(19)

US 20230168987A1

a2y Patent Application Publication o) Pub. No.: US 2023/0168987 A1

United States

Dageville et al. 43) Pub. Date: Jun. 1, 2023
(54) AUTOMATED QUERY RETRY EXECUTION GOG6F 11/34 (2006.01)
USING MULTIPLE COMPUTING NODES IN GO6F 16/242 (2006.01)
A DATABASE SYSTEM (52) US. CL
CPC GOG6F 11/3082 (2013.01); GO6F 16/2465
(71) Applicant: Snowflake Inc., Bozeman, MT (US) (2019.01); GOGF 11/3438 (2013.01); GO6F
11/3409 (2013.01); GO6F 16/2425 (2019.01);
(72) Inventors: Benoit Dageville, San Mateo, CA (US); GO6F 16/2474 (2019.01)
Johan Harjono, San Francisco, CA
(US); Simon Holm Jensen, Menlo
Park, CA (US); Kunal Prafulla Nabar, &7 ABSTRACT
l]illrlléngasme,l\% A (US); Steven James Techniques for automated query retry in a database platform
y, San Mateo, CA (US) . .
include decoding, by at least one hardware processor, a
(21) Appl. No.: 18/160,720 query directed to database data. The query is received by a
first management node from a client account of a database
(22) Filed: Jan. 27, 2023 system. The method further includes configuring an execu-
S tion of the query by a first computing node associated with
Related U.S. Application Data the first management node. The method includes detecting
(63) Continuation of application No. 17/809,780, filed on the execution of the query results in a failed execution. The
Jun. 29, 2022, which is a continuation of application query is transferred from the first management node to a
No. 16/555,996, filed on Aug. 29, 2019, now Pat. No. second management node based on the failed execution. The
11,409,626. second management node is configured to process tasks that
A . . are internal to the database system. A retry execution of the
Publication Classification query by a second computing node is configured. The
(51) Imt. ClL second computing node is associated with the second man-
GO6F 11/30 (2006.01) agement node. A cause of the failed execution is determined
GO6F 16/2458 (2006.01) based on a result of the retry execution.
mT 7 1
| Failed Query |
[104 | [- 100
OO |
\
/ Resource Manager \ / Compute Service Manager \
802 102
! Query Retry Module !
Receive Query From Client Receive Indication Of Failed Query ! 114 l
Account 106 I I
124 | | Select Compute |1
* | | Service Instance ||
Assign Task‘s For Original Determine Tasks To Retry Query | 118]
Execution Of Query 108 | . I
126 | Select Version Of l
Y Database Platform |
‘ Assign Tasks To Retry Query I 120
Determine Original Execution 110 | l
Failed I'] select Execution | |
128 * | Platform |
Analyze Query Retry Attempts | 122]
12 I —_———_I
Transfer Query
130 A
. J \ /

Execution Platform

Y

116

A

I "Old

oIT
wliojie|d uonnIexgy

\

US 2023/0168987 Al

oy «

oSt
Aanp Jsjsuely

413
sidweny Anay Alend) azAjeuy

443

1

wJopeld
uonNI8Xg 109198

i

[y

8t
paje4
uonnoax3 [euibuQ sulwBlaQ

ooT Aiend Aney o] sysey ubissy

1

wiofe|d eseqereq

1

80T

9ct
Areng JO uonnoaxgy

[euibup Jo4 syse| ubissy

Aenp Ajey 0] syse| aulwisiaq

1

3IT
9oUB)SU| 82IAISS

Jun. 1,2023 Sheet 1 of 15

i

aindwon) 109198

90T
A1anp pajre JO UONBDIPU| BAIS08Y

_
_
_
_
_
_
“ JO UOISIaN 109[8S
_
_
_
_
_

YT

Vel
UNoooY
a0 wol4 A1eny) aAleday

s|npow Aay Aenp _

c0F
1ebeuep aoinsg aindwon

.

208
Jobeue 924n0say

-————
N _ 50T _
001 Y0l

| Asenp pajres |

Patent Application Publication

US 2023/0168987 Al

Jun. 1,2023 Sheet 2 of 15

Patent Application Publication

00¢ \'.\

¢ Old
ucle gcle BZ12
abeloig obeIolg obelolg
eled 21:1g eleq
0T¢ wuojeld abeiols
orT
wlojeld uonnoaxg L
80¢
JUNOJ2Y JUBID
P
902 2ot
.Bmwwwms_ D — ..mmm:.m_)_ SI—— @Hlom
90IAI8S 8INdwioD onY

US 2023/0168987 Al

Jun. 1,2023 Sheet 3 of 15

Patent Application Publication

¢ Ol

N

90¢€
abeiols eleq

5T 0c¢ 8Ie
SINPOW Aoy A19nt Jabeuepy Jojeuiploon
asnoyalepy [enuiA | pue Jainpayos qor
AN
9¢¢ 9l€ 5TE ciE
obelol1g JoINoax3g Jopdwon
e qor #ozIundo qor qor
\\III}
\
/ == oTaTed
0L 80¢€
20INIDS 90INISG
[Z4% (443 2|0su0) Buisse00id
lozAjeuy labeuepy Juswebeuey 1senbay
PEOPLOM BlEPRIS pUE
pue 10JIUO uoneinbyuon
20t
Jobeuep ao1n19g aindwion

0¢
Jabeuep Aoy

20¢g
laBeuep

$S900Y

US 2023/0168987 Al

Jun. 1,2023 Sheet 4 of 15

Patent Application Publication

u9¢y HOSS3004dd

Upcy JHOVO

Ucey
JdON NOLLAOAX3

G927 HOSS300Hd

ey IHOVO

qccy
3AO0ON NOILLNO3AX3

E9¢ HOSS300Hd

Byt 4HOVO

Bgcy
3AdON NOILLNO3AXE

N ISNOHIAHVM TVNLHIA

9Lt m

WIOJIB]4 UoNNoexsg

.....

v "Old

ugly 4HOSS300dd

U90¥ HOSSIOOHd

UyLly GHOVO

uclv
d4AdON NOILNOEXd

Up0y dHOVO

UcOv
3AON NOILNO3X3

491y HOSS300Hd

G907 HOSS3D0Hd

ay iy IHOVO

acty
3AdON NOILNOdIXd

3%0% IHOVO

02ov
JdON NOILNO3X3

B9T¥ HOSSIO0Hd

E90¥ HOSSAO0Hd

eFT¥ AHOVO

eciy
3AON NOLLNO3IXH

EyO¥ AHOVO

L1404
JAON NOILND3X3

¢ ASNOHAHYM TVNLHIA

I ASNOHIHVM VN LHIA

Patent Application Publication

Virtual Warehouse

5043

N—

Shared
Storage
506a

SN—

Shared
Storage
506b

N—

Jun. 1,2023 Sheet 5 of 15

Virtual Warehouse
504b

Shared
Storage
506¢

SN—

Shared
Storage
506d

N—

FIG. 5

r’ 500

Virtual Warehouse

Manager
202

Shared
Storage
506e

N—

Virtual Warehouse

504n

N—

Shared
Storage
506n

SN—

US 2023/0168987 Al

Patent Application Publication

Failed Query
104

Retry On Same

Jun. 1, 2023 Sheet 6 of 15 US 2023/0168987 Al

[~ 600

Successful?

Version
602

No

Successful?
608

604

Retry On Other
Version

No

606

Return Query Results To Client

610

FIG. 6

US 2023/0168987 Al

Jun. 1,2023 Sheet 7 of 15

Patent Application Publication

294
yoday

\.

¥0Z
ananp) Aenp

L Ol
)
4)
01z
uny 10bue | <
J
4 N
80/
uny auijoseg -
J
90Z

Jauuny Anay Aenp)

VIt

004 \I\

SINPON
Anay Aend

0L
10109j9S

PEOPOM

A

US 2023/0168987 Al

Jun. 1,2023 Sheet 8 of 15

Patent Application Publication

8 Ol
(7A¥A orAVA rAYA
JOVHOLS JOVHOLS 3OVHOLS
v1va viva viva
INHO4 1V 1d
JOVHOLS
012
808
91T N H4SN
IWHOALYd
NOILND3XT
AN
908
— c08 A\\\\V AENY
902 < HIOVYNYIN IDHNOSIY
VAVAvLIn
[I\\ %
REE

008 R

Patent Application Publication Jun. 1, 2023 Sheet 9 of 15 US 2023/0168987 A1

900 1

Receiving A Query Directed To Database Data.
9202

!

Assigning Execution Of The Query To One Or More Execution Nodes Of An Execution Platform,
The One Or More Execution Nodes Configured To Execute The Query On A First Version Of A
Database Platform.

204

!

Determining That Execution Of The Query Was Unsuccessful.

906

!

Assigning A Retry Of The Query On The First Version Of The Database Platform.
208

!

Assigning A Retry Of The Query On A Second Version Of The Database Platform.
210

FIG. 9

Patent Application Publication Jun. 1, 2023 Sheet 10 of 15 US 2023/0168987 A1

1000l

Receiving A Query Directed To Database Data.
1002

!

Assigning Execution Of The Query To One Or More Execution Nodes Of An Execution Platform,
The One Or More Execution Nodes Configured To Execute The Query On A First Version Of A
Database Platform.

1004

!

Determining That Execution Of The Query Was Unsuccessful.
1006

!

Assigning A Retry Of The Execution Of The Query To The One Or More Execution Nodes Of The
Execution Platform.
1008

!

Determining Whether A Regression Or An Intermittent Fault Caused The Execution Of The Query
To Be Unsuccessful Based At Least In Part On Whether The Retry Of The Execution Of The Query
Was Successful Or Unsuccessful.

1010

FIG. 10

Patent Application Publication Jun. 1, 2023 Sheet 11 of 15 US 2023/0168987 A1

11001

Receiving A Query Directed To Database Data.
1102

!

Assigning, By A First Database Query Manager, Execution Of The Query To One Or More
Execution Nodes Of An Execution Platform.
1104

'

Determining That Execution Of The Query Was Unsuccessful.
1106

!

Reassigning, By The First Database Query Manager, The Query To A Second Database Query
Manager.
1108

!

Assigning, By The Second Database Query Manager, A Retry Of The Execution Of The Query To
One Or More Execution Nodes Of An Execution Platform.
1110

FIG. 11

Patent Application Publication Jun. 1, 2023 Sheet 12 of 15 US 2023/0168987 A1

1200l

Receiving A Query Directed To Database Data From A Client Account.
1202

!

Receiving An Indication That Execution Of The Query Was Unsuccessiul.
1204

'

Automatically Assigning Retrying Execution Of The Query Until The Execution Of The Query Is
Successful.
1206

!

Logging An Indication Of Each Attempt To Execute The Query In A Transaction Log Associated
With The Client Account.
1208

!

Receiving A Request For The Transaction Log From The Client Account.
1210

!

Generating A Filtered Transaction Log By Filtering Out Each Unsuccessful Attempt To Execute The
Query.
1212

!

Providing The Filtered Transaction Log To The Client Account.
1214

FIG. 12

Patent Application Publication Jun. 1, 2023 Sheet 13 of 15 US 2023/0168987 A1

1300l

Receiving, By A Resource Manager, A Query Directed To Database Data From A Client Account.
1302

!

Assigning An Original Execution Of The Query To One Or More Execution Nodes Of An Execution
Platform.
1304

'

Determining The Original Execution Of The Query Was Unsuccesful.
1306

;

Transferring The Query To A Compute Service Manager Configured To Manage Internal Tasks For
Improving Operation Of A Database Platform That Are Not Received From Client Accounts.
1308

'

Assigning, By The Compute Service Manager, A Retry Execution Of The Query To One Or More
Execution Nodes Of An Execution Platform.
1310

FIG. 13

Patent Application Publication Jun. 1, 2023 Sheet 14 of 15 US 2023/0168987 A1

14001

Receiving A Query Directed To Database Data From A Client Account.
1402

!

Receiving An Indication That An Original Execution Of The Query Was Unsuccessful, Wherein The
Original Execution Of The Query Was Attempted On A First Version Of A Database Platform.
1404

'

Determining Whether The First Version Of The Database Platform Is A Most Recent Version Of The
Database Platform.
1406

!

In Response To Determining The First Version Is The Most Recent Version, Assigning A First Retry
Execution Of The Query On The First Version Of The Database Platform.
1408

!

Assessing Results Of At Least The First Retry Execution To Determine Whether A Regression
Might Exist In The First Version Of The Database Platform.
1410

FIG. 14

Patent Application Publication Jun. 1, 2023 Sheet 15 of 15 US 2023/0168987 A1

1502
\ 1512 / 1500
PROCESSOR(S)
1508 _K

MASS STORAGE

1504 —k DEVICE(S)
MEMORY
1510 _k

DEVICE(S)
INPUT/OUTPUT (1/O)

1506 1 DEVICE(S)

INTERFACE(S)

FIG. 15

US 2023/0168987 Al

AUTOMATED QUERY RETRY EXECUTION
USING MULTIPLE COMPUTING NODES IN
A DATABASE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a Continuation of U.S. patent
application Ser. No. 17/809,780, filed Jun. 29, 2022, which
is a Continuation of U.S. patent application Ser. No. 16/555,
996, filed Aug. 29, 2019 and now issued as U.S. Pat. No.
11,409,626; the contents of which are hereby incorporated
by reference in their entirety.

TECHNICAL FIELD

[0002] The present disclosure relates to databases and
more particularly relates to automated query retry in data-
base systems.

BACKGROUND

[0003] Databases are an organized collection of data that
enable data to be easily accessed, manipulated, and updated.
Databases serve as a method of storing, managing, and
retrieving information in an efficient manner. Traditional
database management requires companies to provision
infrastructure and resources to manage the database in a data
center. Management of a traditional database can be very
costly and requires oversight by multiple persons having a
wide range of technical skill sets.

[0004] Databases are widely used for data storage and
access in computing applications. A goal of database storage
is to provide enormous sums of information in an organized
manner so that it can be accessed, managed, and updated. In
a database, data may be organized into rows, columns, and
tables. Different database storage systems may be used for
storing different types of content, such as bibliographic, full
text, numeric, and/or image content. Further, in computing,
different database systems may be classified according to the
organization approach of the database. There are many
different types of databases, including relational databases,
distributed databases, cloud databases, object-oriented and
others.

[0005] Traditional relational database management sys-
tems (RDMS) require extensive computing and storage
resources and have limited scalability. Large sums of data
may be stored across multiple computing devices. A server
may manage the data such that it is accessible to customers
with on-premises operations. For an entity that wishes to
have an in-house database server, the entity must expend
significant resources on a capital investment in hardware and
infrastructure for the database, along with significant physi-
cal space for storing the database infrastructure. Further, the
database may be highly susceptible to data loss during a
power outage or other disaster situations. Such traditional
database systems have significant drawbacks that may be
alleviated by a cloud-based database system.

[0006] A cloud database system may be deployed and
delivered through a cloud platform that allows organizations
and end users to store, manage, and retrieve data from the
cloud. Some cloud database systems include a traditional
database architecture that is implemented through the instal-
lation of database software on top of a computing cloud. The
database may be accessed through a Web browser or an
application programming interface (API) for application and

Jun. 1, 2023

service integration. Some cloud database systems are oper-
ated by a vendor that directly manages backend processes of
database installation, deployment, and resource assignment
tasks on behalf of a client. The client may have multiple end
users that access the database by way of a Web browser
and/or API. Cloud databases may provide significant ben-
efits to some clients by mitigating the risk of losing database
data and allowing the data to be accessed by multiple users
across multiple geographic regions.

[0007] Databases are used by various entities and compa-
nies for storing information that may need to be accessed or
analyzed. In an example, a retail company may store a listing
of all sales transactions in a database. The database may
include information about when a transaction occurred,
where it occurred, a total cost of the transaction, an identifier
and/or description of all items that were purchased in the
transaction, and so forth. The same retail company may also
store, for example, employee information in that same
database that might include employee names, employee
contact information, employee work history, employee pay
rate, and so forth. Depending on the needs of this retail
company, the employee information and transactional infor-
mation may be stored in different tables of the same data-
base. The retail company may have a need to “query” its
database when it wants to learn information that is stored in
the database. This retail company may want to find data
about, for example, the names of all employees working at
a certain store, all employees working on a certain date, all
transactions for a certain product made during a certain time
frame, and so forth.

[0008] When the retail store wants to query its database to
extract certain organized information from the database, a
query statement is executed against the database data. The
query returns certain data according to one or more query
predicates that indicate what information should be returned
by the query. The query extracts specific data from the
database and formats that data into a readable form. The
query may be written in a language that is understood by the
database, such as Structured Query Language (“SQL”), so
the database systems can determine what data should be
located and how it should be returned. The query may
request any pertinent information that is stored within the
database. If the appropriate data can be found to respond to
the query, the database has the potential to reveal complex
trends and activities. This power can only be harnessed
through the use of a successfully executed query.

[0009] In some instances, the execution of a query fails.
Query execution may fail for a number of different reasons,
including an intermittent fault or a software regression. An
intermittent fault may be caused by a hardware failure, a
power outage, a fault electrical connection, a change in
temperature, vibration, and others. Intermittent faults are
very difficult to predict and identify. A software regression
may be caused by a bug or error in software code. Software
regressions can cause continued issues with query execution
and should therefore be identified and repaired. In some
instances, it is desirable to retry failed queries so that a valid
query response can be returned to a client.

[0010] In light of the foregoing, disclosed herein are
systems, methods, and devices for automated query retry in
a database system. The systems, methods, and devices
disclosed herein provide means for querying data, determin-
ing how and where queries should be retried, and analyzing
query retries.

US 2023/0168987 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Non-limiting and non-exhaustive implementations
of the present disclosure are described with reference to the
following figures, wherein like reference numerals refer to
like or similar parts throughout the various views unless
otherwise specified. Advantages of the present disclosure
will become better understood with regard to the following
description and accompanying drawings where:

[0012] FIG. 1 is a block diagram illustrating an example
process flow for scheduling tasks on a database and decou-
pling internal and external tasks in a database platform;
[0013] FIG. 2 is a block diagram illustrating a data pro-
cessing platform;

[0014] FIG. 3 is a block diagram illustrating a compute
service manager;

[0015] FIG. 4 is a block diagram illustrating an execution
platform;
[0016] FIG. 5 is a block diagram illustrating an example

operating environment;

[0017] FIG. 6 is a schematic diagram of a process flow for
retrying a failed query;

[0018] FIG. 7 is a schematic diagram of a process flow for
a query retry run,

[0019] FIG. 8 is a block diagram illustrating a resource
manager;
[0020] FIG. 9 is a schematic flow chart diagram of a

method for retrying a failed query;

[0021] FIG. 10 is a schematic flow chart diagram of a
method for determining whether a regression or intermittent
fault caused a query to fail;

[0022] FIG. 11 is a schematic flow chart diagram of a
method for retrying a failed query;

[0023] FIG. 12 is a schematic flow chart diagram of a
method for generating and filtering a transaction log for
query attempts in a database platform;

[0024] FIG. 13 is a schematic flow chart diagram of a
method for retrying a failed query;

[0025] FIG. 14 is a schematic flow chart diagram of a
method for retrying a failed query; and

[0026] FIG. 15 is a schematic block diagram of an
example computing device.

DETAILED DESCRIPTION

[0027] Disclosed herein are systems, methods, and
devices for automated query retry in a database platform.
The systems, methods, and devices of the disclosure can be
implemented to automatically retry a failed query and iden-
tify system errors based on the query retry attempts.
Embodiments of the disclosure can be implemented to
identify software regressions in a database platform. Addi-
tionally, embodiments of the disclosure can be implemented
to distinguish software regressions from intermittent faults.
[0028] In an embodiment of the disclosure, a method may
be implemented by a resource manager and/or compute
service manager of a database platform. The method
includes receiving a query directed to database data and
assigning execution of the query to one or more execution
nodes of an execution platform. The one or more execution
nodes may be configured to execute the query on a first
software version of the database platform. The method
includes determining that execution of the query was unsuc-
cessful. The method includes assigning a first retry execu-
tion of the query on the first software version of the database

Jun. 1, 2023

platform and assigning a second retry execution of the query
on a second software version of the database platform. The
first and second retry executions of the query may be
analyzed to determine whether the original, failed execution
of the query failed due to a software regression or an
intermittent fault. In an embodiment, the query is successful
at most one time such that additional retry attempts are
scheduled only after previous retry attempts have failed. In
such an embodiment, if a first retry attempt is successful,
then no additional retry attempts will be scheduled.

[0029] Databases are widely used for data storage and data
access in computing applications. Databases may include
one or more tables that include or reference data that can be
read, modified, or deleted using queries. However, for some
modern data warehouse systems, executing a query can be
exceptionally time and resource intensive because modern
data warehouse systems often include tables storing pet-
abytes of data. Querying very large databases and/or tables
might require scanning large amounts of data. Reducing the
amount of data scanned for database queries is one of the
main challenges of data organization and processing. When
processing a query against a very large sum of data, it can
be important to use materialized views to reduce the amount
of time and processing resources required to execute the
query. The systems, methods, and devices of the disclosure
provide means for automatically retrying failed queries and
performing analysis on query retry attempts.

[0030] In the following description, reference is made to
the accompanying drawings that form a part thereof, and in
which is shown by way of illustration specific exemplary
embodiments in which the disclosure may be practiced.
These embodiments are described in sufficient detail to
enable those skilled in the art to practice the concepts
disclosed herein, and it is to be understood that modifica-
tions to the various disclosed embodiments may be made,
and other embodiments may be utilized, without departing
from the scope of the present disclosure. The following
detailed description is, therefore, not to be taken in a limiting
sense.

[0031] Reference throughout this specification to “one
embodiment,” “an embodiment,” “one example” or “an
example” means that a particular feature, structure or char-
acteristic described in connection with the embodiment or
example is included in at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment,” “in an embodiment,” “one example” or
“an example” in various places throughout this specification
are not necessarily all referring to the same embodiment or
example. In addition, it should be appreciated that the
figures provided herewith are for explanation purposes to
persons ordinarily skilled in the art and that the drawings are
not necessarily drawn to scale.

[0032] Embodiments in accordance with the present dis-
closure may be embodied as an apparatus, method or com-
puter program product. Accordingly, the present disclosure
may take the form of an entirely hardware-comprised
embodiment, an entirely software-comprised embodiment
(including firmware, resident software, micro-code, etc.) or
an embodiment combining software and hardware aspects
that may all generally be referred to herein as a “circuit,”
“module” or “system.” Furthermore, embodiments of the
present disclosure may take the form of a computer program

2

2 <

US 2023/0168987 Al

product embodied in any tangible medium of expression
having computer-usable program code embodied in the
medium.

[0033] Any combination of one or more computer-usable
or computer-readable media may be utilized. For example,
a computer-readable medium may include one or more of a
portable computer diskette, a hard disk, a random-access
memory (RAM) device, a read-only memory (ROM) device,
an erasable programmable read-only memory (EPROM or
Flash memory) device, a portable compact disc read-only
memory (CDROM), an optical storage device, and a mag-
netic storage device. Computer program code for carrying
out operations of the present disclosure may be written in
any combination of one or more programming languages.
Such code may be compiled from source code to computer-
readable assembly language or machine code suitable for the
device or computer on which the code will be executed.
[0034] Embodiments may also be implemented in cloud
computing environments. In this description and the follow-
ing claims, “cloud computing” may be defined as a model
for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned via virtualization and
released with minimal management effort or service pro-
vider interaction and then scaled accordingly. A cloud model
can be composed of various characteristics (e.g., on-demand
self-service, broad network access, resource pooling, rapid
elasticity, and measured service), service models (e.g., Soft-
ware as a Service (“SaaS”), Platform as a Service (“PaaS”),
and Infrastructure as a Service (“laaS™)), and deployment
models (e.g., private cloud, community cloud, public cloud,
and hybrid cloud).

[0035] The flow diagrams and block diagrams in the
attached figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods,
and computer program products according to various
embodiments of the present disclosure. In this regard, each
block in the flow diagrams or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci-
fied logical function(s). It will also be noted that each block
of the block diagrams and/or flow diagrams, and combina-
tions of blocks in the block diagrams and/or flow diagrams,
may be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions. These computer program instructions may also
be stored in a computer-readable medium that can direct a
computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer-readable medium produce an article
of manufacture including instruction means which imple-
ment the function/act specified in the flow diagram and/or
block diagram block or blocks.

[0036] The systems and methods described herein provide
a flexible and scalable data warehouse using a new data
processing platform. In some embodiments, the described
systems and methods leverage a cloud infrastructure that
supports cloud-based storage resources, computing
resources, and the like. Example cloud-based storage
resources offer significant storage capacity available on-
demand at a low cost. Further, these cloud-based storage
resources may be fault-tolerant and highly scalable, which

Jun. 1, 2023

can be costly to achieve in private data storage systems.
Example cloud-based computing resources are available
on-demand and may be priced based on actual usage levels
of the resources. Typically, the cloud infrastructure is
dynamically deployed, reconfigured, and decommissioned
in a rapid manner.

[0037] In the described systems and methods, a data
storage system may utilize a SQL (Structured Query Lan-
guage)-based relational database. However, these systems
and methods are applicable to any type of database, and any
type of data storage and retrieval platform, using any data
storage architecture and using any language to store and
retrieve data within the data storage and retrieval platform.
The systems and methods described herein further provide a
multi-tenant system that supports isolation of computing
resources and data between different customers/clients and
between different users within the same customer/client.

[0038] As used herein, the terms “comprising,” “includ-
ing,” “containing,” “‘characterized by,” and grammatical
equivalents thereof are inclusive or open-ended terms that
do not exclude additional, unrecited elements or method
steps.

[0039] As used herein, a database table is a collection of
records (rows). Each record contains a collection of values
of table attributes (columns). Database tables are typically
physically stored in multiple smaller (varying size or fixed
size) storage units, e.g. files or blocks.

[0040] As used herein, a micro-partition is an immutable
storage device in a database table that cannot be updated
in-place and must be regenerated when the data stored
therein is modified.

[0041] Some embodiments of the disclosure may refer to
a “micro-partition” as storing a portion of the data in a
database table. The micro-partition as discussed herein may
be considered a batch unit where each micro-partition has
contiguous units of storage. By way of example, each
micro-partition may contain between 50 MB and 500 MB of
uncompressed data (note that the actual size in storage may
be smaller because data may be stored compressed). Groups
of rows in tables may be mapped into individual micro-
partitions organized in a columnar fashion. This size and
structure allow for extremely granular selection of the
micro-partitions to be scanned, which can be comprised of
millions, or even hundreds of millions, of micro-partitions.
This granular selection process may be referred to herein as
“pruning” based on metadata. Pruning involves using meta-
data to determine which portions of a table, including which
micro-partitions or micro-partition groupings in the table,
are not pertinent to a query, and then avoiding those non-
pertinent micro-partitions when responding to the query and
scanning only the pertinent micro-partitions to respond to
the query. Metadata may be automatically gathered about all
rows stored in a micro-partition, including: the range of
values for each of the columns in the micro-partition; the
number of distinct values; and/or additional properties used
for both optimization and efficient query processing. In one
embodiment, micro-partitioning may be automatically per-
formed on all tables. For example, tables may be transpar-
ently partitioned using the ordering that occurs when the
data is inserted/loaded. However, it should be appreciated
that this disclosure of the micro-partition is exemplary only
and should be considered non-limiting. It should be appre-

2 <

US 2023/0168987 Al

ciated that the micro-partition may include other database
storage devices without departing from the scope of the
disclosure.

[0042] A detailed description of systems and methods
consistent with embodiments of the present disclosure is
provided below. While several embodiments are described,
it should be understood that this disclosure is not limited to
any one embodiment, but instead encompasses numerous
alternatives, modifications, and equivalents. In addition,
while numerous specific details are set forth in the following
description in order to provide a thorough understanding of
the embodiments disclosed herein, some embodiments may
be practiced without some or all of these details. Moreover,
for the purpose of clarity, certain technical material that is
known in the related art has not been described in detail in
order to avoid unnecessarily obscuring the disclosure.

[0043] Referring now to the figures, FIG. 1 is a block
diagram of an example embodiment of a process flow 100
for managing and executing query retry jobs on a database
system and decoupling external and internal tasks in a
database platform. In an embodiment, the process flow 100
is carried out by a compute service manager 102 that is
configured to manage and assign query retry tasks and a
resource manager 802 that is configured to manage and
assign the execution of queries received from client
accounts. In the process flow 100, a resource manager 802
receives a query from a client account at 124. The resource
manager 802 references metadata to identify one or more
files that are responsive to the query. The resource manager
802 assigns processing of the one or more files to one or
more execution nodes of an execution platform 116 at 126.
The resource manager determines that the original execution
of the query failed at 128. If the original execution of the
query failed due to an internal error, rather than a non-
internal “user error” based on a user’s query text or data,
then the resource manager 802 transfer the query to a
compute service manager 102 at 130. A non-internal user
error may include an error in the Structured Query Language
(SQL) text of the query, an error based on the actual data
being processed. In the process flow 100, the compute
service manager 102 receives an indication at 106 of a failed
query 104. In an embodiment, the compute service manager
102 receives this indication by receiving a query retry job in
its queue. In an embodiment, the resource manager 802
transfer the query by placing the query in the queue of the
compute service manager 102. The indication of the failed
query 104 may be a positive/negative indication that only
indicates the query failed and does not provide additional
information about why or when the query failed. The
compute service manager 102 determines at 108 tasks to be
performed to retry the query and assigns those tasks at 110
to one or more execution nodes of one or more execution
platforms 116. The compute service manager 102 analyzes
the query retry attempt(s) at 112.

[0044] The compute service manager 102 shown in FIGS.
1-3 is a representation of a compute service instance. The
compute service manager 102 may be one of multiple
compute service instances serving a multiple tenant cloud-
based database platform. In an embodiment, one or more
compute service managers 102 are assigned to manage all
“internal” tasks for a single client account. The compute
service manager 102 may be assigned to manage internal
tasks for one or more client accounts. One client account
may have multiple compute service managers 102 assigned

Jun. 1, 2023

thereto. The multiple compute service instances are config-
ured to collectively manage the execution of internal data-
base tasks that are not received directly from client accounts.
Such internal tasks include, for example, retrying a failed
query, refreshing a materialized view, refreshing a table
aggregation, clustering a table, and so forth.

[0045] The compute service manager 102 may work in
connection with one or more resource managers 802. In an
embodiment, there is a resource manager 802 for each
compute service manager across the database platform. In an
embodiment, the number of resource managers 802 and the
number of compute service managers 102 is unequal. The
resource managers 802 are similar to the compute service
managers 102 with the exception that resource managers
802 are configured to manage the execution of “external”
database tasks that are received from a client account. Such
external tasks may include, for example, a query request
received from a client, a request to generate a materialized
view, a request to calculate an aggregation, and so forth. The
resource managers may include each of the components
associated with the compute service manager 102 as illus-
trated in FIG. 3 and may include additional components as
needed. The compute service managers 102 and the resource
managers 802 may work together and may transfer work
between one another. For example, a query request may
originate from a client account and be received by the
resource manager 802. If execution of the query fails, the
query retry attempts may be transferred from the resource
manager 802 to the compute service manager 102. Across
the database platform, different compute service managers
102 and resource managers 802 may be running different
software versions of the database platform at the same time.
[0046] As discussed herein, the term “database query
manager” may generically refer to either of the compute
service manager 102 and/or the resource manager 802. The
compute service manager 102 and the resource manager 802
have similar components and may perform similar tasks and
may be interchangeable in some instances and/or may be
particularly assigned to certain tasks, certain clients, certain
portions of the database data, and so forth.

[0047] The compute service manager 102 may determine
the tasks for retrying the query at 108 by numerous different
methods. The compute service manager 102 may receive an
indication from a client or system administrator that the
query should be retried on a certain compute service
instance, a certain version of software for the database
platform, by a certain execution platform, and so forth.
Alternatively, the compute service manager 102 may make
these determinations with a query retry module 114. The
query retry module 114 may select a compute service
instance at 118 for identifying and assigning tasks for
executing the retry of the query. The query retry module 114
may select a version of the database platform at 120 on
which the query should be retried. The query retry module
114 may select an execution platform 122 for performing the
retry of the query.

[0048] In an embodiment, the compute service manager
102 schedules and manages the execution of query retries on
behalf of a client account. The compute service manager 102
may schedule any arbitrary SQL query. The compute service
manager 102 may assume a role to schedule the failed query
104 as if it is the client account rather than as an internal
account or other special account. The compute service
manager 102 may embody the role of, for example, an

US 2023/0168987 Al

account administrator or a role having the smallest scope
necessary to complete the retry of the failed query 104.

[0049] In an embodiment, the compute service manager
102 determines tasks to retry the query at 108 and assigns
those tasks at 110. The compute service manager 102 may
generate one or more discrete units of work that may be
referred to as a task. The task includes, for example, a task
type, a task identification, an account identification, a pay-
load which may be converted to one or more discrete tasks,
and a set of options that control how the failed query 104 is
retried (e.g. indicates a number of retries). In an embodi-
ment, the compute service manager 102 identifies one or
more micro-partitions of data that need to be read to retry the
query. The compute service manager 102 may form batches
of micro-partitions that need to be read to retry the query and
may assign one or more batches to different execution nodes
of'the execution platform 116. The compute service manager
102 may determine how many times the query should be
retried and whether the query should be retried on different
compute service instances or on different versions of the
software of the database platform. The compute service
manager 102 may further determine if the query should be
retried on different execution nodes or execution platforms.
The compute service manager 102 may determine how
many times the query should be retried and where the query
should be retried based on the reason for the original failure
of'the query. If the reason for the original failure of the query
is unknown, then the compute service manager 102 may
determine how many times and where the query should be
retried in an effort to identify why the query original
execution of the query failed.

[0050] The compute service manager 102 may assign
tasks to retry the query 110. In an embodiment, the compute
service manager 102 identifies multiple micro-partitions of
data that need to be read to retry the query and assigns each
of the multiple micro-partitions to one or more execution
nodes of an execution platform 116. The compute service
manager 102 may assign tasks based on storage and pro-
cessing availability of the multiple execution nodes of the
execution platform. The compute service manager 102 may
assign tasks in an effort to identify why the original execu-
tion of the query failed. For example, the compute service
manager 102 may assign the query retry to the same one or
more execution nodes that originally attempted to execute
the query. The compute service manager 102 may assign the
query retry to new execution nodes that did not participate
in the original failed execution of the query.

[0051] The compute service manager 102 analyzes the
query retry attempts at 112 to identify why the query failed.
The compute service manager 102 may determine the query
failed due to an intermittent fault. Database queries can fail
due to numerous different intermittent faults that may be
caused by an electrical issue, a circuit issue, change in
temperature, vibration, voltage issues, power outages, and so
forth. In an embodiment, the compute service manager 102
may determine that the query failed due to an intermittent
fault but may not identify what caused the intermittent fault.
In an example, the compute service manager 102 may retry
the query with the same compute service instance, the same
execution nodes, and the same version of the database
platform as the original execution attempt for the query. If
the query retry is successful without changing any of the
compute service instance, the execution nodes, or the ver-
sion of the database platform, the compute service manager

Jun. 1, 2023

102 may deduce that the original execution of the query
failed due to an intermittent fault.

[0052] Alternatively, the compute service manager 102
may determine the query failed due to a system issue such
as a bug or error in the software or firmware for the database
platform. The compute service manager 102 may run the
query on the same version of the database platform (i.e., the
same software and code for the database platform) as the
original run of the query that failed. The computer service
manager 102 may additionally run the query on other
versions of the database platform. The compute service
manager 102 may determine that the query failed due to a
system error based on the results of the multiple query
retries. For example, if the query retry on the same version
of the database platform fails again, and the query retry on
a different version of the database platform is executed
successfully, then the compute service manager 102 may
deduce there is an error in the software for the database
platform in the version that was used for the original
execution of the query.

[0053] In an embodiment, the compute service manager
102 generates a report indicating when a failed query 104 is
scheduled to be retried and the amount of computing
resources that are estimated to be tied up retrying the failed
query 104. The compute service manager 102 may generate
a statement for each task that exposes the failed query 104
to an applicable client account by way of a filter. The
compute service manager 102 may alert a client account
when a failed query 104 is being retried.

[0054] The query retry module 114 may select a compute
service instance at 118 to manage the query retry. In an
embodiment, the compute service manager 102 is one of
multiple compute service managers serving a multiple tenant
cloud-based database platform. The query retry module 114
may be incorporated in the same compute service manager
102 that managed the original, failed execution of the query.
The query retry module 114 may determine that the query
retry should be performed by the same compute service
manager 102 and/or by one or more different compute
service instances. In an embodiment, the multiple compute
service instances across the database platform are running
different versions of software for the database platform at
any given time. For example, a new version of the software
for the database platform may be rolled out on a select
number of compute service instances while other compute
service instances continue to run older versions of the
software. This gradual rollout can assist in identifying any
errors or bugs in the newly rolled out software. The query
retry module 114 may determine that the query should be
retried multiple times by multiple different compute service
instances. The query retry module 114 may make this
determination in an effort to identify whether the original
execution of the query failed due to an intermittent fault or
a repeating system error.

[0055] In an embodiment, the query retry module 114
selects a compute service instance to manage the query retry
based on availability of the multiple compute service
instances across the database platform. In an embodiment,
the original, failed execution of the query is managed by a
resource manager that handles “external” jobs received from
client accounts such as client-requested queries. The retry of
the query may then be handled by a compute service
manager that handles “internal” jobs that are not client-
facing. Internal jobs include, for example, query retries,

US 2023/0168987 Al

refreshing materialized views, performing adaptive aggre-
gation of database data, updating metadata, and so forth. In
various embodiments, the query retry module 114 shown in
FIG. 1 may be incorporated in a resource manager and/or a
compute service manager and may be associated with the
same resource manager and/or compute service manager
that oversaw a failed execution of the query.

[0056] The query retry module 114 may select a version of
the database platform at 120 on which the query retry should
be performed. In an embodiment, the systems, methods, and
devices disclosed herein are part of a multiple tenant cloud-
based database platform. The database platform may have
multiple resource managers (for executing external jobs) and
multiple compute service managers (for executing internal
jobs). Each of the multiple resource managers and multiple
compute service managers could be operating under differ-
ent versions of software for the database platform. In an
embodiment, when a new version of software for the data-
base platform is rolled out, the new version is installed in
only a select number of resource managers and/or compute
service managers. The remaining resource managers and/or
compute service managers may continue to run older ver-
sions of the software for the database platform. The query
retry module 114 may select one of the multiple available
versions of software for running the query retry.

[0057] In an embodiment, the query retry module 114
determines that the query should be retried on the same
version of software as the original, failed execution attempt.
The query retry module 114 may determine that the query
should additionally be retried on one or more other versions
of software. The results of these multiple retry attempts may
be analyzed to determine whether the original, failed execu-
tion of the query failed due to an intermittent fault or a
system errot.

[0058] The query retry module 114 may select one or more
execution nodes or execution platforms at 122 to perform
the one or more retry attempts. The query retry module 114
may select the execution resources based on storage and/or
processing availability and/or current workload. The query
retry module 114 may select the same execution resources
that attempted to perform the original, failed execution of
the query because those execution resources may have
already cached some portion of data that is responsive to the
query. The query retry module 114 may select the same
execution resources that attempted to perform the original,
failed execution of the query in an effort to identify whether
the original execution of the query failed due to an inter-
mittent fault or a system error. In an embodiment, there is no
central query retry module 114 that determines the execution
resources for multiple retry attempts, and instead these
determinations are made by each individual compute service
instance that is assigning tasks for executing the query retry.
[0059] In an embodiment, the query retry module 114
selects one or more execution nodes to perform one or more
retry attempts on the query. The query retry module 114 may
determine that a query will be retried multiple times using
different execution nodes. A first retry execution of the query
may be performed on the same execution nodes that
attempted the original, failed execution of the query. A
second retry execution of the query may be performed on
different execution nodes that did not attempt the original,
failed execution of the query. A third retry execution of the
query may be performed by a mixture of execution nodes
that did and did not attempt the original, failed execution of

Jun. 1, 2023

the query. The query retry module 114 may schedule mul-
tiple retries of the query until the query or is successful
and/or a cause of the original failure of the query has been
identified. For example, it may be determined that the
original failure of the query was caused by a hardware issue
or a problem with a specific server that was involved in the
original execution of the query. This determination may be
made by performing multiple retries of the query using
multiple different execution nodes.

[0060] In an embodiment, the query retry module 114
determines at 122 that the query should be retried on the
same execution nodes that attempted to execute the original,
failed execution of the query. The result of this retry attempt
may be analyzed to determine if there is a hardware issue
with a specific server. If the query retry fails on the same
execution nodes used for the original, failed execution of the
query, this may indicate that further investigation should be
made to determine whether there is an issue with the server
running those one or more execution nodes.

[0061] Inan embodiment, the query retry module 114 first
selects one or more versions of the database platform at 120
to perform the one or more query retries. The query retry
module 114 may then select one or more compute service
instances at 118 to manage the one or more query retries.
The query retry module 114 may select compute service
instances based on which version of the database platform
the compute service instances are currently running.
[0062] The query retry module 114 may be incorporated
into a compute service manager 102 as shown in FIG. 1.
Alternatively, the query retry module 114 may be separate
from any compute service instance and may be configured to
make determinations about query retry attempts for one or
more accounts of a multiple tenant database platform. A
separate instance of the query retry module 114 may be
incorporated in each compute service instance. A single
instance of the query retry module 114 may be incorporated
in a single compute service instance and may make deter-
minations about query retry attempts for one or more
accounts of a multiple tenant database platform.

[0063] Modifications may be made to the process flow 100
in FIG. 1 without departing from the scope of the disclosure.
For example, the determinations made by the query retry
module 114 may be made by a compute service manager 102
that received a query retry job in its queue. The determina-
tions made by the query retry module 114 may be made by
the resource manager that managed the original, failed
execution of the query. The determinations made by the
query retry module 114 may be made by some other resource
manager 802 and/or compute service manager 102.

[0064] In an embodiment, the resource manager 802 that
managed the original, failed execution of the query further
determines whether the query can be retried, whether the
query should be retried, where the query should be retried,
on which version of the database platform the query should
be retried, and which compute service manager should
manage the retry of the query. The resource manager 802
may transfer the query to the appropriate compute service
manager based on these determinations. In an embodiment,
a compute service manager that oversees a retry attempt of
the query may generate additional retry attempts based on
whether the retry attempted was successful or unsuccessful.
In an embodiment, the resource manager 802 that managed
the original, failed execution of the query may transfer the
query to multiple different compute service managers for the

US 2023/0168987 Al

query to be retried multiple times. The resource manager
802 may determine that the query should be retried on
multiple versions of the database platform, on multiple
different execution nodes, and by multiple compute service
managers and/or resource managers.

[0065] In an embodiment, a transaction log is stored in a
metadata store and/or across one or more of a plurality of
shared storage devices in a database platform. The transac-
tion log may comprise a listing of all the jobs that have been
performed for a client account. The transaction log may
include a listing of each query retry attempt for a single
query. In an embodiment, the client account may request the
transaction log and a filtered transaction log may be gener-
ated that omits the query retry attempts and comprises only
an indication of the original execution of the query and/or a
successful retry attempt for the query. The filtered transac-
tion log may be provided to the client account. In an
embodiment, the transaction log comprises a listing of all
“external” jobs that were performed based on direct request
from the client account and omits all “internal” jobs that are
done for improving performance of the database platform
and are not received from the client account. In an embodi-
ment, the client account may request a specialized transac-
tion log that comprises a listing of all external and/or internal
jobs the client account wishes to see. In an embodiment, a
transaction log is generated that comprises a listing of all
attempts to execute a single query, all queries over a time
period, all queries directed at certain database data, and so
forth.

[0066] FIG. 2 is a block diagram depicting an example
embodiment of a data processing platform 200. As shown in
FIG. 2, a compute service manager 102 is in communication
with a queue 204, a client account 208, metadata 206, and
an execution platform 116. In an embodiment, the compute
service manager 102 does not receive any direct communi-
cations from a client account 208 and only receives com-
munications concerning jobs from the queue 204. The jobs
in the queue 204 may include, for example, retrying a failed
query, refreshing a materialized view, refreshing an aggre-
gation, reclustering a table, and so forth. In particular
implementations, the compute service manager 102 can
support any number of client accounts 208 such as end users
providing data storage and retrieval requests, system admin-
istrators managing the systems and methods described
herein, and other components/devices that interact with
compute service manager 102. As used herein, compute
service manager 102 may also be referred to as a “global
services system” that performs various functions as dis-
cussed herein.

[0067] The compute service manager 102 is in communi-
cation with a queue 204. The queue 204 may provide a job
to the compute service manager 102 in response to a trigger
event. In an embodiment, the trigger event is a failed query
and the job is a retry of the failed query. In an embodiment,
the resource manager 802 that managed the original, failed
execution of the query is configured to enter a job in the
queue 204 indicating that the compute service manager 102
should retry the query. This decoupling of external tasks
(e.g., queries received from client accounts) and internal
tasks (e.g., retrying queries) can ensure that resource man-
agers 802 are available to receive client requests and that
processing resources are not consumed on internal tasks
while external tasks are waiting. One or more jobs may be
stored in the queue 204 in an order of receipt and/or an order

Jun. 1, 2023

of priority, and each of those one or more jobs may be
communicated to the compute service manager 102 to be
scheduled and executed. The queue 204 may determine a job
to be performed based on a trigger event such as the failure
of a query, ingestion of data, deleting one or more rows in
a table, updating one or more rows in a table, a materialized
view becoming stale with respect to its source table, a table
reaching a predefined clustering threshold indicating the
table should be reclustered, and so forth. The queue 204 may
determine internal jobs that should be performed to improve
the performance of the database and/or to improve the
organization of database data. In an embodiment, the queue
204 does not store queries to be executed for a client account
but instead only includes database jobs that improve data-
base performance.

[0068] The compute service manager 102 is also coupled
to metadata 206, which is associated with the entirety of data
stored throughout data processing platform 200. In some
embodiments, metadata 206 includes a summary of data
stored in remote data storage systems as well as data
available from a local cache. Additionally, metadata 206
may include information regarding how data is organized in
the remote data storage systems and the local caches.
Metadata 206 allows systems and services to determine
whether a piece of data needs to be accessed without loading
or accessing the actual data from a storage device.

[0069] In an embodiment, the compute service manager
102 and/or the queue 204 may determine that a job should
be performed based on the metadata 206. In such an embodi-
ment, the compute service manager 102 and/or the queue
204 may scan the metadata 206 and determine that a job
should be performed to improve data organization or data-
base performance.

[0070] The compute service manager 102 may receive
rules or parameters from the client account 208 and such
rules or parameters may guide the compute service manager
102 in scheduling and managing internal jobs. The client
account 208 may indicate that internal jobs should only be
executed at certain times or should only utilize a set maxi-
mum amount of processing resources. The client account
208 may further indicate one or more trigger events that
should prompt the compute service manager 102 to deter-
mine that a job should be performed. The client account 208
may provide parameters concerning how many times a task
may be re-executed and/or when the task should be re-
executed. In an embodiment, the compute service manager
102 is configured to prioritize query retries over other
internal tasks.

[0071] The compute service manager 102 is further
coupled to an execution platform 116, which provides mul-
tiple computing resources that execute various data storage
and data retrieval tasks, as discussed in greater detail below.
Execution platform 116 is coupled to multiple data storage
devices 212a, 212b, and 212n that are part of a storage
platform 210. Although three data storage devices 212a,
2125, and 212# are shown in FIG. 2, execution platform 116
is capable of communicating with any number of data
storage devices. In some embodiments, data storage devices
212a, 212b, and 212r are cloud-based storage devices
located in one or more geographic locations. For example,
data storage devices 212a, 2125, and 212z may be part of a
public cloud infrastructure or a private cloud infrastructure.
Data storage devices 212a, 2125, and 212r may be hard disk
drives (HDDs), solid state drives (SSDs), storage clusters,

US 2023/0168987 Al

Amazon S3™ storage systems or any other data storage
technology. Additionally, storage platform 210 may include
distributed file systems (such as Hadoop Distributed File
Systems (HDFS)), object storage systems, and the like.
[0072] In particular embodiments, the communication
links between compute service manager 102, the queue 204,
metadata 206, the client account 208, and the execution
platform 116 are implemented via one or more data com-
munication networks. Similarly, the communication links
between execution platform 116 and data storage devices
2124a-212# in the storage platform 210 are implemented via
one or more data communication networks. These data
communication networks may utilize any communication
protocol and any type of communication medium. In some
embodiments, the data communication networks are a com-
bination of two or more data communication networks (or
sub-networks) coupled to one another. In alternate embodi-
ments, these communication links are implemented using
any type of communication medium and any communication
protocol.

[0073] As shown in FIG. 2, data storage devices 212a,
2125, and 2127 are decoupled from the computing resources
associated with the execution platform 116. This architec-
ture supports dynamic changes to data processing platform
200 based on the changing data storage/retrieval needs as
well as the changing needs of the users and systems access-
ing data processing platform 200. The support of dynamic
changes allows data processing platform 200 to scale
quickly in response to changing demands on the systems and
components within data processing platform 200. The
decoupling of the computing resources from the data storage
devices supports the storage of large amounts of data with-
out requiring a corresponding large amount of computing
resources. Similarly, this decoupling of resources supports a
significant increase in the computing resources utilized at a
particular time without requiring a corresponding increase in
the available data storage resources.

[0074] Compute service manager 102, queue 204, meta-
data 206, client account 208, execution platform 116, and
storage platform 210 are shown in FIG. 2 as individual
components. However, each of compute service manager
102, queue 204, metadata 206, client account 208, execution
platform 116, and storage platform 210 may be implemented
as a distributed system (e.g., distributed across multiple
systems/platforms at multiple geographic locations). Addi-
tionally, each of compute service manager 102, metadata
206, execution platform 116, and storage platform 210 can
be scaled up or down (independently of one another)
depending on changes to the requests received from the
queue 204 and/or client accounts 208 and the changing
needs of data processing platform 200. Thus, in the
described embodiments, data processing platform 200 is
dynamic and supports regular changes to meet the current
data processing needs.

[0075] During typical operation, data processing platform
200 processes multiple jobs received from the queue 204 or
determined by the compute service manager 102. These jobs
are scheduled and managed by the compute service manager
102 to determine when and how to execute the job. For
example, the compute service manager 102 may divide the
job into multiple discrete tasks and may determine what data
is needed to execute each of the multiple discrete tasks. The
compute service manager 102 may assign each of the
multiple discrete tasks to one or more nodes of the execution

Jun. 1, 2023

platform 116 to process the task. The compute service
manager 102 may determine what data is needed to process
a task and further determine which nodes within the execu-
tion platform 116 are best suited to process the task. Some
nodes may have already cached the data needed to process
the task and, therefore, be a good candidate for processing
the task. Metadata 206 assists the compute service manager
102 in determining which nodes in the execution platform
116 have already cached at least a portion of the data needed
to process the task. One or more nodes in the execution
platform 116 process the tasks using data cached by the
nodes and, if necessary, data retrieved from the storage
platform 210. It is desirable to retrieve as much data as
possible from caches within the execution platform 116
because the retrieval speed is typically much faster than
retrieving data from the storage platform 210.

[0076] As shown in FIG. 2, the data processing platform
200 separates the execution platform 116 from the storage
platform 210. In this arrangement, the processing resources
and cache resources in the execution platform 116 operate
independently of the data storage resources 212a-212# in the
storage platform 210. Thus, the computing resources and
cache resources are not restricted to specific data storage
resources 212a-212x. Instead, all computing resources and
all cache resources may retrieve data from, and store data to,
any of the data storage resources in the storage platform 210.
Additionally, the data processing platform 200 supports the
addition of new computing resources and cache resources to
the execution platform 116 without requiring any changes to
the storage platform 210. Similarly, the data processing
platform 200 supports the addition of data storage resources
to the storage platform 210 without requiring any changes to
nodes in the execution platform 116.

[0077] FIG. 3 is a block diagram depicting an embodiment
of'the compute service manager 102. As shown in FIG. 3, the
compute service manager 102 includes an access manager
302 and a key manager 304 coupled to a data storage device
306. Access manager 302 handles authentication and autho-
rization tasks for the systems described herein. Key manager
304 manages storage and authentication of keys used during
authentication and authorization tasks. For example, access
manager 302 and key manager 304 manage the keys used to
access data stored in remote storage devices (e.g., data
storage devices in storage platform 210). As used herein, the
remote storage devices may also be referred to as “persistent
storage devices” or “shared storage devices.” A request
processing service 308 manages received data storage
requests and data retrieval requests (e.g., jobs to be per-
formed on database data). For example, the request process-
ing service 308 may determine the data necessary to process
the received data storage request or data retrieval request.
The necessary data may be stored in a cache within the
execution platform 116 (as discussed in greater detail below)
or in a data storage device in storage platform 210. A
management console service 310 supports access to various
systems and processes by administrators and other system
managers. Additionally, the management console service
310 may receive a request to execute a job and monitor the
workload on the system.

[0078] The compute service manager 102 also includes a
job compiler 312, a job optimizer 314 and a job executor
310. The job compiler 312 parses a job into multiple discrete
tasks and generates the execution code for each of the
multiple discrete tasks. The job optimizer 314 determines

US 2023/0168987 Al

the best method to execute the multiple discrete tasks based
on the data that needs to be processed. The job optimizer 314
also handles various data pruning operations and other data
optimization techniques to improve the speed and efficiency
of executing the job. The job executor 316 executes the
execution code for jobs received from the queue 204 or
determined by the compute service manager 102.

[0079] A job scheduler and coordinator 318 sends received
jobs to the appropriate services or systems for compilation,
optimization, and dispatch to the execution platform 116.
For example, jobs may be prioritized and processed in that
prioritized order. In an embodiment, the job scheduler and
coordinator 318 determines a priority for internal jobs that
are scheduled by the compute service manager 102 with
other “outside” jobs such as user queries that may be
scheduled by other systems in the database but may utilize
the same processing resources in the execution platform 116.
In some embodiments, the job scheduler and coordinator
318 identifies or assigns particular nodes in the execution
platform 116 to process particular tasks. A virtual warehouse
manager 320 manages the operation of multiple virtual
warehouses implemented in the execution platform 116. As
discussed below, each virtual warehouse includes multiple
execution nodes that each include a cache and a processor.

[0080] Additionally, the compute service manager 102
includes a configuration and metadata manager 322, which
manages the information related to the data stored in the
remote data storage devices and in the local caches (i.e., the
caches in execution platform 116). As discussed in greater
detail below, the configuration and metadata manager 322
uses the metadata to determine which data files need to be
accessed to retrieve data for processing a particular task or
job. A monitor and workload analyzer 324 oversees pro-
cesses performed by the compute service manager 102 and
manages the distribution of tasks (e.g., workload) across the
virtual warehouses and execution nodes in the execution
platform 116. The monitor and workload analyzer 324 also
redistributes tasks, as needed, based on changing workloads
throughout the data processing platform 200 and may further
redistribute tasks based on a user (i.e. “external”) query
workload that may also be processed by the execution
platform 116. The configuration and metadata manager 322
and the monitor and workload analyzer 324 are coupled to
a data storage device 326. Data storage devices 306 and 326
in FIG. 3 represent any data storage device within data
processing platform 200. For example, data storage devices
306 and 326 may represent caches in execution platform
116, storage devices in storage platform 210, or any other
storage device.

[0081] The compute service manager 102 also includes a
transaction management and access control module 328,
which manages the various tasks and other activities asso-
ciated with the processing of data storage requests and data
access requests. For example, transaction management and
access control module 328 provides consistent and synchro-
nized access to data by multiple users or systems. Since
multiple users/systems may access the same data simulta-
neously, changes to the data must be synchronized to ensure
that each user/system is working with the current version of
the data. Transaction management and access control mod-
ule 328 provides control of various data processing activities
at a single, centralized location in the compute service
manager 102. In some embodiments, the transaction man-
agement and access control module 328 interacts with the

Jun. 1, 2023

job executor 316 to support the management of various tasks
being executed by the job executor 316.

[0082] FIG. 4 is a block diagram depicting an embodiment
of an execution platform 116. As shown in FIG. 4, execution
platform 116 includes multiple virtual warehouses, includ-
ing virtual warehouse 1, virtual warehouse 2, and virtual
warehouse n. Each virtual warehouse includes multiple
execution nodes that each include a data cache and a
processor. The virtual warehouses can execute multiple
tasks in parallel by using the multiple execution nodes. As
discussed herein, execution platform 116 can add new
virtual warehouses and drop existing virtual warehouses in
real-time based on the current processing needs of the
systems and users. This flexibility allows the execution
platform 116 to quickly deploy large amounts of computing
resources when needed without being forced to continue
paying for those computing resources when they are no
longer needed. All virtual warehouses can access data from
any data storage device (e.g., any storage device in storage
platform 210).

[0083] Although each virtual warechouse shown in FIG. 4
includes three execution nodes, a particular virtual ware-
house may include any number of execution nodes. Further,
the number of execution nodes in a virtual warehouse is
dynamic, such that new execution nodes are created when
additional demand is present, and existing execution nodes
are deleted when they are no longer necessary.

[0084] Each virtual warehouse is capable of accessing any
of the data storage devices 310a-310n shown in FIG. 3.
Thus, the virtual warehouses are not necessarily assigned to
a specific data storage device 2124-212# and, instead, can
access data from any of the data storage devices 212a-212n
within the storage platform 210. Similarly, each of the
execution nodes shown in FIG. 4 can access data from any
of the data storage devices 2124-212x. In some embodi-
ments, a particular virtual warehouse or a particular execu-
tion node may be temporarily assigned to a specific data
storage device, but the virtual warehouse or execution node
may later access data from any other data storage device.

[0085] In the example of FIG. 4, virtual warehouse 1
includes three execution nodes 402a, 4025, and 402n.
Execution node 402¢ includes a cache 4044 and a processor
406a. Execution node 4025 includes a cache 4045 and a
processor 4065. Execution node 4027 includes a cache 404n
and a processor 4067. Each execution node 402a, 4025, and
4027 is associated with processing one or more data storage
and/or data retrieval tasks. For example, a virtual warehouse
may handle data storage and data retrieval tasks associated
with an internal service, such as a clustering service, a
materialized view refresh service, a file compaction service,
a storage procedure service, or a file upgrade service. In
other implementations, a particular virtual warchouse may
handle data storage and data retrieval tasks associated with
a particular data storage system or a particular category of
data.

[0086] Similar to virtual warehouse 1 discussed above,
virtual warehouse 2 includes three execution nodes 412a,
4125, and 412». Execution node 412a includes a cache 414a
and a processor 416a. Execution node 4125 includes a cache
4145 and a processor 4165. Execution node 4127 includes a
cache 414n and a processor 416n. Additionally, virtual
warehouse 3 includes three execution nodes 422a, 4225, and
422n. Execution node 422a includes a cache 424a and a

US 2023/0168987 Al

processor 426a. Execution node 4225 includes a cache 4245
and a processor 4265. Execution node 4227 includes a cache
424n and a processor 426n.

[0087] In some embodiments, the execution nodes shown
in FIG. 4 are stateless with respect to the data the execution
nodes are caching. For example, these execution nodes do
not store or otherwise maintain state information about the
execution node, or the data being cached by a particular
execution node. Thus, in the event of an execution node
failure, the failed node can be transparently replaced by
another node. Since there is no state information associated
with the failed execution node, the new (replacement)
execution node can easily replace the failed node without
concern for recreating a particular state.

[0088] Although the execution nodes shown in FIG. 4
each include one data cache and one processor, alternate
embodiments may include execution nodes containing any
number of processors and any number of caches. Addition-
ally, the caches may vary in size among the different
execution nodes. The caches shown in FIG. 4 store, in the
local execution node, data that was retrieved from one or
more data storage devices in storage platform 210. Thus, the
caches reduce or eliminate the bottleneck problems occur-
ring in platforms that consistently retrieve data from remote
storage systems. Instead of repeatedly accessing data from
the remote storage devices, the systems and methods
described herein access data from the caches in the execu-
tion nodes which is significantly faster and avoids the
bottleneck problem discussed above. In some embodiments,
the caches are implemented using high-speed memory
devices that provide fast access to the cached data. Each
cache can store data from any of the storage devices in the
storage platform 210.

[0089] Further, the cache resources and computing
resources may vary between different execution nodes. For
example, one execution node may contain significant com-
puting resources and minimal cache resources, making the
execution node useful for tasks that require significant
computing resources. Another execution node may contain
significant cache resources and minimal computing
resources, making this execution node useful for tasks that
require caching of large amounts of data. Yet another execu-
tion node may contain cache resources providing faster
input-output operations, useful for tasks that require fast
scanning of large amounts of data. In some embodiments,
the cache resources and computing resources associated
with a particular execution node are determined when the
execution node is created, based on the expected tasks to be
performed by the execution node.

[0090] Additionally, the cache resources and computing
resources associated with a particular execution node may
change over time based on changing tasks performed by the
execution node. For example, an execution node may be
assigned more processing resources if the tasks performed
by the execution node become more processor-intensive.
Similarly, an execution node may be assigned more cache
resources if the tasks performed by the execution node
require a larger cache capacity.

[0091] Although virtual warehouses 1, 2, and n are asso-
ciated with the same execution platform 116, the virtual
warehouses may be implemented using multiple computing
systems at multiple geographic locations. For example,
virtual warehouse 1 can be implemented by a computing
system at a first geographic location, while virtual ware-

Jun. 1, 2023

houses 2 and n are implemented by another computing
system at a second geographic location. In some embodi-
ments, these different computing systems are cloud-based
computing systems maintained by one or more different
entities.

[0092] Additionally, each virtual warehouse is shown in
FIG. 4 as having multiple execution nodes. The multiple
execution nodes associated with each virtual warehouse may
be implemented using multiple computing systems at mul-
tiple geographic locations. For example, an instance of
virtual warehouse 1 implements execution nodes 4024 and
4025 on one computing platform at a geographic location
and implements execution node 402z at a different comput-
ing platform at another geographic location. Selecting par-
ticular computing systems to implement an execution node
may depend on various factors, such as the level of resources
needed for a particular execution node (e.g., processing
resource requirements and cache requirements), the
resources available at particular computing systems, com-
munication capabilities of networks within a geographic
location or between geographic locations, and which com-
puting systems are already implementing other execution
nodes in the virtual warehouse.

[0093] Execution platform 116 is also fault tolerant. For
example, if one virtual warehouse fails, that virtual ware-
house is quickly replaced with a different virtual warehouse
at a different geographic location.

[0094] A particular execution platform 116 may include
any number of virtual warehouses. Additionally, the number
of virtual warehouses in a particular execution platform is
dynamic, such that new virtual warehouses are created when
additional processing and/or caching resources are needed.
Similarly, existing virtual warehouses may be deleted when
the resources associated with the virtual warehouse are no
longer necessary.

[0095] In some embodiments, the virtual warehouses may
operate on the same data in storage platform 210, but each
virtual warehouse has its own execution nodes with inde-
pendent processing and caching resources. This configura-
tion allows requests on different virtual warehouses to be
processed independently and with no interference between
the requests. This independent processing, combined with
the ability to dynamically add and remove virtual ware-
houses, supports the addition of new processing capacity for
new users without impacting the performance observed by
the existing users.

[0096] FIG. 5 is a block diagram depicting an example
operating environment 500 with the queue 204 in commu-
nication with multiple virtual warehouses under a virtual
warehouse manager 502. In environment 500, the queue 204
has access to multiple database shared storage devices 506a,
5065, 506¢, 5064, 506¢ and 5067 through multiple virtual
warehouses 504a, 5045, and 504%. Although not shown in
FIG. 5, the queue 204 may access virtual warchouses 504a,
5045, and 5047 through the compute service manager 102.
In particular embodiments, databases 506a-5067 are con-
tained in the storage platform 210 and are accessible by any
virtual warehouse implemented in the execution platform
116. In some embodiments, the queue 204 may access one
of the virtual warehouses 504a-504» using a data commu-
nication network such as the Internet. In some implemen-
tations, a client account may specify that the queue 204

US 2023/0168987 Al

(configured for storing internal jobs to be completed) should
interact with a particular virtual warehouse 5044-5047 at a
particular time.

[0097] In an embodiment (as illustrated), each virtual
warehouse 504a-504n can communicate with all databases
5064a-5067. In some embodiments, each virtual warehouse
504a-5047 is configured to communicate with a subset of all
databases 506a-506#. In such an arrangement, an individual
client account associated with a set of data may send all data
retrieval and data storage requests through a single virtual
warehouse and/or to a certain subset of the databases 5064-
5067%. Further, where a certain virtual warehouse 504a-504n,
is configured to communicate with a specific subset of
databases 506a-506n, the configuration is dynamic. For
example, virtual warehouse 504a may be configured to
communicate with a first subset of databases 506a-5067 and
may later be reconfigured to communicate with a second
subset of databases 506a-5067.

[0098] In an embodiment, the queue 204 sends data
retrieval, data storage, and data processing requests to the
virtual warehouse manager 502, which routes the requests to
an appropriate virtual warehouse 504a-5047. In some imple-
mentations, the virtual warehouse manager 502 provides a
dynamic assignment of jobs to the virtual warehouses 504a-
504n.

[0099] In some embodiments, fault tolerance systems cre-
ate a new virtual warehouse in response to a failure of a
virtual warehouse. The new virtual warehouse may be in the
same virtual warechouse group or may be created in a
different virtual warehouse group at a different geographic
location.

[0100] The systems and methods described herein allow
data to be stored and accessed as a service that is separate
from computing (or processing) resources. Even if no com-
puting resources have been allocated from the execution
platform 116, data is available to a virtual warehouse with-
out requiring reloading of the data from a remote data
source. Thus, data is available independently of the alloca-
tion of computing resources associated with the data. The
described systems and methods are useful with any type of
data. In particular embodiments, data is stored in a struc-
tured, optimized format. The decoupling of the data storage/
access service from the computing services also simplifies
the sharing of data among different users and groups. As
discussed herein, each virtual warehouse can access any data
to which it has access permissions, even at the same time as
other virtual warehouses are accessing the same data. This
architecture supports running queries without any actual
data stored in the local cache. The systems and methods
described herein are capable of transparent dynamic data
movement, which moves data from a remote storage device
to a local cache, as needed, in a manner that is transparent
to the user of the system. Further, this architecture supports
data sharing without prior data movement since any virtual
warehouse can access any data due to the decoupling of the
data storage service from the computing service.

[0101] FIG. 6 is a diagram of a process flow 600 for
retrying a failed query 104. The process flow 600 begins
with an indication of a failed query 104. That indication of
the failed query 104 may be a positive/negative message that
indicates only that the attempt to execute the query failed
and does not provide any indication of how or when the
execution of the query failed. In response to the indication
of the failed query 104, a compute service manager 102 or

Jun. 1, 2023

other computing resource may schedule the query to be
retried at 602 on the same version of the database platform
that was used for the original, failed execution of the query.
The version of the database platform may be a collection of
software or firmware code that indicates how the database
platform should run. If the retry of the query is successful at
604, then the result of the query is returned to the client at
610. If the retry of the query is successful at 604, then it can
be presumed that the original, failed execution of the query
failed due to an intermittent fault. If the retry of the query is
unsuccessful at 604, then a compute service manager 102 or
other computing resource may schedule the query to be
retried at 606 on some other version of the database platform
that was not used for the original, failed execution of the
query. If the retry of the query is successtul at 608, then the
query result may be returned to the client at 610. In an
embodiment, after one or more attempts at the query or
unsuccessful, an indication of an internal failure is sent to
the client account. If the retry of the query is unsuccessful
at 608, then the query may again be retried on some other
version of the database platform or on the same version of
the database platform. The query may be retried repeatedly
until execution of the query is successful. The query may be
run on any number of versions of the database platform.

[0102] If execution of the query is unsuccessful at 604
after being retried on the same version of the database
platform at 602, and if the execution of the query is
successful at 608 after being retried on some other version
of the database platform at 606, then the original, failed
execution of the query may have failed due to a system error
rather than an intermittent fault. The query may be retried
multiple times until a determination can be made that the
query is failing due to an intermittent fault or the query is
failing due to a system error. The system error may include
an issue or bug in the software or firmware that supports the
database platform. The multiple query retry attempts may be
leveraged to identify bugs or errors in the software for the
database platform.

[0103] FIG. 7 is a process flow 700 for a query retry run.
In an embodiment, the default mode for the query retry
system is batch-oriented where a failed query 104 is selected
up front and then run under different settings for compari-
son. This batch-oriented mode may work well for small to
medium sized queries but may not work well for larger
queries. Larger queries pose several problems. One problem
posed by larger queries is that they take longer to run, and,
even in the absence of a schema change, clients are con-
stantly ingesting new data into the database. To enable
results comparisons, the query retry system may use a fixed
time travel version for each query retry which is typically set
at the beginning of the run. When running a query in
real-time on behalf of a client account, it is acceptable for the
query to appear to run at any single arbitrary point after the
client account first submitted the query request and before
the client account receives the final response. This ensures
that query executions are linearizable. That is, when a query
is retried, it may appear the database sat idle for a long time
before starting to execute the query (and in the meantime
additional data may be ingested by other processes or client
account), but this is still a correct execution.

[0104] The process flow 700 for the streaming mode
addresses the aforementioned problems with the batch-
oriented process flow. In the streaming mode process flow
700, the query retry module 114 determines query configu-

US 2023/0168987 Al

ration and run settings. In an embodiment, failed queries 104
to rerun are selected incrementally by the workload selector
702 and added to a query queue 704 which then submits
queries to the query retry runner 706. The query retry runner
706 takes in each query and multiplexes it to run with
different settings before performing verification and com-
parison to generate the report 714. The query retry runner
706 will run the baseline run 708 and the target run 710
according to different parameters that may be determined by
the query retry runner 706 or input by the query retry module
114. The results of the streaming runs may be periodically
flushed to shared storage devices in the database system so
that users may poll the latest results from an ongoing
streaming run.

[0105] The baseline run 708 may have the same settings as
the original, failed execution of the query. For example, the
baseline run 708 may be managed by the same compute
service instance, may be performed on the same version of
the database platform, and may be executed by the same
execution nodes as the original, failed execution of the
query. The target run 710 may have one or more adjustments
made relative to the original, failed execution of the query.
For example, the target run 710 may be managed by a
different compute service instance than the original, failed
execution of the query. The target run 710 may be performed
on a different version of the database platform than the
original, failed execution of the query. The target run 710
may be executed by different execution nodes than the
original, failed execution of the query.

[0106] Referring now to FIG. 8, a computer system 800 is
illustrated for running some of the methods disclosed herein.
The computer system 800 may work with the data process-
ing platform 200 to schedule, manage, and execute all tasks
for the database platform. In an embodiment, the compute
service manager 102 illustrated in FIG. 2 is configured to
manage “internal” database tasks stored in a queue 204.
Such tasks are not received from a client account and are
performed for the purpose of improving database operations.
The resource manager 802 shown in FIG. 8 is configured to
manage “external” database tasks received from a client
account such as a query request. Each of the compute service
manager 102 and the resource manager 802 may be con-
nected to the same storage platform 210, execution platform
116, and metadata 206 store. The resource manager 802 may
be configured to receive a query request from a client
account and manage the original execution of that query. If
the original execution of the query fails, then the resource
manager 802 may entry a retry request for the query in a
queue 204 to be managed by the compute service manager
102. In an embodiment, the resource manager 802 includes
all of the same components and modules as the compute
service manager 102 as illustrated in FIG. 3.

[0107] As shown in FIG. 8, resource manager 802 may be
coupled to multiple users 804, 806, 808. In particular
implementations, resource manager 802 can support any
number of users desiring access to the data processing
platform 300. Users 804, 806, 808 may include, for example,
end users providing data storage and retrieval requests,
system administrators managing the systems and methods
described herein, and other components/devices that interact
with resource manager 802. The users 804, 806, 808 may be
referred to herein as “clients” and may have a direct con-
nection to one or more deployments as disclosed herein.
Each of the users 804, 806, 808 may be connected to a

Jun. 1, 2023

primary deployment and have the capability to transition the
connection from the primary deployment to a secondary
deployment.

[0108] The resource manager 802 may be coupled to the
metadata 206 store, which is associated with the entirety of
data stored throughout data processing platform 300. In
some embodiments, metadata 206 may include a summary
of data stored in remote data storage systems as well as data
available from a local cache. Additionally, metadata 206
may include information regarding how data is organized in
the remote data storage systems and the local caches.
Metadata 206 may allow systems and services to determine
whether a piece of data needs to be processed without
loading or accessing the actual data from a storage device.
[0109] Resource manager 802 may be further coupled to
the execution platform 116, which provides multiple com-
puting resources that execute various data storage and data
retrieval tasks, as discussed in greater detail below. In an
embodiment, there exists one or more execution platforms
116 used for executing client tasks, such as database queries
and/or “internal” database tasks such as updating metadata,
clustering a table, generating a materialized view, and so
forth. In such an embodiment, there may also exist one or
more execution platforms 116 used for incremental feature
development and/or testing, and those execution platforms
116 are separate from the client execution platforms 116
such that client processing is not impacted by feature
development tasks. Execution platform 116 may be coupled
to multiple data storage devices 212a, 2125, 212# that are
part of a storage platform 210. Although three data storage
devices 212a, 2125, 212r are shown in FIG. 8, execution
platform 116 is capable of communicating with any number
of data storage devices. In some embodiments, data storage
devices 212a, 212b, 212n are cloud-based storage devices
located in one or more geographic locations. For example,
data storage devices 212a, 212b, 212n may be part of a
public cloud infrastructure or a private cloud infrastructure.
Data storage devices 212a, 2125, 2127 may be hard disk
drives (HDDs), solid state drives (SSDs), storage clusters or
any other data storage technology. Additionally, storage
platform 210 may include distributed file systems (such as
Hadoop Distributed File Systems (HDFS)), object storage
systems, and the like.

[0110] In particular embodiments, the communication
links between resource manager 802 and users 804, 806,
808, metadata 206, and execution platform 116 are imple-
mented via one or more data communication networks.
Similarly, the communication links between execution plat-
form 116 and data storage devices 212a, 21254, 212r in
storage platform 210 are implemented via one or more data
communication networks. These data communication net-
works may utilize any communication protocol and any type
of communication medium. In some embodiments, the data
communication networks are a combination of two or more
data communication networks (or sub-networks) coupled to
one another. In alternate embodiments, these communica-
tion links are implemented using any type of communication
medium and any communication protocol.

[0111] As shown in FIG. 8, data storage devices 212a,
212b, 212 are decoupled from the computing resources
associated with execution platform 116. In an embodiment,
each of a plurality of database deployments may include
storage platform 210 having multiple data storage devices
212a, 2125, 212n. Each of the storage platforms 314 across

US 2023/0168987 Al

the multiple deployments may store a replica of the database
data such that each of the multiple deployments is capable
of serving as a primary deployment where updates and
queries are executed on the database data. This architecture
supports dynamic changes to data processing platform 800
based on the changing data storage/retrieval needs as well as
the changing needs of the users and systems accessing data
processing platform 800. The support of dynamic changes
allows data processing platform 800 to scale quickly in
response to changing demands on the systems and compo-
nents within data processing platform 800. The decoupling
of the computing resources from the data storage devices
supports the storage of large amounts of data without
requiring a corresponding large amount of computing
resources. Similarly, this decoupling of resources supports a
significant increase in the computing resources utilized at a
particular time without requiring a corresponding increase in
the available data storage resources.

[0112] Resource manager 802, metadata 206, execution
platform 116, and storage platform 210 are shown in FIG. 8
as individual components. However, each of resource man-
ager 802, metadata 206, execution platform 116, and storage
platform 210 may be implemented as a distributed system
(e.g., distributed across multiple systems/platforms at mul-
tiple geographic locations). Additionally, each of resource
manager 802, metadata 206, execution platform 116, and
storage platform 210 can be scaled up or down (indepen-
dently of one another) depending on changes to the requests
received from users 804, 806, 808 and the changing needs of
data processing platform 800. Thus, data processing plat-
form 800 is dynamic and supports regular changes to meet
the current data processing needs.

[0113] In various implementations of the disclosure,
attempts to retry a query may be managed by a resource
manager 802 and/or a compute service manager 102. In an
embodiment, an original query request is received by the
resource manager 802 from a client account, and the
resource manager 802 manages the original attempt to
execute the query. The resource manager 802 may pass the
query on to a compute service manager 102 to manage one
or more attempts to retry the query. Alternatively, the same
resource manager 802 that managed the original, failed
execution of the query may also manage one or more
attempts to retry the query.

[0114] In an embodiment, the resource manager 802 is
configured to assign a unique identification number to each
query that is received from the users 804, 806, 808. The
unique identification number enables the requesting user
and/or client account to access and read the query and the
query results. In an embodiment, when the original execu-
tion of the query fails and a retry execution of the query is
successful, the unique identification may be altered to point
to the retry execution of the query rather than the original
execution of the query. In an embodiment, the unique
identification number is used to determine a Uniform
Resource Locator (URL) address where a client account
may access the query and/or the query results.

[0115] FIG. 9 is a schematic flow chart diagram of a
method 900 for retrying a query. The method 900 may be
executed by any suitable computing resources such as a
compute service manager 102, a query retry module 114,
and/or a resource manager 802. The method 900 may be
executed by one or more database query managers which

Jun. 1, 2023

may generically refer to either of the compute service
manager 102 and/or the resource manager 802.

[0116] The method 900 begins and the computing resource
receives at 902 a query directed to database data. A com-
puting resource assigns at 904 execution of the query to one
or more execution nodes of an execution platform, wherein
the one or more execution nodes are configured to execute
the query on a first version of a database platform. The
method 900 continues and a computing resource determines
at 906 that execution of the query was unsuccessful. A
computing resource assigns at 908 a retry of the query on the
first version of the database platform. A computing resource
assigns at 910 a retry of the query on a second version of the
database platform. A computing resource may assign the
retries of the query at 908 and 910 to the same one or more
execution nodes of the execution platform and/or to other
execution nodes of other execution platforms. The first
version and the second version of the database platform may
be versions of software or firmware that control and opti-
mize operations for the database platform, including opera-
tions for the execution of a query.

[0117] FIG. 10 is a schematic flow chart diagram of a
method 1000 for retrying a query. The method 1000 may be
executed by any suitable computing resources such as a
compute service manager 102, a query retry module 114,
and/or a resource manager 802. The method 1000 may be
executed by one or more database query managers which
may generically refer to either of the compute service
manager 102 and/or the resource manager 802.

[0118] The method 1000 begins and a computing resource
receives at 1002 a query directed to database data. A
computing resource assigns at 1004 execution of the query
to one or more execution nodes of an execution platform,
wherein the one or more execution nodes are configured to
execute the query on a first version of a database platform.
The method 1000 continues and a computing resource
determines at 1006 that execution of the query was unsuc-
cessful. A computing resource assigns at 1008 a retry of the
execution of the query to the one or more execution nodes
of the execution platform. The method 1000 continues and
a computing resource determines at 1010 whether a regres-
sion or an intermittent fault caused the execution of the
query to be unsuccessful based on whether the retry of the
execution of the query was successful or unsuccessful.

[0119] FIG. 11 is a schematic flow chart diagram of a
method 1100 for retrying a query. The method 1100 may be
executed by any suitable computing resources such as a
compute service manager 102, a query retry module 114,
and/or a resource manager 802. The method 1100 may be
executed by one or more database query managers which
may generically refer to either of the compute service
manager 102 and/or the resource manager 802.

[0120] The method 1100 begins and a computing resource
receives at 1102 a query directed to database data. A first
database query manager assigns at 1104 execution of the
query to one or more nodes of an execution platform. The
method 1100 continues and a computing resource deter-
mines at 1106 that execution of the query was unsuccessful.
The first database query manager reassigns at 1108 the query
to a second database query manager. The method 1100
continues and the second database query manager assigns at
1110 a retry of the execution of the query to one or more
execution nodes of an execution platform.

US 2023/0168987 Al

[0121] FIG. 12 is a schematic flow chart diagram of a
method 1200 for retrying a query. The method 1200 may be
executed by any suitable computing resources such as a
compute service manager 102, a query retry module 114,
and/or a resource manager 802. The method 1200 may be
executed by one or more database query managers which
may generically refer to either of the compute service
manager 102 and/or the resource manager 802.

[0122] The method 1200 begins and a computing resource
receives at 1202 a query directed to database data, wherein
the query is received from a client account. The method
1200 continues and a computing resource receives at 1204
an indication that execution of the query was unsuccessful.
A computing resource automatically assigns at 1206 one or
more retries of executing the query until execution of the
query is successtful. The method 1200 continues and a
computing resource logs at 1208 an indication of each
attempt to execute the query in a transaction log associated
with the client account. A computing resource receives at
1210 a request for the transaction log from the client
account. A computing resource generates at 1212 a filtered
transaction log by filtering out each unsuccessful attempt to
execute the query. A computing resource provides at 1214
the filtered transaction log to the client account.

[0123] FIG. 13 is a schematic flow chart diagram of a
method 1300 for retrying a query. The method 1300 may be
executed by any suitable computing resources such as a
compute service manager 102, a query retry module 114,
and/or a resource manager 802. The method 1300 may be
executed by one or more database query managers which
may generically refer to either of the compute service
manager 102 and/or the resource manager 802.

[0124] The method 1300 begins and a resource manager
802 receives at 1302 a query directed to database data from
a client account. The resource manager 802 assigns at 1304
an original execution of the query to one or more execution
nodes of an execution platform. The resource manager 802
determines at 1306 the original execution of the query was
unsuccessful. The resource manager 802 transfers at 1308
the query to a compute service manager 102 configured to
manage internal tasks for improving operation of a database
platform that are not received from client accounts. The
compute service manager 102 assigns at 1310 a retry execu-
tion of the query to one or more execution nodes of an
execution platform.

[0125] FIG. 14 is a schematic flow chart diagram of a
method 1400 for retrying a query. The method 1400 may be
executed by any suitable computing resources such as a
compute service manager 102, a query retry module 114,
and/or a resource manager 802. The method 1400 may be
executed by one or more database query managers which
may generically refer to either of the compute service
manager 102 and/or the resource manager 802.

[0126] The method 1400 begins and a computing resource
receives at 1402 a query directed to database data, wherein
the query is received from a client account. The method
1400 continues and a computing resource receives at 1404
an indication that execution of the query was unsuccessful,
wherein the execution of the query was attempted on a first
version of a database platform. A computing resource deter-
mines at 1406 whether the first version of the database
platform is the most recent version of the database platform.
A computing resource assigns at 1408, in response to
determining the first version is the most recent version, a

Jun. 1, 2023

first retry execution of the query on the first version of the
database platform. A computing resource assess at 1510
results of at least the first retry execution to determine
whether a regression might exist in the first version of the
database platform.

[0127] FIG. 15 is a block diagram depicting an example
computing device 1500. In some embodiments, computing
device 1500 is used to implement one or more of the systems
and components discussed herein. For example, computing
device 1500 may allow a user or administrator to access
compute service manager 102 and/or resource manager 802.
Further, computing device 1500 may interact with any of the
systems and components described herein. Accordingly,
computing device 1500 may be used to perform various
procedures and tasks, such as those discussed herein. Com-
puting device 1500 can function as a server, a client or any
other computing entity. Computing device 1500 can be any
of a wide variety of computing devices, such as a desktop
computer, a notebook computer, a server computer, a hand-
held computer, a tablet, and the like.

[0128] Computing device 1500 includes one or more
processor(s) 1502, one or more memory device(s) 1504, one
or more interface(s) 1506, one or more mass storage device
(s) 1508, and one or more Input/Output (1I/O) device(s) 1510,
all of which are coupled to a bus 1512. Processor(s) 1502
include one or more processors or controllers that execute
instructions stored in memory device(s) 1504 and/or mass
storage device(s) 1508. Processor(s) 1502 may also include
various types of computer-readable media, such as cache
memory.

[0129] Memory device(s) 1504 include various computer-
readable media, such as volatile memory (e.g., random
access memory (RAM)) and/or nonvolatile memory (e.g.,
read-only memory (ROM)). Memory device(s) 1504 may
also include rewritable ROM, such as Flash memory.

[0130] Mass storage device(s) 1508 include various com-
puter readable media, such as magnetic tapes, magnetic
disks, optical disks, solid state memory (e.g., Flash
memory), and so forth. Various drives may also be included
in mass storage device(s) 1508 to enable reading from
and/or writing to the various computer readable media. Mass
storage device(s) 1508 include removable media and/or
non-removable media.

[0131] I/O device(s) 1510 include various devices that
allow data and/or other information to be input to or
retrieved from computing device 1500. Example /O device
(s) 1510 include cursor control devices, keyboards, keypads,
microphones, monitors or other display devices, speakers,
printers, network interface cards, modems, lenses, CCDs or
other image capture devices, and the like.

[0132] Interface(s) 1506 include various interfaces that
allow computing device 1500 to interact with other systems,
devices, or computing environments. Example interface(s)
1506 include any number of different network interfaces,
such as interfaces to local area networks (LLANs), wide area
networks (WANSs), wireless networks, and the Internet.

[0133] Bus 1512 allows processor(s) 1502, memory
device(s) 1504, interface(s) 1506, mass storage device(s)
1508, and /O device(s) 1510 to communicate with one
another, as well as other devices or components coupled to
bus 1512. Bus 1512 represents one or more of several types
of'bus structures, such as a system bus, PCI bus, IEEE 1394
bus, USB bus, and so forth.

US 2023/0168987 Al

[0134] For purposes of illustration, programs and other
executable program components are shown herein as dis-
crete blocks, although it is understood that such programs
and components may reside at various times in different
storage components of computing device 1500 and are
executed by processor(s) 1502. Alternatively, the systems
and procedures described herein can be implemented in
hardware, or a combination of hardware, software, and/or
firmware. For example, one or more application specific
integrated circuits (ASICs) can be programmed to carry out
one or more of the systems and procedures described herein.

Examples
[0135] The following examples pertain to further embodi-
ments:
[0136] Example 1 is a method. The method includes

receiving a query directed to database data and assigning
execution of the query to one or more execution nodes of a
database platform, wherein the one or more execution nodes
configured to execute the query on a first version of the
database platform. The method includes determining that
execution of the query was unsuccessful. The method
includes assigning a first retry execution of the query on the
first version of the database platform. The method includes
assigning a second retry execution of the query on a second
version of the database platform.

[0137] Example 2 is a method as in Example 1, further
comprising: determining whether the first retry execution on
the first version of the database platform is successful; and
determining whether the second retry execution on the
second version of the database platform is successful.
[0138] Example 3 is a method as in any of Examples 1-2,
further comprising, in response to determining the first retry
execution is unsuccessful and the second retry execution is
successful, generating a report indicating that a regression
might exist in the first version of the database platform.
[0139] Example 4 is a method as in any of Examples 1-3,
further comprising, in response to determining the first retry
execution is successful and the second retry execution is
successful, generating a report indicating that the original,
unsuccessful execution of the query might have failed due to
an intermittent fault.

[0140] Example 5 is a method as in any of Examples 1-4,
further comprising, in response to determining the first retry
execution is unsuccessful and the second retry execution is
unsuccessful, generating a report indicating one or more of:
a regression might exist in the first version of the database
platform; a regression might exist in the second version of
the database platform; or an error might exist with at least
one of the one or more execution nodes of the database
platform that attempted the original, unsuccessful execution
of the query.

[0141] Example 6 is a method as in any of Examples 1-5,
wherein: assigning the execution of the query to the one or
more execution nodes is carried out by a resource manager
that received the query directed to the database data; assign-
ing the first retry execution of the query is carried out by a
compute service manager configured to manage internal
database tasks that are not received from a client account;
and the assigning the second retry execution of the query is
carried out by a compute service manager configured to
manage internal database tasks that are not received from a
client account.

Jun. 1, 2023

[0142] Example 7 is a method as in any of Examples 1-6,
wherein assigning the first retry execution of the query on
the first version of the database platform further comprises
one or more of: assigning a compute service manager to
manage operation of the first retry execution of the query; or
identifying one or more execution nodes to perform the first
retry execution of the query.

[0143] Example 8 is a method as in any of Examples 1-7,
further comprising, in response to at least one of the first
retry execution or the second retry execution being success-
ful, storing a response to the query such that the response is
accessible by a client account that requested the query.
[0144] Example 9 is a method as in any of Examples 1-8,
further comprising determining whether the query can be
retried based on whether Structured Query Language (SQL)
text for the query has been truncated.

[0145] Example 10 is a method as in any of Examples 1-9,
further comprising determining whether the execution of the
query was unsuccessful due to an internal error or a user
error, wherein the internal error is an error associated with
the database platform and the user error is an error associ-
ated with the text of the query, and wherein the assigning the
first retry execution and the assigning the second retry
execution occurs only if the original, unsuccessful execution
of the query occurred due to an integral error.

[0146] Example 11 is a system. The system includes a
multiple tenant cloud-based database platform comprising a
plurality of shared storage devices collectively storing data-
base data and an execution platform independent from the
plurality of shared storage device. The system includes one
or more processors for managing database tasks. The one or
more processors are configured to receive a query directed
to database data. The one or more processors are configured
to assign execution of the query to one or more execution
nodes of a database platform, the one or more execution
nodes configured to execute the query on a first version of
the database platform. The one or more processors are
configured to determine that execution of the query was
unsuccessful. The one or more processors are configured to
assign a first retry execution of the query on the first version
of the database platform. The one or more processors are
configured to assign a second retry execution of the query on
a second version of the database platform.

[0147] Example 12 is a system as in Example 11, wherein
the one or more processors are further configured to: deter-
mine whether the first retry execution on the first version of
the database platform is successful; and determine whether
the second retry execution on the second version of the
database platform is successful.

[0148] Example 13 is a system as in any of Examples
11-12, wherein the one or more processors are further
configured to, in response to determining the first retry
execution is unsuccessful and the second retry execution is
successful, generate a report indicating that a regression
might exist in the first version of the database platform.
[0149] Example 14 is a system as in any of Examples
11-13, wherein the one or more processors are further
configured to, in response to determining the first retry
execution is successful and the second retry execution is
successful, generate a report indicating that the original,
unsuccessful execution of the query might have failed due to
an intermittent fault.

[0150] Example 15 is a system as in any of Examples
11-14, wherein the one or more processors are further

US 2023/0168987 Al

configured to, in response to determining the first retry
execution is unsuccessful and the second retry execution is
unsuccessful, generate a report indicating one or more of: a
regression might exist in the first version of the database
platform; a regression might exist in the second version of
the database platform; or an error might exist with at least
one of the one or more execution nodes of the database
platform that attempted the original, unsuccessful execution
of the query.

[0151] Example 16 is a system as in any of Examples
11-15, wherein: the one or more processors that assign the
execution of the query to the one or more execution nodes
are part of a resource manager that received the query
directed to the database data; the one or more processors that
assign that assign the first retry execution of the query are
part of a compute service manager configured to manage
internal database tasks that are not received from a client
account; and the one or more processors that assign that
assign the second retry execution of the query are part of a
compute service manager configured to manage internal
database tasks that are not received from a client account.

[0152] Example 17 is a system as in any of Examples
11-16, wherein the one or more processors are configured to
assign the first retry execution of the query on the first
version of the database platform by one or more of: assign-
ing a compute service manager to manage operation of the
first retry execution of the query; or identifying one or more
execution nodes to perform the first retry execution of the
query.

[0153] Example 18 is a system as in any of Examples
11-17, wherein the one or more processors are further
configured to, in response to at least one of the first retry
execution or the second retry execution being successful,
store a response to the query such that the response is
accessible by a client account that requested the query.

[0154] Example 19 is a system as in any of Examples
11-18, wherein the one or more processors are further
configured to determine whether the query can be retried
based on whether Structured Query Language (SQL) text for
the query has been truncated.

[0155] Example 20 is a system as in any of Examples
11-19, wherein the one or more processors are further
configured to determine the execution of the query was
unsuccessful due to an internal error or a user error, wherein
the internal error is an error associated with the database
platform and the user error is an error associated with the
text of the query, and wherein the one or more processors are
configured to assign the first retry execution and assign the
second retry execution only if the original, unsuccessful
execution of the query occurred due to an integral error.

[0156] Example 21 is one or more processors configurable
to execute instructions stored in non-transitory computer
readable storage media. The instructions include receiving a
query directed to database data. The instructions include
assigning execution of the query to one or more execution
nodes of a database platform, the one or more execution
nodes configured to execute the query on a first version of
the database platform. The instructions include determining
that execution of the query was unsuccessful. The instruc-
tions include assigning a first retry execution of the query on
the first version of the database platform. The instructions
include assigning a second retry execution of the query on
a second version of the database platform.

Jun. 1, 2023

[0157] Example 22 is one or more processors as in
Example 21, wherein the instructions further comprise:
determining whether the first retry execution on the first
version of the database platform is successful; and deter-
mining whether the second retry execution on the second
version of the database platform is successful.

[0158] Example 23 is one or more processors as in any of
Examples 21-22, wherein the instructions further comprise,
in response to determining the first retry execution is unsuc-
cessful and the second retry execution is successful, gener-
ating a report indicating that a regression might exist in the
first version of the database platform.

[0159] Example 24 is one or more processors as in any of
Examples 21-23, wherein the instructions further comprise,
in response to determining the first retry execution is suc-
cessful and the second retry execution is successful, gener-
ating a report indicating that the original, unsuccessful
execution of the query might have failed due to an inter-
mittent fault.

[0160] Example 25 is one or more processors as in any of
Examples 21-24, wherein the instructions further comprise,
in response to determining the first retry execution is unsuc-
cessful and the second retry execution is unsuccessful,
generating a report indicating one or more of: a regression
might exist in the first version of the database platform; a
regression might exist in the second version of the database
platform; or an error might exist with at least one of the one
or more execution nodes of the database platform that
attempted the original, unsuccessful execution of the query.
[0161] Example 26 is one or more processors as in any of
Examples 21-25, wherein the instructions are such that:
assigning the execution of the query to the one or more
execution nodes is carried out by a resource manager that
received the query directed to the database data; the assign-
ing the first retry execution of the query is carried out by a
compute service manager configured to manage internal
database tasks that are not received from a client account;
and the assigning the second retry execution of the query is
carried out by a compute service manager configured to
manage internal database tasks that are not received from a
client account.

[0162] Example 27 is one or more processors as in any of
Examples 21-26, wherein the instructions are such that
assigning the first retry execution of the query on the first
version of the database platform further comprises one or
more of: assigning a compute service manager to manage
operation of the first retry execution of the query; or iden-
tifying one or more execution nodes to perform the first retry
execution of the query.

[0163] Example 28 is one or more processors as in any of
Examples 21-27, wherein the instructions further comprise,
in response to at least one of the first retry execution or the
second retry execution being successful, storing a response
to the query such that the response is accessible by a client
account that requested the query.

[0164] Example 29 is one or more processors as in any of
Examples 21-28, wherein the instructions further comprise
determining whether the query can be retried based on
whether Structured Query Language (SQL) text for the
query has been truncated.

[0165] Example 30 is one or more processors as in any of
Examples 21-29, wherein the instructions further comprise
determining whether the execution of the query was unsuc-
cessful due to an internal error or a user error, wherein the

US 2023/0168987 Al

internal error is an error associated with the database plat-
form and the user error is an error associated with the text
of the query, and wherein the assigning the first retry
execution and the assigning the second retry execution
occurs only if the original, unsuccessful execution of the
query occurred due to an integral error.

[0166] Example 31 is a method. The method includes
receiving a query directed to database data and assigning
execution of the query to one or more execution nodes of an
execution platform, the one or more execution nodes con-
figured to execute the query on a first version of a database
platform. The method includes determining that execution
of the query was unsuccessful. The method includes assign-
ing a first retry execution of the query to the one or more
execution nodes of the execution platform. The method
includes determining whether a regression or an intermittent
fault caused the execution of the query to be unsuccessful
based at least in part on whether the first retry execution of
the query was successful or unsuccessful.

[0167] Example 32 is a method as in Example 31, further
comprising assigning a second retry execution of the query
to one or more other execution nodes that did not attempt the
execution of the original, unsuccessful execution of the
query.

[0168] Example 33 is a method as in any of Examples
31-32, further comprising assigning a third retry execution
of the query to be performed on a second version of the
database platform.

[0169] Example 34 is a method as in any of Examples
31-33, wherein determining whether a regression or an
intermittent fault caused the execution of the query to be
unsuccessful comprises determining based on results of the
first retry execution, the second retry execution, and the third
retry execution of the query.

[0170] Example 35 is a method as in any of Examples
31-34, further comprising, in response to determining the
first retry execution is unsuccessful and the second retry
execution is successful, generating a report indicating that
the original, unsuccessful execution of the query might have
failed due to an issue within at least one of the one or more
execution nodes.

[0171] Example 36 is a method as in any of Examples
31-35, further comprising, in response to determining the
first retry execution is unsuccessful and the third retry
execution is successful, generating a report indicating that a
regression might exist in the first version of the database
platform.

[0172] Example 37 is a method as in any of Examples
31-36, further comprising, in response to determining the
first retry execution is unsuccesstul, the second retry execu-
tion is unsuccesstul, and the third retry execution is unsuc-
cessful, generating a report indicating one or more of: a
regression might exist in the first version of the database
platform; a regression might exist in the second version of
the database platform; an issue might exist with at least one
of'the one or more execution nodes of the database platform;
an issue might exist with at least one of the one or more other
execution nodes associated with the second retry execution;
or an intermittent fault might be occurring.

[0173] Example 38 is a method as in any of Examples
31-37, further comprising determining whether the query
can be retried based on whether Structured Query Language
(SQL) text for the query has been truncated.

Jun. 1, 2023

[0174] Example 39 is a method as in any of Examples
31-38, further comprising determining whether the execu-
tion of the query was unsuccessful due to an internal error
or a user error, wherein the internal error is an error
associated with the database platform and the user error is an
error associated with the text of the query, and wherein the
assigning the first retry execution and the assigning the
second retry execution occurs only if the original, unsuc-
cessful execution of the query occurred due to an integral
error.

[0175] Example 40 is a method as in any of Examples
31-39, further comprising generating a transaction log com-
prising an entry for each attempt to execute the query.
[0176] Example 41 is a method. The method includes
receiving a query directed to database data and assigning, by
a first database query manager, execution of the query to one
or more execution nodes of an execution platform. The
method includes determining that execution of the query
was unsuccessful. The method includes reassigning, by the
first database query manager, the query to a second database
query manager to be retried. The method includes assigning,
by the second database query manager, a retry of the
execution of the query to one or more execution nodes of an
execution platform.

[0177] Example 42 is a method as in Example 41, further
comprising determining whether the query was originally
executed on a new version of the database platform, and
wherein reassigning the query to the second database query
manager is done in response to determining the query was
originally executed on a new version of the database plat-
form.

[0178] Example 43 is a method as in any of Examples
41-42, further comprising determining whether a regression
might exist in the new version of the database platform
based at least in part on the results of the retry of the
execution of the query.

[0179] Example 44 is a method as in any of Examples
41-43, wherein the reassigning the query to the second
database query manager is performed in response to deter-
mining that execution of the query was unsuccessful due to
an internal error.

[0180] Example 45 is a method as in any of Examples
41-44, further comprising: determining whether the execu-
tion of the query was unsuccessful due to an internal error;
in response to determining the execution of the query was
unsuccessful due to an internal error, generating an error
message for an account that requested the query indicating
the query failed due to an internal error; and recording a
service incident indicating the query failed due to an internal
error.

[0181] Example 46 is a method as in any of Examples
41-45, wherein the reassigning the query to the second
database query manager is performed in response to the
recording the service incident indicating the query failed due
to an internal error.

[0182] Example 47 is a method as in any of Examples
41-46, wherein the first database query manager is running
a first version of a database platform and the second database
query manager is running a second version of the database
platform, wherein the first version and the second version of
the database platform were released at different times and
comprise different software.

[0183] Example 48 is a method as in any of Examples
41-47, wherein the database platform comprises multiple

US 2023/0168987 Al

database query managers collectively running two or more
versions of the database platform at one time.

[0184] Example 49 is a method as in any of Examples
41-48, further comprising analyzing results of the retry of
the execution of the query to determine whether the execu-
tion of the query was unsuccessful likely due to an inter-
mittent fault or a regression in the first version of the
database platform.

[0185] Example 50 is a method as in any of Examples
41-49, wherein assigning the retry of the execution of the
query comprises assigning execution of the query to differ-
ent execution nodes that did not attempt the execution of the
query.

[0186] Example 51 is a method. The method includes
receiving a query directed to database data from a client
account and receiving an indication that an original execu-
tion of the query was unsuccessful. The method includes
automatically assigning retrying execution of the query until
execution of the query is successful. The method includes
logging an indication of each attempt to execute the query in
a transaction log associated with the client account. The
method includes receiving a request for the transaction log
from the client account and generating a filtered transaction
log by filtering out each unsuccessful attempt to execute the
query. The method includes providing the filtered transac-
tion log to the client account.

[0187] Example 52 is a method as in Example 51, wherein
automatically assigning retrying execution of the query
comprises: assigning a query retry to be managed by a first
database query manager that managed the original execution
of the query; and assigning a query retry to be managed by
a second database query manager that did not manage the
original execution of the query.

[0188] Example 53 is a method as in any of Examples
51-52, further comprising analyzing all query retry attempts
to determine whether the original execution of the query was
unsuccessful due to an intermittent fault or a regression in
software run by the first database query manager.

[0189] Example 54 is a method as in any of Examples
51-53, wherein automatically assigning retrying execution
of the query comprises: assigning a query retry to be
performed by a first set of execution nodes that attempted the
original execution of the query; and assigning a query retry
to be performed by a second set of execution nodes that did
not attempt the original execution of the query.

[0190] Example 55 is a method as in any of Examples
51-54, further comprising analyzing all query retry attempts
to determine whether the original execution of the query was
unsuccessful due to an intermittent fault or a hardware issue
on at least one execution node of the first set of execution
nodes.

[0191] Example 56 is a method as in any of Examples
51-55, wherein automatically assigning retrying execution
of the query comprises: assigning a query retry to be
performed on a first version of a database platform that was
used to attempt the original execution of the query; and
assigning a query retry to be performed on a second version
of the database platform that was not used to attempt the
original execution of the query.

[0192] Example 57 is a method as in any of Examples
51-56, further comprising analyzing all query retry attempts
to determine whether the original execution of the query was
unsuccessful due to an intermittent fault or a regression in
the first version of the database platform.

Jun. 1, 2023

[0193] Example 58 is a method as in any of Examples
51-57, wherein automatically assigning retrying the execu-
tion of the query comprises assigning each query retry
attempt to a single instance of a database query manager
such that no query retry attempt is managed by more than
one instance of a database query manager.

[0194] Example 59 is a method as in any of Examples
51-58, wherein the logging the indication of each attempt to
execute the query comprises logging one or more of: an
indication of which instance of a database query manager
managed each attempt; an indication of which version of a
database platform was run to perform each attempt; an
indication of which execution nodes were used to perform
each attempt; an indication of when each attempt was
started; or an indication of when each attempt was com-
pleted.

[0195] Example 60 is a method as in any of Examples
51-59, further comprising: in response to receiving the
indication that the original execution of the query was
unsuccessful, providing a notification to the client account
indicating that the original execution of the query was
unsuccessful; in response to receiving an indication that at
least one retry attempt is successtul, providing a notification
to the client account indicating that the query has been
successfully executed.

[0196] Example 61 is a method. The method includes
receiving a query directed to database data from a client
account. The method includes receiving an indication that an
original execution of the query was unsuccessful, wherein
the original execution of the query was attempted on a first
version of a database platform. The method includes deter-
mining whether the first version of the database platform is
a most recent version of the database platform. The method
includes, in response to determining the first version is the
most recent version, assigning a first retry execution of the
query on the first version of the database platform. The
method includes assessing results of at least the first retry
execution to determine whether a regression might exist in
the first version of the database platform.

[0197] Example 62 is a method as in Example 61, further
comprising assigning a second retry execution of the query
on a second version of the database platform, wherein the
second version of the database platform is not the most
recent version of the database platform.

[0198] Example 63 is a method as in any of Examples
61-62, further comprising assessing results of the first retry
execution and the second retry execution to determine
whether a regression might exist in the first version of the
database platform.

[0199] Example 64 is a method as in any of Examples
61-63, further comprising determining whether Structured
Query Language (SQL) text for the query has been trun-
cated, and wherein assigning the first retry execution of the
query is performed only if the SQL text for the query has not
been truncated.

[0200] Example 65 is a method as in any of Examples
61-64, further comprising populating a transaction log for
the client account comprising a listing of all actions per-
formed for the client account, wherein populating the trans-
action log comprising entering an indication that the original
execution of the query was unsuccessful.

[0201] Example 66 is a method as in any of Examples
61-65, further comprising determining whether the original
execution of the query was unsuccessful due to an internal

US 2023/0168987 Al

error, and wherein the assigning the first retry execution of
the query is performed only if the original execution of the
query is unsuccesstul due to an internal error.

[0202] Example 67 is a method as in any of Examples
61-66, further comprising storing a record of the original
execution of the query in a key value store, wherein the
record comprises one or more of: Structured Query Lan-
guage (SQL) text for the query; a start timestamp when
execution of the query began; a completion timestamp when
execution of the query failed; an indication of whether the
query failed due to an internal error, an error in the SQL text
for the query; or an intermittent fault; or a unique identifi-
cation for the query that enables the client account to access
results of the query.

[0203] Example 68 is a method as in any of Examples
61-67, wherein the query is associated with a unique iden-
tification to enable the client account to access the query and
wherein the method further comprises: receiving an indica-
tion that at least one retry attempt for the query is successful;
and rerouting the unique identification to point to a success-
ful retry attempt rather than the original execution of the
query.

[0204] Example 69 is a method as in any of Examples
61-68, wherein the assigning the first retry execution of the
query comprises: removing the query from a resource man-
ager configured to manage external tasks received from the
client account; and assigning the first retry execution to a
compute service manager configured to manage internal
tasks for improving operation of the database platform that
are not received from the client account.

[0205] Example 70 is a method as in any of Examples
61-69, wherein assigning the first retry execution to the
compute service manager comprises entering one or more
retry attempts in a queue of the compute service, wherein the
queue of the compute service manager comprises a listing of
all internal tasks for improving operation of the database
platform.

[0206] Example 71 is a method. The method includes
receiving, by a first database query manager, a query
directed to database data from a client account. The method
includes assigning an original execution of the query to one
or more execution nodes of an execution platform. The
method includes determining the original execution of the
query was unsuccessful. The method includes transferring
the query to a second database query manager configured to
manage internal tasks for improving operation of a database
platform that are not received from client accounts. The
method includes assigning, by the second database query
manager, a retry execution of the query to one or more
execution nodes of an execution platform.

[0207] Example 72 is a method as in Example 71, wherein
the first database query manager is configured to manage
external tasks received from client accounts.

[0208] Example 73 is a method as in any of Examples
71-72, further comprising identifying the second database
query manager based on one or more of: whether the second
database query manager is implementing the same version
of the database platform as the first database query manager;
a workload of the second database query manager; or
whether the version of the database platform implemented
by the first database query manager and/or the second
database query manager is a most recent version of the
database platform.

Jun. 1, 2023

[0209] Example 74 is a method as in any of Examples
71-73, further comprising, in response to determining the
first database query manager and the second database query
manager are implementing the same version of the database
platform, transferring the query to the second database query
manager and further assigning the query to a third database
query manager that is configured to manage internal tasks
and is implementing a different version of the database
platform.

[0210] Example 75 is a method as in any of Examples
71-74, wherein the transferring the query to the second
database query manager comprising entering the query as a
job in a queue of the second database query manager,
wherein the queue receives a plurality of jobs for improving
the operation of the database platform.

[0211] Example 76 is a method as in any of Examples
71-75, wherein the one or more execution nodes of the
execution platform that attempted the original execution of
the query are each running the same version of the database
platform, wherein the database platform comprises a plural-
ity of execution nodes collectively running multiple versions
of the database platform.

[0212] Example 77 is a method as in any of Examples
71-76, further comprising determining whether the retry
execution of the query should be assigned to the one or more
execution nodes of the execution platform that attempted the
original execution of the query based on one or more of:
whether the one or more execution nodes are running the
most recent version of the database platform; whether an
issue has been identified in a server of at least one of the one
or more execution nodes; whether the one or more execution
nodes have at least a portion of data responsive to the query
stored in cache storage; a storage availability of the one or
more execution nodes; or a processing availability of the one
or more execution nodes.

[0213] Example 78 is a method as in any of Examples
71-77, wherein the database platform comprises a plurality
of database query managers collectively implementing two
or more versions of the database platform, wherein new
versions of the database platform are implemented on a
portion of the plurality of database query managers.
[0214] Example 79 is a method as in any of Examples
71-78, wherein the client account is a tenant in a multiple
tenant cloud-based database platform and the method further
comprises: tracking an amount of processing resources used
to execute the original execution of the query and the retry
execution of the query; associating the tracked processing
resources with the client account; and providing a log to the
client account of all processing resources used by the client
account.

[0215] Example 80 is a method as in any of Examples
71-79, further comprising determining whether the original
execution of the query failed due to an error in Structured
Query Language (SQL) text of the query or an internal error,
wherein the method comprises transferring the query to the
second database query manager only if the original execu-
tion of the query failed due to an internal error.

[0216] Example 81 is means for implementing any of the
methods in Examples 1-80.

[0217] Example 82 is non-transitory computer readable
storage media storing instructions for implementing any of
the methods in Examples 1-80.

[0218] Example 83 is a multiple tenant cloud-based data-
base platform comprising processors configurable to execute

US 2023/0168987 Al

instructions stored in non-transitory computer readable stor-
age media, wherein the instructions comprise any of the
methods in Examples 1-80.

[0219] Example 84 is one or more processors configurable
to execution instructions, wherein the instructions comprise
any of the methods in Examples 1-80.

[0220] Many of the functional units described in this
specification may be implemented as one or more compo-
nents, which is a term used to more particularly emphasize
their implementation independence. For example, a compo-
nent may be implemented as a hardware circuit comprising
custom very large-scale integration (VLSI) circuits or gate
arrays, off-the-shelf semiconductors such as logic chips,
transistors, or other discrete components. A component may
also be implemented in programmable hardware devices
such as field programmable gate arrays, programmable array
logic, programmable logic devices, or the like.

[0221] Components may also be implemented in software
for execution by various types of processors. An identified
component of executable code may, for instance, comprise
one or more physical or logical blocks of computer instruc-
tions, which may, for instance, be organized as an object, a
procedure, or a function. Nevertheless, the executables of an
identified component need not be physically located together
but may comprise disparate instructions stored in different
locations which, when joined logically together, comprise
the component and achieve the stated purpose for the
component.

[0222] Indeed, a component of executable code may be a
single instruction, or many instructions, and may even be
distributed over several different code segments, among
different programs, and across several memory devices.
Similarly, operational data may be identified and illustrated
herein within components and may be embodied in any
suitable form and organized within any suitable type of data
structure. The operational data may be collected as a single
data set or may be distributed over different locations
including over different storage devices, and may exist, at
least partially, merely as electronic signals on a system or
network. The components may be passive or active, includ-
ing agents operable to perform desired functions.

[0223] Reference throughout this specification to “an
example” means that a feature, structure, or characteristic
described in connection with the example is included in at
least one embodiment of the present disclosure. Thus, the
appearances of the phrase “in an example” in various places
throughout this specification are not necessarily all referring
to the same embodiment.

[0224] As used herein, a plurality of items, structural
elements, compositional elements, and/or materials may be
presented in a common list for convenience. However, these
lists should be construed as though each member of the list
is individually identified as a separate and unique member.
Thus, no individual member of such list should be construed
as a de facto equivalent of any other member of the same list
solely based on its presentation in a common group without
indications to the contrary. In addition, various embodiments
and examples of the present disclosure may be referred to
herein along with alternatives for the various components
thereof. It is understood that such embodiments, examples,
and alternatives are not to be construed as de facto equiva-
lents of one another but are to be considered as separate and
autonomous representations of the present disclosure.

Jun. 1, 2023

[0225] Although the foregoing has been described in some
detail for purposes of clarity, it will be apparent that certain
changes and modifications may be made without departing
from the principles thereof. It should be noted that there are
many alternative ways of implementing both the processes
and apparatuses described herein. Accordingly, the present
embodiments are to be considered illustrative and not
restrictive.
[0226] Those having skill in the art will appreciate that
many changes may be made to the details of the above-
described embodiments without departing from the under-
lying principles of the disclosure. The scope of the present
disclosure should, therefore, be determined only by the
following claims.
[0227] Further, it should be noted, and particularly with
reference to the claims below, a “first retry attempt,” a
“second retry attempt,” a “third retry attempt,” and so forth
are not necessarily performed in sequential order unless
specifically indicated. The indicators of “first,” “second,”
“third,” and so forth are included for simplifying reference
only and are not limiting to the scope of the claims. The
parameters of different retry attempts may be performed in
any order and are not limited by the “first,” “second,” and
“third” indicators.
What is claimed is:
1. A method comprising:
decoding, by at least one hardware processor, a query
directed to database data, the query received by a first
management node from a client account of a database
system,
configuring an execution of the query by a first computing
node associated with the first management node;
detecting the execution of the query results in a failed
execution;
transferring the query from the first management node to
a second management node based on the failed execu-
tion, the second management node configured to pro-
cess tasks that are internal to the database system;
configuring a retry execution of the query by a second
computing node associated with the second manage-
ment node; and
determining a cause of the failed execution based on a
result of the retry execution.
2. The method of claim 1, further comprising:
selecting the first computing node and the second com-
puting node from a plurality of execution nodes con-
figured in a virtual warehouse of the database system,
the plurality of execution nodes being accessible by the
first management node and the second management
node.
3. The method of claim 1, further comprising:
configuring the first computing node with a first configu-
ration setting to process a plurality of original execu-
tions for a corresponding plurality of client-requested
queries, the plurality of client-requested queries includ-
ing the query from the client account.
4. The method of claim 3, further comprising:
configuring the second management node to process the
tasks that are internal to the database system based on
an indication of the failed execution received from the
first management node.
5. The method of claim 3, further comprising:
configuring the second computing node with a second
configuration setting to perform the retry execution of

US 2023/0168987 Al

the query, the second configuration setting being dif-
ferent from the first configuration setting.

6. The method of claim 5, further comprising:

determining the cause of the failed execution as a regres-
sion in the first configuration setting, based on the retry
execution being completed without a failure; and

outputting a notification of the cause.

7. The method of claim 3, further comprising:

configuring the second computing node with the first
configuration setting to perform the retry execution of
the query.

8. The method of claim 7, further comprising:

determining the cause of the failed execution as an
intermittent fault associated with the first computing
node, based on the retry execution being completed
without a failure; and

outputting a notification of the cause.

9. The method of claim 1, further comprising:

configuring the retry execution of the query in a process-
ing loop with continuous retry executions on a plurality
of computing nodes associated with the second man-
agement node, the plurality of computing nodes includ-
ing the second computing node.

10. The method of claim 9, further comprising:

exiting the processing loop when one of the continuous
retry executions is successful; and

determining the cause of the failed execution based on
configuration settings used by the first computing node
during the execution of the query and by the plurality
of computing nodes during the continuous retry execu-
tions.

11. A system comprising:

at least one hardware processor of a database system; and

at least one memory storing instructions that cause the at
least one hardware processor to perform operations
comprising:

decoding a query directed to database data, the query
received by a first management node from a client
account of a database system;

configuring an execution of the query by a first computing
node associated with the first management node;

detecting the execution of the query results in a failed
execution;

transferring the query from the first management node to
a second management node based on the failed execu-
tion, the second management node configured to pro-
cess tasks that are internal to the database system;

configuring a retry execution of the query by a second
computing node associated with the second manage-
ment node; and

determining a cause of the failed execution based on a
result of the retry execution.

12. The system of claim 11, the operations further com-

prising:

selecting the first computing node and the second com-
puting node from a plurality of execution nodes con-
figured in a virtual warehouse of the database system,
the plurality of execution nodes being accessible by the
first management node and the second management
node.

13. The system of claim 11, the operations further com-

prising:

configuring the first computing node with a first configu-

ration setting to process a plurality of original execu-

Jun. 1, 2023

tions for a corresponding plurality of client-requested
queries, the plurality of client-requested queries includ-
ing the query from the client account.

14. The system of claim 13, the operations further com-
prising:

configuring the second management node to process the

tasks that are internal to the database system based on
an indication of the failed execution received from the
first management node.

15. The system of claim 13, the operations further com-
prising:

configuring the second computing node with a second

configuration setting to perform the retry execution of
the query, the second configuration setting being dif-
ferent from the first configuration setting.

16. The system of claim 15, the operations further com-
prising:

determining the cause of the failed execution as a regres-

sion in the first configuration setting, based on the retry
execution being completed without a failure; and
outputting a notification of the cause.

17. The system of claim 13, the operations further com-
prising:

configuring the second computing node with the first

configuration setting to perform the retry execution of
the query.

18. The system of claim 17, the operations further com-
prising:

determining the cause of the failed execution as an

intermittent fault associated with the first computing
node, based on the retry execution being completed
without a failure; and

outputting a notification of the cause.

19. The system of claim 11, the operations further com-
prising:

configuring the retry execution of the query in a process-

ing loop with continuous retry executions on a plurality
of computing nodes associated with the second man-
agement node, the plurality of computing nodes includ-
ing the second computing node.

20. The system of claim 19, the operations further com-
prising:

exiting the processing loop when one of the continuous

retry executions is successful; and

determining the cause of the failed execution based on

configuration settings used by the first computing node
during the execution of the query and by the plurality
of computing nodes during the continuous retry execu-
tions.

21. A computer-storage medium comprising instructions
that, when executed by one or more processors of a machine
in a database system, configure the machine to perform
operations comprising:

decoding a query directed to database data, the query

received by a first management node from a client
account of a database system;

configuring an execution of the query by a first computing

node associated with the first management node;
detecting the execution of the query results in a failed
execution;

transferring the query from the first management node to

a second management node based on the failed execu-
tion, the second management node configured to pro-
cess tasks that are internal to the database system;

US 2023/0168987 Al

configuring a retry execution of the query by a second
computing node associated with the second manage-
ment node; and
determining a cause of the failed execution based on a
result of the retry execution.
22. The computer-storage medium of claim 21, the opera-
tions further comprising:
selecting the first computing node and the second com-
puting node from a plurality of execution nodes con-
figured in a virtual warehouse of the database system,
the plurality of execution nodes being accessible by the
first management node and the second management
node.
23. The computer-storage medium of claim 21, the opera-
tions further comprising:
configuring the first computing node with a first configu-
ration setting to process a plurality of original execu-
tions for a corresponding plurality of client-requested
queries, the plurality of client-requested queries includ-
ing the query from the client account.
24. The computer-storage medium of claim 23, the opera-
tions further comprising:
configuring the second management node to process the
tasks that are internal to the database system based on
an indication of the failed execution received from the
first management node.
25. The computer-storage medium of claim 23, the opera-
tions further comprising:
configuring the second computing node with a second
configuration setting to perform the retry execution of
the query, the second configuration setting being dif-
ferent from the first configuration setting.
26. The computer-storage medium of claim 25, the opera-
tions further comprising:

Jun. 1, 2023

determining the cause of the failed execution as a regres-
sion in the first configuration setting, based on the retry
execution being completed without a failure; and
outputting a notification of the cause.
27. The computer-storage medium of claim 23, the opera-
tions further comprising:
configuring the second computing node with the first
configuration setting to perform the retry execution of
the query.
28. The computer-storage medium of claim 27, the opera-
tions further comprising:
determining the cause of the failed execution as an
intermittent fault associated with the first computing
node, based on the retry execution being completed
without a failure; and
outputting a notification of the cause.
29. The computer-storage medium of claim 21, the opera-
tions further comprising:
configuring the retry execution of the query in a process-
ing loop with continuous retry executions on a plurality
of computing nodes associated with the second man-
agement node, the plurality of computing nodes includ-
ing the second computing node.
30. The computer-storage medium of claim 29, the opera-
tions further comprising:
exiting the processing loop when one of the continuous
retry executions is successful; and
determining the cause of the failed execution based on
configuration settings used by the first computing node
during the execution of the query and by the plurality
of computing nodes during the continuous retry execu-
tions.

