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LOAD-BALANCER FOR CACHE AGENT

RELATED APPLICATION

[0001] This application claims the benefit of priority to
Patent Cooperation Treaty (PCT) Application No. PCT/
(CN2022/127039, filed Oct. 24, 2022. The entire contents of
that application are incorporated by reference.

BACKGROUND

[0002] In some examples, for particular addressable
memory ranges accessible to particular central processing
unit (CPU) sockets, a Home Agent (HA) can attempt to
achieve data consistency among the memory devices and
caches of CPU sockets connected to one or more memory
devices. In some examples, an HA can be responsible for
tracking state changes to one or more cache lines. A caching
agent (CA) can attempt to determine whether another core or
processor in a CPU socket has access to the same cache line
and corresponding memory address to determine cache
coherency. Where another core or processor has access to
the same cache line and corresponding memory address, the
CA can provide data from its cache slice or obtain a copy of
data from another core’s cache. The CA can forward a
request for cache line data to one or more memory devices.
[0003] Some CPUs include consolidated Caching Agent
(CA) and Home Agent (HA) functionality into a combined
block called the CHA (Caching and Home Agent). A CHA
can be responsible for a subset of memory and input/output
(10) requests homed at its node. For example, FIG. 1 depicts
an example of caching and home agent (CHA) topology that
connects CHA, by mesh wiring, to memory controllers and
other components such as cores, snoop filters (SF), last level
caches (LLC), and Common Mesh Stop (CMS). CMS can
connect a system agent to the mesh interconnection in the
silicon package. When an agent (e.g., a microprocessor core)
accesses memory or an [0 device, the agent can hash a
request address to identify a destination CHA. The request
can be routed through a mesh and arrive at the destination
CHA for further address processing. Different agents can
apply a same hash algorithm to identify a destination CHA,
so completion of caching or home agent operations requests
to access a specific physical address are routed to the same
destination CHA.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 depicts an example of caching and home
agent (CHA) topology.

[0005] FIG. 2 illustrates a scenario in which memory
intensive workloads and input output (10) intensive work-
loads executing on server platforms can overload one or
more CHA.

[0006] FIG. 3 depicts an example of concurrent memory
and 10 workloads processed by CHAs.

[0007] FIG. 4 depicts an example system.

[0008] FIG. 5 depicts use of a pre-reserved memory swap
partition to re-allocate physical address ranges to one or
more CHA.

[0009] FIG. 6 is an example of address range migration in
connection with CHA load balancing.

[0010] FIG. 7 depicts an example CHA load-balancing
process.

[0011] FIG. 8 depicts an example system.

[0012] FIG. 9 depicts an example system.

Mar. 9, 2023

DETAILED DESCRIPTION

[0013] FIG. 2 illustrates a scenario in which memory
intensive workloads and input output (IO) intensive work-
loads executing on server platforms can overload one or
more CHA. When the same CHA resource is being
requested continuously, the performance may degrade or
sometimes the system malfunction in unexpected ways,
which can negatively impact performance of workloads,
potentially failing to meet service level agreement (SLA)
parameters. In this example, due to unpredictable memory
and 10 accesses in dynamic workloads, memory access can
result in addresses assigned to a single CHA, such as CHAL.
In turn, due to a heavy workload of CHA1, caching agent
and/or home agent operations of CHA1 may be delayed to
completion. For example, loads on CHA1 can arise from
core memory managed input output (MMIO) read/write
operations, core MMIO read/write operations, Compute
Express Link (CXL) IO memory read/write operations, and
core memory read/write stress.

[0014] FIG. 3 depicts an example of concurrent memory
and 10 workloads processed by CHAs. In this example,
CHA3 has a workload that is multiples of workloads of other
CHAs. Accordingly, time-to-completion of requests pro-
cessed by CHA3 can increase and CHA3 can become a
bottleneck.

[0015] At least to potentially reduce overloading one or
more CHA, some examples monitor and dynamically bal-
ance load among CHAs at runtime to avoid hitting a
performance bottleneck or other unexpected behavior due to
the over stress to certain CHA. CHA load monitoring can be
performed to centrally monitor CHA loads and identify one
or more heavy-loaded CHA at runtime. A dedicated memory
swap partition can be reserved in memory and address
ranges can be reallocated among CHAs (including the
heavily-loaded CHA) or to other lightly-loaded CHAs by
moving data associated with memory addresses monitored
by the heavily-loaded CHA to a pre-reserved memory swap
partition.

[0016] FIG. 4 depicts an example system. Processor 400
can include at least one or more cores and system agent 402.
System agent 402 or uncore can include or more of a
memory controller, a shared cache (e.g., last level cache
(LLC)), a cache coherency manager, arithmetic logic units,
floating point units, core or processor interconnects, Cach-
ing/Home Agent (CHA), interface circuitry (e.g., fabric,
memory, device), and/or bus or link controllers. System
agent 402 can provide one or more of: direct memory access
(DMA) engine connection, non-cached coherent master
connection, data cache coherency between cores and arbi-
trates cache requests, or Advanced Microcontroller Bus
Architecture (AMBA) capabilities.

[0017] Insome examples, one or more CHA among CHAO
to CHA11 or other circuitry in processor 400 can include
load balancer circuitry 404 that is to determine monitoring
and load balancing of workloads allocated to CHAs. For
example, a hardware counter accessible to load balancer 404
can count input output (TO) or memory address transactions
provided over a time duration to a CHA decoders of one or
more of CHAO to CHA11 in connection with memory or
cache coherency or snoop requests. For example, a CHA
decoder is to determine whether a cache coherency request
or snoop request and associated memory addresses are
handled by an associated CHA. Load balancer 404 can load
distribution among CHAs such as by identifying a percent-
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age of total load among the CHAO to CHA11. Load balancer
404 can identify one or more heavily loaded CHA to an OS
executed by a core and OS, or other software or hardware,
can reserve a dedicated memory swap partition and then
remap addresses that are identified as heavily loaded to one
or more other CHAs by moving data having address ranges
allocated to the heavily loaded CHA to the pre-reserved
memory swap partition for re-allocation to one or more other
CHAs to potentially achieve a more balanced CHA load
distribution. A threshold for identifying a heavily-loaded
CHA and the size of pre-reserved memory swap partition
can be configured by a data center administrator and/or OS,
in some examples.

[0018] Various manners of identify heavily loaded CHAs
or memory address ranges are described herein. In this
example, CHA1 is identified as having 89% of workloads
performed over a time duration and is considered heavily
loaded. Memory address ranges allocated to CHA1 can be
allocated to other CHAs such as CHA0, CHA2, and so forth,
so that the other CHAs can perform data and/or cache
coherency and snoop filter workloads for those re-allocated
memory address ranges.

[0019] Various examples of CHA data and/or cache coher-
ency and snoop filter workloads are described next. Coun-
ters of CHA decoder activity or requests sent to CHA
decoders can identify a number of performed workloads.
CHA can attempt to achieve data coherency for particular
addressable memory ranges so that a processor in a CPU
socket receives a most up-to-date copy of content of a cache
line that is to be modified by the processor. CHA can
perform workloads that include tracking state changes to one
or more cache lines and associated addressable memory
ranges. CHA can perform workloads to determine cache
coherency by monitoring cache line access by a core or
processor and determining whether another core or proces-
sor has access to the same cache line and corresponding
memory address. Where another core or processor has
access to the same cache line and corresponding memory
address, the CHA can provide data from its cache slice or
obtain a copy of data from another core’s cache. The CHA
can forward a request for cache line data or a snoop request
to one or more other CHA to perform the request. For
example, a snoop request can include a determination of
whether another device or process has altered data that is to
be processed from a cache in order to obtain a current copy
of the data. For example, if another CA manages a copy of
content of the cache line in one or more of modified,
exclusive, or forward states, a copy of content the cache line
can be provided to the requester CHA.

[0020] For example, a CHA can notify another CHA if
content of a cache line has been modified or a state of the
cache line has been modified. For example, an indication
that content of the cache line has been modified or a state of
the cache line has been modified can include changing cache
line state from invalid to shared or exclusive, from exclusive
modified to shared or invalid mandatory, or from shared to
exclusive mandatory. In response, a CHA can update a
current state of the cache line based on the updated cache
line state from another CHA to determine from which
processor, core, or CPU socket to request cache line content
modifications.

[0021] Examples described herein can apply to Intel®
CPU architectures as well as processor architectures from
Advanced Micro Devices, Inc. (AMD), NVIDIA, or others.
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Examples described herein can be utilized by various cache
coherency protocols such as MESIF, MOESI, or others.
Examples described herein can be utilized in various pro-
cessor interconnect fabrics such as AMD Infinity Fabric™,
AMD Core Complex (CCX), NVIDIA NVSwitch™, or
others.

[0022] FIG. 5 depicts use of a pre-reserved memory swap
partition to re-allocate physical address ranges to one or
more CHA. At (1), an OS can reserve a dedicated memory
swap partition in memory (e.g., main memory). At (2), the
OS can remap memory address ranges considered heavily
loaded to one or more other CHAs by copying data from
memory allocated to the heavily loaded CHA to the pre-
reserved memory swap partition to attempt to load balance
CHA workloads. For example, a CHA can be identified as
heavily allocated based on one or more of a number of
addresses allocated to the CHA to manage data coherency
and/or a number of transactions performed by the CHA
meeting or exceeding a threshold level, as described herein.
In this example, at 502 and 504, data associated with
memory addresses identified as heavily loaded can be real-
located from CHA1 to CHAO and CHAZ2 to perform load
balancing.

[0023] FIG. 6 is an example of address range migration in
connection with CHA load balancing. Address ranges can be
moved from memory mapped to CHA1 to mapped to less
loaded CHAO and CHAZ2 in a swap partition. For example,
data mapped to a memory address range (Memory Range 1)
managed by CHA1 can be re-allocated to memory address
range (Memory Range 1) managed by CHAO. For example,
data mapped to a memory address range (Memory Range 2)
managed by CHA1 can be re-allocated to memory address
range (Memory Range 2) managed by CHA2.

[0024] FIG. 7 depicts an example CHA load-balancing
process. The process can be performed by a CHA, CA, or
other circuitry or processor-executed instructions that man-
age data and/or cache coherency. At 702, a memory swap
partition in one or more memory devices can be reserved for
use to re-allocate a memory address range from a heavily
loaded CHA to one or more other CHAs. At 704, a deter-
mination of data transactions to one or more CHAs can be
performed. For example, hardware counters provided by the
processors to access count the CHA data transaction events
such as coherency requests, snoop requests, or other
requests.

[0025] At 706, a load distribution can be calculated or
determined for the one or more CHAs, at runtime. For
example, a load of a CHA can be commensurate or based on
a size of a memory address range allocated to the CHA to
monitor and/or a number of CHA data transaction events
over an amount of time that the CHA is to perform.
Accordingly, loads of multiple CHAs can be determined.
[0026] At 708, a determination can be made if one or more
heavily loaded CHAs are identified. For example, if a load
on a CHA is at or more than a threshold difference than an
average load of CHAs, then the CHA can be identified as
heavily loaded. For example, if a load on one or more CHAs
is at or more than a threshold, then the one or more CHAs
can be identified as heavily loaded. For example, if a
memory address range allocated to a CHA is at or more than
a threshold difference than an average allocation of memory
address ranges of CHAs, then the CHA can be identified as
heavily loaded. For example, if a size of memory address
range allocated to a CHA is at or above a threshold level, the
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CHA can be identified as heavily loaded. Based on one or
more CHAs identified as heavily loaded, the process can
proceed to 710. Based on no CHA identified as heavily
loaded, the process can proceed to 704.

[0027] At 710, a determination can be made if the reserved
swap partition is full. For example, a reserved swap partition
can be identified as full based on no address being available
for use. Based on the reserved swap partition being identi-
fied as full, the process can exit as re-allocation of loads
among CHAs may not utilize a reserve swap partition. If a
reserve swap partition is full, the service can escalate this
situation to an OS and an administrator can decide actions to
load balance workloads of CHA.

[0028] At 710, based on the reserved swap partition being
identified as not full, the process can proceed to 712. At 712,
the process can reallocate one or more memory address
ranges allocated to the heavily loaded CHA to one or more
other CHAs. For example, at least one memory address
range from a heavily loaded CHA can be reallocated to one
or more CHA with a relatively low level of allocated sizes
of memory address ranges. For example, at least one
memory address range from a heavily loaded CHA that is
also identified as subject to a number of CHA data transac-
tion events that meets or exceeds a threshold level can be
reallocated to one or more CHA with a relatively low level
of allocated sizes of memory address ranges.

[0029] FIG. 8 depicts a system. In some examples, one or
more CHA, CA, or HA of a CPU or other processor of
processor 810 can monitor and load balance workloads, as
described herein. Processor 810 can include any type of
microprocessor, central processing unit (CPU), graphics
processing unit (GPU), XPU, processing core, or other
processing hardware to provide processing for system 800,
or a combination of processors. An XPU can include one or
more of: a CPU, a graphics processing unit (GPU), general
purpose GPU (GPGPU), and/or other processing units (e.g.,
accelerators or programmable or fixed function FPGAs).
Processor 810 controls the overall operation of system 800,
and can be or include, one or more programmable general-
purpose or special-purpose microprocessors, digital signal
processors (DSPs), programmable controllers, application
specific integrated circuits (ASICs), programmable logic
devices (PLDs), or the like, or a combination of such
devices.

[0030] In one example, system 800 includes interface 812
coupled to processor 810, which can represent a higher
speed interface or a high throughput interface for system
components that needs higher bandwidth connections, such
as memory subsystem 820 or graphics interface components
840, or accelerators 842. Interface 812 represents an inter-
face circuit, which can be a standalone component or
integrated onto a processor die. Where present, graphics
interface 840 interfaces to graphics components for provid-
ing a visual display to a user of system 800. In one example,
graphics interface 840 can drive a display that provides an
output to a user. In one example, the display can include a
touchscreen display. In one example, graphics interface 840
generates a display based on data stored in memory 830 or
based on operations executed by processor 810 or both. In
one example, graphics interface 840 generates a display
based on data stored in memory 830 or based on operations
executed by processor 810 or both.

[0031] Accelerators 842 can be a programmable or fixed
function offload engine that can be accessed or used by a

Mar. 9, 2023

processor 810. For example, an accelerator among accelera-
tors 842 can provide data compression (DC) capability,
cryptography services such as public key encryption (PKE),
cipher, hash/authentication capabilities, decryption, or other
capabilities or services. In some embodiments, in addition or
alternatively, an accelerator among accelerators 842 pro-
vides field select controller capabilities as described herein.
In some cases, accelerators 842 can be integrated into a CPU
socket (e.g., a connector to a motherboard or circuit board
that includes a CPU and provides an electrical interface with
the CPU). For example, accelerators 842 can include a
single or multi-core processor, graphics processing unit,
logical execution unit single or multi-level cache, functional
units usable to independently execute programs or threads,
application specific integrated circuits (ASICs), neural net-
work processors (NNPs), programmable control logic, and
programmable processing elements such as field program-
mable gate arrays (FPGAs). Accelerators 842 can provide
multiple neural networks, CPUs, processor cores, general
purpose graphics processing units, or graphics processing
units can be made available for use by artificial intelligence
(AI) or machine learning (ML) models. For example, the Al
model can use or include any or a combination of: a
reinforcement learning scheme, Q-learning scheme, deep-Q
learning, or Asynchronous Advantage Actor-Critic (A3C),
combinatorial neural network, recurrent combinatorial neu-
ral network, or other Al or ML, model. Multiple neural
networks, processor cores, or graphics processing units can
be made available for use by Al or ML models to perform
learning and/or inference operations.

[0032] Memory subsystem 820 represents the main
memory of system 800 and provides storage for code to be
executed by processor 810, or data values to be used in
executing a routine. Memory subsystem 820 can include one
or more memory devices 830 such as read-only memory
(ROM), flash memory, one or more varieties of random
access memory (RAM) such as DRAM, or other memory
devices, or a combination of such devices. Memory 830
stores and hosts, among other things, operating system (OS)
832 to provide a software platform for execution of instruc-
tions in system 800. Additionally, applications 834 can
execute on the software platform of OS 832 from memory
830. Applications 834 represent programs that have their
own operational logic to perform execution of one or more
functions. Processes 836 represent agents or routines that
provide auxiliary functions to OS 832 or one or more
applications 834 or a combination. OS 832, applications
834, and processes 836 provide software logic to provide
functions for system 800. In one example, memory subsys-
tem 820 includes memory controller 822, which is a memory
controller to generate and issue commands to memory 830.
It will be understood that memory controller 822 could be a
physical part of processor 810 or a physical part of interface
812. For example, memory controller 822 can be an inte-
grated memory controller, integrated onto a circuit with
processor 810.

[0033] Applications 834 and/or processes 836 can refer
instead or additionally to a virtual machine (VM), container,
microservice, processor, or other software. Various
examples described herein can perform an application com-
posed of microservices.

[0034] A virtualized execution environment (VEE) can
include at least a virtual machine or a container. A virtual
machine (VM) can be software that runs an operating system
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and one or more applications. A VM can be defined by
specification, configuration files, virtual disk file, non-vola-
tile random access memory (NVRAM) setting file, and the
log file and is backed by the physical resources of a host
computing platform. A VM can include an operating system
(OS) or application environment that is installed on soft-
ware, which imitates dedicated hardware. The end user has
the same experience on a virtual machine as they would have
on dedicated hardware. Specialized software, called a hyper-
visor, emulates the PC client or server’s CPU, memory, hard
disk, network and other hardware resources completely,
enabling virtual machines to share the resources. The hyper-
visor can emulate multiple virtual hardware platforms that
are isolated from another, allowing virtual machines to run
Linux®, Windows® Server, VMware ESXi, and other oper-
ating systems on the same underlying physical host. In some
examples, an operating system can issue a configuration to
a data plane of network interface 850.

[0035] A container can be a software package of applica-
tions, configurations and dependencies so the applications
run reliably on one computing environment to another.
Containers can share an operating system installed on the
server platform and run as isolated processes. A container
can be a software package that contains everything the
software needs to run such as system tools, libraries, and
settings. Containers may be isolated from the other software
and the operating system itself. The isolated nature of
containers provides several benefits. First, the software in a
container will run the same in different environments. For
example, a container that includes PHP and MySQL can run
identically on both a Linux® computer and a Windows®
machine. Second, containers provide added security since
the software will not affect the host operating system. While
an installed application may alter system settings and
modify resources, such as the Windows registry, a container
can only modify settings within the container.

[0036] In some examples, OS 832 can be Linux®, Win-
dows® Server or personal computer, FreeBSD®, Android®,
MacOS®, i0S®, VMware vSphere, openSUSE, RHEL,
CentOS, Debian, Ubuntu, or any other operating system.
The OS and driver can execute on a processor sold or
designed by Intel®, ARM®, AMD®, Qualcomm®, IBM®,
Nvidia®, Broadcom®, Texas Instruments®, among others.
In some examples, OS 832 or driver can configure one or
more CHA to provide workloads allocated to one or more
CHAs and to load balance memory address ranges among
one or more particular CHAs, as described herein.

[0037] While not specifically illustrated, it will be under-
stood that system 800 can include one or more buses or bus
systems between devices, such as a memory bus, a graphics
bus, interface buses, or others. Buses or other signal lines
can communicatively or electrically couple components
together, or both communicatively and electrically couple
the components. Buses can include physical communication
lines, point-to-point connections, bridges, adapters, control-
lers, or other circuitry or a combination. Buses can include,
for example, one or more of a system bus, a Peripheral
Component Interconnect (PCI) bus, a Hyper Transport or
industry standard architecture (ISA) bus, a small computer
system interface (SCSI) bus, a universal serial bus (USB), or
an Institute of Electrical and Electronics Engineers (IEEE)
standard 1394 bus (Firewire).

[0038] Inone example, system 800 includes interface 814,
which can be coupled to interface 812. In one example,
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interface 814 represents an interface circuit, which can
include standalone components and integrated circuitry. In
one example, multiple user interface components or periph-
eral components, or both, couple to interface 814. Network
interface 850 provides system 800 the ability to communi-
cate with remote devices (e.g., servers or other computing
devices) over one or more networks. Network interface 850
can include an Ethernet adapter, wireless interconnection
components, cellular network interconnection components,
USB (universal serial bus), or other wired or wireless
standards-based or proprietary interfaces. Network interface
850 can transmit data to a device that is in the same data
center or rack or a remote device, which can include sending
data stored in memory. Network interface 850 can receive
data from a remote device, which can include storing
received data into memory. In some examples, network
interface 850 or network interface device 850 can refer to
one or more of: a network interface controller (NIC), a
remote direct memory access (RDMA )-enabled NIC, Smart-
NIC, router, switch (e.g., top of rack (ToR) or end of row
(EoR)), forwarding element, infrastructure processing unit
(IPU), or data processing unit (DPU). An example IPU or
DPU is described at least with respect to FIG. 12.

[0039] In one example, system 800 includes one or more
input/output (I/O) interface(s) 860. /O interface 860 can
include one or more interface components through which a
user interacts with system 800 (e.g., audio, alphanumeric,
tactile/touch, or other interfacing). Peripheral interface 870
can include any hardware interface not specifically men-
tioned above. Peripherals refer generally to devices that
connect dependently to system 800. A dependent connection
is one where system 800 provides the software platform or
hardware platform or both on which operation executes, and
with which a user interacts.

[0040] In one example, system 800 includes storage sub-
system 880 to store data in a nonvolatile manner. In one
example, in certain system implementations, at least certain
components of storage 880 can overlap with components of
memory subsystem 820. Storage subsystem 880 includes
storage device(s) 884, which can be or include any conven-
tional medium for storing large amounts of data in a non-
volatile manner, such as one or more magnetic, solid state,
or optical based disks, or a combination. Storage 884 holds
code or instructions and data 886 in a persistent state (e.g.,
the value is retained despite interruption of power to system
800). Storage 884 can be generically considered to be a
“memory,” although memory 830 is typically the executing
or operating memory to provide instructions to processor
810. Whereas storage 884 is nonvolatile, memory 830 can
include volatile memory (e.g., the value or state of the data
is indeterminate if power is interrupted to system 800). In
one example, storage subsystem 880 includes controller 882
to interface with storage 884. In one example controller 882
is a physical part of interface 814 or processor 810 or can
include circuits or logic in both processor 810 and interface
814. A volatile memory is memory whose state (and there-
fore the data stored in it) is indeterminate if power is
interrupted to the device. A non-volatile memory (NVM)
device is a memory whose state is determinate even if power
is interrupted to the device.

[0041] In an example, system 800 can be implemented
using interconnected compute sleds of processors, memo-
ries, storages, network interfaces, and other components.
High speed interconnects can be used such as: Ethernet
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(IEEE 802.3), remote direct memory access (RDMA),
InfiniBand, Internet Wide Area RDMA Protocol (iWARP),
Transmission Control Protocol (TCP), User Datagram Pro-
tocol (UDP), quick UDP Internet Connections (QUIC),
RDMA over Converged Ethernet (RoCE), Peripheral Com-
ponent Interconnect express (PCle), Intel QuickPath Inter-
connect (QPI), Intel Ultra Path Interconnect (UPI), Intel
On-Chip System Fabric (IOSF), Omni-Path, Compute
Express Link (CXL), HyperTransport, high-speed fabric,
NVLink, Advanced Microcontroller Bus Architecture
(AMB A) interconnect, OpenCAPI, Gen-Z, Infinity Fabric
(IF), Cache Coherent Interconnect for Accelerators (COX),
3GPP Long Term Evolution (LTE) (4G), 3GPP 5G, and
variations thereof. Data can be copied or stored to virtual-
ized storage nodes or accessed using a protocol such as
NVMe over Fabrics (NVMe-oF) or NVMe (e.g., a non-
volatile memory express (NVMe) device can operate in a
manner consistent with the Non-Volatile Memory Express
(NVMe) Specification, revision 1.3c, published on May 24,
2018 (“NVMe specification™) or derivatives or variations
thereof).

[0042] Communications between devices can take place
using a network that provides die-to-die communications;
chip-to-chip communications; chiplet-to-chiplet communi-
cations; circuit board-to-circuit board communications; and/
or package-to-package communications. A die-to-die com-
munications can utilize Embedded Multi-Die Interconnect
Bridge (EMIB) or an interposer.

[0043] In an example, system 800 can be implemented
using interconnected compute sleds of processors, memo-
ries, storages, network interfaces, and other components.
High speed interconnects can be used such as PCle, Ether-
net, or optical interconnects (or a combination thereof).
[0044] FIG. 9 depicts an example system. In this system,
IPU 900 manages performance of one or more processes
using one or more of processors 906, processors 910,
accelerators 920, memory pool 930, or servers 940-0 to
940-N, where N is an integer of 1 or more. In some
examples, processors 906 of IPU 900 can execute one or
more processes, applications, VMs, containers, microser-
vices, and so forth that request performance of workloads by
one or more of: processors 910, accelerators 920, memory
pool 930, and/or servers 940-0 to 940-N. IPU 900 can utilize
network interface 902 or a switch (not shown) or one or
more device interfaces to provide communication among
processors 910, accelerators 920, memory pool 930, and/or
servers 940-0 to 940-N. IPU 900 can utilize programmable
pipeline 904 to process packets that are to be transmitted
from network interface 902 or packets received from net-
work interface 902.

[0045] Programmable pipeline 904 can include one or
more packet processing pipeline that can be configured to
perform match-action on received packets to identify packet
processing rules and next hops using information stored in
a ternary content-addressable memory (TCAM) tables or
exact match tables in some embodiments. Programmable
pipeline 904 can include one or more circuitries that perform
match-action operations in a pipelined or serial manner that
are configured based on a programmable pipeline language
instruction set. Processors, FPGAs, other specialized pro-
cessors, controllers, devices, and/or circuits can be used
utilized for packet processing or packet modification. For
example, match-action tables or circuitry can be used
whereby a hash of a portion of a packet is used as an index
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to find an entry. Programmable pipeline 904 can perform one
or more of: packet parsing (parser), exact match-action (e.g.,
small exact match (SEM) engine or a large exact match
(LEM)), wildcard match-action (WCM), longest prefix
match block (LPM), a hash block (e.g., receive side scaling
(RSS)), a packet modifier (modifier), or traffic manager (e.g.,
transmit rate metering or shaping). For example, packet
processing pipelines can implement access control list
(ACL) or packet drops due to queue overflow.

[0046] Configuration of operation of programmable pipe-
line 904, including its data plane, can be programmed based
on one or more of: one or more of: Protocol-independent
Packet Processors (P4), Software for Open Networking in
the Cloud (SONIC), Broadcom® Network Programming
Language (NPL), NVIDIA® CUDA®, NVIDIA®
DOCA™, Data Plane Development Kit (DPDK), Open-
DataPlane (ODP), Infrastructure Programmer Development
Kit (IPDK), eBPF, x86 compatible executable binaries or
other executable binaries, or others.

[0047] In some examples, one or more CHA, CA, or HA
of one or more processors of IPU 900 can monitor and load
balance workloads, as described herein. In some examples,
processors of IPU 900 can perform capabilities of a router,
load balancer, firewall, TCP/reliable transport, service mesh,
data-transformation, authentication, security infrastructure
services, telemetry measurement, event logging, initiating
and managing data flows, data placement, or job scheduling
of resources on an XPU, storage, memory, or central pro-
cessing unit (CPU).

[0048] In some examples, devices and software of IPU
900 can perform operations that include data parallelization
tasks, platform and device management, distributed inter-
node and intra-node telemetry, tracing, logging and moni-
toring, quality of service (QoS) enforcement, service mesh,
data processing including serialization and deserialization,
transformation including size and format conversion, range
validation, access policy enforcement, or distributed inter-
node and intra-node security.

[0049] Embodiments herein may be implemented in vari-
ous types of computing and networking equipment, such as
switches, routers, racks, and blade servers such as those
employed in a data center and/or server farm environment.
The servers used in data centers and server farms comprise
arrayed server configurations such as rack-based servers or
blade servers. These servers are interconnected in commu-
nication via various network provisions, such as partitioning
sets of servers into Local Area Networks (LLANs) with
appropriate switching and routing facilities between the
L AN to form a private Intranet. For example, cloud hosting
facilities may typically employ large data centers with a
multitude of servers. A blade comprises a separate comput-
ing platform that is configured to perform server-type func-
tions, that is, a “server on a card.” Accordingly, a blade
includes components common to conventional servers,
including a main printed circuit board (main board) provid-
ing internal wiring (e.g., buses) for coupling appropriate
integrated circuits (ICs) and other components mounted to
the board.

[0050] Various examples may be implemented using hard-
ware elements, software elements, or a combination of both.
In some examples, hardware elements may include devices,
components, processors, Microprocessors, circuits, circuit
elements (e.g., transistors, resistors, capacitors, inductors,
and so forth), integrated circuits, ASICs, PLDs, DSPs,
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FPGAs, memory units, logic gates, registers, semiconductor
device, chips, microchips, chip sets, and so forth. In some
examples, software elements may include software compo-
nents, programs, applications, computer programs, applica-
tion programs, system programs, machine programs, oper-
ating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, APIs, instruction sets, computing
code, computer code, code segments, computer code seg-
ments, words, values, symbols, or any combination thereof.
Determining whether an example is implemented using
hardware elements and/or software elements may vary in
accordance with any number of factors, such as desired
computational rate, power levels, heat tolerances, processing
cycle budget, input data rates, output data rates, memory
resources, data bus speeds and other design or performance
constraints, as desired for a given implementation. A pro-
cessor can be one or more combination of a hardware state
machine, digital control logic, central processing unit, or any
hardware, firmware and/or software elements.

[0051] Some examples may be implemented using or as an
article of manufacture or at least one computer-readable
medium. A computer-readable medium may include a non-
transitory storage medium to store logic. In some examples,
the non-transitory storage medium may include one or more
types of computer-readable storage media capable of storing
electronic data, including volatile memory or non-volatile
memory, removable or non-removable memory, erasable or
non-erasable memory, writeable or re-writeable memory,
and so forth. In some examples, the logic may include
various software elements, such as software components,
programs, applications, computer programs, application
programs, system programs, machine programs, operating
system software, middleware, firmware, software modules,
routines, subroutines, functions, methods, procedures, soft-
ware interfaces, AP, instruction sets, computing code, com-
puter code, code segments, computer code segments, words,
values, symbols, or any combination thereof.

[0052] According to some examples, a computer-readable
medium may include a non-transitory storage medium to
store or maintain instructions that when executed by a
machine, computing device or system, cause the machine,
computing device or system to perform methods and/or
operations in accordance with the described examples. The
instructions may include any suitable type of code, such as
source code, compiled code, interpreted code, executable
code, static code, dynamic code, and the like. The instruc-
tions may be implemented according to a predefined com-
puter language, manner or syntax, for instructing a machine,
computing device or system to perform a certain function.
The instructions may be implemented using any suitable
high-level, low-level, object-oriented, visual, compiled and/
or interpreted programming language.

[0053] One or more aspects of at least one example may
be implemented by representative instructions stored on at
least one machine-readable medium which represents vari-
ous logic within the processor, which when read by a
machine, computing device or system causes the machine,
computing device or system to fabricate logic to perform the
techniques described herein. Such representations, known as
“IP cores” may be stored on a tangible, machine readable
medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually
make the logic or processor.
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[0054] The appearances of the phrase “one example” or
“an example” are not necessarily all referring to the same
example or embodiment. Any aspect described herein can be
combined with any other aspect or similar aspect described
herein, regardless of whether the aspects are described with
respect to the same figure or element. Division, omission, or
inclusion of block functions depicted in the accompanying
figures does not infer that the hardware components, cir-
cuits, software and/or elements for implementing these
functions would necessarily be divided, omitted, or included
in embodiments.

[0055] Some examples may be described using the expres-
sion “coupled” and “connected” along with their derivatives.
These terms are not necessarily intended as synonyms for
each other. For example, descriptions using the terms “con-
nected” and/or “coupled” may indicate that two or more
elements are in direct physical or electrical contact with each
other. The term “coupled,” however, may also mean that two
or more elements are not in direct contact with each other,
but yet still co-operate or interact with each other.

[0056] The terms “first,” “second,” and the like, herein do
not denote any order, quantity, or importance, but rather are
used to distinguish one element from another. The terms “a”
and “an” herein do not denote a limitation of quantity, but
rather denote the presence of at least one of the referenced
items. The term “asserted” used herein with reference to a
signal denote a state of the signal, in which the signal is
active, and which can be achieved by applying any logic
level either logic 0 or logic 1 to the signal. The terms
“follow” or “after” can refer to immediately following or
following after some other event or events. Other sequences
of operations may also be performed according to alternative
embodiments. Furthermore, additional operations may be
added or removed depending on the particular applications.
Any combination of changes can be used and one of
ordinary skill in the art with the benefit of this disclosure
would understand the many variations, modifications, and
alternative embodiments thereof.

[0057] Disjunctive language such as the phrase “at least
one of X, Y, or Z,” unless specifically stated otherwise, is
otherwise understood within the context as used in general
to present that an item, term, etc., may be either X, Y, or Z,
or any combination thereof (e.g., X, Y, and/or Z). Thus, such
disjunctive language is not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one of Y, or at least one of Z to each be present.
Additionally, conjunctive language such as the phrase “at
least one of X, Y, and Z,” unless specifically stated other-
wise, should also be understood to mean X, Y, Z, or any
combination thereof, including “X, Y, and/or Z.”

[0058] Illustrative examples of the devices, systems, and
methods disclosed herein are provided below. An embodi-
ment of the devices, systems, and methods may include any
one or more, and any combination of, the examples
described below.

[0059] Example 1 includes one or more examples, and
includes an apparatus that includes: a central processing unit
(CPU) that includes: at least two cores; at least two caching
agents (CAs); and circuitry to monitor a workload mapped
to a CA of the at least two CAs and adjust the workload
allocated to the CA to allocation among the CA and at least
one other CA of the at least two CAs based on the monitored
workload.
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[0060] Example 2 includes one or more examples,
wherein the workload comprises one or more of: processing
of a cache coherency request or processing of a snoop filter
request.

[0061] Example 3 includes one or more examples,
wherein to monitor a workload allocated to a CA of the at
least two CAs, the circuitry is to monitor a number of
requests received at the at least two CAs over a time
duration.

[0062] Example 4 includes one or more examples,
wherein to monitor a workload allocated to a CA of the at
least two CAs, the circuitry is to monitor a number of
requests received at the at least two CAs for particular one
or more memory address ranges over a time duration.
[0063] Example 5 includes one or more examples,
wherein to monitor a workload allocated to a CA of the at
least two CAs, the circuitry is to identify at least one CA of
the at least two CAs to an operating system (OS) based on
a load of the at least one CA of the at least two CAs.
[0064] Example 6 includes one or more examples,
wherein to balance the workload allocated to the CA among
the CA and at least one other CA of the at least two CAs, the
circuitry is to allocate one or more memory addresses for
monitoring by the CA and at least one other CA of the at
least two CAs.

[0065] Example 7 includes one or more examples,
wherein the allocate one or more memory addresses for
monitoring by the CA and at least one other CA of the at
least two CAs is based on a request from an operating
system (OS).

[0066] Example 8 includes one or more examples,
wherein the allocate one or more memory addresses for
monitoring by the CA and at least one other CA of the at
least two CAs comprises allocate data associated with the
one or more memory addresses to a range of memory
addresses.

[0067] Example 9 includes one or more examples,
wherein the at least two CAs comprise at least one caching
and home agent (CHA).

[0068] Example 10 includes one or more examples, and
includes a server, wherein the server comprises the CPU and
at least one memory device associated with one or more
memory addresses associated with the at least two CAs.
[0069] Example 11 includes one or more examples, and
includes a non-transitory computer-readable medium com-
prising instructions stored thereon, that if executed by one or
more processors, cause the one or more processors to:
execute an operating system (OS) that is to receive an
indication of workloads of at least two caching agents (CAs)
and to allocate workloads among the at least two CAs.
[0070] Example 12 includes one or more examples,
wherein the workload comprises one or more of: processing
of a cache coherency request or processing of a snoop filter
request.

[0071] Example 13 includes one or more examples,
wherein the indication of workloads comprise a number of
requests received at the at least two CAs over a time
duration.

[0072] Example 14 includes one or more examples,
wherein the indication of workloads comprise a number of
requests received at the at least two CAs for particular one
or more memory address ranges over a time duration.
[0073] Example 15 includes one or more examples,
wherein the allocate workloads among the at least two CAs
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comprises allocate one or more memory addresses for
monitoring by the at least two CAs.

[0074] Example 16 includes one or more examples,
wherein the at least two CAs comprise at least one caching
and home agent (CHA).

[0075] Example 17 includes one or more examples, and
includes a method that includes: at a central processing unit
(CPU): monitoring a workload allocated to a caching agent
(CA) of at least two CAs and allocating the workload
allocated to the CA among the CA and at least one other CA
of the at least two CAs.

[0076] Example 18 includes one or more examples,
wherein the workload comprises one or more of: processing
of a cache coherency request or processing of a snoop filter
request.

[0077] Example 19 includes one or more examples,
wherein the monitoring a workload allocated to a CA of the
at least two CAs comprises monitoring a number of requests
received at the at least two CAs over a time duration.
[0078] Example 20 includes one or more examples,
wherein the allocating the workload allocated to the CA
among the CA and at least one other CA of the at least two
CAs comprises allocating one or more memory addresses
for monitoring by the CA and at least one other CA of the
at least two CAs.

What is claimed is:

1. An apparatus comprising:

a central processing unit (CPU) comprising:

at least two cores;

at least two caching agents (CAs); and

circuitry to monitor a workload mapped to a CA of the at

least two CAs and adjust the workload allocated to the
CA to allocation among the CA and at least one other
CA of the at least two CAs based on the monitored
workload.

2. The apparatus of claim 1, wherein the workload com-
prises one or more of: processing of a cache coherency
request or processing of a snoop filter request.

3. The apparatus of claim 1, wherein to monitor a work-
load allocated to a CA of the at least two CAs, the circuitry
is to monitor a number of requests received at the at least two
CAs over a time duration.

4. The apparatus of claim 1, wherein to monitor a work-
load allocated to a CA of the at least two CAs, the circuitry
is to monitor a number of requests received at the at least two
CAs for particular one or more memory address ranges over
a time duration.

5. The apparatus of claim 1, wherein to monitor a work-
load allocated to a CA of the at least two CAs, the circuitry
is to identify at least one CA of the at least two CAs to an
operating system (OS) based on a load of the at least one CA
of the at least two CAs.

6. The apparatus of claim 1, wherein to balance the
workload allocated to the CA among the CA and at least one
other CA of the at least two CAs, the circuitry is to allocate
one or more memory addresses for monitoring by the CA
and at least one other CA of the at least two CAs.

7. The apparatus of claim 6, wherein the allocate one or
more memory addresses for monitoring by the CA and at
least one other CA of the at least two CAs is based on a
request from an operating system (OS).

8. The apparatus of claim 6, wherein the allocate one or
more memory addresses for monitoring by the CA and at
least one other CA of the at least two CAs comprises allocate
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data associated with the one or more memory addresses to
a range of memory addresses.

9. The apparatus of claim 1, wherein the at least two CAs
comprise at least one caching and home agent (CHA).

10. The apparatus of claim 1, comprising a server,
wherein the server comprises the CPU and at least one
memory device associated with one or more memory
addresses associated with the at least two CAs.

11. A non-transitory computer-readable medium compris-
ing instructions stored thereon, that if executed by one or
more processors, cause the one or more processors to:

execute an operating system (OS) that is to receive an

indication of workloads of at least two caching agents
(CAs) and to allocate workloads among the at least two
CAs.

12. The non-transitory computer-readable medium of
claim 11, wherein the workload comprises one or more of:
processing of a cache coherency request or processing of a
snoop filter request.

13. The non-transitory computer-readable medium of
claim 11, wherein the indication of workloads comprise a
number of requests received at the at least two CAs over a
time duration.

14. The non-transitory computer-readable medium of
claim 11, wherein the indication of workloads comprise a
number of requests received at the at least two CAs for
particular one or more memory address ranges over a time
duration.
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15. The non-transitory computer-readable medium of
claim 11, wherein the allocate workloads among the at least
two CAs comprises allocate one or more memory addresses
for monitoring by the at least two CAs.

16. The non-transitory computer-readable medium of
claim 11, wherein the at least two CAs comprise at least one
caching and home agent (CHA).

17. A method comprising:

at a central processing unit (CPU):

monitoring a workload allocated to a caching agent (CA)
of at least two CAs and allocating the workload allo-
cated to the CA among the CA and at least one other CA
of the at least two CAs.

18. The method of claim 17, wherein the workload
comprises one or more of: processing of a cache coherency
request or processing of a snoop filter request.

19. The method of claim 17, wherein the monitoring a
workload allocated to a CA of the at least two CAs com-
prises monitoring a number of requests received at the at
least two CAs over a time duration.

20. The method of claim 17, wherein the allocating the
workload allocated to the CA among the CA and at least one
other CA of the at least two CAs comprises allocating one
or more memory addresses for monitoring by the CA and at
least one other CA of the at least two CAs.
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