new descrip-
tion of the integrated circuit. For example, the circuit
representation could be written in a language such as Chisel,
an HDL embedded in Scala, a statically typed general
purpose programming language that supports both object-
oriented programming and functional programming.

[0032] In an example, a circuit representation may be a
Chisel language program which may be executed by the
computer to produce a circuit representation expressed in a
FIRRTL data structure. In some implementations, a design
flow of processing steps may be utilized to process the
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circuit representation into one or more intermediate circuit
representations followed by a final circuit representation
which is then used to program or manufacture an integrated
circuit. In one example, a circuit representation in the form
of a Chisel program may be stored on a non-transitory
computer readable medium and may be processed by a
computer to produce a FIRRTL circuit representation. The
FIRRTL circuit representation may be processed by a com-
puter to produce an RTL circuit representation. The RTL
circuit representation may be processed by the computer to
produce a netlist circuit representation. The netlist circuit
representation may be processed by the computer to produce
a GDSII circuit representation. The GDSII circuit represen-
tation may be processed by the computer to produce the
integrated circuit.

[0033] In another example, a circuit representation in the
form of Verilog or VHDL may be stored on a non-transitory
computer readable medium and may be processed by a
computer to produce an RTL circuit representation. The RTL
circuit representation may be processed by the computer to
produce a netlist circuit representation. The netlist circuit
representation may be processed by the computer to produce
a GDSII circuit representation. The GDSII circuit represen-
tation may be processed by the computer to produce the
integrated circuit. The foregoing steps may be executed by
the same computer, different computers, or some combina-
tion thereof, depending on the implementation.

[0034] FIG. 3 is a block diagram of an example of a
system 300 including an integrated circuit 305 and a
memory system 310. The integrated circuit 305 may include
a processor core 320. The integrated circuit 305 could be
implemented, for example, as a field-programmable gate
array (FPGA), an application-specific integrated circuit
(ASIC), or a system-on-chip (SoC). The memory system
310 may include an internal memory system 312 and an
external memory system 314. The internal memory system
312 may be in communication with the external memory
system 314. The internal memory system 312 may be
internal to the integrated circuit 305 (e.g., implemented by
the FPGA, the ASIC, or the SoC). The external memory
system 314 may be external to integrated circuit 305 (e.g.,
not implemented by the FPGA, the ASIC, or the SoC). The
internal memory system 312 may include, for example, a
controller and memory, such as random access memory
(RAM), static random access memory (SRAM), cache,
and/or a cache controller, such as a level three (L3) cache
and an L3 cache controller. The external memory system
314 may include, for example, a controller and memory,
such as dynamic random access memory (DRAM) and a
memory controller. In some implementations, the memory
system 310 may include memory mapped inputs and outputs
(MMIO), and may be connected to non-volatile memory,
such as a disk drive, a solid-state drive, flash memory, and/or
phase-change memory (PCM).

[0035] The processor core 320 may include circuitry for
executing instructions, such as one or more pipelines 330, a
level one (I.1) instruction cache 340, an [.1 data cache 350,
and a level two (L.2) cache 360 that may be a shared cache.
The processor core 320 may fetch and execute instructions
in the one or more pipelines 330, for example, as part of a
program sequence. The instructions may cause memory
requests (e.g., read requests and/or write requests) that the
one or more pipelines 330 may transmit to the [.1 instruction
cache 340, the L1 data cache 350, and/or the 1.2 cache 360.
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[0036] Each of the one or more pipelines 330 may include
a primary pipeline 332, a vector pipeline 334, and a re-
triggering wake-up circuitry 336. The primary pipeline 332
and the vector pipeline 334 each have separate decode units,
rename units, dispatch units, execution units, physical and/
or virtual registers, caches, queues, data paths, and/or other
logic associated with instruction flow. In some implemen-
tations, the primary pipeline 332 and the vector pipeline 334
may be out-of-order pipelines. The re-triggering wake-up
circuitry 336 may include various components and mecha-
nisms that are described in FIGS. 4, 5, and 6 that help
manage the timing differences between the primary pipeline
332 and the vector pipeline 334, ensuring proper synchro-
nization between scalar and vector operations. Some of the
components that can be part of the re-triggering wake-up
circuitry 336 may include a Load-Store unit (LSU), a vector
unit (VU), and a Baler unit (Baler). The system 300 and each
component in the system 300 is illustrative and can include
additional, fewer, or different components which may be
similarly or differently architected without departing from
the scope of the specification and claims herein. Moreover,
the illustrated components can perform other functions
without departing from the scope of the specification and
claims herein.

[0037] FIG. 4 is a block diagram 400 illustrating a rela-
tionship between a Load Store unit (LSU) 401, a Baler unit
(Baler) 410, and a Vector Unit or Processor (VU) 420. The
block diagram 400 and its components (e.g., LSU, Baler,
VU) can be implemented, for example, by a processor, such
as the processor core 320, a pipeline, such as the pipeline
330, the primary pipeline 332, and the vector pipeline 334,
and/or the circuitry that incorporates a re-triggering wakeup
mechanism (e.g., the re-triggering wake-up circuitry 336).
[0038] The LSU 401 may include an LSU issue queue
402, a LST pipeline 404, a LD pipeline 406, and a load
queue 408. The Baler 410 may include a Baler issue queue
412, a Load Transpose Buffer (LTB) 414, and a Baler
pipeline 416. The VU 420 may include a dispatch unit 422
and a Vector Physical Register Files (Vector PRF) 424.
[0039] The LSU 401 may load data from memory and
prepare it for processing by the VU 420. By writing the data
to the Load Transpose Buffer (LTB) 412, the LSU 401 may
efficiently transfer data to the VU 420 for processing,
without slowing down the LSU’s ability to load more data
from memory.

[0040] The LST pipeline 404 may be used to execute load
instructions that involve data-dependent memory opera-
tions. These operations may require the LSU 401 to access
the memory multiple times in order to retrieve the necessary
data. The LST pipeline 404 may include stages for issuing
the instruction, checking for hazards, performing memory
access, and writing back the result.

[0041] The LD pipeline 406, on the other hand, is used to
execute simple load instructions that do not require multiple
memory accesses. Such instructions can be executed more
quickly than those that involve data-dependent memory
operations. The LD pipeline 406 may include stages for
issuing the instruction, checking for hazards, performing
memory access, and writing back the result.

[0042] The Baler 410 includes, but is not limited to, the
Baler issue queue 410, the LTB 414, and the Baler pipeline
416. The Baler 410 may be an intermediate buffer between
the LSU 401 and the VU 420. The Baler 410 may buffer the
load data from the LSU 401 and the store data from VU 420.
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Further, the Baler 410 may manage the timing and coordi-
nation of micro-operations (uops) with other components,
such as the LSU 401 and the LTB 414. The tracking of data
readiness is done in the Baler 410 to wake-up the L.SU 401
or VU 420 once the data is ready to be accessed.

[0043] The LTB 414 may be a type of an intermediate or
load buffer used by the LSU 401 to temporarily store and
handle data that has been loaded from memory before it is
transferred for processing. Each LTB entry may store data
read from memory including vector elements (e.g., indi-
vidual data elements that are part of a vector), and metadata
associated with vector elements (e.g., original memory
addresses, vector register index, other information that helps
transposition process). For each non-segmented load ele-
ment, the L'TB may load data into corresponding location
within an LTB entry (like where it should in a vector
register). For each segmented load element, the LTB may
load the segments in an in-memory format (segments of an
element are placed sequentially).

[0044] Baler issue queue 412, on the other hand, may be
used to temporarily store uops that have been issued by the
VU 420 for execution. Further, the Baler pipeline 416 may
be a type of pipeline used in the execution or support of the
execution of vector instructions or operations.

[0045] The VU 420 may include the dispatch unit 422 and
the Vector Physical Register Files (Vector PRF) 424. The
VU 420 may execute vector operations (e.g., vector uops)
that have been issued by the processor. The dispatch unit 422
may communicate with and load vector uops to the Baler
issue queue 412. The dispatch unit 422 may ensure coordi-
nation of the timing of uops to prevent conflict of resources
and minimize stalls.

[0046] The Vector PRF 424 may store temporary results
and operands for the vector uops during their execution. The
Vector PRF 424 may hold the data elements being processed
by the vector execution units and help manage register
renaming and allocation for out-of-order execution. The
Vector PRF 424 may be designed to support the parallelism
and high-throughput requirements of vector operations. The
Vector PRF 424 may communicate with the Baler pipeline
416 with regards to Register Read or Write. Moreover, the
Register Read or Write depends on load or store operations.
For example, reading from or writing to a Register may be
contingent upon whether a load or store operation is taking
place. For example, for the store operation, reading the data
from the Register to write it back to memory may be
necessary, and for the load operation, writing data from the
memory into the register may be necessary.

[0047] Every load micro-operation may be individually
handled in the scalar (LSU) side and vector (VU/Baler) side.
In order to support out-of-order architecture and let scalar-
side and vector-side decouple as much as possible, the
scalar-side and vector-side should be less dependent on each
other. Consequently, the timing of events are not guaranteed
as between the scalar-side and the vector-side.

[0048] Fast-path refers to a scenario where the load opera-
tion in the Load (LD) pipeline is initiated before the corre-
sponding load operation in the Load-Store tag (LST) pipe-
line finishes execution. This fast-path approach enhances
parallelism between scalar and vector operations, thereby
improving overall performance.

[0049] Slow-path, on the other hand, refers to a scenario
where the load operation in the LD pipeline starts only after
the corresponding load operation in the LST pipeline has
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completed execution. This approach ensures that there is no
speculative behavior, as the LD pipeline action is triggered
after resolving the LST pipeline operation.

[0050] Issues arise in the fast-path scenario, where the
timing difference between scalar and vector operations can
cause potential delays in the execution of vector micro-
operations due to missed wakeup signals. For instance,
consider a situation where the LD pipeline initiates a load
operation before the LST pipeline has completed its corre-
sponding load operation. In this case, the LD pipeline may
send a speculative wakeup signal to the vector micro-
operation in the Baler issue queue before the vector micro-
operation has even arrived at the queue.

[0051] Such issues can be addressed by introducing a
re-triggering wakeup mechanism that ensures the vector
micro-operation is woken up even if the initial speculative
wakeup signal is missed due to the timing difference
between scalar and vector operations. This mechanism helps
maintain efficient execution of vector micro-operations
without being delayed by the time skew between scalar and
vector operations.

[0052] FIG. 5 is a block diagram 500 illustrating a timing
of a slow path pipeline flow. FIG. 5 illustrates that there is
no speculative behavior because the action of LD pipeline
(e.g., LD pipeline 406) is triggered after resolve (e.g., a
respective load instruction is resolved, micro-operations
can’t be replayed (e.g., re-executed)). The block diagram
500 may incorporate the block diagram 400 and its compo-
nents. Moreover, LST pipeline, LD pipeline, Baler pipeline,
and LTB may correspond to the LST pipeline 404, the LD
pipeline 406, the Baler pipeline 416, and the LTB 414,
respectively.

[0053] After dispatch of vector operation (e.g., vector
uop), the vector operation may reside in the Baler issue
queue until the corresponding tag wakeup comes. Here, to
ensure that data can be obtained from a LTB entry 505 of the
LTB at an execution stage (EX-stage 524) for the Baler
pipeline (such as the Baler Pipeline 416), the data valid bit
for the corresponding tag should be set at this stage. A Load
read stage of the LD pipeline (LD/LDR stage 510) is the
earliest stage which can trigger the wake-up to make sure the
data can be obtained at the EX-stage 524.

[0054] In operation, at (a) the LD/LDR stage 510, which
comes earlier than a Load forwarding stage of LD pipeline
(LD/LDF stage 512) and a Load data write back stage of LD
pipeline (LD/LDWB stage 514), the request with a tag may
be sent, and the tag may be used to compare with the tag of
each entry in the LTB. If the tag matches, a wake-up is sent
to the Baler issue queue 520. For example, the tag (e.g., tag
identifier, tag number, serial number) may be created in
front-end of pipeline stages [e.g., rename, decode stages,
etc.] and such tag information exists in the LST pipeline
(e.g., LST pipeline 404), LD pipeline (e.g., LD pipeline
406), and/or LTB (e.g., LTB 414). The tag may be used to
compare with tag of each entry in the LTB.

[0055] At (b), in the meanwhile, the data ready bit of the
corresponding entry may be set to indicate the resource of
this entry is ready (not valid yet but to make sure data can
arrive later (e.g., two cycles later) and matches the timing
from an issue stage (ISS stage 522) of the Baler pipeline to
EX stage 524 of the Baler pipeline.

[0056] At (c), a PRA request may be sent to a Physical
Readiness Array (PRA) of the LTB (LTB/PRA 526), which
is used for tracking the readiness of dependent source. As
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described above, the timing of arrival of the micro-operation
(e.g., vop) can’t be guaranteed. In this case, if the LD
pipeline has finished its move but has not woken up a
micro-operation in the Baler issue queue 520, it’s because
the micro-operation in the vector-side has not arrived at the
Baler issue queue 520 yet. But afterward, when the micro-
operation does arrive at the dispatch stage 518, the micro-
operation will check the readiness of resources. In this case,
the data ready bit is set in the LTB buffer (which was set by
the LD pipeline operation).

[0057] At (d), a response of a LTB/PRA 526 to the PRA
request would be true in this case. The micro-operation has
no need to wait for wake-up because it (e.g., data, data bit)
has been set as ready and the micro-operation can be issued
from the Baler issue queue 520 and/or the issue stage (ISS
stage 522) of the Baler pipeline. FIG. 6 is a block diagram
600 illustrating a timing of a fast-path pipeline flow with
re-triggering wakeup. FIG. 6 illustrates a speculative behav-
ior because the action of LD pipeline is triggered before
resolve. The block diagram 600 may incorporate the block
diagram 400 and its components. Moreover, LST pipeline,
LD pipeline, Baler pipeline, and LTB may, for example,
correspond to the LST pipeline 404, the LD pipeline 406, the
Baler pipeline 416, and the L'TB 414, respectively.

[0058] In operation, at (a), in order to support fast-path,
another wake-up mechanism beside “L'TB tag matching” to
Baler issue queue 620 may be added. Since the LD/LDR
stage 610 is earlier than a Load/Store ordering stage of the
LST pipeline (LST/LSTO stage 604) in fast-path, the tag at
LDR stage 610 will come to LTB earlier than the LTB entry
establishment (at establish stage 606). Therefore, at the
Load/Store register read stage of LST pipeline (LST/LSTR
stage 602), before going to the LD arbitration stage, a
claimed freelist (e.g., list that is used to obtain information
of which free entries in the L'TB can be used for later stages)
can be used to obtain an entry number. In this way, the LDR
stage 610 can index the corresponding L'TB entry without
gid/csid tag matching. Further, LTB entry may carry data
from the LST pipeline to the LD pipeline.

[0059] At (b), the speculative wakeup signal may be
transmitted to the Baler issue queue 620. In some imple-
mentations, the speculative wakeup signal may be transmit-
ted to the Baler Pipeline (e.g., issue stage (ISS stage 622) of
the Baler Pipeline), as the ISS stage 622 of the Baler pipeline
or the Baler pipeline may be in communication with the
Baler issue queue 620. Even though the FIG. 6 illustrates
that the speculative wakeup signal may be transmitted to the
ISS stage 622, it may be transmitted to Baler issue queue
620, and this applies to (e) as well. After support of fast-path
and speculative wake-up, there may be a change to support
replay from the LD pipeline. If there is a replay happening
from a LD/LDF stage 612, the LD pipeline signals replay to
all dependencies like the LTB pipeline. The LTB pipeline
may take this source replay into consideration for its own
pipeline replay, throwing the current micro-operation back
into the Baler issue queue 620 and waiting for the next
wake-up. Therefore, a speculative load can only be set as
ready (e.g., data ready, data bit ready) for PRA read when its
source can’t replay anymore (e.g., at LD/LDWB stage 614).
[0060] At (c), a PRA request may be sent (e.g., transmit-
ted) to a PRA of the L'TB (LTB/PRA 526), which is used for
tracking the readiness of dependent source. If the arrival of
the micro-operation (e.g., from the vector side, the vector
unit, or the vector processor) at the dispatch stage 618 is at
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when the micro-operation in the LD pipeline also arrives at
the LDR, LDF, LDWB; or after LDWB stage (e.g., LD/LDR
stage 610, LD/LDF stage 612, LD/LDWB stage 614, or after
LDWB stage 614), then there may be three different cases.
If the micro-operation in the LD pipeline arrives: (c)(1) after
LDWRB stage 614, the data ready bit has been set in the PRA
of the LTB (LTB/PRA 626) and readiness can be deter-
mined; and (c)(2) at LDWB stage 614, readiness can be
determined by the LDWB stage information; however, prob-
lem arises if it arrives (¢)(3) at LDR stage 610 and LDF stage
612, where these two cycles are in a time skew such that they
can’t be set as ready, and a wake-up at LDR stage 610 does
not wake-up any micro-operation inside the Baler issue
queue because the micro-operation has not arrived yet.
[0061] At (d), for the (c)(3) case at LDR stage 610 and
LDF stage 612, it may be not possible to obtain the positive
readiness, and thus, there must be a wake-up from the LTB
in the near future. As such, at first, it may be necessary to
save the status of incoming PRA request at (c), but not
respond to the case.

[0062] Forexample, saving (e.g., storing) the status of the
incoming PRA request may indicate that the readiness of
data is still being tracked (e.g., data is expected but not yet
available). This information may be used to trigger another
speculative wakeup again when the corresponding data
becomes available, which may ensure that the load operation
is not stalled and can continue its execution. For example,
the PRA may be not set as ready timely since this scenario
corresponds to a speculative load and there is time skew
between scalar operation (or scalar side pipelines) and
vector operation (or vector side pipelines), and the PRA may
save the status, e.g., that the PRA is not ready or data or data
bit is not ready, but that a request (whether speculative or
not, or subsequent request) is coming. At (e), it may be
necessary to re-trigger the speculative wakeup at the
LD/LDWB stage 614. PRA request may be sent again. PRA
may respond accordingly depending on the status of whether
the data or data bit is ready or not. Moreover, if PRA, data,
or data bit is set as ready, then wakeup may not be needed,
and vice versa.

[0063] As such, issues of such time skew or the timing
difference between scalar and vector operations due to
missed wakeup signals can be addressed by introducing a
re-triggering wakeup mechanism that ensures the vector
micro-operation is woken up even if the initial speculative
wakeup signal is missed due to the timing difference
between scalar and vector operations.

[0064] FIG. 7 is a flowchart diagram of a method 700 of
re-triggering wakeup to handle time skew between a scalar
operation and a vector operation. For example, the vector
operation may be a vector micro-operation (uop) described
above. The method 700 can be implemented, for example,
by a processor, such as the processor 202, the processor core
320, a pipeline such as the pipeline 330, and/or any circuitry
that may incorporate the fast-path scenario as described
above. Further, components, time cycles, different stages of
operation, and other information from FIG. 6 may be
incorporated into the method 700.

[0065] At 702, the method 700 dispatches a vector micro-
operation (uop) from the VU to the Baler issue queue of the
Baler. For example, a vector instruction may be fetched and
decoded into vector uop, and the vector uop may be dis-
patched to the Baler issue queue. At Baler issue queue, the
vector uop may wait for its source operands (e.g., from the
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scalar side) to become ready. The Baler issue queue may
monitor readiness of the operands using mechanisms such as
tag matching or re-triggered wake up signals.

[0066] At 704, the method 700 initiates a respective load
operation in a LST pipeline. The respective load operation
(e.g., load vop) (hereinafter “LST load uop”) may be a part
of the scalar operation (e.g., scalar uop) (e.g., which may
retrieve the data needed for the vector uop to execute) that
corresponds to or is counterpart of the vector uop. For
example, a load instruction may be fetched and decoded into
the LST load uop, and the LST load vop may be dispatched
to the LST pipeline for processing. In some implementa-
tions, the LST pipeline may issue the load uop to the LSU,
which may manage memory access and ensure that the load
operation accesses the correct memory address.

[0067] At 706, the method 700 initiates, before LST
pipeline completes the respective load operation, a respec-
tive load operation (e.g., load uop) (hereinafter “LD load
uop”) in LD pipeline. The LD load uop may be part of the
scalar operation or the scalar uop (e.g., which may retrieve
the data needed for the vector uop to execute) that corre-
sponds to or is counterpart of the vector uop.

[0068] At 708, the method 700 may trigger a speculative
wakeup. For example, triggering of the speculative wakeup
from the LD pipeline may occur during an execution of the
LD load uvop. For example, the vector uop may need the
scalar uop or data from memory that is being fetched by the
LST load uop in the LST pipeline when the LST load uop in
the LST pipeline is not finished yet. The LD pipeline
includes at least a LDR stage, a LDF stage, and a LDWB
stage, and triggering the speculative wakeup from the LD
pipeline occurs during the LDR stage or the LDF stage.
[0069] In some implementations, another wake-up mecha-
nism, beside L'TB tag matching to Baler issue queue, can be
added to support a fast-path. That is, in fast-path, since the
LDR stage (of the LD pipeline) is earlier than the LSTO
stage (one pipeline stage in LST pipeline where entry is
established) and thus tag at the LDR stage may come to LTB
(of the Baler) earlier than L'TB entry establishment, another
wake-up mechanism can be added to or supplanted with the
tag-matching. For example, at the LSTR stage (of the LST
pipeline), before going to the LD arbitration stage (of the LD
pipeline), claimed freelist can be used to get an entry
number. In this way, at the LDR stage, the method 700 or an
operation (e.g., uop) at LDR can index the corresponding
LTB entry without gid/csid tag matching. In some imple-
mentations, after support of fast-path and speculative wake-
up, there may be a chance to support replay from the LD
pipeline. If there is a replay happening from the LDF stage,
the LD pipeline may signal replay to one or more depen-
dencies like the LTB (or LTB pipeline). The LTB may take
this source replay into consideration for its own pipeline
replay, throwing the current uop back into the Baler issue
queue and waiting for the next wake-up. As such, the
speculative load can only be set as ready for PRA read when
its source can’t replay anymore (e.g., at LDWB stage).
[0070] In some implementations, the method 700 may
transmit a first request (e.g., from the baler unit) to a physical
readiness array (PRA) of a load transpose buffer (LTB) (e.g.,
of'the baler unit) to track a readiness of the data derived from
the execution of the corresponding load operation. The PRA
may be responsible for tracking the readiness of dependent
source or monitoring the availability of data and informing
the dependent vector uop when the data is ready to be used.
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The PRA may not respond to the first request (since the data
may not be ready or available yet), and store a status of the
first request in an internal register of the processor. Storing
the status of the first request may indicate that the readiness
of data is still being tracked (e.g., data is expected but not yet
available). This information may be used to trigger another
speculative wakeup again when the corresponding data
becomes available, which may ensure that the load operation
is not stalled and can continue its execution. For example,
the PRA may be not set as ready timely since this scenario
corresponds to a speculative load and there is time skew
between scalar operation (or scalar pipes) and vector opera-
tion (or vector pipes), and the PRA may store (e.g., save) the
status, e.g., that the PRA is not ready, but that a request
(whether speculative or not, or subsequent request) is com-
ing, in an internal register of the processor.

[0071] Depending on that the arrival timing of the vector
uop at the dispatch stage happens when the scalar uop or the
part of the scalar vop (e.g., LD load uop) in the LD pipeline
arrives or is at the LDR stage, the LDF stage, LDWB stage,
and after LDWB stage, there may be three scenarios: (1)
After LDWB stage, the data ready bit has been set and
readiness can be determined by this; (2) at LDWB stage,
readiness can be determined by the LDWB stage informa-
tion; and the problem (3) at LDR/LDF stage, the two cycles
are in a time skew, so can’t set as ready and wake-up at LDR
stage doesn’t wake-up any uop inside the Baler issue queue
because the vop hasn’t arrived yet. As such, for the third
scenario, there should be another wake-up from the L'TB in
the near future, which is described by next step.

[0072] At 710, the method 700 may trigger a second
wakeup corresponding to speculative wakeup. For example,
in response to an availability of the data or anticipation of
the data arrival in the near future, the method 700 may
trigger the second wakeup corresponding to the speculative
wakeup. For example, the second wakeup may be triggered
after storing the status of the first request. In some imple-
mentations, the second wakeup may be the speculative
wakeup such that the method 700 triggers the speculative
wakeup for the second time. In some implementations, the
second wakeup may be triggered during or after the LDWB
stage. In some implementations, in response to confirming
that the subsequent speculative request (which may or may
not be equivalent to the prior speculative request) is con-
firmed as non-speculative request, the method 700 may
re-trigger the wakeup (e.g., second wakeup) during or after
the LDWB stage.

[0073] At 712, the method 700 may wake up vector uop in
baler issue queue based on the second wakeup.

[0074] After the method 700 wakes up the vector opera-
tion in the baler issue queue based on the second wakeup, the
method 700 may select and send respective vector uop to the
appropriate execution unit in the vector pipeline for pro-
cessing. For example, the data (e.g., scalar data, data derived
from scalar operation or LD uop and/or LST uop) may be
sent to the Baler pipeline, and the vector uop may be sent to
the Baler pipeline which may be used in the execution or
support of the execution (e.g., when the vector uop and/or
scalar data are forwarded to an appropriate execution unit or
the VU executes the vector uop and/or instructions). The
Vector PRF may communicate and/or cooperate with the
Baler pipeline with regards to Register Write. The L'TB may
be in communication Baler Pipeline such that the data (e.g.,
scalar data, data derived from scalar operation or LD uop
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and/or LST uop) may be communicated (e.g., data read)
between the LTB and the Baler Pipeline.

[0075] The execution of vector operation may involve the
necessary computations on the input data (e.g., scalar data,
data derived from scalar operation or LD uop and/or LST
uop), which may involve vector arithmetic or other vector
operations. Once the execution is complete, the results may
be written back to the appropriate destination registers or
memory locations.

[0076] FIG. 8 is a flowchart diagram of an example
implementation 800 of re-triggering wakeup to handle time
skew between a scalar operation and a vector operation. For
example, the vector operation may be a vector micro-
operation (uop) described above. The method 800 can be
implemented, for example, by a processor, such as the
processor 202, the processor core 320, a pipeline such as the
pipeline 330, and/or any circuitry that may incorporate the
fast-path scenario as described above. Further, components,
time cycles, different stages of operation, and other infor-
mation from FIG. 6 may be incorporated into the method
800.

[0077] At 702, the method 800 dispatches a vector micro-
operation (uop) from the VU to the Baler issue queue of the
Baler. The technique used at 702 with respect to the method
800 can be the same as the step 702 described with regards
to the method 700, so the technique is not repeatedly
mentioned here. At 704, the method 800 initiates a respec-
tive load operation in a LST pipeline.

[0078] At 706, the method 800 initiates, before LST
pipeline completes the respective load operation, a respec-
tive load operation (e.g., load uop) (hereinafter “LD load
uop”) in LD pipeline. The LD load uop may be part of the
scalar operation or the scalar uop (e.g., which may retrieve
the data needed for the vector uop to execute) that corre-
sponds to or is counterpart of the vector uop.

[0079] At 807, the method 800 may obtain an LTB entry
number. In some implementations, claimed freelist can be
used to generate or obtain the LTB entry number. Obtaining
the LTB entry number can be a part of or an another wake-up
mechanism in addition to or in supplant of a tag-matching
mechanism. For example, beside L'TB tag matching to Baler
issue queue, can be added to support a fast-path. That is, in
fast-path, since the LDR stage (of the LD pipeline) is earlier
than the LSTO stage (of the LST pipeline) and thus tag at the
LDR stage may come to L'TB (of the Baler) earlier than LTB
entry establishment, another wake-up mechanism can be
added to or supplanted with the tag-matching. For example,
at the LSTR stage (of the LST pipeline), before going to the
LD arbitration stage (of the LD pipeline), the claimed
freelist can be used to get (e.g., obtain) an entry number. In
this way, at the LDR stage, the method 800 or an operation
(e.g., uop) at LDR can index the corresponding LTB entry
without gid/csid tag matching. In some implementations,
after support of fast-path and speculative wake-up, there
may be a chance to support replay from the LD pipeline. If
there is a replay happening from the LDF stage, the LD
pipeline may signal replay to one or more dependencies like
the LTB (or LTB pipeline). The LTB may take this source
replay into consideration for its own pipeline replay, throw-
ing the current uop back into the Baler issue queue and
waiting for the next wake-up. As such, the speculative load
can only be set as ready for PRA read when its source can’t
replay anymore (e.g., at LDWB stage).
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[0080] At 708, the method 800 may trigger a speculative
wakeup. For example, triggering of the speculative wakeup
from the LD pipeline may occur during an execution of the
LD load uvop. For example, the vector uop may need the
scalar uop or data from memory that is being fetched by the
LST load uop in the LST pipeline when the LST load uop in
the LST pipeline is not finished yet. The LD pipeline
includes at least a LDR stage, a LDF stage, and a LDWB
stage, and triggering the speculative wakeup from the LD
pipeline occurs during the LDR stage or the LDF stage.
[0081] At 809_1, the method 800 may transmit a first
request (e.g., from the baler unit) to a physical readiness
array (PRA) of a load transpose buffer (LTB) (e.g., of the
baler unit) to track a readiness of the data derived from the
execution of the corresponding load operation. The PRA
may be responsible for tracking the readiness of dependent
source or monitoring the availability of data and informing
the dependent vector uop when the data is ready to be used.
[0082] At 809_2, the method 800 may not respond to the
first request and store status of the first request. For example,
the PRA may not respond to the first request (since the data
may not be ready or available yet), and may store a status of
the first request in an internal register of the processor.
Storing the status of the first request may indicate that the
readiness of data is still being tracked (e.g., data is expected
but not yet available). This information may be used to
trigger another speculative wakeup again when the corre-
sponding data becomes available, which may ensure that the
load operation is not stalled and can continue its execution.
[0083] Depending on that the arrival timing of the vector
uop at the dispatch stage happens when the scalar uop or the
part of the scalar vop (e.g., LD load uop) in the LD pipeline
arrives or is at the LDR stage, the LDF stage, LDWG stage,
and after LDWB stage, there may be three scenarios: (1)
After LDWB stage, the data ready bit has been set and
readiness can be determined by this; (2) at LDWB stage,
readiness can be determined by the LDWB stage informa-
tion; and the problem (3) at LDR/LDF stage, the two cycles
are in a time skew, so can’t set as ready and wake-up at LDR
stage doesn’t wake-up any uop inside the Baler issue queue
because the vop hasn’t arrived yet. As such, for the third
scenario, there should be another wake-up from the L'TB in
the near future, which is described by next step.

[0084] At 710, the method 800 may trigger a second
wakeup corresponding to speculative wakeup. The tech-
nique used at 710 with respect to the method 800 can be the
same as the step 710 described with regards to the method
700, so the technique is not repeatedly mentioned here.
[0085] At 712, the method 800 may wake up vector uop in
baler issue queue based on the second wakeup. The tech-
nique used at 710 with respect to the method 800 can be the
same as the step 710 described with regards to the method
700, so the technique is not repeatedly mentioned here.
[0086] At 813, the method 800 may perform vector opera-
tion (e.g., vector uop). After the method 700 wakes up the
vector operation in the baler issue queue based on the second
wakeup, the method 700 may select and send respective
vector uop to the appropriate execution unit in the vector
pipeline for processing. For example, the data (e.g., scalar
data, data derived from scalar operation or LD uop and/or
LST uop) may be sent to the Baler pipeline, and the vector
uop may be sent to the Baler pipeline which may be used in
the execution or support of the execution (e.g., when the
vector uop and/or scalar data are forwarded to an appropriate
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execution unit or the VU executes the vector uop and/or
instructions). The Vector PRF may communicate and/or
cooperate with the Baler pipeline with regards to Register
Write. The LTB may be in communication Baler Pipeline
such that the data (e.g., scalar data, data derived from scalar
operation or LD uop and/or LST uop) may be communicated
(e.g., data read) between the L'TB and the Baler Pipeline. The
execution of vector operation may involve the necessary
computations on the input data (e.g., scalar data, data
derived from scalar operation or LD uop and/or LST uop),
which may involve vector arithmetic or other vector opera-
tions.

[0087] Once the execution is complete, the results may be
written back to the appropriate destination registers or
memory locations.

[0088] The described methods and systems include a
method for re-triggering wakeup to handle time skew
between a scalar operation and a vector operation. The
method includes initiating, before a Load-Store (LST) pipe-
line completes an execution of a load operation correspond-
ing to a vector micro-operation (uop) dispatched to a baler
issue queue, a respective load operation in a Load (LD)
pipeline corresponding to the vector uop; triggering a specu-
lative wakeup from the LD pipeline during an execution of
the respective load operation; triggering a second wakeup
corresponding to the speculative wakeup from the LD
pipeline; and waking up, based on the second wakeup, the
vector uop in the baler issue queue of the baler unit. In
implementations, the LD pipeline includes at least a load
read (LDR) stage, a load forwarding (LDF) stage, and a load
data write back (LDWB) stage, and triggering the specula-
tive wakeup from the LD pipeline occurs during the LDR
stage. In implementations, the method can further include
transmitting from the baler unit, a first request to a physical
readiness array (PRA) of a load transpose buffer of the baler
unit to track a readiness of data derived from the execution
of the corresponding load operation; not responding, by the
PRA, to the first request; and storing a status of the first
request. In implementations, the second wakeup correspond-
ing to the speculative wakeup from the LD pipeline is
triggered after storing the status of the first request.

[0089] In implementations, the LD pipeline includes at
least a LDR stage, a LDF stage, and a LDWB stage, and
triggering the speculative wakeup from the LD pipeline
occurs during the LDF stage. In implementations, the
method can further include transmitting from the baler unit,
a first request to a physical readiness array (PRA) of a load
transpose buffer of the baler unit to track a readiness of data
derived from the execution of the corresponding load opera-
tion; not responding, by the PRA, to the first request; and
storing a status of the first request. In implementations, the
second wakeup corresponding to the speculative wakeup
from the LD pipeline is triggered after storing the status of
the first request.

[0090] The described methods and systems include a
non-transitory computer readable medium that includes a
circuit representation. The circuit representation, when pro-
cessed by a computer, can be used to program or manufac-
ture an integrated circuit that includes a processor. Such
processor can include a circuitry configured to initiate,
before a Load-Store (LLST) pipeline completes an execution
of a load operation corresponding to a vector micro-opera-
tion (uop) dispatched to a baler issue queue, a respective
load operation in a Load (LD) pipeline corresponding to the
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vector uop; trigger a speculative wakeup from the LD
pipeline during an execution of the respective load opera-
tion; trigger a second wakeup corresponding to the specu-
lative wakeup from the LD pipeline; and wake up, based on
the second wakeup, the vector uop in the baler issue queue
of the baler unit.

[0091] In implementations, triggering the speculative
wakeup from the LD pipeline occurs during the LDR stage.
In implementations, the processor can be further configured
to: transmit, from the baler unit, a first request to a physical
readiness array (PRA) of a load transpose buffer of the baler
unit to track a readiness of data derived from the execution
of'the respective load operation; not respond, by the PRA, to
the first request; and store a status of the first request in an
internal register of the processor. In implementations, the
second wakeup corresponding to the speculative wakeup
from the LD pipeline is triggered after storing the status of
the first request.

[0092] In implementations, the LD pipeline includes at
least a LDR stage, a LDF stage, and a LDWB stage; and
triggering the speculative wakeup from the LD pipeline
occurs during the LDF stage. In implementations, the pro-
cessor can be further configured to: transmit, from the baler
unit, a first request to a physical readiness array (PRA) of a
load transpose buffer of the baler unit to track a readiness of
data derived from the execution of the respective load
operation; not respond, by the PRA, to the first request; and
store a status of the first request in an internal register of the
processor. In implementations, the second wakeup corre-
sponding to the speculative wakeup from the LD pipeline is
triggered after storing the status of the first request. In
implementations, the processor can be further configured to
generate an entry number from a claimed freelist such that
a respective uop at LDR can index a corresponding [.oad
Transpose Buffer (LTB) entry.

[0093] The described methods and systems include an
integrated circuit. The integrated circuit can include a baler
unit having a baler issue queue, a vector processing unit, a
Load-Store unit (LSU) having a Load-Store (LST) pipeline
and a Load (LD) pipeline, and a processor. The processor is
configured to: initiate, before a Load-Store (L.ST) pipeline
completes an execution of a load operation corresponding to
a vector micro-operation (uop) dispatched to a baler issue
queue, a respective load operation in a Load (LD) pipeline
corresponding to the vector uop; trigger a speculative
wakeup from the LD pipeline during an execution of the
respective load operation; trigger a second wakeup corre-
sponding to the speculative wakeup from the LD pipeline;
and wake up, based on the second wakeup, the vector
micro-operation in the baler issue queue of the baler unit.
[0094] In implementations, the LD pipeline includes at
least a load read (LDR) stage, a load forwarding (LDF)
stage, and a load data write back (LDWB) stage; and
triggering the speculative wakeup from the LD pipeline
occurs during the LDR stage or the LDF stage. In imple-
mentations, the LD pipeline includes at least a load read
(LDR) stage, a load forwarding (LDF) stage, and a load data
write back (LDWB) stage, and triggering the speculative
wakeup from the LD pipeline occurs during the LDR stage
or the LDF stage. In implementations, the baler unit can
further include a load transpose buffer that includes a
physical readiness array (PRA), and the processor can be
further configured to: transmit, from the baler unit, a first
request to the PRA of the load transpose buffer of the baler
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unit to track a readiness of data derived from the execution
of the respective load operation; not respond, by the PRA, to
the first request; and store a status of the first request in an
internal register of the processor. In implementations, the
second wakeup corresponding to the speculative wakeup
from the LD pipeline is triggered after storing the status of
the first request. In implementations, the processor can be
further configured to generate an entry number from a
claimed freelist such that a respective uop at LDR can index
a corresponding Load Transpose Buffer (LTB) entry.
[0095] While the disclosure has been described in con-
nection with certain embodiments, it is to be understood that
the disclosure is not to be limited to the disclosed embodi-
ments but, on the contrary, is intended to cover various
modifications and equivalent arrangements included within
the scope of the appended claims, which scope is to be
accorded the broadest interpretation so as to encompass all
such modifications and equivalent structures.

What is claimed is:

1. A method for re-triggering wakeup to handle time skew
between a scalar operation and a vector operation, compris-
ing:

initiating, before a Load-Store (LST) pipeline completes

an execution of a load operation corresponding to a
vector micro-operation (uop) dispatched to a baler issue
queue, a respective load operation in a Load (LD)
pipeline corresponding to the vector uop;

triggering a speculative wakeup from the LD pipeline

during an execution of the respective load operation;
triggering a second wakeup corresponding to the specu-
lative wakeup from the LD pipeline; and

waking up, based on the second wakeup, the vector uop

in the baler issue queue of the baler unit.

2. The method of claim 1, wherein:

the LD pipeline includes at least a load read (LDR) stage,

a load forwarding (LLDF) stage, and a load data write
back (LDWB) stage; and

triggering the speculative wakeup from the LD pipeline

occurs during the LDR stage.

3. The method of claim 1, wherein:

the LD pipeline includes at least a LDR stage, a LDF

stage, and a LDWB stage; and

triggering the speculative wakeup from the LD pipeline

occurs during the LDF stage.

4. The method of claim 2, further comprising:

transmitting, from the baler unit, a first request to a

physical readiness array (PRA) of a load transpose
buffer of the baler unit to track a readiness of data
derived from the execution of the corresponding load
operation;

not responding, by the PRA, to the first request; and

storing a status of the first request.

5. The method of claim 3, further comprising:

transmitting, from the baler unit, a first request to a

physical readiness array (PRA) of a load transpose
buffer of the baler unit to track a readiness of a data
derived from the execution of the respective load
operation; and

not responding, by the PRA, to the first request; and

storing a status of the first request.

6. The method of claim 4, wherein the second wakeup
corresponding to the speculative wakeup from the LD
pipeline is triggered after storing the status of the first
request.
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7. The method of claim 5, wherein the second wakeup
corresponding to the speculative wakeup from the LD
pipeline is triggered after storing the status of the first
request.

8. A non-transitory computer readable medium compris-
ing a circuit representation that, when processed by a
computer, is used to program or manufacture an integrated
circuit comprising:

a processor including circuitry configured to:

initiate, before a Load-Store (LLST) pipeline completes
an execution of a load operation corresponding to a
vector micro-operation (uop) dispatched to a baler
issue queue, a respective load operation in a Load
(LD) pipeline corresponding to the vector uop;

trigger a speculative wakeup from the LD pipeline
during an execution of the respective load operation;

trigger a second wakeup corresponding to the specu-
lative wakeup from the LD pipeline; and

wake up, based on the second wakeup, the vector uop
in the baler issue queue of the baler unit.

9. The non-transitory computer readable medium of claim
8, wherein:

triggering the speculative wakeup from the LD pipeline

occurs during the LDR stage.

10. The non-transitory computer readable medium of
claim 8, wherein:

the LD pipeline includes at least a LDR stage, a LDF

stage, and a LDWB stage; and

triggering the speculative wakeup from the LD pipeline

occurs during the LDF stage.

11. The non-transitory computer readable medium of
claim 9, wherein the processor is further configured to:

transmit, from the baler unit, a first request to a physical

readiness array (PRA) of a load transpose buffer of the
baler unit to track a readiness of data derived from the
execution of the respective load operation;

not respond, by the PRA, to the first request; and

store a status of the first request in an internal register of

the processor.

12. The non-transitory computer readable medium of
claim 10, wherein the processor is further configured to:

transmit, from the baler unit, a first request to a physical

readiness array (PRA) of a load transpose buffer of the
baler unit to track a readiness of a data derived from the
execution of the respective load operation; and

not respond, by the PRA, to the first request; and

store a status of the first request in an internal register of

the processor.

13. The non-transitory computer readable medium of
claim 11, wherein the second wakeup corresponding to the
speculative wakeup from the LD pipeline is triggered after
storing the status of the first request.

14. The non-transitory computer readable medium of
claim 12, wherein the second wakeup corresponding to the
speculative wakeup from the LD pipeline is triggered after
storing the status of the first request.

15. The non-transitory computer readable medium of
claim 12, wherein the processor is further configured to:

generate an entry number from a claimed freelist such that

a respective uop at LDR can index a corresponding
Load Transpose Buffer (LTB) entry.

16. An integrated circuit comprising:

a baler unit comprising a baler issue queue;

a vector processing unit;
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a Load-Store unit (LSU) comprising a Load-Store (LST)
pipeline and a Load (L.LD) pipeline; and
a processor configured to:
initiate, before a Load-Store (L.ST) pipeline completes
an execution of a load operation corresponding to a
vector micro-operation (uop) dispatched to a baler
issue queue, a respective load operation in a Load
(LD) pipeline corresponding to the vector uop;
trigger a speculative wakeup from the LD pipeline
during an execution of the respective load operation;
trigger a second wakeup corresponding to the specu-
lative wakeup from the LD pipeline; and
wake up, based on the second wakeup, the vector
micro-operation in the baler issue queue of the baler
unit.
17. The integrated circuit of claim 16, wherein:
the LD pipeline includes at least a load read (LDR) stage,
a load forwarding (LLDF) stage, and a load data write
back (LDWB) stage; and
triggering the speculative wakeup from the LD pipeline
occurs during the LDR stage or the LDF stage.
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18. The integrated circuit of claim 17, wherein:

the baler unit further comprises a load transpose buffer

that includes a physical readiness array (PRA);

the processor is further configured to:

transmit, from the baler unit, a first request to the PRA
of the load transpose buffer of the baler unit to track
a readiness of data derived from the execution of the
respective load operation;

not respond, by the PRA, to the first request; and

store a status of the first request in an internal register
of the processor.

19. The integrated circuit of claim 18, wherein the second
wakeup corresponding to the speculative wakeup from the
LD pipeline is triggered after storing the status of the first
request.

20. The integrated circuit of claim 19, wherein the pro-
cessor is further configured to:

generate an entry number from a claimed freelist such that

a respective uop at LDR can index a corresponding
Load Transpose Buffer (LTB) entry.
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