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HYPERSPECTRAL DEMIXING USING
FOVEATED COMPRESSIVE PROJECTIONS

FIELD

[0001] The present disclosure relates generally to hyper-
spectral imaging and spectroscopy.

BACKGROUND

[0002] Hyperspectral cameras image a scene in both spa-
tial and spectral dimensions. Unlike conventional color
cameras, which have three broad overlapping color channels
over the visible band, hyperspectral cameras have hundreds
or thousands of narrow contiguous wavelength channels
over the range from visible to long-wave infrared. Hyper-
spectral cameras may capture images that include millions
of pixels, each pixel representing a reflected spectrum.
[0003] Hyperspectral imaging has become a core area in
the geoscience and remote sensing community. In addition,
new applications in object detection, road surface analysis,
autonomous navigation, and automatic target recognition are
being explored as the size, weight, power requirements, and
cost of hyperspectral imaging cameras are reduced.

[0004] The spectral demixing problem in hyperspectral
data analysis is central to determining the composition of
material mixtures based on a reflectivity spectrum. A mea-
sured reflectivity spectrum is normally composed of a mix-
ture of spectra arising from different pure materials, or
“endmembers”, in the material mixture. Spectral demixing is
the process of identifying the endmembers in the material
mixture and estimating their abundances.

SUMMARY

[0005] According to various examples, a method of spec-
tral demixing is disclosed. The method includes obtaining
empirical spectroscopic data representing a plurality of
frequencies of electromagnetic energy that has interacted
with a specimen, accessing a computer readable represen-
tation of a hierarchal spectral cluster tree representing a
spectral library, demixing, with data on each of a plurality of
levels of the hierarchal spectral cluster tree, foveated spec-
troscopic data derived from the empirical spectroscopic
data, identifying at least one node in the hierarchal spectral
cluster tree as corresponding to the empirical spectroscopic
data, and outputting an endmember abundance assessment
of the specimen corresponding to at least the at least one
node.

[0006] Various optional features of the above method
examples include the following. The empirical spectro-
scopic data may represent a plurality of frequencies of
electromagnetic energy reflected off of the specimen. The
empirical spectroscopic data may represent a pixel. The
hierarchal spectral cluster tree may include a plurality of
levels includes at least one terminal level including nodes
representing individual endmembers. The hierarchal spectral
cluster tree may include a plurality of prototype nodes,
where a respective prototype node may represent a plurality
of endmembers. The method may include hierarchical clus-
tering the spectral library. The demixing foveated spectro-
scopic data may include performing foveated compressive
projection. The demixing foveated spectroscopic data may
include sparse reconstruction. The method may include
using the endmember abundance assessment for at least one
of geospatial analysis, target recognition, surveillance,
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chemical identification, remote sensing, and combinations
thereof. The outputting may include causing a display in a
human readable format.

[0007] According to various examples, a system for spec-
tral demixing is disclosed. The system includes an interface
configured to obtain empirical spectroscopic data represent-
ing a plurality of frequencies of electromagnetic energy that
has interacted with a specimen, at least one electronic
processor communicatively coupled to a computer readable
representation of a hierarchal spectral cluster tree represent-
ing a spectral library, at least one electronic processor
configured to demix, with data on each of a plurality of
levels of the hierarchal spectral cluster tree, foveated spec-
troscopic data derived from the empirical spectroscopic
data, at least one electronic processor configured to identify
at least one node in the hierarchal spectral cluster tree as
corresponding to the empirical spectroscopic data, and at
least one electronic processor configured to output an end-
member abundance assessment of the specimen correspond-
ing to at least the at least one node.

[0008] Various optional features of the above system
examples include the following. The empirical spectro-
scopic data may represent a plurality of frequencies of
electromagnetic energy reflected off of the specimen. The
empirical spectroscopic data may represent a pixel. The
hierarchal spectral cluster tree may include a plurality of
levels including at least one terminal level including nodes
representing individual endmembers. The hierarchal spectral
cluster tree may include a plurality of prototype nodes,
where a respective prototype node represents a plurality of
endmembers. The system may include at least one electronic
processor configured to hierarchically cluster the spectral
library. The at least one electronic processor configured to
demix foveated spectroscopic data may be further config-
ured to perform foveated compressive projection. The at
least one electronic processor configured to demix foveated
spectroscopic data may be further configured to perform
sparse reconstruction. The system may include at least one
electronic processor configured to provide the endmember
abundance assessment for at least one of geospatial analysis,
target recognition, surveillance, chemical identification,
remote sensing, and combinations thereof. The at least one
electronic processor configured to output may be further
configured to cause a display in a human readable format.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Various features of the present disclosure can be
more fully appreciated, as the examples become better
understood with reference to the following detailed descrip-
tion, when considered in connection with the accompanying
figures, in which:

[0010] FIG. 1 schematically depicts example spectra for
pure materials and a mixture;

[0011] FIG. 2 schematically depicts a spectral library in
two ways,
[0012] FIG. 3 schematically depicts a spectral library

arranged as a spectral cluster tree according to some
examples;

[0013] FIG. 4 depicts a usage of a foveation matrix
according to some examples;

[0014] FIG. 5 is a flow diagram illustrating a method
according to some examples;
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[0015] FIG. 6 illustrates the effects of foveation on com-
pressive sensing reconstruction stability and accuracy
according to some examples;

[0016] FIGS. 7-10 depict various test cases comparing
prior art techniques to various examples; and

[0017] FIG. 11 depicts a system according to some
examples.

DESCRIPTION
[0018] Reference will now be made in detail to the present

examples of the present disclosure, examples of which are
illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts. In the
following description, reference is made to the accompany-
ing drawings that form a part thereof, and in which is shown
by way of illustration specific exemplary implementations.
These examples are described in sufficient detail to enable
those skilled in the art to practice the disclosed subject
matter and it is to be understood that other examples may be
utilized and that changes may be made without departing
from the scope of the present disclosure. The following
description is, therefore, merely exemplary.

[0019] Some examples utilize foveated compressive pro-
jection for performing hyperspectral demixing based on a
variable resolution, or “foveated”, representation of a spec-
tral library of representations of spectra of many different
materials organized as a hierarchical tree, combined with
nonlinear-compressive-sensing-based sparsity maximiza-
tion and oversampling. Foveated compressive projection
allows endmembers to be determined with high accuracy,
robustness against noise, and computational efficiency.

[0020] Unlike certain prior art linear and heuristic demix-
ing methods, some examples described herein can measure
the abundances of endmembers in a hyperspectral mixture
without assuming a pure material pixel exists in the data for
each endmember and without human guidance, which
makes it suitable for automated hyperspectral analysis appli-
cations. Some examples enable the use of very large spectral
libraries and do not require estimation (e.g., by a human) of
endmembers from the input data. Unlike prior art sparsity-
based methods, some examples described herein use fove-
ated projections, over-sampling, and a tree-organized multi-
resolution spectral library to improve the accuracy and noise
robustness of the demixing. In addition, the combination of
tree-based clustering of the spectral library with foveation
enables endmembers to be identified very quickly by mov-
ing down the best matching branch at each level. This
greatly reduces the number of spectral prototypes that have
to be examined to make a match, which reduces computa-
tional complexity. Reduced computational complexity, in
turn, provides for faster processing time for the demixing
operation, reduced computer hardware requirements, and
reduced power consumption. Further, unlike some prior art
demixing approaches, the computational complexity of
foveated compressive projection is logarithmic in the size of
the spectral library. In addition, in some examples the
resolution of the demixing process in abundance space
increases as the processing continues. Therefore, if a coarse
classification of the mixture components is sufficient, then
the processing can be halted before reaching the bottom of
the tree (i.e., the terminal tree level), thereby further reduc-
ing processing time.
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[0021] FIG. 1 schematically depicts example spectra for
pure materials and a mixture. In particular, spectrum graph
102 depicts measured relative intensities of a number of
wavelengths of electromagnetic energy. The measurements
may represent a single pixel from an image taken by a
hyperspectral camera consisting of thousands or millions (or
more) of pixels. In general, materials have characteristic
reflectivity variations across wavelengths, which can be
used for remote measurement of a scene’s composition.

[0022] In many cases, a pixel will cover an area with
multiple materials or endmembers, which results in an
additive mixture of spectra. The objective of the hyperspec-
tral demixing problem is to estimate the endmember abun-
dances from a single measured mixture of spectra. Graph
104 graphically depicts a number of spectra that, when
additively combined, form the spectrum of a material
sample as depicted in graph 102. Thus, graph 104 depicts
hyperspectral demixing applied to the sample’s spectrum
depicted in graph 102.

[0023] FIG. 2 schematically depicts a spectral library in
two ways. In particular, FIG. 2 depicts an example spectral
library in terms of shading as an indication of amplitude in
matrix 202 and in terms of component spectra 204. As
shown in FIG. 2, the measured spectrum vector x for a pixel
can be modeled as a linear mixture of N endmember (pure
material) spectra contained in a spectral library represented
by matrix ¢. The example spectral library ¢ is formed using
N=16 mineral spectra endmembers. The N columns of ¢
consist of the endmember spectra and the Q rows represent
the wavelength channels, where Q=480 in this example. A
discussion of the hyperspectral mixing problem in terms of
such a spectral library follows.

[0024] The hyperspectral demixing problem can be for-
malized in part using Equation 1, by way of non-limiting
example, below.

x=¢a M

In Equation 1, the symbol x represents a measured Qx1
spectrum vector, the symbol o represents the Nx1 endmem-
ber abundance vector to be solved for, and the symbol ¢
represents a spectral library formalized in matrix form. In
terms of Equation 1, x is modeled as a mixture of endmem-
bers with mixing coefficients from a. In terms of these
conventions, a goal of hyperspectral demixing is to estimate
a, given x and ¢.

[0025] The hyperspectral demixing problem is made dif-
ficult by the need to have a large spectral library, the
similarity of many spectra, and noise in the measured
spectrum. In addition, the number of different materials
covered by a pixel is usually small, so o may be sparse and
the number K of nonzero a elements may be small relative
to N. This means a least squares solution using a pseudo-
inverse of ¢ will have many false detections and low
accuracy.

[0026] Compressive sensing has been developed as a
method for reducing the number of physical sensors or
pixels needed in a camera or other sensing hardware without
reducing the output data resolution by taking advantage of
sparsity in the physical signal being sensed in some repre-
sentation domain. In other words, it utilizes the sparse
structure of the signal. To date, its usage in hyperspectral
imaging has been limited to the design and construction of
new optical hardware with reduced sensor counts.
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[0027] According to some examples, technology from the
field of compressive sensing is used to improve sparsity-
based demixing by reducing the mutual coherence of ¢ using
a known MxQ random measurement matrix A that multi-
plies x to form an Mx1 measurement vector y. Compressive
sensing techniques can then be used to estimate o using the
L1 norm and least squares error minimization according to,
by way of non-limiting example, Equations 2 and 3 below.

y=A¢a+g @
G=arg min|jal|; subject to |ly-Apal <e 3)

In Equations (2) and (3) above, the noise term E=AC takes
into account the measurement noise ¢ in the original sensor
data. Compressive sensing techniques have shown that a
lower bound for the number of measurements M needed to
estimate o is given by Equation (4), for example, below.

M=yu(4,0)K log(V) ]

In Equation 4 above, the term K represents the number of
nonzero elements in the Nx1 vector o (a measure of
sparsity), vy is a small constant, and the mutual coherence
function p is specified by Equation 5, by way of non-limiting
example, below.

N~ Nmax, | <d'¢/> 3)

In Equation 5 above, the term [{ A’, ¢,)| is the inner product
between row i of A and column j of ¢. According to some
examples, the number of measurements required for suc-
cessful convergence and estimation of o can therefore be
reduced by reducing the coherence p between A and ¢.
Random A matrices have been found to be a general purpose
solution for reducing . Further, known methods exist for
adapting A to the library ¢ to further reduce M for special-
ized applications.

[0028] FIG. 3 schematically depicts a spectral library
arranged as a hierarchal spectral cluster tree according to
some examples. For simplicity, each cluster (e.g., 302) is
depicted with b=3 branches. However, in general, the
branching may be different for each cluster and will depend
on the library structure. The more independent or less
overlapping the paths, the more parallelization is possible
for implementations.

[0029] Each cluster above the final level represents a
spectral prototype. In general, a cluster at Level L is com-
posed of subclusters from Level L-1. Each prototype cluster
can be an average (e.g., mean or median) of its constituent
subclusters. Alternately, according to some examples, clus-
ters are formed as convex hulls enclosing their constituent
subclusters. Other clustering algorithms may be employed in
the alternative. Thus, the mixture spectrum is modeled with
increasing accuracy along each tree branch.

[0030] In general, reducing the mutual coherence p in
order to reduce the bound on M (and therefore improve
reconstruction stability, noise robustness, and accuracy) can
be achieved not only by reducing <A,,¢,> through proper
choice of A for a given ¢, but also by reducing N, the size
of the abundance vector a.. Pursuing this approach naively
would reduce the number of endmembers in the spectral
library. However, by using foveation or multi-level resolu-
tion in both a and ¢, and by clustering the library endmem-
bers in a hierarchical tree structure based on their similarity
as shown in FIG. 3 and as is done in some examples, N can
be reduced without reducing the number of endmembers that
can be detected.
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[0031] Ingeneral, some examples proceed down the levels
of a hierarchal spectral cluster tree and perform demixing
and identification of cluster prototypes at each level using
foveated compressive projections and sparse reconstruction
methods, e.g., according to Equations 2-5. The identification
of subcluster prototypes in a cluster at one level as corre-
sponding to a measured spectrum determines which
branches of the tree to proceed down to perform the next
level of demixing. This process may continue until the
bottom endmember level of the tree (e.g., the level of the
“leaves”) is reached, or until sufficient accuracy is obtained.
In general, proceeding to terminal nodes will result in
following K tree branches, where K is the number of
endmembers in the mixture.

[0032] Using a hierarchal spectral cluster tree as depicted
in FIG. 3 has many advantages. The computational com-
plexity for solving the hyperspectral demixing problem
using such a tree is logarithmic in the spectral library size N,
due to the tree search structure. Proceeding down the tree
and solving smaller demixing problems at each level is
orders of magnitude less complex than solving a single large
demixing problem without foveation.

[0033] FIG. 4 depicts an example usage of a foveation
matrix according to some examples. Foveation, e.g. reduc-
tion of N to a smaller number N by organizing both the
spectral library and the corresponding coeflicients in the
abundance vector into multiple hierarchical clusters, can be
implemented adaptively by modifying o (412) and ¢ (402)
using the separable foveation matrix operator F=F.’F.
(406, 410) as shown in FIG. 4. In particular, FIG. 4 sche-
matically illustrates how the NxN foveation operator
F=F“F . (406, 410) implements hierarchical clustering and
foveation in both the spectral library and the endmember
abundances. F. (410) operates on the abundance vector
(412) to form . and reduce its size from Nx1 to N-x1 by
grouping and adding rows. Likewise, F.” (406) performs a
similar operation on the columns of the endmember library
¢ (404), forming ¢ (408) and reducing its size from QxN to
QxN_.

[0034] The form of F (406, 410) and value of N, is
determined using hierarchical tree clustering of ¢, as illus-
trated by the dendrogram 402, which groups endmembers
into clusters and clusters into bigger clusters on higher levels
of the tree. Each cluster in a level is represented by a
prototype spectrum, which may be an average or other
function of the spectra in the cluster. The prototypes form the
clustered library ¢.~¢F 7. In this example for one level of
the tree, F implements a clustering of o and ¢ with N=16
into N =5 clusters. The prototypes form the columns of ¢.
Each level of clustering is represented by its own ¢ and ...
In general, any known clustering technique may be used.
[0035] A hyperspectral demixing process according to
some examples includes proceeding down the levels of the
tree and performing demixing and identification of cluster
prototypes at each level using compressive projections and
sparse reconstruction methods. The identification of proto-
types in the mixture at one level determines which branches
of the tree to proceed down to perform the next level of
demixing. The resolution of the spectral mixture model in
endmember space increases at each lower level, but the
resolution in wavelength stays constant. It is possible that
more than one cluster will be selected in a level, depending
on the similarity of the endmember spectra in the mixture.
This will lead to more than one demixing process in each of
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the subsequent levels. The process may proceed with
increasing mixture modeling accuracy until the bottom
endmember level of the tree is reached. This multiresolution
process can be stopped before the bottom is reached if high
discrimination between endmembers is not required and
identification of endmember classes or categories is suffi-
cient, which will further reduce the computational complex-
ity. The computational complexity of proceeding down the
tree and solving small demixing problems at each level is
logarithmic in the spectral library size and orders of mag-
nitude less than solving a single large demixing problem
without foveation.

[0036] An example algorithm for reconstructing the fove-
ated abundance vector o, is given by the following equa-
tions, by way of non-limiting example.

Y=AQF T arE=Ap o +E (6)

a~arg min,, |, subject to [y~d¢cor|<e 0

In the above equations, y.. is the measured projection vector
and represents sensor noise. The reduced lower bound on the
number of measurements M. required for reconstructing o,
is given by the following equations, by way of non-limiting
example.

MpuC(40K log(No) @®)
He(Ac)~/Nemax,, | { £.4F )| ©

The reduction factor of M compared with M is given, by
way of non-limiting example, as follows.

10

=| ¥
&
=| ¥

Note that Equation 10 makes use of the observation depicted
by Equation 11, below.

max, | { 42 9F 7 ) l=max, | { 4,4/} an

Thus, foveation can be used not only to reduce N, but also
to increase the range of M over which the foveated com-
pressive projection reconstruction is stable.

[0037] FIG. 5 is a flow diagram illustrating a method
according to some examples. The method of FIG. 5 may be
implemented all or partially in a properly configured com-
puting apparatus.

[0038] At block 502, the method obtains empirical spec-
troscopic data. The spectroscopic data may be obtained, by
way of non-limiting examples, by measurement using
appropriate sensors and optical elements, by retrieval from
electronic storage (e.g., of previously measured data), or by
acquisition over an electronic network (e.g., of previously
measured data). Thus, the method may obtain the data by
electronic transmission, for example. The spectroscopic data
may have been previously acquired by any conventional
technique for acquiring spectroscopic data, e.g., using
appropriate sensors coupled to classical Newtonian optics,
such as a microscope, telescope, or other optical lens
arrangement. The spectroscopic data may represent a plu-
rality of frequencies and associated amplitudes, which may
be relative. More particularly, the spectroscopic data may
represent measured electromagnetic energy that has been
reflected by, fluoresced from, or undergone any other type of
interaction with a specimen suitable for spectroscopy pur-
poses.
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[0039] At block 504, the method accesses a hierarchal
spectral cluster tree. The accessing may be accessing elec-
tronically, and the hierarchal spectral cluster tree may rep-
resent a spectral library of stored spectra for many different
materials, as described in detail herein in reference to FIGS.
2-4, for example.

[0040] At block 506, the method performs demixing of
foveated spectroscopic data at at least one level of the
hierarchal spectral cluster tree. The techniques of this block
may be performed as described herein in reference to FIGS.
3 and 4, for example. The actions of block 506 may include
foveated compressive projection and/or sparse reconstruc-
tion as described in detail herein, e.g., in reference to FIGS.
3 and 4.

[0041] At block 512, the method determines whether to
stop traversing the branches of the hierarchal spectral cluster
tree. According to some examples, the method may termi-
nate on or before one or more branches of the hierarchal
spectral cluster tree are traversed to the end (leaf) nodes.
Alternately, or in addition, the method may terminate prior
to the level of the leaf nodes if a user determines that the
current results are sufficiently accurate. If the method con-
tinues at block 512, control passes back to block 506.
Otherwise, control passes to block 514.

[0042] At block 514, the method identifies at least one
node in the hierarchal spectral cluster tree. The identified
node may correspond to the closest matching node traversed
by the method at this point.

[0043] At block 516, the method outputs an endmember
abundance assessment. The endmember abundance assess-
ment may be based on the identified node of block 514. The
endmember abundance assessment may be in human-read-
able format, e.g., with spectra replaced by chemical descrip-
tions. The output may be in any of a variety of forms, e.g.,
output to a computer monitor, output to a video processor,
output to a targeting mechanism, etc.

[0044] FIG. 6 illustrates the effects of foveation on com-
pressive sensing reconstruction stability and accuracy
according to some examples. In particular, FIG. 6 shows
contours of the minimax noise sensitivity M*(9,p) in the
(9,p) phase plane 602. The term d=M/N is the subsampling
rate and p=K/M is the sparsity. (M* should not be confused
with the number of measurements M.) On average, the
demixing noise or error is equal to M* times the noise in the
measured mixture. Dotted curve 604 marks the phase
boundary (3,p,,55(8)). Above this curve, M*(,p)
approaches infinity and reconstruction (e.g., demixing) will
fail. The colored lines represent contour lines of M*(8,p).
Increasing the number of projections (measurements) M
reduces p and increases 8, which improves the demixing
accuracy by moving the previous operating point down the
gradient of M*. Foveation provides an additional degree of
freedom for shifting the operating point in phase space in
order to, e.g., ensure the stability of the demixing.

[0045] Thus, some examples cluster spectra in the library
¢ according to similarity using hierarchical tree clustering
and perform a multi-resolution tree-based search to find the
endmember abundances using a separate sparse reconstruc-
tion step at each level of the tree. Since N is reduced at each
level, the reconstruction accuracy is improved at each level.
The total number of operations across the levels will be
much smaller and the final accuracy higher than would be
the case if a single reconstruction with large N that searches
across all endmember simultaneously were performed. This
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observation is illustrated using an example demixing prob-
lem as shown and described in reference to FIGS. 7-10
below.

[0046] The computations complexity of some examples
will, in general, depend in part on the form of the library tree
and how the endmembers are clustered. An upper bound on
the computational complexity can be estimated by making
worst-case assumptions (e.g., maximal branching at each
node, all branches reach the terminal level) about the spec-
tral library cluster tree and the paths down the tree. Toward
such an estimate, assume for simplicity that all clusters have
b branches and the paths to the K mixture endmembers do
not overlap. Then the number of endmember candidates
(library size) at the bottom of the tree is N=N,_=b”*, where L.
is the number of levels, and such examples must solve
KL=K log(Np)log(b) demixing problems, each with
N=N_~=b. Therefore the computational complexity accord-
ing to some examples is logarithmic in the size N of the
spectral library ¢. In the case of compressive sensing without
foveation or tree-based clustering, an example would need
to perform one large sparse reconstruction with N=N=b*.
Using MATLAB’s CoSamp algorithm for sparse reconstruc-
tion, which has complexity of O(KMN) where K is the
number of endmembers in the mixture, and assuming M=N,
the complexity of examples employing foveated compres-
sive projection is O(LK?b?) and the complexity of compres-
sive sensing is O(Kb*"). Therefore, the computational com-
plexity of examples that utilize foveated compressive
projection is a factor of KLb***® less than that of examples
utilizing compressive sensing alone. The complexity of an
alternative Moore-Penrose matrix pseudo-inverse solution is
O(QN,)=0O(Qb"), where Q is the number of hyperspectral
channels. Proceeding down the tree using multi-level fove-
ation and solving a small demixing problem at each level is
therefore orders of magnitude less complex than solving a
single large demixing problem without foveation.

[0047] For example, for N;=103, K=2, b=10, and [=3,
examples that employ foveated compressive projection may
use a factor of 6x10~* fewer operations than examples that
employ compressive sensing without foveation, and 1.3x
10~ fewer operations than the Moore-Penrose matrix
pseudo-inverse for this example (assuming Q=480 for the
number of spectral channels).

[0048] FIGS. 7-10 depict various test cases comparing
prior art techniques to various examples. These figures
utilize data represented by FIG. 2. The N=16 mineral spectra
from the collection depicted by FIG. 2 were used to form a
spectral library ¢ to test various examples and contrast with
prior art techniques. The number of wavelength bands was
Q=480. A mixture x of two of the spectra plus 1% additive
noise was then formed to be a test spectrum input with K=2.
The abundances a were estimated using publicly available
compressive sensing code.

[0049] In FIG. 7, the compressive sensing result for F
equal to the NxN identity matrix (702), i.e., with no fove-
ation, are shown. For M=13 projections with 5% noise,
compressive sensing (704) had an error of 6.31%, while the
pseudo-inverse error was 634%. In addition, the pseudo-
inverse generated false alarms or nonzero values for end-
members not in the mixture. Compressive sensing without
foveation had no false alarms. The MATLAB’s CoSamp
running time was 7.5 msec.

[0050] FIG. 8 depicts results for an input spectrum con-
sisting of endmembers not in the library. F (802) is the
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identity matrix because there is no foveation. The measure-
ment noise value was 5%. The compressive sensing residual
was 10.1, an indication that compressive sensing could not
converge due to the spectrum not being in the library. Thus,
when the input spectrum consisted of endmembers not in the
library, this could be detected from the large value of the
residual error in reconstructing the measured spectrum 804.

[0051] FIG. 9 depicts example results 904, 906 for fove-
ation in Cluster Level 1. Foveated compressive sensing
successfully detected that the mixture endmembers are in
Cluster 2 with zero abundances for the other clusters. The
pseudo-inverse generated nonzero abundances for all 5
clusters. For 5% measurement noise, the foveated compres-
sive sensing error was 6.0% while the pseudo-inverse error
was 115%. In FIG. 10, F (902) was used to foveate on the
Cluster 2 that was determined in Cluster Level 1 to contain
the mixture endmembers. Foveated compressive sensing
successfully detected the correct two endmembers in the
second cluster with zero abundances for the other three
endmembers in the cluster. The pseudo-inverse generated
nonzero abundances (false alarms) for all five endmembers.
For 5% measurement noise, the foveated compressive sens-
ing error was 5.9% while the pseudo-inverse error was
143%.

[0052] FIG. 10 depicts the same test case as in FIG. 9, but
with F (1002) modified to foveate on the second cluster with
higher resolution. Results 1004, 1006 are depicted. Note that
Cluster 2 was determined to contain the endmembers in
Cluster Level 1. The measurement noise value was 5% and
MC=16. Foveated compressive projection successfully
demixed the two endmembers in Cluster 2 with no false
alarms. The foveated compressive projection error was
0.16%, while the pseudo-inverse error was 143%. Note the
improved accuracy of reconstruction relative to Cluster
Level 1 in FIG. 9.

[0053] The Table below summarizes the results for the test
problem described herein in reference to FIGS. 7-10.
TABLE
Oracle
Two-Level with Prior
Com- Foveated Knowledge of
Pseudo-  pressive Compressive Mixture
Inverse Sensing Projection Endmembers
Demixing 143% 29.1% 0.16% 0.16%
Error
Computation 7680 416 200 Not Applicable
Complexity
(Number of
Operations)
Measured 0.35 msec 109 msec 13.2 msec  Not Applicable
Running Time  (Optimized (Dominated
in MATLAB Internal by MATLAB
MATLAB Overhead)
Function)

Foveated compressive projection achieved noise-limited
accuracy in determining the mixture endmember abun-
dances and in accurately modeling the input spectrum. The
compression factor for both compressive sensing and fove-
ated compressive projection was equal to Q/K=480/2=240
times for this test example. The foveated compressive pro-
jection demixing error was reduced by 2.25 times and the
number of operations was reduced by 3.85 times relative to
compressive sensing. The foveated compressive projection
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demixing error of 0.16% was virtually equal to the oracle
demixer, which had pre-knowledge of which endmembers
are in the data and simply did a least squares fit to determine
their abundances. Both compressive sensing and foveated
compressive projection did not have any false alarms; in
other words, the estimated abundances were zero for all
end-members that were not in the input data. The pseudo-
inverse method had a very large demixing error of 143% and
showed nonzero abundances for almost all the end-members
that were not in the input data. These results support the use
of foveated compressive projection as a tool for automation
of hyperspectral data analysis that achieves high accuracy,
low false alarm rates, and low computational complexity by
adapting to the data.

[0054] FIG. 11 depicts a system according to some
examples. In particular, FIG. 11 illustrates various hardware,
software, and other resources that can be used in implemen-
tations of apparatus 1106 in systems and methods according
to disclosed examples. In examples as shown, apparatus
1106 can include a processor 1110 coupled to a random
access memory operating under control of or in conjunction
with an operating system. The processor 1110 in examples
can be incorporated in one or more servers, clusters, or other
computers or hardware resources, or can be implemented
using cloud-based resources. Processor 1110 can communi-
cate with the data store 1112, such as a database stored on
a local hard drive or drive array, to access or store data.
Processor 1110 can further communicate with a network
interface 1108, such as an Ethernet or wireless data connec-
tion, which in turn communicates with the one or more
networks 1104, such as the Internet or other public or private
networks, via which spectroscopic data can be obtained
from spectroscopic data acquisition device 1102. Device
1102 may be, for example, a spectroscope, a stand-off
detector, a targeting system, or a remote or local persistent
or dynamic storage device. Processor 1110 is further coupled
to math co-processor 1114, which can parallelize operations
as described herein. Processor 110 can, in general, be
programmed or configured to execute control logic and
control demixing operations. Other configurations of appa-
ratus 1106, associated network connections, and other hard-
ware, software, and resources are possible.

[0055] The following are properties of some examples.
Hierarchical clustering may be performed on the spectral
library, and the resulting tree may be organized into a
decision tree with multiple levels. Each cluster in a level
may represent subcluster prototypes from the previous layer.
The same clustering may be performed on both the library
and the mixture endmember abundances using foveation
operators F .7 and F .. Foveated compressive projection and
sparse reconstruction may be performed at each level of the
tree to reconstruct and model the mixture spectrum with
increasing accuracy as the tree is traversed from top to
bottom until the endmembers and their abundances are
determined. Oversampling, or using a larger number of
projections than there are members of the cluster, may
increase the accuracy of the demixing in the presence of
noise. The prototypes selected at each level may determine
how the tree is traversed in order to determine the endmem-
bers in the mixture and their abundances. The tree clustering
and foveation greatly reduces the overall computational
complexity and improves scaling for large libraries by using
multiple small sparse reconstructions arranged in a decision
tree instead of performing one large reconstruction.
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[0056] Note that examples are not limited to specific
spectra of portions of the spectrum. Thus, some examples
perform spectral demixing using foveated compressive pro-
jections. Some examples perform hyperspectral demixing
using foveated compressive projections.

[0057] Certain examples described above can be per-
formed in part using a computer application or program. The
computer program can exist in a variety of forms, both
active and inactive. For example, the computer program can
exist as one or more software programs, software modules,
or both, that can be comprised of program instructions in
source code, object code, executable code or other formats,
firmware program(s), or hardware description language
(HDL) files. Any of the above can be embodied on a
computer readable medium, which can include computer
readable storage devices and media in compressed or
uncompressed form. Exemplary computer readable storage
devices and media include conventional computer system
RAM (random access memory), ROM (read-only memory),
EPROM (erasable, programmable ROM), EEPROM (elec-
trically erasable, programmable ROM), and magnetic or
optical disks or tapes.

[0058] Those skilled in the art will be able to make various
modifications to the described examples without departing
from the true spirit and scope. The terms and descriptions
used herein are set forth by way of illustration only and are
not meant as limitations. In particular, although the method
has been described by examples, the steps of the method can
be performed in a different order than illustrated or simul-
taneously. Those skilled in the art will recognize that these
and other variations are possible within the spirit and scope
as defined in the following claims and their equivalents.

What is claimed is:

1. A method for spectral demixing, the method compris-
ing:

obtaining empirical spectroscopic data representing a

plurality of frequencies of electromagnetic energy that
has interacted with a specimen;

accessing a computer readable representation of a hierar-

chal spectral cluster tree representing a spectral library;
demixing, with data on each of a plurality of levels of the
hierarchal spectral cluster tree, foveated spectroscopic
data derived from the empirical spectroscopic data;
identifying at least one node in the hierarchal spectral
cluster tree as corresponding to the empirical spectro-
scopic data; and
outputting an endmember abundance assessment of the
specimen corresponding to at least the at least one
node.

2. The method of claim 1, wherein the empirical spectro-
scopic data represents a plurality of frequencies of electro-
magnetic energy reflected off of the specimen.

3. The method of claim 1, wherein the empirical spectro-
scopic data represents a pixel.

4. The method of claim 1, wherein the hierarchal spectral
cluster tree comprises a plurality of levels comprising at
least one terminal level comprising nodes representing indi-
vidual endmembers.

5. The method of claim 1, wherein the hierarchal spectral
cluster tree comprises a plurality of prototype nodes,
wherein a respective prototype node represents a plurality of
endmembers.

6. The method of claim 1, further comprising hierarchical
clustering the spectral library.
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7. The method of claim 1, wherein the demixing foveated
spectroscopic data comprises performing foveated compres-
sive projection.
8. The method of claim 1, wherein the demixing foveated
spectroscopic data comprises sparse reconstruction.
9. The method of claim 1, further comprising using the
endmember abundance assessment for at least one of geo-
spatial analysis, target recognition, surveillance, chemical
identification, remote sensing, and combinations thereof.
10. The method of claim 1, wherein the outputting com-
prises causing a display in a human readable format.
11. A system for spectral demixing, the system compris-
ing:
an interface configured to obtain empirical spectroscopic
data representing a plurality of frequencies of electro-
magnetic energy that has interacted with a specimen;

at least one electronic processor communicatively
coupled to a computer readable representation of a
hierarchal spectral cluster tree representing a spectral
library;

at least one electronic processor configured to demix, with

data on each of a plurality of levels of the hierarchal
spectral cluster tree, foveated spectroscopic data
derived from the empirical spectroscopic data;

at least one electronic processor configured to identify at

least one node in the hierarchal spectral cluster tree as
corresponding to the empirical spectroscopic data; and
at least one electronic processor configured to output an
endmember abundance assessment of the specimen
corresponding to at least the at least one node.

12. The system of claim 11, wherein the empirical spec-
troscopic data represents a plurality of frequencies of elec-
tromagnetic energy reflected off of the specimen.
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13. The system of claim 11, wherein the empirical spec-
troscopic data represents a pixel.

14. The system of claim 11, wherein the hierarchal
spectral cluster tree comprises a plurality of levels compris-
ing at least one terminal level comprising nodes representing
individual endmembers.

15. The system of claim 11, wherein the hierarchal
spectral cluster tree comprises a plurality of prototype nodes,
wherein a respective prototype node represents a plurality of
endmembers.

16. The system of claim 11, further comprising at least
one electronic processor configured to hierarchically cluster
the spectral library.

17. The system of claim 11, wherein the at least one
electronic processor configured to demix foveated spectro-
scopic data is further configured to perform foveated com-
pressive projection.

18. The system of claim 11, wherein the at least one
electronic processor configured to demix foveated spectro-
scopic data is further configured to perform sparse recon-
struction.

19. The system of claim 11, further comprising at least
one electronic processor configured to provide the endmem-
ber abundance assessment for at least one of geospatial
analysis, target recognition, surveillance, chemical identifi-
cation, remote sensing, and combinations thereof.

20. The system of claim 11, wherein the at least one
electronic processor configured to output is further config-
ured to cause a display in a human readable format.
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