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METHOD AND APPARATUS FOR PERFORMING WAVEFIELD PREDICTIONS
BY USING WAVEFRONT ESTIMATIONS

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a Non-Provisional Application claiming priority to U.S.
Provisional Patent Application No. 63/241,158, entitled “Method and Apparatus for
Performing Wavefield Predictions By Using Wavefront Estimations™, filed September 7, 2021,

which is hereby incorporated herein by reference in its entirety for all purposes.

BACKGROUND
[0002] The present disclosure relates generally to performing wavefield predictions by
using wavefront estimations, and more specifically, to performing predictions of Green’s
functions by using machine learning.
[0003] This section is intended to introduce the reader to various aspects of art that may
be related to various aspects of the present disclosure, which are described and/or claimed
below. This discussion is believed to be helpful in providing the reader with background
information to facilitate a better understanding of the various aspects of the present disclosure.
Accordingly, it should be understood that these statements are to be read in this light, and not
as admissions of prior art.
[0004] Seismic data can be data that is collected in the course of performing a seismic
survey. A seismic survey includes generating an image or map of a subsurface region of the
Earth by sending sound energy down into the ground and recording the reflected sound energy
that returns from the geological layers within the subsurface region. During a seismic survey,
an energy source is placed at various locations on or above the surface region of the Earth,
which may include hydrocarbon deposits. Each time the source is activated, the source
generates a seismic (e.g., sound wave) signal that travels downward through the Earth, is
reflected, and, upon its return, is recorded using one or more receivers disposed on or above
the subsurface region of the Earth. The seismic data recorded by the receivers may then be
used to create an image or profile of the corresponding subsurface region.
[0005] Upon creation of an image or profile of a subsurface region, these images and/or

profiles can be used to interpret characteristics of a formation.

SUMMARY
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[0006] A summary of certain embodiments disclosed herein is set forth below. It
should be understood that these aspects are presented merely to provide the reader with a brief
summary of these certain embodiments and that these aspects are not intended to limit the scope
of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be
set forth below.

[0007] A Green’s function (G) can generally be considered to be a wavefield solution
of an equation LG = §, where L can be alinear differential operator, and where 6 can be a Dirac
delta function. The Dirac delta function can be a tool for modelling the physics of a point
particle, for example. Green’s functions are used as basis functions for building a wavefield.
The process of building a wavefield is necessary to perform seismic modeling and inversion.
[0008] Certain applications are implemented/obtained from a seismic response, where
the seismic response is calculated based on a utilized velocity model, a given source
information, and a given receiver information. These applications include applications related
to seismic imaging, Full Waveform Inversion (FWI), inversion, illumination, and some post-
migration processing, for example. In order for the above-described applications to perform
their functions, the applications may need to determine and to utilize the correct/applicable
Green’s functions. The correct Green’s functions can generally be the Green’s functions that
are applicable to the relevant seismic area of interest.

[0009] Further, in order to properly perform their functions, the applications need to
repeatedly determine and need to repeatedly utilize the correct Green’s functions. The process
of determining the correct Green’s functions can be computationally costly. In view of the
difficulties of determining the correct Green’s function, one or more embodiments are directed
to a machine learning system that performs the function of learning the correct/applicable
Green’s functions. The machine learning system can be a deep-learming system, for example.
[0010] One or more embodiments of the present invention can generate an estimated
wavefront, and one or more embodiments use the estimated wavefront as a guide image, as
described in more detail below. One or more embodiments inputs the guide image into the
machine learning system, and the machine learning system can predict Green’s functions based
on the received guide image. In other words, one or more embodiments train the machine
learning system to predict/identify Green’s functions based on an inputted guide image.
[0011] One or more embodiments can generate a guide image based on velocity model
information and/or source wave information of a certain seismic area of interest, for example.
By generating a guide image (based on velocity model information and/or source wave

information), one or more embodiments of the present invention can transform the velocity
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model information and source wave information into a pattern that can be
understood/processed by the machine learning systems. As described above, the estimated
waveform serves as a guide image, and use of the guide image can help improve the training
of the machine learning (ML) system. With this guide image (i.e., estimated waveform) as an
ML input, the neural network underpinning the ML system can quickly provide the
output/prediction, which is the applicable Green’s function(s) that is determined by the ML
system based on the input.

[0012] In view of the above, in contrast to other approaches that use inputs (to a ML
system) that are expressed in the frequency domain, one or more embodiments of the present
invention can use inputs that are expressed in the time domain. As such, in contrast to the other
approaches, the present approach does not require wavefield calculations to be performed
beforehand.

[0013] With one or more embodiments, a method can include receiving at least one
wavefield estimation. The method can also include generating an output via at least one
machine learning system. The machine learning system can be a deep-learning processor, a
classification processor, and/or segmentation processor based on the received wavefield
estimation. The method can also include comparing the output of the ML system with a desired
output. The method can also include modifying the ML system so that the output corresponds
to the desired output, where the desired output can be an applicable/correct Green’s function
that corresponds to the input.

[0014] With one or more embodiments, a method can include receiving at least one
wavefield estimation. The received wavefield estimation can be considered to be a guide
image. The method can also include generating an output via the at least one trained ML system
based on the received wavefield estimation. The output can be a predicted/determined Green’s

function, for example.

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Various aspects of this disclosure may be better understood upon reading the
following detailed description and upon reference to the drawings in which:
[0016] FIG. 1 illustrates a flow chart of various processes that may be performed based
on analysis of seismic data acquired via a seismic survey system;
[0017] FIG. 2 illustrates a marine survey system in a marine environment;

[0018] FIG. 3 illustrates a land survey system in a land environment;
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[0019] FIG. 4 illustrates a computing system that may perform operations described
herein based on data acquired via the marine survey system of FIG. 2 and/or the land survey

system of FIG. 3;

[0020] FIG. 5 illustrates a first technique to generate a Green’s function;

[0021] FIG. 6 illustrates a process in accordance with one or more embodiments;
[0022] FIG. 7 illustrates another process in accordance with one or more embodiments;
[0023] FIG. 8 illustrates a flow chart of a method of one or more embodiments; and
[0024] FIG. 9 illustrates a flow chart of a method of one or more embodiments.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

[0025] One or more specific embodiments will be described below. In an effort to
provide a concise description of these embodiments, not all features of an actual
implementation are described in the specification. It should be appreciated that in the
development of any such actual implementation, as in any engineering or design project,
numerous implementation-specific decisions must be made to achieve the developers’ specific
goals, such as compliance with system-related and business-related constraints, which may
vary from one implementation to another. Moreover, it should be appreciated that such a
development effort might be complex and time consuming, but would nevertheless be a routine
undertaking of design, fabrication, and manufacture for those of ordinary skill having the
benefit of this disclosure.

[0026] By way of introduction, seismic data may be acquired in the course of
implementing a variety of seismic survey systems and techniques, two of which are discussed
with respect to FIG. 2 and FIG. 3. Regardless of the seismic data gathering technique utilized,
after the seismic data is acquired, a computing system may analyze the acquired seismic data
and may use the results of the seismic data analysis (e.g., seismogram, map of geological
formations, etc.) to perform various operations within the hydrocarbon exploration and
production industries. For instance, illustrates a flow chart of a method 10 that details various
processes that may be undertaken based on the analysis of the acquired seismic data. Although
the method 10 is described in a particular order, it should be noted that the method 10 may be
performed in any suitable order.

[0027] Referring now to FIG. 1, at block 12, locations and properties of hydrocarbon
deposits within a subsurface region of the Earth associated with the respective seismic survey
may be determined based on the analyzed seismic data. In one embodiment, the seismic data

acquired may be analyzed to generate a map or profile that illustrates various geological
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formations within the subsurface region. Based on the identified locations and properties of
the hydrocarbon deposits, at block 14, certain positions or parts of the subsurface region may
be explored. That is, hydrocarbon exploration organizations may use the locations of the
hydrocarbon deposits to determine locations at the surface of the subsurface region to drill into
the Earth. As such, the hydrocarbon exploration organizations may use the locations and
properties of the hydrocarbon deposits and the associated overburdens to determine a path
along which to drill into the Earth, how to drill into the Earth, and the like.

[0028] After exploration equipment has been placed within the subsurface region, at
block 16, the hydrocarbons that are stored in the hydrocarbon deposits may be produced via
natural flowing wells, artificial lift wells, and the like. At block 18, the produced hydrocarbons
may be transported to refineries and the like via transport vehicles, pipelines, and the like. At
block 20, the produced hydrocarbons may be processed according to various refining
procedures to develop different products using the hydrocarbons.

[0029] It should be noted that the processes discussed with regard to the method 10
may include other suitable processes that may be based on the locations and properties of
hydrocarbon deposits as indicated in the seismic data acquired via one or more seismic survey.
As such, it should be understood that the processes described above are not intended to depict
an exhaustive list of processes that may be performed after determining the locations and
properties of hydrocarbon deposits within the subsurface region.

[0030] With the foregoing in mind, FIG. 2 is a schematic diagram of a marine survey
system 22 (e.g., for use in conjunction with block 12 of FIG. 1) that may be employed to acquire
seismic data (e.g., waveforms) regarding a subsurface region of the Earth in a marine
environment. Generally, a marine seismic survey using the marine survey system 22 may be
conducted in an ocean 24 or other body of water over a subsurface region 26 of the Earth that
lies beneath a seafloor 28.

[0031] The marine survey system 22 may include a vessel 30, one or more seismic
sources 32, a (seismic) streamer 34, one or more (seismic) receivers 36, and/or other equipment
that may assist in acquiring seismic images representative of geological formations within a
subsurface region 26 of the Earth. The vessel 30 may tow the seismic source(s) 32 (e.g., an air
gun array) that may produce energy, such as sound waves (e.g., seismic waveforms), that is
directed at a seafloor 28. The vessel 30 may also tow the streamer 34 having a receiver 36
(e.g., hydrophones) that may acquire seismic waveforms that represent the energy output by
the seismic source(s) 32 subsequent to being reflected off of various geological formations

(e.g., salt domes, faults, folds, etc.) within the subsurface region 26. Additionally, although the
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description of the marine survey system 22 is described with one seismic source 32 (represented
in FIG. 2 as an air gun array) and one receiver 36 (represented in FIG. 2 as a set of
hydrophones), it should be noted that the marine survey system 22 may include multiple
seismic sources 32 and multiple receivers 36. In the same manner, although the above
descriptions of the marine survey system 22 is described with one seismic streamer 34, it should
be noted that the marine survey system 22 may include multiple streamers similar to streamer
34. In addition, additional vessels 30 may include additional seismic source(s) 32, streamer(s)
34, and the like to perform the operations of the marine survey system 22.

[0032] FIG. 31is ablock diagram of aland survey system 38 (e.g., for use in conjunction
with block 12 of FIG. 1) that may be employed to obtain information regarding the subsurface
region 26 of the Earth in a non-marine environment. The land survey system 38 may include
a landbased seismic source 40 and land-based receiver 44. In some embodiments, the land
survey system 38 may include multiple land-based seismic sources 40 and one or more land-
based receivers 44 and 46. Indeed, for discussion purposes, the land survey system 38 includes
a land-based seismic source 40 and two land-based receivers 44 and 46. The land-based
seismic source 40 (e.g., seismic vibrator) that may be disposed on a surface 42 of the Earth
above the subsurface region 26 of interest. The land-based seismic source 40 may produce
energy (e.g., sound waves, seismic waveforms) that is directed at the subsurface region 26 of
the Earth. Upon reaching various geological formations (e.g., salt domes, faults, folds) within
the subsurface region 26 the energy output by the land-based seismic source 40 may be
reflected off of the geological formations and acquired or recorded by one or more land-based
receivers (e.g., 44 and 46).

[0033] In some embodiments, the land-based receivers 44 and 46 may be dispersed
across the surface 42 of the Earth to form a grid-like pattern. As such, each land-based receiver
44 or 46 may receive a reflected seismic waveform in response to energy being directed at the
subsurface region 26 via the seismic source 40. In some cases, one seismic waveform produced
by the seismic source 40 may be reflected off of different geological formations and received
by different receivers. For example, as shown in FIG. 3, the seismic source 40 may output
energy that may be directed at the subsurface region 26 as seismic waveform 48. A first
receiver 44 may receive the reflection of the seismic waveform 48 off of one geological
formation and a second receiver 46 may receive the reflection of the seismic waveform 48 off
of a different geological formation. As such, the first receiver 44 may receive a reflected

seismic waveform 50 and the second receiver 46 may receive areflected seismic waveform 52.
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[0034] Regardless of how the seismic data is acquired, a computing system (e.g., for
use in conjunction with block 12 of FIG. 1) may analyze the seismic waveforms acquired by
the receivers 36, 44, 46 to determine seismic information regarding the geological structure,
the location and property of hydrocarbon deposits, and the like within the subsurface region
26. FIG. 4 is a block diagram of an example of such a computing system 60 that may perform
various data analysis operations to analyze the seismic data acquired by the receivers 36, 44,
46 to determine the structure and/or predict seismic properties of the geological formations
within the subsurface region 26.

[0035] Referring now to FIG. 4, the computing system 60 may include a
communication component 62, a processor 64, memory 66, storage 68, input/output (I/0O) ports
70, and a display 72. In some embodiments, the computing system 60 may omit one or more
of the display 72, the communication component 62, and/or the input/output (I/0) ports 70.
The communication component 62 may be a wireless or wired communication component that
may facilitate communication between the receivers 36, 44, 46, one or more databases 74, other
computing devices, and/or other communication capable devices. In one embodiment, the
computing system 60 may receive receiver data 76 (e.g., seismic data, seismograms, etc.) via
a network component, the database 74, or the like. The processor 64 of the computing system
60 may analyze or process the receiver data 76 to ascertain various features regarding
geological formations within the subsurface region 26 of the Earth.

[0036] The processor 64 may be any type of computer processor or microprocessor
capable of executing computer-executable code. The processor 64 may also include multiple
processors that may perform the operations described below. The memory 66 and the storage
68 may be any suitable articles of manufacture that can serve as media to store processor-
executable code, data, or the like. These articles of manufacture may represent computer-
readable media (e.g., any suitable form of memory or storage) that may store the processor-
executable code used by the processor 64 to perform the presently disclosed techniques.
Generally, the processor 64 may execute software applications that include programs that
process seismic data acquired via receivers of a seismic survey according to the embodiments
described herein.

[0037] With one or more embodiments, processor 64 can instantiate or operate in
conjunction with a deep-learning processor, a neural-network processor, a classification
processor, and/or segmentation processors. With one or more embodiments, the processors
can be linear classifiers (such as, for example, Multi-Layer Perception classifiers), support

vector classifiers, and/or quadratic classifiers, for example. With another embodiment, the
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classification and/or segmentation processors can be implemented by using neural networks.
The one or more neural networks can be software-implemented or hardware-implemented.
One or more of the neural networks can be a convolutional neural network. With one or more
embodiments, the classification and/or segmentation processors can perform image
segmentation.

(B34} With one or wore embodiments, these classification and/or segmentation
processors can provide responses to different mputs. The process by whuch a classification
and/or segmentation processor leams and responds to differerd mputs may be generally referrad
1o as a “iraining” process,

[0039] The memory 66 and the storage 68 may also be used to store the data, analysis
of the data, the software applications, and the like. The memory 66 and the storage 68 may
represent nontransitory computer-readable media (e.g., any suitable form of memory or
storage) that may store the processor-executable code used by the processor 64 to perform
various techniques described herein. It should be noted that non-transitory merely indicates
that the media is tangible and not a signal.

[0040] The 1/0 ports 70 may be interfaces that may couple to other peripheral
components such as input devices (e.g., keyboard, mouse), sensors, input/output (I/O) modules,
and the like. 1/0 ports 70 may enable the computing system 60 to communicate with the other
devices in the marine survey system 22, the land survey system 38, or the like via the I/O ports
70.

[0041] The display 72 may depict visualizations associated with software or executable
code being processed by the processor 64. In one embodiment, the display 72 may be a touch
display capable of receiving inputs from a user of the computing system 60. The display 72
may also be used to view and analyze results of the analysis of the acquired seismic data to
determine the geological formations within the subsurface region 26, the location and property
of hydrocarbon deposits within the subsurface region 26, predictions of seismic properties
associated with one or more wells in the subsurface region 26, and the like. The display 72
may be any suitable type of display, such as aliquid crystal display (LCD), plasma display, or
an organic light emitting diode (OLED) display, for example. In addition to depicting the
visualization described herein via the display 72, it should be noted that the computing system
60 may also depict the visualization via other tangible elements, such as paper (e.g.. via
printing) and the like.

[0042] With the foregoing in mind, the present techniques described herein may also

be performed using a supercomputer that employs multiple computing systems 60, a cloud-
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computing system, or the like to distribute processes to be performed across multiple
computing systems 60. In this case, each computing system 60 operating as part of a super
computer may not include each component listed as part of the computing system 60. For
example, each computing system 60 may not include the display 72 since multiple displays 72
may not be useful to for a supercomputer designed to continuously process seismic data.
[0043] After performing various types of seismic data processing, the computing
system 60 may store the results of the analysis in one or more databases 74. The databases 74
may be communicatively coupled to a network that may transmit and receive data to and from
the computing system 60 via the communication component 62. In addition, the databases 74
may store information regarding the subsurface region 26, such as previous seismograms,
geological sample data, seismic images, and the like regarding the subsurface region 26.
[0044] Although the components described above have been discussed with regard to
the computing system 60, it should be noted that similar components may make up the
computing system 60. Moreover, the computing system 60 may also be part of the marine
survey system 22 or the land survey system 38, and thus may monitor and control certain
operations of the seismic sources 32 or 40, the receivers 36, 44, 46, and the like. Further, it
should be noted that the listed components are provided as example components and the
embodiments described herein are not to be limited to the components described with reference
to FIG. 4.

[0045] In some embodiments, the computing system 60 may generate a two-
dimensional representation or a three-dimensional representation of the subsurface region 26
based on the seismic data received via the receivers mentioned above. Additionally, seismic
data associated with multiple source/receiver combinations may be combined to create a near
continuous profile of the subsurface region 26 that can extend for some distance. In a two-
dimensional (2-D) seismic survey, the receiver locations may be placed along a single line,
whereas in a three-dimensional (3-D) survey the receiver locations may be distributed across
the surface in a grid pattern. As such, a 2-D seismic survey may provide a cross sectional
picture (vertical slice) of the Earth layers as they exist directly beneath the recording locations.
A 3-D seismic survey, on the other hand, may create a data “cube” or volume that may
correspond to a 3-D picture of the subsurface region 26.

[0046] In addition, a 4-D (or time-lapse) seismic survey may include seismic data
acquired during a 3-D survey at multiple times. Using the different seismic images acquired
at different times, the computing system 60 may compare the two images to identify changes

in the subsurface region 26.
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[0047] In any case, a seismic survey may be composed of a very large number of
individual seismic recordings or traces. As such, the computing system 60 may be employed
to analyze the acquired seismic data to obtain an image representative of the subsurface region
26 and to determine locations and properties of hydrocarbon deposits. To that end, a variety
of seismic data processing algorithms may be used to remove noise from the acquired seismic
data, migrate the pre-processed seismic data, identify shifts between multiple seismic images,
align multiple seismic images, and the like.

[0048] After the computing system 60 analyzes the acquired seismic data, the results
of the seismic data analysis (e.g., seismogram, seismic images, map of geological formations,
etc.) may be used to perform various operations within the hydrocarbon exploration and
production industries. For instance, as described above, the acquired seismic data may be used
to perform the method 10 of FIG. 1 that details various processes that may be undertaken based
on the analysis of the acquired seismic data.

[0049] In some embodiments, the results of the seismic data analysis may be generated
in conjunction with a seismic processing scheme that includes seismic data collection, editing
of the seismic data, initial processing of the seismic data, signal processing, conditioning, and
imaging (which may, for example, include production of imaged sections or volumes (which
may, for example, include production of imaged sections or volumes) in prior to any
interpretation of the seismic data, any further image enhancement consistent with the
exploration objectives desired, generation of attributes from the processed seismic data,
reinterpretation of the seismic data as needed, and determination and/or generation of a drilling
prospect or other seismic survey applications. As a result, location of hydrocarbons within a
subsurface region 26 may be identified. Techniques for detecting subsurface features from the
seismic data/images will be described in greater detail below.

[0050] If the machine learning system uses a classification and/or a segmentation
processor, the classification and/or segmentation processor can be a Multi-Layer Perceptron
(MLP) classifier. Although one or more embodiments can use a MLP classifier, other
embodiments can use other types of classifiers such as, for example, other linear classifiers,
support vector classifiers, quadratic classifiers. The classification and/or segmentation
processor can also be implemented using convolutional neural networks (CNNs), and/or
recurrent neural networks (RNN5s), etc.

[0051] As described previously, the computing system 60 having the processor 64 may
be any type of computer processor or microprocessor capable of executing computer-

executable code and the processor 64 can instantiate or operate in conjunction with a deep-
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learning processor, a neural-network processor, a classification processor, and/or segmentation
processors to perform the operations described in greater detail below.

[0052] To use seismic data to produce images, typically seismic migration is utilized
to relocate events (e.g., in space or time) to the location that the event occurred in a subsurface
region 26 of the Earth rather than at the location that it was recorded at the surface (e.g., the
surface 42 of the Earth or marine surface thereof) so as to generate a more accurate image of
the subsurface region 26 of the Earth. In seismic migration, for example, reverse time
migration (RTM), migration operators (i.e., fundamental solutions to the wave equation) are
utilized in the process of generating seismic images to generate a wavefield (e.g., a wavefield
from a point source).

[0053] A Green’s function (G) can generally be considered to be a wavefield solution
of an equation LG = §, where L can be alinear differential operator, and where 6 can be a Dirac
delta function. In this manner, Green’s functions are wavefield solutions for a delta point
source. In this manner, Green’s functions are used as basis functions for building a wavefield,
whereby the process of building a wavefield is allows for performance of seismic modeling
and inversion.

[0054] Indeed, wavefields can be decomposed by Green’s functions. Accordingly,
once a Green’s function is determined, ware propagation can be predicted. Applications in, for
example, seismic imaging, full waveform inversion (FWI), inversion, illumination, and various
post-migration processing processes utilize seismic responses from a velocity model given
source and receiver information. Each of these instances benefit from Green’s functions.
[0055] One approach for applying a Green’s function is to utilize an approximate
expression for the wavefield solution. This can be based on, for example, the travel time of
one or more waves. However, this approach can have problems in the accuracy of the result
generated. Another approach for applying a Green’s function as a waveform solution includes
solving a partial differential equation to simulate the wavefield. However, this technique can
be computationally costly and difficult to recalculate if one or more input parameters are
altered.

[0056] A further approach may include of using machine learning, deep learning,
and/or neural networks to learn Green’s functions as performed in a frequency domain (e.g.,
attempts to analyze inputs that are in the frequency domain) while still another approach can
include learning a time step insights gained by previous time steps. However, these approaches
for determining the correct Green’s functions can be computationally costly and again can be

difficult to modify when desired changes to input parameters are present. Other approaches
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include the calculation of wavefields for a few time steps beforehand, while another technique
involves attempts to learn (e.g., determine) wavefield/Green’s functions directly from a
velocity model in conjunction with the aforementioned machine learning, deep learning, and/or
neural networks to learn Green’s functions. This approach is illustrated in FIG. 5.

[0057] Referring to FIG. 5, the approach of FIG. 5 utilizes data of a source wavelet 510
and a velocity model 511 (e.g., a numerical representation of the speed that waved propagate)
as inputs to a machine learning system 520 (e.g., a neural network) where the machine learning
system 520 outputs (i.e., directly produces) a predicted/determined Green’s function 530 (i.e.,
the solution of the wave equation) based only on the inputs of the data of the source wavelet
510 and the velocity model 511. As illustrated, the velocity model 511 includes illustration of
a source 532 (e.g., a seismic source 32) as well as an illustration of a direction of a wave 534
generated by the source 532. Moreover, it should be understood that the machine learning
system 520 can be software-implemented or hardware-implemented. Furthermoore, the process
by which the machine learning system 520 ieamns and responds to different inputs may be
senerally referred to as a “training” process.

[0058] The process undertaken by the machine learning system 520 in FIG. 5 may be
computationally costly, and the machine learning system 520 can output results that are not
accurate/correct. Accordingly, in some embodiments, introduction of at least one additional
input to the machine learning system 520 may be beneficial.

[0059] Thus, in contrast to the approach outlined above with respect to FIG. 5, FIG. 6
illustrates a process in accordance with one or more embodiments in which additional
information is introduced into the process outlined above with respect to FIG. 5. For example,
FIG. 6 illustrates the technique of generating an estimated wavefront 612 based on a velocity
model 610, and one or more embodiments use the estimated wavefront 612 as an input guide
image 620. The estimated wavefront 612 can be based on a determined wavefront of the
velocity model 610. For example, this can be generated using a straight line travel time (i.e.,
represented as a straight path from the source 532 to a receiver, e.g., a respective one of
receivers 36, 44, 46 and by summing the delays, i.e. the travel times, of the waves along that
straight path. However, other techniques can be utilized, for example, the travel time of a wave
to a given point (e.g., a straight ray travel time), along a diagonal or another chosen direction,
or a stretching of a receiver wavefield (i.e., a stretched wavefield travel time) to generate an
approximated wavefield (i.e., the estimated wavefront 612).

[0060] The (input) guide image 620 is an approximation of the true the wavefield

solution (i.e., an approximation of the Green’s function to be generated by a machine learning
12
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system). However, through the additional information of the guide image 620 being provided
to a machine leaming system, this increases the accuracy of the true the wavefield solution
generated not only from the velocity model 610, but additional velocity models related to (i.e.,
velocity models which resemble velocity model 610).

[0061] In this manner, the training of the machine learning system is not only
applicable to the velocity model 610, but to additional velocity models (i.e., the trained machine
learming system can solve for wavefield solutions of differing velocity models). Moreover,
once trained, the machine learning system operates more rapidly than a technique of solving
for a wavefield solution through, for example, solving for/applying a Green’s function as a
waveform solution inclusive of solving a partial differential equation to simulate the wavefield.
This provides additional benefits of reduced computational (and, accordingly, financial) cost,
thus increasing the ease with which the trained machine learning system can be utilized to
recalculate a waveform solution if one or more input parameters (e.g., portions of the velocity
model 610) are altered. That is, an altered velocity model relative to velocity model 610 can
be supplied to the trained machine learning system to generate a waveform solution of the
altered velocity model.

[0062] FIG. 7 illustrates an example illustrating the above described process in
accordance with one or more embodiments. As described above, one or more embodiments
input the generated guide image 620 into a machine learning system 720, and the machine
learning system 720 predicts Green’s functions 730 based on the received guide image 620 (as
well as using the additional inputs previously discussed with respect to FIG. 5, namely data of
a source wavelet and the velocity model 610). In other words, one or more embodiments train
the machine learning system 720 to predict/identify Green’s functions utilizing (i.e., based on)
an inputted received guide image 620 in a manner that differs from the techniques described
above with respect to the machine learning system 520 of FIG. 5.

[0063] FIG. 8 illustrates a flow chart of a method 800 that implements a method of one
or more embodiments. The method of one or more embodiments can be performed by the
computing system of FIG. 4, for example.

[0064] The method 800, at step 810, can include receiving a guide image 620 that is to
be recognized by a machine learning system 720. The method 800, at step 820, includes
generating an output via the machine learning system 720 based on the received guide image
620. The method 800, at step 830, can include comparing the output 730 of the machine
learning system 720 with a desired output. This may include checking the output 730 against

known results generated independent from the machine learning system 720 (i.e., to check the
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efficacy of the machine learning system 720). The method 800, at step 840, can also include
modifying the machine learning system 720 (or one or more inputs thereto) so that the output
730 corresponds to the desired output, for example, is within a set tolerance with respect to the
desired output. This process outlined in method 800 represents training of the machine learning
system 720.

[0065] Additionally, FIG. 9 illustrates a flow chart of a method 900 that implements a
method of one or more embodiments. The method of one or more embodiments can be
performed by the computing system of FIG. 4, for example.

[0066] The method 900 may represent implementation of a trained machine learning
system 720 as trained, for example, through one or more of the steps of method 800 discussed
above. The method 900, at step 910, includes receiving a guide image 620. The method also
includes, at 920, generating an output 730 via the machine learning system 720 based on the
received guide image 620 and using the additional inputs previously discussed with respect to
FIG. 5, namely data of a source wavelet and the velocity model 610.

[0067] It should be noted that the steps 910 and 920 can be repeated for additional
velocity models using the same guide image 620 so as to create an ensemble of outputs where
each unique output is related to its respective input value for a velocity model. This allows for
an ensemble of migrations to be undertaken, each having a unique Green’s function (output
730) as a migration function. That is, for each velocity model generated for a given migration
operation, method 900 can be implemented to generate its Green’s function. And when
modifications to a generated velocity model are made, method 900 allows for generation of a
new corresponding Green’s function to be generated therefrom without the need for costly
computational analysis for the new velocity model. This allows for generation of an ensemble
of seismic images (based on the ensemble of migrations, which themselves are based on an
ensemble of velocity models) using the techniques of method 900 much more rapidly and cost
efficiently relative to, for example, applying a Green’s function as a waveform solution by
solving a partial differential equation to simulate the wavefield.

[0068] Utilization of the techniques discussed above result in a computing system (e.g.,
computing system 60) that differs from other computing systems. For example, the training
process outlined above for the machine learning system 720 results in a computing system that
is different than a computing system having a machine learning system (e.g., machine learning
system 520) trained using different inputs. The techniques of utilizing the guide image 620, as
described above, in training the machine leaming system 720 result in a different computing

system having that machine learning system therein because the computing system with the
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trained machine learning system 720 will generate different resultant outputs than similar
systems that have not been trained in the manner described above.

[0069] Additionally, having a computer system that includes the trained machine
learning system 720 improves the computer capabilities and functionality. As previously
noted, the computer system described herein includes a machine learning system 720 that is
trained differently than, for example, a machine learning system 520. This training of the
machine learning system 720 causes the computer system incorporating the machine learning
system 720 to be functionally improved relative to a computer system incorporating the
machine learning system 520. Indeed, by providing the machine learning system 720, efficient
use of processing power, memory, storage space, network bandwidth, and/or other computing
resources is accomplished. This has the dual effect of increasing the efficiency with which
users can navigate through seismic imaging processes and thereby making efficient use of
processing power, memory, storage space, network bandwidth, and/or other computing
resources.

[0070] The specific embodiments described above have been shown by way of
example, and it should be understood that these embodiments may be susceptible to various
modifications and alternative forms. It should be further understood that the claims are not
intended to be limited to the particular forms disclosed, but rather to cover all modifications,
equivalents, and alternatives falling within the spirit and scope of this disclosure.

[0071] The techniques presented and claimed herein are referenced and applied to
material objects and concrete examples of a practical nature that demonstrably improve the
present technical field and, as such, are not abstract, intangible or purely theoretical. Further,
if any claims appended to the end of this specification contain one or more elements designated
as “means for [perform]ing [a function]...” or “step for [perform]ing [a function]...”, it is
intended that such elements are to be interpreted under 35 U.S.C. 112(f). However, for any
claims containing elements designated in any other manner, it is intended that such elements

are not to be interpreted under 35 U.S.C. 112(f).
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CLAIMS
What is claimed is:
1. A method, comprising:
receiving a velocity model corresponding to at least one attribute of seismic data;
receiving source wavelet data corresponding to the seismic data;
generating a guide image based upon at least one attribute of the velocity model;
transmitting the velocity model, the source wavelet data, and the guide image to a
machine learning system; and
training the machine leaming system into a trained machine learning system using the

velocity model, the source wavelet data, and the guide image.

2. The method of claim 1, comprising generating, at the trained machine learning system,

a wavefield solution corresponding to the velocity model.

3. The method of claim 2, comprising applying the wavefield solution in a migration

operation to characterize a reservoir in a subsurface region of Earth.

4, The method of claim 2, comprising receiving a second velocity model and transmitting

the second velocity model to the trained machine learning system.

5. The method of claim 4, comprising generating, at the trained machine learning system,
a second wavefield solution corresponding to the second velocity model.
6. The method of claim 5, comprising applying the second wavefield solution in a

migration operation to characterize a reservoir in a subsurface region of Earth.

7. The method of claim 5, wherein generating the second wavefield solution comprises

utilizing the guide image at the trained machine learning system.

8. The method of claim 5, wherein generating the second wavefield solution comprises
utilizing second source wavelet data corresponding to the seismic data at the trained machine

learning system.

9. The method of claim 1, wherein the attribute of the velocity model comprises an

approximated wavefield of the velocity model.
16
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10. The method of claim 9, comprising determining the approximated wavefield of the

velocity model based on a straight line travel time of a wave of the velocity model.

11. The method of claim 9, comprising determining the approximated wavefield of the
velocity model based on a travel time of a diagonal or another chosen direction of a wave of

the velocity model.

12. The method of claim 9, comprising determining the approximated wavefield of the

velocity model based on a stretched wavefield travel time of a wave of the velocity model.

13. A tangible and non-transitory machine readable medium, comprising instructions to
cause a machine learning system to:
receive a velocity model corresponding to at least one attribute of seismic data;
receive source wavelet data corresponding to the seismic data;
receive a guide image based upon at least one attribute of the velocity model; and
utilize the velocity model, the source wavelet data, and the guide image to train the

machine learning system to generate a wavefield solution corresponding to the velocity model.

14.  The tangible and non-transitory machine readable medium of claim 13, comprising
instructions to cause the machine learning system to transmit the wavefield solution for use in

a migration operation to characterize a reservoir in a subsurface region of Earth.

15.  The tangible and non-transitory machine readable medium of claim 14, comprising
instructions to cause the machine leaming system to receive a second velocity model

subsequent to training.

16.  The tangible and non-transitory machine readable medium of claim 15, comprising
instructions to cause the machine learning system to generate a second wavefield solution

corresponding to the second velocity model subsequent to training.

17.  The tangible and non-transitory machine readable medium of claim 16, comprising

instructions to cause the machine learning system to generate the second wavefield solution

17
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based upon the guide image and second source wavelet data corresponding to the seismic data

subsequent to training.

18.  The tangible and non-transitory machine readable medium of claim 16, comprising
instructions to cause the machine learning system to transmit the second wavefield solution for
use in a second migration operation to characterize the reservoir in the subsurface region of

Earth subsequent to training.

19. A device, comprising:

an input that when in operation receives a velocity model corresponding to at least one
attribute of seismic data, source wavelet data corresponding to the seismic data, and a guide
image based upon at least one attribute of the velocity model; and

a machine learning system that when in operation utilize the velocity model, the source
wavelet data, and the guide image generate a wavefield solution corresponding to the velocity

model.
20. The device of claim 19, comprising an output that when in operation transmits the

wavefield solution for use in a migration operation to characterize a reservoir in a subsurface

region of Earth.

18



PCT/US2022/075965

WO 2023/039367

1/9

IO

SNOGHYYOOHUAH a30NA0¥d
0z —" EIMEER]
SNOGHYDOHUAH aIDNA0YHd
g1 — LHOdSNYYL
SNOFHYD0NAAH IDNA0Yd
g, — ,_,
NOILYD0T NO @3syd SNOIOIY
—_— IDV4HNSENS OLNI TIHA
Y1VQd DINSIFS QIZATVNY NO a3svd
71— S11S0Od3d NOgYYOOHAAH 31¥007




WO 2023/039367 PCT/US2022/075965
2/9

£ —
£ —
FIG. 2




WO 2023/039367 PCT/US2022/075965
3/9

LR
= _
&K ;
&3 E ]
| .
\\ \

& L
>

£
i

s 4




PCT/US2022/075965

WO 2023/039367

4/9

v OId

24 AY1dSId
1y S1d0d O/l
0 <«
y JOVHOIS
89 - ¥l
o9} AHONW3IW
vg HOSS300dd
-9} NOILYOINNWINOD
?E
W3LSAS ONILNdWOD
09— :
vivd
g, —qd3AIFOFY

Lot e e e et i o oy o b -



PCT/US2022/075965

WO 2023/039367

5/9

G 'Ol

15

0¢s |
FREEAENA LIS
walsAS +
guiulea aulyoen

Uonouny §,U9sI) enij

056G nding

11§



WO 2023/039367 PCT/US2022/075965
6/9

620

"

Input
“Guide Image

FIG. 6

254




PCT/US2022/075965

WO 2023/039367

7/9

LOIIOUN] S, USSIC) BN]

Q€L mding

L 'Ol

0cL
Wwa1sAg
8uiuaea suiyoen

0¢9

.ebew| sping,
1nhduj



PCT/US2022/075965

WO 2023/039367

8/9

008

8 'Ol

wialsAs Sujuaes|

-auiyoew ayji SuAjpoN /

ov8

1ndino ay3 Sunedwo)

0€s8

1ndino ue duileiauan

T~ oz3

a3ewl 9pin3 Suin9I9Yy

018




PCT/US2022/075965

WO 2023/039367

9/9

006

6 'Ol

1ndino ue guijeisauan

a3ew| aping SulA1RI9Y

-

016




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/075965

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO01v1l/30

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO1lv

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X BENJAMIN MOSELEY ET AL:

learning",

14853,
18 July 2018 (2018-07-18),
A page 6, paragraph "A. Overview"

page 1, paragraph "I.
figures 1,7

"Fast approximate
simulation of seismic waves with deep

ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY

XpP081249918,

page 7, paragraph "C. Training process"
Introduction"”

|__K| Further documents are listed in the continuation of Box C.

|:| See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

wyn

"&" document member of the same patent family

Date of the actual completion of the international search

14 November 2022

Date of mailing of the international search report

22/11/2022

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Hippchen, Sabine

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/075965

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A ITURRARAN-VIVEROS URSULA ET AL: "Machine
Learning as a Seismic Prior Velocity Model
Building Method for Full-Waveform
Inversion: A Case Study from Colombia",
PURE AND APPLIED GEOPHYSICS,

vol. 178, no. 2, 19 July 2018 (2018-07-19)
, pages 423-448, XP037376214,

ISSN: 0033-4553, DOI:
10.1007/800024-021-02655-9

abstract
page 429, paragraph "4. Neural Network
Design and Training" - page 435

A CHAO SONG ET AL: "Wavefield

reconstruction inversion via
physics—informed neural networks"”,
ARXIV.ORG,

16 April 2021 (2021-04-16), XP081938372,
abstract

page 5, paragraph "3 Numerical Tests" -
page 14, paragraph "4 Discussion"

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

