w0 20237213821 A1 |0 000 AP0 00O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert N
A i > O A
International Bureau = (10) International Publication Number
(43) International Publication Date ——’/ WO 2023/213821 A1

09 November 2023 (09.11.2023) WIPOI|IPCT

(51) International Patent Classification: (72) Inventors: ELFVING, Vincent Emanuel; ¢/o Qu&CO
GO6N 10/60 (2022.01) R&D B.V., Palestrinastraat 12 H, 1071 LE Amsterdam
(NL). VARSAMOPOULOS, Savvas, c/o Qu&CO R&D

(21) International Application Number: B.V.. Palestrinastraat 12 H, 1071 LE Amsterdam (NL).

PCT/EP2023/061566 PHILIP, Evan; c¢/o Qu&CO R&D B.V,, Palestrinastraat 12
(22) International Filing Date: H, 1071 LE Amsterdam (NL).
02 May 2023 (02.05.2023) (74) Agent: DE VRIES & METMAN et al.; Overschiestraat
(25) Filing Language: English 180, 1062 XK Amsterdam (NL).
(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,

(30) Priority Data: AO, AT, AU, AZ. BA, BB, BG, BH. BN, BR, BW. BY. BZ.

22171491.8 03 May 2022 (03.05.2022) EP CA.CH., CL, CN, CO, CR, CU, CV, CZ. DE, DJ. DK, DM.
22175562.2 25 May 2022 (25.05.2022) EP DO, DZ, EC. EE, EG. ES, FI, GB. GD, GE, GH, GM, GT.
(71) Applicant: QU&CO R&D B.V. [NL/NLY]; Palestrinastraat HN,HR,HU, ID, IL,, IN, IQ, IR, IS, IT, JM, JO, JP, KE, K G,
12 H, 1071 LE Amsterdam (NL). KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,

MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,

(54) Title: QUANTUM EXTREMAL LEARNING

302 7[Input data T
L pairs input-output values {(x;, f (x;))} J
5
Fig.3 ** i[Train cost circuit Uy \

- apply feature map U, encoded by input variables to register
- apply cost circuit T to output of feature map
- measure observable, e.g., expectation value or overlap
- compare observable with output value via loss function
- use classical optimiser to optimise 8 — 0,5

NI AN

3
306 i{ Freeze cost circuit: Up = Uy,
T
v
[Replace feature map T, by extremiser circuit 4, }5—308316
7 310 >
(Train extremiser circuit ﬂ,p)((Optimise input x \
- apply extremiser circuit to initialised register - apply circuit differentiation with respect to input
- apply optimised cost circuit g, variable: %ﬂgopl (ﬂx(x))
- measure observable, e.g., expectation value or overlap - measure observable, e.g., expectation value or overlap
- use classical optimiser to optimise @ — @t - extremise input using classical extremiser x — Xqp;
v [
f ircuit: 1 — 1 312
Freeze extremiser circuit: U, = ‘u%m

]

Sample extremiser circuit U, 15314

- measure output in appropriate basis
- map result to input space
T

e

(57) Abstract: Methods and systems are disclosed for determining a solution for an optimisation problem using a hybrid computer
system, the hybrid computer system comprising a quantum computer system and a classical computer system, the method comprising:
receiving or determining, by the classical computer system, a description of the optimisation problem, the description comprising a
set of training data or enabling the classical computer system to determine the set of training data, the set of training data comprising
input variables in an input space and associated observables; receiving or determining, by the classical computer system, one or more
quantum circuits, the one or more quantum circuits defining gate operations to be executed by the quantum computer system, the one
or more quantum circuits comprising a quantum feature map for encoding a value in the input space to a Hilbert space associated
with the quantum computer system and a first parametric quantum circuit parametrised by a set of first parameters; determining, by

[Continued on next page]

WO 20237213821 A [0 000 00RO VAT 0O

RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE,LR,LS, MW, MZ NA,RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

the classical computer system, an optimised first parametric quantum circuit, the determination comprising execution, by the quantum
computer system, of the gate operations defined by the one or more quantum circuits, acquisition of measurement data associated with
an output state of the quantum computer system, and variation of at least one of the set of first parameters based on the measurement
data and the set of training data, determining, using the quantum computer system, an optimised input value in the input space, the
determination comprising execution, by the quantum computer system, of gate operations defined by the optimised first parametric
quantum circuit or a derivative thereof and acquisition of measurement data associated with an output state of the quantum computer
system; and determining, by the classical computer system, the solution to the optimisation problem based on the optimised input value
and/or an output value corresponding to that optimised input value.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566

Quantum extremal learning

Technical field

The disclosure relates to estimating a solution to an optimisation problem, and
in particular, though not exclusively, to methods and systems for estimating a solution to an
optimisation problem using a hybrid computer system, and to a computer program product

enabling a hybrid computer system to perform such methods.

Background

Quantum computing is fundamentally different than classical computing. The
quantum computer’s structure gives access to quantum-mechanical properties such as
superposition and entanglement which are not available to classical computers. For certain
problems, quantum computers offer drastic computational speed-up, ranging from quadratic
acceleration of searching unstructured data, to exponential improvements for factoring large
numbers used in encryption applications. Using qubits and coherent superpositions of binary
strings, quantum computers utilize quantum interference effects to amplify the correct
solution, reached in fewer steps than classical computers ever can. Another promising
application is machine learning, where a quantum computer benefits from access to an
exponentially large feature space, enabling efficient modelling of highly complex problems.

However, many of these quantum computer algorithms have requirements
that are not met by current and near-term device limitations, and therefore, their practical
implementation is only a long-term goal. Current and near-term quantum computers are often
referred to as Noisy, Intermediate-Scale Quantum computers (NISQ). This is due to the
limitation in number of qubits in these devices and the lack of error correction to deal with
noise. As the noise scales with the depth of quantum circuits, this, in turn, limits the
effectively available depth of quantum circuits. Finding useful applications for such devices is
an area of active research so that the advantages of quantum computation can be utilised
now or near-term, rather than waiting for hardware developments.

Algorithms for NISQ devices are designed with these limitations in mind, and
typically seek to avoid and/or mitigate them. Often, these algorithms make use of a hybrid
structure, i.e., splitting computation between classical and quantum systems. This way, the

part that is hard for classical computers can be computed with the quantum computer,

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566

gaining access to the benefits of quantum computations, whilst the remaining computations
are executed by a classical device. This restricts the work implemented on the quantum
computer and therefore poses lower requirements on the quantum computer.

One class of algorithms that are often implemented on these hybrid computers
are variational methods. For these methods, the problem to be solved is typically formulated
as an optimisation problem. The solution of the problem requires optimising a trial function,
which in these methods includes measurements of parametrised quantum circuits (i.e.,
circuits which include quantum gates with adjustable parameters). A classical optimiser is
used to optimise the parameters of these circuits for the problem considered, but quantum
computations are required for each optimisation step. An example of a hybrid variational
algorithm is quantum circuit learning, as described in US 2020/0394550 A1.

Optimisation problems are ubiquitous in engineering, science and
mathematics. In its simplest form, an optimisation problem searches for the best element
according to some criterion among many candidates, possibly in the presence of some
constraints. Typically, the optimisation occurs by extremizing (i.e., minimizing or maximizing)
a real-valued function (the cost function) by selecting elements from an available set of
inputs and computing the value of the function for the selected combination of elements.

Optimisation problems can be divided into different categories based on the
type of input data, which in this disclosure will be referred to as combinatorial optimisation,
regression, and mixed-type optimisation. Combinatorial optimisation problems typically deal
with input that can be categorical or non-numerical, for example types of food such as apples
or oranges. On the other hand, regression problems typically deal with numerical input, for
example an amount such as 20 grams or 50 grams. These data types are sometimes
referred to as discrete and continuous, respectively. Mixed-type optimisation problems
combine different input data types.

Different methods may be used to solve these different kinds of problems.
Numerical optimisation problems such as most regression problems can often be solved in
an efficient manner using gradient-based methods. For non-numerical optimisation problems,
including many combinatorial optimisation problems, a gradient cannot be meaningfully
defined, and therefore other approaches are required. In principle, non-numerical (or
discrete) variables can be converted to numerical (or continuous) variables, and vice versa,
but this often leads to an unfeasibly large increase in the number of independent variables.

It is usually not feasible to test all possible input values or combinations
thereof (a ‘brute force’ approach). This is particularly true for combinatorial optimisation

problems. Typically, however, it is not required to find a global optimum, but it is sufficient to

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566

find a solution that with a high probability is a good approximation of a global optimum. That
is, it is sufficient that the solution is ‘good enough’, and/or that the input space is reduced to
such an extent that a brute force comparison of the remaining combinations becomes
feasible.

In many cases, optimisation problems have aspects of both types, i.e.,
combinatorial optimisation and regression. For example, a problem may relate to optimising
the nutritional value of a meal. The ingredients themselves are non-numerical, while the
guantity of each ingredient is numerical. The constraints can be similarly mixed; for example,
a non-numerical constraint can be the prohibition to combine more than one dairy-based
ingredient, while a numerical constraint can be that the meal can be arranged for a maximum
monetary cost.

In examples like this one, a machine learning method, e.g., a neural network,
may be used to find a functional relationship between meal composition and net nutritional
value based on a database of meals and nutritional values. Typically, the composition of the
optimal meal (or at least a good meal) is more interesting than the functional relationship
itself, but this information cannot be easily extracted from the neural network. In other words,
it is non-trivial to optimise (extremise) the trained neural network.

One challenge of modelling optimisation is that it can be exponentially
expensive in the number of variables of the system, if each can be adjusted independently.
Furthermore, having only a small amount of elements (e.g., input-output pairs) of the system
available during training can lead to sub-optimal training and poor model convergence.
Although various modelling and optimisation schemes exist, especially on classical
computers, such methods suffer from large computational overhead. Quantum computers,
on the other hand, can potentially offer ways to speed up such calculations and various
schemes have already been proposed.

In general, machine learning methods allow to obtain a prediction function of
the form y = £(0; x) that models the relationship between an independent variable (input)
x;and a dependent variable (output) y;, by optimising model parameters 8. In the setting of
optimisation, it is desirable to not only find this function f that models data, but also the value
of the independent variable x that extremizes (maximizes/minimizes) the value of this
function and hence the dependent variable. However, this information cannot be easily
extracted from the neural network. If £(8; x) were a well-behaved function (e.g., a very
smooth invertible function defined on a convex domain), there are many known methods to
find a solution. However, conventional techniques for finding the extrema of a function are

not suitable for finding extrema in these cases, since machine learning is usually used in

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566

complex cases where the resulting function f(8; x) does not meet the assumptions of the
optimisation algorithms.

Patel et al., ‘Extremal learning: extremizing the output of a neural network in
regression problems’, arXiv:2102.03626v1 describes a process of extremal learning in the
context of classical neural network regression problems. Given a trained neural network
f(8,x), finding an extremizing input x.. is formulated as training of the neural network with
respect to the input variable x. The parameters 8 of the neural network are frozen while the
input vector x is promoted to a trainable variable. This method relies on the continuity of
f(6; x) as a function of x and is hence unsuitable when x is non-numerical, or otherwise non-
continuous. Moreover, being a fully classical algorithm, this algorithm is limited in the number
of variables it can feasible handle.

Kitai et al., ‘Designing metamaterials with quantum annealing and factorization
machines’, Physical Review Research 2 (2020), 013319 describe a method for selecting a
metamaterial. A (classical) Factorization Machine is used to model a so-called acquisition
function describing a figure-of-merit for the metamaterial. Subsequently, selection of a new
material is formulated as a quadratic unconstrained binary optimisation (QUBQO) problem, for
which a solution is obtained using quantum annealing (QA). However, this method is only
applicable to a limited set of problems. For example, quantum annealing is not
programmable, and hence in practice very inflexible. Moreover, quantum annealing requires
explicit knowledge of a specific problem Hamiltonian, and is therefore not suitable for
problems where the model function is not known.

Hence, from the above, it follows that there is a need in the art for systems
and methods that can solve both discrete and continuous extremal learning problems,
preferably systems and methods employing the high-dimensional feature space of a

quantum computer yet minimise the computations performed by the quantum computer.

Summary

It is an aim of embodiments in this disclosure to provide a system and method
for estimating an extremal value of a quantum neural network that avoids, or at least reduces
the drawbacks of the prior art. Embodiments are disclosed that estimate an extremal value of
a discrete or continuous quantum circuit, for example a parametric quantum circuit such as a
guantum neural network or a quantum kernel circuit.

In a first aspect, this disclosure relates to a method for determining a solution

for an optimisation problem using a hybrid computer system. The hybrid computer system

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566

comprises a quantum computer system and a classical computer system. The method
comprises receiving or determining a description of the optimisation problem. The description
may comprise a set of training data or may enable the classical computer system to
determine the set of training data. The set of training data may comprise input variables in an
input space, e.g. a set {x; € X'}, and associated observables. The method further comprises
receiving or determining one or more quantum circuits. The one or more quantum circuits
may define gate operations which may be executed by the quantum computer system. The
one or more quantum circuits comprise a quantum feature map for encoding a value in the
input space to a Hilbert space associated with the quantum computer system and a first
parametric quantum circuit parametrised by a set of first parameters, e.g. a set of parameters
0. The method further comprises determining optimised first parameters, e.g. parameter
values 8, for the first parametric quantum circuit. The determination of the optimised first
parameter values may comprise execution of the gate operations defined by the one or more
guantum circuits, acquisition of measurement data associated with an output state of the
quantum computer system, and variation of at least one of the set of first parameters based
on the measurement data and the set of training data. The method further comprises
determining an optimised input value in the input space, e.g. a value x,,; € X. The
determination may comprise execution of gate operations defined by the first parametric
quantum circuit using the optimised first parameters or a derivative thereof and acquisition of
measurement data associated with an output state of the quantum computer system. The
method further comprises determining the solution to the optimisation problem based on the
optimised input value and/or an output value corresponding to that optimised input value.
Generally, the determination of a set of optimal first parameter values 8, can
be considered a part of or equivalent to determining an optimised first parametric quantum
circuit. As used herein, a parametric quantum circuit may refer to a quantum circuit whose
gate operations depend on one or more parameter values, and/or to a quantum circuit that is
associated with a parametrised loss or cost function. An example of the former is a quantum
neural network, an example of the latter is a quantum kernel (where a plurality of kernel
values is determined for each input value, and the weight of each kernel value is
parametrised). The one or more quantum circuits may comprise a single quantum circuit,
both encoding input variables into the Hilbert space and being parametrised by the set of first
parameters 8 = {6,, ..., 0, }. As the optimised input value typically corresponds to an
extremum of the model function, the algorithms described in this disclosure may be referred

to as Quantum Extremal Learning (QEL) algorithms.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566

This disclosure describes a method in which an (unknown) function f is
modelled by optimising (e.g., variationally optimising) model parameters 9, after which a
value of x is determined that extremizes (i.e., maximizes or minimizes) y = f(0; x) at least
approximately once the optimised parameters @ have been fixed. Regression and
optimization is performed without a classical intermediate state, in contrast to the various
classical, quantum, and hybrid methods that are known to perform either (combinatorial)
optimisation or regression. The known methods typically require at least a classical
intermediate state, e.g., in the form of a classically formulated Hamiltonian. Furthermore, in
contrast to known quantum algorithms that accept (exclusively) continuous or discrete
variables as input, the present algorithm unifies these two types of input data using purely
quantum steps.

An advantage of this method is that it is hardware agnostic (contrary to, e.g.,
guantum annealing methods), and may thus be implemented on any suitable (hybrid)
quantum computer. Furthermore, there is no need to explicitly define or encode a problem
Hamiltonian.

The present method comprises a Quantum Machine Learning (QML) method
that is (variationally) trained to model data input-output relationships, wherein the input data
is encoded using a quantum feature map. The algorithm is able to accept as input both
discrete and continuous variables. In the case of continuous variables, the quantum feature
map may be differentiable. The quantum feature map encoding the input data can then be
(analytically) differentiated in order to find a coordinate that at least approximately extremizes
the trained model. In the case of discrete variables, a second machine learning method, e.g.,
an optimiser Quantum Neural Network (QNN), is used to determine input that extremises the
trained model; this can be interpreted as analogous to differentiating the quantum feature
map. This optimiser QNN is placed in front of the original machine learning model, which now
has finished its optimisation and keeps its optimised parameters 8, fixed during the
optimisation of the optimiser QNN.

Thus, the present algorithm is a ‘purely’ quantum algorithm as opposed to a
hybrid classical/quantum framework in the sense that each computation/optimisation step is
purely quantum. Although a classical optimizer is used to find the optimal parameters for the
parametrised quantum circuits, each step mapping an input to an output is completely
quantum. In particular, there are no intermediate classical measurements between encoding
of the input and cost function, which means that the quantum state is not collapsed until the

final measurement of the qubits that are being sent to the classical computer. Moreover, it is

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566

an advantage of the described methods that modelling (regression) and optimisation is
“bridged” without losing the ability to leverage quantum superposition.

Furthermore, a previously trained model is not required to determine the
extremizing input. Using only quantum modules allows to speed up the training and
computation, but also allows to solve problems that are considered intractable with classical
frameworks. This results in a large freedom to model the problem. Moreover, the possibility
to first train more general models for subsequent optimisation result in a more flexible
algorithm than existing methods which assume certain model structures (such as the paper
by Kitai et al.), and not be completely reliant to the input data that have been provided.
Different limitations are present in the Quantum Circuit Learning (QCL) algorithm proposed in
US 2020/0394550 A1, which can only handle continuous variables. Additionally, while
modelling generalization is discussed from the perspective of using quantum feature map
circuits, US 2020/0394550 A1 does not relate to determination of extremizing input.

In brief, the described quantum algorithm for extremal learning comprises a
combination of quantum modules coupled, in various combinations, with no intermediate
classical state. This way quantum superposition may be leveraged that cannot be obtained
by separated modules (i.e., modules separated by a classical state). Furthermore, the
method can be applied to both continuous and discrete input variables. Additionally, a pre-
trained model is not required, as the algorithm learns a model based on the available data.
Consequently, there is no need to translate a classical model to quantum Hamiltonian first.
Finally, the measurement typically rely on the expectation value of observables rather than
on quantum state tomography, which is important for NISQ applications.

The described method may thus be applied in a wide variety of optimisation
problems, such as occur in computational chemistry and material science. Using the
described methods, these optimisation problems can be solved with higher performance and
higher speed compared to currently known methods.

In computational chemistry, ab-initio calculations on anything but the smallest
molecules can be extremely computation-intensive. In addition, laboratory experiments take
time and are costly. The chemical structure combinatorial space for a given molecule or
material is exponentially large, even with constraints. Therefore, designing drugs through
finding optimal structures cannot be done by an exhaustive search. With the methods
described in this disclosure, a model can be constructed based on a limited training dataset
of known structure-feature pairs, which can subsequently be searched to suggest optimal

solutions.

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566

In material science, structure exploration has been aided by recent classical
computational techniques that provide a vast selection of candidates to explore. Based on
the desired properties of the materials, the numbers of candidate solutions can be decreased
and through an iterative process an optimal solution can be selected (automated materials
discovery). However, this process is hindered by the difficulty of predicting the properties of
materials with a limited number of training data and by the hardness of the global
optimization problem of going from large amounts of candidate solutions to a few. With the
methods described in this disclosure, a model can be constructed based on a limited training
dataset and a few optimal candidate solutions can be provided, from which one can then
search for the optimal one.

As was explained above, the present algorithm is a ‘purely quantum’ algorithm
that can performs extremal learning with both continuous and discrete input variables.
Extremal learning in the classical setting has only recently been proposed and no quantum
implementation algorithm has been proposed in the art. Having an algorithm that comprises
only quantum modules allows to leverage the speedup offered by quantum superposition. In
addition, embodiments relying exclusively on expectation value measurements or wave
function overlap measurements open up the possibility of applications during the NISQ-era,
with current hardware limitations.

Furthermore, the present algorithms are able to find optimal solutions even in
cases where the training dataset size is very small. This increases the number of potential
applications, and/or offers a significant advantage by restricting the pool of candidates for an
optimal solution. The general framework of quantum extremal learning allows for it to be
applied to a wide variety of applications, like the computational chemistry and material
science problems described above, and is robust enough to be used on NISQ devices.

In an embodiment, the input space comprises a continuous subspace. In such
an embodiment, the quantum feature map may be differentiable with respect to the input
variable. If that is the case, determining the optimised input value may comprise analytically
differentiating the quantum feature map with respect to the input variable and execution, by
the quantum computer system, of gate operations defined by the differentiated quantum
feature map. This way, gradient-based methods, e.g. gradient-ascent or gradient-descent
methods, may be used to efficiently determine the extremising input value. Nevertheless, in
some cases, other options to determine the extremising input value may also be used.

In an embodiment, the input space comprises is not fully path-connected, e.g.,
comprises a discrete subspace. In such an embodiment, determining the optimised input

value may comprise the classical computer system receiving or determining a second

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566

parametric quantum circuit parametrised by a set of second parameters, determining an
optimised second parametric quantum circuit, and determining the optimised input value
based on the optimised second parametric quantum circuit. The determination of the
optimised second parametric quantum circuit may comprise execution, by the quantum
computer system, of the gate operations defined by the second parametric quantum circuit
and the optimised first parametric quantum circuit, acquisition of measurement data
associated with an output state of the quantum computer system, and variation of at least
one of the set of second parameters based on the measurement data and a loss function.

This way, an optimised input value, e.g., an extremal value, may be
determined for an optimisation problem with a non-path-connected input space, e.g. a
completely or partially discrete space. This may be used to solve, e.g., combinatorial
optimisation problems where the model of the problem is unknown and determined as
described above. These steps may also be used when the problem space comprises a
discrete subspace.

The first parametric quantum circuit may comprise a variational circuit, e.g. a
quantum neural network. In that case, determining optimised first parameters for the first
parametric quantum circuit (optimising the first parametric quantum circuit) may comprise
optimising the variational circuit, e.g. training the quantum neural network. Additionally or
alternatively, the first parametric quantum circuit may comprise a quantum kernel circuit. In
that case, determining optimised first parameters for the first parametric quantum circuit may
comprise optimising kernel coefficients associated with the quantum kernel circuit.

In general, a parametric quantum circuit f(x; @), parametrised by a set of
parameters @ typically maps an input variable x € X from an input space X to the complex
plane or a subspace thereof (often, the real numbers): f : X — C. The parametric quantum
circuit may be referred to as a variational quantum circuit if its output is based on an

expectation value of a quantum state, e.g., f(x;0) = (lpg(x)|]V[|1pg(x)) for some observable

M, and may be referred to as a quantum kernel circuit if its output is based on an overlap of
two quantum states, e.g. f(x;0) = 6, + .; 6; (W(x)|Y(x})) for some set of fixed values
{x; e X}.

A variational quantum circuit is typically optimised by varying the parameter 0
and using gradient-based methods to determine optimal parameter values 8,,.. A quantum
kernel circuit may be similarly optimised using variational methods, or may be optimised by
solving a system of linear equations. Both kinds of circuits can be combined, e.g., as a

variational quantum kernel f(x; 8; a) = aq + X; a; (Yo (x) e (x})). Here, for the sake of clarity,

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
10

two distinct labels are used for two parts of the set of parameters {0, a}, but these can, in
general, be considered a single set of parameters.

In an embodiment, the optimisation problem comprises a differential equation,
optionally a parametric differential equation. In such an embodiment, the determination of an
optimised first parametric quantum circuit comprises determining a solution to the differential
equation. Generally, the determination of the optimised first parametric quantum circuit
comprises determining a set of optimal first parameter values {oopt}, The solution to the
differential equation is then represented by the one or more quantum circuits when
parametrised by the set of optimal first parameter values {oopt}.

Finding an extremal solution of a differential equation is not always
straightforward, for example when the solution is strongly oscillatory. In such cases, quantum
optimisation methods may be more efficient in finding an extremal solution than classical
gradient-based methods, in particular for discrete variables. For example, in the case of
parametric differential equations, finding an extremal solution may require combined
optimisation of the (discrete) equation parameters and the (continuous) input values. The
discrete optimisation can then be done using quantum optimisation. Furthermore, quantum
algorithms can employ the large expressive power of quantum feature maps and
parametrised quantum circuits that is unavailable to classical algorithms.

The determination of the optimised first parametric quantum circuit may
comprise determining a respective output value for each of plurality of input values. This
determination may comprise performing, by the classical computer system, the steps of
translating the one or more quantum circuits into first control signals for controlling quantum
elements of the quantum computer system, determining second control signals for readout of
the quantum elements to obtain the measurement data, controlling the quantum computer
system based on the first and second control signals, receiving, in response to the execution
of the one or more quantum circuits, the measurement data, and processing the
measurement data into the respective output value.

In an embodiment, the first control signals include a sequence of pulses and
the second control signals include applying a read-out pulse to the quantum elements of the
quantum computer system.

In an embodiment, the quantum computer system includes a gate-based qubit
device, a digital/analog quantum device, a neutral-atom-based quantum device, an optical-
qubit device and/or a gaussian-boson-sampling device.

In an embodiment, the one or more quantum circuits include one or more

digital quantum operations, preferably digital single-quantum-gate operations, and/or one or

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
11

more analog quantum operations configured to entangle different qubits of the quantum
computer system by evolving a Hamiltonian associated with the quantum computer system in
time.

In an embodiment, the execution of the quantum operations comprises
applying electrical or optical signals to qubits, e.g. neutral atoms, of the quantum processor
to manipulate the states of the qubits in accordance with the one or more quantum circuits.

In principle, any type of qubit may be used, e.g. atomic qubits such as
trapped-ion qubits or neutral-atom qubits; solid-state qubits such as qubits based on
superconductors, silicon, diamond nitrogen vacancy centres, boron nitride, or Majorana
fermions; liquid qubits such as nuclear magnetic resonance qubits; and photonic qubits such
as photon-based qubits.

In a further aspect, this disclosure relates to a hybrid computer system for
determining a solution for an optimisation problem. The hybrid computer system comprises a
quantum computer system and a classical computer system. The hybrid computer system is
configured to perform executable operations, the executable operations comprising the steps
of receiving or determining, by the classical computer system, a description of the
optimisation problem, the description comprising a set of training data or enabling the
classical computer system to determine the set of training data, the set of training data
comprising input variables in an input space and associated observables; receiving or
determining, by the classical computer system, one or more quantum circulits, the one or
more quantum circuits defining gate operations to be executed by the quantum computer
system, the one or more quantum circuits comprising a quantum feature map for encoding a
value in the input space to a Hilbert space associated with the quantum computer system
and a first parametric quantum circuit parametrised by a set of first parameters; determining,
by the classical computer system, an optimised first parametric quantum circuit, the
determination comprising execution, by the quantum computer system, of the gate
operations defined by the one or more quantum circuits, acquisition of measurement data
associated with an output state of the quantum computer system, and variation of at least
one of the set of first parameters based on the measurement data and the set of training
data; determining, using the quantum computer system, an optimised input value in the input
space, the determination comprising execution, by the quantum computer system, of gate
operations defined by the optimised first parametric quantum circuit or a derivative thereof
and acquisition of measurement data associated with an output state of the quantum

computer system; and determining, by the classical computer system, the solution to the

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
12

optimisation problem based on the optimised input value and/or an output value
corresponding to that optimised input value.

In further embodiments, the hybrid system may be configured to perform any
of the method steps defined above. In particular, the executable operations may comprise
any of the method steps defined above.

One aspect of this disclosure relates to a computer comprising a computer
readable storage medium having computer readable program code embodied therewith, and
a processor, for example a microprocessor, coupled to the computer readable storage
medium, wherein responsive to executing the computer readable program code, the
processor is configured to perform any of the methods described herein.

One aspect of this disclosure relates to a computer program or suite of
computer programs comprising at least one software code portion or a computer program
product storing at least one software code portion, the software code portion, when run on a
computer system, being configured for executing any of the methods described herein.

One aspect of this disclosure relates to a non-transitory computer-readable
storage medium storing at least one software code portion, the software code portion, when
executed or processed by a computer, is configured to perform any of the methods described
herein.

As will be appreciated by one skilled in the art, aspects of the present
disclosure may be embodied as a system, method or computer program product.
Accordingly, aspects of the present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including firmware, resident software, micro-
code, etc.) or an embodiment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or “system”. Functions described in
this disclosure may be implemented as an algorithm executed by a microprocessor of a
computer. Furthermore, aspects of the present disclosure may take the form of a computer
program product embodied in one or more computer readable medium(s) having computer
readable program code embodied, e.g., stored, thereon.

Any combination of one or more computer readable medium(s) may be
utilized. The computer readable medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable storage medium may be, for
example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
More specific examples (a non- exhaustive list) of the computer readable storage medium

would include the following: an electrical connection having one or more wires, a portable

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
13

computer diskette, a hard disk, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical
fibre, a portable compact disc read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any tangible medium that can
contain, or store a program for use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propagated data signal
with computer readable program code embodied therein, for example, in baseband or as part
of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but
not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer
readable signal medium may be any computer readable medium that is not a computer
readable storage medium and that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium may be transmitted
using any appropriate medium, including but not limited to wireless, wireline, optical fibre,
cable, RF, etc., or any suitable combination of the foregoing. Computer program code for
carrying out operations for aspects of the present embodiments may be written in any
combination of one or more programming languages, including a functional or an object
oriented programming language such as Java(TM), Scala, C++, Python or the like and
conventional procedural programming languages, such as the "C" programming language or
similar programming languages. The program code may execute entirely on the user's
computer, partly on the user's computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer, or entirely on the remote computer, server
or virtualized server. In the latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present embodiments are described below with reference to
flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer
program products according to embodiments. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor, in particular a

microprocessor or central processing unit (CPU), or graphics processing unit (GPU), of a

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
14

general purpose computer, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer, other programmable data processing apparatus, or other devices
create means for implementing the functions/acts specified in the flowchart and/or block
diagram block or blocks.

These computer program instructions may also be stored in a computer
readable medium that can direct a computer, other programmable data processing
apparatus, or other devices to function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of manufacture including
instructions which implement the function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other programmable apparatus or other
devices to produce a computer implemented process such that the instructions which
execute on the computer or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart and/or block diagram block or
blocks.

The flowchart and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods and computer
program products according to various embodiments. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the blocks may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It will
also be noted that each block of the block diagrams and/or flowchart illustrations, and
combinations of blocks in the block diagrams and/or flowchart illustrations, can be
implemented by special purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hardware and computer instructions.

The embodiments will be further illustrated with reference to the attached
schematic drawings. It will be understood that the disclosure is not in any way restricted to
these specific embodiments. Identical reference signs refer to identical, or at least similar

elements.

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
15

Brief description of the drawings

Fig. 1A and 1B illustrate different types of optimisation problems that can be
solved using embodiments in this application;

Fig. 2 schematically depicts a flow diagram of a method determining a solution
for an optimisation problem according to an embodiment;

Fig. 3 schematically depicts a flow diagram of a method determining a solution
for an optimisation problem according to an embodiment;

Fig. 4 schematically depicts a flow diagram of a method determining a solution
for an optimisation problem according to an embodiment;

Fig. 5A—H schematically depict quantum circuits for determining a solution for
an optimisation problem according various embodiments.

Fig. 6A—6E depict quantum circuits according various embodiments;

Fig. 7A and 7B schematically depict a method for solving an optimisation
problem using a quantum kernel according to an embodiment;

Fig. 8A—E schematically depict hardware-level schematics illustrating the
application of logical operations to qubits using a quantum circuit;

Fig. 9 depicts an example of application of a method according to an
embodiment to a continuous-variable case;

Fig. 10 depicts an example of application of a method according to an
embodiment to a differential equation;

Fig. 11A-D depict examples of application of a method according to an
embodiment to a discrete-variable case;

Fig. 12A-D depict further examples of application of a method according to an
embodiment to a discrete-variable case;

Fig. 13A and 13B are block diagrams illustrating, respectively, an exemplary
hybrid data processing system and an exemplary classical data processing system that may
be used for executing methods and software products described in this disclosure;

Fig. 14A and 14B depict systems describing a Digital-Analog implementation
of a quantum algorithm and a quantum feature map, respectively; Fig. 14C illustrates pulses
corresponding to the quantum feature map; and Fig. 14D presents results comparing a
Digital and a Digital-Analog implementation of an embodiment;

Fig. 15A and 15B present quantum circuits based on a Digital-Analog

implementation of quantum circuits;

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
16

Fig. 16A and 16B present quantum circuits based on a Digital-Analog
implementation of quantum circuits; Fig. 16C presents results comparing two Digital-Analog
implementations of an embodiment; and Fig. 16D illustrates the equivalence of a CNOT gate
decomposition into two Hadamard gates and a CZ gate;

Fig. 17 presents a workflow for generalized circuit differentiation for use in an
embodiment;

Fig. 18 illustrates a quantum feature map for discrete input variables for use in
an embodiment; and

Fig. 19A and Fig. 19B illustrate options for constructing a quantum feature

map for discrete input variables for use in an embodiment.

Detailed description

A method is presented to solve an optimisation problem, more in particular a
so-called extremal learning problem. The present method assumes an unknown function
f:X - R that maps a discrete or continuous independent variable (input) x € X to an
associated dependent variable (output) y = f(x) € R. Furthermore, one or more constraints
on the unknown function are known, for example in the form of input-output pairs {x;, y;},
(differential) equations describing the function, et cetera. These constraints, or data derived

thereof, are used as training data for the algorithm. The goal of the method is to find x,,. € X
such that f(xopt) is an extremal value (a maximum or minimum) of f(x). Depending on the

problem, the solution can be the value x,;, the value f(xopt), or the combination of x,,. and

f (x opt)-
Combinatorial Optimisation

Combinatorial Optimisation (CO) refers to a set of problems where one is
interested in finding an extremum of an objective function whose set of feasible solutions is
extremely large, and whose input data are discrete or can be reduced to discrete data, often
binary data. Typically, in combinatorial optimisation problems, a model of the data already
exists and an evaluation of the objective function is inexpensive. However, exhaustively
evaluating all possible inputs is usually a prohibitively time consuming process.

A generic formulation of combinatorial optimisation problems, known as
Quadratic Unconstrained Binary Optimisation (QUBO), has been shown to be highly effective

in modelling various combinatorial optimisation problems. Due to the structure of QUBO,

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
17

there is no need for complicated penalty functions and approximate model representations.
Furthermore, the QUBO model has been found to be equivalent to the physical Ising model,
describing (binary) spin systems. This combines the good modelling of the classical data with
the domain of problems typically found in physics applications, and provides an obvious
translation to quantum systems.

In the classical realm, various methods to solve combinatorial optimisation
problems are known. For example, greedy algorithms can heuristically make a locally optimal
choice, which does not necessarily produce an optimal solution, but can provide an
approximation of a globally optimal solution in a reasonable amount of time. In addition,
several heuristic algorithms are known that are faster and more efficient compared to
traditional methods, in expense of accuracy. These methods typically provide a good but not
necessarily optimal solution. Furthermore, in some cases the problem may be relaxed from a
non-convex to a convex problem that can typically be solved in polynomial time with many
well-known algorithms, again at the cost of reduced accuracy.

Quantum speedups in discrete optimisation algorithms have been proven to
exist on fault-tolerant implementations of quantum computers, which are not feasible using
current technology. However, many experts believe that a quantum advantage over classical
computing might also be achieved through variational quantum algorithms (VQAS) running
on near-term quantum computers (NISQ). Variational quantum algorithms have already been
applied in solving combinatorial optimisation problems with comparable performance to
classical algorithms, making them a good target for near term quantum computing. VWWhen
trying to solve combinatorial optimisation problems with quantum or quantum enhanced
algorithms, the most common solutions involve Quantum Annealing (QA) methods or
variational quantum algorithms like the Quantum Approximate Optimisation Algorithm
(QAOA), as discussed below. In order to use such methods, the data should be described in
the above-mentioned Quadratic Unconstraint Binary Optimisation (QUBO) format.

Quantum annealing is a model of quantum computation that is, in principle,
well suited for discrete optimisation problems. It is based on finding a global minimum of a
given objective function over a given set of candidate solutions, by a process using quantum
fluctuations. Quantum annealing starts from a quantum-mechanical superposition of all
possible states with equal weights, which can be easily prepared, for example, by the
application of an Hadamard gate to all qubits. Then, the system is allowed to evolve following
a time-dependent Schrédinger equation, which describes the quantum-mechanical evolution
of physical systems. The amplitudes of all candidate states keep changing simultaneously,

realizing a quantum parallelism. Due to the fact that the amplitude of any state can be

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
18

enhanced at any moment, effects like quantum tunnelling between states can occur. The
system evolves to a minimum energy state of an applied Hamiltonian, which corresponds to
the optimal solution.

Another form of computation that is similar to quantum annealing is adiabatic
quantum computing (AQC). In adiabatic quantum computing, the system is prepared in a
ground state of an initial interaction Hamiltonian. This interaction Hamiltonian is slowly varied
into a problem Hamiltonian encoding the optimisation problem. If the rate of change of the
variation of the Hamiltonian is slow enough, the system will stay close to the ground state of
the varying Hamiltonian, and end in the ground state of the problem Hamiltonian, which
corresponds to the optimal solution of the problem. The problem Hamiltonian can correspond
to an Ising model, for example. However, adiabatic quantum computing is sensitive to
coherence decay and requires long computations times if the energy level of the ground
state is close to that of one or more excited states.

Certain Variational Quantum Algorithms (VQASs), like the Quantum
Approximate Optimisation Algorithm, are similarly inspired by quantum annealing methods.
More accurately, the Quantum Approximate Optimisation Algorithm is a heuristic hybrid
quantum/classical algorithm, that is specifically developed for approximately solving
combinatorial optimisation problems. The Quantum Approximate Optimisation Algorithm
requires a given number of repetitions (p) of different Anséatze that are applied during a
classical optimisation process that determines the best parameters of the variational circuit.
This results in a locally optimal solution. If a suitable Ansatz is chosen, the locally optimal
solution is close to the global optimal solution with a known probability. When this value p
approaches infinity (p — «), the Quantum Approximate Optimisation Algorithm is
mathematically equivalent to Quantum Annealing, and a global optimum is obtained.

However, variational quantum algorithms are based on the so-called the gate-
based model of quantum computation, which is a fundamentally different model of quantum
computation than quantum annealing and adiabatic quantum computing, and uses different
hardware. In the gate-based model, quantum circuits comprising quantum gates are used to
perform the computation. This computational model is highly resilient to noise, and in
particular substantially less sensitive to noise than quantum annealing and quantum
adiabatic computing. As in the current Noisy intermediate-scale quantum (NISQ) era of
quantum technology, noise is a major limitation to performing quantum computation, this is a
major advantage.

The inputs to a variational quantum algorithm are:

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566

19
i) a cost function €(8) with 8 a set of parameters encoding the solution to
the problem,
i) an Ansatz whose parameters are trained to minimize the cost function,
and
iii) (possibly) a set of training data p,, used during the optimisation.

The Ansatz is a parametrised quantum circuit, which is analogous to a neural network (see
below). At each iteration of the loop, a quantum computer is used to efficiently estimate the
cost (or its gradients). This information is fed into a classical computer that leverages the
power of (conventional) optimizers to navigate the cost landscape €(8) and identify optimal
parameters 8, that will lead to finding an optimal solution. Once a termination condition is
met, the VQA outputs an estimate of the solution to the problem].

As mentioned above, the Quantum Approximate Optimisation Algorithm
(QAOA) is developed for use on a gate model quantum computer. In order to manipulate
states on a gate model quantum computer, the Ising Hamiltonian of the optimisation problem,
must be described by an operator. Since the measurement results of the operator

(eigenvalues) correspond to the cost of the optimisation problem, the Pauli Z-operator ¢, with

07 = ((1) _01) is typically used, whose eigenvalues (+1) correspond to the positive and

negative spin values of the Ising Hamiltonian. By replacing the spin variables with ¢, and
each higher order correlation term by 0, 0; ® ... ® g, the desired cost Hamiltonian H is
obtained.

The variational form of QAOA first starts from a uniform superposition state of
every possible solution. A trial state is prepared by evolving the system under the cost and
an additional driver Hamiltonian. The driver Hamiltonian is used to explore the solution

landscape. One possible implementation for the driver Hamiltonian is given by

1 N
Ap=3) of (1)
i=1

where gy = ((1) (1)) is the Pauli-X operator applied to each qubit i in a register with N qubits.

Since this evolution is usually difficult to implement, it is approximated using the Trotter-
Suzuki expansion. This approximation is achieved by repeated applications of the Trotterized
cost and driver propagator:

|B,7) = VpUp .. VUV, Uy |P))
where V, = exp(—iy,H,) is the cost propagator and U, = exp(—if,) is the driver

propagator. The cost Hamiltonian % is evolved for some time Yp, While the driver

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
20

Hamiltonian #, is evolved for some time Bp,- The length p of the alternating sequence
determines the degree of approximation.

Within QAOA, the variational parameters (3, y) of the gates are used to
prepare the trial state |¥(B,y)) on the quantum processor by applying the alternating
sequence of propagators. The state is then measured, and the result is used by a classical
optimizer to find new parameters (8, y), with the goal of finding the ground-state energy of the

cost Hamiltonian:

min(¥ (B, Y)|Hc|¥ (B, 7)) 3)

The ground state corresponds to the global optimum of the classical optimisation problem.
This iterative process continues until the classical optimizer converges or a solution of
acceptable quality is found.

For comparison, the same driver and cost Hamiltonians could be used in an
adiabatic quantum annealing approach, for example applying a time-varying Hamiltonian
FH (t) of the form:

W) == o, + (1 - %) 7y 4)

~| -

where T is the total annealing time.

The most common combinatorial problem solved by either Quantum
Annealing or Variational Quantum Algorithms is the so-called Max-Cut problem, which is an
NP-complete problem. In a typical Max-Cut problem, the goal is to partition the features of
the problem into two (or more) complementary sets (groups), such that the number of edges
between the two (or more) partitions is as large as possible. The maximum cut refers to the
fact that one can cut the edges that maximally separate the two partitions. The reason
behind selecting Max-Cut as the target problem is that a large variety of combinatorial
optimisation problems can be formulated as a Max-Cut problem, and quantum algorithms
might be able to speed up the optimisation or reach a higher approximation ratio compared
to classical algorithms, especially as the number of features in the problem increase.

Kitai et al. present an approach of solving Max-Cut problems with VQAs in
which a classical Machine Learning model and a VQA are combined to create an algorithm
that targets optimisation problems. The Machine Learning model that was used is a
Factorization Machine (FM), which is typically used in recommendation systems. A
recommendation system creates a trained model based on training data and then suggests

new data that have the desired features according to past choices. The VQA that was used

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
21

by Kitai et al. was Quantum Annealing, but it may be assumed the QAQA algorithm would
work as well. In this algorithm, the classical Machine Learning is used to generate a model
that can be used as input for the Variational Quantum Algorithm; without the pre-trained
model based on the available training data, the VQA would not be able to solve the Max-Cut
problem. Thus, there are four steps in this algorithm: classically training based on the
available data, performing regression to find a target property with the FM, selection of the
best suggested regression results with VQA, and evaluation of the VQA suggested results
according to a Figure-Of-Merit (FOM).

By contrast, the methods described in this disclosure use a fully quantum
approach, in which a quantum machine learning model is trained based on the available
data, after which the best results are selected with a (potentially different) quantum machine
learning model. Because there is not intermediate classical step, quantum advantage can be
fully exploited.

The combination of formulating a model based on training data and finding (an
approximation of) an optimal solution of the formulated model in an integrated approach, is
also known as extremal learning. The problem of extremal learning itself was only recently
proposed in the classical setting Patel et al. with classical Neural Networks (NNs). No

quantum implementations of extremal learning are currently known.

Regression

Regression is a method for predicting a numerical (continuous) quantity. More
in particular, regression is a set of statistical processes for estimating relationships between
a dependent variable and one or more independent variables. It can be used for prediction
and forecasting, and for understanding relationships between dependent and independent
variables, for example.

One of the most prominent classical regressors in literature are Support
Vector Machines (SVMs), which are considered to be one of the most robust algorithms for
predicting purposes. A Support vector machine constructs a hyperplane or set of
hyperplanes in a high- or infinite-dimensional space, focusing on achieving good separation
by the hyperplane that has the largest distance to the nearest training-data point of any
class, since in general the larger the margin, the lower the generalization error of the
classifier. Support vector machine are a class of kernel methods. A kernel is an (often only

implicitly defined) function that can be trained to express a similarity between two input

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
22

values. Due to the generalization principle, SVMs have the potential to capture very large
feature spaces.

Another classical regressor model is formed by so-called Neural Networks
(NNs). Neural Networks are able to capture highly complex relationships between variables
when the underlying dependence between these variables is unknown, making them very
efficient in various applications. Deep Neural Networks (DNNs) have been applied to various
regression problems to obtain a prediction function for unknown inputs.

A specific class of (deep) neural networks are the Generative Adversarial
Networks (GANS), which perform generative machine learning, that is, learning to generate
realistic data samples. Generative modelling for statistical optimisation in particular can be
achieved with a combination of a generative and a discriminative approach. A generative
model is a statistical model of the joint probability distribution P(X,Y) of given observable
variable X and target variable Y, whereas a discriminative model is a model of the conditional
probability P(Y|X = x) of the target Y, given an observation x.

A GAN comprises two deep neural networks that compete with each other in
an adversarial learning strategy. More accurately, two functions are being trained which are
referred to as the generator, which learns a mapping from a latent space to a data
distribution of interest and generates new samples based on the learned distribution, and the
discriminator, which tries to distinguish whether a provided sample belongs to the actual data
distribution or to the samples generated by the generator. The objective of the generator is to
increase the error of the discriminator (i.e., generate sample that the discriminator cannot
distinguish from real samples) and the objective of the discriminator is to successfully identify
which candidates come from the actual distribution and which have been created by the
generator. The main difference between GANs and other generative modelling techniques is
that GANs are implicit generative models, which means that they do not explicitly model the
likelihood function nor provide means for finding the latent variable corresponding to a given
sample.

These models are limited to modelling a relationship between dependent and
independent variables. However, finding an extremal value (minimum or maximum) of the
model, and/or an input value resulting in the extremal value, can also be very interesting.
This is something that has not been addressed so far in the classical or quantum literature,
except in the recent (classical) paper of Patel et al.. In this paper, the authors define a
process called extremal learning, that finds the extremal value of a Neural Network after it
was trained according to a given dataset. Once the Neural Network is trained by fitting the

hyper-parameters to the point that the output can be predicted within the desired accuracy,

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
23

one can search for the minimum or maximum value of the prediction function. Depending on
the specifics of the problem, the solution can be the extremal value itself and/or the input
value that extremizes the prediction function (and thus, the Neural Network).

The extremal learning method described by Patel et al. comprises two stages.
In the first stage, the Neural Network is trained, based on provided training data, by varying a
set of hyper-parameters. Once a sufficiently good (or possibly optimal) set of hyper-
parameters is found, the hyper-parameters are kept fixed (‘frozen’). In the second stage, the
input vector becomes the trainable variable. A loss function is defined such that its
minimization is equivalent to achieving an extremal value for the prediction function, and the
extremal input value can be found using conventional optimisation techniques like gradient
descent. Based on this construction, in principle, any kind of machine learning framework
can be used to calculate extrema of Neural Networks.

In some aspects, extremal learning has some similarities with GANs; however,
the execution is very different. GANs rely on the generator and discriminator adversarially
trying to beat each other. The goal of the discriminator is to differentiate between real and
artificially produced data, while the goal of the generator is to transform a random noise
sample into something close to the true sample. Thus, the generator in a GAN, given a
random noise input z, is trained to minimize the loss

L =log(1—D[G(2)]) ®)
where G(z) is the output of a generator network and D is a discriminator network. Extremal
learning may be considered a case wherein only the discriminator exists and its loss function
needs to be minimised. Another important distinction between extremal learning and GANs is
that in extremal learning, the input vector is being changed instead of creating a generative
model.

Based on these classical algorithms, various quantum algorithms have been
proposed, such as quantum support vector machines (QSVMs), quantum neural networks
(QNNs) and quantum generative adversarial networks (QGANS).

Quantum support vector machines make use of a quantum kernel. As was
mentioned earlier, kernel methods such as support vector machines, are commonly used in
various machine learning applications (such as classification tasks), due to their high
performance. However, as the size of the feature space increases, solving the problem with
SVMs becomes increasingly hard since the kernel functions become computationally
expensive to estimate. This is where the potential of a quantum SVM lies, since in quantum
computing an exponentially large quantum state can be manipulated through controllable

entanglement and interference. When the problem has been translated into a quantum state,

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
24

an enhanced solution can be obtained from the quantum Hilbert space. One can either use a
variational classifier based on a variational circuit to operate similarly to a classical SVM, or
use a quantum kernel estimator to estimate the kernel function and optimize the classifier
directly.

Quantum Neural Networks (QNNs) are machine learning models or algorithms
that combine the concepts of traditional Neural Networks and quantum computing. Thus,
they are not a direct translation of classical NNs which calculate chains of linear or non-linear
computations. Typically, QNNs refer to variational or parametric quantum circuits that use
quantum gates and use optimisation techniques that are similar to classical NNs training
techniques. Variational or parametric quantum circuits are quantum algorithms that depend
on free parameters that can be tuned during training of the QNN. Typically, such quantum
algorithms follow a few basic steps:

i) preparation of a fixed (known) quantum state |y), typically using a so-

called quantum feature map;

i) a quantum circuit 7(0) that has trainable parameters 8; and

iii) measurement of a desired observable M at the output on a fixed

measurement basis.

The expectation values of the function £(8) = (p|UT(8) M U(B)|y) define a
scalar cost for a given task and the free parameters 0 are tuned to optimize the cost function.
The training process of the 8 parameters typically occurs via classical optimisation
algorithms that take as input the measurement values of the quantum circuit. This is an
iterative process, since the classical optimizer tries to find the best 8 parameters that will
provide such quantum measurements that optimize the cost function.

QGANSs are the quantum mechanical equivalent of GANs where the data
comprise either quantum states or classical data, and the generator and discriminator are
equipped with quantum information processors. The data takes the form of an ensemble of
guantum states generated by the system. The generator has access to a quantum
information processor and tries to match that ensemble, while the discriminator can make
arbitrary quantum measurements. The quantum discriminator and generator perform convex
optimisation with the unique fixed point for the quantum adversarial game.

Besides these regression methods that can easily be traced back to their
classical counterparts, many other methods have been recently proposed, like the Quantum
Circuit Learning, the Quantum circuit Born machines, and the Differentiable Quantum
Generative modelling. The following methods have been designed with a quantum problem

in mind, instead of enhancing a classical method with quantum aspects.

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
25

Quantum Circuit Learning (QCL) is a hybrid quantum/classical algorithm that
is designed for machine learning applications with a low-depth quantum circuit. Similarly to
the Variational / Parametric Quantum Circuits that were mentioned earlier, in QCL, the input
data are encoded into some quantum state and provided to a quantum circuit that has
tuneable free parameters. A @-parametrised unitary operator is applied to the input state to
generate an output state, that is described by the quantum measurements. The output state
is measured based on some observable and the expectation value is obtained. Then, the
defined cost function of the training data and the output is minimized, by iteratively tuning the
circuit parameters 8. These circuit parameters are tuned in an iterative process via a
classical optimisation protocol, until the desired output is obtained. Typically, gradient-based
optimisation techniques are used, with a stopping condition of when the QCL framework can
approximate the input-output mapping up to the desired accuracy (as long as the circuit has
a sufficient number of qubits). An alternative to the process of minimization of the cost
function is performed using a high-depth quantum circuit with Harrow-Hassidim-Lloyd (HHL)-
based algorithms, which includes a matrix inversion approach that is similar to the quantum
SVM. However, in QCL the cost is minimized by iterative optimisation, successfully
circumventing a high-depth circuit. This increases the execution speed and decreases the
amount of error mitigation/correction required for a successful computation. Moreover, a
potential quantum advantage exists in the QCL approach, since it directly uses an
exponential number of functions with respect to the number of qubits to model the training of
the known inputs, which is intractable on classical computers.

In addition to QGANSs, many quantum generative models have been proposed,
such as quantum Boltzmann machines and quantum Born machines. Quantum Boltzmann
machines generalize the energy function of classical Boltzmann machines to a quantum
Hamiltonian for stronger representational power and faster training. Quantum Born machines
directly exploit the inherent probabilistic interpretation of quantum wavefunctions. Quantum
Born machines represent a probability distribution using a quantum pure state instead of a
thermal distribution like quantum Boltzmann machines. Therefore, Born machines can
directly generate samples via projective measurement on the qubits, in contrast to the slow
mixing Gibbs sampling approach used by quantum Boltzmann machines. Moreover,
computational complexity considerations on quantum sampling problems suggest that a
quantum circuit can produce probability distribution that is #P-hard, which is infeasible to
simulate efficiently using classical algorithms.

Quantum circuit Born machines (QCBM) are generative models which

represent the probability distribution of a classical dataset as quantum pure states. It has

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
26

been suggested that for the quantum sampling problem, quantum circuits exhibit stronger
expressibility compared to classical neural networks, therefore one can efficiently draw
samples from the quantum circuits via projective measurements on qubits.

To further scale up the quantum circuit Born machine (QCBM) to larger
number of qubits and circuit depth, an appropriate objective function for the generative tasks
needs to be devised without explicit reference to the model probability. QCBM belongs to the
class of implicit generative models since one does not have access to the wavefunction of an
actual quantum circuit. Thus, QCBM can be used as a simulator to generate samples without
access to their likelihoods, which is similar to the notable generative adversarial networks
(GAN) discussed above. Compared to generative models with explicit likelihoods such as the
Boltzmann machines, normalizing flows, and variational autoencoders, the implicit generative
models can be more expressive due to less restrictions in their network structures. On the
other hand, having no direct access to the output probability also poses challenge to the
scalable training of quantum circuits. Moreover, one also needs better learning algorithm
than the gradient-free optimisation scheme, especially given the noisy realization of current
quantum circuits.

Another approach in terms of generative modelling is the Differentiable
Quantum Generative modelling (DQGM), which is an approach for learning probability
distributions as differentiable quantum circuits (DQC) that enable efficient quantum
generative modelling (QGM) and synthetic data generation. Data is encoded in a latent
space with a phase feature map, followed by a variational quantum circuit. Then a map of the
trained model to the bit basis using a fixed unitary transformation is obtained. This allows fast
sampling from parametrised distributions using a single-shot readout. Importantly, latent
space training provides models that are automatically differentiable. This allows for
differential constraints, such as those imposed when solving Stochastic Differential
Equations, to be formulated in terms of loss functions that include measurable quantities in
the phase space representation. Finally, this approach opens a route to multidimensional
generative modelling with qubit registers explicitly correlated via a (fixed) entangling layer, as
described in co-pending application EP22155513.9.

Through the QNN utilization, the algorithm has the potential to be faster and to
provide better solutions to the optimisation problem. The reasoning for such a potential
speedup is that the cost function of the QNN is encoded as a superposition state in the
Hilbert space of the QNN’s parameters. This quantum mechanism exploits the hidden
structure of QNN to converge to the optimal parameters faster. Furthermore, due to various

techniques that are designed to avoid the barren plateau problem, the variational circuits are

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
27

able to provide very good candidate solutions to optimisation problems. As compared to the
prior work, the design is able to handle both discrete and continuous variables without
making significant changes to the design, which is a limitation of the quantum circtui learning
method. Furthermore, the Extremiser feature map provides a trainable feature map, which
allows the algorithm to be flexible with the data that are provided. In the case of Kitai ef al.,
the authors use a Factorization Machine, which is a classical Machine Learning model, to
prepare a trained model based on the training data, which is then forwarded to the Quantum
Machine Learning Module. However, this design is limited by the fixed training model created
by the Factorization Machine, and it is not evident how one may best map higher-order
polynomial unconstrained binary optimisation (PUBO) models to be solved by a QAOA or
VQE-like algorithm.

Some embodiments of the current method apply a quantum algorithm based
on Quantum Neural Networks (QNNs). Training of quantum neural networks may be based
on so-called Quantum Circuit Learning, e.g. as disclosed in US 2020/0394550 A1, which is
hereby incorporated by reference. Quantum circuit learning is (just) a means of training
parametrised regression models, and does not attempt to find the extremising input.

Quantum circuit learning can be extended to methods for solving differential
equations, as described, for instance, in co-pending application PCT/EP2021/081737, which
is hereby incorporated by reference.

Known extremal learning and quantum circuit learning methods are restricted
to continuous input variables only. By contrast, the present method extends extremal
learning to using quantum neural networks for both continuous and discrete input variables.

Quantum kernels are described in more detail in co-pending application
EP22160629.6, which is hereby incorporated by reference.

A kernel is, in general, defined as a conjugate-symmetric positive-definite
function k mapping two variables x, x’ € X', where X is some data space to the complex
space, k: X x X — C. The data space X is typically the C" or a subspace thereof, e.g., the
R™. It has been shown that any kernel can be written as a (standard) inner product (or dot
product) in a, usually, higher dimensional feature space; that is, any kernel k(x, x") can be
written as k(x,x") = @(x)T @(x’) where @: X — F is a mapping from the data space to the
feature space. A quantum kernel generally refers to a kernel function that relies on quantum
mechanical principles, typically an overlap of two wave functions (y¥/(x) | ¥(x")), where [(x))
denotes a quantum state encoded by the variable x. The same encoding is for both variables
x and x’. Thus, two examples of quantum kernels are k(x, x") = (Y (x) | Y(x")) and k(x,x") =

[(x) | Y(x"))|%. The former is an inner product of wave functions and, therefore, a quantum

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
28

kernel. Quantum kernels may be used to solve a variety of problems, in particular regression
problems, such as data regression and the numerical solution of differential equations.

Fig. 1A and 1B illustrate different types of optimisation problems that can be
solved using embodiments in this application. Fig. 1A shows a typical data regression
problem. In general, the goal of a data regression problem is to find a solution function that
describes a data set (generally referred to as the training data set), optionally subject to a
number of constraints. The solution function is typically limited to a finite domain in the data
space; this domain may be referred to as the problem domain. The training data set may
compirise training points in the problem domain and associated training values.

In the depicted example, the training data set comprises data points 102, each
defined through its coordinate value on the x-axis 104 and associated y-axis value 106. The
problem is to fit a trial function f, (x) 108, parametrised by one or more parameters 6, to the
training data. The trial function can be, for example, a quantum neural network or a quantum
kernel function, and the parameters 6 can be network parameters or kernel coefficients.

Initially, the trial function f (x) will have a function shape 110 that does not
match the training data. The task of an optimiser 112 is to transform the shape of the function

108 by modifying its parameters 6 114 to 6,,. 116 until the function fgopt(x) 118 obtains an

optimal fit to the data 120. In this disclosure, the optimiser is a classical optimiser. The result

is an implicit solution function expressed parametrised by the set of optimal parameters 6.

Depending on the regression problem, the solution function can be scalar or non-scalar (i.e.,
higher-dimensional, e.g., vectorial or tensorial).
In a subsequent step, the input parameter x is optimised in order to obtain an

input value x,,. for which the solution function fgopt (x) (or a function thereof) achieves an

extremal value (in this example, a minimum).

In general, the function that is being optimised is a function of the solution
function. Similarly, the constraints may be provided in a different space than the function to
be optimised. For example, the input data could comprise pairs of locations with associated
electric fields, leading to a solution function describing the electric field in some spatial
domain, while the aim of the optimisation can be to find the location with the smallest
divergence of the electric field.

Methods to solve a data regression problem are described below with
reference to Fig. 4A and 4B.

Fig. 1B shows a typical differential equation regression problem. In general,
the goal of a differential equation regression problem is to find a solution function that obeys

one or more differential equations, typically subject to a number of constraints such as

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
29

boundary conditions. The solution function is typically limited to a finite domain in a variable
space or in some function space; this domain may be referred to as the problem domain.

In the depicted example, the differential equation 132 is an ordinary linear
differential equation, but the method is equally applicable to partial differential equations and
non-linear differential equations. In particular, the differential equation may be parametrised.
Similar to the data regression case, the problem is to find and optimise a parametrised trial
function f, (x) 138, but in this case, the constraints are imposed by the differential equation
and by the associated boundary conditions rather than by a data set.

Initially, the trial function fy will have function shape 140 that does not match
the differential equation. The task of the classical optimiser 142 is to transform the shape of
the function 138 by modifying its parameters 6 144 to 6,,,; 146 until the function fgopt(x) 148

represents a valid solution 140 to the differential equation 132, subject to the boundary
conditions.
In a subsequent step, the input parameter x is optimised in order to obtain an

input value x,,. for which the solution function fgopt (x) (or a function thereof) achieves an

extremal value (in this example, a minimum).

Methods to solve a differential equation regression problem are described
below with reference to Fig. 10.

Other cases may comprise different types of constraints, combinations of
constraints, et cetera.

Fig. 2 schematically depicts a flow diagram of a method determining a solution
for an optimisation problem according to an embodiment. The method may be performed
using a hybrid computer system, which comprises a quantum computer system and a
classical computer system. Since current-generation classical computers are typically much
more efficient at general computational task than quantum computers, most steps are
typically performed by the classical computer system, unless otherwise noted.

In a first step 202, the method comprises receiving or determining a
description of the optimisation problem, the description comprising a set of training data or
enabling the classical computer system to determine the set of training data, the set of
training data {(x;, y;)} comprising input variables {x; € X'} in an input space X and
associated observables {y,;}.

The optimisation problem can be, for example, a combinatorial optimisation
problem or a regression problem, e.g., a data regression problem or a differential equation
problem. The description of the optimisation problem typically comprises one or more

constraints on a function defined on the input space X. The constraints can be defined as

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
30

one or more of: a set of input-output pairs, a set of inequalities, a differential equation, et
cetera. Based on the description, a set of training data may be determined, such that the set
of training data comprises input values and associated observables on a system described
by an input-output relationship defining a function f: X - Y, the input values forming a
subset of the input space X. Typically, the training data are of the form {(xl-,yl- = f(xl-))}.

For example, if the constraints are provided as input-output pairs, the training
data may comprise all or some subset of the input-output pairs. Optionally, the input and/or
output values may be rescaled to a suitable range. As discussed below in more detail with
reference to Figs. 3-5, the input data can be continuous, discrete, or a mixture thereof, and
the input space X can be fully, partially, or not path-connected.

If the problem description comprises different constraints, e.g. a differential
equation DE (x,f(x), {%},)x € X for an unknown function f(x): X - Y, typically

expressed in terms of the variable x, the function f(x), and one or more derivatives of the
function f(x) with respect to x, training data may be generated in the input domain, e.g. by
pseudo-uniform sampling over the input space X'. Generation of training data for differential
equations is described in more detail in co-pending application PCT/EP2021/081737.

In a step 204, the method comprises receiving or determining one or more
guantum circuits. The one or more quantum circuits comprise or define gate operations to be
executed by the quantum computer system. The one or more quantum circuits comprise a
quantum feature map (e.g., defined by a unitary operator U,,) for encoding a value x € X in
the input space X to a Hilbert space H associated with the quantum computer system. The
one or more quantum circuits also comprise a first parametric quantum circuit (e.g., defined
by a unitary operator U,) parametrised by a set of first parameters 6.

The one or more quantum circuits may be a single quantum circuit that both
encodes a value x € X in the input space X into the Hilbert space H and is parametrised by
a set of first parameters 8. In a typical implementation, the quantum feature map first
encodes an input variable into the Hilbert space, and subsequently, the first parametric
quantum circuit acts on the quantum state effectuated by the quantum feature map,
effectuating an output quantum state. The first parametric quantum circuit can be, for
example, a variational quantum circuit such as a quantum neural network, or a quantum
kernel circuit.

In a step 206, the method comprises determining an optimised first parametric

quantum circuit (e.g., defined by a unitary operator ‘agopt). The determination comprises

execution, by the quantum computer system, of the gate operations defined by the one or

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
31

more quantum circuits, acquisition of measurement data associated with an output state of
the quantum computer system, and variation of at least one of the set of first parameters 8
based on the measurement data and the set of training data {(x;,y;)}.

In a typical embodiment, one or more measurements are performed on the
output state effectuated by the first parametric quantum circuit as described in step 204. The
measurements typically involve an expectation value or an overlap of two wave functions.
Several measurements may be required to determine a single output value, e.g. by
averaging a series of repeated measurements. Generally, the determination of the optimised
first parametric quantum circuit comprises determining a set of optimal first parameter values

0opt- The optimised first parametric circuit ﬂgopt can then be obtained by implementing the

first parametric quantum circuit using the optimised first parameter values 6.

Step 206 may be implemented using a circuit as depicted in Fig. 5A or 5E, for
example.

A step 208 comprises determining an (estimate for an) optimised input value
Xopt € X in the input space X. The determination may comprising execution, by the quantum
computer system, of gate operations defined by the optimised first parametric quantum

circuit (e.g., as defined by the unitary operator ﬂgopt) or a derivative thereof and acquisition

of measurement data associated with an output state of the quantum computer system. The
determination of the optimised input value may be based on the description of the
optimisation problem, which may, for example, define a quantity to be extremised. For
example, the one or more quantum circuits may define an approximation of the unknown
function f(x): X — Y, but the goal of the optimisation function does not need to be
extremising f (x) itself; in general, any function of f(x) may be extremised, e.g., d,f (x) or
f2 ().

In this step, the optimised first parametric quantum circuit is ‘frozen’, meaning
that its parameters 8 are not further changed but are fixed at their optimised values 8.
Determination of the optimised input value may comprise analytically differentiating the
quantum feature map, e.g., as discussed in more detail below with reference to Fig. 5B.
Alternatively or additionally, determination of the optimised input value may comprise
effectively replacing the quantum feature map with a second parametric quantum circuit, e.g.,
a variational quantum circuit, and optimising the second parametric quantum circuit, e.g., as
described in more detail below with reference to Fig. 5C. Determination of the optimised

input value may further comprise sampling the optimised second parametric quantum circuit

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
32

e.g., as described in more detail below with reference to Fig. 5D. Several estimates for the
optimised input value x,,. may be determined.

A step 210 comprises determining the solution to the optimisation problem
based on the (estimate for the) optimised input value x,,. and/or the output value f(x,p)
corresponding to that (estimate for the) optimised input value.

Determining the solution may comprises selecting one or more ‘most
promising’ estimates out of a plurality of estimates for the optimised input value. Determining
the solution may comprise evaluating the (estimates for the) optimised input value using the
one or more quantum circuits using the optimised first parameter values 8.,

Fig. 3 schematically depicts a flow chart illustrating an exemplary
embodiment. In a first step 302, input data is received. In this example, the input data is a
data set {(xi,f(xi))} comprising input values (independent variables) {x;} and associated
output values (dependent variables) {f (x;)}, which are related via an unknown function f.
The goal of the optimisation problem is to find an optimal input value x,. that extremises the
unknown function f.

In this example, the input data is used as the training data, but in other
examples the input data may be, e.g., pre-processed. In a typical example, the potential
values for the optimal input value x,,. may be restricted to a certain space based on the
values of the independent variables in the training data, for example, x,,. may be required to
be sufficiently close to one of the x; based on some suitable method. This may increase the
reliability of the outcome.

In a step 304, a cost circuit Uy parametrised by a set of variables 0 is trained.
A quantum feature map U, is used to encode the input values to a Hilbert space associated
with a quantum computing system, e.g., |x) = U,|0). Subsequently, the cost circuit U, is
applied to the quantum state effectuated by the quantum feature map U,, i.e., Uglx) is
determined. An observable yg(x;), €.g., an expectation value yg(x;) = (x;|U} M Uglx;) or an
overlap Ve, (x;) = 6; (x;|x;) is measured on the quantum state effectuated by the cost circuit
Uy, and the result is compared to the output values using a loss function L. The loss function
L can be based on a mean squared error, e.g., L = Zi(f(xl-) — yg(xl-))z. A classical optimiser

may be used to optimise 8 in order to obtain a set of optimised parameter values 6. In

principle, any suitable optimiser may be used for this step, e.g., Nelder-Mead, Newton’s
method, BFGS, gradient-descent methods like SGD, ADAM, etc.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
33

In a step 306, the cost circuit Uy is frozen using the optimised parameter
values B, i.e., Up = ‘agopt. Subsequently, the optimised cost function is used to determine
the optimal input value, either using steps 308—314 or using step 316.

In a step 308, the quantum feature map U, is effectively replaced by an
extremiser circuit ”th,. That is, the extremiser circuit ﬂ¢ is used in this and the following steps
to create a quantum state in the Hilbert space upon which the optimised cost circuit ﬂgopt

then acts. Thus, a quantum state ‘agoptﬂq, |0) may be effectuated.

In a step 310, the extremiser circuit ﬂ¢ is trained. The extremiser circuit is
applied to the qubit register and subsequently, the optimised cost circuit is applied. The same
observable as in step 304 is measured leading to an output value yq(¢). A classical

optimiser is used to optimise that parameters ¢, e.g., by determining min yg(¢). This results
@

in a set of optimised second parameter values ¢ In principle, any suitable optimiser may
be used for this step, e.g., Nelder-Mead, Newton’s method, BFGS, gradient-descent
methods like SGD, ADAM, etc.

In a step 312, the extremiser circuit ﬂ¢ is frozen using the optimised

parameter values @, i.e., ﬂ¢ =1 In a step 314, the (frozen) optimised extremiser

Popt”
circuit ﬂ%pt is sampled. The output of the optimised extremiser circuit ﬂ%pt is measured in
an appropriate bases, and the result is mapped to the input space X. The result is an

estimate for an optimal input value x,,; € X. In this step, the optimised cost circuit is not
applied; i.e., |<Popt) = ﬁ%ptm) is sampled, and not ﬂgopt|<popt). If necessary, a corresponding
optimised output value y,,. may be determined by measuring the same observable as in
step 304 on a quantum state effectuated by ‘agopt|xopt).

If the input space is continuous and path-connected, step 316 may be
performed instead of steps 308-314. In this case, the feature map is differentiable with
respect to the independent variables. Consequently, in step 316, circuit differentiation may
be applied to determine a differentiated feature map. The optimised cost circuit may then be
applied to the quantum state effectuated by the differentiated feature map, and a classical
extremiser may again be used to determine an optimal input value x,p;.

The description of the algorithm discussed above with reference to Fig. 3 can
be considered edge cases of a more general description of the algorithm, which will be

described with reference to Fig. 4.

10

15

20

25

WO 2023/213821 PCT/EP2023/061566
34

A first step 402 comprises receiving or determining a description of the
optimisation problem. In general, the optimisation problem is related to an unknown function
f described by:

f:XC]R"—HR"', x e f(x) ©6)
where the input space X is not necessarily path connected. (For completeness’ sake, it is
noted that the domain and range may be spaces that are at least locally isomorphic with or
embedded in the R and R™, respectively.) In one limit, X consist of a collection of discrete
points, possibly on mutually orthogonal axes. This is for example the case in binary
optimisation problems. In another limit, X is a fully-connected, continuous space, e.g., spatial
dimensions in some physical problem. However, X can also comprise a combination of
discrete and continuous spaces, connected and unconnected continuous spaces, et cetera.

The problem description comprises some information about the unknown
function f in the form of a set of conditions

{eHLs (7)
The conditions can be given, e.g., as input-output pairs {x;, f (x;)} (as described above with
reference to Fig. 3), and/or in the form of more general constraints on the function, including

differential equation, boundary conditions, and other types of constraints; for example,

{(F(©0) > 2,000 =2 0 flutener =0, . ®
To implement this algorithm, conditions in eq. (7) should be enforceable through the
construction in eq. (28) and the loss function in eq. (36). These will be detailed below.

The problem description may also comprise a loss function L., or information
base on which the loss function may be determined. In general, the loss function L. is given
by:

Lot RD™ XRSR, (f,0) 0 Lowl(f,) ©)
For example, L., may be defined simply as the unknown function itself (if f(x) is a scalar,
real-valued function):
Lext(f, %) = f(x), (10)

or by a more complicated function of the unknown function f, e.g., by:
2_x|| (11)
T

The goal then becomes to find x.,; € X such that L...(f, Xxx) is an extremal (in practice,

Lext(f; x) = ”Vflx” + tan

minimal) value of L. (f, x) in the domain X. In general, the solution to the optimisation

problem is a function of f and/or x.,.. Preferably, L., can be obtained with a construction

10

15

20

WO 2023/213821 PCT/EP2023/061566
35

similar to eq. (28), as such construction allows full utilisation of quantum parallelism in this
algorithm.

A step 404 comprises receiving or determining one or more quantum circuits.
The one or more quantum circuits comprise a quantum feature map and a first parametric
quantum circuit parametrised by a set of parameters 8. The one or more quantum circuits

are used to map x € X to a quantum state

|¥m (8, x)). (12)
In general, the quantum feature map ¥ maps the input space X to a Hilbert space #:
P:X->H, xe). (13)

Typically, the input space is mapped to the Hilbert space associated with the quantum
computer system. The first parametric circuit may be written as a generic ‘black box’ model
circuit Uy (0) that is applied to the output state of the quantum feature map, in order to obtain

the final state:

W (8, %)) = Uy () [9p(x)). (14)
If the decomposition of X in terms of path-connected pieces is
m
X = U X, (15)
i=1

then the Hilbert space H used for the computation is chosen such that it is the Hilbert space

direct sum of m mutually orthogonal subspaces H;; that is,

H = é}(i. (16)
i=1

It can be assumed that there are continuous feature maps

Y Xy > H; (17)
such that

P(x) = P;(x) (18)
foralli and x € X;.

For example, the optimisation problem could relate to a meal composition with

8 different ingredients with fixed available amounts (which can be rescaled to [0,1] without
loss of generality), where between 0 and 100% of each ingredient may be added to the meal.

In that case, X comprises 8 disjunct intervals [0,1]:

i=1

8 8
X ={1,.,8x[01] = U{i} x [0,1] =: Uxi (19)
i=1

which may be mapped to a Hilbert space of four spin 2 -based qubits:

10

15

20

WO 2023/213821 PCT/EP2023/061566
36

8

H = ‘7{51/2 ® ‘7{51/2 ® ‘7{51/2 ® ‘7{51/2 = @ (‘7{50 ® ‘7{51/2)' (20)

i=1
This is isomorphic with the sum of 8 products of spin 0 and spin %2 particles. For each interval
i (corresponding to each ingredient, in the example), a feature map ; may be defined:

Yo % [0,1] » Hy @ Hy,, aw 1)@ Ry (am)|0) 21)
where |I) denotes a basis in the spin 0 space and R, (ar)|0) denotes a rotation around the

y-axis over an angle a applied to a spin-'2 basis vector |0).

8 8
lp:xe@(}cs()@ml/z), (i,a)Hiaﬁ(m,-@;ey(an)m)j). 22)
i=1 =1

where §;; denotes the Kronecker delta.
A step 406 comprises obtaining measurement data on the quantum state
|¥y (8, x)) on which the input variable was mapped by execution of the gate operations
defined by the one or more quantum circulits, in particular by execution of the gate operations
defined by the feature map and the first parametric quantum circuit.
These measurements may be represented as a function mapping |¥y) to the
output space R™ of the unknown f, viaamap
M:H >R, (23)
which can be accomplished via a quantum measurement involving states |Wy). Usually, M
involves either the measurement of an expectation value —in the case of variational circuits
like quantum neural networks— and/or an overlap between to wave functions —in the case
of quantum kernel methods. For example, M can be defined as a measurement of an
expectation value of an observable M, as
M (| %)) = (P[] Wh). (24)
In a different example, M can also be defined as a measurement on an overlap of two wave
functions, e.g.,
M(|Pm(0,x))) = (Pu (6, x) | ¥u (6, x)) (25)
or
M(|Pm(8,))) = [(¥u(8,2) | Pu (8, X)) |2 (26)
The results of M can be used to construct an approximation f of the unknown
function f, parametrised by # and, optionally, a new set of variables a:
f0,x): X >R, xo f(x;0,a) (27)

Here

Fx;8,a) = A (X, 2|9 (8,4: (), [¥u (6, 6(0))); @), (28)

10

15

20

WO 2023/213821 PCT/EP2023/061566

37
where
(@) : X - (X2, xe ($:(0),¢{(x)) (29)
and
Aa): RY > R (30)

Although A4 is not explicitly constrained, it has to be of appropriate structure
(considering effect of interference, etc...) especially for the second part of the algorithm to be
successful. Thatis, for every x € X;, ¢;(x) € X, for some particular k, say ¢;(j). Either
¢;({1, ..., m}) has to be a bijection or ¢,(X) has to be a constant function. These conditions
have to hold for ¢;, too.

The function f could be constructed using the method described in T. Goto et
al, arXiv:2009.00298, which is hereby incorporated by reference. For example, if M’ involves
the measurement of the expectation value, then f could be defined as:

f(x;8,a) = ag + a,(Wy (8, x)|M|¥y (8, x)); or, (31)
If M involves the measurement of a kernel k(x,x'; 8), e.g.,
k(x,x'; 8) = M (¥4 (8,), ¥\ (8,x))?, (32)

then f could be defined as:

f(x;0,a) = ag + 2 a; k(x,¢](x); 0). (33)
i=1

This construction of f could be used to enforce some of the conditions in eq. (7).

For example, using an appropriately constrained universal function
approximator (UFA) for |Wy (8, x)) and using A with the desired symmetries, techniques
already developed for PIML and DQC could be used here.

In brief, f(x; @) could be defined, e.g., as

f(x; 8) = (W (8, 0)| MWy (8, 0)); (34)

or as

f(x;0) = 0, + 2 8, k(x,x). (35)
i=1

A loss function
L=@®Y*>R, [L(f) (36)
is constructed beforehand using the conditions in eq. (7) such that as L(f) - min(L), the
function f satisfies all the conditions in eq. (7) (wherein the conditions already enforced

through the construction in eq. (28) can be ignored). That implies, as L(f) - min(L), the

10

15

20

WO 2023/213821 PCT/EP2023/061566
38

function f satisfies all that is known about f, and so f would be a ‘best estimate’ of f that
can be obtained with the given information.
If the set of constraints is given by input-output pairs {x;, f (x;)}, then the

loss function may be of the form

N
L®) =) || (x;:6) - Fxpll (37)
j=1
where ||-|| is @ norm on the target space R™ . A much used example is
N
« 2
L(®) = Y (F(x;0) - Fx)” (38)
j=1
As another example, if the set of constraints is given by
1
(€t = [£((0.00) = 2 = 0,000 =~ 00 lneror = 0} (39)
then a possible loss function is:
Y Y 1 .
L(®) = ||f((0,0); 8) — 2| + 2 Osf (% 8) = — 00 f (x; e)”. (40)

interior

Techniques used for the construction of the loss function in PIML and DQC could be used

here.
The primary objective of this step is to minimize L (f(x; 0)) with respect to the

set of parameters 8, and thereby obtain a good approximation f of f. Parameters 8 are
optimised using a classical optimiser. Various ways to optimise @ are known in the art. Note

that £ (x;) could be constrained by its construction and it is not necessary that
min (L (f())) = min(L). The set of optimised parameter values may be denoted {0}

If the minimization is successful, then
f(x;00p0) = f (), (41)
and the approximate function f is assumed to be a good approximation of the unknown
function f. More in general, an approximation
Lext(f(Bopt) X) = Lex(f, %) (42)
can be obtained with a construction similar to eq. (28).
The optimised values {8,,.} will not be changed in the next steps, and so the
first parametric circuit is ‘frozen’.
In a step 408, an optimised (i.e., extremising) input value x,,. or an estimate
thereof is determined. In eq. (18), the quantum feature map ¥ (x) was defined as ¥ (x) :=
Y;(x). Defining

10

15

WO 2023/213821 PCT/EP2023/061566

39
X =xiL (C,X;) (43)
the feature map iy may be redefined as
o A
VX oM, Gyx) o) e bGe) (44)
i=1

This gives a weight A; to a contribution from space X;. This is a generalisation of the
definition in eq. (18), where one component had weight 1 and all other components had

weight 0. This can be seen by writing x € X; c X' as

(%L, 0x)) x (1) x (X1 4y (0,x)) € X (45)
For example, if the feature map is defined as in eq. (44),

the extension may be defined as:

8
P xig (C {1} x[0,1]) - @ (}(SO ®}(51/2),
i=1

8 (40)
A
XEy Quay) = Z (1D ® Ry @mlo)).

Next, the definition of ¢; and ¢; in eq. (29) may be extended to the general
case. As in the current example, they are all identical, the prime and subscript may be

dropped and all may be called ¢. Recalling ¢(j) = i implies ¢(x) € X; for every x € X;

¢ X XTIy (€ X)X Aox) o Xy (Ap0 0 (7)) (47)
or, if ¢ is a constant function, it continues to map every input to the same constant.
This results in a map
pop:X -, Xe [P(o(®)) (48)

Assuming the decomposition ¥ =x*, (4;, x;), this can be rewritten as

m

y e
(@) = [(xpar Qo d@M) =) TEL o (60)) (49)
$(j)=1
where x; € X;. Recalling ¢(j) = i implies ¢(x;) € X; and H = &%, H;,
o0 (¢(xj))> € How (50)

s0 eq. (49) is nothing but the decomposition of a vector in H in terms of its components in
mutually orthogonal subspaces ;.

Thus, each ¥ € X can be parametrised by {4, ®}. The parameter A may be
considered to denote to which component X; a value x belongs, and the parameter ® may
indicate the position of x in the component X;. If X is (fully) path-connected, dimA = 0 (and

can hence be ignored) and if X is discrete, dim & = 0. then the state

10

15

WO 2023/213821 PCT/EP2023/061566
40

[(¢:(3a, @))€ 3¢ (51)
can be generated using a quantum circuit. This circuit may be referred to as the ‘Extremizer
Circuit’.

For example, if
x={12}x[01], 3 =(%, @, ,)® (7, @H,,,), and; =1, (52)

then

2
yix2, @) x 01D - P (3, ®71.,,)
i=1

(53)
((cos(A/Z), ®,), (sin(1/2), dbz))

= cos(1/2)(I1) ® Ry (®11)10)) + sin(1/2)(|1T) @ R, (P,m)|0))
where |I) and |1I) denote the bases of two distinct one-dimensional Hilbert spaces.
This can be implemented with a conventional gate-based circuit (using, e.g., a

spin-based system) with a change of basis since
2

@ (7, ® #s,,) = (s, @ s,). (54)

i=1
Recall that A({M (-)};; @) in eq. (28) is defined on all of (F x .
Consequently, the map (F x F)* - R given by
A (X1 M (T Brin)12, Tipg B 1)) Wui) (55)
is well defined for all (|a;), |a;)) € (F x F)"'. This function can be evaluated using the trained
Model Circuit Uy (8,,,) described above. In particular, the trained Model Circuit Uy (0 pmin)

can be applied to any (|a;), |a;)) € (H x)" and the same steps used during the training of

the Quantum Model can be applied. If

(ag) laiy) = ([(e:0)) [w(i(x))) (56)
for x € X, then eq. (55) yields
£ (%; Ornin, @rin) (57)
The Extremizer Circuit in eq. (51) allows to obtain
o (X (o dD) : RIMA X RAM® — 3070 (58)
4, ®) o<y (v (02, 0)). [v (21(z2, 99)))) (59)

Combining eq. (55) with eq. (59) results in
f . Rdiml X Rdimd) SR (60)

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
41

This f is an extension of the approximation f (8., @min) Of f Over a path-connected domain,
if ® parametrises all x € X..

In some embodiments, 8 may be fixed (constant), and only a may be an
optimisable parameter. Where applicable, in the rest of this disclosure, 8 may be read as
{0,a} as used in the above equations, and consequently, 8,,. may be read as {oopt, aopt}.

Following the same steps, L., can be extended over the same domain, using
the previously constructed circuit for L. When ¥ € X, an appropriately constructed L., will
be able to yield the sum weighted by A of the loss from the contributing x; € X; that constitute
X. To implement this algorithm, it has to be possible to meet this condition.

Hence, it is possible to simultaneously search m points of the domain (from
the m distinct components). There is no need to modify the quantum circuit or the
subsequent measurement steps that were used in the previous step(s) to obtain the
approximation of f, it suffices to remove the map y that loads the input during the training of
the Quantum Model and replace it with the Extremizer Circuit. This allows utilisation of the
parallelism of quantum superposition during extremal learning.

Furthermore, if ® parametrises all x € X, all of X’ can be sought as though it
were a continuous domain. Note that it is not necessary to construct an interpolation of the
disconnected domain X of the function f being optimized; instead, the ‘inherent interpolation’
through quantum superposition from the circuit trained to construct the Quantum Model is
leveraged.

Now, the loss function

Lt (f (2, @), %(2, ®)) (61)
may be optimised with respect to the continuous variables (4, ®). If X is (fully) path-
connected, dim4 = 0 and if X is discrete, dim ® = 0. Under these edge cases, the steps
described with reference to Fig. 4 reduce to those described with reference to Fig. 3 using
steps 308-314, respectively step 316.

It is worth noting that there is no obvious way to map ¥ € X to an input value.
However, since F = @2, F;, where all F; are mutually orthogonal, there is always an

operator such that its measurement sends a general vector in F to a vector in one of the F;.

Let
A
(e, @) = D o i), (62)
L | A
The coefficient M 1’1" M is proportional to the probability of obtaining a state in each of the
ext

orthogonal subspaces of the Hilbert space after measurement. The expectation is that the

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
42

construction of [(X(4, ®))) makes it most likely for this projection to correspond to the X;
containing the extremal input, provided optimisation was successful.

After the measurement, a wavefunction of the form |¥(x.)) for some x . € X
is obtained. This is the same encoding that was initially employed on the input to map it to
the Hilbert space. Therefore, it can be mapped back to the input variable by performing
measurements on [Y(Xq.)).

Fig. 5A—H schematically depict quantum circuits according various
embodiments. The method can operate slightly differently based on whether the input
variable are discrete or continuous variables. In general, the quantum circuits described
herein can be implemented as analog, digital, or analog-digital quantum circuits. Examples of
these are provided in Fig. 14-19.

In particular, Fig. 5A depicts a quantum model that may be used during
optimisation of the first parametric quantum circuit. In the depicted example, the problem
description 502 comprises a (classical) training data set {(x;, y;)} 504 comprising input-output
pairs with input values x; and corresponding output values y;. Other embodiments may have
different constraints, e.g., in the form of inequalities, differential equations, and so on.

The quantum model to be trained on the basis of the training data set dataset
is provided, e.g. received or determined by the classical computer system. The quantum
model comprises one or more quantum circuits 506. The quantum model is executed on a
quantum computer with a register with at least N qubits.

The one or more quantum circuits comprise a quantum feature map U, 508
and a first parametric quantum circuit Uy 510. The qubit register is initialised in the zero state
|0Y®N . The quantum feature map is implemented by a unitary operator U, which defines a
continuous function F that maps coordinates from input values x € X to a distinct place in
the Hilbert space of the qubit register:

F: X > 7—[5’9’, x - |F(x)) (63)
The quantum feature map F may be physically implemented by means of a unitary operator
acting on |0)®" whose parameters depend on x:
Uy |0)®N = F(x) (64)
Examples of a feature map F(x) are discussed in more detail below with reference to Fig.
6A-E. Generally, the feature map F as used in the description of Fig. 5A—I corresponds to
the feature map y as used in the description of Fig. 4.

The first parametric quantum circuit may also be referred to as a cost circuit,

e.g., a cost-QNN, is applied to the output of the feature map. The first parametric quantum

circuit is implemented by a variational unitary circuit Uy parametrised by variational

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
43

parameter 8, which may be analog and/or digital. Examples of cost circuits are discussed in
more detail below. In the example depicted in Fig. 5A, the first parametric circuit acts on the
quantum state resulting from the operations defined by the quantum feature map, but in other
embodiments, the order may be different, e.g., reversed or interleafed.

Subsequently, a measurement 514 of the output state in the form of the
measurement of an observable M is made, and the measurement is translated into an
output value:

(F@OIUS MUl F()): X >R, x>y (65)

Training of the first parametric quantum circuit can be similar to training any
variational quantum circuit, similar techniques as used for training classical Neural Networks
can be used. For each input x;, the corresponding output ¥; is recorded, where the output is
obtained, e.g., by a measurement as defined in eq. (65). A distance metric between the
(‘true’) training values y; and the predicted values j;, such as the mean square error (MSE),
acts as a loss function L. The loss function L is a function of the parameters 0 of the
variational quantum circuit Uy and is real-valued.

6~ L(O;{(x;,y)} €R (66)

The loss function can be minimized by a classical optimiser 516 using
standard optimisation algorithms, usually based on gradient-based techniques. Based on the
result for previous iterations of 8, the optimiser may suggest new values, which are used to
modify the first parametric circuit. If the training is successful,

f(x) = (F@)| U M Ug |F(x)) ~ f (). (67)
This way, a set of optimised parameter values 8, is determined. Once the model has been
trained, the parameters 8 of the trained model are ‘frozen’, i.e., fixed, at the optimal values
0,p: that were obtained during the training.

The output values of the quantum model may be scaled to be between 0 and
1 using a suitable scaling function, as is common in many classical optimisation algorithms.
Similarly to the classical neural networks, quantum neural networks are able to fit the data
faster and better when the target values are within a known range. Furthermore, always
scaling the output within a known range fixes the range of the target values regardless of the
size of the problem, which makes comparison easier. The goal of the training process of the
one or more quantum circuits 506 is to learn a mapping of inputs to outputs based on
constraints, e.g., examples included in a training dataset. The initial parameters of the model,
usually take small random values and are updated via the optimisation algorithm according

to the error estimate on the training dataset. Therefore, unscaled input variables can lead to

10

15

20

25

WO 2023/213821 PCT/EP2023/061566
44

a slow and unstable learning process, while unscaled target (output) variables can lead to
exploding gradients resulting in a bad learning process.

In the event that the training samples are incomplete (< 2V, where N is the
number of qubits), the maximum feature value in training will not necessarily be equal to the
true maximum feature value. Therefore, the value of the true maximum output value
corresponding to the optimal solution will be out of bounds, since it should be higher than the
assumed maximum value. To compensate for this issue, a variable a, e.g. « € [1.0,100.0]
and a constant 5, typically g = 0.5 may be defined, as a multiplicative and additive factor to
the model output, respectively. For example, if the output is in the interval [-N, N] (e.g., total

magnetisation of N qubits), then a new expectation value may be defined as

model output
2N

As an example, a may initially be chosen as ¢ = 1.0, while § remains fixed at

expectation value = a X (68)

B = 0.5. Using «a, the maximum feature value can be increased so that optimisation can lead
to the finding of the best solution. As a increases, the variational circuit has more flexibility to
improve optimal solutions; however, a trade-off must be found between a large «a value and
the probability of suggesting the optimal solution.

Fig. 5B depicts a quantum circuit for determining an optimal input value x,, €
X, based on the optimised first parametric circuit implemented by unitary operator ‘agopt, for

continuous input data. If the input data is continuous, then the quantum feature map F(x)
implemented by unitary operator 7, is also continuous and the approximation f(x) of f(x)
given in eq. (67) is continuous. This is not to say that if the input data is continuous, circuit
differentiation needs to be applies; depending on the specifics of the optimisation problem, it
can be preferable to use different optimisation methods instead, e.g., as detailed below with
reference to Fig. 5C.

Since the trainable feature map is analytically differentiable by employing
circuit differentiation methods such as parameter shift rules, the derivative of the model with

respect to the independent variable can be computed:

0.f(0) = 0(F| T, Ty, |F())
o) +(0 o)

This derivative can be implemented as a combination of a derivative 522 of a unitary

e (69)
- <0 |00 T}, , Uy, T

MUy, 0,0y

operator and the optimised cost circuit; and a measurement 526 may be applied to its output.

A (known) classical optimiser 526, e.g., a gradient ascent/descent-based optimiser, may then

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
45

be used to determine an input parameter x,,; € X that extremizes the value of the

observable M on the circuit output state representing f (x) in eq. (67).

Fig. 5C depicts a quantum circuit for determining an optimal input value x,; €
X, based on the optimised first parametric circuit implemented by unitary operator ‘agopt,

e.g., for discrete or non-numerical input data. In principle, this method can be used for any
input data type, including fully continuous input data. For discrete input data, one possible
feature map F (implemented as circuit 508 in Fig. 5A) is a simple digital encoding, where a
binary representation of input x is mapped to binary bitstrings. After initializing the qubit
register in all-zeros, the injection F transforms that state to a product state of zeros and ones
(bitstrings), typically by applying an X-gate to each qubit on indices where a 1 is present in
the binary representation of the input x.

F: X - {0,138 > {|0),|1)}® c HB) (70)

Again, the goal is to find x,, € X such that f(xp:) is an extremum of f,
where the function f is an unknown function. In some embodiments, e.g. the embodiment
shown in Fig. 11 and 12, X is a discrete space and, therefore, not path-connected.
Therefore, the approximation f of f (as defined in eq. (67)) is not continuous in x, and hence,
conventional optimisers using gradient-based techniques cannot be used to find xp.
However, quantum machine learning can advantageously be used to search for x.

To this end, the quantum circuit implementing the feature map F is removed
from the one or more circuits making up the quantum model used when optimising the
parameters of the first parametric quantum circuit (i.e., when training the cost model), as
discussed above with reference to Fig. 5A. Then, a second parametric quantum circuit is
inserted that is connected to the input of the first parametric quantum circuit. In this example,
the second parametric quantum circuit is a variational quantum circuit 532 which is
implemented as a unitary operator ”th, parametrised with parameters ¢. This new unitary
circuit may be referred to as the Extremiser feature map, with variational parameters ¢. The
variational circuit can be an analog or a digital circuit. In this example, the same initial state
|0Y®N used as input for the quantum feature map F is used as input to the Extremiser feature
map, but in principle, any initial state can be used. However, the Extremiser feature map
should map to the same Hilbert space as the quantum feature map F. A variational input

state |¢@) may be defined as

UplOY®N = |gp) € H; (71)

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
46

During Extremiser feature map training, the parameters 0 of the cost model
534 remain frozen with the optimal values 8, obtained during training of the cost model as
described with reference to Fig. 5A. In the depicted example, the output of the circuit can be
obtained from the measurement 536 of the expectation value of the observable M

9oy =(pl Uy Uy, lp)€R (72)

This function can be extremised (maximised or minimised) by variationally optimising
parameters ¢. The optimisation of ¢ can be accomplished, for example, using gradient
ascent or descent, using analytical circuit differentiation rules to compute 9,7 .

The Extremiser feature map can be thought of as a trainable feature map,
which is trained with respect to ¢. The goal of this training is to learn an intermediate
wavefunction that has maximum contribution from states (bitstrings, if digital encoding is
being used) that result in a high (low) value of the model to be maximized (minimized). This
can be sought of finding the point in the Hilbert space which results in an extreme value of
the optimised cost circuit.

Fig. 5D depicts a quantum circuit for determining an optimal input value x,, €

X, based on the optimised first parametric circuit implemented by unitary operator ﬂgopt and
the optimised second parametric circuit 542 implemented by unitary operator ﬂ%pt. This step
may also be used in cases with discrete or non-numerical input data. Once the quantum
model has converged to an optimal value ¢, of ¢, as described with reference to Fig. 5C,
the cost model ﬂgopt is removed from the one or more quantum circuits. In contrast to x,, as
determined in Fig. 5B, ¢,,; cannot be directly associated with an input since the input is
discrete, and hence T‘1(|<popt)) is, in general, not defined. Instead, the output of the
Extremiser feature map circuit 542 using the optimised second parameter values @, is
sampled using a circuit - 544 to obtain an estimate for Xopt- This way, an input value may
be obtained that maps to a point in the Hilbert space that is close to |¢,,), and which is
hence likely to be associated with a model output that is close to an extreme output.
If digital encoding is being used, this sampling for x,,. may be done by making

a measurement in the 6§’N basis. This collapses the wavefunction to the space {|0), |1)}®¥,
and gives the map

F B 5 (10), 1}V 5 (0,118 5 X' 2X,)= Fl(eD X' 2X (73)
respecting F"'F =1(and also F F~1 = 1if X' = X), where 1 denotes the identity. The
previous steps of the algorithm enhance the probability that the measured bitstring 77"(|<popt))

is mapped to x,p¢.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
47

For many applications, it is sufficient if the unfeasibly large combinatorial input
space is reduced to a much smaller and more manageable number of candidates which have
a relatively large probability of giving an outcome that is close to optimal. Which number is
manageable depends on the application, and can range, for example, from dozens to
hundreds. If necessary, the (approximate) function values can be obtained by providing the
sampled values as input to the optimised quantum model as resulting from the steps as
described with reference to Fig. 5A.

The variational circuits Uy 510 and U, 532 may be selected with depth N2, so
that they are more expressive. As discussed below with reference to Figs. 9-12, circuits with
depth N can suffice to obtain good results. However, depth N? generally provides increased
performance in the sense of an improved accuracy of finding the optimal solution. In contrast,
the more the depth of the variational circuit is increased, the more options are provided,
which, in turn, can lead to sub-optimal performance for some optimisation problems.

Fig. 5E depicts a quantum model that may be used during optimisation of the
first parametric quantum circuit. When the input data is continuous, the feature map circuit
and the first parametric quantum circuit can be combined into a single quantum circuit 532
implemented by a unitary operator ‘ax,g. Otherwise, the quantum model functions as
described above with reference to Fig. 5A.

In other examples, different configurations may be used. For example, the
order of the feature map U, and the first parametric circuit U, can be inverted, or one or both
may comprise several circuits, which can optionally be applied in any suitable order, e.g.,
alternatingly.

Fig. SF depicts a quantum circuit for determining an optimal input value x,, €

X, based on the optimised first parametric circuit implemented by unitary operator U as

%,00pt
shown in Fig. 5E. If the quantum model is differentiable, the optimal input value may be
determined by analytically differentiating the single unitary operator with respect to the input
variables, resulting in a differentiated optimised circuit 562, here implemented by a,;ax,gopt.
Subsequently, known optimisation methods may be used to determine the optimal input
value.

Fig. 5G depicts a quantum model that may be used during optimisation of the
first parametric quantum circuit. In this example, the first parametric circuit is a quantum
kernel circuit. A feature map 572 implemented by a unitary operator U is applied to an input
variable x; and the same feature map 574 is applied to a kernel point x;. A measurement M

576 is applied to determine a kernel value k;;, which is typically based on an overlap, e.g.,

o

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
48

ki; = (x:|x;) or ki; = |{x|x;)|”. This is repeated for a plurality of kernel points. The
approximate function f(x) may be defined, e.g., as f(x) = 6, + X, 0; k(x, x;) where 8 =
{HJ}JJTS’C The parameters 8 may be optimised by minimising a loss function L, e.g. L =

Y:(y; — f(x)), or by solving a suitable chosen system of equations. Further details about
optimising a quantum kernel function are presented in co-pending application
EP22160629.6, which is hereby incorporated by reference.

Once optimised parameters 8,,; have been determined, the optimal input
value may be found as discussed above, e.g., by differentiation as described with reference
to Fig. 5B or by using an extremiser quantum circuit and subsequent sampling as described
with reference to Figs. 5C and 5D.

Fig. 5H depicts a quantum model that may be used during optimisation of the
first parametric quantum circuit. In this example, the quantum kernel is variational quantum
kernel, wherein the quantum feature map 582,584 is a variational quantum feature map
parametrised by a set of parameters ¢.

In each step, the algorithm maps the input to the output by means of only
quantum gates and a final quantum measurement, without intermediate conversion to
classical data. Hence, it can leverage quantum effects such as superposition for a
computational advantage. In particular, the input to the (optimised) cost circuit 510,524,534 is
a quantum state. This sets the described method apart from methods in which the
determination of cost model and the optimisation are performed separately. In other words,
known methods create a cost model that has a classical input, and hence, the quantum
advantage of efficiently searching the input space to determine an extremising value is lost in
such methods.

For specific datasets, quantum neural networks have been shown to have fast
convergence rates and low generalization error, due to quantum parallelism, which
depending on the task might overwhelm the classical neural networks performance for the
same problem. Additionally, they exhibit a larger model capacity compared to neural
networks for various tasks.

The choice of the observable (or cost function) M is important in any
optimisation problem setting. In the examples shown in Figs. 11 and 12, a suitable choice is
total magnetization, i.e., the sum of magnetization on all qubits ¥; 6;. This way, the large
expressibility in the Ansatz can be retained. In problems formulated as an Ising-model,
magnetization reflects the average value of the spin (state of the qubit), and thus total

magnetization provides information about the state of the system. If the studied problem has

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
49

a diagonal Hamiltonian (as is the case in many combinatorial optimisation problems, such as
Max-Cut), total magnetization is a simple and easy to measure metric (as the calculation of
the expectation value involves only measurements in one basis, namely the Z-basis, on all
qubits). Total magnetization provides, furthermore, a metric that affects all qubits, avoiding
the inefficiency of circuit light cones.

A goal of the QEL algorithms is to find x,,; € X such that x, is an extremal
value of a general unknown function f: X - R, given only a partial set {(xi,f(xl-))}. The goal
of QAOA, in contrast, is to find x,,; € {0,1}®¥V such that f(xopt) is as close as possible to the
maximum of £, where f(x) = ¥¥ C;(x) and each ‘clause’ C;:{0,1}®" - {0,1} is given.

In the following, the QAQOA algorithm will be described using notation similar to
the notation used for the QEL algorithm in order to make direct comparison easy. Fig. 5l
shows the QAQOA algorithm in the same style and notation as Fig. 5A and Table 1 provides a
dictionary for comparison with the notation often used in other works on the subject.

The QEL algorithm assumes an unknown function that maps a discrete or
continuous independent variable (input) x € X to an associated dependent variable (output)
y = f(x) € R. A finite set of such pairs {(x;, y;,)} is known and is used as training data for the
algorithm. As stated, the goal of the algorithm is to find x,,; € X such that f(x,p.) is an
extremal value of f(x).

The feature map 592 in QAOA is a simple fixed circuit applying the Hadamard
gate on each input qubit to convert the input wavefunction into [y,), an equal superposition
of all (possible) input bitstrings. Then a unitary operator Uy 594, depending on 2p angles
(where p refers to the parameter p as commonly used in this context) and the problem
definition, is applied to the input wavefunction to arrive at the final wavefunction |g) =
Uy o). By contrast, in the QEL algorithm, the parametrised circuit does, in principle, not
depend on the problem definition.

The expectation value of an operator M 594, which is (again) designed
according to the problem definition, is calculated with respect to the final wavefunction |yg)
and the obtained value is used by a classical optimizer. Again, in the QEL algorithm, the
operator does, in principle, not depend on the problem definition. The goal of the classical
optimizer is to update @ for the next epoch such that the expectation value of M is
maximized over multiple iterations.

Once the expectation value of M satisfies some pre-determined criterion for
maximization, M is disconnected from the circuit and |i,) is measured in the Z-basis to

obtain the optimal bitstring (or approximation thereof).

10

15

20

25

WO 2023/213821 PCT/EP2023/061566

50
Table 1

Present disclosure Farhi and Gutman

Problem definition Objective function C
o) |s)
Uy U(B, p)U(C, ¥p) - U(B, f)TU(C, 1)
V) lv. B)
M c
(M) (v.BICly. B)

0 ={0y, ..., 02} Vi, w0 Yo} U {B1, s Bp}

Fig. 6A—6E depict quantum circuits according various embodiments. Further
examples are provided below with reference to Figs. 14-19. In particular, Fig. 6A shows a
basic form of a quantum feature map, which is here illustrated as an example of a ‘product’
type feature map. In this example, single qubit rotations 604 (here chosen as Ry(qb(x))) act
on each qubit individually and are parametrised by a function ¢ of variable x. The function ¢
is preferably a non-linear function. For a non-linear feature map encoding, the non-linear
function ¢ (x) may be used as an angle of rotation. The application 602 of one rotation
operation to each qubit in a register may be referred to as a single layer of rotation
operations. A product feature map can be further generalized to several product layers, and
different functions {¢}; for example, several feature maps may be concatenated to represent
a multivariable function.

Fig. 6B illustrates an example of a derivative quantum circuit for the product
feature map of Fig. 6A. Differentiation over variable x follows the chain rule of differentiation,
including qubit operations 612 with shifted phases Ry (¢ (x) + n/2). Here, the expectation
value of the derivative is written as a sum of separate expectations with shifted phases,
repeated for each x-dependent rotation 6101-4.

Fig. 6C depicts an example of a generalized product feature map, where the
layer of rotations is followed by the unitary evolution generated by Hamiltonian H 620. For
complicated multiqubit Hamiltonians, the encoded state may comprise exponentially many
unique x-dependent amplitudes. The time interval t can be set variationally, or annealed
from zero to a finite value during the optimisation procedure.

Preferably, the product feature map has a non-linear dependence on the

encoded variable x. In the simplest case, this may correspond to a single layer of rotations

10

15

20

WO 2023/213821 PCT/EP2023/061566
51

as shown in Fig. 6A. Such product feature map may be described by the following

expression:

NI
Up(x) = ® Ra,j (9 (), (74)
j=1

where N’ < N is a number of qubits that is used by the quantum computer for the

encoding and the symbol & ; denotes the tensor product. Further, R, ;(¢) = exp (—i%Palj)

is a Pauli rotation operator for Pauli matrices P, ; = X;,Y; or Z;, (a = X,Y, Z, respectively)
acting at qubit j for phase ¢. This type of feature map circuit is also described in co-pending
application PCT/EP2021/081737, which is hereby incorporated by reference.

The next step is to assign a non-linear function for rotation. In an embodiment,
the non-linear function may be selected as ¢(x) = arcsin(x) and a =Y, such that only real
amplitudes are generated. The unitary operator of eq. (74) may then be rewritten as (for N’ =

N):
N

Uy (x) = ® exp <—iw ?,-), (75)

j=1
leading to amplitudes that depend on the encoded variables as sin(arcsin(x) /2) and

cos(arcsin(x) /2). Acting on the initial state |0), this feature map may encode the variable as

an N-th degree polynomial formed by {1, x, V1 — x2} and products thereof. The redundancy
from many qubits thus forms a basis set for function fitting.

The product feature map can be generalized to several layers of rotations £ =
1,2, ..., L, various non-linear functions ¢,, and specific subsets of qubits N, in each layer, and

may then be written as:
L

Uy = | [Q) RO (9:). (76)

£=1 jeN,
Below, an example of how the quantum feature map can be differentiated is
provided, e.g., the example in eq. (74) wherein a = Y rotations and full layer are considered.
The derivative for the unitary operator generated by any involutory matrix (length-1 Pauli

string in this case) can be written as:

N N
d . 1/d ~
a‘uqb x) = 2 (a qb(x)) 2 ®(_iyj’5j,j’)RYJ(¢(x))

j=1 j=1

N N
1({d
=32 (@P(x)) 2 ® Ry (¢(x) + 78),

j=1 j=1

(77)

10

15

20

WO 2023/213821 PCT/EP2023/061566
52

where Euler's formula can be used to rewrite the derivative into the form of a sum of unitary
operators, where x-dependent rotations are shifted one-by-one. Next, the formula may be
generalized to the expectation value of any observable (C) for the encoded state, following

the step of standard parameter shift rule. This reads:
d . A 1(d A A
— T == —
dx<0|u¢(x) C"U¢(x)|0> - 4(dx¢(x)) (& =) (78)

where (¢)" and (¢)” are the sum of shifted unitary operators:

2®Ry1 (x)+2 JJ)éRy,j(¢(x)+2 ”) (79)

= s

The corresponding derivative quantum circuits (DQC) are shown in Fig. 6B,
where differentiation of the cost function for feature map is performed using the chain rule
(highlighted rotations 61414). A similar strategy can be applied for generic multilayer feature
maps and a different choice of non-linear map ¢ (x).

Finally, in the cases where the generator of the feature map (encoding
Hamiltonian H 620) is not an involutory matrix, they may be rewritten as a sum of unitary
operators, and measure the derivative as a sum of overlap using the SWAP test.

In another embodiment, a non-linear quantum feature map may be used which
may be referred to as the Chebyshev feature map. Belonging to the product feature map
family, this feature map drastically changes the basis set for function representation. As a

building block, a single qubit rotation Ry,j(qb(x)) may be used, but with non-linearity

introduced as ¢(x) = 2 narccos(x), n = 0,1,2,.., such that the encoding circuit reads:
N
Uy (x) = ® Ry ;(2n[j] arccos(x)). (80)
j=1

Here it is considered that the coefficient n[j] may in general depend on the
qubit position. The seemingly small change of factor two multiplication goes a surprisingly
long way. Namely, expansion of the rotation using Euler’s formula yields:

2 X N
Ry j(¢(x)) = exp <—1 £narccosiy) arczcos()YJ> = cos(narccos(x)) 1; — i sin(narccos(x)) ¥;
(81)
The resulting decomposition of eq. (81) corresponds to the unitary operation with matrix
elements defined through degree—n Chebyshev polynomials of first and second kind,
denoted as T,,(x) and U, (x). Formally, Chebyshev polynomials represent a solution of

Chebyshev differential equation:

10

15

20

25

WO 2023/213821 PCT/EP2023/061566

53
d? d
(1—x2)d—x}2]—x%+n2y=0,n=0,1,2,6,... (82)

wherein
y(x) = A cos(narccos(x)) + B sin(narccos(x)) = AT,(x) + BU,(x), x| <1, (83)
and wherein A, B are some constants. Chebyshev polynomial of the first kind for low degrees
can be written explicitly as To(x) = 1, Ty (x) = x, T,(x) = 2x% — 1, T¢(x) = 4x° — 6x, and
higher degrees can be deduced using the recursion relation
Tn41(x) = 2x Ty (%) — T (x). (84)
Similarly, second-kind Chebyshev polynomials can be written as Uy(x) = 1,
U;(x) =2x,and U, ;1 (x) = 2 x U, (x) — U,_,(x). The crucial properties of Chebyshev
polynomials are their chaining properties, nesting properties, and simple differentiation rules.
The chaining properties for polynomials of the first and second kind read as 2 T,,,(x) T,,(x) =
Tnan(X) + Tip—p () @nd Uy, () Uy, (%) = X3 Um—n+2(x), respectively. Derivatives can be
obtained as dT,,(x)/dx = n U,,_;(x). Nesting corresponds to the relation Tn(Tm(x)) = T ().
Finally, polynomials of different kinds can be converted as U, (x) = 2 X7 T;(x) when j is even,
and U, (x) = 2 ¥7[T;(x) — 1] when j is odd. Finally, it is noted that Chebyshev polynomials
may represent oscillating functions when defined in the x = (—1,1) region, and their
derivatives diverge at the boundaries of this interval.
The power of the representation described can be inferred from approximation
theory. This theory states that any smooth function can be approximated as f(x) =
Yo AnT,(x), |x| < 1. Chebyshev polynomials form an optimal set of basis functions in the
sense of the uniform L., norm. This is why they are at the foundation of spectral algorithms
for solving ODEs, and also give an edge in quantum simulation.
As examples of encodings for quantum kernels, two types of Chebyshev
quantum feature maps are presented. The first version corresponds to a sparse Chebyshev

feature map defined as:

N
ﬂ¢ (x) = ® Ry j(2 arccos(x)). (85)
j=1

where the encoded degree is homogeneous and is equal to one. Here the chaining
properties T, (x) and U, (x) should be remembered, noting that once states with Chebyshev
polynomials as pre-factors are created, the basis set will grow further by concatenating
elements. In the following, the sparse distinction is dropped and eq. (85) will be simply

referred to as the Chebyshev feature map.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
54

The second version corresponds to a Chebyshev tower feature map, which

may be defined as:
N
ﬂ¢ (x) = ® Ry ;(2 jarccos(x)), (86)
j=1

where the encoded degree grows with the number of qubits, creating a tower-like structure of
polynomials with increasing n = j. Again, as polynomials chain together and morph between
two kinds and their degrees, the basis set is largely enriched. This is the choice that is
exploited when large expressibility is needed without increasing system size and number of
rotations. Eq. (86) allows the representation of generic functions, and can be improved
further by using layers of rotations as in eq. (76). The results discussed below with reference
to Fig. 9-11 have been obtained using a (simulated) Chebyshev tower feature map to
encode the input variables.

Product feature maps may induce non-linear mappings between variable(s) x
and quantum states described by tensor products of separate single-qubit wavefunctions.
These states are limited to the subspace of product states. To utilize the power of the entire
Hilbert space of the system, approaching the amplitude encoding case, independently
distinct amplitudes need to be populated, including the subspace of entangled states. To
make the described feature maps even more expressive, it is suggested to enhance the
product feature maps (and specifically the layered Chebyshev map) with additional
entangling layers represented by Hamiltonian evolution. Namely, after the set of single qubit

rotations another unitary operator 620 exp(—i H r) may be considered which acts for time t

and is generated by the Hamiltonian 7. The sketch of the circuit is shown in Fig. 6C. By
choosing H as a complex many-body Hamiltonian, it is ensured that exponentially many
amplitudes are generated. It is known that the quantum simulation of dynamics leads to a
volume-like increase of entanglement.

Fig. 6D depicts a quantum kernel feature map with a layered structure. In the
depicted example, the quantum kernel feature map 622 is defined by a unitary operator U (x)
which comprises a (preferably alternating) sequence of static circuits V;_,, 6244-m and

circuits ‘aqu (x) 626,628 parametrised by x via a (non-linear) function ¢;. This effectively

means x-data is ‘re-uploaded’ at multiple layers, increasing expressivity of the feature map
U(x). Layers 626,628 can be either static (comprising gates that are not changed) or
variational (comprising gates which have parameters, such as rotation gates, which can be

tuned). This concept of variational quantum kernels is further detailed in Fig. 6E, where the

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
55

quantum kernel feature map U(x) is parametrised by the type of non-linear function ¢ but

also by a set of variational parameters, 6.

The suitability of a quantum feature map may depend on the regression
problem being solved. However, it is not always a priori evident which quantum feature maps
would be suitable choices for a given regression problem. Therefore, it makes sense to be
able to ‘tune’ or modify the quantum kernel feature map structure, and potentially even make
the quantum kernel feature map ‘trainable’ in the sense that its parameters be treated on the
same footing as other parameters in quantum machine learning such as kernel training, e.qg.
as presented in co-pending applications EP21190216.8, EP22155513.9 and
PCT/EP2021/081737, which are hereby incorporated by reference.

An example of such parametric feature map is depicted in Fig. 6E, where a

trainable quantum kernel feature map ﬂ§¢(x) 630 is expressed as a single unitary operator

632 comprising several subcomponents, such as single-qubit rotations R; parametrised by a

function ¢ of x 636, or parametrised by a FM parameter 68 638, or a static gate 634 or 642.
Furthermore, multi-qubit gate operations or analog blocks, such as a block 640, can be used
which may be dependent on either x or 6.

Fig. 7A and 7B schematically depict a method for solving a regression
problem using a quantum kernel according to an embodiment. In particular, Fig. 7A shows a
high-level schematic of the interplay in a hybrid computer system 700 between a classical
computer 702 and a quantum computer 704, while Fig. 7B depicts a schematic of the
quantum computer 704. The quantum computer executes gate sequences called ‘quantum
circuits’ 7406, for example those described above with reference to Fig. 5A—H. These
quantum circuits typically comprise a qubit initialization step 742, followed by sequences
744,746 of digital 748,752 and/or analog gates 750. These gates can be, for example,
unitary operations on a quantum state or measurement operations 754. Examples of
hardware-level schematics to implement these quantum circuits are discussed in more detail
below with reference to Fig. 8A—E.

In the methods described in this disclosure, these quantum circuits can be
used to evaluate a parametric quantum circuit, e.g., a quantum neural network, or a quantum
kernel. In the depicted example, gate sequences 706 are used to encode an input parameter

x; € X into a Hilbert space associated with the quantum computer. For example, for a

quantum computer with N spin-%2 qubits, this can be H = HEV Gate sequences 706 may

S1/2°
be referred to as a quantum feature map circuit. These quantum feature maps can comprise

unitary operations (dependent on input parameter x;) such as those discussed above with

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
56

reference to Fig. 6A-E. Additionally, e.g., subsequently, gate sequences 708 are applied
which are parametrised by parameters 8. In the first step, the parameters 8 may be initialised
with properly chosen initial values, e.g., random angles. Then, a measurement is made of the
resulting quantum state, resulting in, e.g., an expectation value (JV[(xl-; 0)), typically based
on a cost function. Several rounds of applying gate sequences 706,708 and measurement
710 may be required to determine a single expectation value with sufficient accuracy. These
steps may be repeated for all input values x; in a set of training data. The result is output
data 726.

The output data 726 are used by the classical computer 702 to compute 712 a
loss function. A classical optimisation algorithm may be used to suggest 714 a new value for
parameter 6.

Additionally, if the input space comprises a continuous subspace, derivative
guantum circuits, e.g., derivative quantum feature maps, may be determined and their
expectation value d(JV[(x;, 0)) /dx is estimated, at point x;. Repeating the procedure for all
x; € X, function values and derivative values may be collected. The goal of the loss function
is to assign a “score” to how well the potential solution (parametrized by the variational
angles @) satisfies the training data, matching output data 726 with the training data to
minimize the loss. In order to minimize the loss function, the gradient of the loss function may
be computed with respect to variational parameters 8. Using, e.g., the gradient descent

procedure (or in principle any other classical optimization procedure 714), the variational
angles may be updated from iteration n; = 1 into the nextone n; + 1, e.g.: o) gln+1) _

a Vg L (with a being here a ‘learning’ rate and L the loss function). The above-described
steps 706—714 may be repeated until an exit condition is reached. The exit conditions may
be chosen as:

1) the maximal number of iterations nye, reached;

2) loss function value is smaller than a pre-specified value; and

3) loss gradient is smaller than a pre-specified value.

Once the exit condition is reached, the optimised parameters 8,,; may be determined, which
may be used to construct the optimised first parametric quantum circuit 718.

Then, using the quantum computer 704, gate sequences 716 parametrised by
parameters ¢ may be used to encode a position in the Hilbert space associated with the
quantum computer. In the first step, properly chosen initial values may be used, e.g., random
angles. Then, the gate sequences 718 encoding the optimised first parametric quantum
circuit 718 are applied, and measurements 720 are obtained. The resulting output data 730

are used by the classical computer 702 to compute 722 a target function value. A classical

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
57

optimisation algorithm then suggests new parameter values ¢’ to adjust gate sequences 716
in order to extremise the target function, until an exit condition is reached. Steps 716-724 are
analogous to steps 706—714, except that different parameters are being optimised and a
different function may be evaluated.

When a quantum kernel is used to model the unknown function, the method
may comprise evaluating quantum kernels and/or derivatives thereof, i.e., determining a
kernel value k(ix;,x]) and/or a kernel derivative value V5 k(x;, x;) (where Vik(x,y) =

%’;(;;ly)), given two input parameters x; (e.g., a function input) and xJ’ (e.g., a kernel point).
This is done by performing gate sequences 744,746, which may be referred to as quantum
kernel circuits, or quantum kernel feature maps, for each point x; in the training data set and

each kernel point xJ’ Subsequently, the kernel value may be measured as a wavefunction

overlap (or function thereof). Additionally or alternatively, derivatives of the kernel function
can be computed on the quantum computer using similar gate sequences resulting in a
measurement of a kernel derivative value. The measurement of a kernel value typically
involves repeated measurements on the same circuit, the quantity of interest being an
average of the repeated measurements.

Data representing the measurements are transferred to the classical computer
702. Typically, the data are transferred only once all calculations on the quantum computer
are finished. Then, an optimisation step is performed, based on the data received from the
quantum computer representing the kernel values and/or its derivatives. The optimisation
step may comprise minimising a loss function and/or solving a linear optimisation problem.
The optimisation step is performed on the classical computer using a classical algorithm,
e.g., in a loop or using linear algebraic methods, with respect to classical parameters 8 of the
optimisation problem, and, where necessary, reusing the same kernel values and/or kernel
derivative values in each optimisation step.

Fig. 8A is a hardware-level schematic of the actions effectuating the logical
operations shown in circuit diagrams such as Fig. 5A—H and Fig. 7. Unitary operators, e.g.
those to encode the quantum kernel feature map and derivatives thereof, can be
decomposed into a sequence of logical gate operations. These logical gate operations are
transformations in a quantum Hilbert space over the qubits encoding an input parameter. In
order to transform the internal states of these qubits, a classical control stack is used to send
pulse information to a pulse controller that affects one or more qubits. The controller may
send a sequence of such pulses in time and for each qubit independently. An initialization

pulse is used to initialize the qubits into the |0) state 802. Then, for example a series of

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
58

single-qubit pulses is sent to the qubit array in 804, which may apply a single-layer feature
map. Additionally, two-qubit pulse sequences can be used to effectively entangle multiple
qubits with a feature map 806. The duration, type, strength and shape of these pulses
determine the effectuated quantum logical operations. 808 indicates a ‘break’ in the depicted
timeline, which means the sequence of gates may be repeated in a similar fashion in the
direction of the time axis 812. At the end of the pulse sequences, one or more of the qubits
are measured 810.

Fig. 8B is a hardware-level schematic of the actions effectuating the logical
operations shown in circuit diagrams such as Fig. 5A—H and Fig. 7, specified for a
photonic/optical quantum processor. Unitary operators, e.g. those used to encode the
quantum kernel feature map and derivatives thereof, can be decomposed into a sequence of
optical gate operations. These optical gate operations are transformations in the quantum
Hilbert space over the optical modes. In order to transform the internal states of these
modes, a classical control stack is used to send pulse information to a pulse controller that
affects one or more modes. The controller may formulate the programmable unitary
transformations in a parametrised way.

Initially the modes 814 are all in the vacuum state 816, which are then
squeezed to produce single-mode squeezed vacuum states 818. The duration, type, strength
and shape of controlled-optical gate transformations determine the effectuated quantum
logical operations 820. At the end of the optical paths, one or more modes are measured
with photon-number resolving, Fock basis measurement 822, tomography or threshold
detectors.

Fig. 8C is a hardware-level schematic of the actions effectuating the logical
operations shown in circuit diagrams such as Fig. 5A—H and Fig. 7, specified for a Gaussian
boson sampling device. Unitary operators, e.g. those used to encode the quantum kernel
feature map and derivatives thereof, can be decomposed into a sequence of optical gate
operations. These optical gate operations are transformations in the quantum Hilbert space
over the optical modes. In order to transform the internal states of these modes, a classical
control stack is used to send information to optical switches and delay lines. The controller
may formulate the programmable unitary transformations in a parametrised way.

Initially the modes 826 are all in a weak coherent state, which is mostly a
vacuum state with a chance of one or two photons and negligibly so for higher counts.
Subsequently, the photons travel through optical waveguides 828 through delay lines 830
and two-mode couplers 832 which can be tuned with a classical control stack, and which

determines the effectuated quantum logical operations.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
59

At the end of the optical paths, one or more modes are measured with photon-
number resolving 834, or threshold detectors.

Fig. 8D is a hardware-level schematic of the actions effectuating the logical
operations shown in circuit diagrams such as Fig. 5A—H and Fig. 7, which may be executed
on a neutral-atom-based quantum computer. On this type of hardware, unitary operators,
e.g. those used to encode the quantum feature map and derivatives thereof, can be
decomposed in two different kinds of operations: digital or analog. Both of these operations
are transformations in the quantum Hilbert space over atomic states.

Schematic (a) of Fig. 8D depicts a digital quantum circuit 838, wherein local
laser pulses may be used to individually address neutral atoms to effectuate transitions
between atomic states which effectively implement sets of standardized or ‘digital’ rotations
on computational states. These digital gates may include any single-qubit rotations, and a
controlled-pauli-Z operation with arbitrary number of control qubits. Additionally, such digital
gate operations may also include 2-qubit operations.

Schematic (b) of Fig. 8D depicts an analog mode 846 of operation, wherein a
global laser light pulse may be applied to groups of, or all, atoms at the same time, with
certain properties like detuning, Rabi frequencies and Rydberg interactions to cause muilti-
qubit entanglement thereby effectively driving the evolution of a Hamiltonian 844 of the

atomic array in an analog way. The combined quantum wavefunction evolves according to

Schrédinger’s equation, and particular, unitary operators U = e”1#t where & denotes the
Hamiltonian and t the time, can be designed by pulse-shaping the parametrised coefficients
of the Hamiltonian in time. This way, a parametric analog unitary block can be applied, which
entangles the atoms and can act as a variational ansatz, or a feature map, or other
entanglement operation.

The digital and analog modes can be combined or alternated, to yield a
combination of the effects of each. Schematic (c) of Fig. 8D depicts an example of such
digital-analog quantum circuit, including blocks 8461.s of digital qubit operations (single or
multi-qubit) and analog blocks 848..

It can been proven that any computation can be decomposed into a finite set
of digital gates, including always at least one multi-qubit digital gate (universality of digital
gate sets). This includes being able to simulate general analog Hamiltonian evolutions, by
using Trotterization or other simulation methods. However, the cost of Trotterization is
expensive, and decomposing multi-qubit Hamiltonian evolution into digital gates is costly in

terms of number of operations needed.

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
60

Digital-analog circuits define circuits which are decomposed into both
explicitly-digital and explicitly-analog operations. While under the hood, both are
implemented as evolutions over controlled system Hamiltonians, the digital ones form a small
set of pre-compiled operations, typically but not exclusively on single-qubits, while analog
ones are used to evolve the system over its natural Hamiltonian, for example in order to
achieve complex entangling dynamics.

It can be shown that complex multi-qubit analog operations can be
reproduced/simulated only with a relatively large number of digital gates, thus posing an
advantage for devices that achieve good control of both digital and analog operations, such
as neutral atom quantum computer. Entanglement can spread more quickly in terms of wall-
clock runtime of a single analog block compared to a sequence of digital gates, especially
when considering also the finite connectivity of purely digital devices.

Further, digital-analog quantum circuits for a neutral quantum processor that
are based on Rydberg type of Hamiltonians can be differentiated analytically so that they can
be used in variational and/or quantum machine learning schemes, including the differential
quantum circuit (DQC) schemes as described in this application.

In order to transform the internal states of these modes, a classical control
stack is used to send information to optical components and lasers. The controller may
formulate the programmable unitary transformations in a parametrised way.

At the end of the unitary transformations, the states of one or more atoms may
be read out by applying measurement laser pulses, and then observing the brightness using
a camera to spot which atomic qubit is turned ‘on’ or ‘off’, 1 or 0. This bit information across
the array is then processed further according to the embodiments.

Fig. 8E is a hardware-level schematic of the actions effectuating the logical
operations shown in Fig. 5A—H, specified for a photonic/optical quantum processor. The
quantum model can be decomposed into a sequence of optical gate operations. These
optical gate operations are transformations in the quantum Hilbert space of the photons. In
order to transform the internal states of these photons, a classical control stack is used to
send information to a universal multiport interferometer. The controller may formulate the
programmable unitary transformations in a parameterized way .

Initially the photons 855 are in Fock states, weak coherent states or coherent
states. The duration, type, strength and shape of controlled-optical gate transformations
determine the effectuated quantum logical operations 856.

At the end of the optical paths, the modes are measured with photon-number

resolving, Fock basis measurement 857, tomography or threshold detectors.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
61

The hardware implementation shown in Fig. 8A—8E may be used to
implement the quantum circuits shown in Fig. 1419, as applicable.

Fig. 14A depicts a system describing a Digital-Analog implementation of a
quantum algorithm. In particular, Fig. 14A represents a Digital-Analog implementation where
the qubit interactions can be switched on and off and there exists single-qubit addressability
for the application of single-qubit gates, a process described in 1400. In order to transform
the internal states of these qubits, a classical control stack may be used to send information
to a controller that affects one or more qubits. The controller may send multiple information
carriers (e.g., pulses) in time and for each qubit independently. An initialization protocol is
used to initialize the qubits, in this example into the |0) state 1402. The current example
shows only four qubits, but the same principles may be extended in a straightforward manner
to systems with more (or less) than four qubits.

Then, a quantum feature map is applied 1404 to encode quantum information,
e.g., an input variable, into a Hilbert space associated with the quantum processor.

Following application of the feature map, a variational Ansatz is applied,
implemented as a variational quantum circuit 1406. In the current example, the variational
Ansatz comprises three single-qubit gates Ry — Ry — Ry with different rotational angles 6,.
These single-qubit gates are typically sets of standardized or ‘digital’ rotations on
computational states applied to different qubits with different rotation angles/parameters.
These digital gates include any single-qubit rotations according to the 6; argument of the
rotation. A single rotation/single-qubit gate is not sufficient to perform arbitrary rotation
regardless of the parameter/angle since it can only rotate over a single axis. In order to
accomplish a general rotation block, three gates in series with different rotation
angles/parameters can be used, in this example represented by a block of single-qubit gates
1406.

Then, the entanglement in this Digital-Analog approach is generated by a
wavefunction evolution 1408, described by the block e~ . During this evolution, the qubits
are interacting amongst themselves, letting the system evolve for a specified amount of time.
This process produces the necessary entanglement in the system. The combined quantum
wavefunction evolves according to Schrédinger’s equation, and particular unitary operators

~

U = e 17t in which H is the Hamiltonian of the system (for example, for neutral atoms the

Hamiltonian that governs the system is H = Zji k (%) * fl; * 7l with AL being the state
J

occupancy of the Rydberg atoms), and t is the evolution time. In this way, a parametric

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
62

analog unitary block can be applied, which entangles the atoms and can act as a variational
Ansatz.

After the evolution of the wavefunction 1408, another set of single-qubit gates
may be applied, similar to the process described in the block of gates Ry — Ry — Ry 1406.

Then, the wavefunction may be evolved once more, and finally a
measurement in the computational basis occurs as described in 1410.

Optionally, additional steps may be included, represented by the ellipses, e.g.,
before, after, or in between the blocks shown. For example, a different initial state than |0)
may be prepared prior to application of the feature map. Furthermore, the blocks can be
executed in a different order, for instance, in some embodiments, block 1408 might precede
block 1406. One or more of the blocks 1404—1408, or variations thereof, may be repeated
one or more times prior to the measurement 1410.

Fig. 14B represents a typical quantum feature map 1412 that starts by
preparing the quantum register to the |0) quantum state 1402 and then applying single-qubit
rotations in all of the qubits with (typically) different rotation angles 1404. In this example,
single qubit rotations 1404 (here chosen as Ry (f;(x)) act on each qubit individually and are
parametrized by a variable x. For a non-linear feature map encoding, the variable x may be
used as an angle of rotation. Various examples of feature maps have been described above,
e.g., with reference to Fig. 6.

The application 1404 of one rotation operation to each qubit in a register may
be referred to as a single layer of rotation operations. This type of encoding of classical
information into quantum states is known as angle encoding, which means that a data vector
is represented by the angles of a quantum state. Angle encoding can be found in many
Quantum Machine Learning algorithms, with the main advantage being that it only requires

n = log NM qubits to encode a dataset of M inputs with N features each. Thus, considering

an algorithm that is polynomial in n, it has a logarithmic runtime dependency on the data
size.
Fig. 14C illustrates different pulses (potentially differing in pulse duration

and/or height) that can be sent to the quantum circuit (different qubits) to encode the
classical information. The angle of the rotation that is described by the f;(x) dictates the

duration and geometry of the pulse.
Fig. 14D presents results comparing a Digital and a Digital-Analog

implementation of an embodiment, in this case application of the Quantum Extremal

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
63

Learning algorithm to solve a problem with continuous input variables. The chosen problem

is based on an ordinary differential equation:
af/ax = —sin(10 x) + 3 cos(25x) — 2 x + 0.25, f(0) = 0.1 (87)

The ODE is solved in the domain of x € [0,1]. As a universal function approximator (UFA) an
8-qubit QNN with Chebyshev Tower feature map is used as described above with reference
to Fig. 6A—E and an Ansatz with depth 6. The UFA is trained on 100 points spread uniformly
over the domain x € [0,1]. As shown in Fig. 14D, both the Digital and Digital-Analog
implementation are able to successfully model the ODE and find the extremum, in this case
the maximum, of the trained solution.

Fig. 15A presents a quantum circuit based on a Digital-Analog implementation
1500 that has no single-qubit addressability and uses a wavefunction evolution that can be
turned on and off for the entanglement generation. Fig. 15A differs from Fig. 14A in that it
shows a technique known as data re-uploading that alters the quantum feature map 1504
and 1510. Loading classical data into a quantum system is a non-trivial task, and uploading
large amounts of data makes it an even more critical issue. However, when the case of big-
data is not considered, techniques like data re-uploading can be utilized. As the name
suggests, this entails uploading the classical data multiple times, and encode them via
rotational angle/parameter encoding into single-qubit rotations throughout the quantum
circuit. Such a data re-uploading technique may start by setting the quantum register to an
initial state, e.g., the all-zero state 1502, followed by angle encoding that is based on a
feature map 1504, in this case a tower feature map.

Following that, as already explained above with reference to 1406, three
single-qubit gates in series are used to perform a general rotation block that acts as the
Ansatz 1506. In this example the encoding is done through the 8; variable of the Ry — Ry —
Ry rotations; however, any type of combined rotations of the type (Ry, Ry, R;) could be
applied here. Since there is no single-qubit addressability in this example, each Ry and Ry
gate is applied at all qubits simultaneously with the same rotation angle 8;. Subsequently,
the wavefunction is allowed to evolve for a specified amount of time 1508.

Then the classical data are re-uploaded through angle encoding into single-
qubit rotations 1510. However, each time the (same) data are uploaded, the information is
encoded using different angles than in the previous data uploading steps. For example, the
amount of rotation may be doubled in each data (re-)uploading step 1504,1510 (i.e., the

rotational angle of the might be increasing as 1-2—4, etc.).

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
64

Once again, the rotations Ry, — Ry — Ry are applied to all qubits
simultaneously with the same rotation angle for each single qubit gate, but different than
1506. The classical information can be repeatedly encoded into the quantum feature map
through the data re-uploading technique, while changing the angle of the single qubit
rotational angle (1504, 1510, etc.) every time after the wavefunction evolution. The resulting
guantum feature map can become more expressive as a tower feature map by doing this
process of serial data re-uploading with different levels of rotational angles every time the re-
uploading is done.

Fig. 15B illustrates a different (and at current technology levels more realistic)
form of a Digital-Analog implementation. In this implementation, the system has single-qubit
addressability, but the wavefunction evolution cannot be turned off, thus staying always on.
This system requires less control over the qubit interactions (since they are always on) and
only requires single-qubit addressability.

The single-qubit gates are applied while the wavefunction evolution (qubit
interaction) is also happening. In the shown example, the quantum circuit 1518 starts by
encoding information in the |0) quantum state 1502, followed by a quantum feature map
1504 (analogous to 1404).

Then, a variational Ansatz is applied, comprising both wavefunction evolution
e"17t 1508 and simultaneous application of a block of single-qubit gates 1516 (similar to
block 1406). After multiple repetitions of block 15616, each time with different rotational angles
at the single-qubit gates, the circuit ends with a measurement in the computational basis
1514.

Fig. 16A illustrates a quantum circuit 1600 that implements a Digital-Analog
implementation with single-qubit addressability, wherein the wavefunction evolution (e.g.,
atom interactions) can be turned on and off. This quantum circuit is equivalent to the
quantum circuit in Fig. 15A, with the time of the wavefunction evolution 1608 being ¢t = m (in
dimensionless coordinates), while all other operations are the same as the ones described in
1500. The same technique of data re-uploading with a tower feature map 1604, 1610 and the
same Ansatz comprising single-qubit gates 1606,1612 followed by wavefunction evolution
1608 are used (all similar to 1500).

The reason that such a specific time period for the wavefunction evolution
1608 is selected, is due to the fact that such evolution results in the application of Controlled-
Z (CZ) gates between pairs of qubits. The benefit of describing the wavefunction evolution as
a set of CZ gates lies in the fact that this Digital-Analog implementation of a quantum circuit

resembles the structure of the equivalent Digital quantum circuit, which instead of the

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
65

operation 1608 performs a set of CNOT gates between pairs of qubits included in the
guantum circuit. This allows more straightforward comparisons to be drawn between the
Digital and Analog implementation of such feature maps, and to evaluate their relative
performance.

Fig. 16B illustrates a quantum circuit that implements a Digital-Analog
implementation with single-qubit addressability 1618, similar to 1600, but with the
entanglement generated via CZ gates between the qubits, resembling the atom interaction /
entanglement generation.

Fig. 16C presents the comparison between the Digital-Analog implementation
of the two quantum circuits described in Fig. 16A and Fig. 16B. We are using the Quantum
Extremal Learning algorithm to create a model and then extremize the trained model to find
the input that extremizes the output for the problem. The same problem is used as was used
for Fig. 14D, i.e., finding an extremum of a solution to the following ordinary differential
equation (ODE):

af/ax = —sin(10 x) + 3cos(25x) — 2 x + 0.25, f(0) = 0.1 (88)

The ODE is, again, solved in the domain of x € [0,1].

Here, however, a two-qubit QNN with a Chebyshev Tower feature map is used
as a universal function approximator (UFA), together with data re-uploading and an Ansatz
with depth 8. The difference in number of qubits and depth of the quantum circuit, compared
to the Digital and Digital-Analog solution without data re-uploading, is that a smaller number
of trainable parameters 8; is available for the modelling step of the algorithm, thus requiring
fewer qubits. The UFA is trained on 100 points spread uniformly over the domain x € [0,1].

As seen in Fig. 16C, both implementations were able to successfully model
the ODE and find the extremum, in this case the maximum, of the trained solution. This result
is achieved without single-qubit addressability, using only global addressability (as depicted
in Fig. 16A and 16B). Such implementations with data re-uploading and with only global
addressability are close to or even within the availability of current hardware capabilities,
which provides a promising approach for the methods described herein.

Fig. 16D illustrates the equivalence of a CNOT gate decomposition 1620 into
two Hadamard gates 1626 and a CZ gate 1628. Any controlled unitary gate can be

expressed as CU = exp (i * % « (1 —Z1) = HZ) where H2 is a Hermitian matrix. The CNOT
gate can be expressed in the Pauli basis as CX = exp (i * % w« (I —Z1) = (I — XZ)),

whereas the CZ gate can be expressed as CZ = eXp (i * % w« (I —Z1) = (I — ZZ)). Thus, by

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
66

applying a Hadamard gate at the target qubit of the controlled gate before and after the CZ
gate, effectively a CNOT gate is achieved. This operation is described in Fig. 16D. The
application of a CNOT gate 1620 between a control qubit 1622 and a target qubit 1624 as a
decomposition with a CZ gate is provided in Fig. 16D. A Hadamard gate 1626 is applied on
the target qubit 1624, followed by a CZ gate 1628 applied between the two qubits, and finally
another Hadamard gate is applied to the target qubit 1624, resulting in a CNOT gate 1620.

Based on this decomposed construction of the CNOT gate, the only difference
between the Digital and Digital-Analog implementation of such quantum feature map is the
application of the extra Hadamard gates.

Fig. 17 presents a workflow for generalized circuit differentiation. In Quantum
Machine Learning (QML) algorithms, various quantum feature maps and Parametric
Quantum Circuits (PQCs) are typically utilised to express the circuit required to solve a
particular problem. These quantum circuits contain tuneable parameters that use a classical
optimizer to find the optimal values of the parameters that exist for that formulation. The
differentiation required for most parameter optimization methods can be achieved in various
ways, with the most common one being the Parameter Shift Rule (PSR). An example of such
kind of differentiation for quantum feature maps is presented in Fig. 6B.

One way to calculate analytic derivatives of quantum circuits is by measuring

overlaps between quantum states. Analytic derivatives can be used for differentiating
unitaries like the one presented in 1704, e.g., U = em1xG/2 generated by arbitrary Hermitian

generator G. However, in order to have a less resource-intensive method for differentiation,
the parameter shift rule (PSR) was proposed. The PSR algorithm can provide analytic
gradient estimations through measurement of the expectation values, with gate parameters
being shifted to different values. The PSR algorithm is much used to perform differentiation
for QML algorithms; however, it is only valid for a specific type of generators, viz., generators
that are involutory or idempotent. This is because the full analytic derivative only requires 2
measurements of expectation values (2 unique eigenvalues). Although this simplifies the
differentiation protocol, it also restricts it to only work for a certain type of generators.
Therefore, as an improvements and generalizations of the PSR algorithm, in
1700 a scheme for a Generalized Parametric Shift Rule (GPSR) algorithm is shown. Such
approach allows for differentiating generic quantum circuits with unitaries generated by
operators with a rich spectrum (i.e., not limited to idempotent generators). The GPSR
algorithm is based on spectral decomposition, and showcases the role of the eigenvalue

differences (spectral gaps) during differentiation for the generator spectrum. Such approach

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
67

works for multiple non-degenerate gaps, in contrast to the PSR that is only valid for
involutory and idempotent operators with a single unique spectral gap.
A workflow for generalized circuit differentiation can be described as follows:

create a quantum circuit that encodes the function £ similar to 1700 including single- and
multi-qubit gates 1702. Pick a unitary operator such as U(x) = exp(—ix G/2) 1704 that is

parametrized by some tuneable parameter x, and study the spectrum of its generator G.
Then, using unique and positive spectral gaps, a system of equations that includes the
spectral information can be created, alongside the calculated parameter shifts, and the
measured function expectation values as shifted parameters. The solution of such system
can provide the analytical derivative for any general generator G and thus perform GPSR.
GPSR is described in more detail in Kyriienko et al., ‘Generalized quantum circuit
differentiation rules’, Phys. Rev. A 104 (052417), which is hereby incorporated by reference.

Fig. 18 illustrates a basic form of a quantum feature map 1800 that can be
used in either Digital or Digital-Analog implementation when discrete input variables are
considered. The difference when discrete input variables are considered is that such a
feature map is not path-connected (continuous), which invalidates differentiation with typical
gradient-descent/ascent methods. Fig. 18 shows a straightforward protocol for encoding
discrete classical data into quantum states, since any string of bits (bitstring) can be directly
expressed as a quantum product state. For example, the classical bitstring 1011 is encoded
in the product quantum state |1) @ |0) ® |1) & |1) 1806, where the | -) is the ket symbol
that denotes a quantum state and the symbol & denotes the tensor product between two
states.

The encoding is achieved by initializing a quantum register to the all-zero state
1802 followed by the application of the Ry gate applied only when the bit being encoded is 1,
otherwise if the bit is O then an idling gate will be applied (or no gate) 1804. The result of the
encoding of the bitstring 1011 (discrete input variables) is the quantum state |1) ® |0) &

1) & |1}, or for simplicity |1011) 1806. This constitutes a simple but effective and
straightforward encoding of discrete data in the case where single-qubit addressability is
available.

Fig. 19A and Fig. 19B illustrate two options for constructing a quantum
feature map 1900 and 1906, respectively, that can be used in an Analog implementation
when discrete input variables are considered. For the depicted analog implementations, it is
assumed that there is no single-qubit addressability capabilities; therefore, one needs to

construct quantum circuits that perform the same single- and/or multi-qubit gates to all qubits

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
68

at the same time. This process can be seen, for example, in Fig. 19B in 1908-1922, where
the same gate is applied to all qubits as a global operation.

The quantum feature map shown in Fig. 19A begins by initializing the

quantum register in the all-zero state 1902, followed by a global operation of a unitary U =

el 0 Zj%; 1904, where () is a function of the classical information (bitstring) that is being
encoded into a quantum state, and X; is the Ry rotation gate at each qubit j. In this scenario,
amplitude encoding is used by assigning a variable rotation according to some function of the
bitstring. Let’'s assume that the rotation Ry takes as argument a parameter a and some
function of the bitstring £ (bit) resulting in Ry (a * f(bit)). Then, assigning f(bit) = cos(bit =
%), or some other fixed function that takes into account the individual bits of the bitstring, will

provide the desirable amplitude encoding.

Fig. 19B illustrates another way of constructing a quantum feature map 1906
for discrete input data when only global addressing is available. Drawing inspiration from the
straightforward implementation of the Fig. 18A, a similar feature map is created, but without
the single-qubit addressability. Therefore, in this scenario a deep circuit is designed where
the same gate is applied to all qubits 1908,1912,1916,1920, followed by wavefunction
evolution 1910,1914,1918,1922, as many times as the number of qubits in the quantum
system 1906 (in this case, four).

Following the same technique as in Fig. 18A, an Identity gate (I) or X gate (X)
is successively applied, depending on the bit under investigation being 0 or 1, respectively.

Each Identity or X gate application is followed by a wavefunction evolution according to the

unitary U = ! ¥ 2% with j referring to the position of the bit under investigation, as seen in
1910,1914,1918,1922. For example, encoding the classical bitstring 1011 into a quantum
state, would require a quantum circuit as the one seen in 1906, that applies the X gate 1908,
then the Identity gate 1912, then the X gate 1916, and finally the X gate 1920, which is a
similar concept to what was performed when single-qubit addressability was available.

Here, At; refers to a time evolution that is being applied simultaneously to all
qubits, and it can be chosen based on the problem under investigation. Appropriate values
for At; may depend on the input data, the number of qubits, the gate (e.g., X orI) preceding
it, et cetera.

Fig. 9-11 depict various examples of application of an algorithm according to
an embodiment to both the discrete and continuous variable cases.

Fig. 9 depicts an example of application of a method according to an

embodiment to a continuous-variable case. In this example, the method is used for

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
69

continuous-variable modelling and optimisation, which concerns the task of fitting a model to
a dataset comprising continuous coordinates x; and continuous values f;. In the depicted
example, the method is applied to a simple continuous function,

f(x) = sin(5x), (89)
with the aim of maximizing it in the domain [0,1]. As a training dataset, only values away from
the maximum are provided, to avoid potential biases during the modelling and optimization
process.

The model is implemented as a quantum neural network circuit with N = 3
qubits in the register. The model is started in the zero state |0). A feature map with
R, (2 jarccos(x)) is applied, where j is the qubit index starting from 1 and R, is a single-qubit
Pauli-Y rotation. Other implementations may use different feature maps, e.g. as discussed
with reference to Fig. 6C. Next, a hardware-efficient variational Ansatz, which is a variational
Ansatz of depth typically equal to the number of qubits (in this example 3), is used, and the
total magnetization ¢ = hY, 6§ is measured such that the quantum model is f(x) = (é) Other
implementations could use, e.g., a quantum-kernel-based approach.

In a first step, the variational Ansatz is optimised using an ADAM optimizer.
The optimisation shows oscillations that originate from circling around the optimum value of
the model function, due to momentum in the ADAM optimizer.

In particular, graph 902 is a plot showing the original function y = f(x) as a
function of x, the training data selected from this function (represented with circles), the initial
QNN model, the trained QNN model, and the optimum value of the model (represented with
a star), which closely resembles the true optimum. Graph 904 is a plot showing the model
loss (as mean square error) as a function of epoch number in the ADAM optimization. The
model was trained with a learning rate of 0.5 and 50 epochs. Furthermore, the extremiser
circuit's mean square error (“Optim. error”) as a function of optimization iteration number.

Fig. 10 depicts an example of application of a method according to an
embodiment to a differential equation. This example shows how a differential equation can
be solved by the generalization of the given methods as described in more detail below. After
solving the differential equation, an extremal value of the function within the input variable's
domain is determined.

As an example, the following 1D ordinary differential equation (ODE) may be

considered:

af/ax = —sin(10x) + 3cos(25x) — 2x +5/4, f(0) = 0. (90)

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
70

The solution can be computed analytically in a straightforward manner, and gives rise to a
non-trivial oscillatory behaviour as shown in Fig. 10B.

As a universal function approximator (UFA), a 6-qubit QNN is used with a
Chebyshev Tower feature map (discussed above with reference to Fig. 6). The universal
function approximator is trained on 50 points spread uniformly over the domain x € {0,1}. A
good agreement between the trained solution and the analytical solution is obtained, in a loss
optimisation trajectory of less than 300 epochs.

In Fig. 10A, graph 1002 shows the analytical solution to the above eq. (90), its
approximate solution found using a differentiable quantum circuit (DQC) using a trained
quantum neural network (labelled NN), and overlaid the extremization trajectory of an initial
guess starting at x = 0.25. The differential quantum circuit may be implemented and trained
as described in co-pending application PCT/EP2021/081737, for example. In Fig. 10B, graph
1004 shows the model training loss trajectory with 250 ADAM epochs at a learning rate of
0.1 and 20 L-BFGS epochs at a learning rate of 0.05.

Next, the value of the trained model is maximised with respect to the
continuous input x, leading to a good agreement between exact values and extremiser
suggestions of less than 1 % errors. In Fig. 10C, graph 1006 depicts the absolute deviation
between the extremizer's suggestions versus exact extremal value and extremizing inputs,
respectively, versus extremizer epoch number; a learning rate of 0.2 was chosen for 100
epochs using ADAM.

While this example showed the solving of a simple ODE in 1D, the method
can be used for any general (set of) PDE(s) or even SDEs, as well as extremizing solutions
found by means of model discovery.

Furthermore, the examples discussed with reference to Fig. 9 and Fig. 10
concerned the specific extremization case of maximizing a 1D function. More complex target
‘constraints' may be considered as well, such as maximizing the sum of two or more
functions, the product of two or more functions, or minimizing some other design constraint
which is a function of the model itself, for example. Such generalizations have been
discussed in more detail with reference to Fig. 4.

Fig. 11A—C show examples how the extremal learning algorithm can be
applied also to cases where (at least some) input variables are discrete-valued, where
derivatives cannot be computed in a straightforward manner.

Fig. 11A—C depicts examples of application to a discrete-variable case. A
well-studied problem in the field of combinatorial optimisation is the Maximum Cut (Max-Cut)

problem, since many other combinatorial problems can be reduced to the Max-Cut problem.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
71

Furthermore, this problem is considered as a potential application to reach quantum
advantage in the near term, and thus has been explored thoroughly. Besides the potential
quantum speedup, Max-Cut provides two other advantages: i) the quantum algorithm may be
tested with a classical dataset, and ii) the implementation is relatively straightforward, due to
the simple correlations involved (only pairwise correlations, no bias for any point being in a
particular cluster).

Max-Cut is an NP-hard graph partitioning problem that groups a graph into a
plurality of partitions/clusters (typically two, but it can be more than two) by cutting a
maximum number of edges in the graph (in an unweighted graph) or a set of edges with a
highest summed weight (in a weighted graph). It is assumed that the application under
investigation can be formulated as an undirected graph ¢ = (V, E), with edges E connecting

vertices V of the graph. A weight w;; between vertices i and j is a positive real number
associated with the edge between vertices i and j. When there is no edge between two
vertices, the corresponding weight may be assumed equal to 0. Cutting a set of edges
8(S,) c E will separate the vertices of the graph into two disjoint sets S; and S,. The cost of

the cut w(8(51)) is calculated as the sum of all weights of edges connecting vertices in S;

with vertices in §,:
w(dGD) = > wy (91)
{€51,JES;

As the name suggests, the goal is to find the maximum cost amongst all
possible cuts, which provides the solution to the optimisation problem. The most common
approach when solving Max-Cut is to construct a physical system with as many qubits as the
vertices of the graph. Then, one can formulate the problem as a QUBO problem that can
easily be mapped into an Ising problem.

As was explained above, Quadratic Unconstraint Binary Optimisation (QUBO)
is the problem of minimizing a quadratic polynomial over binary variables; the generalised
form is referred to as Polynomial Unconstraint Binary Optimisation (PUBQO). Although the
following example refers to QUBO, the steps may be generalised to PUBO models. The

quadratic polynomial is of the form

N i
E(X1,X2,...,XN):EEQU*.XL'*XJ' (92)

i=1j=1
with x; € {0,1} and Q;; € R, where the matrix Q;; is an upper diagonal matrix with diagonal
terms being the linear coefficients and nonzero off-diagonal terms being the quadratic

coefficients.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
72

Any classical QUBO problem can be mapped to a quantum (Ising)
Hamiltonian with 6, as the diagonal terms) and &; * 6, as the off-diagonal terms. Here, the
computational basis is assumed to be the Z basis, as is common. This follows from the
following considerations.

First, the classical variables x; are replaced with (1 — 6})/2. Then, the double
summation can be written as YL, 3, Q;; * (1 — 6%) = (1 — 61)/4. Therefore, the
Hamiltonian will have 6; and 6; * 6, terms, which can be explicitly written in terms of Q;;
(QUBO) parameters.

The diagonal terms (6;) are inferring a bias on the indexed vertex and since
there is no preference for any qubit to be in a given cluster, these terms can be avoided in
the Hamiltonian. Therefore, the Q;; can be constructed in such a way that the diagonal terms
will be cancelled. In general, QUBO is a generic formulation that allows for biases like that,
however for the Max-Cut problem that is designed based on the pairwise distance of the
vertices only the &; * 6, interactions between vertices are of importance.

The encoding of the Max-Cut problem can be given by a cost Hamiltonian H:
. 1 o
He = —52 Cl-j(l - O'ZLO'é) (93)
ll]

where 6} denotes the Pauli z-matrix of spin i with eigenvalues z; € {—1,1} and C;j denotes a

cost matrix. In the basis that diagonalizes all ¢ (commonly referred to as the computational
basis), the Hamiltonian is a function of the variables z;. The eigenvalue z; = +1 (—1) of the
6% operator indicates that vertex i belongs to subset S; (S,).

For this example, N/2 pairs of coordinates (x, y) belonging to cluster S; and
another N /2 pairs of coordinates belonging to cluster S, were randomly generated, where N
denotes the number of qubits of the used quantum system. By construction, the two clusters
are separated by a distance variable, that can be set arbitrarily. The larger the distance
variable, the more separated the clusters, and the easier the Max-Cut problem is solved.
Therefore, based on this construction of clearly separated clusters, the optimal solution is
known before the optimisation algorithm is applied, which allows to assess the performance
of the algorithm.

In these examples, the first parametric quantum circuit or cost circuit is
implemented as a variational circuit, more in particular as a quantum neural network, referred
to as the Cost-QNN. The second parametric quantum circuit or extremiser circuit is similarly
implemented as a quantum neural network, referred to as the Extremiser-QNN. The training

to obtain a trained model via the Cost-QNN is similar to that in the continuous case, e.g., as

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
73

described with reference to Fig. 5A, using a classical optimiser to optimise the network
parameters 0. Although the original optimisation problem was formulated as a Max-Cut
problem, the Cost-QNN does not comprise any assumptions based on the nature of the
optimisation problem, but only maps input/output relationships. Thus, the same Cost-QNN
may be used to model a wide variety of optimisation problems.

Then, the optimised parameters 8, of the Cost-QNN are frozen and its
feature map is removed. Subsequently, the Extremiser-QNN (or Extremiser Feature Map)
parametrised with parameters ¢ is inserted in place of the removed feature map the new

model is trained, similar to what was described with reference to Fig. 5C. At every iteration,
the expectation value of the total magnetization ¢ =}, j 6§ is measured. The parameters of

the Extremiser-QNN are suggested by a classical optimiser. Finally, when the training has
finished and the optimal parameters ¢, have been determined, the Cost-QNN is removed
and the remaining model (i.e., the bare Extremiser-QNN) is sampled. By measuring the
output of the Extremiser-QNN, the result can be mapped to the optimal input variable that is
the solution to the optimization problem.

System sizes with 4, 6, and 8 qubits were investigated to study problems with
4, 6, and 8 coordinate pairs, respectively. Furthermore, various sizes of training datasets
were used to train the QEL algorithm. The numerical simulations involve training the Cost-
QNN and Extremiser feature map until convergence based on the provided dataset.
Typically, 50 training epochs sufficed for the Cost-QNN and 150 training epochs sufficed for
the Extremiser feature map. The simulation for each training dataset was repeated 100 times
with a new randomly selected group of samples every time (different sampling seed). The
classical optimisation part that finds the best & and X parameters was done with the BFGS
and LBFGS algorithm, respectively.

Fig. 11A—C depict results of numerical simulations for systems with N =
4, 6, and 8 qubits respectively, with a distance between the two clusters being chosen equal
to 5. The total probability to sample any of the optimal bitstrings is provided for each training
dataset size on the y-axis and the amount of training samples used on the x-axis. In addition,
it is indicated when the total probability exceeds a specific threshold, as shown in the legend.
For each amount of training samples, the bars represent, from left to right, the shown
thresholds in descending order.

When the number of training samples is increased, the algorithm is able to find
the optimal solutions, although the total probability of the optimal solutions is decreased. The
reason for the decreased probability of the optimal solutions is that the algorithm is

enhancing the probability of all known to training samples, so that it does not over-enhance

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
74

the probability of the optimal ones, in order not to overfit. On the other hand, it can be
observed that when a small amount of training samples is provided, the QEL algorithm is
able to suggest at least one of the optimal solutions in most cases.

Fig. 11D represents the performance of the algorithm once again for the Max-
Cut problem with two clusters separated by distance 5; however, here the performance of
different problem sizes (N = 4,6,8) is compared for one of the thresholds shown in Fig. 11A-
C, namely 20%. To make a fair comparison, the x-axis has been scaled accordingly, so that
problems of different sizes can be compared based on the percentage of the training dataset
over the 2V possible samples. Even for small training datasets, the QEL algorithm is able to
suggest optimal solutions with a probability higher than 20 % with high frequency. On the
other hand, when the size of the training dataset approaches 2", the frequency of suggesting
optimal solutions with a probability greater than 20 % increases significantly. The explanation
of this phenomenon is that when most of the possible samples are used during training, the
algorithm has a better understanding of what the probability of each sample should be, and
therefore the probability of the optimal solutions are enhanced. In the case of a small training
dataset, the algorithm predicts the probabilities of unknown samples less reliably, and
therefore only enhances the ones that are regarded as the optimal solutions when the model
is sufficiently trained.

In order to enhance the performance of the algorithm, the model output may
be scaled so that the algorithm is able to predict optimal solutions with large probabilities,
even when the optimal solutions are not included in the training dataset. Thus, at least one of
the optimal solutions may be suggested, also in cases when a small number of training
samples is used (compared to the total number of possible samples). As mentioned above
with reference to Fig. 5A, a variable « = 1, e.g. a € [1.0,100.0] and a constant § = 0.5 may
be defined to scale the model output. This allows the algorithm to understand the true range
of the 2V costs.

It is found, using the same Max-Cut formulation and the same problem sizes
N = 4, 6, 8, that the total probability of the optimal bitstrings increases as «a increases. By
construction, it is known that there are two optimal solutions regardless of the problem size in
such a Max-Cut formulated problem. Therefore, for each a value, it is tracked whether the
two optimal solutions correspond to the suggested highest two probabilities for solutions by
the algorithm. As « is increased, the total probability of the optimal solutions increases, and
the algorithm is able to find at least one of the two optimal solutions. In the case of Max-Cut,
the two optimal solutions are complementary and have the same target value, but in this

example, the algorithm is not programmed to search for symmetrical solutions. Therefore,

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
75

finding only one of the two optimal solutions is sufficient. In this investigation, the number of
samples is deliberately kept small to test the performance of the algorithm in the extreme
case of very few training samples available. The number of samples used is 2/16, 2/64, and
4/256 for N = 4,6,8, respectively.

As explained above, Max-Cut problems only include constant and pairwise
correlation terms. However, the algorithm can also be applied to more general problems,
including higher-order terms (up to a fixed order). In these examples, the solution does not
involve clustering vertices into complementary groups. Therefore, the problem is not
classified as Max-Cut anymore, rather it is an artificially created optimisation problem, where
one attempts to find the maximum cost solution.

In an example, a problem with N points is considered, where N is the number
of qubits of the system. The problem definition comprises nearest-neighbour interactions up
to a fixed order. The cost of each sample is computed in a similar way to the Max-Cut
formulation, but in this example, the weight of each correlation is randomly generated, thus
creating an energy landscape much different from Max-Cut. In such a formulation, there are
no symmetries in the energy landscape and the optimal solutions will vary depending on the
construction.

Fig. 12A-D depict further examples of application of a method according to an
embodiment to a discrete-variable case. In these examples, nearest-neighbour correlations
up to 2" order and up to 3" order are considered. Second-order nearest-neighbour
correlations enhance the Max-Cut formulation by including linear terms as well. The example
with nearest-neighbour correlations up to 3 order provides a trend of how the algorithm will
perform when higher-order correlations are included. However, when higher-order
correlations between the qubits exist, the problem becomes much harder to solve; thus, fine-
tuning the parameters of the QEL algorithm might be required. In the depicted examples, the
QEL parameters were kept the same in all of the simulations, regardless of the highest-order
included. In Fig. 12A and 12C, for each amount of training samples, the bars represent, from
left to right, the shown thresholds in descending order.

Similarly to the Max-Cut analysis discussed above with reference to (in
particular) Fig. 11B, Fig. 12A shows that when the training dataset size is increased, the
algorithm can find the optimal solutions with high probability. Furthermore, even when a
small training dataset size is provided, the algorithm is able to suggest the optimal solutions.
Comparing this formulation to Max-Cut (without higher orders), however, showcases that the
performance of the QEL algorithm is slightly worse when all correlations (up to 2" order) are

included. Although the algorithm is still successful in suggesting the optimal solutions with

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
76

high probability, the addition of the first-order correlations slightly decreases the
performance.

Fig. 12B shows the percentage of instances for each problem size that
provide a total probability of the optimal solutions higher than the set threshold (20 %). It can
be observed that as the number of training samples increases and approaches the 2V
samples, the algorithm is able to predict all possible samples with an adequate probability
instead of only predicting a few samples with high probability. This leads to the total
probability of the optimal solutions decreasing. However, that does not mean that the
algorithm is unable to suggest at least one optimal solution. Comparing Fig. 12B with Fig.
11D, it can be seen that as the size of the problem increases, the algorithm will suggest the
optimal solutions with a lower probability in the nearest neighbour with the inclusion of up to
second-order correlations. This can be attributed to the fact that the Max-Cut problem is
easier to solve that the more general problem including all nearest neighbour correlations.

Once again, in order to increase the QEL algorithm’s performance, especially
when small datasets are used to train the model, the model output may be scaled using the
variable a. For the case of the nearest-neighbour problem with correlations up to the second
order. As was the case in the Max-Cut « investigation, increasing the range of the model
output leads the algorithm to suggest at least one of the optimal solutions, even when the
training dataset size is extremely small. However, it may be noted (once more) that this
process was easier in the Max-Cut formulation.

Finally, the nearest-neighbour high-order correlation problem is enhanced by
including 3"-order correlations as well. In Fig. 12C, a similar analysis is shown as for the
other discrete variable cases as depicted in Figs. 11B and 12A.

Although the problem is now much harder to solve, the QEL algorithm is still
capable of suggesting the optimal solutions. Its performance is clearly reduced compared to
the other two formulations, but, as presented in the corresponding figures, it is still capable of
suggesting the optimal solutions with adequate probability (> 5%). Thus, a limited amount of
sampling may provide an optimal solution. Furthermore, scaling of the model output provides
the same benefits as with the other two formulations.

As shown in Fig. 9-12D, the algorithm is able to find the input of a ‘hidden’
(i.e., not explicitly known) function that extremizes the output of that function, given only
sparse training data of input-output relations of that function. In particular, no data about the
problem structure need be applied, so that the method is very widely applicable.

The algorithm is a flexible and efficient framework that can accept as input

both discrete and continuous variables and extremize the underlying functional relationship

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
77

or a function thereof, e.g., its derivative. This provides an advantage over other currently
known algorithms.

Although the method itself is a hybrid method, each step uses only quantum
modules (e.g., QNNs), with no intermediate reduction to classical data. This offers a clear
advantage over known methods. This allows to take advantage of the quantum parallelism of
quantum mechanics. Such a formulation can lead to sufficiently large speedups, depending
on the application, and can offer a quantum advantage over its classical counterparts.

Moreover, by utilizing only expectation value measurements as opposed to
tomography, the method is more resilient to noise affecting the quantum system during
computation. This leads to better performance, especially during the current NISQ era.

Another benefit of the design of the QEL algorithm is that it does not rely on a
pre-trained model, which is the typical case for combinatorial optimisation. As a result, the
current method is more flexible with respect to the input data. For example, the method can
handle both ‘classical’ data (as shown in the discrete-variables case discussed above with
reference to Figs. 11A—12B) and ‘quantum’ data (as shown in the continuous-variables case
discussed above with reference to Figs. 9,10).

As indicated by the results of the numerical simulations, the algorithm is able
to suggest the optimal solutions to the optimisation problem with high probability, even in the
case where an extremely small training dataset size is provided. The shown examples used
essentially the same settings in all of the experimentation regardless of any parameters
(problem size, training dataset size, etc.); however, the method may be further improved by
tailoring the model parameters based on the problem definition. For example, a scaling factor
a for the model output can be introduced and modified in order to increase the performance
of the QEL algorithm. This yielded the desired increase in performance. Other parameters
may be added and/or adjusted in a similar method.

In the examples discussed above, the quantum execution was simulated with
perfect wavefunction simulators, which only allow simulation up to a certain size. However,
this does not constitute a limitation of the algorithm; this rather showcases the limitations of
classical simulators. There is no inherent size limitation for the algorithmic size.

As the hardware becomes more mature (less error prone, faster, more qubits,
etc.), the algorithm can be directly implemented into it, due to the straightforward
implementation of all required modules (feature map, QNN). Based on the same reasoning,
there is no obvious limitation in applying the algorithm in any type of hardware at the

moment.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
78

A further example is provided below. This example from the field of product
design is provided to clarify the utility of quantum extremal learning even in cases where
discrete variables are not involved, inherited from its incorporation of differentiable quantum
circuits.

If a driving power source has a fixed amplitude, there is a particular driving
frequency called the resonant frequency at which the steady-state amplitude of a driven RLC
oscillator is maximum. The commercial applications of electronic RLC oscillators are plentiful,
ranging from television receivers to induction heaters.

It is easy to see why it may be desirable to know the resonant frequency of the
RLC circuit (for instance, to maximize efficiency). Consider an application where a device
desires to always drive an internal RLC oscillator at resonant frequency. Being an RLC

oscillator, it is known to be governed by the equation:
2

L %I(t)+R%I(t)+%I(t) = w Vy cos(w t). (94)

It is assumed that one has full control over the driving power source and that
the output I and the internal temperature T of the device can be measured. As the device
operates and generates heat, however, it slowly alters the values R, L and C of the circuit
components and changes the resonant frequency. The internal temperature of the device
cannot be directly controlled, nor can the actual (transient) values of the circuit components
be measured. Assuming the value of the device components R, L and C only depends on the
internal temperature of the device, this is an ideal problem to demonstrate the utility of
extremal learning.

In this case, the unknown function is I(t). The present methods can leverage
differentiable quantum circuits to solve eq. (94) governing the RLC circuit (assume, for the
moment, it is not easily solvable analytically). The goal is not, however, to optimize the
unknown function I as a function of time ¢ but driving frequency w. Of course, this is also
possible within the framework by treating both time ¢ and the parameter driving frequency w
in eq. (94) as variables and solving for I(¢; w). In this case, the ‘data’ regarding the unknown
function (or, in terms of the generalized framework discussed above with reference to Fig. 4,
the ‘condition’ in eq. (7)) is simply the differential equation in eq. (94). Once the model is
learned, it can be extremized to find the resonant frequency.

There is still more to this problem. Eq. (94) alone does not take into account
the variation of the resonant frequency as a function of the internal temperature of the
device. The methods described in this disclosure allow to incorporate this information too, by

adding the output of the circuit at various temperatures and frequencies as additional data

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
79

points. With sufficient data points and a circuit with sufficient expressivity, it is possible to
model I(¢; w) and then extremize it to find the resonant frequency at any temperature T.

Notice the role of the different independent variables/parameters in this
example:

- The variable t is related to the unknown function I through a differential

equation. The differential equation is the ‘data’ used to learn the dependence

on this variable.

- The relation between parameter T and the unknown function I is unknown

and is learned from experimental data, as opposed to being dictated by an

equation. The parameter T can be measured, but not directly controlled. The
dependence on this variable is learned from experimental data.

- The parameter w is related to the unknown function I through a differential

equation, but it is a parameter in the equation, not a differentiating variable.

The parameter w can be adjusted and the goal is to find the value of w that

extremizes the amplitude of I(t) at a given temperature T.

The present method is flexible enough to tackle the problem even in a case
like this where information about the system is available in mixed form. Moreover, one or
several of the parameters could be discrete.

Fig. 13A depicts a system for determining a solution for an optimisation
problem using quantum computation according to an embodiment. The system 1302 may
include a quantum computer system 1304 comprising one or more quantum processors
1308, e.g. a gate-based qubit quantum processor, and a controller system 1310 comprising
input output (I/0) devices which form an interface between the quantum processor and the
outside world, e.g. the one or more classical processors of a classical computer 1306. For
example, the controller system may include a system for generating control signals for
controlling the quantum processing elements. The control signals may include for example a
sequence of pulses, e.g. microwave pulses, voltage pulses and/or optical pulses, which are
used to manipulate qubits. Further, the controller may include output device, e.g. readout
circuits, for readout of the qubits and the control signals for readout of the quantum
processing elements, e.g. a readout pulse for reading a qubit. In some embodiments, at least
a part such readout circuit may be located or integrated with the chip that includes the qubits.

The system may further comprise a (purely classical information) input 1312
and an (purely classical information) output 1314. The data processor systems may be
configured to solve an optimization problem using the quantum computer. Input data may

include information about the optimisation problem one wishes to solve. This information may

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
80

include training data such as input-output pairs, a differential equation, boundary conditions,
initial values, regularization values, etc. The input data may be used by the system to
construct quantum circuits, in particular quantum feature maps and/or parametrized quantum
circuits, and to classically calculate values, e.g. sequences of pulses, which may be used to
initialize and control qubit operations according to the quantum circuit. To that end, the
classical computer may include a quantum circuit generator 1307. The input data may be
used by the system to classically calculate values, e.g. parameter settings, which may be
used to initialize the quantum circuit that is implemented on the quantum processor.
Similarly, output data may include loss function values, sampling results, correlator operator
expectation values, optimisation convergence results, optimized quantum circuit parameters
and hyperparameters, and other classical data.

Each of the one or more quantum processors may comprise a set of
controllable quantum processing elements, e.g. a set of controllable two-level systems
referred to as qubits. The two levels are |0) and |1) and the wave function of a N-qubit
quantum processor may be regarded as a complex-valued superposition of 2V of these
(distinct) basis states. The embodiments in this application however are not limited to qubits
but may include any multi-level quantum processing elements, e.g. quitrits, that is suitable for
performing quantum computation. Examples of such quantum processors include noisy
intermediate-scale quantum (NISQ) computing devices and fault tolerant quantum computing
(FTQC) devices.

The quantum processor may be configured to execute a quantum algorithm in
accordance with the gate operations of a quantum circuit. The quantum processor may be
implemented as a gate-based qubit quantum device, which allows initialization of the qubits
into an initial state, interactions between the qubits by sequentially applying quantum gates
between different qubits and subsequent measurement of the qubits’ states. To that end, the
input devices may be configured to configure the quantum processor in an initial state and to
control gates that realize interactions between the qubits. Similarly, the output devices may
include readout circuitry for readout of the qubits which may be used to determine a measure
of the energy associated with the expectation value of the Hamiltonian of the system taken
over the prepared state.

Furthermore, the one or more quantum processors may comprise a set of
continuous variable systems, such as optical or photonic quantum computers. Furthermore,
the quantum processor may comprise a Gaussian Boson Sampling device as described
above with reference to Fig. 8C or any of the other hardware described above with reference
to Fig. 8A-E.

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
81

In some embodiments, the first data processor system may be implemented
as a software program for simulating a quantum computer system 1304 comprising a
quantum processor system 1308. Hence, in that case, the software program may be a
classical software program that runs a classical computer 1306 so that quantum algorithms
can be developed, executed and tested on a classical computer without requiring access to a
hardware implementation of the quantum processor system.

Fig. 13B is a block diagram illustrating an exemplary classical data processing
system described in this disclosure, for example classical computer 1306. Classical data
processing system 1320 may include at least one processor 1322 coupled to memory
elements 1324 through a system bus 1326. As such, the data processing system may store
program code within memory elements 1324. Further, processor 1322 may execute the
program code accessed from memory elements 1324 via system bus 1326. In one aspect,
data processing system may be implemented as a computer that is suitable for storing and/or
executing program code. It should be appreciated, however, that data processing system
1320 may be implemented in the form of any system including a processor and memory that
is capable of performing the functions described within this specification.

Memory elements 1324 may include one or more physical memory devices
such as, for example, local memory 1328 and one or more bulk storage devices 1330. Local
memory may refer to random access memory or other non-persistent memory device(s)
generally used during actual execution of the program code. A bulk storage device may be
implemented as a hard drive or other persistent data storage device. The classical data
processing system 1320 may also include one or more cache memories (not shown) that
provide temporary storage of at least some program code in order to reduce the number of
times program code must be retrieved from bulk storage device 1330 during execution.

Input/output (1/0O) devices depicted as key device 1332 and output device
1334 optionally can be coupled to the data processing system. Examples of key device may
include, but are not limited to, for example, a keyboard, a pointing device such as a mouse,
or the like. Examples of output device may include, but are not limited to, for example, a
monitor or display, speakers, or the like. Key device and/or output device may be coupled to
data processing system either directly or through intervening I/O controllers. A network
adapter 1336 may also be coupled to data processing system to enable it to become coupled
to other systems, computer systems, remote network devices, and/or remote storage devices
through intervening private or public networks. The network adapter may comprise a data
receiver for receiving data that is transmitted by said systems, devices and/or networks to

said data and a data transmitter for transmitting data to said systems, devices and/or

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
82

networks. Operation modems, cable operation modems, and Ethernet cards are examples of
different types of network adapter that may be used with classical data processing system
1320.

As pictured in FIG. 13B, memory elements 1324 may store an application
1338. It should be appreciated that classical data processing system 1320 may further
execute an operating system (not shown) that can facilitate execution of the application.
Application, being implemented in the form of executable program code, can be executed by
classical data processing system 1320, e.g., by processor 1322. Responsive to executing
application, data processing system may be configured to perform one or more operations to
be described herein in further detail.

In one aspect, for example, classical data processing system 1320 may
represent a client data processing system. In that case, application 1338 may represent a
client application that, when executed, configures classical data processing system 1320 to
perform the various functions described herein with reference to a "client". Examples of a
client can include, but are not limited to, a personal computer, a portable computer, a mobile
phone, or the like.

In another aspect, data processing system may represent a server. For
example, data processing system may represent an (HTTP) server in which case application
1338, when executed, may configure data processing system to perform (HTTP) server
operations. In another aspect, data processing system may represent a module, unit or
function as referred to in this specification.

The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the disclosure. As used herein, the
singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further understood that the terms “comprises”
and/or “comprising,” when used in this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps, operations, elements, components,
and/or groups thereof.

The corresponding structures, materials, acts, and equivalents of all means or
step plus function elements in the claims below are intended to include any structure,
material, or act for performing the function in combination with other claimed elements as
specifically claimed. The description of the present disclosure has been presented for
purposes of illustration and description, but is not intended to be exhaustive or limited to the

embodiments in the form disclosed. Many modifications and variations will be apparent to

WO 2023/213821 PCT/EP2023/061566
83

those of ordinary skill in the art without departing from the scope and spirit of the invention.
The embodiments were chosen and described in order to best explain the principles and the
practical application, and to enable others of ordinary skill in the art to understand the various

embodiments with various modifications as are suited to the particular use contemplated.

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
84

CLAIMS

1. Method for determining a solution for an optimisation problem using a
hybrid computer system, the hybrid computer system comprising a quantum computer
system and a classical computer system, the method comprising:

receiving or determining, by the classical computer system, a description of
the optimisation problem, the description comprising a set of training data or enabling the
classical computer system to determine the set of training data, the set of training data
comprising input variables in an input space and associated observables;

receiving or determining, by the classical computer system, one or more
guantum circuits, the one or more quantum circuits defining gate operations to be executed
by the quantum computer system, the one or more quantum circuits comprising a quantum
feature map for encoding a value in the input space to a Hilbert space associated with the
guantum computer system and a first parametric quantum circuit parametrised by a set of
first parameters;

determining, by the classical computer system, optimised first parameters for
the first parametric quantum circuit, the determination comprising execution, by the quantum
computer system, of the gate operations defined by the one or more quantum circuits,
acquisition of measurement data associated with an output state of the quantum computer
system, and variation of at least one of the set of first parameters based on the measurement
data and the set of training data;

determining, using the quantum computer system, an optimised input value in
the input space, the determination comprising execution, by the quantum computer system,
of gate operations defined by the first parametric quantum circuit using the optimised first
parameters or a derivative thereof, and acquisition of measurement data associated with an
output state of the quantum computer system; and

determining, by the classical computer system, the solution to the optimisation
problem based on the optimised input value and/or an output value corresponding to that

optimised input value.

2. The method as claimed in claim 1, wherein the input space comprises a
continuous subspace, wherein optionally the quantum feature map is differentiable with
respect to the input variable, and wherein determining the optimised input value preferably

comprises differentiating the one or more quantum circuits with respect to the input variable

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
85

and executing, by the quantum computer system, gate operations defined by the

differentiated one or more quantum circuits.

3. The method as claimed in claim 1 or 2, wherein the input space comprises
a discrete subspace, and wherein optionally determining the optimised input value
comprises:

receiving or determining, by the classical computer system, a second
parametric quantum circuit parametrised by a set of second parameters;

determining, by the classical computer system, optimised second parameters
for the second parametric quantum circuit, the determination comprising execution, by the
quantum computer system, of the gate operations defined by the first and second parametric
quantum circuits using the optimised first parameter values, acquisition of measurement data
associated with an output state of the quantum computer system, and variation of at least
one of the set of second parameters based on the measurement data and a loss function;
and

determining, by the classical computer system, the optimised input value

based on the second parametric quantum circuit using the optimised second parameters.

4. The method as claimed in any one of the preceding claims, wherein the first
parametric quantum circuit comprises a variational circuit, e.g. a quantum neural network,
and wherein determining optimised first parameters for the first parametric quantum circuit
comprises optimising the variational circulit, e.g. training the quantum neural network; and/or,

wherein the first parametric quantum circuit comprises a quantum kernel
circuit and wherein determining optimised first parameters for the first parametric quantum

circuit comprises optimising kernel coefficients associated with the quantum kernel circuit.

5. The method as claimed in any one of the preceding claims, wherein the
optimisation problem comprises a differential equation, and wherein the one or more
quantum circuits, when parametrised by the optimised first parameter values, represent a

solution to the differential equation.

6. The method as claimed in any one of the preceding claims, wherein
determining the optimised first parameter values comprises determining a respective output

value for each of plurality of input values, the determination comprising the steps of:

10

15

20

25

30

WO 2023/213821 PCT/EP2023/061566
86

- translating, by the classical computer system, the one or more quantum
circuits into first control signals for controlling quantum elements of the
quantum computer system, optionally the first control signals including a
sequence of pulses;

- determining, by the classical computer system, second control signals for
readout of the quantum elements to obtain the measurement data, optionally
the second control signals including a read-out pulse;

- controlling, by the classical computer system, the quantum computer system
based on the first and second control signals;

- receiving, by the classical computer system, in response to the execution of
the one or more quantum circuits, the measurement data; and

- processing, by the classical computer system, the measurement data into the

respective output value.

7. The method as claimed in any one of the preceding claims, wherein the
quantum computer system includes a gate-based qubit device, a digital/analog quantum
device, a neutral-atom-based quantum device, an optical-qubit device and/or a gaussian-

boson-sampling device.

8. The method as claimed in any one of the preceding claims, wherein the one
or more quantum circuits include one or more digital quantum operations, preferably digital
single-quantum-gate operations, and/or one or more analog quantum operations configured
to entangle different qubits of the quantum computer system by evolving a Hamiltonian

associated with the quantum computer system in time.

9. The method as claimed in any one of the preceding claims, wherein the
execution of the quantum operations comprises applying electrical or optical signals to
qubits, e.g. neutral atoms, of the quantum processor to manipulate the states of the qubits in

accordance with the one or more quantum circuits.

10. A hybrid computer system determining a solution for an optimisation
problem, the hybrid computer system comprising a quantum computer system and a
classical computer system, wherein the system is configured to perform executable

operations, the executable operations comprising the steps of:

10

15

20

25

30

35

WO 2023/213821 PCT/EP2023/061566
87

receiving or determining, by the classical computer system, a description of
the optimisation problem, the description comprising a set of training data or enabling the
classical computer system to determine the set of training data, the set of training data
comprising input variables in an input space and associated observables;

receiving or determining, by the classical computer system, one or more
guantum circuits, the one or more quantum circuits defining gate operations to be executed
by the quantum computer system, the one or more quantum circuits comprising a quantum
feature map for encoding a value in the input space to a Hilbert space associated with the
quantum computer system and a first parametric quantum circuit parametrised by a set of
first parameters;

determining, by the classical computer system, optimised first parameters for
the first parametric quantum circuit, the determination comprising execution, by the quantum
computer system, of the gate operations defined by the one or more quantum circuits,
acquisition of measurement data associated with an output state of the quantum computer
system, and variation of at least one of the set of first parameters based on the measurement
data and the set of training data;

determining, using the quantum computer system, an optimised input value in
the input space, the determination comprising execution, by the quantum computer system,
of gate operations defined by the first parametric quantum circuit using the optimised first
parameters or a derivative thereof, and acquisition of measurement data associated with an
output state of the quantum computer system; and

determining, by the classical computer system, the solution to the optimisation
problem based on the optimised input value and/or an output value corresponding to that

optimised input value.

11. The system as claimed in claim 10, wherein the executable operations

further comprise any of the methods steps according to claims 2-9.

12. A computer program product comprising software code portions
configured for, when run in the memory of a computer, executing the method steps according

to any one of claims 1-9.

13. A non-transitory computer-readable storage medium storing at least one
software code portion, the software code portion, when executed or processed by a

computer, is configured to perform the method as claimed in any one of claims 1-9.

PCT/EP2023/061566

WO 2023/213821

.1/25

9ST pST
\
1oy — x
¢St
X
9zt ver

A.X.v uaom.u\
NW /ﬁ 81T

oct

gt "314

T rard"
\
do
W99 <= ¢
[4rar
0T
9TT 1T

901

PCT/EP2023/061566

WO 2023/213821

2/25

anjeA 1ndul pasiwndo 1eys o1 Buipuodseallod
anjeA indino sy Jo/pue ¥9°x anjea ndul pasiwido sy} uo paseq wa|go.id uonesiwndo sy} 0} UOHN|OS By} SUILWISISP

NOHN

waysAs Japndwoo wnyuenb ayj Jo ajels INdiNo ue Yjim pajeioosse elep Juswainseaw Jo uoljisinboe
pUE ‘Joaiay) aAeALISp ke 1o *9°g sisjewe.ed jsiiy pasiwndo ay) Buish
11N2J19 wnjuenb oleweled 1811 8y} A paulap suoielado a1eb Jo ‘WeisAs Jeindwod whniuenb ayy Ag ‘uolinoaxe
Buisudwos uoneuiw.siep sy} ‘eaeds Indul syy ul x 3 *9°x snjea ndul pasiwido Joj s1ewWISS U auIWISlep

N 80¢

A

{(*£*x)} eyep Buiuiesy Jo 19s sy} pue elep Juswainseaw ay} Uo paseq g siajaweled 1sil JO }8S U} JO SUO Ises|
1e JO uoneLeA pue ‘wajsAs Jeindwod wnjuenb sy} Jo ae}s INdiNo Ue Yjim pajeIdosse elep jJuswalnseall Jo uoljisinboe
‘s1N2JI19 wnuenb alow Jo auo sy} Aq paulap suoielado a1eb ayj Jo ‘Wwalshs Jaindwod wniuenb ayy Ag ‘Uuoiinoaxa
Buisudwod uoneuILISIep 8y} 1InaJId wnjuenb ouleweled 1sii ay) 1o} *9°g siejoweled 1s.i pasiwindo ue sulwie}ep

~

N 90¢

A

6 siejeuleled jsui Jo 18s e Ag pasliyswe.led 97), 1induio wnjuenb oujswe.led
18]l B pue WalsAs Jaindwod wniuenb syl yyim pajeioosse 1 aoeds Lag|iH e 01 @oeds ndul ayj ul X 3 x anjeA e Buiposus
Joy *n), dew ainjes} winjuenb e BuislIdWoD s3IN2JID WiNjuenb 810w Jo 8uo 8y} ‘WelsAs Jejndwod wnjuenb sy} Aq peynosxe
aq 0} suolelado sjeb Buisdwod s3IN2.ID Wwnjuenb aiow 10 sUO 8y} ‘$3INJID Wnjuenb a10wW JO BUO BUILWIBIBP JO BAISDBI

~

N ¥0¢

A

{’A} so|qeAtasqo pajeIoosse pue x aoeds jndul ue ul {x 3 'x} sajqeuen indul Buisudwos {(*A 'x)} eyep Buiuiely Jo 1os sy}
‘elep Buluiel Jo 19s ay} sulwla)ep 0} WalsAs Jayndwod [eaisse|d sy} Buljgeus 1o eyep Buluiely jo 19s e
Buisudwoo uonduosap ay ‘wajgoud uonesiwndo syl jo uonduosap B aullWIS)ap 10 aAI908l

ﬂ c0¢

PCT/EP2023/061566

WO 2023/213821

3/25

17443

[45%°

4 oy x Josiwexe [eaisselo Buisn Jndul esiwenxe -)
dejiano Jo anjea uonejoadxs 68 ‘s|geAlesqo ainsesw -

Acaa@v a@@% ‘a|qeleA
indul 01 108dsal Yum uonenualayip inoaio Aldde -

L\.ﬁ aosﬁ }IN2419 J9siwaxd a|dweg

1
aoeds ndul 0} }jnsal dew -
siseq ajelidoidde ul)ndino ainsesw -

7)

1dogh P

1 = 771 HNJUIID J9SIWDIIXD 9Zdd4 4

0

7y

U\

\ oghy ¢h asiwindo o0y Jasiwndo [esisseo asn -
dejuano 10 anjeA uoneadxs B8 ‘e|geAlesqo ainseaw -
anoe
71, 1IN2JID 3800 pesiwndo A|dde -
JaisiBal pasijeniul 01 IN2JID Jasiwaxe Aldde -

_ x jndui asjwndo) Vﬂ %1, o110 J9sIWLNXS Ules])
< otf 1
Smmom\ﬂm %1, ynaxo sesiwanxa Aq *7), dew ainjea) aoejday u
7
|
ﬁ %y = 071 :3IN2419 1509 9Z8914 w;r
S — 90€
3
; Wog g esiwndo 0} Jesiwndo [eoisse esn -)

uonouNy SSO| BIA anjeA Jndino yiim sjgealasqo asedwod -
dejieno Jo anjea uoljeoadxe 69 ‘o|geAIaSqO ainsesw -
dew ainjesy jo Indino o} 97, unouid 1500 Ajdde -
Je)sibal 0} se|gelieA Indul Aq pepoous *7), dew sinjesy Ajdde -

_ 67), 3IN0412 }SOO UlRI] T o
¥
({((x) f 7x)} senjea ndino-ndui siied N
ejep jnduj T 7z0¢

PCT/EP2023/061566

WO 2023/213821

4/25

1
aoeds ndul 0} }jnsal dew -

siseq ajelidoidde ul)ndino ainsesw -

3#\4.# 197, 32110 Jesiwenxs sjdwes

[4

4 oy x Josiwexe [eaisselo Buisn Jndul esiwenxe -)
dejiano Jo anjea uonejoadxs 68 ‘s|geAlesqo ainsesw -

Acaa@v a@@% ‘a|qeleA

indul 01 108dsal Yum uonenualayip inoaio Aldde -

7)

0

1dogh b
L\m 7, = 27, :3IN2419 19SIWAIIXD 929914
187 et

7y

\ oghy ¢h asiwndo o0y Jasiwndo [eoisseo asn -
dejuaAo 10 anjeA uoneadxs B8 ‘e|geAlesgo ainsesw
d
%07, unouio 100 pasiwndo Aldde -
aoeds 1ndul Ul se|gelJeA 0} }IN2JID Jasiwanxs A|dde -

4 R AN .

(x Indui asiwndo \
<

91v

Mﬁ %1, 1N2119 J9SIWBNXS Ules]

J

0TV 4

movhm s@ oI Jasiwanxs Aq *7), dew aunjesy aoe|day u

A

h unoew\w —

7). :31IN2.19 3509 9z9044 wlf 90t

7Y

4 og g asiwi

dejJaAo Jo anjeA uol}

JuswiainseaW Uo paseq J uonoun) sjewixoidde 1onisuod -

dew ainjesy jo Indino o} 97, unouid 1500 Ajdde -
se|gelieA Jndul Ag pepoous *7), dew ainjesy Aldde -

1do 0 Jasiwndo |eoisseo asn - /

ejoadxs ‘B9 ‘e|geAlesgo ainseaw -

87), 3IN2119 3509 Utel] T vop

7 Y

S @) @S
(x*,J)Fq uonenbs |enual

“B-9 ‘pasiwiuiw aq 0} () 4 |euonouny -
allp AQ&&@Q sonjeA Jndino-jndul suied ‘6o

‘ / UoloUNy UMOUNUN INOQE Uoljew.oul -

-

ejep jnduj Uf

[4i%

¥ "314

WO 2023/213821

PCT/EP2023/061566

Jasiwndo

. =
g ® =1
(; _)—
I R R -3
a
o
s
1 — 1
s & .8 %5
| <

5/25
- £
= 5
g St
N 7
QD
ENNIE
= va)
Ln\,\
\ Jasiwndo IL‘
3
NS L
9\ ~
o}
? (& —
_
N s F=-
l((wa W\|
: S N
_
|
4N A
l g N
S 28s
|
|
[o ,
Sl --- T—=7 I
s 5 ;8 %5
55

uondiossp wa|goud

uondiossp wa|goud

Fig. 5A

Fig. 51 — prior art

528

526

524

522

WO 2023/213821

Jasiwndo

[bl
M =
D
_ S
=
S
=
)
1 |
s = S

6/25

Fig. 5B

PCT/EP2023/061566

—
—~
—~
b
Q,
o
S
—
T
o
I
()
T
IEH -
i it s il
e N N &
Q,
@)
S
~ I I(§ I g
- - Q
s =) L
20
L.
S
I
Jasiwndo
i IR
g N
(— N
_ : J
[[[
4 o)
Q,
@)
S
_ (; v,
S NN I __§
)
SH —
¢
= J
I I I
s 5 .8 &

Fig. 5C

562

552

PCT/EP2023/061566

WO 2023/213821
= 7/25 >
| Jasiwndo
Jasiwndo =
~[212 Nombumn
s 2 (: J_.
(: —— \ T T T
L J s [o)
I — Y
(o \ S ‘
3 S
Q\ (I 1 1
®
S o ~ W
& "\ 5 —y
S J
T T T ——
wu 33 ;35 RS
=) =) =) = b \R\"a
- _ - onm ” “—’ 0O
L D
uondiossp wa|goud
D
|
Jasiwndo Jasiwndo
ey
> NIBS N 2
4 R \/R A
(—x (——
\ :) \ 1 I: 1 J
<
B\f(—)
A =
Sy
¢ X T _ S J
;] Q (1 |/-\ 1 ~
LN —
/) \ 3
—/ ==
|
N\ = _/
T T T ——
—~ — — Nt —~ — —~ H"‘ >""\
2 = ° v s = > a2l
L ~ ™
[o= | »
uondiossp wa|goud T uonduossp ws|qoud

Fig. 5G

PCT/EP2023/061566

D9 314

~
=

-

>~
8’

— (0

— ()4 — (ol

'019 %019 ‘019 *o19 49 "3i4 209 v9 ‘814
\ / \ \ i

8/25

WO 2023/213821

o ~ N

T W

##@’*

2 (et — HE\ B0)% F— (ol —{e 4 — (o)
- J +, + M H

—feory = MQT E ()44 |— (ol —[@xa}— (ol

_ (o) wa)— T @ —f@4—ol | | {@u—o

w19 Mw Mw

9 — s (/2 F (¥) D)y (X)) Ay —S 109

WO 2023/213821 PCT/EP2023/061566

9/25
|1 :1]
llxll
o °

\N\
\
624,
7

) 2 g
3 (¢)SIN §
f-j:' /5/ |Q | | |
S SEEAES
I = ﬁg? i%;

\N
\
624,
636_\zzq//—7
U

\
622
6

Fig. 6D
Fig. 6E

PCT/EP2023/061566

WO 2023/213821

U S d/ "3i4
(ol s (ol
LETANGEIN
oﬁb/v Y oc, (0l
SL
™ e
Y/ 5 (0l
a5 \ / \ J v
VL 814
vl L 0cL 8T 194
b ((®)) wouy ydog o
SLEIES | Uonounjlabliel |e AQVZ\SV UNoJID wnenb r0L
wyuoble 1o uoneindwod 0€L e Jleweled 11N2J19 wnuenb M
uonesiwndo [eoisse|D ainses|\ 18414 pasiwndo oljeweled puoosg
[epow wnjuenb puooseg
_ 82/
1A%A [4Y4 0TL 80L 90L
0«8 ((9)) wouy 0 1y
S}09|9s ¢ UOIOUN} SSO| By} |e A@ :xi\i
wyjobie 1o uonendwod 9¢L h 11N2J19 wnuenb 1no2J1o dew
uonesiwndo [eoisse|D ainses|\ oljeweled 1sUi4 alnjes} wnueny

[epow wnyuenb }sii-

‘X D x o)

o

PCT/EP2023/061566

WO 2023/213821

11/25

18

A

(ol

(ol

(ol

(ol

(ol

e NENENENINEN

018

808

908

708

(ol

v8 "3i4

08

PCT/EP2023/061566

WO 2023/213821

12/25

9€8 s aun

D8 314

A

NENESEE

] (1l2 + (ol
(112 + (0|
(112 + (0|
0€8 278
/U (s + (o] s ¢
7€8
18 314 o " g8 '3l

0

{051 (oenl

— COsT— (oea| ¢
w\N‘. (D5} (oea] ¢
[C05]— (oea] |
—[05} (oea| 0

Yo

0

0

157)

948

b0go 9]

[44] // /} /}

g 0¢8 818 918

BEEEENE

vi8

PCT/EP2023/061566

WO 2023/213821

«N‘\ s JI\)lw JIN)kﬁ QVM UI AO_ as .w_n_

\/ | gyg L o 1‘ '!]I (0]

Bojeue | —— mowpmm p—
< HCOH L U e
K\ |r L|f Klr L|f) ﬁ g - L| AO_
€ W N: T
[eybip "9v8 [eyblp “ov8 [e)b1p "9 Sussaooid [endip — Sopeuy ()

Te) [#1
m /_/ s: N+ SNSE NScf DK
v 8
=17 —0|
o Dk ol oy
=1 ol = HH()a H ol

Burssoooad Joreuy (q) \\ Surssoooad e181(] (@)

98 33

PCT/EP2023/061566

WO 2023/213821

T *3Si4 . avT "84

\

v ——— (") ——— (ol
| ¢b ——— () ——— (ol
N h —— () ——— (ol
,,,,,,,,,,,,,,,,,,,,,,,,,, o ST ———(@N% ——— (ol
Ay - N
”M 0p [~ ovT
3 VT 814
Al ey T
W “o)Ad— Co)¥d — Co)*y ()N f— = — (0l
W N (0) 4 = (“0)d |—] (o) (N = - — (0l
W/ 'e)*d— Co)*y ‘o)*y “ (@) f— - — (0l
vad W corty [cory || cor H—{ (i) — = —— (0l
g e = T 5

otvl 8011 90v1 vov1 [40) 4"

PCT/EP2023/061566

WO 2023/213821

15/25

01 8'0 9'0 v'o 0 00
. .
I v
Q2 .
X i
% k]
. . & -T°0
HQ, oh o
4] % 4 ek
w2 4
¢ 5% y
o SLER 0
P o R f " 20
2 o k d
i \
" % y
-E0
X s g
o
& 2
" i d
A2 "] Wu.a
> ‘ %
* a2
I’ ' 4
% ’ .
RY
% c
winwauyxe Gojeuy-1enbig
wntusaxa [eubig X d
suonmpaid bojeuy-enbiy X 2 o
suppmpsad eubia © oy
UOIINOS [RITAIBUY T L 90

PCT/EP2023/061566

WO 2023/213821

yIST 80ST pOST cost 99T ‘314
\ == o — T “ N //
W (G| | Co¥a| | Cort| 1= ()N = — (0]
:.Dlm |
W L ey Ay| | Ce)¥u Cort | 1 =t (ONYY = =— (0l
8151 W/ oomﬁ\\m “'o)*y o)Xy o)y m ((0)2N)AY | — (0]
“ “
v, | Cora| | Cora| | Cote| (@)t = o — (ol
& o0st Vst ‘814
m Y16T 804T ¢T4aT 0TST y 804T 904T v0ST ¢0ST
-/ \ AV \ \ AW \ /
/ NI e e, SERAN ANIFEEEEEE e, ALEEEEE - \ J
) i == (°0) 44 (H(°0) X (H("0) A [((¥)2S) A (— ——("0) A HCo)Xa H(o) A p (D)) Ad = = = (o]
Y= - —-°0) "4 [H(50) Xy H("0)“d () %) A |— —(50) 44 [=(“0) Xy (0 B ()) A = = (0l
o T 9|)
IHT-= 1 | — IH-= | |
W = el (°0) A [H(50)Xd = (70) A4 | ()) A [=i (C0) A4 H0) X (P 0) A B (DTN A = -+ = (0
W = (°0) 44 (1 (C0) X [(*0) A [()) Ay | (0) 4 M) X HC A B (0)4 | =0

PCT/EP2023/061566

WO 2023/213821

v191 qomﬁ o191 837 SNH 203t 997 .w_n_
/ ™\ N REEEEEELEEEE S 0 N //
= =)z Z E —*6) "4 H(0) *d H("0) A e ())4 =+ — (0|
VA\I IAARVN.\V\JN _M_ ﬂ “ Amﬁv\ﬁmlﬁmﬁvxmlqmv»% “ Aﬁkvakv\ﬁ% IAO_
@ M i m)
mﬁﬁﬂ\ v i (O)R 7] —(°0) A [(°0) X4 H(*0) X B ()) Al =+ = (0|
=" |§J GIE (%0) A4 HC0) ¥ H(o) Ay g " {0
& oost V9T ‘814
I ¢091 8091 9091 091 8091 9091 091 ¢091
Ll A W N \ W N < /
Y= = +Ao8£|ﬁm8xmlq8£.M.QSSQ — |T98£LNSQIQVQ.M.ASSQ = " =(0|
1 P N— 1 P N~—
W= = —(°6) "4 [HC6) X H("0)“d () 2) A (— o)A (o)X d HC o) B (D)4 = = (0]
ujp1-2| ! DR PR \J
W —l(°0) A4 [H(50) X4 (= (70) X4 el ()) A i (C0) A4 H(°0) X (P 0) A B (D)) A = -+ = (0
W L {(°0) X4 HC) Xa HC) X B () 24) 4y |— LLi(C0) A HCo) uHC) X B (0)4y = = (0]

PCT/EP2023/061566

WO 2023/213821

D97 *3i4

18/25

01 80 90 0 00
xxx e
x x > s
r.3%le] 5
< o = .
3 O 3 A . -T°0
O o] o ;v o
o 9 S
, g ° z'0
o A
'y 5
o 3
o €0 =h
o} x%¥x .vl.n\
o, X
.
o] <) ° _-x
X, X
o\ Ry . -0
X
O RS O
O o A
QOO
O
- G0
.
wintasxe oagwen-bojeuy-jenbio s
winuasxa zo-Bopeuy-jenfiiq ;
suonupaid cagwe-Bopuw-pubio X
suonoipaad zo-bopeuy-pubig O
UORN|OS [EMIA[RUY e 90

PCT/EP2023/061566

WO 2023/213821

19/25

(T|=———

(1|=—

(0|=—

8T "84

9¢91 8791

X4 —— (0l \. \.

aot "3Si4

9¢91

\,

XYy —— (o

I (0l N.U

X4 — (0 // ~

J
@ N
A\ // 0291
ooNH /Vomﬁ €081
LT "3i4
(x)JS Z/H x1— o
N v0LT
/7/
N\ // 00/1 Z0LT

9041

d6T "314

PCT/EP2023/061566

20/25

WO 2023/213821

X X I X (0l
X X I X (0]
WIHI® £3v 201 v 2010 BT
X X I X (0]
X X I X (0]
S T N
[44) 0¢6T 8T6T 9T6T viel Zr6l OTel 8061 7061
V6T 314
vomHM (0|
i 3 (0]
[
‘X' KU1 (ol
(0]

0061 \\ N~ 7061

WO 2023/213821 PCT/EP2023/061566

21/25

optimum

100 e gy ' -
P LELY Initial
Original
me wmm me | rained
@ Training data
E Optimum

0.0

0.4

a, : -
T

904

- Mode! loss

Optim. error |

0.1¢

Loss/Error (MSE)
o
]

Epoch #
Fig. 9

WO 2023/213821 PCT/EP2023/061566

0.5F

oaf

0.3F

—0.1L

Fig. 10

1002

\\ 22/25

—
e wee wm= Analylic solution ;

Extrom. frajectary
Optimum :

1004

L10] N

Loss (MSE)

abs(error)

<

o

=
[SN

S
e

0.01 '

Epoch #

1006

IR LLLE Extremum error

Extrem. input error

Fig. 10C

0 20 40 60 80 100

WO 2023/213821 PCT/EP2023/061566
23/25

Clustel ing Max Cut with threshold=>20%

A0 L —
. ;’-"'}“‘J“” a..
. .

o
e®

P
2

o
c 60
L
=3
[
L%’ AOL e Py
N=6 Q
20} i
N 4 i
0.2 0.4 0.6 0:8 1.0 .ED
Scaled number of training samples L
Clustering Max-Cut N=8
[R O ~T0% e >50% [By =1 0%
B B0 et 14501 B -A0% = 2 0% 225 %
B wn
LB
Za
35
o W
owm
o (&)
'E A
:5_ & i
i
— - QED
4 8 16 32 G4 96 128 156 1946 256 Ll
training samples
Clustering Max-Cut N=6
B >90% B -70% B >50% - -30% >10%
B -80% G0% e >40% 2 20% o)
100.0 4
B
O ¥ 90.0
25 80.0-
S E 700-
8Y 60.0-
£ e 5001
-é'g 40.0 - faa)
e O 30.0 - i
20.0 4 i
10.0 - -
D‘O - .y
2 8 16 32 40 48 L
training samples
Clustering Max-Cut N=4
EeEm »00% = O-T0% EEEE =50% . 50 >10%
BEEm B0 =D B =409 = 20% =HE
5 ‘ ”
L
Za
35
O 7]
oD
4 E
2E <
2 a i
e e i
20
LL

8 10
training samples

WO 2023/213821 PCT/EP2023/061566

24/25

Nearest Neighbor up to 3rd order
with threshold>20%

100 i -
; L
80 ‘
>
¢ 60 &
‘3.5 :
= §
g 40 1
& : (]
20 S
‘ . . . i . . . i . . i . . . ‘ .ED
0.2 0.4 0.6 0.8 10 oo
Scaled number of training samples
N=6 Nearest Neighbor up to 3rd order correlations
B =Y 0% Bl -T0% g =h0% . s 30% =10%
BEE -50% =60% B ~40%
100.0 -
Y
© ¢ 90.0-
2 800-
S E 700-
i)
< o800~
g
S g 500-)
E E_ 40,0 - N
S a 30.0 - -
20.0 - .
10.0 - o
0.0 ' a ' LL
2 4 8 16 32 40 48
training samples
Nearest Neighbor up to 2nd order
‘ with threshold>20% ‘
100F ,,,,,,,,,,,,,,,,,,,,,,, ,, _-g@w“.
-- e
80| ,“ ,,, f.f' ;;
& - #‘i
z 60 "“ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;::ﬁ;.sﬁff ,,,
g - - -!“f‘ -
2 LR e e
@ A0p L O DR SO TR OO PPN ORI NP RO UTIUNPION R
& 4 (aa]
20 2
‘ : o0
0.2 0.4 0.6 0.8 10 o
Scaled number of training samples
N=6 Nearest Neighbor up to 2nd order carrelations
e ~00% B -T70% B =50% - -300% =10%
B ~B0% =60% B ~40% >2C% >5%
G w
€L
Fst
=E
£2
R
OF
S £ <
5% N
o -
20
Ll

2 4 8 16 32 40 48
training samples

PCT/EP2023/061566

WO 2023/213821

25/25

[40)3"

deT "314

VET 314

VCET
8€EET
443}
A A
A A\ 4
\/\ 4
9z€eT e EEEET EEEEE 1
A 1 A "
1
9€€T ! vEET 4338 “
il “ “
90€T .
VIET
90€T YOET
LOET OTET 80¢€T
Jojelauab < > aoea)UI Jossaooud
11N2J19 wnuenb pue |0JjJu02 wnuenb
Jaindwod |eoisseo Jaindwod wnuenb

(45"

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2023/061566

A. CLASSIFICATION OF SUBJECT MATTER

INV.
ADD.

GO6N10/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

OLEKSANDR KYRIIENKO ET AL: "Solving
nonlinear differential equations with
differentiable quantum circuits",
ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY

14853,

abstract
page 1 - page 9
page 11 - page 17

18 May 2021 (2021-05-18), XP081951791,
DOI: 10.1103/PHYSREVA.103.052416

|__K| Further documents are listed in the continuation of Box C.

|:| See patent family annex.

* Special categories of cited documents :

v
"A" document defining the general state of the art which is not considered
to be of particular relevance
"E" earlier application or patent but published on or after the international wyr
filing date
"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other g
special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other
means
"P" document published prior to the international filing date but later than
the priority date claimed "&"

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

20 June 2023

Date of mailing of the international search report

28/06/2023

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Tsakonas, Athanasios

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2023/061566

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

DIMITRIOS GIANNAKIS ET AL: "Embedding
classical dynamics in a quantum computer”,
ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY
14853,

15 November 2021 (2021-11-15),
XP091086941,

the whole document

Lin Yen Ting ET AL: "Koopman von Neumann
mechanics and the Koopman representation:
A perspective on solving nonlinear
dynamical systems with quantum computers",

7 February 2022 (2022-02-07), XP055980596,
Retrieved from the Internet:
URL:https://arxiv.org/pd£f/2202.02188.pdf
[retrieved on 2022-11-11]

the whole document

1-13

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - wo-search-report
	Page 116 - wo-search-report

