
US 20190129714A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0129714 A1

Wright (43) Pub . Date : May 2 , 2019

(54) AUTOMATIC DETERMINATION OF
DEVELOPER TEAM COMPOSITION

(57) ABSTRACT

(71) Applicant : SEMMLE LIMITED , Oxford (GB)
(72) Inventor : Ian Paul Wright , Oxford (GB)

(21) Appl . No . : 15 / 799 , 056

(22) Filed : Oct . 31 , 2017

Methods , systems , and apparatus , including computer pro
grams encoded on computer storage media for automatically
determining developer team composition . One of the meth
ods includes obtaining a reference set of snapshots for a code
base , each snapshot comprising a representation of source
code of the code base at a particular time and being
associated with a particular project and a particular devel
oper of a team of developers of the code base ; selecting a
subset of snapshots ; dividing the subset into a plurality of
time windows ; for each time window and for each developer
that committed a snapshot to the reference collection of
snapshots during the time window , determining a normal
ized rating of the developer ' s skills in each of a plurality of
developer activity metrics ; and aggregating , for each time
window , the normalized ratings for each developer to gen
erate a developer team composition for the fixed period of
time .

Publication Classification
(51) Int . Cl .

GO6F 9 / 44 (2006 . 01)
G06F 1730 (2006 . 01)

(52) U . S . CI .
CPC G06F 8 / 77 (2013 . 01) ; G06F 17 / 30088

(2013 . 01)

2005

Network
270 2260

Request for data
representing developer
team composition for
particular project 205

Data representing
developer team
composition for

particular project 255

Composition Engine L210

Partitions 235

1220
Partitioning Engine Developer

Profiles

250 Net New Violations ,
Churn , Recency 225

Snapshot Analyzing Engine
4230

Static Analysis System
Code Snapshots

215
202

Code Base 240

% Contributors

112)

Active Contributors

Patent Application Publication

?

)

???????????????????? , ES330 ????????????????? ??????? ????rights ????????? ? ??????197449????M ??????????????????????????? ???????????? ,
??365?? ? ????????????

ST???????? ” ,

???? - TA?91???

*

??????? ?
?

Ai - runia

T . JAVEiLucat

?

?ISE?????
th

19??X < YY
??

? ??? “ ??149 5

??????? 47 ? ?????? ; ????

??? , ?? , ?400 ?????1945?

,

????????

,
?

- HsinrryPrill R11 " ; JHF1 HP :

???? ? ?????1?????? ? ??????????

, ?

2024
? , GLE . . . Pululu ' s ever

???
* *

1 - -

- ???

,

???? = PLtFDE??????
?? ,

“

?????????????? ,
,

?? , ????????????

19???????

110)

- -

, ?

14 : 41 : 11prilly intali114
t

E88145 ??????????
, “

??????????? , ??E419 & # phy / %
???xf11?????? , ???ue

50

- -

, ????? ?

*

_ _

>

-

-

-

- PP - Irell . Luserver - - -

· ??

“

-

??PF1????????????????
,

*

?

. reser a " + a run righl . afruel

- - -

Fri

,

.
. . . …

Lv . ruth ther

. . - - stry we hur -

????????? , ?????????????????

"

??? , ?????

"

"

"

"

"

"

"

"

"

"

"

"

*

-

*

-

+ +

*

+

P

????????se??
50100 150

iiiir . lillaria er - u hulu

??111n rularlier11r11rrrrr . Hellery

.
??? ???????

???198?? , ??? ,

??????? , ?

?

100

* - P?

?????????? * ??3??????????????3??????

Fri / urrrr . lt / 1 _ t1 . rr . url . 1

????????? , , ?? Ref :

re - f

ush

1 - 3?? ? ??

? , ??jpg

ts , ??y ???? ?

?

, ?????????TFT???????
. .

= =

?

:

?????????????????????????????1 ?44FH - ?? , ?? ! ???????? + + + + + ???????

111rrr . ler11rrrrr11r1
n 1 ? 1? ? 11? ? ? ? 5 ? ? ?11

???2

.

.

??€€jight ,

Allry | |

?aruter # hellulish lim flar

,

*

?
???

Fpict ,

15???? ,
,

? ????3??¥119

pireF4AASIKAY PARA46E

???
?????? ? ??IP : 14 ? ????1 = $ 559 AM EASE 2014?? *

?

A

?

????? . x

* * * ailittlutle urtuayukrJultuuryuuk

?

:

.

Refractorer
Bug Squasher

None

Trailblazer

:

-

. * . ,

?

-
- im

*

]
??

a

lr4url . ru / rr11r11rrrr11rrrrr . .

: ??????????
*

*

: . yu hu u thru u b + | ? et ?? u yu yuh Pub Lui

" " " , urlai , int , an striarridiller

1
. . .

??????6? , ??????????????
:

Asia ,

- *

:

-

.
: :

150
Days

- -

.

,

F1139 . * . AFRAY??

.

? ” *
,

-

rJer11rrrr11rr11r11rrrrrr11rr
. .

.

“

FIG . 1
Days

?

P
? .

,

?

"

May 2 , 2019 Sheet 1 of 4

"

"

"

"

"

"

"

"

"

:

"

"

"

"

"

"

"

"

"

.

r

?????? ??????31?? ?0345GO? ? ?????1019??? , ?????

r

rr

-

???

:

Peng???????? ????????????

.

, ??? , ???? “

????41put) ??43Mpa?

? , ??18?????????????? ? : “ ??18 ? ?????????????????

???????11???????

Prh PTT A A
in u ' ll us

???????? : * . ?????????

.
.

*

: / / lilverter - ler - v - ' ' ' ' ' ' ' ' ' ' ' '

,

:

. . .

+ ?

+ rh 4

"

"

"

"

"

"

"

T

|

?? .
* .

. . . .

? ?ext???ag?? ,

? ??18????????????????????11????????14 FAQ

?? are Ext???????21913911 to ??ST

????? ? ?4????45???14??????11?? ? ?????
1?140???????? , ?????5?0g14? , ?????1g????

??????181431976?4?16 : 330?194?2?3?) ?
16X24?

iss ? ???IF ???

. . .

200

,

,
. .

????? ,

???? ,

. -
.

,

?0 41 ?????????????? & ? ? : “ ???????365CyptFB ? ????? , ??3????? ? ?? ????SEp 31KL???????ES3014??19?35 Ep ??1??????

? ??19 14

???????????? , ??????????????????????????????? ? ????????????????????????????????????? ??

,

.
. .

-

r

- -

.

* pF + + + + + + + + + k44 k + + + + +

uuuuuu et u ueJukulustlet u ue Lu

???

Fire Pr :

,

???

?????????????????????????? , ????????????????? , , , , ??IFI????????????????16???????????????????????? ???????????????????????????? Life , ? ?????????? ? “ ??? ,

3E

??????????????16 % ??????????160????15?

? ?49 %
E316?????

.

- -

. "

M

? ”

”

" + " " + + " rely ful Hi HyFrni

Bill

?
.

* ????????????p s4? ?ST??????????EE???? , ???FRAP ?
-

?

-

?

. .

-

4 ,

- - - -

?

200 250300

?rl . ir / urlurrusr / lularrior _ arry

250

?

?

4

?

?

-

-

,

342?????????????2F20 - Mytek9af? , ??1

????????????? ? ???????19

??ip???IgE???????IE??)
Pisa Sing R?????????????? # ???????SA?????IP???

???? “ 1

????8579 ?

Intlnnri
:

“ ?????IP??SOFES ,
?? ? ????

. * .

??????????????UzE ?? TISS???????1wif ,
????E

,
,

?????????
,

?14????? PF12?

Lilyurlaurdur1yurluxurellur . urduin
4 rrrrr11rrrr11r11rrin ruliru r4i

1130

? , ,

S160
(150
140

with . us / 4 _ r . url . rr . lillarJunilur . . .

*
,
,

????????????PET????????? ?????? “ ????????????

,

????? ????????????????????????????????

,

???????gity
,

led sup thylt =

? ! - - Murrivert

300
?
?

???fts \ s \ ?

,

???? ?KF - 2??????? , ??IS (????
???????

*
?

i = . uPri . ru

PS : ?3?????

* ???????

???????
,
” ,

seb???? Apr ??????16? , ??A??A?Ep 4
??? i3???????? , ??16?????? ?

? ???ATEP16????
? ?????????984 ?

? ????PI - 15????????? , ??485????? , ???
Pieces ,

,

; ; ; JirlutilliJyurduirlsilu rulu rulu v url . cn / url . rr . urlllll / ir . url . ru

????st

, 1 . h = au rululau

* " if irl " ,

?

? ???

????????? ?????? ? ?????????? ?1?? ? ????????FS3 ?
??
????????????? ,

? ??

??

??
?????

SME?? ?

File Pre - IPH THE IPEI PTAITH :

124

114

US 2019 / 0129714 A1

Patent Application Publication May 2 , 2019 Sheet 2 of 4 US 2019 / 0129714 A1

2005

Network
270 - 260 ULL LLLL

Request for data
representing developer
team composition for
particular project 205

Data representing
developer team
composition for

particular project 255

Composition Engine

Partitions 235

N220
Partitioning Engine Developer

Profiles

- 250 Net New Violations ,
Churn , Recency 225

Snapshot Analyzing Engine
- 230

Static Analysis System
Code Snapshots

215 - 202

Code Base R 240

FIG . 2 .

Patent Application Publication May 2 , 2019 Sheet 3 of 4 US 2019 / 0129714 A1

5310 Obtain reference collection of snapshots

Select subset of snapshots from a fixed period of
320 time

Divide subset into plurality of time windows

For each time window , and for each developer ,
determine normalized rating of developer ' s skills in
each of a plurality of metrics , wherein each metric is

associated with a type of developer activity
2340

Aggregate , for each time window , the normalized
ratings for each developer to generate a developer
team composition for the fixed period of time , the
developer team composition indicating the division
of labor in the team of developers at each interval of

time during the fixed period of time

2350

FIG . 3

Patent Application Publication May 2 , 2019 Sheet 4 of 4 US 2019 / 0129714 A1

For each of the multiple metrics , compute , for each
developer , a value of the metric 410

5420 For each of the multiple metrics , determine global
minimum and maximum value of the metric over the

developer team and over the fixed period of time

For each of the multiple metrics , partition range of
values between determined global minimum and

maximum into multiple partitions
543

For each of the multiple metrics , assign , for each time
window , each developer to one of the multiple

partitions
440

For each developer , normalize the values
corresponding to the assigned partitions to determine
normalized ratings of developer ' s skills in each of the

metrics for each time window

FIG . 4

US 2019 / 0129714 A1 May 2 , 2019

AUTOMATIC DETERMINATION OF
DEVELOPER TEAM COMPOSITION

BACKGROUND

reference collection of snapshots during the time window ,
determining a normalized rating of the developer ' s skills in
each of a plurality of metrics , wherein each metric is
associated with one or more of multiple types of developer
activities ; and aggregating , for each time window , the nor
malized ratings for each developer that committed at least
one snapshot to the reference collection during the time
window to generate a developer team composition for the
fixed period of time , the developer team composition indi
cating the division of labor in the team of developers of the
code base at each interval of time during the fixed period of
time .

[0001] This specification relates to static analysis of soft
ware source code .
[0002] Static analysis refers to techniques for analyzing
computer software source code without executing the source
code as a computer software program . Static analysis sys
tems analyze source code to determine various properties
about source code in a code base and properties of devel
opers who commit code to the code base .
[0003] Source code is typically maintained by developers
in a code base of source code using a version control system .
Version control systems generally maintain multiple revi
sions of the source code in the code base , each revision being
referred to as a commit or a snapshot . Each snapshot
includes the source code of files of the code base as the files
existed at a particular point in time .
[0004] Relationships among snapshots stored in a version
control system can be represented as a directed , acyclic
revision graph . Each node in the revision graph represents a
commit of some portion of the source code of the code base .
Each commit identifies source code of a particular snapshot
as well as other pertinent information about the snapshot ,
such as the author of the snapshot and data about ancestors
of the commit in the revision graph . A directed edge from a
first node to a second node in the revision graph indicates
that a commit represented by the first node occurred before
a commit represented by the second node , and that no
intervening commits exist in the version control system .
[0005] A static analysis system can analyze source code of
a particular snapshot of the code base to identify character
istic segments of source code in the snapshot . For example ,
a static analysis system can identify violations in the source
code of a particular set of coding standards . A static analysis
system can also identify a responsible contributor for each
characteristic segment of source code and attribute the
characteristic segment to the responsible contributor , e . g . , to
a particular developer or group of developers .

100081 Other embodiments of this aspect include corre
sponding computer systems , apparatus , and computer pro
grams recorded on one or more computer storage devices ,
each configured to perform the actions of the methods . For
a system of one or more computers to be configured to
perform particular operations or actions means that the
system has installed on it software , firmware , hardware , or
a combination of them that in operation cause the system to
perform the operations or actions . For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
instructions that , when executed by data processing appa
ratus , cause the apparatus to perform the operations or
actions .
[0009] The foregoing and other embodiments can each
optionally include one or more of the following features ,
alone or in combination . In some implementations the
method further comprises , for each time window , normal
izing the aggregated normalized ratings for each developer
that committed at least one snapshot to the reference col
lection during the time window to generate a normalized
developer team composition indicating proportions of devel
oper activities performed by the team of developers at each
interval of time during the fixed period of time .
[0010] In some implementations determining a normal
ized rating of a developer ' s skills in each of the plurality of
metrics for each time window in the fixed period of time
comprises applying a sliding window across the fixed period
of time , wherein the sliding window comprises an interval of
time whose center point corresponds to each time window .
0011] In some implementations determining a normalized
rating of the developer ' s skills in each of a plurality of
metrics for each time window comprises , for each of the
plurality of metrics : computing , for each developer that
committed at least one snapshot to the reference collection
of snapshots and for each time window , a value of the
metric ; determining a global minimum value and global
maximum value for the metric over the team of developers
and over the fixed period of time ; partitioning the range of
values between the determined global minimum value and
global maximum value into a plurality of partitions ; assign
ing , for each time window , each developer that committed at
least one snapshot to the reference collection of snapshots to
one of the plurality of partitions ; and for each developer that
committed at least one snapshot to the reference collection
of snapshots : normalizing the values corresponding to the
assigned partitions to determine normalized ratings of the
developer ' s skills in each of the plurality of metrics for each
time window .
[0012] In some implementations normalizing the values
corresponding to the assigned partitions to determine nor
malized ratings of the developer ' s skills in each of the

SUMMARY
[0006] This specification describes how a static analysis
system can automatically determine a developer team com
position that indicates how much of multiple predetermined
types of developer activities are occurring in a particular
project by analyzing developers ' histories and computing
values of one or more metrics . Determined developer team
compositions provide insights into the aggregate behavior of
teams of developers .
[0007] In general , one innovative aspect of the subject
matter described in this specification can be embodied in
methods that include the actions of obtaining a reference set
of snapshots for a code base , wherein each snapshot com
prises a representation of source code of the code base at a
particular time , each snapshot being associated with a par
ticular project and a particular developer of a team of
developers of the code base ; selecting a subset of snapshots ,
wherein the subset of snapshots comprise snapshots from a
fixed period of time ; dividing the subset into a plurality of
time windows , each time window corresponding to a respec
tive interval of time ; for each time window and for each
developer that committed at least one snapshot to the

US 2019 / 0129714 A1 May 2 , 2019

plurality of metrics for each time window comprises , for
each time window : normalizing the values corresponding to
the assigned partitions for each of the plurality of metrics to
sum to a same fixed number .
[0013] In some implementations determining a normal
ized rating of the developer ' s skills in each of a plurality of
metrics comprises one or more of : computing for the devel
oper a respective measure of an overall performance metric
including churn , wherein a unit of churn indicates a line of
code added , changed , or deleted by the developer in the
reference collection of snapshots ; computing for the devel
oper a respective first measure of net new violations for a
first category of violation types , including comparing (i) a
first measure of violations introduced by the developer that
have a violation type in the first category of violation types
to (ii) a second measure of violations removed by the
developer that have a violation type in the first category of
violation types ; computing for the developer a respective
second measure of net new violations for a second category
of violation types , including comparing (i) a first measure of
violations introduced by the developer that have a violation
type in the second category of violation types to (ii) a second
measure of violations removed by the developer that have a
violation type in the second category of violation types ; and
computing for the developer a respective measure of
recency , wherein a unit of recency indicates the commitment
of a revised snapshot to the reference collection of snapshots
by the developer in the reference collection of snapshots .
[0014] In some implementations the first category of vio
lation types comprises bug - type violations .
[0015] . In some implementations the second category of
violation types comprises maintenance - type violations .
[0016] In some implementations the method further com
prises determining an ideal developer team composition for
the fixed period of time , the ideal developer team compo
sition indicating how much of the developer team should be
devoted to each of the multiple types of developer activities
during the fixed period of time .
[0017] In some implementations determining an ideal
developer team composition for the fixed period of time
comprises identifying one or more user - specified thresholds
for each of the multiple types of developer activities during
the fixed period of time .
[0018] In some implementations the method further com
prises analyzing the generated developer team composition
to determine whether the generated developer team compo
sition matches the determined ideal developer team compo
sition .
[0019] In some implementations the method further com
prises in response to determining that the generated devel
oper team composition does not match the determined ideal
developer team composition , providing as output a sug
gested adjustment of the developer team composition .
[0020] In some implementations the method further com
prises receiving an indication of a project lifecycle stage ;
and based on the generated developer team composition ,
automatically generating a suggested developer team com
position .
[0021] In some implementations the generated developer
team composition for the fixed period of time comprises a
graphical representation of developer team composition for
the fixed period of time .

[0022] In some implementations the reference collection
of snapshots for the code base comprises snapshots of a
reference collection of snapshots spanning an entire project
history .
[0023] In some implementations selecting a subset of
snapshots comprises automatically selecting a subset of
snapshots based on one or more criterion .
[0024] In some implementations the fixed period of time is
smaller than a window of time that represents the entire
project history .
[0025] In some implementations the fixed period of time
comprises a predetermined number of days , and wherein
each interval of time comprises one day .
[0026] Particular embodiments of the subject matter
described in this specification can be implemented so as to
realize one or more of the following advantages .
[0027] Different developer team compositions are needed
at different times during a project ' s lifetime . A static analysis
system implementing automatic determination of developer
team composition , as described in this specification , may be
used to help team leads and managers to make developer
team assignments that are appropriate to the phase of
development that the project is in . Appropriate developer
team assignments may increase the efficiency at which
source code is created for the project . Furthermore , appro
priate developer team assignments may result in team com
positions that are better suited to a type of work performed
by the team , thus improving the quality of work produced by
the team .
[0028] In addition , the static analysis system implement
ing automatic determination of developer team composition ,
as described in this specification , may be used to verify that
an aggregate behavior of the developer team matches expec
tations of what sort of behavior is needed at a particular time .
If the aggregate behavior of the developer team does not
match the expectations of what sort of behavior is needed at
a particular time , managers and team leads can investigate
why , rather than continue to spend developer time on
low - priority aspects of the project . Costs associated with
generating source code for the project may therefore be
decreased , and the time needed to generate final source code
for the project may be reduced .
[00291 . A static analysis system implementing automatic
determination of developer team composition , as described
in this specification , may be used to dynamically adjust a
developer team composition for a current particular project ,
or may be used to adjust developer team compositions for
future projects , e . g . , projects that are similar to the current
project , based on the current particular project . The time and
costs associated with future projects as well as current
projects may therefore be reduced .
[0030] A static analysis system implementing automatic
determination of developer team composition , as described
in this specification , may be used to adjust release dates of
versions of software . For example , if a team of developers
shows high levels of a particular activity , e . g . , trail blazing
(as defined below) , and low levels of other activities , e . g . ,
refactoring and / or bug squashing activities (as defined
below) , prior to a release date , this may indicate that it is
likely that the software version will not be ready to be
released at the designated time , e . g . , since features are still
being built . Conversely , if a team of developers shows high
levels of refactoring and / or bug squashing and low levels of
trail blazing , this may indicate that it is likely that the

US 2019 / 0129714 A1 May 2 , 2019

software version will be ready at the designated time , e . g . ,
since features are being fine - tuned .
[0031] In addition , a static analysis system implementing
automatic determination of developer team composition , as
described in this specification , may provide additional
insights that may help companies choose which competing
versions of open - source projects to adopt as in - house tech
nology . For example , a history of developer team composi
tion of open - source projects may give information about (i)
whether certain activities , e . g . , trailblazing of new features ,
is still happening , (ii) a relative comparison of team effort
devoted to certain activities , e . g . , maintenance , bug - squash
ing etc . Such information can be used to determine a
whether a project is worth adopting or not . For example , in
some cases , a better project to adopt may be a project which
shows continued trailblazing (i . e . , new features still being
actively developed) but with spikes of bug - squashing (i . e . ,
periodic paying down of technical debt) . In contrast , projects
with little trailblazing may be either feature complete (un
likely) or stagnant (more likely) .
[0032] The details of one or more embodiments of the
subject matter of this specification are set forth in the
accompanying drawings and the description below . Other
features , aspects , and advantages of the subject matter will
become apparent from the description , the drawings , and the
claims .

BRIEF DESCRIPTION OF THE DRAWINGS
[0033] FIG . 1 illustrates an example graphical presenta
tion of a developer team composition for a particular project
over an example fixed time period .
[0034] FIG . 2 is a diagram of an example system .
[0035] FIG . 3 is a flow chart of an example process for
generating a developer team composition for a particular
project .
[0036] FIG . 4 is a flow chart of an example process for
determining a normalized rating of a developer ' s skills in
each of multiple metrics for a given time window .
[0037] Like reference numbers and designations in the
various drawings indicate like elements .

reference collection of snapshots . The overall performance
metric can also be net or total lines of code added , where net
lines of code added is total lines of code added minus
number of lines of code deleted . Other metrics include
metrics representing a number of files modified , a number of
commits , or any combination of measures of developer
activities . Such metrics are informative and , when suitably
aggregated , provide insight into team behavior . For
example , when a significant proportion of developers in the
team of developers is exhibiting high measures of developer
activity , the project may be described as exhibiting “ trail
blazing ” activities .
10041] As another example , the computed metrics may
include measures of net new source code violations . In
general , a source code violation is a segment of source code
that includes a violation of a particular coding standard . The
computed metrics may include measures of net new source
code violations of different violation types . For example ,
when a significant portion of developers in the team of
developers have low or negative net new violations of a
bug - fixing violation type , the project may be described as
exhibiting " bug squashing ” activities . Similarly , when a
significant portion of developers in the team of developers
have low or negative net new violations of a refactoring
violation type , the project may be described as exhibiting
“ refactoring ” activities .
[0042] As another example , the computed metrics may
include measures of recency , e . g . , a recency weighted mea
sure of the number of commits to a revision control system .
When a significant portion of developers in the team of
developers have high numbers of recent commits , the proj
ect may be described as exhibiting “ busy beaver ” activities .
[0043] Further examples of computed metrics that may be
used to determine developer team composition may include
but is not limited to (1) proportions of a project ' s codebase
attributable to authors , (ii) quantities of comments per line
of code , (iii) measures of amounts of written test code , (iv)
measures of quantities of long - term , stable code used by
many subsystems , (v) quantities of code written in different
languages , (vi) measures of complexity of code , (vii) den
sities of mathematical operations per line of code , (viii)
percentages of commits that change documentation rather
than code files , and , in general , (ix) the rate - of - change of any
metric over time .
[0044] Different developer team compositions are needed
at different times during a project ' s lifetime . For example ,
developer teams with a propensity to trailblaze are more
appropriate for developing new and experimental features
quickly , in order to ensure that the features deliver the right
user experience . Sometimes this is prototype code , which
may be thrown away , so developers may place less emphasis
on code quality in this context . On the other hand , developer
teams with a propensity to squash bugs are more suited to
developing software prior to a software release , where a
stable set of features need to be fully tested to ensure they
work correctly . Finally , developer teams with a propensity to
refactor code are better at the type of work needed just after
a release , where there is time to devote effort to paying down
some of the technical debt that may be accumulated during
the effort to release a stable version of the software before
a hard project deadline .
100451 . The determined developer team compositions gen
erated by the static analysis system described in this speci
fication can help team leads and managers make team

DETAILED DESCRIPTION
[0038] A static analysis system can determine a developer
team composition based on computing multiple metrics for
each developer of a code base associated with the project .
The developer team composition indicates how much of the
developer team is devoted to each of multiple types of
activities during a particular project over a fixed period of
time .
[0039] The multiple metrics computed by the systems
described below represent developer characteristics associ
ated with particular developer skills . In this specification ,
where reference is made to computing a measure of a metric
for a developer , the same techniques can also be applied to
any appropriate aggregation of contributors of source code
in the code base , e . g . , a team of developers in an organiza
tion or a selected group of developers .
10040] The metrics are associated with different types of
developer activities . For example , the computed metrics
may include an overall performance metric that quantifies
the overall contributions by a developer . The overall per
formance can be churn , where a unit of churn indicates a line
of code added , changed , or deleted by the developer in the

US 2019 / 0129714 A1 May 2 , 2019

assignments that are appropriate for the project ' s develop
ment phase , and to verify that the team ' s development time
is being used as expected . For example , determined devel
oper team compositions may be compared to ideal developer
team compositions and adjusted accordingly .
[0046] FIG . 1 illustrates an example graphical presenta
tion of a developer team composition for a particular project
over an example fixed time period . As shown in FIG . 1 , the
example developer team composition for the particular
project is shown over a fixed time period from 0 to 350 days .
In this example , the 350 days represent the last 350 days of
the project ' s lifetime . FIG . 1 includes two plots 110 and 120
that illustrate different but complementary visualizations of
the same developer team composition for the particular
project over the example fixed time period . For illustrative
purposes , the developer team composition illustrated in plots
110 and 120 show aggregate developer behavior indicative
of trail blazing activity 130 , bug squashing activity 140 ,
refactoring activity 150 and other activities 160 .
[0047] Plot 110 includes an x - axis 114 representing time ,
measured in days , and ay - axis 112 representing a number of
active contributors or developers to the project code base .
Plot 110 illustrates fluctuations in the number of developers
on the project , with a significant increase in the number of
developers in the 50 or so days . In addition , plot 110
illustrates that during the latter half of the fixed time period ,
the amount of trail blazing activity performed by the devel
opers in the team decreased , whereas the amount of bug
squashing and refactoring activity performed by the devel
opers in the team increases . These periods of increased bug
squashing and refactoring skills may be due to the schedule
associated with the code base , i . e . , as the new project release
was approaching the team of developers increased in size ,
and the new contributors were predominantly occupied with
cleaning the source code and focused on code quality before
its release .

of a release cycle may require adjustments of the developer
team composition , e . g . , to include less developers who
exhibit refactoring skills .
[0050] FIG . 2 is a diagram of an example system 200 . The
system 200 includes a user device 260 in communication
with a static analysis system 202 over a network 270 . The
static analysis system 202 includes several components ,
including a composition engine 210 , a partitioning engine
220 , and a snapshot analyzing engine 230 . The components
of the static analysis system 202 can be implemented as
computer programs installed on one or more computers in
one or more locations that are coupled to each other through
a network .
[0051] A user of user device 260 can use the static analysis
system 202 to obtain data representing a developer team
composition for particular project 255 . For example , a user
may wish to determine how much of certain predetermined
types of developer behavior activity , e . g . , " trail blazing , ”
“ bug squashing , ” or “ refactoring , ” is occurring at a particu
lar lifecycle stage of a particular project . A user can submit
a request for data representing developer team composition
for particular project 205 to the static analysis system 202
over the network 270 , which can be any appropriate data
communications network , e . g . , one that includes an intranet
or the Internet .
[0052] The code base 240 includes a reference collection
of code snapshots , where each code snapshot includes a
representation of source code at a particular time and is
associated with a particular project and with a particular
developer of the code base 240 . The reference collection of
code snapshots may include code snapshots spanning an
entire project history , i . e . , a project ’ s lifecycle .
[0053] The request for data representing developer team
composition for particular project 205 may specify a fixed
period of time of interest for the developer team composi
tion . In some implementations the fixed period of time may
be a period of time that is smaller than a window of time that
represents the entire project history , e . g . , 30 days from a
given start date . For example , the user may be interested in
the developer team composition at a particular lifecycle
stage , e . g . , directly prior to a project release deadline , and
specify a period of time corresponding to the lifecycle stage
in the request 205 . The request can also include an identifier
of the code base 240 for analysis and one or more requested
parameters , e . g . , identifiers of a subset of developers such as
a particular group or team of developers , or identifiers of a
particular language of projects included in the code base
240 .
10054] . The static analysis system 202 can use the snapshot
analyzing engine 230 to select a subset of snapshots 215
from the code base 240 that includes snapshots from the
fixed period of time specified in the request for data repre
senting developer team composition for a particular project
205 . The static analysis system 202 can further use the
snapshot analyzing engine 230 to divide the subset of
snapshots 215 into groups of snapshots from multiple time
windows , where each time window corresponds to a respec
tive interval of time . The multiple time windows can be
overlapping or non - overlapping . For example , the snapshot
analyzing engine 230 may divide a selected subset of
snapshots from a time period of 500 days into 500 groups of
respective snapshots from each day in the 500 days .
0055] For each time window , the snapshot analyzing
engine 230 analyzes code snapshots from the time window

[0048] Plot 120 includes an x - axis 124 representing time ,
measured in days , and a y - axis 122 representing a proportion
of the activities performed by contributors or developers of
the project code base . At each time step , e . g . , each day , the
proportion of performed activities is normalized using the
size of the developer team for the time step . Plot 120
therefore provides a clear indication of which activities the
developer team , as a whole , focused on during the fixed time
period . For example , plot 120 illustrates an overall rise , e . g . ,
between day 50 and 170 , and decline , e . g . , after day 170 , in
trailblazing activity . As described above , this period of
decline in trailblazing activity may be due to the schedule
associated with the code base .
[0049] Plots 110 and 120 may be used by project managers
or team leaders to determine whether an aggregate behavior
of a team of developers matches the expectations of what
sort of behavior is needed at a particular time . Developer
team behavior can be correlated with the development
schedule , and the team composition may be adjusted accord
ingly . For example , a project that continues to have signifi
cant amounts of trail - blazing activity leading up to a release
deadline may require adjustments of the developer team
composition , e . g . , to include more team members who
exhibit bug squashing skills and less team members who
exhibit trail blazing skills . Similarly , a project that displays
a significant amount of refactoring activity at the beginning

US 2019 / 0129714 A1 May 2 , 2019

and computes multiple values of metrics for each developer
that committed one or more of the code snapshots from the
time window . In some implementations the snapshot engine
230 may analyze code snapshots from the subset of code
snapshots 215 and compute multiple values of metrics for
each developer that committed one or more code snapshots
to the code base 240 in parallel for each time window , e . g . ,
using a map - reduce framework .
[0056] For example , the snapshot analyzing engine 230
may compute a respective overall performance metric for
each developer that quantifies the overall contributions made
by a developer . The overall performance metric may include
a measure of churn , where a unit of churn indicates a line of
code added , changed , or deleted by the developer in the code
base 240 . As another example , the snapshot analyzing
engine 230 may compute a respective measure of recency
for each developer , where a unit of recency indicates the
commitment of a revised code snapshot to the code base 240
by the developer . Each metric is associated with one or more
of multiple types of developer activities . For example , a
measure of churn may be associated with trail blazing
activity , and recency may be associated with busy beaver
activity . Example processes for computing ratings of devel
oper skills in different developer activities are described in
commonly owned U . S . patent application Ser . No . 15 / 290 ,
558 , for “ Automatic Developer Behavior Classification , ” to
Wright et al . , which is incorporated here by reference .
[0057] The snapshot analyzing engine 230 uses the com
puted multiple values of metrics for each developer that
committed one or more of the code snapshots and for each
time window in the fixed period of time to determine global
minimum and global maximum values of the each metric
over the team of developers over the fixed period of time .
For example , the snapshot analyzing engine 230 may use the
computed values for the " trail blazing ” metric , i . e . , trail
blazing ratings of each developer at each time window in the
fixed period of time , to identify a minimum trail blazing
value and a maximum trail blazing value . For example , in
some cases the global minimum trail blazing value over all
developers in the fixed period of time may be zero , e . g . ,
corresponding to a window of time directly before a project
release date . As another example , in some cases the global
maximum trail blazing value over all developers in the fixed
period of time may be significantly high , e . g . , corresponding
to a window of time at the beginning of a project cycle .
[0058] The partitioning engine 220 receives the computed
metrics , e . g . , computed measures of net new violations ,
overall performance metrics or recency 225 , and the deter
mined global minimum and maximum values of each metric
from the snapshot analyzing engine 230 . The partitioning
engine 220 then partitions the range of values of the com
puted metrics between the determined global minimum
value and maximum value into multiple respective parti
tions . Partitioning may include using bucket division tech
niques such as percentile cut offs or non - parametric cluster
ing algorithms .
[0059] For each time window , the partitioning engine 220
then assigns each developer who committed one or more
snapshots in the time window , to one of the multiple
partitions for each of the computed metrics . The assigned
partitions represent a skill rating for the developers . For
example , if the partitioning engine 220 partitions the range
of values for each computed metric , e . g . , trail blazing , bug
squashing and refactoring , into five partitions for a given

time window , a developer who is assigned to partition five
for trail blazing , three for bug squashing and one for
refactoring may be described as having a 5 / 5 rating for trail
blazing , 3 / 5 rating for big squashing and 1 / 5 rating for
refactoring at the time window .
[0060] The partitioning engine 220 can store the partitions
235 representing developer skill ratings in a collection of
developer profiles 250 that stores information about each
developer that has contributed to the code base 240 . For
example , the partition engine 220 can store , for each devel
oper in the developer profiles 250 , data representing the
computed metrics and composite metric for the developer
and the partitions in which the computed metrics and
composite metric have been assigned .
[0061] For each time window , the composition engine 210
receives data representing the partitions 235 . The partitions
235 can be received from either the partition engine 220 or
from the developer profiles 250 . For each developer , the
composition engine 210 normalizes the received data for
each time window . For example , continuing the example
above , the composition engine 210 may receive data indi
cating that , at a particular time window , a developer was
assigned a 5 / 5 rating for trail blazing , 3 / 5 rating for big
squashing and 175 rating for refactoring . In this example , the
composition engine 210 normalizes the developer ' s ratings
for the time window , such that the developer may be
described as exhibiting 0 . 56 units of trail blazing skills , 0 . 33
units of bug squashing skills and 0 . 11 units of refactoring
skills during the time window . In some cases the composi
tion engine 210 may normalize the developers ' ratings to a
different , predetermined fixed number , e . g . , 100 .
[0062] For each time window , the composition engine 210
aggregates the normalized developer ratings to generate a
developer team composition that indicates the division of
labor in the team of developers of the code base at each
interval of time during the fixed period of time . For example ,
continuing the above example , if for a given time window
there were ten developers who are each described as exhib
iting 0 . 56 trail blazing skills , 0 . 33 bug squashing skills and
0 . 11 refactoring skills , the team composition for the time
window would show 5 . 6 units of developers exhibiting
trailblazing , 3 . 3 units of developers exhibiting bug - squash
ing , and 1 . 1 units of developers refactoring . An example
developer team composition 110 is described above with
reference to FIG . 1 .
[0063] In some implementations , the composition engine
210 may further or instead generate a developer team
composition that indicates proportions of developer activi
ties performed by the team of developers at each interval of
time during the fixed period of time . For example , the
composition engine 210 may normalize the aggregated
normalized ratings for each developer for each time window ,
e . g . , to one , to generate a normalized developer team com
position . Normalizing the aggregated normalized ratings in
this manner may provide a developer team composition that
shows a percentage team effort devoted to each developer
activity . An example normalized developer team composi
tion 120 is described above with reference to FIG . 1 .
[0064] The composition engine 210 may store generated
developer team compositions , e . g . , developer team compo
sitions and / or normalized developer team compositions . In
the remainder of this document , the term “ developer team
composition ” may refer to either a developer team compo

US 2019 / 0129714 A1 May 2 , 2019

sition 110 or a normalized developer team composition 120 ,
as illustrated in FIG . 1 above .
[0065] The composition engine 210 can provide data
representing a developer team composition for the particular
project over the fixed period of time 255 back to the user
device 260 in response to the request . For example , the
composition engine 210 can generate a graphical presenta
tion , e . g . , a stacked graph , of the data representing developer
team composition for the particular project over the fixed
period of time 255 and provide the presentation back to the
user device 260 in an appropriate format , e . g . , as a hypertext
markup language (HTML) or Extensible Markup Language
(XML) document for display by a web browser . Some
implementations include an application for the user device
260 that implements a user interface and can display , in a
text or graphical form , data received from the composition
engine 210 . For user devices that are smart phones , the
application can be what is referred to as an “ app . ”
[0066] In some implementations , the static analysis sys
tem 202 may include one or more components that are
configured to determine an ideal developer team composi
tion for a particular project over a fixed period of time . As
discussed below with reference to FIG . 3 , an ideal developer
team composition for a fixed period of time may be used to
indicate how much of a developer team should be devoted
to each of multiple types of developer activities during the
fixed period of time , e . g . , to increase project efficiency and
code quality . For example , the static analysis system 202
may be configured to receive data representing one or more
predetermined , user - specified thresholds for each of the
multiple types of developer activities during different stages
of the project , e . g . , acceptable levels or amounts of trail
blazing , refactoring or bug squashing behavior at different
stages of the projects . In this example , the static analysis
system 202 may be configured to determine an ideal devel
oper team composition based on the received data . As
another example , the static analysis system 202 may be
configured to apply machine learning techniques to deter
mine an ideal developer team composition . For example , the
static analysis system 202 may be provided with training
data mapping developer team compositions for one or more
previous projects to respective success scores , and may use
the received training data to learn an ideal developer team
composition for a particular project at given periods of time ,
e . g . , using conventional machine learning techniques .
[0067] In some implementations , the static analysis sys
tem 202 may analyze a developer team composition gener
ated by the composition engine 210 to determine whether a
behavior of the developers of the code base matches expec
tations of what sort of behavior is needed at different project
lifecycle stages . For example , an analyzing engine may
analyze a developer team composition generated by the
composition engine 210 by identifying how much of the
developer team is devoted to each of the multiple types of
developer activities , and comparing the identified amounts
to thresholds that indicate acceptable developer team behav

more measures that indicate how the generated developer
team composition time differs to the ideal developer team
composition . This may include comparing values for each of
multiple developer activities at each time step in the corre
sponding fixed period of time , e . g . , comparing numbers of
developers performing the multiple activities at each time
step in the fixed period of time . If the difference between two
values for a given time step is higher than a user - specified
threshold , the static analysis system 202 may be configured
to determine that the values for the time step do not match .
If a total number of values that do not match over the fixed
time period exceeds a predetermined threshold , the static
analysis system 202 may be configured to determine that the
generated developer team composition does not match the
ideal developer team composition .
[0069] In response to determining that the behavior of the
developers of the code base does not match expectations of
what sort of behavior is needed at different project lifecycle
stages , the static analysis system 202 may be configured to
generate and provide as output a suggested adjustment of the
developer team composition or a suggested developer team
composition . For example , a suggested adjustment of the
developer team composition may be an adjustment that ,
when implemented , causes the developer team composition
to match the ideal developer team composition for the fixed
period of time . In some implementations , the suggested
adjustments may be based on user - specified developer team
composition adjustments . For example , a user may provide
the static analysis system 202 with data representing prede
termined adjustments of developer team composition that
may be used to correct or adjust the levels or amounts of
developer activity , e . g . , in the form of one or more adjust
ment rules . As another example , a suggested adjustment of
the developer team composition may include a suggested
reallocation of individual developers (who exhibit appropri
ate skills) between projects .
[0070] A user of user device 260 can therefore use the
static analysis system 202 to obtain a suggested developer
team composition for a given lifecycle stage of a particular
project . For example , the user may provide the static analy
sis system 202 with an indication of a project lifecycle stage .
In response to the received request , the static analysis system
202 may automatically generate a suggested developer team
composition based on one or more generated developer team
compositions . For example , the static analysis system 202
may dynamically generate a current developer team com
position and generate a suggested developer team compo
sition based on the generated current developer team com
position . Alternatively or in addition , the static analysis
system 202 may generate a suggested developer team com
position based on stored previously generated developer
team compositions corresponding to previously received
user requests .
[0071] In response to determining that the behavior of the
developers of the code base matches expectations of what
sort of behavior is needed at different project lifecycle
stages , the static analysis system 202 may provide as output
a notification indicating that the behavior of the developer
team is as expected .
[0072] FIG . 3 is a flow chart of an example process 300 for
generating a developer team composition for a particular
project . A static analysis system can obtain a reference
collection of snapshots for a code base and compute one or
more metrics for each developer of a team of developers that

ior .
[0068] For example , the static analysis system 202 may be
configured to analyze a generated developer team compo
sition for a particular project over a fixed period of time to
determine whether the generated developer team composi -
tion matches a determined ideal developer team composition
for the particular project over the fixed period of time . For
example , the static analysis system 202 may compute one or

US 2019 / 0129714 A1 May 2 , 2019

committed snapshots to the code base within a fixed period
of time for a particular project . A developer team composi
tion indicating how much of the developer team is devoted
to each of the multiple types of developer activities during
the fixed period of time is generated based on the computed
metrics . The example process can be implemented by one or
more computer programs installed on one or more comput
ers . The process will be described as being performed by an
appropriately programmed system of one or more comput
ers , e . g . , the static analysis system 202 of FIG . 2 .
[0073] The system obtains a reference collection of snap
shots for a code base (step 310) . Each snapshot in the
reference collection of snapshots includes a representation
of source code of the code base at a particular time , with
each snapshot being associated with a particular project and
with a particular member of a team of developers of the code
base . In some implementations , the reference collection of
snapshots may include snapshots spanning an entire project
history .
[0074] The system selects a subset of snapshots from the
reference set of snapshots (step 320) . As described above
with reference to FIG . 2 , a user of the system can submit a
request for data representing a developer team composition
for a particular project and can specify a fixed period of time
that the developer team composition is to represent . In some
implementations , the fixed period of time may be smaller
than a window of time that represents the entire project
history . In some implementations , the fixed period of time
may include a preselected period of time , e . g . , a preselected
number of days . Generally , the fixed period of time is a time
period over which the activity of individual members of the
team of developers will be aggregated into a developer team
composition that summarizes the division of labor for that
time period . For example , a user of the system may specify
a fixed period of time that corresponds to a preselected
number of days directly prior to a project release deadline ,
e . g . , to determine whether an aggregate behavior of the team
of developers matches expectations of what sort of behavior
is needed prior to a project release , such as low trail blazing
activity . As another example , a user of the system may
specify a fixed period of time that corresponds to a prese
lected number of days at a beginning of a release cycle , e . g . ,
to determine whether an aggregate behavior of the team of
developers matches expectations of what sort of behavior is
needed at the beginning of a release cycle , such as low
refactoring activity .
[0075] The length of the fixed time period is an adjustable
parameter . For example , the length of the fixed period of
time may be 500 days , however other lengths of time may
be used . In some implementations , the length of the fixed
period of time may depend on the amount of historical data
available to the system , e . g . , the number of snapshots in the
reference collection of snapshots or a time period in which
the snapshots in the reference collection spans .
[0076] In some implementations , the length of the fixed
period of time may control an amount of smoothing of data
representing information derived from the snapshots in the
reference collection of snapshots for the code base , e . g . , data
indicating team composition . For example , in cases where
the fixed period of time is one day , data representing
information derived from the snapshots in the reference
collection of snapshots for the code base may be jumpy .
Longer fixed periods of time may be less jumpy . On the
other hand , a fixed period of time that spans an entire project

history will not effectively represent historical changes of
developer team composition over time . Therefore , the length
of the fixed period of time is preselected in such a manner
that the fixed period of time is informative and can reveal
trends in the developer team composition .
[0077] In some implementations , the system may auto
matically select a subset of snapshots , i . e . , automatically
select a fixed period of time , based on one or more criterion .
For example , the selected subset may include (i) snapshots
from a most recent predetermined time period , e . g . the last
1 month of data , (ii) snapshots from all periods of time up
to 1 month prior to a release of the product , (iii) snapshots
from all periods of time up to 1 month after a release of the
product , or (iv) snapshots from all periods where a particular
activity accounts for more than a predetermined percentage
of the division of labor in the project , e . g . , all periods with
> 45 % trailblazing activity .
[0078] For each time window and for each developer that
committed at least one snapshot to the reference collection
of snapshots during the time window , the system determines
a normalized rating of the developer ' s skills in each of a
plurality of metrics , wherein each metric is associated with
one or more of multiple types of developer activities (step
330) .
100791 . As described above with reference to FIG . 2 , the
multiple metrics computed by the system may include , but
are not limited to overall performance metrics , net violations
of a bug fixing type , net violations of a refactoring / mainte
nance type , or recency , i . e . , number and frequency of
commits . Example violations of a refactoring / maintenance
type include violations relating to complexity . For example ,
a method or constructor with high cyclomatic complexity
may be difficult to understand and test . Therefore , a devel
oper may incur a cyclomatic complexity violation if the
cyclomatic complexity of a portion of code committed by
the developer exceeds a predetermined acceptable cyclo
matic complexity threshold . As another example , classes
that have a high response can be difficult to understand and
test , since it may be required to read through all methods that
can possibly be called to fully understand the class . There
fore , a developer may incur a class response violation if a
number of unique methods or constructors that can be called
by all the methods or constructors of the class exceeds a
predetermined acceptable class response threshold . As a
further example , if the number of calls made by a method or
constructor to other methods is high , e . g . , due to the method
being too large in general , the method having too many
responsibilities or the method spending all it ' s time delegat
ing rather than working itself , the method can be difficult to
understand . Therefore , a developer may incur a number of
calls in methods violation if a portion of code committed by
the developer exceeds a predetermined acceptable number
of calls in methods threshold .
[0080] Example violations of a bug fixing type include
violations relating to logic errors . For example , violations of
a bug fixing type may relate to impossible array casts . A
developer may incur a bug fixing violation if a portion of
code committed by the developer includes a number of
impossible array casts that exceeds a predetermined accept
able number of impossible array casts . As another example ,
violations of a bug fixing type may relate to misleading
indentations . If a control structure does not use braces ,
misleading indentations may make it difficult to see which
statements are within its scope . A developer may incur a bug

US 2019 / 0129714 A1 May 2 , 2019

fixing violation if a portion of code committed by the
developer includes a number of misleading indentations that
exceeds a predetermined acceptable number of misleading
indentations . As a further example , violations of a bug fixing
type may relate to self - assignments . Assigning a variable to
itself has no effect . Therefore , such an assignment is either
completely unnecessary , or it indicates a typo or similar
mistake . A developer may incur a bug fixing violation if a
portion of code committed by the developer includes a
number of self - assignments that exceeds a predetermined
acceptable number of self - assignments .
[0081] For each time window , the system aggregates the
normalized ratings for each developer that committed at
least one snapshot to the reference collection during the time
window to generate a developer team composition for the
fixed period of time (step 340) . As described above with
reference to FIG . 2 , the developer team composition indi
cates the division of labor in the team of developers of the
code base at each interval of time during the fixed period of
time . In some implementations , the generated developer
team composition for the fixed period of time may include
a graphical representation of developer team composition
for the fixed period of time , e . g . , a stacked graph 110 as
described above with reference to FIGS . 1 and 2 .
[0082] In some cases the system may generate a user
interface presentation that includes information relating to
the generated developer team composition for the fixed
period of time . For example , the system may generate a user
interface presentation that includes a graphical presentation
of a developer team composition for a particular project over
an example fixed time period , as shown above with refer
ence to FIG . 1 .
[0083] Optionally , the system may normalize , for each
time window , the aggregated normalized ratings for each
developer that committed at least one snapshot to the
reference collection during the time window to generate a
normalized developer team composition . As described
above with reference to FIGS . 1 and 2 , the normalized
developer team composition indicates proportions of devel
oper activities performed by the team of developers at each
interval of time during the fixed period of time . For example ,
the normalized developer team composition may indicate a
percentage breakdown of how much of the developer team
is devoted to each of the multiple types of developer
activities during the fixed period of time . In some imple
mentations , the generated normalized developer team com
position for the fixed period of time may include a graphical
representation of developer team composition for the fixed
period of time , e . g . , a graph 120 with uniform height as
described above with reference to FIGS . 1 and 2 .
[0084] The generated developer team composition may be
used to determine whether a behavior of the developers of
the code base matches expectations of what sort of behavior
is needed at different project lifecycle stages . For example ,
a project that continues to have trail - blazing activity prior to
a release deadline may have unrealistic feature require
ments , poor team communication , or some other manage
ment issue . Therefore , a user of the system may request data
representing a developer team composition for a particular
project over a preselected number of days prior to a release
deadline , and analyze a received generated developer team
composition to determine whether a behavior of developers
of the code base includes trail blazing activity . In response
to determining that a behavior of developers of the code base

includes trail blazing activity , the user may further investi
gate the cause of the behavior , and take appropriate action .
As another example , a project that displays high refactoring
behavior at the beginning of a release cycle might have
developers with a poor understanding of project priorities .
Therefore , a user of the system may request data represent
ing a developer team composition for a particular project
over a preselected number of days at the beginning of a
release cycle , and analyze a received generated developer
team composition to determine whether a behavior of devel
opers of the code case includes refactoring activity . In
response to determining that a behavior of developers of the
code base includes refactoring activity , the user may further
investigate the cause of the behavior , and take appropriate
action . In both examples , appropriate action may include
reallocating members of the developer team , increasing the
size of the developer team , adjusting project feature require
ments , improving developer team communication or solving
management issues . Other example actions include chang
ing a project release date or setting explicit team composi
tion goals .
[0085] In some implementations , the system may further
determine an ideal developer team composition for the fixed
period of time . An ideal developer team composition for a
fixed period of time may be used to indicate how much of
a developer team should be devoted to each of multiple types
of developer activities during the fixed period of time , e . g . ,
to increase project efficiency and code quality . For example ,
an ideal developer team composition for a fixed period of
time directly prior to a release deadline may indicate that a
large proportion of developer activities occurring during the
fixed period of time should be dedicated to refactoring or
bug squashing activities . As another example , an ideal
developer team composition for a fixed period of time at the
beginning of a release cycle may indicate that a large
proportion of developer activities occurring during the fixed
period of time should be dedicated to trail blazing activities .
[0086] In some cases , an ideal developer team composi
tion for a particular project may be determined by one or
more predetermined , user - specified thresholds for each of
the multiple types of developer activities during different
stages of the project , e . g . , acceptable levels or amounts of
trail blazing , refactoring or bug squashing behavior at dif
ferent stages of the projects . For example , a user of the
system may provide the system with data specifying that ,
within N days of a project release , bug squashing activity
should account for over 50 % of the aggregate developer
team activity and trail blazing activity should account for
between 5 % and 10 % of the aggregate developer team
activity . As another example , a user of the system may
provide the system with data specifying that , within N days
from the beginning of a project release cycle , bug squashing
activity should account for between 10 % and 20 % of the
aggregate developer team activity and trail blazing activity
should account for between 75 % and 95 % of the aggregate
developer team activity .
[0087] In some implementations , the system may analyze
the generated developer team composition to determine
whether the generated developer team composition matches
the determined ideal developer team composition . For
example , the system may compute one or more measures
that indicate how a generated developer team composition
over a fixed period of time differs from the ideal developer
team composition over the fixed period of time . This may

US 2019 / 0129714 A1 May 2 , 2019

include comparing values for each of the multiple activities
at each time step in the fixed period of time , e . g . , comparing
numbers of developers performing the multiple activities at
each time step in the fixed period of time . If the difference
between two values for a given time step is higher than a
predetermined threshold , the system may determine that the
values for the time step do not match . If a total number of
values that do not match over the fixed time period exceeds
a predetermined threshold , the system may determine that
the generated developer team composition does not match
the ideal developer team composition . For example , for a
fixed time period of N time steps , the system may determine
that a generated developer team composition does not match
an ideal developer team composition if , for each of the
multiple activities or for a majority of the multiple activities ,
the difference between values for more than N / 2 of the time
steps do not match . In some cases , the predetermined
thresholds may vary depending on the type of developer
activity . For example , in some cases it may be more accept
able to have a larger difference between two values for a first
type of developer activity at a given time step than a second
type of developer activity at the given time step .
[0088] In response to determining that the generated
developer team composition does not match the determined
ideal developer team composition , the system may provide
as output a suggested adjustment of the developer team
composition . For example , the suggested adjustment of the
developer team composition may be an adjustment that ,
when implemented , causes the developer team composition
to match the ideal developer team composition for the fixed
period of time .
[0089] In some implementations , the suggested adjust
ments may be based on user - specified developer team com
position adjustments . For example , a user may provide the
system with predetermined adjustments of developer team
composition that may be used to correct or adjust the levels
or amounts of developer activity , e . g . , in the form of one or
more adjustment rules . For example , a user may provide the
system with data indicating that , in response to determining
that current bug squashing activity is below a predetermined
threshold of 50 % , the proportion of developers exhibiting
bug squashing skills should be increased to match a propor
tion of developers exhibiting bug squashing skills in the
ideal developer team composition , e . g . , by adding one
developer exhibiting bug squashing skills to the developer
team and removing one developer exhibiting trail blazing
skills from the developer team for each percent in the
difference between the expected percentage of bug squash
ing activity and identified percentage of bug squashing
activity .
[0090] In response to determining that the behavior of the
developers of the code base matches expectations of what
sort of behavior is needed at different project lifecycle
stages , the system may provide as output a notification
indicating that the behavior of the developer team is as
expected .
[0091] In some implementations generated adjustments of
developer team composition may be implemented dynami
cally , e . g . , during the lifecycle of the project , to improve the
efficiency and effectiveness of the current project . For
example , the system may receive an indication of a current
project lifecycle stage , and based on the respective generated
developer team composition , automatically generate a sug
gested developer team composition . In other implementa

tions , generated adjustments of developer team composition
may be used to perform adjustments for future projects , e . g . ,
projects that are similar to the current project , to improve the
efficiency and effectiveness of future projects . In some
implementations generated adjustments of developer team
composition may be implemented both dynamically and
used to perform adjustments for future projects .
[0092] FIG . 4 is a flow chart of an example process 400 for
determining a normalized rating of a developer ' s skills in
each of multiple metrics for a given time window . The
example process 400 can be implemented by one or more
computer programs installed on one or more computers . The
process will be described as being performed by an appro
priately programmed system of one or more computers , e . g . ,
the snapshot analyzing engine 230 of FIG . 2 .
[0093] For each of the multiple metrics , the system com
putes , for each developer that committed at least one snap
shot to the reference collection of snapshots and for each
time window , a value of the metric (step 410) .
[0094] For each of the multiple metrics , the system deter
mines a global minimum value and global maximum value
for the metric over the team of developers and over the fixed
period of time (step 420) .
10095] For each of the multiple metrics , the system par
titions the range of values between the determined global
minimum value and global maximum value into a plurality
of partitions (step 430) .
[0096] For each of the multiple metrics , the system
assigns , for each time window , each developer that commit
ted at least one snapshot to the reference collection of
snapshots to one of the plurality of partitions (step 440) .
[0097] For each of the multiple metrics and for each
developer that committed at least one snapshot to the
reference collection of snapshots , the system normalizes the
values corresponding to the assigned partitions to determine
normalized ratings of the developer ' s skills in each of the
plurality of metrics for each time window (step 450) .
[0098] Embodiments of the subject matter and the func
tional operations described in this specification can be
implemented in digital electronic circuitry , in tangibly
embodied computer software or firmware , in computer hard
ware , including the structures disclosed in this specification
and their structural equivalents , or in combinations of one or
more of them . Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs , i . e . , one or more modules of computer
program instructions encoded on a tangible non - transitory
storage medium for execution by , or to control the operation
of , data processing apparatus . The computer storage medium
can be a machine - readable storage device , a machine - read
able storage substrate , a random or serial access memory
device , or a combination of one or more of them . Alterna
tively or in addition , the program instructions can be
encoded on an artificially - generated propagated signal , e . g . ,
a machine - generated electrical , optical , or electromagnetic
signal , that is generated to encode information for transmis
sion to suitable receiver apparatus for execution by a data
processing apparatus .
[0099] The term “ data processing apparatus ” refers to data
processing hardware and encompasses all kinds of appara
tus , devices , and machines for processing data , including by
way of example a programmable processor , a computer , or
multiple processors or computers . The apparatus can also be ,
or further include , special purpose logic circuitry , e . g . , an

US 2019 / 0129714 A1 May 2 , 2019

FPGA (field programmable gate array) or an ASIC (appli -
cation - specific integrated circuit) . The apparatus can option
ally include , in addition to hardware , code that creates an
execution environment for computer programs , e . g . , code
that constitutes processor firmware , a protocol stack , a
database management system , an operating system , or a
combination of one or more of them .
[0100] A computer program which may also be referred to
or described as a program , software , a software application ,
an app , a module , a software module , a script , or code) can
be written in any form of programming language , including
compiled or interpreted languages , or declarative or proce
dural languages , and it can be deployed in any form ,
including as a stand - alone program or as a module , compo
nent , subroutine , or other unit suitable for use in a computing
environment . A program may , but need not , correspond to a
file in a file system . A program can be stored in a portion of
a file that holds other programs or data , e . g . , one or more
scripts stored in a markup language document , in a single
file dedicated to the program in question , or in multiple
coordinated files , e . g . , files that store one or more modules ,
sub - programs , or portions of code . A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network .
[0101] For a system of one or more computers to be
configured to perform particular operations or actions means
that the system has installed on it software , firmware ,
hardware , or a combination of them that in operation cause
the system to perform the operations or actions . For one or
more computer programs to be configured to perform par
ticular operations or actions means that the one or more
programs include instructions that , when executed by data
processing apparatus , cause the apparatus to perform the
operations or actions .
10102] As used in this specification , an " engine , ” or “ soft
ware engine , ” refers to a software implemented input / output
system that provides an output that is different from the
input . An engine can be an encoded block of functionality ,
such as a library , a platform , a software development kit
(“ SDK ”) , or an object . Each engine can be implemented on
any appropriate type of computing device , e . g . , servers ,
mobile phones , tablet computers , notebook computers ,
music players , e - book readers , laptop or desktop computers ,
PDAs , smart phones , or other stationary or portable devices ,
that includes one or more processors and computer readable
media . Additionally , two or more of the engines may be
implemented on the same computing device , or on different
computing devices .
[0103] The processes and logic flows described in this
specification can be performed by one or more program
mable computers executing one or more computer programs
to perform functions by operating on input data and gener
ating output . The processes and logic flows can also be
performed by special purpose logic circuitry , e . g . , an FPGA
or an ASIC , or by a combination of special purpose logic
circuitry and one or more programmed computers .
101041 Computers suitable for the execution of a computer
program can be based on general or special purpose micro
processors or both , or any other kind of central processing
unit . Generally , a central processing unit will receive
instructions and data from a read - only memory or a random
access memory or both . The essential elements of a com

puter are a central processing unit for performing or execut
ing instructions and one or more memory devices for storing
instructions and data . The central processing unit and the
memory can be supplemented by , or incorporated in , special
purpose logic circuitry . Generally , a computer will also
include , or be operatively coupled to receive data from or
transfer data to , or both , one or more mass storage devices
for storing data , e . g . , magnetic , magneto - optical disks , or
optical disks . However , a computer need not have such
devices . Moreover , a computer can be embedded in another
device , e . g . , a mobile telephone , a personal digital assistant
(PDA) , a mobile audio or video player , a game console , a
Global Positioning System (GPS) receiver , or a portable
storage device , e . g . , a universal serial bus (USB) flash drive ,
to name just a few .
[0105] Computer - readable media suitable for storing com
puter program instructions and data include all forms of
non - volatile memory , media and memory devices , including
by way of example semiconductor memory devices , e . g . ,
EPROM , EEPROM , and flash memory devices ; magnetic
disks , e . g . , internal hard disks or removable disks ; magneto
optical disks ; and CD - ROM and DVD - ROM disks .
[0106] To provide for interaction with a user , embodi
ments of the subject matter described in this specification
can be implemented on a computer having a display device ,
e . g . , a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor , for displaying information to the user and
a keyboard and pointing device , e . g , a mouse , trackball , or
a presence sensitive display or other surface by which the
user can provide input to the computer . Other kinds of
devices can be used to provide for interaction with a user as
well ; for example , feedback provided to the user can be any
form of sensory feedback , e . g . , visual feedback , auditory
feedback , or tactile feedback ; and input from the user can be
received in any form , including acoustic , speech , or tactile
input . In addition , a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user ; for example , by sending web
pages to a web browser on a user ' s device in response to
requests received from the web browser . Also , a computer
can interact with a user by sending text messages or other
forms of message to a personal device , e . g . , a smartphone ,
running a messaging application , and receiving responsive
messages from the user in return .
[0107] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back - end component , e . g . , as a data server , or
that includes a middleware component , e . g . , an application
server , or that includes a front - end component , e . g . , a client
computer having a graphical user interface , a web browser ,
or an app through which a user can interact with an imple
mentation of the subject matter described in this specifica
tion , or any combination of one or more such back - end ,
middleware , or front - end components . The components of
the system can be interconnected by any form or medium of
digital data communication , e . g . , a communication network .
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN) , e . g . , the
Internet .
[0108] The computing system can include clients and
servers . A client and server are generally remote from each
other and typically interact through a communication net
work . The relationship of client and server arises by virtue
of computer programs running on the respective computers

US 2019 / 0129714 A1 May 2 , 2019

and having a client - server relationship to each other . In some
embodiments , a server transmits data , e . g . , an HTML page ,
to a user device , e . g . , for purposes of displaying data to and
receiving user input from a user interacting with the device ,
which acts as a client . Data generated at the user device , e . g . ,
a result of the user interaction , can be received at the server
from the device .
[0109] In addition to the embodiments and the embodi
ments described above , the following embodiments are also
innovative :
[0110] Embodiment 1 is a method comprising :
[0111] obtaining a reference set of snapshots for a code
base , wherein each snapshot comprises a representation of
source code of the code base at a particular time , each
snapshot being associated with a particular project and a
particular developer of a team of developers of the code
base ;
[0112] selecting a subset of snapshots , wherein the subset
of snapshots comprise snapshots from a fixed period of time ;
[0113] dividing the subset into a plurality of time win
dows , each time window corresponding to a respective
interval of time ;
[0114] for each time window and for each developer that
committed at least one snapshot to the reference collection
of snapshots during the time window , determining a nor
malized rating of the developer ' s skills in each of a plurality
of metrics , wherein each metric is associated with one or
more of multiple types of developer activities ; and
[0115] aggregating , for each time window , the normalized
ratings for each developer that committed at least one
snapshot to the reference collection during the time window
to generate a developer team composition for the fixed
period of time , the developer team composition indicating
the division of labor in the team of developers of the code
base at each interval of time during the fixed period of time .
[0116] Embodiment 2 is the method of embodiment 1 ,
further comprising , for each time window , normalizing the
aggregated normalized ratings for each developer that com
mitted at least one snapshot to the reference collection
during the time window to generate a normalized developer
team composition indicating proportions of developer
activities performed by the team of developers at each
interval of time during the fixed period of time .
[0117] Embodiment 3 is the method of embodiment 1 or 2 ,
wherein determining a normalized rating of a developer ' s
skills in each of the plurality of metrics for each time
window in the fixed period of time comprises applying a
sliding window across the fixed period of time , wherein the
sliding window comprises an interval of time whose center
point corresponds to each time window .
[0118] Embodiment 4 is the method of any one of embodi
ments 1 to 3 , wherein determining a normalized rating of the
developer ' s skills in each of a plurality of metrics for each
time window comprises ,
[0119] for each of the plurality of metrics :

[0120] computing , for each developer that committed at
least one snapshot to the reference collection of snap
shots and for each time window , a value of the metric ;

[0121] determining a global minimum value and global
maximum value for the metric over the team of devel
opers and over the fixed period of time ;

[0122] partitioning the range of values between the
determined global minimum value and global maxi -
mum value into a plurality of partitions ;

[0123] assigning , for each time window , each developer
that committed at least one snapshot to the reference
collection of snapshots to one of the plurality of par
titions ; and

(0124 for each developer that committed at least one
snapshot to the reference collection of snapshots :

[0125] normalizing the values corresponding to the
assigned partitions to determine normalized ratings of
the developer ' s skills in each of the plurality of metrics
for each time window .

[0126] Embodiment 5 is the method of embodiment 4 ,
wherein normalizing the values corresponding to the
assigned partitions to determine normalized ratings of the
developer ' s skills in each of the plurality of metrics for each
time window comprises , for each time window : normalizing
the values corresponding to the assigned partitions for each
of the plurality of metrics to sum to a same fixed number .
0127] Embodiment 6 is the method of any one of embodi
ments 1 to 5 , wherein determining a normalized rating of the
developer ' s skills in each of a plurality of metrics comprises
one or more of :
[0128] computing for the developer a respective measure
of an overall performance metric including churn , wherein
a unit of churn indicates a line of code added , changed , or
deleted by the developer in the reference collection of
snapshots ;
0129] computing for the developer a respective first mea
sure of net new violations for a first category of violation
types , including comparing (i) a first measure of violations
introduced by the developer that have a violation type in the
first category of violation types to (ii) a second measure of
violations removed by the developer that have a violation
type in the first category of violation types ;
[0130] computing for the developer a respective second
measure of net new violations for a second category of
violation types , including comparing (i) a first measure of
violations introduced by the developer that have a violation
type in the second category of violation types to (ii) a second
measure of violations removed by the developer that have a
violation type in the second category of violation types ; and
[0131] computing for the developer a respective measure
of recency , wherein a unit of recency indicates the commit
ment of a revised snapshot to the reference collection of
snapshots by the developer in the reference collection of
snapshots .
[0132] Embodiment 7 is the method of embodiment 6 ,
wherein the first category of violation types comprises
bug - type violations .
[0133] Embodiment 8 is the method of embodiment 6 ,
wherein the second category of violation types comprises
maintenance - type violations .
[0134] Embodiment 9 is the method of any one of embodi
ments 1 to 8 , further comprising determining an ideal
developer team composition for the fixed period of time , the
ideal developer team composition indicating how much of
the developer team should be devoted to each of the multiple
types of developer activities during the fixed period of time .
[0135] Embodiment 10 is the method of embodiment 9 ,
wherein determining an ideal developer team composition
for the fixed period of time comprises identifying one or
more user - specified thresholds for each of the multiple types
of developer activities during the fixed period of time .
(0136] Embodiment 11 is the method of embodiment 9 ,
further comprising analyzing the generated developer team

US 2019 / 0129714 A1 May 2 , 2019

composition to determine whether the generated developer
team composition matches the determined ideal developer
team composition .
[0137] Embodiment 12 is the method of embodiment 11 ,
further comprising : in response to determining that the
generated developer team composition does not match the
determined ideal developer team composition , providing as
output a suggested adjustment of the developer team com
position .
[0138] Embodiment 13 is the method of any one of
embodiments 1 to 12 , further comprising :
[0139] receiving an indication of a project lifecycle stage ;
and
[0140j based on the generated developer team composi
tion , automatically generating a suggested developer team
composition .
[0141] Embodiment 14 us the method of any one of
embodiments 1 to 13 , wherein the generated developer team
composition for the fixed period of time comprises a graphi
cal representation of developer team composition for the
fixed period of time .
[0142] Embodiment 15 is the method of any one of
embodiments 1 to 14 , wherein the reference collection of
snapshots for the code base comprises snapshots of a refer
ence collection of snapshots spanning an entire project
history .
[0143] Embodiment 16 is the method of any one of
embodiments 1 to 15 , wherein selecting a subset of snap
shots comprises automatically selecting a subset of snap
shots based on one or more criterion .
[0144] Embodiment 17 is the method of any one of
embodiments 1 to 16 , wherein the fixed period of time is
smaller than a window of time that represents the entire
project history .
101451 . Embodiment 18 is the method of any one of
embodiments 1 to 17 , wherein the fixed period of time
comprises a predetermined number of days , and wherein
each interval of time comprises one day .
[014] Embodiment 19 is a system comprising one or
more computers and one or more storage devices storing
instructions that are operable , when executed by the one or
more computers , to cause the one or more computers to
perform operations comprising the method of any one of
embodiments 1 to 18 .
[01471 Embodiment 20 is a computer program product ,
encoded on one or more non - transitory computer storage
media , comprising instructions that when executed by one or
more computers cause the one or more computers to perform
operations comprising the method of any one of embodi
ments 1 to 18 .
[0148] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of any invention or on the scope of
what may be claimed , but rather as descriptions of features
that may be specific to particular embodiments of particular
inventions . Certain features that are described in this speci
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment . Con -
versely , various features that are described in the context of
a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination .
Moreover , although features may be described above as
acting in certain combinations and even initially be claimed
as such , one or more features from a claimed combination

can in some cases be excised from the combination , and the
claimed combination may be directed to a subcombination
or variation of a subcombination .
[0149] Similarly , while operations are depicted in the
drawings in a particular order , this should not be understood
as requiring that such operations be performed in the par
ticular order shown or in sequential order , or that all illus
trated operations be performed , to achieve desirable results .
In certain circumstances , multitasking and parallel process
ing may be advantageous . Moreover , the separation of
various system modules and components in the embodi
ments described above should not be understood as requir
ing such separation in all embodiments , and it should be
understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod
ucts .
[0150] Particular embodiments of the subject matter have
been described . Other embodiments are within the scope of
the following claims . For example , the actions recited in the
claims can be performed in a different order and still achieve
desirable results . As one example , the processes depicted in
the accompanying figures do not necessarily require the
particular order shown , or sequential order , to achieve
desirable results . In certain some cases , multitasking and
parallel processing may be advantageous .
What is claimed is :
1 . A computer - implemented method comprising :
obtaining a reference set of snapshots for a code base ,

wherein each snapshot comprises a representation of
source code of the code base at a particular time , each
snapshot being associated with a particular project and
a particular developer of a team of developers of the
code base ;

selecting a subset of snapshots , wherein the subset of
snapshots comprise snapshots from a fixed period of
time ;

dividing the subset into a plurality of time windows , each
time window corresponding to a respective interval of
time ;

for each time window and for each developer that com
mitted at least one snapshot to the reference collection
of snapshots during the time window , determining a
normalized rating of the developer ' s skills in each of a
plurality of metrics , wherein each metric is associated
with one or more of multiple types of developer activi
ties ; and

aggregating , for each time window , the normalized ratings
for each developer that committed at least one snapshot
to the reference collection during the time window to
generate a developer team composition for the fixed
period of time , the developer team composition indi
cating the division of labor in the team of developers of
the code base at each interval of time during the fixed
period of time .

2 . The method of claim 1 , further comprising , for each
time window , normalizing the aggregated normalized rat
ings for each developer that committed at least one snapshot
to the reference collection during the time window to
generate a normalized developer team composition indicat
ing proportions of developer activities performed by the
team of developers at each interval of time during the fixed
period of time .

US 2019 / 0129714 A1 May 2 , 2019
13

computing for the developer a respective measure of
recency , wherein a unit of recency indicates the com
mitment of a revised snapshot to the reference collec
tion of snapshots by the developer in the reference
collection of snapshots .

7 . The method of claim 6 , wherein the first category of
violation types comprises bug - type violations .

8 . The method of claim 6 , wherein the second category of
violation types comprises maintenance - type violations .

9 . The method of claim 1 , further comprising determining
an ideal developer team composition for the fixed period of
time , the ideal developer team composition indicating how
much of the developer team should be devoted to each of the
multiple types of developer activities during the fixed period
of time .

10 . The method of claim 9 , wherein determining an ideal
developer team composition for the fixed period of time
comprises identifying one or more user - specified thresholds
for each of the multiple types of developer activities during
the fixed period of time .

11 . The method of claim 9 , further comprising analyzing
the generated developer team composition to determine
whether the generated developer team composition matches
the determined ideal developer team composition .

12 . The method of claim 11 , further comprising :
in response to determining that the generated developer

team composition does not match the determined ideal
developer team composition , providing as output a
suggested adjustment of the developer team composi
tion .

3 . The method of claim 1 , wherein determining a normal
ized rating of a developer ' s skills in each of the plurality of
metrics for each time window in the fixed period of time
comprises :

applying a sliding window across the fixed period of time ,
wherein the sliding window comprises an interval of
time whose center point corresponds to each time
window .

4 . The method of claim 1 , wherein determining a normal
ized rating of the developer ' s skills in each of a plurality of
metrics for each time window comprises ,

for each of the plurality of metrics :
computing , for each developer that committed at least
one snapshot to the reference collection of snapshots
and for each time window , a value of the metric ;

determining a global minimum value and global maxi
mum value for the metric over the team of develop
ers and over the fixed period of time ;

partitioning the range of values between the determined
global minimum value and global maximum value
into a plurality of partitions ;

assigning , for each time window , each developer that
committed at least one snapshot to the reference
collection of snapshots to one of the plurality of
partitions ; and

for each developer that committed at least one snapshot to
the reference collection of snapshots :
normalizing the values corresponding to the assigned

partitions to determine normalized ratings of the
developer ' s skills in each of the plurality of metrics
for each time window .

5 . The method of claim 4 , wherein normalizing the values
corresponding to the assigned partitions to determine nor
malized ratings of the developer ' s skills in each of the
plurality of metrics for each time window comprises , for
each time window :

normalizing the values corresponding to the assigned
partitions for each of the plurality of metrics to sum to
a same fixed number .

6 . The method of claim 1 , wherein determining a normal
ized rating of the developer ' s skills in each of a plurality of
metrics comprises one or more of :

computing for the developer a respective measure of an
overall performance metric including churn , wherein a
unit of churn indicates a line of code added , changed ,
or deleted by the developer in the reference collection
of snapshots ;

computing for the developer a respective first measure of
net new violations for a first category of violation types ,
including comparing (i) a first measure of violations
introduced by the developer that have a violation type
in the first category of violation types to (ii) a second
measure of violations removed by the developer that
have a violation type in the first category of violation
types ;

computing for the developer a respective second measure
of net new violations for a second category of violation
types , including comparing (i) a first measure of vio
lations introduced by the developer that have a viola
tion type in the second category of violation types to (ii)
a second measure of violations removed by the devel
oper that have a violation type in the second category
of violation types ; and

13 . The method of claim 1 , further comprising :
receiving an indication of a project lifecycle stage ; and
based on the generated developer team composition ,

automatically generating a suggested developer team
composition .

14 . The method of claim 1 , wherein the generated devel
oper team composition for the fixed period of time com
prises a graphical representation of developer team compo
sition for the fixed period of time .

15 . The method of claim 1 , wherein the reference collec
tion of snapshots for the code base comprises snapshots of
a reference collection of snapshots spanning an entire proj
ect history .

16 . The method of claim 1 , wherein selecting a subset of
snapshots comprises automatically selecting a subset of
snapshots based on one or more criterion .

17 . The method of claim 1 , wherein the fixed period of
time is smaller than a window of time that represents the
entire project history .

18 . The method of claim 1 , wherein the fixed period of
time comprises a predetermined number of days , and
wherein each interval of time comprises one day .

19 . A system comprising :
one or more computers and one or more storage devices

storing instructions that are operable , when executed by
the one or more computers , to cause the one or more
computers to perform operations comprising :
obtaining a reference set of snapshots for a code base ,
wherein each snapshot comprises a representation of
source code of the code base at a particular time ,
each snapshot being associated with a particular
project and a particular developer of a team of
developers of the code base ;

US 2019 / 0129714 A1 May 2 , 2019
14

selecting a subset of snapshots , wherein the subset of
snapshots comprise snapshots from a fixed period of
time ;

dividing the subset into a plurality of time windows ,
each time window corresponding to a respective
interval of time ;

for each time window and for each developer that
committed at least one snapshot to the reference
collection of snapshots during the time window ,
determining a normalized rating of the developer ' s
skills in each of a plurality of metrics , wherein each
metric is associated with one or more of multiple
types of developer activities ; and

aggregating , for each time window , the normalized
ratings for each developer that committed at least
one snapshot to the reference collection during the
time window to generate a developer team compo
sition for the fixed period of time , the developer team
composition indicating the division of labor in the
team of developers of the code base at each interval
of time during the fixed period of time .

20 . A computer program product , encoded on one or more
non - transitory computer storage media , comprising instruc
tions that when executed by one or more computers cause
the one or more computers to perform operations compris
ing :

obtaining a reference set of snapshots for a code base ,
wherein each snapshot comprises a representation of

source code of the code base at a particular time , each
snapshot being associated with a particular project and
a particular developer of a team of developers of the
code base ;

selecting a subset of snapshots , wherein the subset of
snapshots comprise snapshots from a fixed period of
time ;

dividing the subset into a plurality of time windows , each
time window corresponding to a respective interval of
time ;

for each time window and for each developer that com
mitted at least one snapshot to the reference collection
of snapshots during the time window , determining a
normalized rating of the developer ' s skills in each of a
plurality of metrics , wherein each metric is associated
with one or more of multiple types of developer activi
ties ; and

aggregating , for each time window , the normalized ratings
for each developer that committed at least one snapshot
to the reference collection during the time window to
generate a developer team composition for the fixed
period of time , the developer team composition indi
cating the division of labor in the team of developers of
the code base at each interval of time during the fixed
period of time .

