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A computer - based system and method for generating a 
current pain assessment of a neonate using facial expres 
sions along with crying sounds , body movement , and vital 
signs changes and for using the current pain objective 
assessment to predict future pain objective assessment and 
assign a future pain probability score by incorporation 
spatiotemporal data into the multimodal assessment . 
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SYSTEM AND METHOD FOR 
MULTIMODAL SPATIOTEMPORAL PAIN 

ASSESSMENT 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a continuation - in - part of U.S. 
patent application Ser . No. 14 / 989,500 filed on Jan. 6 , 2016 , 
which claims priority to U.S. Provisional Patent Application 
No. 62 / 186,956 filed on Jun 30 , 2015. This application also 
claims priority to U.S. Provisional Patent Application No. 
62 / 967,375 filed on Jan. 29 , 2020 , all of which are incor 
porated by reference in their entirety . 

BACKGROUND OF THE INVENTION 

[ 0002 ] For newborns of all birth weights in the United 
States , there is a trend toward increased likelihood of 
admission to the Neonatal Intensive Care Unit ( NICU ) . The 
availability of highly specialized care for treatment of vari 
ous healthcare emergencies raises the probability that pre 
mature and sick infants will survive . However , hospitaliza 
tion of newborns for life - threatening illnesses requires 
repeated episodes of acute and / or prolonged pain from 
surgery and other types of tissue trauma . A major challenge 
for the scientific community is to mitigate the adverse effects 
of post - surgical pain on newborns , given their inability to 
verbally express pain , the vulnerability of their developing 
nervous system and the effects of pain and pain management 
on the structural and functional changes that take place 
during the early neonatal period . 
[ 0003 ] Postoperative pain affects a large number of 
patients across the world , with an estimated number of 234 
million surgical procedures each year . In the case of neo 
nates , more than 1.5 million anesthetics are performed every 
year in the United States for surgical procedures such as 
gastrostomy tube placement and circumcision . This leads to 
the publications of a large body of research articles and 
guidelines in recent years to discuss optimal approaches for 
assessing and managing postoperative pain . Despite this 
significant attention , the management of postoperative pain 
has remained inadequate . This poor management is the main 
cause of delayed hospital discharge , which leads to substan 
tial emotional and financial burden . In addition , it has been 
found that the poor management of postoperative pain can 
lead to serious short - term complications and long - term 
physiological , behavioral , and cognitive sequelae . As accu 
rate pain assessment is the cornerstone for adequate man 
agement , it is critical to develop accurate pain assessment 
tools to obtain optimal interventions . 
[ 0004 ] Broadly , pain in neonates can be categorized into 
three types : acute procedural , acute prolonged , and chronic . 
Usually , prolonged acute pain ( aka . , postoperative pain ) 
occurs after a major surgery ( i.e. omphalocele repair ) , lasts 
for a longer time compared to acute procedural , and repeats 
with a decreasing rate after the surgery . The current practice 
for assessing neonatal pain after a major surgery is manual 
and requires caregivers to observe specific behavioral ( e.g. , 
facial expression and body movement ) and physiological 
( e.g. , heart rate ) indicators . Each of these indicators is 
assigned a score and the total pain score is generated by 
summing all the scores together . There are at least 29 
validated score - based tools for manually assessing proce 
dural and postoperative pain in neonates , and more than half 

of these scales are multidimensional . The multidimensional 
pain assessment is necessary because pain manifests itself in 
various behavioral and physiological signals . Several studies 
have reported that pain has at least two dimensions and 
suggested the use of multidimensional scales for effective 
assessment . 
[ 0005 ] In addition , the multidimensional approach for 
assessment allows for the detection of pain during the failure 
of recording a specific pain indicator due to developmental 
( e.g. , facial nerve palsy ) , clinical ( e.g. , sedation ) , and envi 
ronmental ( e.g. , background noise ) factors , and also captures 
individual differences in pain reactions . The score - based 
multidimensional scales of procedural pain have a narrower 
range of scores ( pain vs. no - pain ) as this type of pain tends 
to be intense for a short period of time and disappears as 
soon as its cause ( e.g. , heel lancing ) is gone . On the contrary , 
acute prolonged ( postoperative pain ) , or pain after any major 
surgery , continues long after its cause is gone , tends to have 
fluctuations in pain intensity , and evolves in a more complex 
pattern over time . 
[ 0006 ] The current practice for pain assessment using 
multidimensional score - based scales is discontinuous , 
inconsistent and suffers from high inter - observer and intra 
observer variations . To mitigate these limitations , several 
artificial intelligence - based methods have been published in 
the literature . However , few of the known method focus on 
assessing postoperative pain . 
[ 0007 ] Machine learning - based systems are known in the 
art for continuous and objective detection of procedural pain 
in either pediatric intensive care units ( PICU ) or neonatal 
intensive care units ( NICU ) . Previous work by the inventors 
shows that this approach can achieve a high degree of 
accuracy as evidenced by strong correlation with clinical 
ratings of acute pain by experts . However , in the approxi 
mately 500,000 neonate admissions per year in the United 
States , only about 1 in 3 receive correct pain management . 
By 2010 , the most common drugs used to treat post - surgical 
pain and anxiety in the NICU were the highly addictive 
narcotics ( opioids ) that require prolonged withdrawal prior 
to discharge and a range of non - addicting benzodiazepines , 
barbiturates , ketamine , propofol , acetaminophen , and local 
and topical anesthetics . Today , the opioids morphine and 
fentanyl , a fast - acting narcotic that is 20-40x and 100x more 
potent than heroin and morphine , respectively , remain the 
cornerstone drugs for the therapeutic management of post 
surgical pain in NICUs worldwide . These trends emphasize 
the importance to explore novel opioid - sparing strategies for 
the therapeutic management of neonatal pain in NICU . 
[ 0008 ] Accordingly , there is a need in the art for a system 
and method that effectively and efficiently expands upon 
pain assessment techniques known in the art to additionally 
provide multimodal , spatiotemporal , pain assessment and in 
particular early pain detection ( EPD ) in neonates , thereby 
reducing unmanaged and undermanaged procedural pain in 
neonates . 

SUMMARY OF INVENTION 

[ 0009 ] In various embodiments , the present invention pro 
vides for a multimodal and spatiotemporal system and 
method for pain assessment of neonates . 
[ 0010 ] In a particular embodiment , Early Pain Detection 
( EPD ) in neonates is provided and additionally a confidence 
score ( probability ) , similar to that provided by modern 
methods for predicting the weather is determined . For 
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example , rather than gathering variables for weather predic 
tion , e.g. “ there's a 90 % chance of rain in ~ 25 minutes , ” the 
machine learning - based methods of the present invention 
utilize the neonate's facial expressions , body movements , 
crying frequency and vital sign data ( heart rate , blood 
pressure , oxygen saturation level ) to assign a probability of 
experiencing pain , e.g. “ there's a 90 % chance this neonate 
will experience prolonged surgical pain in -25 minutes . " 
[ 0011 ] In a particular embodiment , a system for providing 
EPD in neonates includes various hardware components , 
which may consist of two or more Go - Pro cameras with 
audio , camera stands , a computer with GPU board and 
associated cables . 
[ 0012 ] The system and methods of the present invention 
reduce unmanaged and undermanaged procedure pain in 
neonates . By reducing unmanaged and undermanaged pro 
cedural pain in neonates , Early Pain Detection ( EPD ) is 
expected to mitigate the short - term and long - term impact of 
toxic stress on neonates . 
[ 0013 ] Specifically , EPD is a medical device providing for 
continuous and objective monitoring of neonatal pain that 
will allow ~ 30 minutes prior to pain onset for pain mitiga 
tion using non - addicting drugs , including , but not limited to , 
Tylenol and nonsteroidal anti - inflammatory drugs 
( NSAIDS ) , rather than relying on opioid medications , such 
as fentanyl and morphine . If EPD can reduce or avoid the 
need for severe pain and opioid medications in the majority 
of cases , the EPD device of the present invention could 
substantially reduce the consequences of long - lasting toxic 
stress trauma including behavioral impairments , epigenetic 
modifications and increased complications caused by 
extreme pain and opioid addiction . Finally , it is expected that 
EPD will achieve these treatment goals while decreasing the 
economic burden on patients , private hospitals and govern 
ment agencies by reducing the length of stay for treatment 
of opioid withdrawal . 
[ 0014 ] In a specific embodiment , the current invention is 
a system for measuring or evaluating pain intensity experi 
enced by a subject that is incapable clearly orally commu 
nicating the pain or that is capable of communicating the 
pain through only a behavioral indicator ( e.g. , an infant , an 
individual with dementia , etc. ) . The system includes a data 
reading device ( e.g. , A / V recorder such as a camera and / or 
microphone , vital signs reader ) for visualizing and recording 
the subject's facial expressions , infant's voice , vital signs 
readings , and body movement including arms / legs . A facial 
expression classifier is used for evaluating the pain via the 
subject's facial expressions , where the facial expression 
classifier produces a facial expression score based on the 
subject's facial expressions . A voice classifier is used for 
evaluating the pain via the inarticulate sounds made by the 
subject ( e.g. , an infant's crying ) , where the voice classifier 
produces a voice score based on the frequency and pitch of 
those inarticulate sounds ( e.g. , using speech signal analysis ) . 
A vital signs classifier is used for evaluating the pain via the 
subject's physical condition ( e.g. , heart rate , breathing rate , 
oxygen saturation , changes in cerebral deoxyhemoglobin 
concentration , etc. ) , where the vital signs classifier produces 
a vital signs score based on the subject’s physical condition . 
The system further includes a processor that runs a machine 
learning algorithm ( e.g. , parametric , non - parametric , optical 
flow , facial strain , local binary patterns , linear predictive 
coding , linear regression , neural network ) for processing 
images , videos , signals , and / or a combination thereof . The 

facial expression score , voice classifier score , body motions 
score , and vital signs score are combined / weighed to pro 
duce a total score for pain assessment . The system also 
includes an output device for outputting the total score for 
pain assessment . Optionally , if the total score exceeds a 
predetermined threshold , a therapy or intervention can auto 
matically be indicated by the output device as well . 
[ 0015 ] Optionally , a body movement classifier may be 
used for evaluating the pain via the subject’s motions that 
may correspond to the pain , where the body movement 
classifier produces a body movement score based on these 
motions . In this case , the body movement score would be 
combined with the other scores as well for the total score . 
These motions could indicate the subject's behavior state , 
arousal state , and extremities tone . 
[ 0016 ] The facial expression classifier may evaluate pain 
intensity based on the subject's facial strain . Further , the 
facial strain can be trained using k Nearest - Neighbor and 
support vector machine for pain or no - pain experienced by 
the subject . Alternatively or in addition , detection of the 
facial strain can be accomplished via a modified strain 
algorithm predicated on movement of the subject's face . 
[ 0017 ] The facial expression classifier may segment the 
subject's face into regions in order to provide the facial 
expression score even when a segment of the subject's face 
is obstructed or occluded . This permits partial facial detec 
tion . 
[ 0018 ] Alternatively , or in addition , the facial expression 
classifier may include ( 1 ) facial detection where the sub 
ject's face is detected , ( 2 ) expression segmentation where 
the subject's face is segmented into regions , and ( 3 ) expres 
sion recognition where pain can be detected . The facial 
detection may be achieved by detecting landmarks on the 
subject's face . For example , a landmark can be the subject's 
nose , in which case a digital mask is expanded around the 
nose to also include the eyes and surrounding area of the 
face . The facial detection function may train the facial 
expression classifier with positive images including these 
landmarks and negative images that do not include the 
landmarks . Alternatively , or in addition , the facial detection 
function may train the facial expression classifier using an 
adaptive boosting algorithm . 
[ 0019 ] During expression segmentation , there may be four 
( 4 ) regions , wherein an optical flow vector generated for 
each region for the subject's face , such that the optical flow 
vector is used to estimate optical strains , which are then 
summed to generate an overall strain magnitude . This over 
all strain magnitude is related to the facial expressions that 
can indicate pain experienced by the subject . 
[ 0020 ] Expression recognition may be achieved by apply 
ing a peak detector to detect points of maximum strain , 
wherein the maximum strain is related to the facial expres 
sions that can indicate the subject's pain . 
[ 0021 ] Regarding the voice classifier , frequency - based 
features may be extracted from the inarticulate sounds to 
represent audio segments that are used to train the voice 
classifier . 
[ 0022 ] In a separate embodiment , the current invention 
may include any one or more or even all of the foregoing 
features and characteristics of the system . 
[ 0023 ] These and other important objects , advantages , and 
features of the invention will become clear as this disclosure 
proceeds . 
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[ 0024 ] The invention accordingly comprises the features 
of construction , combination of elements , and arrangement 
of parts that will be exemplified in the disclosure set forth 
hereinafter and the scope of the invention will be indicated 
in the claims . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0025 ] The patent or application file contains at least one 
drawing executed in color . Copies of this patent or patent 
application publication with color drawing ( s ) will be pro 
vided by the Office upon request and payment of the 
necessary fee . 
[ 0026 ] For a fuller understanding of the invention , refer 
ence should be made to the following detailed description , 
taken in connection with the accompanying drawings , in 
which : 
[ 0027 ] FIGS . 1A - 1D are a series of images depicting 
examples of challenges of tracking and detecting facial 
expression in a real - time clinical setting . FIG . 1A depicts 
strong head movement ; FIG . 1B depicts self - occlusion ; and 
FIGS . 1C - 1D depict occlusion by external items such as a 
toy and a pacifier . Eyes are masked to protect privacy . 
[ 0028 ] FIGS . 2A - B are a series of images depicting that 
the nose is detected first and then the mask is expanded to 
include the eyes and surrounding areas . This image depicts 
the manual face tracking that was used at the beginning of 
the study . An automated algorithm is now used to detect the 
face . 
[ 0029 ] FIG . 3 is a graphical illustration depicting ROC 
curve of expression - spotting algorithm for 10 subjects . ROC 
achieves 80 % TPR with 19 % FPR . 
[ 0030 ] FIG . 4 is a graphical illustration depicting the 
results of expression segmentation testing . The accuracy of 
correctly recognizing the expression as pain for KNN and 
SVM classifiers was 96 % and 94 % , respectively . The blue 
line represents the strain value ; the thick blue line represents 
the segmented expression ; the number above the curve 
represents the number of frames that belong to the expres 
sion ; and the red dashed line represents the start and end of 
the pain procedure . 
[ 0031 ] FIG . 5 is an image depicting the three stages of the 
machine - based infant pain expression recognition system : 
face detection , expression segmentation and expression rec 
ognition / classification . 
[ 0032 ] FIG . 6 is an image depicting the components of the 
infants ' pain assessment tool which uses different measures 
to determine a total pain score . In use , data is acquired of 
different pain indicators using video , audio , body and vital 
signs recording . Software is used to process and analyze the 
acquired data and generate a total pain score by summing up 
all of the pain scores from the various pain indicators . The 
generated total pain score is then sent to a remote station via 
Wi - Fi or alternatively it is displayed in the infant's incuba 
tor . 

[ 0033 ] FIG . 7 is an illustration of the recording setup and 
equipment , according to certain embodiments of the current 
invention . 
[ 0034 ] FIG . 8 is an overview of pain expression algorithm 
based on facial strain analysis , according to certain embodi 
ments of the current invention . 
[ 0035 ] FIG . 9 is an illustration of the pain detection 
method based on infants’sounds analysis , according to cer 
tain embodiments of the current invention . 

[ 0036 ] FIG . 10 is an illustration of the pain detection 
method based on infants ' vital signs analysis , according to 
certain embodiments of the current invention . 
[ 0037 ] FIG . 11 is a diagram of the pain indicators , accord 
ing to certain embodiments of the current invention . 
[ 0038 ] FIGS . 12A - 12B depict the models ’ mathematical 
formulations , according to certain embodiments of the cur 
rent invention . 
[ 0039 ] FIG . 13 is an illustration of audio signals from 
procedural ( top ) and postoperative ( bottom ) pain . In both 
cases , the pain score of crying is 2 at a sample rate of 44.1 
kHz . 
[ 0040 ] FIG . 14 illustrates photographic examples from 
neonatal procedural ( left ) and postoperative ( right ) pain . In 
both cases , the score of facial expression is 1 . 
[ 0041 ] FIG . 15 illustrates photographic examples from 
real - world neonatal postoperative dataset . 
[ 0042 ] FIG . 16 is a flow diagram illustrating the proposed 
spatiotemporal multimodal approach for neonatal postop 
erative pain assessment , in accordance with an embodiment 
of the present invention . 
[ 0043 ] FIG . 17 illustrates photographic examples of 
region of interest ( ROI ) from sample input images . 
[ 0044 ] FIG . 18 illustrates an audio signal ( top ) and its 
corresponding spectrogram image ( bottom ) for a neonate 
during no - pain state . 
[ 0045 ] FIG . 19 illustrates an audio signal ( top ) and its 
corresponding spectrogram image ( bottom ) for a neonate 
during postoperative pain . 
[ 0046 ] FIG . 20 illustrates ROC curves of different 
approaches , in accordance with embodiments of the present 
invention . 
[ 0047 ] FIG . 21 is an illustration of the potential benefits of 
EPD in neonates . 
[ 0048 ] FIG . 22 is a graphical illustration of the goal of an 
EPD system to support continuous and objective monitoring 
of neonatal pain that will allow a minimum of 30 minutes 
prior to pain onset for pain mitigation . 
[ 0049 ] FIG . 23 is a diagrammatic illustration of an AI 
system for EPD in neonates , in accordance with an embodi 
ment of the present invention . 
[ 0050 ] FIG . 24 is a graphical illustration of the collection 
of ground truth for EPD machine learning , in accordance 
with an embodiment of the present invention . 

DETAILED DESCRIPTION OF THE 
INVENTION 

[ 0051 ] In the following detailed description of the pre 
ferred embodiments , reference is made to the accompanying 
drawings , which form a part thereof , and within which are 
shown by way of illustration specific embodiments by which 
the invention may be practiced . It is to be understood that 
other embodiments may be utilized and structural changes 
may be made without departing from the scope of the 
invention . 
[ 0052 ] As used in this specification and the appended 
claims , the singular forms “ a ” , “ an ” , and “ the ” include plural 
referents unless the content clearly dictates otherwise . As 
used in this specification and the appended claims , the term 
“ or ” is generally employed in its sense including “ and / or ” 
unless the context clearly dictates otherwise . 
[ 0053 ] The current practice for assessing neonatal postop 
erative pain relies on bedside caregivers , is subjective , 
inconsistent , slow , and discontinuous . To develop a reliable 
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medical interpretation , several automated approaches have 
been proposed to enhance the current practice . These 
approaches are unimodal and focus mainly on assessing 
neonatal procedural ( acute ) pain . As pain is a multimodal 
emotion that is often expressed through multiple modalities , 
the multimodal assessment of pain is necessary , especially in 
the case of postoperative ( acute prolonged ) pain . In addition , 
spatiotemporal analysis is more stable over time and has 
been proven to be highly effective at minimizing misclas 
sification errors . 
[ 0054 ] In various embodiments , the present invention pro 
vides a novel multimodal spatiotemporal approach that 
integrates visual and vocal signals and uses them for assess 
ing neonatal postoperative pain . 
[ 0055 ] As illustrated herein by experimental results , on a 
real - world dataset , the proposed multimodal spatiotemporal 
approach achieves the highest AUC ( 0.87 ) and accuracy 
( 79 % ) , which are on average 6.67 % and 6.33 % higher the 
than unimodal approaches . The results also show that the 
integration of temporal information markedly improves the 
performance as compared to the non - temporal approach as 
it captures changes in the pain dynamic . These results 
demonstrate that the proposed approach can be used as a 
viable alternative to the manual assessment , which would 
tread a path toward fully automated pain monitoring in 
clinical settings , point - of - care testing , and homes . 
[ 0056 ] In an embodiment , the current invention is a 
method and system for assessing pain in an infant or other 
subject / individual who is incapable of clearly orally com 
municating pain levels / intensity . Specifically , a method and 
associated algorithm were developed for using an infant's 
facial expressions to determine a pain score using a modified 
strain algorithm . Unexpected results were obtained utilizing 
infant facial tissue distortion as a pain indicator in video 
sequences of ten ( 10 ) infants based on analysis of facial 
strain . Facial strain , which is used as the main feature for 
classification , is generated for each facial expression and 
then used to train two classifiers , k Nearest - Neighbors 
( KNN ) and support vector machine ( SVM ) , to classify 
infants ' expressions into two categories , pain and no - pain . 
The accuracy of binary classification for KNN and SVM 
was 96 % and 94 % , respectively , based on the ten ( 10 ) video 
sequences . 
[ 0057 ] One challenge for the next generation of NICU 
based pain management approaches is proactive pain miti 
gation ( avoidance ) aimed at preventing harm to neonates 
from both post - surgical pain and opioid withdrawal . Like 
Al - based methods for making reliable predictions of 
weather and climate events , Al - based frameworks can use 
single or multiple combinations of continuous objective 
variables , e.g. , facial and body movements , crying frequen 
cies and physiological data ( vital signs ) , to make high 
confidence predictions about time - to - pain onset . Such pre 
dictions would create a therapeutic window prior to pain 
onset for mitigation with non - narcotic ( non - addicting ) phar 
maceutical and non - pharmaceutical interventions . These 
emerging Al - based strategies have the potential to minimize 
or avoid damage to the neonate's body and psyche from 
post - surgical pain and opioid withdrawal . 
[ 0058 ] In contrast to pain assessment at a single point of 
time , an AI tool for predicting time to pain onset creates an 
opportunity to intervene with both non - opioid and non 
pharmaceutical approaches prior to pain onset . This system 
and method of the present invention can monitor single or 

multiple combinations of continuous objective variables , 
e.g. , facial and body movements , crying frequencies and 
physiological data ( vital signs , and brain activity ) , to make 
high - confidence predictions about time - to - pain onset in neo 
nates . Such predictions create a therapeutic window prior to 
pain onset for mitigation with non - narcotic ( non - addicting ) 
pharmaceutical and non - pharmaceutical interventions . The 
early prediction of pain has the potential to minimize or 
avoid damage to the neonate's body and psyche from 
postsurgical pain while decreasing the economic burden on 
patients , private hospitals and government agencies by 
reducing the length of stay for treatment of opioid with 
drawal . The early pain prediction method of the present 
invention can be extended to continuously monitor and 
predict future pain of non - verbal children , adults with 
speech impairment and intubated patients . ' 
[ 0059 ] In an embodiment , the current invention is a 
machine - based infant pain assessment tool and methodology 
developed based on a series of behavioral and physiological 
pain indicators . This tool monitors infants continuously , 
detects various pain indicators ( e.g. , facial expression of 
pain , crying , body motion and changes in heart rate ) , and 
generates a total pain score based on these indicators . 
[ 0060 ] In practice , this tool may be used in neonatal 
intensive care unit ( NICU ) to reduce clinical assessment 
subjectivity and reduce the costs of continuous monitoring 
of infants . It also can be used as a home - monitoring tool or 
in developing countries , where there is a lack of medical 
workers / supplies . 
[ 0061 ] The novel system monitors infants at all times ( not 
just during a certain procedure or period ) using an audio / 
video recorder , as opposed to the input sensors seen in the 
prior art . Specifically , the audio / video recorder is used to 
visualize and record facial expressions , voice , state of 
arousal , and body movement including arms / legs . The use of 
the audio / video recorder as opposed to input sensors ( e.g. , 
flexure input sensors ) is important because pain expression 
should be recognized by considering other parts of the face , 
not just the mouth . It is an object of the present invention to 
assess infants ' pain on video sequences by utilizing multiple 
inputs , for example infants ’ facial expression of pain . It 
presents unexpected results for infants ' pain assessment 
based on analysis of facial strain . The present invention is 
the first to address assessing infants ' pain dynamically for 
monitoring purposes based on this type of analysis . 
[ 0062 ] Certain embodiments of the current invention also 
utilize image / video / signal processing and machine learning 
techniques to generate an executable code to measure an 
infant's pain intensity continuously . This technique , when 
used , is known in the art to be very different from using 
Boolean logic or neural network to process the input data . 
The data from the instant invention is capable of generating 
a total score that can be sent wirelessly to a remote station 
or be displayed digitally or visually on the infant's incubator . 
The system can be used both in clinical settings and in 
non - clinical settings , as skin electrodes and other medical 
devices are not typically utilized . 
[ 0063 ] In certain embodiments , the system includes an 
algorithm generally based on the strain algorithm , which is 
predicated on motion , requires no pre - training and segments 
the face into regions , allowing for partial facial recognition . 
Partial facial recognition is important because infants are 
frequently moving and often have one or more parts of their 
faces obstructed . In addition , the pain assessment system of 
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TABLE I - continued 

Summary of acute and chronic pain procedures . 

Acute Pain Chronic Pain 

data before the pain data at the normal state 
procedure , at the start before the operation and during 
of the pain procedure , post - operative periods for 
and after the 15pprox ... 2 hours . NPASS 
completion of the procedure . pain scores were taken during 
NIPS pain scores were taken the post - operative period 
prior to , during , and after every 15 minutes . 
the acute procedure 

la tube is inserted into the infant stomach for the purpose of feeding her / him . 

the instant invention uses multiple inputs for infant pain 
such as vital signs , body movement , and voice ( e.g. , cry ) , as 
well as facial expression , to generate a total pain score . 
[ 0064 ] It should be noted that the instant invention is 
directed towards individuals who cannot communicate their 
pain in any way other than a behavioral indicator , such as 
facial expression , body motion , crying , etc. Examples of 
such an individual include , but are not limited to , infants , 
individuals who are mute , individuals with communicative ! 
neurologic impairments ( e.g. , dementia ) , etc. 
[ 0065 ] Novel , unexpected results of utilizing facial 
expression as a behavioral indicator of pain were found 
herein . The method has three main stages face detection , expression segmentation , and expression recognition . 
Manual detection of an infant's face was performed at the 
beginning to extract facial points and were used for cropping 
and registration . A strain algorithm was employed to seg 
ment expressions by exploiting the non - rigid facial motion 
that occurs during facial expressions . The accuracy of clas 
sifying the segmented expressions as pain or no - pain using 
KNN and SVM was 96 % and 94 % , respectively . Pain was 
assessed dynamically using infants ' facial expression based 
on facial strain analysis . 
[ 0066 ] A challenging set of infants ' video sequences was 
collected for the purpose of building a real - time pain assess 
ment system . The procedure for collecting the data complied 
with the protocols and ethical directives for research involv 
ing human subjects at the University of South Florida . Prior 
to data collection , informed consent was obtained from the 
infants ' parents . 
[ 0067 ] Video sequences for a total of 10 subjects older 
than 30 weeks gestational age ( e.g. , premature and infants ) 
were recorded under two different pain conditions : acute and 
chronic . The video sequences of nine ( 9 ) subjects were 
recorded during the acute pain procedure , and the remaining 
one ( 1 ) was recorded during the chronic pain procedure . 
[ 0068 ] As noted , the video sequences were recorded dur 
ing two pain procedures : the acute and chronic pain proce 
dures . Acute pain recordings were carried out during heel 
lancing procedures that were previously scheduled for rou 
tine blood test . Nine ( 9 ) subjects were recorded during the 
acute pain procedure in the presence of nurses who filled the 
score sheets using NIPS ( Neonatal Infant Pain Scale ) scor 
ing tool . The scores were taken prior to , during , and after the 
procedure . These scores were used as ground - truth , which 
were compared later to the results of the method . 
[ 0069 ] The infant with chronic pain was monitored during 
the post - operative recovery for approximately two ( 2 ) hours 
in the presence of nurses who scored the pain using an 
NPASS ( Neonatal Pain , Agitation , and Sedation Scale ) scor 
ing tool at different intervals . 
[ 0070 ) Table I summarizes the recording procedure for 
acute and chronic pain . 

[ 0071 ] In an embodiment , the instant pain expression 
recognition method includes three stages : 

[ 0072 ] A. Detection of an infant's face in video 
sequence followed by preprocessing operations includ 
ing face alignment . 

[ 0073 ] B. Expression segmentation . 
[ 0074 ] C. Expression recognition or classification . 

[ 0075 ] The first stage in developing a pain recognition 
system is detecting and tracking an infant's face in a video 
sequence . There are several known face detection algo 
rithms that can detect and track faces with high accuracy . 
Most of these algorithms perform well in detecting adult 
faces , but fail in cases of infants due to several reasons , 
including the fact that existing algorithms are developed and 
trained based on adult faces , which have different features 
than infants ' faces . Further , detecting infants ' faces is a 
challenging problem because infants make unpredictable 
movements ( i.e. , infants make different and strong out - of 
plane head movements ) and occlude their face ( i.e. , self 
occlusion by hand or occlusion by external items such as a 
pacifier ) . As such , these conventional face detection mecha 
nisms have significant difficulties detecting and tracking 
infants ' faces . 
[ 0076 ] FIGS . 1A - 1D show examples of these challenges . 
In the current study , the results of applying several face 
tracking implementations on the infants ' video sequences 
were not satisfactory . For instance , the results of running the 
mean shift face tracker , which is a robust face tracker to 
automatically detect and track 66 points on the face were 
insufficient . The results of running a MATLAB's implemen 
tation of Viola - Jones were also insufficient . 
[ 0077 ] Due to these results and the difficulties of using 
conventional face detection software with infants , the land 
mark points of the infants ' face were manually extracted by 
first detecting their nose ( see FIG . 2A ) using the MATLAB's 
implementation of a cascade object detector . Even though 
the nose detector was trained for adults , the detector was 
able to accurately detect infants ' nose . The mask around the 
nose was then expanded to include eyes and the surrounding 
area , as seen in FIG . 2B . After faces are located , face 
alignment was performed by transferring each face image in 
a video sequence to match the original starting location of 
the face . 

[ 0078 ] Algorithms are known in the art to segment any 
expression in a video sequence by capturing the optical 
strain corresponding to elastic distortions of facial skin 
tissue . The facial optical strain can be derived directly from 
the vectors of optical flow , which is a well - known motion 
estimation technique based on the brightness conservation 

TABLE I 

Summary of acute and chronic pain procedures . 

Acute Pain Chronic Pain 

Postoperative : G tube ! Pain Trigger Immunization and heel 
lancing 

Pain Scale NIPS 
Procedure Acquire the infant's 

behavioral / physiological 

NPASS 
Acquire the infant's 
behavioral / physiological 
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used with different values of k to classify the segmented 
expressions as pain or no - pain . The accuracy of the correctly 
classified instances was 96 % with k = 3 . SVM ( LIBSVM in 
WEKA ) was also used for classification , and the accuracy 
for correctly classified instances was approximately 94 % . 
This promising accuracy was obtained by utilizing the strain 
as a single feature for classification . Building a multi - class 
pain classifier by utilizing other features in addition to the 
strain is thus contemplated and described herein . 
[ 0088 ] It is an object of certain embodiments of the current 
invention to develop a multimodal pain assessment system 
that aims to : 

[ 0089 ] 1. Monitor infants and detect signs that are 
associated with pain ( e.g. , pain expression , crying , 
body motion and vital signs ) when the infants are left 
unattended ; and 

[ 0090 ] 2. Generate a minimally biased total pain score 
based on several signs of pain and report this score to 
a nurse . 

principle . The facial strain algorithm can be summarized as 
follows ( also see FIGS . 5 & 8 ) : 

[ 0079 ] A. Take a video sequence as input and locate 
sixty - six facial points in each frame . These points are 
used to align the face , crop it , and divide it into four 
regions . 

[ 0080 ] B. Generate an optical flow vector for each 
region of the face over all frames and use this vector to 
estimate the optical strain . 

[ 0081 ] C. Add the estimated strain values for each 
region together to generate the overall strain magni 
tude . 

[ 0082 ] D. Apply a peak detector to detect the points of 
maximum strain magnitude , which correspond to facial 
expressions . 

[ 0083 ] FIG . 8 presents a block diagram of a segmentation 
algorithm . The results of applying this algorithm on video 
sequences of infants will become clearer as this specification 
continues . 
[ 0084 ] The strain magnitude is a primary feature used to 
classify the expression as pain or no - pain . The expression 
segmentation algorithm , described previously , generates a 
strain value for each frame of the segmented expression . A 
representative single strain value for the entire expression is 
then computed by taking the average of strain values over all 
frames of the expression . To classify the segmented expres 
sion , two classifiers — k Nearest - Neighbor ( KNN ) and sup 

vector machine ( SVM ) are employed . 
[ 0085 ] The segmentation algorithm is applied on a set of 
video sequences of the pain procedure to extract the strain 
magnitude value of each frame . The peak detector method 
then segments the expression by finding the points of 
maximum strain . Each of these segmented expressions is 
represented by a single strain value , as mentioned earlier . 
FIG . 7 shows the result of running the algorithm for an infant 
with acute pain . As can be seen in the figure , the algorithm 
does not generate continuous expression segmentation . This 
may happen because infants usually do not experience acute 
pain when the procedure starts by insertion of the lancet in 
the heel and instead , the acute pain occurs during the 
squeezing events . 
[ 0086 ] The area under the Receiver Operating Character 
istic curve ( ROC ) was adopted as a measure of performance 
for expression segmentation algorithm . The ROC , which is 
shown for 10 subjects in FIG . 3 , achieves 80 % True Positive 
Rate ( TPR ) with a 20 % False Positive Rate ( FPR ) , and has 
a peak of 97 % TPR with less than 60 % FPR . High FPR can 
be attributed to the segmentation algorithm classifying any 
facial motions ( e.g. , sucking on the pacifier ) as expression . 
As can be seen in FIG . 4 , the algorithm segmented the 
infant's facial motion of sucking as expression . Alterna 
tively , high FPR can be attributed to a failure in optical flow 
computation and strain estimation as a result of strong and 
out - of - plane head movements . 
[ 0087 ] Video sequences of seven ( 7 ) subjects were used 
for training and videos of three subjects were used for testing 
( i.e. , unseen data ) . For expression classification , KNN clas 
sifier in WEKA ( Waikato Environment for Knowledge 
Analysis ) , which is JAVA machine learning software , was 

[ 0091 ] In application , this system can provide a consistent 
and minimally biased pain - scaling tool to be used in the 
NICU at hospitals , in houses as home - monitoring to check 
on an infant's condition at all hours , and in developing 
countries where there is a lack of medical workers / supplies . 
[ 0092 ] It is contemplated herein that with larger datasets , 
other pain indicators , such as infants ' crying , vital signs , and 
body motion can be utilized in addition to facial expressions . 
It should be noted that the results presented herein are based 
on the initial data collection , which has 10 subjects . 
[ 0093 ] In an embodiment , the current invention is a 
machine - based infant pain assessment tool , which can moni 
tor infants continuously , detect various pain indicators ( e.g. , 
facial expression of pain , crying , body motion and changes 
in heart rate ) , and generate a total pain score based on these 
indicators . The first step of the implementation of this tool 
has been accomplished by focusing on facial expression of 
pain as a behavioral indicator of pain , as described previ 
ously . As discussed , the model of recognizing infants ' facial 
expression of pain has three main stages : infants ' face 
detection and tracking , expression segmentation , and pain 
recognition 
[ 0094 ] Before analyzing facial expressions , the face is 
detected and tracked in video frames . There are several 
known face detection algorithms that can detect and track 
faces with high accuracy . However , as noted previously , 
most of these algorithms perform well in detecting adult 
faces , but fail in case of infants . In light of these difficulties , 
in certain embodiments of the current invention , the 
described infant face detection model was developed using 
the Adaptive Boosting algorithm , and the model was trained 
based on the dataset described herein . Other suitable face 
tracking algorithms may be used in the current invention as 
well . 
[ 0095 ] The general steps performed to build the haar 
cascade training model for analyzing infant facial expres 
sions is described below . It is noted that this training model 
is an example implementation , and other known , suitable 
implementations for face tracking are contemplated by the 
current invention as well . 
[ 0096 ] First , the image samples were prepared and were 
used to train the model . The image samples were divided 
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into positive and negative image samples . Positive image 
samples contained the desired object to be detected , specifi 
cally the infants ' faces here . Negative image samples were 
arbitrary images that did not contain the desired object ( the 
infants ' faces ) to be detected . For example , 1,000 positive 
images containing infants ' faces with different orientations 
were used , along with 2,000 negative images of the back 
ground without infants ' faces . 
[ 0097 ] Second , after preparing the images , the classifier 
was trained to distinguish between positive images ( face ) 
and negative images by building the haar - cascade classifier 
using C ++ and Open CV . The classification learning process 
requires a set of positive and negative images for training , 
and a set of features ( haar - like features ) were selected using 
AdaBoost ( adaptive boosting ) for training the classifier . To 
improve the learning performance of the algorithm ( which is 
sometimes called a weak learner ) , the AdaBoost algorithm 
can be used . AdaBoost provided guarantees in several pro 
cedures . The process of “ boosting ” works with the learning 
of single simple classifier and rewriting the weight of the 
data where errors were made with higher weights . 
[ 0098 ] Afterwards , a second simple classifier was learned 
on the weighted classifier , and the data was re - weighted on 
the combination of the first and second classifier and so on 
until the final classifier was learned . Therefore , the final 
classifier was the combination of all previous n - classifiers . 
The AdaBoost cascade of classifiers was seen as a robust 
method of detection and characterization . 
[ 0099 ] Finally , the trained model was tested using some 
unseen data ( i.e. new images that were not used for training ) . 
The model outputs “ 1 ” and draws a rectangle around the 
detected region if it is a face , and outputs “ O ” if a face is not 
detected . 
[ 0100 ] Matthew's algorithm was used to segment facial 
expression dynamically based on facial strain analysis . It 
should be noted here that Matthew's original work was 
evaluated with the six standard expressions ( e.g. , happiness , 
anger , disgust , surprise , fear , and sadness ) and with the less 
challenging dataset of adults . The current algorithm was 
evaluated with a pain expression and with a more challeng 
ing dataset of infants . 
[ 0101 ] Machine learning algorithms ( e.g. , support vector 
machine ) were used to classify the segmented expression as 
pain expression ( 1 ) or other expressions ( 0 ) . 
[ 0102 ] Other pain indicators for example infants ' cry 
ing , vital signs , and body motion can also be used to build 
a pain assessment tool with the ability to generate a total 
pain score based on various indicators , where each of these 
indicators generates a score that contributes to the total pain 

quently to train and build a crying recognition classifier . 
Speech signal analysis is contemplated herein as well to 
recognize infants ' emotions expressed in their crying . 
[ 0104 ] Vital signs , including , but not limited to , heart rate , 
breathing rate , and oxygen saturation rate , measure the 
physical condition of an infant's body . For example , studies 
have shown that there is a strong correlation between an 
infant's pain intensity and an increase in the infant's heart 
rate . A method was developed herein to analyze sequences 
of vital signs and determine whether a specific sequence 
correlates to pain based on score function . For example , to 
predict whether a sequence of heart rate corresponds to pain , 
a score for each frame in the sequence is generated , and the 
sum of these scores gives a total score for the entire 
sequence . This total score corresponds to pain if it exceeds 
a predetermined threshold . Other parametric and non - para 
metric classifiers are contemplated herein and may also be 
used to quantify and score vital signs . 
[ 0105 ] Infants tend to move their arms and / or legs when 
they experience pain . Thus , it may also be important to 
utilize infants ' body motion as pain indicator . The infants ' 
motions are analyzed and used to detect motions corre 
sponding to pain . 
[ 0106 ] As contemplated herein , the instant pain score 
generator system / methodology / software uses image / video 
processing and machine learning algorithms to generate both 
individual pain assessment scores for each parameter and 
also an overall total pain score , which is a summation and / or 
weighted balance of the individual pain assessment scores . 
The generator can be integrated into the infant's incubator 
system or to a camera or installed as an application in an 
electronic device such as a smartphone or tablet . The result 
ing infant's pain assessment tool measures an infant's pain 
intensity using various indicators , such as facial expression , 
crying , body motion and vital signs , as described previously . 
[ 0107 ] The components of the infant's pain assessment 
tool are illustrated in FIG . 6. In use , the infant's pain 
assessment tool employs data readers , for example cameras , 
microphones or other recorders , to obtain infant data of 
various pain indicators such as facial expressions , voice , 
vital signs , and body motion . The data reader can be attached 
to the incubator itself or to a stand adjacent to or otherwise 
corresponding to the incubator . 
[ 0108 ] A total or weighted pain score is generated based 
on the various indicators by utilizing several signal and 
image / video processing and machine learning algorithms , 
such as optical flow , facial strain , local binary patterns 
( LBP ) , linear predictive coding ( LPC ) , linear regression , 
neural network , etc. Machine learning classifiers or algo 
rithms were divided into two main categories : parametric 
( linear regression ) and non - parametric ( neural network ) . 
The total / weighted pain score is computed by weighing or 
summing up a variety of pain scores- such as score of pain 
expression , score of crying , score of body motion , score of 
vital signs , and score of state of arousal — though additional 
suitable categories are contemplated herein as well . 
[ 0109 ] Table II below illustrates five ( 5 ) different pain 
scores . Pain generator software / code can be integrated into 
the infant's incubator , a camera , etc. 

score . 

[ 0103 ] To utilize an infant's crying as a pain indicator , a 
method was developed to recognize infants ' emotions ( e.g. , 
pain , hunger ) expressed in their crying based on frequency 
and pitch analysis of crying signals . The development of the 
method begins by performing preprocessing operations such 
as filtering out the noise and deciding the window size . 
Subsequently , frequency - based features , such as fast Fourier 
transform or Mel - frequency coefficients , are extracted to 
represent audio segments . These features are used subse 
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TABLE II 

NPASS ( Neonatal Pain , Agitation , Sedation Scale ) 

Assessment Sedation Normal Pain Agitation 

Criteria -2 -1 0 1 2 

Crying 
Irritability 

Behavior 
State 

No cry with Moans or Appropriate Irritable or 
painful stimuli cries crying crying at 

minimally Not irritable intervals 
with painful Consolable 
stimuli 

No arousal to Arouses Appropriate Restless , 
minimally to for squirming 

No spontaneous stimuli gestational Awakens 
movement Little age frequently 

spontaneous 
movement 

any stimuli 

High - pitched 
or silent 
continuous 
cry 
Inconsolable 
Arching , 
kicking 
Constantly 
awake 
OR 
Arouses 
minimally / no 
movement 
( not sedated ) 
Any pain 
expression 
continual 
Continual 
clenched 
toes , fists , or 
finger splay 
Body is tense 

Facial 
Expression 

Extremities 
Tone 

Mouth is lax Minimal Relaxed Any pain 
No expression expression Appropriate expression 

with stimuli intermittent 
No grasp reflex Weak grasp Relaxed Intermittent 
Flaccid tone reflex hands and clenched 

muscle feet toes , fists , or 
tone Normal tone finger splay 

Body is not 
tense 

No variability < 10 % Within 1 10-20 % 
with stimuli variability baseline or from 
Hypoventilation from normal for baseline 

baseline with gestational SaO2 76 
stimuli age 85 % with 

stimulation 
quick recovery 1 

Vital Signs 
HR , RR , 
BP , SaO2 

or apnea 

1 > 20 % 
from baseline 
SaO2 s 75 % 
with 
stimulation 
slow 
recovery 1 
Out of sync 
with vent 

[ 0110 ] Adding up the score for each parameter , for 
example , generates a total pain score . The breathing pattern 
parameter corresponds to the vital signs , and the arms / legs 
parameter corresponds to body motion . 
[ 0111 ] After the total pain score is generated , the score can 
be transmitted wirelessly ( e.g. , Wi - Fi ) to a remote station 
( e.g. a nurse's station , doctor's station , caregiver's smart 
device , etc. ) or can be displayed on the infant's incubator 
itself . 
[ 0112 ] Video and audio data ( i.e. , video data of face , body , 
and sounds ) along with vital signs data for a total of 43 
subjects older than 30 weeks gestational age ( e.g. , premature 
and infants ) were recorded using cameras ( e.g. , GOPRO 
cameras ) under two different pain conditions : acute and 
chronic . Gestational age was calculated from the first day of 
the mother's last menstrual period . Acute pain recordings 
were carried out during heel lancing procedures that were 
previously scheduled for routine blood test in the presence 
of nurses who scored the pain moments using the NIPS 
( Neonatal Infant Pain Scale ) scoring tool . The scores were 
taken prior to , at the start , and during the procedure , and at 
every minute after the completion of the procedure for 
around five minutes . These scores were used as ground 
truth , to validate the results of the instant system and 
methodology . Infants with chronic pain were monitored 
during the post - operative recovery for up to three ( 3 ) hours 
in the presence of nurses who scored the pain using the 
NPASS ( Neonatal Pain , Agitation , Sedation Scale ) scoring 
tool prior the surgery ( i.e. , normal state ) , and every 15 
minutes after the surgery and during the chronic pain . 

[ 0113 ] Forty - three infants , older than 30 weeks gestational 
age ( e.g. , premature and newborn ) , were videotaped in the 
NICU at Tampa General Hospital . Exclusion criteria 
included infants with facial abnormality or gestational age 
less than 30 weeks . Prior to data collection , informed 
consent was obtained from each infant's parents . The pro 
cedure for collecting the data complied with the protocols 
and ethical directives for research involving human subjects 
at the University of South Florida . 
[ 0114 ] The average age of the recorded infants was around 
37 weeks gestational age ( min : 30 weeks , max : 41 weeks ) . 
Thirty infants were non - Hispanic , and 13 infants were 
Hispanic . Infants were recorded under two different pain 
conditions : acute and chronic pain . Thirty - four infants were 
recorded during acute pain procedure , seven infants were 
recorded during both chronic pain and acute pain , and two 
infants were recorded during chronic pain procedure . Acute 
pain recordings were carried out during immunization or 
heel sticking procedure , which had been previously sched 
uled for routine blood test . The infants with chronic pain 
were recorded during the post - operative recovery for up to 
3 hours in the presence of nurses who monitored the infants 
and scored his / her pain experience . 
[ 0115 ] Prior to data collection , the study was explained to 
each infant's parents , and their permission was obtained by 
asking them to sign a consent form . Thereafter , the recording 
equipment which included cameras ( e.g. , GOPRO ) , cam 
era stands , vital signs reader , tablet ( e.g. , IPAD MINI ) , 
subject's identifier sheet , and the scoring sheets — were 
prepared and brought to the infant's room . Infants were 



US 2021/0052215 A1 Feb. 25 , 2021 
9 

and the same observer's video episodes scores or the vari 
ability of ground truth scores among four different observ 
ers . 

recorded with the cameras at high ( e.g. , 4K ) resolution . The 
recorded data included video sequences of the infant's 
face / upper body , audio data of the infant's voice , and data 
pertaining to the infant's vital signs . Any suitable vital signs 
reader , such MEDTRONIC VITAL SYNC Virtual Patient 
Monitoring Platform , can be used for recording a wide range 
of vital signs data . 
[ 0116 ] The acute pain recording ( e.g. , immunization or 
heel - sticking ) started by recording the infant for about five 
( 5 ) minutes in normal state before the pain procedure , during 
the procedure , and for about ( 5 ) minutes after the completion 
of the procedure in the presence of expert nurses who scored 
moments of pain . For the chronic pain ( e.g. , post - operative 
pain ) , infants were recorded first in normal state prior the 
surgery and then after the surgery for up to about three ( 3 ) 
hours in the presence of expert nurses who scored moments 
of pain . 
[ 0117 ] Two nurses attended the recordings and filled out 
the ground truth sheets using NIPS ( Neonatal Infant Pain 
Scale ) ( Table III ) and NPASS ( Neonatal Pain , Agitation , 
Sedation Scale ) ( Table II ) pain scales . NIPS is used to scale 
the acute pain and NPASS is used to scale the chronic pain . 
The NIPS pain scale has binary ranges for all indicators 
except crying . The NPASS pain scale ranges from -2 to 2 . 

TABLE III 

NIPS Pain Scale ( Neonatal Infant Pain Scale ) . A sum of the 
points is obtained . 

Parameter Finding Points 
Facial Expression Relaxed 

Grimace 
Cry No cry 

0 
1 
0 
1 
2 
0 
1 
0 

[ 0121 ] This dataset is challenging because infants tend to 
make unpredictable movements ( i.e. infants make different 
and strong out - of - plane head movements ) . In addition , self 
occlusion by hand or occlusion by external items such as a 
pacifier , toys , or tapes make the dataset challenging as well 
as low lighting conditions . 
[ 0122 ] As discussed herein , an embodiment of the current 
invention is a multimodal computer - aided pain assessment 
tool for use in preterm and term infants . While the prior art 
demonstrated the relationship between isolated behavioral 
and physiologic changes and infant pain , a pain assessment 
tool is needed that allows for the automated integration of 
infants ' facial strain patterns , body motion , crying sounds , 
and vital signs . This pain assessment tool is enabled herein . 
This integrated data ( infants ' facial strain patterns , body 
motion , crying sounds , and vital signs ) was evaluated in 
comparison with validated nurse - generated pain scores to 
perform multivariate regression analysis and establish pain 
inference models that can assess pain using the identified 
indicators . 
[ 0123 ] An objective is to demonstrate that computer - aided 
pain assessment provides a sensitive and consistent assess 
ment of infant pain similar to the traditional nurse scoring . 
The computer - aided pain assessment is accomplished with a 
cost - effective system based on video cameras and image / 
signal processing algorithms . This diagnostic tool improves 
the assessment of pain in infants and helps guide treatment 
by generating a more consistent and objective pain assess 
ment . 
[ 0124 ] Preliminary studies on premature and term infants 
were performed in the NICU at Tampa General Hospital 
( TGH ) . The procedure of collecting the data complied with 
the protocols and ethical directives for research involving 
human subjects . A total of 43 infants were videotaped during 
acute episodic and prolonged acute painful procedures . Prior 
to video recording , informed consent was taken from the 
infant's parents . FIG . 7 is an illustration of the recording 
setup and equipment . 
( 0125 ] For the acute episodic pain assessments , thirty - four 
infants were videotaped during brief skin lancing procedure 
( e.g. , heel lancing and immunization ) in the presence of two 
trained nurses who assessed their pain using the NIPS pain 
scale . The infants were recorded for five minutes prior the 
procedure to determine their baseline state of arousal and 
pre - procedure NIPS score . The NIPS score was documented 
again at the start of the procedure and then every minute for 
five minutes after the procedure was completed . NIPS 
assessments were time stamped on the recorded video for 
synchronization with the automated scores . 
[ 0126 ] For the prolonged acute pain assessments , a total of 
nine ( 9 ) infants were recorded during the post - operative 
period ( laparotomy , gastrostomy tube placement ) for 
approximately three ( 3 ) hours in the presence of two trained 
nurses . The nurses assessed the infants using NPASS pain 
scale at the start of the recording after observing the infant 
and then every 15 minutes during the evaluation period . 
NPASS assessments were time stamped on the recorded 
video for synchronization with the automated scores . 
[ 0127 ] Based on the initial data collection , a novel process 
was developed for assessing infant pain on video sequences 
by utilizing infants ' facial expressions . This methodology 

Breathing Pattern 

Arms 

Whimper 
Vigorous crying 
Relaxed 
Change in breathing 
Relaxed 
Flexed / extended 
Relaxed 
Flexed / extended 
Sleeping / awake 
Fussy 

Legs 
1 
0 
1 
0 
1 

State of Arousal 

[ 0118 ] Expert nurses in two ( 2 ) different conditions , the 
initial real - life scores and the short - video episodes scores , 
took the ground truth scores by rating the infant pain 
experience . A nurse , who attends the pain procedure and 
observes signs of pain , fills out the initial scores . Each acute 
recording has a total of 7 ground truth scores , which were 
collected prior to the pain procedure , at the start of pain 
procedure , and at every minute for around five ( 5 ) minutes 
after the pain procedure is completed . The ground truth for 
the chronic pain was taken every fifteen ( 15 ) minutes prior 
the surgery in the normal state and every fifteen ( 15 ) minutes 
after the surgery and during the chronic pain . 
[ 0119 ] For short - video episodes , four expert nurses 
watched these videos of the pain procedure individually and 
scored them . The length of video episodes was five ( 5 ) 
seconds and ten ( 10 ) seconds for acute pain and chronic 
pain , respectively . 
[ 0120 ] Experiments are conducted to measure the subjec 
tivity of pain scores between different observers . For 
examples , differences between an observer's initial scores 
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includes three main stages : ( 1 ) detection of the infant's face 
in a video sequence followed by preprocessing operations 
including face alignment ; ( 2 ) expression segmentation based 
on facial strain analysis ; and ( 3 ) expression recognition and 
classification . Manual detection of infants ' faces was per 
formed to extract facial points . A strain algorithm was 
employed to segment expressions by exploiting the non 
rigid facial motion that occurs during facial expression ; FIG . 
8 presents an overview of this methodology . The accuracy of 
classifying the segmented expressions as pain or no pain 
using k Nearest Neighbor ( KNN ) and support vector 
machine ( SVM ) were 96 % and 94 % , respectively . 
[ 0128 ] Table IV shows the confusion matrix of a KNN 
classifier . The confusion matrix , which is used to measure 
the classifier's performance , is a matrix that has information 
about the actual ( column ) and predicated ( row ) classifica 
tions acquired by a specific classifier . The results of the 
current methodology indicate that dynamic analysis of facial 
expression in infants can be used to assess pain . 

and oxygen saturation ( SpO2 ) ) for a total of 18 infants were 
collected to ascertain the correlation between these mea 
surements and infants ' pain experience using machine 
learning algorithms . 
[ 0131 ] The method to assess infant pain based on vital 
signs analysis includes three main stages : preprocessing 
stage , feature extraction stage , and classification stage . In the 
preprocessing stage , in which optical character recognition 
( OCR ) is performed , the videotaped vital signs frames are 
transferred into sequences of digital numbers ; a median filter 
is then applied to these sequences to exclude the outliers . In 
the feature extraction stage , the filtered sequences are seg 
mented into pain / no - pain episodes based on the given 
ground truth . The features of each episode are then extracted 
by taking the average of that episode . In other words , three 
features ( HR , RR , and SpO2 ) were extracted for each 
episode . In the classification stage , the extracted features are 
classified as pain ( 1 ) or no - pain ( 0 ) by utilizing different 
machine learning classifiers ; the accuracy of classifying this 
stage based on tree classifier ( i.e. , random forest ) was found 
to be about 97 % ( accuracy was increased by extracting the 
outliers instances and applying more than one trees ( forest of 
trees ) ) . A depiction of these three stages is presented in FIG . 
10 , and Table VI shows the confusion matrix . 

TABLE IV 

Confusion Matrix of KNN . N represents the total number of instances . 
The first row of the matrix represents the predicted class and 

the first column represents the class of actual 
ground truth . For instance , the KNN classifier 

was able to correctly classify 28 pain instances as 
pain and misclassify one instance of pain as no pain . TABLE VI 

Confusion matrix . Classifier Prediction 
Pain N = 67 Pain No Pain Total No - pain 
65 Ground Truth 

( Actual ) 
Pain 
No Pain 

28 
2 

1 
36 

29 
38 

Pain 
No - pain 

0 
61 4 

[ 0129 ] To classify infant crying as it pertains to infant 
pain , a method was developed and includes three main 
stages : preprocessing stage , features extraction stage , and 
classification stage . In the preprocessing stage , the entire 
audio signal is segmented into pain / no - pain episodes based 
on the given ground truth . In the feature extraction stage , a 
set of features ( e.g. , crying level and frequency level ) is 
extracted from the segmented episodes based on energy and 
frequency analysis . In the classification stage , the extracted 
features of each episode are classified into one of three 
classes : no cry ( class 0 ) , whimper ( class 1 ) , and vigorous 
crying class 2 ) . The accuracy of classifying the crying 
sounds based on simple thresholding was approximately 
88 % . FIG . 9 illustrates the stages of this method , and Table 
V shows the confusion matrix of the classification stage . 

[ 0132 ] The infants ' body motions may also correspond to 
pain and can be measured by applying well - known motions 
estimation algorithms , such as optical flow , block matching , 
and pixel tracking algorithms . 
[ 0133 ] Correlating pain with the infant's state of arousal is 
also contemplated herein . State of arousal is defined as the 
state of being fussy or relaxed during pain stimuli . The score 
of this indicator is given by observing the eyes motion ( e.g. , 
eyes continually shut or open ) , speed of the breathing , and 
arms motions ) . Several eye - blinking detections and arms 
motions algorithms , along with the speed of infant breath 
ing , can be applied to automate this process . 
[ 0134 ] An objective of the invention is to build an auto 
mated infant pain assessment system that simulates the 
nurses ' task in assessing infant pain at the NICU . Specifi 
cally , this system includes a tool that monitors infants and 
observes signs of pain by taking into account various pain 
indicators , as seen in FIG . 11 . 
[ 0135 ] A behavioral indicator is considered and includes 
the following : 

[ 0136 ] Facial pain indicators such as lowered brows , 
tightly closed eyes , opened mouth , raised cheeks , and 
broadened nose . 

[ 0137 ] Body motion pain indicators such as flexed or 
extended arms / legs , diffuse squirm , finger splay , 
stretch / drown , grasping , hand in mouth , and fisting . 

[ 0138 ] Sounds such as whimper , moans , and high 
pitched crying . 

TABLE V 

Confusion Matrix . 

Classifier Prediction 

N = 49 Class 0 Class 1 Class 2 

2 0 Ground 
Truth 
( Actual ) 

Class o 
Class 1 
Class 2 

34 
0 
1 

3 
2 

1 
6 

36 
4 
9 

[ 0130 ] Vital signs measurements have been collected in 
the current study for infants under different pain character 
istics ( i.e. , isolated and prolonged acute pain ) . Specifically , 
vital signs data ( i.e. , heart rate ( HR ) , respiratory rate ( RR ) , 
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[ 0139 ] A physiological is considered and includes the 
following : 

[ 0140 ] Vital signs such as heart rate ( HR ) , respiratory 
rate and pattern ( RR ) , saturation rate ( SpO2 ) , and the 
blood pressure ( BP ) . 

[ 0141 ] Near infrared spectroscopy ( NIRS ) readings . 
( 0142 ] A contextual indicator is considered and includes 
the following : 

[ 0143 ] Pain characteristics such as isolated acute pain 
and prolonged acute pain . Each of these pain types has 
different measurements and pain scales ; thus , this 
parameter can be used to partition the pain assessment 
system into two different pain models : isolated acute 
pain model and prolonged acute pain model . 

[ 0144 ] Gestational age ( GA ) and day of life age . This 
indicator may be important since the infants ' reaction 
to pain procedures can vary based on their age . 

[ 0145 ] Clinical data such as medication type and dose , 
weight / length , race / ethnicity , and gender . 

[ 0146 ] Non - medical interventions such as the mother's 
presence , rubbing , and the pacifier . 

[ 0147 ] Several studies have found associations between 
the infants ' age and their reaction to pain ; the most prema 
ture infants have limited ability to behaviorally or physi 
ologically respond to painful procedures . Thus , extra points 
can be added to their pain score , based on their gestational 
age , as compensation for their limitation . Due to this fact , 
the infants ( i.e. , samples ) can be grouped into four different 
groups based on their gestational age ; these groups , as 
mentioned above , should be isolated and treated separately . 
[ 0148 ] To develop a system that has the ability to assess 
pain for different infants ' population , the automated infant 
pain assessment system can be partitioned into two different 
models based on the pain characteristics : isolated acute pain 
model and prolonged acute pain model . Each of these 
models can have its own pain scale and four different groups 
generated based on infants ' group . Both the isolated and 
prolonged acute pain models can be formulated mathemati 
cally as a multivariable regression model . The box diagrams 
in FIGS . 12A - 12B provide a mathematical formulation of 
these pain models . As can be seen , X1 : 5 represents the 
feature vectors for each of the pain indicators ( i.e. , predictors 
of the regression model ) . Each of these vectors has its own 
weight that varies from one group to another based on the 
infant age . For instance , infants of Group 1 may have 
difficulty expressing their pain through behavioral pain 
indictor ; more weight should be added in this case to 
physiological pain indictors . Finally , the total pain score Y , 
which represents the response value of the regression model , 
is used to assess the pain by comparing Y , to a predeter 
mined threshold . If the total pain score exceeds the given / 
predetermined threshold , a corresponding therapy or inter 
vention is indicated by the system . 
[ 0149 ] In addition to providing a total pain score , the 
present invention addresses the need for a multimodal 
spatiotemporal deep learning approach for neonatal postop 
erative pain assessment . FIG . 1 and FIG . 14 present 
examples of crying sounds and facial expressions captured 
during procedural and postoperative pain , respectively . As 
can be seen , postoperative pain is less intense and occurs at 
different time intervals as compared to procedural pain ( e.g. , 
heel lancing ) . Hence , it is believed that assessing postop 
erative pain frequently and consistently is critical for the 
development of effective plans for interventions . 

[ 0150 ] The current practice for pain assessment using 
multidimensional score - based scales is discontinuous , 
inconsistent and suffers from high inter - observer and intra 
observer variations . To mitigate these limitations , several 
artificial intelligence - based methods have been published in 
the literature . However , few of the known method focus on 
assessing postoperative pain . 
[ 0151 ] While the previously described invention method 
provides a multimodal approach for assessing procedural 
acute pain using handcrafted methods , it does not integrate 
temporal information . In the embodiments described below , 
a spatiotemporal and multimodal Al - based approach is pro 
posed for assessing neonatal postoperative pain . 
[ 0152 ] VGG - Net is a state - of - the - art Convolutional Neu 
ral Network ( CNN ) for visual feature extraction . Although 
several versions of VGG - Net exist , VGG - 16 has been 
widely and successfully used . VGG - 16 consists of 13 uni 
form convolution layers followed by 3 fully connected 
layers . Each convolution layer uses a 3.3 kernel - size filters 
and is followed by a pooling layer . The network starts with 
64 depth and gradually increases by a factor of 2 until it 
reaches 512. The depth of the network and the use of small 
kernel size allow for the extraction of robust visual features . 
In the present invention , VGG - 16 network is used to extract 
visual features from the face , body , and spectrogram images 
of sounds . 
[ 0153 ] Long Short Term Memory ( LSTM ) is one type of 
Recurrent Current Neural Networks ( RNN ) that is capable 
of learning the temporal information in a given sequence . 
Although RNN can handle long - term dependencies in 
theory , these networks fail to learn these dependencies in 
practice . To solve this issue , LSTM network was introduced 
and has been widely used in a wide range of applications . 
LSTM solves the long - term dependencies as well as van 
ishing gradient problem using the cell state , which is con 
trolled by three gates : input , forget , and output gates . The 
input gate controls which information should be saved to the 
cell state . The forget gate controls which information should 
be ignored or forgotten from the previous cell state . Finally , 
the output gate controls which information should be sent to 
the next state . In the spatiotemporal embodiments of the 
present invention , LSTM is used with the deep features , 
extracted by VGG - Net , to learn the temporal pattern and 
dynamics of postoperative pain . 
[ 0154 ] Bilinear CNN is introduced to address fine - grained 
image classification . It uses two CNN streams to extract 
features from two different regions of the same image , and 
the final bilinear vector is generated by combining the 
features of the two CNN streams . Mathematically , given that 
there are two CNN streams X and Y with pooling layer Pand 
classification layer C , then the bilinear model can be repre 
sented as B = ( X , Y , P , C ) . Now for a location L within the 
image I , if the feature functions are FX and FY , then the 
bilinear feature vector b , can be represented as follows . 

b = ( I , L , Fx , Fy ) - > Fx { 1 , L ) FHI , L ) 
[ 0155 ] Finally , a sum - pooling is applied to collect all the 
bilinear features from the entire image . 
[ 0156 ] To improve the performance , the final bilinear 
vector u = 2b ( 1 , L ) is forwarded to the following steps . 

sort v ( sign ( u ) * Vlul ) 
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-continued 
normalization 

( v / || 1 || 2 ) 

[ 0157 ] The bilinear feature vector extracts orderless fea 
tures , which provide better texture representation as com 
pared to the orderfull features in the fine - grained image 
classification problem . This network is capable of extracting 
robust features in the context of the different pose , lighting 
and background . This resembles the context of the real 
world NICU environment . In various embodiments of the 
invention , two VGG - 16 models were used as CNN streams 
of the Bilinear CNN . 
[ 0158 ] To evaluate the temporal multimodal approach of 
the present invention , a dataset containing data of procedural 
( acute ) and postoperative ( acute prolonged ) neonatal pain 
was used . The dataset , which is known as USF - MNPAD - I 
( University of South Florida Multimodal Neonatal Pain 
Assessment Dataset ) , was collected at the NICU in Tampa 
General Hospital , Fla . , USA . The dataset consists of 45 
neonates with a gestational age that ranges from 30 to 41 
weeks . It has ethnically and racially diverse population 
including Asian , African American , and Caucasian neonates . 
The data collection was approved by the USF Ethics Review 
Board ( IRB # Pro00014318 ) 
[ 0159 ] USF - MNPAD - I dataset has video , audio , and 
physiological data . To collect the video and audio data , a 
Go - Pro Hero Black 5 camera was used . The camera was set 
up on a camera stand facing the infant's incubator to capture 
the neonate's face and body . A bedside vital sign Phillips 
MP - 70 monitor was used to collect the physiological data 
including heart rate , blood pressure , and oxygen saturation . 
All these data were recorded from neonates experiencing 
either short - term procedural or postoperative pan during 
their NICU hospitalization . The dataset contains multimodal 
data for 36 neonates ( 17 female ) recorded during baseline , 
during a procedural pain stimulus ( i.e. , heel lancing and 
immunization ) , and immediately after the completion of the 
stimulus . In case of postoperative pain , 9 neonates ( 5 males ) 
were recorded prior to major surgery ( e.g. , omphalocele 
repair ) to get their baseline state and monitored for three 
hours after the surgery to get their postoperative pain state . 
Note that in the current dataset , the neonates were monitored 
only up to three hours after the surgery due to clinical 
constraints . 
[ 0160 ] The ground truth labels for both types of pain were 
documented independently by trained nurses using NIPS 
( Neonatal Infant Pain Scale ) and N - PASS ( Neonatal Pain , 
Agitation and Sedation Scale ) for procedural and postop 
erative pain , respectively . NIPS score - based pain scale has a 
total pain score that ranges from 0 to 7 , and three levels of 
pain : no - pain ( total score of 0-2 ) , moderate pain ( total score 
of 3-4 ) , and severe pain ( total score > 4 ) . The final score is 
generated by summing the individual scores of the following 
pain indicators : facial expression ( score of 0 or 1 ) , crying 
sound ( score of 0 , 1 , or 2 ) , breathing patterns ( score of 0 or 
1 ) , arms movement ( score of 0 or 1 ) , legs movement ( score 
of 0 or 1 ) , and state of arousal ( score of 0 or 1 ) . N - PASS 
score - based pain scale has a total score that ranges from - 10 
to +10 , and five levels : deep sedation ( score -10 to -5 ) , light 
sedation ( score –5 to -2 ) , normal ( score 0-2 ) , moderate pain 
( score 3-5 ) , and severe pain ( score > 5 ) . This total score is 
generated by summing the individual scores of the following 
pain indicators : crying irritability , behavior state , facial 

expression , extremities of tone , and vital signs ( heart rate , 
blood pressure , oxygen saturation ) . Each of these indicators 
has a score that ranges from -2 to +2 , where minus ( - ) , 0 , 
and plus ( + ) indicate the sedation , normal , and pain states , 
respectively . In the dataset , there are 109 , 33 , and 76 samples 
for normal state , moderate pain , and severe pain , respec 
tively . 
[ 0161 ] The dataset was labeled manually by independent 
trained nurses . The agreement between the nurses is mea 
sured using Kappa coefficient ( 0.85 ) and Pearson correlation 
( 0.89 ) . All the cases of agreement were included , and the 
cases of disagreement were excluded from further analysis . 
FIG . 15 shows examples from neonates recorded during 
postoperative pain . The images were randomly selected and 
masked to ensure confidentiality . 
[ 0162 ] In this embodiment , a temporal multimodal 
approach was investigated for assessing postoperative pain . 
The approach combined facial expression , body movement , 
and crying sound . The data of procedural and postoperative 
pain from the previous description was used for separately 
training different models corresponding to different pain 
indicators . For each pain indicator , spatiotemporal features 
were extracted and used to generate the score of that specific 
indicator . Then , the scores of all indicators were fused to 
generate the final pain level . FIG . 16 represents an overview 
of the proposed temporal multimodal approach for assessing 
postoperative pain . 
[ 0163 ] In an exemplary embodiment of the multimodal 
spatiotemporal method of the present invention , the first 
pre - processing step involves extracting key - frames from all 
videos using FFmpeg library . The face region is then 
detected in each frame using a pre - trained YOLO - based face 
detector . The YOLO face detector was pre - trained using the 
WIDER face dataset , which contains around 393,703 faces . 
The total number of key - frames extracted from each video 
segment were fixed to 32 frames . Using a fixed number of 
frames is important because the number of key - frames in 
each video varies . Further , the face region in some key 
frames was occluded , which causes the face detector to fail . 
Therefore , a fixed number of key - frames were used to 
facilitate the training process . Some key - frames were ran 
domly dropped if the number of frames was larger than 32 
and resampling techniques were used to generate more 
frames if the number was lower than 32. To enlarge the 
dataset prior to the CNNs training , image augmentation was 
performed on the key - frames using random composition of 
30 ° , random rotation , + 25 % brightness change , and hori 
zontal flipping . 
[ 0164 ] Deep learning - based architectures ( e.g. , VGG - Net ) 
have been successfully used for detecting a wide range of 
emotions including pain . In this exemplary embodiment , a 
pre - trainedVGG - 16 CNN architecture was fine - tuned to 
extract visual features from images captured during postop 
erative pain . Table VII shows the details of the fine - tuned 
VGG - 16 architecture . Since empirical evidence showed that 
Bilinear CNN , as previously described , can better capture 
subtle changes , a Bilinear CNN was used with two VGG - 16 
streams to learn pain - related features . As shown in FIG . 16 , 
the features extracted by both streams are then combined to 
generate the bilinear vector followed by two Fully Con 
nected ( FC ) layers ( 64 units ) and a dense layer ( 1 unit , linear 
activation ) . Also , Dropout layers ( 0.5 ) are added after each 
FC layers to prevent over - fitting . Two VGG - 16 networks , 
which were pre - trained using VGGFace2 [ 4 ] and ImageNet 
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[ 6 ] datasets , were used as the streams of the Bilinear CNN . 
The entire Bilinear CNN model was then fine - tunes using 
our procedural and postoperative dataset . 

TABLE VII 

Details of fine - tuned VGG - 16 architecture . 

Layer Type Configuration 

Base mode 
FC 
Dropout 
FC 
Dropout 
FC 

Before FC layer without Pooling 
Dense 512 , Relu 
Dropout ( 0.5 ) 
Dense 512 , Relu 
Dropout ( 0.5 ) 
Dense 1 , Activation Linear 

[ 0165 ] Pain is a dynamic event that evolves in a particular 
pattern over time . Hence , it is necessary to integrate tem 
poral information to obtain an accurate assessment of pain . 
After extracting the features using the Bilinear CNN , the 
deep features are further trained by RNN to learn the pain 
dynamics . Specifically , LSTM network with the configura 
tion shown in Table VIII was used . Two LSTM layers were 
used followed by two FC layers . Finally , a Dense layer with 
sigmoid activation was used to classify the signal as pain or 
no - pain . To prevent over - fitting , dropout layers were used , 
as shown in Table VIII . 

TABLE VIII 

Details of LSTM architecture . 

Layer Type Configuration 

RNN 

movement ) . To calculate the total motion in each frame , all 
the pixels are summed together and divided by the frame's 
dimensions . The calculated total motion is then used as the 
main feature to train traditional classifiers such as Gaussian 
Naive Bayes , Random Forest , and K - Nearest Neighbors . For 
deep learning , trained the VGG - 16 networks were trained 
using both the motion image and original body image . The 
configurations of the fine - tuned VGG - 16 network are pre 
sented in Table VII . FIG . 7 shows different ROIs ( Region of 
Interest ) of a sample subject . 
[ 0169 ] To capture the temporal changes of body move 
ment , we integrated RNN ( i.e. LSTM ) network was inte 
grated to VGG - 16 . The same LSTM network architecture 
( Table VII ) was used , which was also used for the facial 
expression ( see Table VII ) . The integration of VGG - 16 and 
LSTM allows the system to learn body movement dynamics 
over time . 
[ 0170 ] During the failure of recording a specific pain 
indicator due to occlusion or swaddle , crying sound can be 
used to assess pain . The state - of - the - art methods for extract 
ing pain - relevant features from crying sounds are hand 
crafted - based ( e.g. , MFCC ) and deep - learning - based ( e.g. , 
spectrogram image ) . Therefore , two types of features were 
extracted , MFCC , and deep features , and they were then 
used to assess neonatal postoperative pain . 
[ 0171 ] MFCC , which stands for Mel Frequency Cepstral 
Coefficient ( MFCC ) , is a popular Cepstral Domain method 
that has been successfully used to extract a useful and 
representative set of features ( i.e. , coefficients ) from an 
audio signal while discarding noise and non - useful features . 
Taking the Inverse Fourier Transform ( IFT ) of the logarithm 
of the signal's spectrum converts the audio signal to the 
Cepstral Domain . 20 MFCCs features were extracted over 
all of the frames of an audio segment ( approx . 9 seconds ) . 
The mean features from the 20 MFCCs were then calculated , 
which lead to a mean MFCCs feature vector length of 388 . 
[ 0172 ] In addition to MFCCs features , the raw audio 
signal ( approx . 9 seconds ) was converted to a spectrogram 
image . The spectrogram image shows the visual represen 
tation of a given audio signal . It represents the change of 
frequency components with respect to time and suppresses 
noise . Brighter pixels in the spectrogram image represent 
higher energy and vice versa . After generating the spectro 
gram image for each audio segment , deep features were 
extracted from these images using a VGG - 16 network . 
[ 0173 ] To train the network , the set of spectrogram images was enlarged by applying signal augmentation techniques to 
the original audio signal . Each audio signal was augmented 
by changing the raw frequency fat 3 different levels ( f / 3 , f / 2 , 
2f / 3 ) , and adding 6 different levels of noise ( 0 : 001 , 0 : 003 , 
0 : 005 , 0:01 , 0:03 , 0:05 ) . Further , a combination of both 
frequency and noise was also applied to create more variant 
signals . This process generated a total of 27 ( 3 + 6 + 386 ) 
augmented images for each audio signal . FIG . 18 and FIG . 
19 show examples of the raw audio signals and their 
corresponding spectrogram images during no - pain and pain 
states of a same subject . 
[ 0174 ] Following the state - of - the - art methods , both tradi 
tional machine learning classifier and deep learning - based 
classifiers were used . In the case of the traditional classifier , 
such as Gaussian Naive Bayes , Random Forest and K - Near 
est Neighbors ( KNN ) classifiers were trained using the 
extracted MFCCs features . For the deep learning - based 
classification , a pretrained ( ImageNet ) VGG - 16 CNN net 
work was used and the network was fine - tuned ( similar to 
Table VII ) using the postoperative pain dataset . The VGG 
16 CNN network was trained using the spectrogram images 

LSTM 16 , Activation = Tanh , 
Recurrent Activation Hard Sigmoid , 
Dropout ( 0.2 ) 
LSTM 16 , Activation = Tanh , 
Recurrent Activation Hard Sigmoid , 
Dropout ( 0.2 ) 
Dense 16 , Relu 
Dropout ( 0.3 ) 
Dense 16 , Relu 
Dropout ( 0.3 ) 
Dense 1 , Activation = Sigmoid 

RNN 

FC 
Dropout 
FC 
Dropout 
FC 

[ 0166 ] Similar to the previously described facial expres 
sion , the key - frames from the video segments were extracted 
using FFmpeg library . A YOLO detector was used , which 
was pre - trained originally on COCO dataset containing 
around 330K images from 80 object categories , to detect the 
body regions of neonates . Further , similar to facial expres 
sion , the number of key - frames was fixed to 32 from each 
video segment . The resampling technique helps to generate 
an equal number of frames in case of any failure detection . 
To enlarge the dataset for the CNN training , random com 
position was performed of 30 ° , random rotation , 125 % 
brightness change , and horizontal flipping . 
[ 0167 ] The state - of - the - art methods for extracting pain 
relevant features from body regions are handcrafted - based 
( e.g. , motion image ) and deep - learning - based ( e.g. , VGG 
16 ) . Therefore , two types of method were used , namely the 
motion image and VGG - 16 , to assess neonatal postoperative 
pain from body movement . 
[ 0168 ] The motion image identifies the changes in pixels 
between consecutive frames , and it is calculated by sub 
tracting consecutive frames followed by thresholding . Pixels 
of the motion image have a value of 1 ( movement ) and 0 ( no 



US 2021/0052215 A1 Feb. 25 , 2021 
14 

extracted as described above . The last classification layer of 
the VGG - 16 CNN has a sigmoid activation function instead 
of the linear activation . 
[ 0175 ] To generate a multimodal assessment of postop 
erative pain , the pain scores generated by all indicator 
specific models were combined together using decision 
fusion , as shown in FIG . 16. The multimodal pain assess 
ment is necessary because pain manifests itself in different 
signals . In addition , the multimodal approach is necessary 
because it allows for the detection pain during the failure of 
recording some pain indicators , as discussed in the next 
section and shown in Table IV . To combine the labels or 
scores of facial expressions , crying sound , and body move 
ment , an unweighted majority voting scheme was used in 
which was chosen the majority label in a given combination 
of labels as the final label . If the combination results in a tie , 
the class probability ( confidence score ) was used to break 
the tie . 
[ 0176 ] In the following discussion , the performance of 
assessing neonatal postoperative pain using a single pain 
indicator at a time ( unimodal ) and multiple pain indicators 
together ( multimodal ) is presented . Before presenting the 
results , the process of extracting and preparing the videos is 
described followed by the training and evaluation protocols . 
( 0177 ] The aforementioned neonatal pain dataset was used 
to evaluate the proposed temporal multimodal approach . 
The dataset consists of both procedural ( 202 videos ) and 
postoperative ( 218 videos ) pain . A procedural dataset ( bal 
anced set of 116 samples ) was used for pre - training the 
model ( in case of face only ) and the postoperative dataset 
was used for fine - tuning and evaluation . After performing 
the preprocessing steps , the total number of video segments 
( each has 9 seconds length ) for each pain indicator in the 
postoperative dataset , were 187 , 218 , and 216 for face , body , 
and sound , respectively . Note that the face was missing in 31 
videos ( 187/218 ) and the sound was missing in 2 videos 
( 216/218 ) 
[ 0178 ] Two types of training techniques were used : tradi 
tional classifiers training and deep learning . For both cases , 
the leave - one - subject - out protocol for was used for training 
and testing as this protocol is more realistic in case of 
clinical applications because it allows the capture of differ 
ences between patients . In the case of the traditional clas 
sifiers , a KNN classifier ( K = 3 , determined empirically ) and 
Random Forest classifier ( N = 100 determined empirically ) 
was used . For deep learning , images ( face image , body 

image , motion image , and spectrogram ) of size 224x224 
was used as input to individual VGG - 16 models to extract 
deep features from each individual indicator as shown in 
FIG . 16. The extracted features are then fed to RNN net 
works to learn pain patterns and dynamics . Adam optimizer 
with a learning rate of 0.0001 was used to train the CNN and 
RNN models . A batch size of 16 and 1 were used for CNN 
and RNN respectively for up to 100 epochs . All the training 
was performed to minimize the validation loss following an early stopping strategy . 
[ 0179 ] Two levels of training , in the case of deep learning , 
were performed . In the first level , the pain scores of each 
indicator ( i.e. , score 0 or 1 ( face and body ) and score 0 , 1 , 
or 2 ( sound ) ) were used for training the CNN models . In the 
second level , the final pain labels , which are no - pain , 
moderate pain , and severe pain were used to train the RNN 
models . As previously discussed , these final pain labels are 
generated by summing the individual scores and threshold 
ing . Note that the labels of moderate and severe pain were 
combined into a single pain class while training the RNN 
models because the number of instances with a moderate 
pain label is relatively smaller ( 33 examples ) . 
[ 0180 ] To evaluate the performance of the trained models , the weighted accuracy , weighted precision , weighted recall , 
and F - 1 score were used . Weighted metrics reflect the 
performance of each class as they report the fraction of the 
correct prediction for each class over the total number of 
samples ; i.e. , weighted metrics consider the instances of a 
specific class . In addition to these , the True Positive Rate 
( TPR ) , False Positive Rate ( FPR ) and Area Under the Curve 
( AUC ) were calculated for the pain class . 
[ 0181 ] The performance of using a single pain indicator , at 
one time , for postoperative pain assessment was evaluated . 
Both traditional machine learning - based approaches and 
deep learning - based approaches were used . Table IX shows 
the performance of using both traditional and deep learning 
approaches with a single pain indicator for assessing post 
operative pain . In all indicators and in most cases , the 
approaches of the present invention outperformed the state 
of - the - art methods by a large margin . As can be seen from 
Table X , crying sound indicator achieved the highest accu 
racy ( 79.63 % ) and outperformed the accuracies of body 
( 70.50 % ) and face ( 69.52 % ) . Similarly , crying sound indi 
cator achieved the highest AUC ( 0.87 ) and outperformed the 
AUCs of body ( 0.78 ) and face ( 0.82 ) . 
TABLE IX 

Unimodal and Multimodal assessment of neonatal postoperative pain using different traditional and deep learning 
approaches . 

Modality Approach Accuracy Precision Recall F1 - Score TPR FPR AUC 

Face VGG16 + LSTM 
Bilinear VGG16 + LSTM 

Body Motion + Gaussian NB 
Motion + Random Forest 
Motion + KNN 
Motion Image + VGG16 + LSTM 
Body ROI Image + VGG16 + LSTM 

Sound MFCC + Gaussian NB 
MFCC + KNN 
MFCC + Random Forest 
Spectrogram Image + VGG16 

Multimiodal ( F + B + S ) + Decision Fusion 

0.6203 
0.6952 
0.6330 
0.5872 
0.5688 
0.6835 
0.7050 
0.6296 
0.6991 
0.7269 
0.7963 
0.7936 

0.6195 
0.7084 
0.6562 
0.5874 
0.5697 
0.6906 
0.7047 
0.6328 
0.7001 
0.7362 
0.7964 
0.8028 

0.6203 
0.6952 
0.6330 
0.5872 
0.5688 
0.6835 
0.7050 
0.6296 
0.6991 
0.7269 
0.7966 
0.7936 

0.6197 
0.6834 
0.6189 
0.5868 
0.5675 
0.6805 
0.7047 
0.6267 
0.6988 
0.7245 
0.7963 
0.7920 

0.6634 
0.8614 
0.4404 
0.5596 
0.5138 
0.7799 
0.7333 
0.5421 
0.7290 
0.8224 
0.7850 
0.8807 

0.4302 
0.5000 
0.1743 
0.3853 
0.3761 
0.4128 
0.3263 
0.2844 
0.3303 
0.3670 
0.1927 
0.2936 

0.7300 
0.9196 
0.5001 
0.3382 
0.3899 
0.7323 
0.7786 
0.4194 
0.3592 
0.4459 
0.8690 
0.9010 

Precision , Recall , and F - 1 score are weighted by both classes . 
TPR , FPR , and AUC are calculated for the pain class . 
Bold texts indicate our approaches and bold values indicate superiority . 
Bold text ( F + B + S ) represents the best from the unimodal ( bold texts ) approaches . 
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[ 0182 ] To understand these results , the data was observed , 
and it was found that sound has less noise as compared to 
face and body in the dataset of postoperative neonates . 
Specifically , neonates ' faces in the NICU are usually 
occluded ( partial or complete ) by oxygen's masks , tapes , or 
due to a prone sleeping position . In case of body , some 
neonates are swaddled while others show weak movements 
due to sedation or exhaustion . In summary , one can conclude 
from the Table X that crying sound can better assess 
postoperative pain as compared to facial expression and 
body movement . In addition , one can conclude that the 
proposed approaches of the present invention for analyzing 
facial expression , sound , and body show better performance , 
in terms of accuracy , precision , recall , TPR , FPR , and AUC , 
as compared to the traditional approaches . 

that some indicators would be missing when one combines 
all of them together to generate the multimodal assessment . 
As shown in Table , the multimodal approach achieved 
better overall performance as compared to the unimodal 
approach . The reason for the high performance of sound can 
be attributed to the fact that this indicator has less noise and 
a larger number of instances as compared to other indicators 
( e.g. , facial expression ) . Although crying sound has a per 
formance comparable to the multimodal approach , it is 
believed that the multimodal approach is necessary because 
pain manifests itself in different signals . 
[ 0185 ] In addition , the multimodal approach allows for the 
assessment of pain during circumstances when sounds sig 
nals are missing due to noise , sedation , or individual differ 
ences ( e.g. , some neonates do not cry but move their 

TABLE X 

Unimodal and Multimodal neonatal assessment of postoperative pain ( all pain indicators are present ) . 

Metric Face Body Sound Face + Body Body + Sound Sound + Face Face + Body + Sound 

Accuracy 0.7076 0.6667 0.7661 0.7076 0.7719 0.6901 0.7895 

Precision 0.7119 0.6645 0.7682 0.8071 0.8274 0.7032 0.7913 

Recall 0.7076 0.6667 0.7661 0.7076 0.7719 0.6901 0.7895 
F - 1 Score 0.6970 0.6650 0.7667 0.6630 0.7522 0.6703 0.7863 

TPR 0.8557 0.7320 0.7732 1.0000 0.9897 0.8866 0.8761 

FPR 0.4865 0.4189 0.2432 0.6757 0.5135 0.5676 0.3243 

AUC 0.8082 0.7778 0.8239 0.8353 0.8763 0.8396 0.8791 

Precision , Recall , and F - 1 score are weighted by both classes . 
TPR , FPR , and AUC are calculated for the pain class . 
Bold values indicate superiority . 

[ 0183 ] In addition , it can also be observed that temporal 
information integration greatly improves the performance of 
the pain assessment . Existing work did consider the feature , 
only frame - by - frame . However , in the present invention , 
temporal information ( over frames ) was integrated , which 
led to better performance in the case of all approaches . In the 
case of body , inclusion of the LSTM network shows AUC of 
0.78 and 0.73 which was a jump from 0.50 . Also , in the case 
of sound , the spectrogram image shows better performance 
compared to the MFCC features due to better temporal 
information integration . 
[ 0184 ] The unimodal approach uses one single indicator at 
a time to predict the pain class . In practice , there are cases 
where face and body are not visible . For example , the baby's 
face can be wrapped with tape and the body can be 
swaddled . In such cases , the multimodal assessment of the 
present invention provides a reliable solution . To investigate 
the impact of the multimodal approach on postoperative pain 
assessment , the scores or labels of different pain indicators , 
which are generated using the best approach for each indi 
cator ( best approaches are bolded in the second column of 
Table X ) were combined . Table IX shows the results of 
fusing ( decision - level ) the labels of face , body , and sound . 
Recall that the numbers of video instances for face , body , 
and sound are 187 , 218 , and 216 , respectively . This means 

arms / legs during pain ) . FIG . 20 provides visualization of the 
ROC curve of Table IX . It can be observed that the multi 
modal approach achieves a better performance ( curve ) as 
compared to individual modalities . 
[ 0186 ] To make a more reliable and fair comparison , the 
experiments were further extended by making sure that there 
are no missing indicators ; i.e. , 171 samples from the dataset 
were selected , where all the pain indicators are present . 
Table X presents the performance of the multimodal when 
all indicators are present . Table X also presents the perfor 
mance of unimodal ( single indicator at a time ) and different 
combinations of pain indicators using 171 samples . It can be 
observed that in most cases the multimodal achieved the best 
performance . In the final experiment , 25 % of samples were 
randomly dropped from each indicator to assess the robust 
ness of the multimodal approach of the present invention . 
Random dropping by 25 % was performed ten times and 
reported the average performance in Table XI . From the 
Table XI , one can conclude that the multimodal results are 
consistent over all indicators and perform better than the 
unimodal method . These results are consistent with previous 
clinical findings and suggest that the automated multimodal 
approach for assessing postoperative pain is more efficient , 
in terms of performance and robustness , as compared to the 
unimodal approach . 
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TABLE XI 

Unimodal and Multimodal assessment of neonatal postoperative pain ( randomly dropping 25 % samples from each 
indicator 10 times ) . 

Face Body Sound 

Metric Unimodal Multimodal Unimodal Multimodal Unimodal Multimodal 

Accuracy 
Precision 
Recall 
F - 1 Score 
TPR 
FPR 
AUC 

0.7124 + 0.03 
0.7218 + 0.03 
0.7124 + 0.03 
0.7035 + 0.03 
0.8563 + 0.03 
0.4612 + 0.04 
0.8093 + 0.02 

0.7913 + 0.01 
0.7988 = 0.01 
0.7913 + 0.01 
0.7859 + 0.01 
0.9052 + 0.02 
0.3581 + 0.03 
0.8724 + 0.01 

0.6610 + 0.02 
0.6596 0.02 
0.6610 0.02 
0.6591 + 0.02 
0.7282 + 0.03 
0.4250 + 0.03 
0.7739 + 0.02 

0.7649 + 0.01 
0.7692 + 0.01 
0.7650 + 0.01 
0.7593 + 0.01 
0.8784 + 0.00 
0.3838 + 0.02 
0.8675 + 0.01 

0.7742 + 0.01 
0.7764 + 0.01 
0.7742 + 0.01 
0.7746 + 0.01 
0.7819 + 0.03 
0.2358 + 0.03 
0.8288 + 0.02 

0.7784 + 0.01 
0.7908 + 0.01 
0.7784 + 0.01 
0.7705 + 0.01 
0.9155 + 0.02 
0.4014 + 0.03 
0.8682 + 0.01 

Precision , Recall , and F - 1 score are weighted by both classes . 
TPR , FPR , and AUC are calculated for the pain class . 
Bold values indicate superiority . 

[ 0187 ] In various embodiments , as described above , the 
present invention provides a temporal multimodal Al - based 
system and method for assessing postoperative pain in 
neonates . The proposed system uses video ( face , body ) and 
audio ( crying sound ) signals individually to generate pain 
scores . These scores are then combined using a decision 
fusion to predict the final pain assessment . The experimental 
results suggest that the multimodal approach of the present 
invention is more reliable for assessing postoperative pain in 
a real - world clinical environment . It is believed that the 
proposed approach can significantly enhance the current 
practice for assessment , which is discontinuous , inconsis 
tent , highly depends on the nurses ' experience and subjec 
tivity , and is often limited by the lack of medical resources . 
[ 0188 ] In a particular embodiment utilizing the spatiotem 
poral multimodal Al - based system and method of the pres 
ent invention , a machine learning - based system and method 
are provided for continuous and objective Early Pain Detec 
tion ( EPD ) in neonates . As shown in FIG . 21 , the subjective 
assessment of facial expression of neonates may not be 
sufficient to detect pain prior to a critical threshold . In 
contrast , the Early Pain Detection ( EPD ) system and method 
of the present will be effective in predicting the pain that will 
be experienced by the neonate prior to the pain reaching the 
pain threshold . 
[ 0189 ] In FIG . 32 , the schematic illustrates how pain 
prediction prior to pain onset could create a time window 
( ~ 30 to 40 minutes ) for controlling pain using fast - acting , 
non - opioid pain medications . , e.g. intravenous acetamino 
phen or ibuprofen . The goal of EPD is to “ flatten the curve ” 
for the recurring cycle of intermittent post - surgical pain , 
narcotic treatment and opioid withdrawal ( as shown by 
larger peaks and valleys ) , leading to less toxic stress ( smaller 
peaks and valleys ) on babies in NICU . 
[ 0190 ] In order to identify areas in need for technology 
development in the field of neonatal pain management , 
in - person interviews of over three dozen clinical staff affili 
ated with three NICUs at local hospitals in the Tampa Bay 
region ( Tampa General Hospital , St. Joseph's Hospital , 
Johns Hopkins Children's Hospital ) were performed . From 
these interviews it was learned that current pain manage 
ment of newborns in NICUs can be generally characterized 
as manual , subjective , and discontinuous . Currently , NICU 
nurses treat neonates emerging from post - surgical sedation 
with pain management plans based on intermittent , subjec 
tive ratings with poor inter - rater agreement . Further , in the 

vast majority of cases newborns undergo pain mitigation 
with highly addicting Schedule II narcotics ( morphine , 
fentanyl ) that require 4-5 extra days for opioid withdrawal . 
All clinical staff interviewed favored the development and 
use of early pain detection ( EPD ) over the current approach 
for NICU - based management of prolonged post - surgical 
pain in neonates . The major reasons given for positive 
impacts of EPD on short- and long - term health outcomes in 
this vulnerable population are described below . 
[ 0191 ] It is believed EPD based on an Al framework could 
relieve the current burden on NICU clinical staff who must 
rely on subjective qualitative and semiquantitative pain 
assessment scales as the basis for pain management in 
newborns . 
[ 0192 ] FIG . 21 represents a typical example of pain scale 
rating of a NICU patient . The blue line indicates the pain 
threshold to consider the signal as a pain signal and red line 
indicates the opioid threshold to apply opioid to control the 
pain . EPD technology can help to predict the future pain 
earlier based on previous and current data . As a result , using 
the normal medication , caregivers will be able to control the 
pain earlier so that it does not reach too much to use the 
opioid . Thus , EPD technology could lead to avoiding opioid 
addiction . 
[ 0193 ] In contrast to pain assessment , tools for predicting 
time to pain onset creates an opportunity to intervene with 
both nonopioid and non - pharmaceutical approaches prior to 
pain onset . Such interventions , if effective , have the poten 
tial to avert damage to the neonate's developing central and 
peripheral nervous systems caused by both pain and with 
drawal from opioid - based medications for pain mitigation . 
[ 0194 ] As illustrated in FIG . 22 , the goal of an EPD 
system is to support continuous and objective monitoring of 
neonatal pain that will allow a minimum of 30 minutes 
prior to pain onset for pain mitigation using non - addicting 
drugs , including , but not limited to , acetylminophen and 
nonsteroidal anti - inflammatory drugs ( NSAIDS ) , rather than 
opioid medications , such as fentanyl and morphine . If EPD 
can reduce or avoid the need for severe pain and opioid 
medications in the majority of cases , the EPD could sub 
stantially reduce the consequences of long - lasting toxic 
stress trauma including behavioral impairments , epigenetic 
modifications and increased complications caused by 
extreme pain and opioid addiction on neonates in NICU . 
Finally , it is expected that EPD will achieve these treatment 
goals while decreasing the economic burden on patients , 
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private hospitals and government agencies by reducing the 
length of stay for treatment of opioid withdrawal . 
[ 0195 ] Machine learning techniques have already shown 
substantial progress in neonatal pain assessment , as previ 
ously described . Based on this evidence it can be estimated 
that Al can also predict the pain earlier in the future . Similar 
to weather analyses that gathers multimodal variables for 
making predictions , “ there's a 90 % chance of rain in < 5 
minutes , " machine learning - based methods can utilize the 
neonate's facial expressions , body movements , crying fre 
quency and vital sign data ( e.g. , heart rate , blood pressure , 
oxygen saturation level ) to assign a probability of experi 
encing pain , “ there's a 90 % chance this neonate will expe 
rience prolonged surgical pain in 25 minutes . ” Deep 
features using CNNs can be extracted from different modal 
ity and temporal pain dynamics learned by Recurrent Neural 
Network ( for example : LSTM ) or Reinforcement Learning . 
Moreover , based on the patient history ( i.e. previous medical 
condition , family history , medication , genetic ) the AI model 
can boost up its learning performance and predict future pain 
estimation earlier more efficiently . 
[ 0196 ] A system for providing EPD in neonates requires 
minimal hardware components , which includes a data read 
ing device ( e.g. , A / V recorder such as a camera and / or 
microphone , vital signs reader ) for visualizing and recording 
the neonate's facial expressions , voice , vital signs and body 
movement including arms / legs ( FIG . 23 ) . A facial expres 
sion classifier is used for evaluating the pain via the facial 
expressions , where the facial expression classifier produces 
a facial expression score , a voice classifier for evaluating the 
pain via the infant's crying , where the voice classifier 
produces a voice score based on the frequency and pitch of 
those inarticulate sounds ( e.g. , using speech signal analysis ) . 
A vital signs classifier evaluates the neonate's pain accord 
ing to its physical condition ( e.g. , heart rate , breathing rate , 
oxygen saturation , changes in cerebral deoxyhemoglobin 
concentration , etc. ) , using a vital signs classifier that pro 
duces a vital signs score . The system software includes a 
processor that runs a machine learning algorithm ( e.g. , 
parametric , non - parametric , optical flow , facial strain , local 
binary patterns , linear predictive coding , linear regression , 
neural network ) for processing images , videos , signals , 
and / or a combination thereof . The facial expression score , 
voice classifier score , body motions score , and vital signs 
score are combined / weighed to produce a total score for pain 
assessment . The system also includes an output device , e.g. , 
meter , LED indicator , for outputting the total score to NICU 
personnel for pain assessment . 
[ 0197 ] FIG . 23 shows an approach of future EPD tech 
nology . Multimodal data from NICU patient such as facial 
expression , body movement , crying sound , and physiologi 
cal signals can be used by Al algorithms ( i.e. computer 
vision , signal processing , and machine learning altogether ) 
to simultaneously assess pain and predict it before it occurs . 
[ 0198 ] As such , Al - based frameworks using continuous 
monitoring of multiple modalities could provide the neces 
sary tools for creating a time - window to pain onset . Such a 
time window could support safer , i.e. , non - addicting phar 
maceutical and non - pharmaceutical , interventions aimed at 
avoiding or minimizing damage to the neonate from both 
pain and opioid withdrawal . 
[ 0199 ] With reference to FIG . 23 , the machine learning 
based technology of the present invention utilizes various 
multimodal inputs from the Neonatal Intensive Care Unit 

( NICU ) or the Pediatric Intensive Care Unit ( PICU ) . As in 
the previously described embodiments , the proposed EPD 
system observes facial expression , crying sound , body 
movement , and different vital sign signals . 
[ 0200 ] In one particular embodiment , the N - PASS ( Neo 
natal Pain , Agitation , and Sedation Scale ) pain scale which 
considers crying / irritability , behavior / state , facial expres 
sion , extremities / tone , and vital signs ( heart rate , blood 
pressure , respiratory rate , and oxygen saturation ) of the 
babies is followed . The N - PASS pain scale also provides a 
score for sedation . The proposed EPD method provided by 
the present invention will use the machine learning - based 
solution to provide the continuous pain assessment of each 
modality and , based on the current assessments , it will 
predict the future pain signal continuously . 
[ 0201 ] With reference to FIG . 24 , in one embodiment , the 
system will use the N - PASS score provided by the NICU 
nurse to train the networks . It will generate the current pain 
assessment and will use the current pain objective assess 
ment to predict future pain objective assessment ( pain 
score ) . 
[ 0202 ] In a specific hardware embodiment , GoPro camera 
or equivalent camera will continuously observe the neonates 
or infants and record the video and audio signals of the 
babies ( facial expression and body movement ) . Different 
vital signs signals will also be collected via the camera 
followed by image processing techniques or directly from 
the medical electronic records . All of these signals will be 
passed to the EPD software and EPD will use its machine 
learning solution ( which is trained before ) to assess the 
current pain and predict the future pain signals . In the EPD 
software current and future pain monitoring signals will be 
shown continuously . 
[ 0203 ] The various embodiments of the system and 
method of the present invention provide continuous indi 
vidual pain objective assessment of each modality and based 
on the current assessment of each modality , the system will 
predict the future pain signal , in a continuous manner . 
[ 0204 ] Hardware and Software Infrastructure Examples 
[ 0205 ] The present invention may be embodied on various 
computing platforms that perform actions responsive to 
software - based instructions and most particularly on touch 
screen portable devices . The following provides an anteced 
ent basis for the information technology that may be utilized 
to enable the invention . 
[ 0206 ] The computer readable medium described in the 
claims below may be a computer readable signal medium or 
a computer readable storage medium . A computer readable 
storage medium may be , for example , but not limited to , an 
electronic , magnetic , optical , electromagnetic , infrared , or 
semiconductor system , apparatus , or device , or any suitable 
combination of the foregoing . More specific examples ( a 
non - exhaustive list ) of the computer readable storage 
medium would include the following : an electrical connec 
tion having one or more wires , a portable computer diskette , 
a hard disk , a random access memory ( RAM ) , a read - only 
memory ( ROM ) , an erasable programmable read - only 
memory ( EPROM or Flash memory ) , an optical fiber , a 
portable compact disc read - only memory ( CD - ROM ) , an 
optical storage device , a magnetic storage device , or any 
suitable combination of the foregoing . In the context of this 
document , a computer readable storage medium may be any 
non - transitory , tangible medium that can contain , or store a 
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program for use by or in connection with an instruction 
execution system , apparatus , or device . 
[ 0207 ] A computer readable signal medium may include a 
propagated data signal with computer readable program 
code embodied therein , for example , in baseband or as part 
of a carrier wave . Such a propagated signal may take any of 
a variety of forms , including , but not limited to , electro 
magnetic , optical , or any suitable combination thereof . A 
computer readable signal medium may be any computer 
readable medium that is not a computer readable storage 
medium and that can communicate , propagate , or transport 
a program for use by or in connection with an instruction 
execution system , apparatus , or device . 
[ 0208 ] Program code embodied on a computer readable 
medium may be transmitted using any appropriate medium , 
including but not limited to wireless , wire - line , optical fiber 
cable , radio frequency , etc. , or any suitable combination of 
the foregoing . Computer program code for carrying out 
operations for aspects of the present invention may be 
written in any combination of one or more programming 
languages , including an object oriented programming lan 
guage such as Java , C # , C ++ , Visual Basic or the like and 
conventional procedural programming languages , such as 
the “ C ” programming language or similar programming 
languages . 
[ 0209 ] Aspects of the present invention are described 
below with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) and computer 
program products according to embodiments of the inven 
tion . It will be understood that each block of the flowchart 
illustrations and / or block diagrams , and combinations of 
blocks in the flowchart illustrations and / or block diagrams , 
can be implemented by computer program instructions . 
These computer program instructions may be provided to a 
processor of a general purpose computer , special purpose 
computer , or other programmable data processing apparatus 
to produce a machine , such that the instructions , which 
execute via the processor of the computer or other program 
mable data processing apparatus , create means for imple 
menting the functions / acts specified in the flowchart and / or 
block diagram block or blocks . 
[ 0210 ] These computer program instructions may also be 
stored in a computer readable medium that can direct a 
computer , other programmable data processing apparatus , or 
other devices to function in a particular manner , such that the 
instructions stored in the computer readable medium pro 
duce an article of manufacture including instructions which 
implement the function / act specified in the flowchart and / or 
block diagram block or blocks . 
[ 0211 ] The computer program instructions may also be 
loaded onto a computer , other programmable data process 
ing apparatus , or other devices to cause a series of opera 
tional steps to be performed on the computer , other pro 
grammable apparatus or other devices to produce a 
computer implemented process such that the instructions 
which execute on the computer or other programmable 
apparatus provide processes for implementing the functions / 
acts specified in the flowchart and / or block diagram block or 
blocks . 
[ 0212 ] It should be noted that when referenced , an “ end 
user ” is an operator of the software as opposed to a devel 
oper or author who modifies the underlying source code of 
the software . For security purposes , authentication means 

identifying the particular user while authorization defines 
what procedures and functions that user is permitted to 
execute . 
[ 0213 ] Glossary of Claim Terms : 
[ 0214 ] A / V recorder : This term is used herein to refer to 
a device that receives audio and / or video data . Examples 
include , but are not limited to , video cameras , sound record 
ers , etc. 
[ 0215 ] Arousal state : This term is used herein to refer to 
the condition of the subject's physiological alertness , wake 
fulness , and attentiveness . 
[ 0216 ] Behavior state : This term is used herein to refer to 
the condition or pattern of the subject's movements or 
conduct , and / or the subject's reactions or behaviors during 
a stimulus . 
[ 0217 ] Body movement classifier : This term is used herein 
to refer to a module of the system that analyzes and classifies 
the physical motions of the subject's body into different 
patterns . 
[ 0218 ] Body movement score : This term is used herein to 
refer to a value given to the subject's spatial motions upon 
an automated analysis of those motions , where the score is 
an indicator of pain felt by the subject . 
[ 0219 ] Data reading device : This term is used herein to 
refer to any device that is capable of receiving data in the 
form of audio , video , body measurements , and other pieces 
of relevant data . 
[ 0220 ] Digital mask : This term is used herein to refer to a 
digital capture of landmarks on the subject's face . For 
example , the mask can detect the subject's nose , thus 
" capturing ” the nose , and then can be expanded to include 
the subject's eyes . 
[ 0221 ] Expression recognition : This term is used herein to 
refer to an identification or observation of the subject's 
facial motions . 
[ 0222 ] Expression segmentation : This term is used herein 
to refer to separation out the expression ( s ) on a subject's 
face by capturing the optical strain corresponding to elastic 
distortions of the facial skin tissue . 
[ 0223 ] Extremities tone : This term is used herein to refer 
to the general condition of the subject's arms and legs . For 
example , the subject's arms / legs can be stretched out and 
tight , flexed , curled up , relaxed , etc. 
[ 0224 ] Facial detection : This term is used herein to refer to 
computer technology that is capable of recognizing or 
identifying the subject's face from digital images or video . 
[ 0225 ] Facial expression classifier : This term is used 
herein to refer to a module of the system that analyzes the 
facial movements / motions of the subject . 
[ 0226 ] Facial expression score : This term is used herein to 
refer to a value given to the subject's facial movements / 
motions upon an automated analysis of those movements / 
motions , where the score is an indicator of pain felt by the 
subject . 
[ 0227 ] Facial expressions : This term is used herein to refer 
to any movement or motion of the muscles beneath the skin 
of the face of the subject . 
[ 0228 ] Facial strain : This term is used herein to refer to the 
tightness of the muscles of the subject's face . 
[ 0229 ] Frequency - based features : This term is used herein 
to refer to the characteristics of sounds that relate to the 
frequency of those sounds , so that the characteristics can be 
extracted and analyzed . 
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[ 0230 ] Inarticulate sounds : This term is used herein to 
refer to noises made by the subject , where the noises are not 
expressed in normal words / language , such that there is no 
immediate clarity of the message based on the noises made . 
[ 0231 ] Landmarks : This term is used herein to refer to 
recognizable features on the subject's face . An example is 
the subject's nose , perhaps because it protrudes out of the 
face . 
[ 0232 ] Machine learning algorithm : This term is used 
herein to refer to the function behind recognizing particular 
patterns and applying artificial intelligence to make predic 
tions from a given set of data . 
[ 0233 ] Motions corresponding to pain : This term is used 
herein to refer to spatial movement of the subject's body , in 
particular the subject's extremities , 
[ 0234 ] Output device : This term is used herein to refer to 
any apparatus that can transmit a particular finding , conclu 
sion , or data to a user or operator thereof . 
[ 0235 ] Overall strain magnitude : This term is used herein 
to refer to the level or extent of tightness of the muscles of 
the subject's face . 
[ 0236 ] Pain intensity : This term is used herein to refer to 
the strength of an unpleasant sensation experienced by an 
individual or subject . 
[ 0237 ] Peak detector : This term is used herein to refer to 
a function that segments the subject's facial expressions by 
finding the points of maximum strain . 
[ 0238 ] Physical condition : This term is used herein to refer 
to the state of the subject body's basic functions . Examples 
include , but are not limited to , heart rate , respiratory rate , 
oxygen saturation , temperature , etc. 
[ 0239 ] Subject that is incapable of clearly orally commu 
nicating said pain intensity or that is capable of communi 
cating said pain intensity through only a behavioral indica 
tor : 
[ 0240 ] This term is used herein to refer to an individual 
who cannot physically speak or otherwise communicate pain 
in a manner that is absolutely clear to another individual . For 
example , an infant cannot speak or otherwise clearly com 
municate pain , other than by using behavior , such as body 
motions , vital signs , crying , etc. 
[ 0241 ] Vital signs classifier : This term is used herein to 
refer to a module of the system that analyzes the physical 
condition of the subject . 
[ 0242 ] Vital signs reader : This term is used herein to refer 
to any device that is capable of receiving data about vital 
signs of a subject or individual . 
[ 0243 ] Vital signs score : This term is used herein to refer 
to a value given to the subject's physical condition upon an 
automated analysis of that physical condition , where the 
score is an indicator of pain felt by the subject . 
[ 0244 ] Voice classifier : This term is used herein to refer to 
a module of the system that analyzes the inarticulate sounds 
of the subject . 
[ 0245 ] Voice score : This term is used herein to refer to a 
value given to the subject's inarticulate sounds upon an 
automated analysis of those sounds , where the score is an 
indicator of pain felt by the subject . 
[ 0246 ] The advantages set forth above , and those made 
apparent from the foregoing description , are efficiently 
attained . Since certain changes may be made in the above 
construction without departing from the scope of the inven 
tion , it is intended that all matters contained in the foregoing 

description or shown in the accompanying drawings shall be 
interpreted as illustrative and not in a limiting sense . 
[ 0247 ] It is also to be understood that the following claims 
are intended to cover all of the generic and specific features 
of the invention herein described , and all statements of the 
scope of the invention that , as a matter of language , might 
be said to fall therebetween . 
What is claimed is : 
1. A system for predicting future pain that may be 

experienced by of a subject , the system comprising : 
an audio / video ( AV ) recorder for recording video of 

facial expressions and body movements of a subject 
and for recording audio of sounds made by the subject ; 

a vital signs reader to record vital signs of the subject ; 
a facial expression classifier for evaluating the facial 

expressions of the subject recorded by the A / V 
recorder , the facial expression classifier producing a 
facial expression pain score based on the facial expres 
sions of the subject ; 

a body movement classifier for evaluating the body move 
ments of the subject recorded by the A / V recorder , the 
body movement classifier producing a body movement 
pain score based on the body movements of the subject ; 

a voice classifier for evaluating the sounds made by the 
subject recorded by the A / V recorder , the voice clas 
sifier producing a voice pain score based on the sounds 
made by the subject ; 

a vital signs classifier for evaluating the vital signs of the 
subject recorded by the vital signs reader , the vital signs 
classifier producing a vital signs pain score based on 
the vital signs of the subject ; 

a processor running a machine learning algorithm for 
processing the facial expression pain score , the body 
movement pain score , the voice pain score and the vital 
signs pain score of the subject , and for combining the 
facial expression pain score , the body movement pain 
score , the voice pain score , and the vital signs pain 
score to produce a future pain probability signal , 
wherein the future pain probability signal describes a 
probability that the subject will experience pain within 
a duration of time ; and 

an output device for outputting the future pain probability 
signal . 

2. The system as in claim 1 , wherein the pain experienced 
by the subject exceeds a predetermined threshold during the 
duration of time . 

3. The system as in claim 2 , wherein a therapy or 
intervention is indicated by the future pain probability signal 
exceeding the predetermined pain threshold . 

4. The system as in claim 1 , wherein the processor 
running the machine learning algorithm is trained based 
upon an N - PASS ( Neonatal Pain , Agitation , and Sedation 
Scale ) pain scale . 

5. The system as in claim 1. wherein the A / V recorder 
comprises a video camera , and a microphone . 

6. The system as in claim 1 , wherein the motions of the 
subject indicate one or more of a behavior state , an arousal 
state and an extremities tone . 

7. The system as in claim 1 , wherein the vital signs 
includes a heart rate of said subject . 

8. The system as in claim 1 , wherein the subject is an 
infant . 
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9. The system as in claim 1 , wherein the facial expression 
classifier evaluates the facial expressions of the subject 
based on facial strain of the subject by : 

generating the facial strain for a plurality of facial expres 
sions of the subject ; and 

training k Nearest - Neighbor ( KNN ) and support vector 
machine ( SVM ) to classify facial expressions of the 
subject as pain or no - pain . 

10. The system as in claim 1 , further comprising : 
the facial expression classifier segmenting the subject's 

face into regions in order to provide the facial expres 
sion score , and where one or more regions are 
obstructed or occluded ; and 

the facial expression classifier performing facial detection 
where the face of the subject is detected , performing 
expression segmentation where the detected subjects 
face is segmented into regions , and performing expres 
sion recognition of the segmented regions to detect pain 
of the subject . 

11. The system as in claim 10 , wherein performing the 
facial detection further comprises , detecting landmarks on 
the subject's face to detect the subject's face , wherein the 
landmarks includes a nose on the subject's face , and wherein 
a digital mask is expanded around the nose to include eyes 
and a surr urrounding area of the subject's face . 

12. The system as in claim 11 , further comprising : 
training the facial expression classifier using positive 

images including the landmarks and negative images 
not including the landmarks . 

13. The system as in claim 9 , wherein performing expres 
sion recognition includes : 

generating an optical flow vector for each region of the 
subject's face , wherein the optical flow vector is used 
to estimate optical strain for each region ; 

summing the estimated optical strains for each region to 
generate an overall strain magnitude , wherein the over 
all strain magnitude is related to the facial expressions 
that can indicate future pain that may be experienced by 
the subject . 

14. The system as in claim 9 , wherein performing expres 
sion recognition includes : 

applying a peak detector to detect points of maximum 
strain , wherein the maximum strain is related to the 
facial expressions that can indicate future pain that may 
be experienced by the subject . 

15. The system as in claim 1 , wherein the subject is an 
infant , and wherein the sounds are crying by the infant . 

16. The system as in claim 15 , wherein speech signal 
analysis is used to recognize emotions expressed in the 
crying by the infant . 

17. The system as in claim 1 , wherein frequency - based 
features are extracted from the sounds to represent audio 
segments that are used to train the voice classifier . 

18. The system as in claim 1 , further comprising : 
the vital signs of the subject further include breathing rate 

and oxygen saturation in blood of the subject . 
19. A method for predicting future pain that may be 

experienced by a subject , the system comprising : 
recording , with an audio / video ( A / V ) recorder , facial 

expressions , sounds , and body movements of a subject , 
wherein said A / V recorder comprises a video camera 
for recording video of the facial expressions and body 
movements and a microphone for recording sounds of 
the subject ; 

recording , with a vital signs reader , vital signs of said 
subject ; 

evaluating , with a facial expression classifier , the facial 
expressions of the subject recorded by the audio / video 
recorder , the facial expression classifier producing a 
facial expression pain score based on the facial expres 
sions of the subject ; 

evaluating , with a voice classifier , the sounds made by the 
subject recorded by the audio / video recorder , the voice 
classifier producing a voice pain score based on the 
sounds made by the subject ; 

evaluating , with a vital signs classifier , the vital signs of 
the subject , the vital signals classifier producing a vital 
signs pain score based on the vital signs recorded by the 
vital signs reader ; 

evaluating , with a body movement classifier , the body 
movements of the subject recorded by the A / V recorder , 
the body movement classifier producing a body move 
ment pain score based on the body movements of the 
subject ; 

processing , by a processor running a machine learning 
algorithm , the facial expression pain score , the voice 
pain score and the vital signs pain score of the subject 
and combining the facial expression pain score , the 
voice pain score , the vital signs pain score and the body 
movement pain score to produce a future pain prob 
ability signal , wherein the future pain probability signal 
describes a probability that the subject will experience 
pain within a duration of time . 

20. The method as in claim 19 , wherein the pain experi 
enced by the subject exceeds a predetermined threshold 
during the duration of time . 


