I *I Innovation, Sciences et Innovation, Science and CA 3215243 A1 2022/10/20
Développement économique Canada Economic Development Canada
ey 3 215 243

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

12y DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13 A1

(86) Date de dépét PCT/PCT Filing Date: 2022/02/15 (51) CLInt./Int.Cl. GO6F 16/21 (2019.01),
(87) Date publication PCT/PCT Publication Date: 2022/10/20 GOG6F 16/2452 (2019.01)

(85) Entrée phase nationale/National Entry: 2023/09/27 (71) Demandeur/Applicant:

ORACLE INTERNATIONAL CORPORATION, US
(86) N° demande PCT/PCT Application No.: US 2022/016435
(72) Inventeur/Inventor:
(87) N° publication PCT/PCT Publication No.: 2022/220916 SASSIN, MICHAEL, US

(30) Priorité/Priority: 2021/04/14 (US17/230,167) (74) Agent: SMART & BIGGAR LP

(54) Titre : TEST AUTONOME D'INCOHERENCES DE MODELE LOGIQUE
(54) Title: AUTONOMOUS TESTING OF LOGICAL MODEL INCONSISTENCIES

T3
SR

(57) Abrégé/Abstract:

Embodiments autonomously test a logical model for inconsistencies. For example, metadata descriptive of a logical model can be
received, where the logical model includes an abstraction for a database schema, the database schema is implemented at a
database, and the database schema includes a fact table and a dimension table. Logical queries can be automatically generated
including at least first and second logical queries based on the retrieved metadata, where the first and second logical queries target
a logical object of the logical model. At least the first and second logical queries can be issued to a server that hosts the logical
model, where, at the server, the first and second logical queries are translated to first and second database queries, and the first
and second database queries target at least a fact table and a dimension table from the database schema. Query results received
from execution of the first and second database queries can be compared. Inconsistencies can be identified when the comparison
of the query results does not meet a criterion.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

w0 20227220916 A1 |0 00000 KO0 0O 0

CA 03215243 2023-09-27

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert J
(o wer Orgmiation 2 0 O 0 0 O OO O A0

International Bureau % (10) International Publication Number

WO 2022/220916 Al

(43) International Publication Date
20 October 2022 (20.10.2022) WIRPOIPCT

(51) International Patent Classification: (72) Inventor: SASSIN, Michael; 8 Stevens Circle, Andover,
GO6F 16/21 (2019.01) GO6F 16/2452 (2019.01) Massachusetts 01810 (US).

(21) International Application Number: (74) Agent: GOLDSMITH, Barry, Potomac Law Group,

PCT/US2022/016435 PLLC, 1300 Pennsylvania Avenue, NW, Suite 700, Wash-

i D.C. 20004 .
(22) International Filing Date: ington, D.C Us)

15 February 2022 (15.02.2022) (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AOQO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JM, JO, JP, KE, KG, KH,

(25) Filing Language: English

(30) Priority Data:

17/230,167 14 April 2021 (14.04.2021) UsS KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY. MA.,
(71) Applicant: ORACLE INTERNATIONAL CORPO- MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
RATION [US/US]; 500 Oracle Parkway, Redwood Shores, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
California 94065 (US). RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM,

(54) Title: AUTONOMOUS TESTING OF LOGICAL MODEL INCONSISTENCIES

15

(57) Abstract: Embodiments autonomously test a logical model for inconsistencies. For example, metadata descriptive of a logical
model can be received, where the logical model includes an abstraction for a database schema, the database schema is implemented at a
database, and the database schema includes a fact table and a dimension table. Logical queries can be automatically generated including
at least first and second logical queries based on the retrieved metadata, where the first and second logical queries target a logical object
of the logical model. At least the first and second logical queries can be issued to a server that hosts the logical model, where, at the
server, the first and second logical queries are translated to first and second database queries, and the first and second database queries
target at least a fact table and a dimension table from the database schema. Query results received from execution of the first and second
database queries can be compared. Inconsistencies can be identified when the comparison of the query results does not meet a criterion.

[Continued on next page]

CA 03215243 2023-09-27

WO 2022/220916 A | [IH1] 00000 00O O

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

AUTONOMOUS TESTING OF LOGICAL MODEL INCONSISTENCIES

FIELD
[0001] The embodiments of the present disclosure generally relate to

autonomously testing a logical model for inconsistencies.

BACKGROUND

[0002] The proliferation of computing and connected devices has generated vast
amounts of data that requires management. Challenges persist for aspects of data
management and access, such as efficient querying of complex data schemas.
Some modern database implementations include a layer that abstracts complex data
schemas to logical models, for example to support logical queries in a more
simplified form. In addition, extraction, transformation, and load (“ETL” or “ELT")
flows can be used to populate databases that implement complex schemas. Due to
the number and variety of issues that can arise based on the complexity of these
components and their interactions, aspects of data management and access can be

cumbersome when leveraging conventional techniques.

SUMMARY

[0003] The embodiments of the present disclosure are generally directed to
systems and methods for autonomously testing a logical model for inconsistencies
that substantially improve upon the related art.

[0004] Metadata descriptive of a logical model can be received, where the logical

model includes an abstraction for a database schema, the database schema is

-1 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

implemented at a database, and the database schema includes a fact table and one
or more dimension tables. A plurality of logical queries can be automatically
generated including at least a first logical query and a second logical query based on
the retrieved metadata, where the first logical query and second logical query target
a logical object of the logical model. At least the first logical query and the second
logical query can be issued to a server that hosts the logical model, where, at the
server, the first logical query is translated to a first database query and the second
logical query is translated to a second database query, and the first database query
and second database query target at least a fact table and a dimension table from
the database schema. Query results received from execution of the first database
query and second database query can be compared. One or more inconsistencies
can be identified when the comparison of the query results for the first database
query and second database query does not meet a criterion, where the one or more
inconsistencies include an inconsistency with the logical model as defined by the
metadata or an inconsistency at the database.

[0005] Features and advantages of the embodiments are set forth in the
description which follows, or will be apparent from the description, or may be learned
by practice of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Further embodiments, details, advantages, and modifications will become
apparent from the following detailed description of the preferred embodiments, which
is to be taken in conjunction with the accompanying drawings.

[0007] Fig. 1 illustrates a system for autonomously testing a logical model for

inconsistencies according to an example embodiment.

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

[0008] Fig. 2 illustrates a block diagram of a computing device operatively
coupled to an autonomous tester according to an example embodiment.

[0009] Fig. 3 illustrates a sample star data schema according to an example
embodiment.

[0010] Figs. 4A and 4B illustrate an implementation of a system for autonomously
testing a logical model for inconsistencies according to an example embodiment.
[0011] Figs. 5 and 6 illustrate a pair of database queries and their results
according to an example embodiment.

[0012] Figs. 7 and 8 illustrate another pair of database queries and their results
according to an example embodiment.

[0013] Fig. 9 illustrates an example flow diagram for autonomously testing a

logical model for inconsistencies according to an example embodiment.

DETAILED DESCRIPTION:

[0014] Embodiments achieve autonomous testing of a logical model for
inconsistencies. For example, data schemas can at times require complex queries
that target relevant data from numerous tables/fields using joins and other
sophisticated query structures. To alleviate this query burden, some databases
implementations and reporting tools include a logical model, or a layer that maps the
underlying complex data schema to a more simplified logical model. For example,
the logical model can then be queried using more simplistic logical queries, which
can be translated to queries that target the underlying data schema (e.g., translated
into complex queries that can access/retrieve data from the underlying data

schema).

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

[0016] Some embodiments of logical models can include multiple layers of
intricacies, including various aggregation functionality, drill-down functionality, join
behaviors, and much more. For example, one or more tools can be used to rapidly
develop a complex logical model, such as by defining metadata that can be used to
deploy the model. In some embodiments, a tool can be used to define a conceptual
data model through a user interface, and the output of such a tool can be metadata
that stores the conceptual relationships of the components that comprise the logical
data model.

[0016] In some embodiments, these tools can improve the efficiency of deploying
a complex database, however the deployment can sometimes include low level
inconsistencies and/or flaws. For example, aggregation functionality defined in the
logical model may not align with the underlying data schema, one or more tables
may not be properly loaded, the configurations for a data field (e.g., cannot be null)
may not be properly set, and many more. These inconsistencies and/or flaws
conventionally require detailed manual effort to debug.

[0017] Embodiments generate queries based on the metadata for a logical model
that autonomously test for inconsistencies and/or flaws in the logical model’s
implementation with the underlying data schema. For example, metadata for a
logical model can be retrieved and analyzed to determine conceptual relationships
among the components of the model. In some embodiments, queries can be
generated based on the expected behavior of the logical model and data schema
given the analyzed metadata. For example, a pair of queries can be generated that
test for expected aggregation functionality (e.g., across one or more dimensions of

the data schema).

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

[0018] Embodiments analyze the results of the queries. For example, two or
more queries can be designed to return a similar result set (e.g., the same data
values) when the logical data model accurately reflects the data relationships in the
data schema. Returned result sets that are not similar for these two or more queries
can indicate an inconsistency with the logical model. In other examples, query errors
may be returned due to improper loading of data, missing database tables or
columns, incorrect embedded SQL expressions, and/or improper configuration for
data fields. In some embodiments, these results that deviate from expected results
can be used to identify one or more of these inconsistencies.

[0019] Reference will now be made in detail to the embodiments of the present
disclosure, examples of which are illustrated in the accompanying drawings. In the
following detailed description, numerous specific details are set forth in order to
provide a thorough understanding of the present disclosure. However, it will be
apparent to one of ordinary skill in the art that the present disclosure may be
practiced without these specific details. In other instances, well-known methods,
procedures, components, and circuits have not been described in detail so as not to
unnecessarily obscure aspects of the embodiments. Wherever possible, like
reference numbers will be used for like elements.

[0020] Fig. 1 illustrates a system for autonomously testing a logical model for
inconsistencies according to an embodiment. System 100 includes metadata
retrieval 102, metadata analytics 104, query generation 106, query execution 108,
results comparison 110, and discovered inconsistencies 112. Metadata retrieval 102
can include the retrieval of metadata for a logical data model, such as metadata that
defines conceptual relationships among the components of the logical model (e.g.,

data tables, columns, keys, joins, and the like). Metadata analytics 104 can analyze

-5-

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

the retrieved metadata to identify these conceptual relationships. Query generation
106 can generate queries, such as pairs of queries, series of related queries, and the
like, based on the expected behavior of a logical model and data schema given the
analyzed metadata. For example, a pair of queries can be generated that test for
expected aggregation functionality (e.g., across one or more dimensions of a logical
model), and other suitable queries can be generated.

[0021] Query execution 108 can execute the queries using a server that
implements the logical model and at a database that implements the data schema.
For example, query execution can include the server translating the generated
queries (e.g., logical queries) into translated queries (e.g., data schema queries)
such that the translated queries can used to retrieve data from the implementation of
the data schema (e.g., database). In some embodiments, result sets from executing
the translated queries at the database can be returned. Results comparison 110 can
compare the results of the queries to identify inconsistencies (e.g., where
consistency is expected) or other unexpected behavior.

[0022] For example, a generated pair (or set) of queries may be designed to
return similar results (e.g., a result set with one or more values that are at most a
threshold different), such as when the logical data model accurately reflects the data
relationships in the data schema. Inconsistencies can be identified when results
comparison 110 determines that two or more queries designed for similar results
have actually returned results sets that are not similar. In addition, some queries
may return errors due to improper loading of data or improper configuration for data
fields. In some embodiments, these results that deviate from expected results can

be used to identify inconsistencies (e.g., between the data model and the

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

implemented data schema, inconsistency based on incorrectly loaded data, and
others).

[0023] In some embodiments the underlying data schema (e.g., implemented at
the database) can be any suitable schema for storing data, such as a set of
relational data tables, multi-dimensional data schemas, a set of relational tables
configured according to a set of rules or standards, such as a Third Normal Form
(“3NF”) schema, and any other suitable schemas. Generally, a schema will include
data tables with one or more columns of data. The schema is defined not only by
the tables and the data they store, but the relationships between the tables. For
example, a relationship between a first table and a second table can be defined by a
foreign key that links the data stored in each of the tables. In some embodiments,
two tables may share multiple relationships (e.g., can have multiple foreign keys that
define relationships between the tables). Different types of relationships between
tables will be further disclosed herein.

[0024] The design of a data schemas and logical models can often vary based on
the designer. For example, a given set of data with a given set of relationships can
be successfully represented by a number of data schemas with varying designs
and/or logical models. Some designs may require a table join to retrieve a certain
set of data while the other designs do not. Accordingly, the data schema and logical
model under test can include any suitable design choice, and the queries generated
by query generation 106 and executed by query execution 108 can be designed to
test for inconsistencies and/or flaws for a variety of different data schemas and
logical models.

[0025] Fig. 2 is a block diagram of a computer server/system 210 in accordance

with embodiments. As shown in Fig. 2, system 210 may include a bus device 212

-7 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

and/or other communication mechanism(s) configured to communicate information
between the various components of system 210, such as processor 222 and
memory 214. In addition, communication device 220 may enable connectivity
between processor 222 and other devices by encoding data to be sent from
processor 222 to another device over a network (not shown) and decoding data
received from another system over the network for processor 222.

[0026] For example, communication device 220 may include a network interface
card that is configured to provide wireless network communications. A variety of
wireless communication techniques may be used including infrared, radio,
Bluetooth®, Wi-Fi, and/or cellular communications. Alternatively, communication
device 220 may be configured to provide wired network connection(s), such as an
Ethernet connection.

[0027] Processor 222 may include one or more general or specific purpose
processors to perform computation and control functions of system 210. Processor
222 may include a single integrated circuit, such as a micro-processing device, or
may include multiple integrated circuit devices and/or circuit boards working in
cooperation to accomplish the functions of processor 222. In addition, processor
222 may execute computer programs, such as operating system 215, autonomous
tester 216, and other applications 218, stored within memory 214.

[0028] System 210 may include memory 214 for storing information and
instructions for execution by processor 222. Memory 214 may contain various
components for retrieving, presenting, modifying, and storing data. For example,
memory 214 may store software modules that provide functionality when executed
by processor 222. The modules may include an operating system 215 that provides

operating system functionality for system 210. The modules can include an

-8-

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

operating system 215, autonomous tester 216, as well as other applications modules
218. Operating system 215 provides operating system functionality for system 210.
Autonomous tester 216 may provide system functionality for autonomously testing a
data schema for inconsistencies, or may further provide any other functionality of this
disclosure. In some instances, autonomous tester 216 may be implemented as an
in-memory configuration.

[0029] Non-transitory memory 214 may include a variety of computer-readable
medium that may be accessed by processor 222. For example, memory 214 may
include any combination of random access memory (“RAM”), dynamic RAM
(‘DRAM”), static RAM (“SRAM”), read only memory (“ROM”), flash memory, cache
memory, and/or any other type of non-transitory computer-readable medium.

[0030] Processor 222 is further coupled via bus 212 to a display 224, such as a
Liquid Crystal Display (‘LCD”). A keyboard 226 and a cursor control device 228,
such as a computer mouse, are further coupled to communication device 212 to
enable a user to interface with system 210.

[0031] In some embodiments, system 210 can be part of a larger system.
Therefore, system 210 can include one or more additional functional modules 218 to
include the additional functionality. Other applications modules 218 may include
various components of a data warehouse that includes operational systems and a
data warehouse target, Oracle® Business Intelligence (“Bl”), Oracle® Analytics
Cloud Oracle® Analytics Server, and other suitable components, for example. A
database 217 is coupled to bus 212 to provide centralized storage for modules 216
and 218 and to store, for example, wireless device activity, and in some
embodiments, user profiles, transactions history, etc. Database 217 can store data

in an integrated collection of logically-related records or files. Database 217 can be

-9-

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

an operational database, an analytical database, a data warehouse, a distributed
database, an end-user database, an external database, a navigational database, an
in-memory database, a document-oriented database, a real-time database, a
relational database, an object-oriented database, Hadoop Distributed File System
(“HFDS”), or any other database known in the art.

[0032] Although shown as a single system, the functionality of system 210 may
be implemented as a distributed system. For example, memory 214 and processor
222 may be distributed across multiple different computers that collectively represent
system 210. In one embodiment, system 210 may be part of a device (e.g.,
smartphone, tablet, computer, etc.). In an embodiment, system 210 may be
separate from the device, and may remotely provide the described functionality for
the device. Further, one or more components of system 210 may not be included.
For example, for functionality as a user or consumer device, system 210 may be a
smartphone or other wireless device that includes a processor, memory, and a
display, does not include one or more of the other components shown in Fig. 2, and
includes additional components not shown in Fig. 2.

[0033] Referring back to Fig. 1, embodiments autonomously test a logical model
for inconsistencies using queries that are targeted using metadata for the logical
model. For example, one or more tools can be used to generate metadata that
defines a logical model, such as tools that define a repository file (e.g., RPD file).
The repository file can define data structures (e.g., relational tables and/or logical
objects), data fields (e.g., columns), relationships among the data structures (e.g.,
foreign keys, joins, and the like), functionality for the data (e.g., aggregation

functionality, drill keys, and the like), and other logical model related information.

-10 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

[0034] Embodiments of the logical model are a logical abstraction of an
underlying data schema. Fig. 3 illustrates a sample star data schema according to
an example embodiment. Data schema 300 includes fact table 302, dimension_1
table 304, dimension_2 table 306, and dimension_3 table 308. Generally, in a star
schema, a fact table holds facts about a domain while the dimension table holds
attributes for these facts. As a result, fact table 302 has various foreign key
relationships with dimension_1 table 304, dimension_2 table 306, and dimension_3
table 308. In other words, some of the rows in the fact table are foreign keys (“FKs”).
A foreign key can be a link to a dimension table. A dimension table can be a table
that stores context associated with an event that is referred to by one or more fact
tables.

[0035] A star data schema is similar to a snowflake data schema, with some
differences. For example, a snowflake data schema includes dimensions that are
normalized into multiple related tables while a star schema has dimensions that are
denormalized with each dimension being represented by a single table. Each of
these schema provide different advantages related to data redundancy, simplicity of
query design, and the like. For example, the storage efficiency benefits of
normalization can result in trade-offs to the efficiency of querying a normalized data
schema. Embodiments of the data schema under test can include fact tables with
connections to dimension tables, tables organized as a star schema, tables
organized as a snowflake schema, and any other suitable data schema structure.
[0036] Embodiments of a logical model can be used to abstract an underlying
data schema such that a client (e.g., end user) can issue logical queries that are
translated (e.g., using metadata for the logical model). For example, the translated

queries can be used to query against the database (e.g., implementation of the data

-11 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

schema with populated data) to retrieve a result set. Embodiments of the logical
model are defined using metadata, and associated busines intelligence functionality
can be generated based on the metadata. For example, the business intelligence
functionality can include multiple layers, such as one or more of a physical layer,
business model/mapping layer, and presentation layer.

[0037] An example physical layer can define objects and relationships used to
write native queries against each physical data source (e.g., used to translate logical
queries). For example, the physical layer can be created by importing tables, cubes,
and flat files from data sources. Separating logical behavior from the physical model
provides the ability to federate multiple physical sources to the same logical object,
enabling aggregate navigation and partitioning, as well as dimension conformance
and isolation from changes in the physical sources.

[0038] An example business model/mapping layer can define a business or
logical model of the data and specify a mapping between the logical model and the
physical schemas. For example, this layer can determine the analytic behavior seen
by clients/end users, and can define a superset of objects and relationships available
to clients/end users. In some embodiments, each column in the business model can
map to one or more columns in the Physical layer. At run time, logical SQL requests
can be evaluated against the business model, and the mappings can be used to
determine a set of physical tables, files, and cubes for generating the relevant
physical queries. Mappings can contain calculations and transformations, and may
combine multiple physical tables in some implementations.

[0039] An example presentation layer provides a mechanism to present
customized, secure, role-based views of a business model to users. For example,

the presentation layer can add a level of abstraction over the business model and

-12 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

mapping layer and provide a view of the data seen by users building requests. In
some embodiments, multiple subject areas can be created by the presentation layer
that map to a single business model, effectively breaking up the business model into
manageable pieces.
[0040] To illustrates query translation, consider the following sample logical query
that may be received at a server that hosts a logical model:
SELECT
"DO Time"."TO2 Per Name Month" saw_0,
"D4 Product"."P0O1 Product" saw_1,
"F2 Units"."2-01 Billed Qty (Sum All)" saw_2
FROM "Sample Sales"
ORDER BY saw_0, saw_1
[0041] In some embodiments, the server may translate such a logical query into
one or more translated queries, or one or more queries designed for the underlying
data schema/database. Consider the following sample query translated by the
server based on the received logical query.
WITH SAWITHO AS (
select T986.Per_Name_Month as ¢1, T879.Prod_Dsc as c2,
sum(T835.Units) as c3, T879.Prod_Key as c4
from
Product T879 /* AO5 Product */ ,
Time_Mth T986 /* A0O8 Time Mth */,
FactsRev T835 /* A11 Revenue (Billed Time Join) */
where (T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth =

T986.Row_Wid)

-13 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month

)

select SAWITHO.c1 as ¢1, SAWITHO.c2 as ¢2, SAWITHO.c3 as ¢3

from SAWITHO

order by c1, c2
[0042] As demonstrated by this translation, the simplified logical query that
targets logical objects in the logical model is translated into a database query that
targets specific components of the data schema. In particular, certain elements of
the data schema are abstracted as logical components (e.g., logical objects) in the
logical query, and these abstractions are mapped to their underlying physical
components in the translated query. This example demonstrates why the definitions
in the logical model are impactful to querying a database that implements a data
schema, as issues with the query translation or other components of the logical
model can create flawed or erroneous results.
[0043] Conventional functional tests for a logical model often rely on patterns to
validate that metadata is correctly translated (e.g., into RPD models). While such
tests can validate that an RPD model works as designed, these tests do not
guarantee that the created solution will work with the underlying data schema (e.qg.,
will generate expected results). For example, full validation of the generated models
would require significant manual effort due to the size of complex models.
[0044] Logical models created using conventional generators often lead to model
defects and performance issues, for example detected as a side-effect of other
development activities. These findings suggest that conventional models may have
undetected consistency issues. For example, example classes of potential errors

that can result in incorrect behavior include:

-14 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

The RPD model may not be well suited for some unanticipated cases,

resulting in model defects.

o Dimension may be described in metadata as required but the underlying
data suggest that the data is optional or nullable (e.g., likely caused by
incorrectly defined fact FK column metadata).

o Tables are not correctly/fully loaded, which may be a common issue for
calendar and time dimensions and may be an issue for improperly loaded
aggregate tables.

o Performance for some queries may degrade unexpectedly when adding an
attribute to a query (e.g., may be caused by description columns not being
correctly modeled or implemented).

[0045] Embodiments demonstrate that a systematic and automatic test of a
logical data model (e.g., an RPD) can be performed to enhance model quality and/or
logical model to data schema alignment. For example, embodiments of the audit
tool can autonomously detect data or logical model inconsistencies based on one or
multiple predefined test strategies. In some embodiments, one or more metadata
services can be used to retrieve metadata (e.g., via a web service) that is descriptive
of the logical model, including subject areas, tables, and columns. The metadata for
the logical model can be used by embodiments to generate a series of logical
queries that are issued (e.g., against the server using a web service). For example,
a logical layer may translate logical queries into translated queries (e.g., designed to
query the underlying data schema), which are ultimately used to query the database.
The query results can be captured and compared for consistency, and those with

inconsistent results can be flagged.

-15 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

[0046] Figs. 4A and 4B illustrate an implementation of a system for autonomously
testing a logical model for inconsistencies according to an example embodiment.
For example, the system of Fig. 4A depicts test strategy 402, autonomous
dimensional tester (“Audit’) 404, server 406, web service 408, semantic model 410,
and database 412. Test strategy 402 can include software functionality used to
generate the test queries based on the metadata that defines a data schema. For
example, based on the data structures and relationships among the structures
indicated by retrieved metadata, test strategy 402 can implement software
functionality to generate audit queries.

[0047] Audit 404 can implement test strategy 402 to generate the audit queries,
issue the queries to be executed, receive the results of the audit queries, and
analyze the results to detect inconsistencies and/or flaws in semantic model 410. In
some embodiments, test strategy 402 and audit 404 can be implemented at a client
device, server, any cloud computing device, or any other suitable computing device.
[0048] Server 406 can be one or more servers (e.g., web servers, cloud servers,
virtual machines, and the like) that host web service 408, store semantic model 410,
and/or implement database 412. For example, server 406 can include components
of a business intelligence product (e.g., Oracle® Business Intelligence), analytics
product (e.g., Oracle® Analytics Server and/or Oracle® Analytics Cloud), data
warehouse (e.g., Oracle® data warehouse), and the like. In some embodiments,
server 406 implements the query translation techniques for translating logical queries
to queries designed for the underlying database/data schema.

[0049] For example, server 406/semantic model 410 can include associated
business intelligence functionality as illustrated by Fig. 4B. Fig. 4B depicts logical

queries 420, presentation layer 422, business model/mapping layer 424, physical

-16 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

layer 426, and data sources 428. In some embodiments, Audit 404 can issue logical
queries 420 (based on retrieved metadata) to server 406, which can in turn translate
the logical queries via presentation layer 422, business model/mapping layer 424,
and physical layer 426, and ultimately issue the translated queries against data
sources 428 (e.g., database 412 of Fig. 4A). The result sets from query data
sources 428 using the translated queries can then be returned to Audit 404.

[0050] In some embodiments, web service 408 can be configured to provide Audit
404 with metadata about semantic model 410, for example in response to an
application programming interface (“API”) call from Audit 404. For example, Audit
404 can include a web service AP| abstraction that abstracts web service calls to
server 406. In some embodiments, the abstraction provides the implementation
extensibility such that alternatives can be used (e.g., a REST-based API).

[0051] In some embodiments, web service 408 includes a metadata service that
describes the subject areas using an enriched data structure that describes tables
(e.g., fact, dimension, time dimension) and dimension details (e.g., description
columns, bin and binned columns, hierarchies and details such as levels, drill keys,
description keys, and the like). For example, web service 408 can include the
Oracle® Analytics Cloud (“OAC”) web service and/or the Oracle® Analytics Server
(“OAS”) web service.

[0052] In some embodiments, a web service provided by OAC can be accessed
through a simple object access protocol (“SOAP”) client (e.g., to reduce overhead).
For example, a SOAP client API at Audit 404 can be encapsulated in a class to
minimize dependency of other logic onto the specific SOAP client implementation. In
some embodiments, web service 408 can provide techniques to log on and off the

web services, retrieve semantic model 410 metadata (e.g., RPD metadata) for

-17 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

different objects, and issue logical SQL queries. In some embodiments, web service
408 can return objects that hide some of the implementation details of the API. For
example, extensible markup language (“XML”) documents can be converted into an
object representation, such as lists or strings, dictionaries, or other objects.

[0053] In some embodiments, web service 408 can support the following web

services:
o SAWSessionService to login to the web service and logoff after using i,
o Metadata Service to retrieve the subject area names and subject area,

table, and column descriptions (indicates column type, if hidden, and if
description column),
o XMLViewService to issue logical SQL queries and retrieve the results sets,
o NQSQueryMetadataObjects to retrieve metadata as XUDML fragments.
In some embodiments, the retrieved XML is parsed to extract the relevant
details.
[00564] In some embodiments, base metadata, such as the names of subject
areas, details of presentation table, and their columns can be retrieved using the
OAC metadata service. In some embodiments, detailed information about
dimensions and columns can be retrieved using the NQSQueryMetadataObjects
web service. Variances of the XUDML returned by the NQSQueryMetadataObjects
web service for each type of information may be present in some implementations,
and in this case Audit 404 can include one or more specific APls that are configured
to retrieve metadata for different object types.
[00565] In some embodiments, web service 408 can represent subject areas,

presentation tables, and presentation columns by a simple object model that

-18 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

enhances the base information of the model (e.g., retrieved using the OAC metadata

service).

[0056]

Tables can be classified as fact or dimension tables.

The dimension table model can provide a representation of associated
hierarchies, levels, drill keys, and associated columns.

Dimension and fact attribute columns can be extended to include flags
indicating if a column is a description or bin column, is calculated, is a primary
key (“PK”) column, and the like.

Fact measures can provide additional details on the advanced aggregation
rules (e.g., semi-additive measures), if the column is calculated, and certain
details about level-based measures.

In some embodiments, Audit 404 can include software to identify fact

tables based on the existence of measures (e.g., columns with aggregate functions).

Web service 408 can also include the NQSQueryMetadataObjects service, which

can return XUDML fragments that describe the presentation, logical, and/or physical

RPD model.

[0057]

In some embodiments, metadata queries from Audit 404 can be

addressed with the assistance of the NQSQueryMetadataObjects service of the web

service 408. For example, the NQSQueryMetadataObjects service can return:

PK columns and drill keys,

levels and hierarchies (including the order of levels),

attributes associated with a level,

identify columns that are calculated (pre- or post-aggregation),

level-based measures, and

-19 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

o measures with dimension-based aggregation rules.
[0068] In some embodiments, to retrieve detailed table and column features, the
algorithms can trace presentation objects to the related logical (or even physical)
object using fully qualified names in references or parents. In some embodiments,
logical table names include certain naming conventions that are to be processed,
such as processing to strip the "Dim-", "Fact", and "Hier-" prefix to define English
name of the matching presentation object. In some embodiments, the trade-off is
fewer round-trips to retrieve XUDML fragments and therefore increased test
throughput.
[0069] Embodiments of Audit 404 and web service 408 aim to balance
functionality and performance using one or more the following techniques:
o Retrieve subject area names using the OAC metadata service.
o Retrieve metadata by subject area:
o Retrieve metadata describing one subject area, its presentation tables,
and presentation columns in scope using the OAC metadata service.
o Retrieve XUDML metadata for each subject area table column in scope
using the web service call NQSQueryMetadataObjects ('4008', '<Table
name>', "'<SA Name>"."" 'true') for each presentation table in the
subject area. This information can be used to determine the reference
to the logical column.
o Retrieve logical keys using call
NQSQueryMetadataObjects('2008') to get the association of the drill
key to the logical columns.
[0060] In some embodiments, these columns can be matched up with the

presentation columns (e.g., info previously retrieved) to determine which

-20 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

presentation column is a drill key or a PK of the table. In some embodiments,
retrieval of the logical keys includes a bulk operation, for example because the
logical dimension (e.g., hierarchy object) is related through its drill-key. For example,
at times the number of (drill) keys is relatively small in comparison to the number of
columns, and thus the bulk operation based on drill-key can improve performance.
In addition, performance issues can be mitigated by caching results to eliminate
additional round trips when other dimensions tables are analyzed. In some
embodiments, an alternative to this approach is to determine the logical dimension
object that is referenced from the presentation dimension table. This would allow
retrieval of the logical levels. However, this involves two service calls per
presentation table in some implementations.

[0061] Embodiments can similarly implement other suitable techniques to retrieve
metadata. For example, one or more other APls may be used (or other
interface/retrieval abstractions) to retrieve the metadata, the metadata may be
retrieved based on other aspects (e.g., other than subject area), and/or any other
suitable techniques can be implemented.

[0062] In some embodiments, for additional hierarchy and level details Audit 404
can issue a query for dimensions using call NQSQueryMetadataObjects('2019') and
subsequently issue query NQSQueryMetadataObjects('2019', ", ", 'true’) to retrieve
level details. This retrieved data can be used to reconstruct the hierarchies and to
order (drill) keys according to the levels (e.g., from detail to grand total). In some
embodiments, Audit 404 can run this as a bulk operation and cache the results. In
some embodiments, the alternative can be to use the presentation table metadata
and the logical dimension (e.g., hierarchy) object that is referenced from the

presentation dimension table.

-21 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

[0063] In some embodiments, the metadata retrieved (e.g., from server 406)
using web service 408 does not indicate if tables in a subject area are dimensions or
a fact table. However, a table column can indicate the columns' name, description,
data type, and aggregation rule. In some embodiments, a table that contains at least
one column with a defined aggregation type can be considered a fact table and
columns in a fact table with a defined aggregation rule can be considered measures.
[0064] In some embodiments, calendar dimension table names may end with
‘Date” and time dimension table names end with "Time". Implementations may also
include a shrunken calendar dimension that may end with " Month", " Quarter", "

Year", " Period", "Fiscal Quarter", or "Fiscal Year".

Classification Property Regular Expression

Calendar Dim calendar_dim \\w+ - Date

Shrunken Calendar Dim | shrunken_calendar_dim | \\w+ \[Month| Quarter|
Year| Period| Fiscal

Quarter| Fiscal Year]

Time Dim time_dim \\w+ - Tate

[0065] In some embodiments, Audit 404 can identify certain qualities of a data
schema based on naming conventions. Audit 404 can determine relevant
relationships in the data schema based on metadata retrieved from the OAC
metadata web services of web services 408. In some embodiments, XUDML
fragments retrieved through the NQSQueryMetadataObjects web service of web
services 408 are analyzed to determine relevant relationships for query generation.
For example, the analyses can rely on mappings between the presentation levels

and logical levels, which define drill keys and other relevant features for query

-22 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

generation. XUDML parts describing presentation hierarchies can be retrieved by
issuing the command “call NQSQueryMetadataObjects (‘4028’)". The result can be
provided in multiple recorders with a sequence of the levels from grand total level to
detail level, such as the example below:

<?xml version="1.0" encoding="UTF-8 " 7>

<Repository xmlns:xsi= "http://www.w3.0rg/2001/XMI.Schema-instance">

<DECLARE>

<PresentationHierarchy name="Acquisition Date - Acquisition Date Year"
parentName=" "Asset - Asset Availability Based on Downtime Service
History&q...>

<Levels>

<Ref PresentationLevel id="4030:143750 " uid= "5ec6e2ae-Oceb-1000-aba9-
c0a838680000" qualifiedName=" "Asset - Asset Availability Based on
Downtime Ser...>

<Ref PresentationLevel id=" 4030:143751" uid= "5ec6e2af-Oceb-1000-aba9-
c0a838680000" qualifiedName=" "Asset - Asset Availability Based on
Downtime Ser...>

<RefPresentationLevel id= " 4030:143752" uid= "5ec6e2b0-0ceb-1000-aba9-
c0a838680000" qualifiedName=" "Asset - Asset Availability Based on
Downtime Ser...>

<Ref PresentationLevel id=" 4030:143753" uid= "5ec6e2bl-Oceb-1000-aba9-
c0aB838680000" qualifiedName=" "Asset - Asset Availability Based on
Downtime Ser...>

<Ref PresentationLevel id= " 4030:143754" uid= "5ec6e2b2-0ceb-1000-aba9-

c0a838680000" qualifiedName=" "Asset - Asset Availability Based on

-23 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

Downtime Ser...>

</Levels>

<Dimension>

<RefDimension id="2019:75664 " uid=" 5ec6d5b4-0ceb-1000-aba9-
c0a838680000 " qualifiedName=" " Customer" . " Acquisition
Date"”/>

</Dimension>

</PresentationHierarchy>

<PresentationHierarchy name= "Acquisition Date - Acquisition Date Week
Key" parentName=" "Asset - Asset Availability Based on Downtime service
Histo...>

<Levels>

<Ref PresentationLevel id=" 4030 : 143755" uid= "Sec6e2b4-0ceb-1000-
aba9-c0a838680000" qualifiedName=" " Asset - Asset Availability Based on
Downtime Ser...>

<RefPresentationLevel id="4030: 143756" uid= "Sec6e2b5-0ceb-1000-aba9-
c0aB838680000" qualifiedName=" "Asset - Asset Availability Based on
Downtime Ser...>

<RefPresentationLevel id=" 4030 : 143757" uid="Sec6e2b6-0ceb-1000-aba9-
c0a838680000" qualifiedName=" " Asset - Asset Availability Based on
Downtime Ser...>

</Levels>

<Dimension>

<RefDimension id=" 2019 : 75664 " uid=" 5ec6d5b4-0ceb-1000-aba9-

c0a838680000 " qualifiedName="" ; Customer" . " ; Acquisition

-24 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

Date""/>

</Dimension>

</PresentationHierarchy>

<PresentationHierarchy name= "Acquisition Date - Acquisition Date Fiscal
Year" parentName=" "Asset - Asset Availability Based on Downtime Service Hi.

<Levels>

<RefPresentationLevel id= " 4030 : 143758" uid= "5ec6e2b8-0ceb-1000-
aba9-c0a838680000" qual...>

<RefPresentationLevel id= " 4030 : 143759" uid= "5ec6e2b9-0ceb-1000-
aba9-c0a838680000" qual...>

<Ref PresentationLevel id=" 4030 : 143760 " uid= "5ec6e2ba-Oceb-1000-
aba9-c0a838680000" qual...>

<RefPresentationLevel id= " 4030 : 143761 " uid= "Sec6e2bb- Oceb-1000-
aba9- c0a838680000" qual...>

<RefPresentationLevel id= " 4030 : 143762 " uid= "Sec6e2bc- Oceb-1000-
aba9- c0a838680000" qual...>
</Levels>
[0066] In some embodiments, Audit 404 can dynamically generate test cases
(e.g., Python test cases) and run them with a suitable tool (e.g., XMLRunner, which
creates test results in a JUnit-style XML format). Embodiments can leverage certain
advantageous infrastructure by generating separate test cases. Because tests are
determined by the structure of the semantic model 410 (e.g., RPD), which is only
known after model metadata is retrieved from web service 408, embodiments can
dynamically create classes and class methods (e.g., Python classes and methods)

based on the retrieved metadata. For example, sub-classes of unittest. TestCase for

-25.

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

each subject area can be created, and one or more test methods for each test case
can be defined in the subject area.
[0067] In some embodiments, a separate test case class can be created for each
subject area and unit test cases can be created and added (e.g., represented by
functions that start with the name 'test'). For example, this organization can group
test results related to a subject area into one report. The following example
functionality illustrates this technique of dynamically generating sample
classes/methods:

class DynamicTest(unittest. TestCase):

client = None

session = None

@classmethod

def make_test_class(cls, className, testFunctions):

return type(className, (DynamicTest,), testFunctions)

@classmethod

def make_oas_test_function(cls, sa):

returns a method with the test

def test(self):

simple test that checks if service call returns a non null SA description

and contains 'Asset’ in its name without the prefix (demo purpose only)

saDescr = cls.client.getServiceAgreementDescription(sa,
DynamicTest.session)

self. assertlIsNotNone(saDescr)

self.assertIn("Asset", sa.displayName[6:], "Unerwarteter Name wurder

endeckt!")

-26 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

return test

@classmethod

def make_oas_test_functions(cls, sas):

functions = dict()

foriin[1,2]:

index = randint(0, len(sas)-1)

sa = sas[index]

test_func = cls.make_oas_test_function(sa)

functionslf'test_{sa.displayName}'] = test_func

return functions

if __name__=="_main__"

DynamicTest.client = OasWSClient('http://slc15smu.us.oracle.com’, 9502)

DynamicTest.session = DynamicTest.client.login(‘'weblogic', 'weblogic123')

sas = DynamicTest.client.getSAs(DynamicTest.session)

for sa in sas:

saFunctions = DynamicTest.make_oas_test_functions(sas)

name = sa.displayName.replace(' ', '_")

globals()[name] = DynamicTest.make_test class(name, saFunctions)
unittest. main()
[0068] The above example functionality generates a class for each subject area
and performs two tests for each unit test implemented in two dynamically generated
class methods. The test cases can be defined as descriptions/parameters and
functions that run each test case can be generated. Embodiments can achieve this

organization because the audit tests are defined by the subject area, measures, and

attribute(s) that the measures are grouped by. Embodiments can run a standard

-27 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

Python unit test framework with the command unittest.main(), which can
automatically discover test classes and test methods and subsequently run them.
[0069] In some embodiments, run test cases and test results can be captured in a
Junit XML format that can be converted into HTML. Test cases can be specified as
test suite descriptions that are created by one or multiple test strategies. In some
embodiments, a runtime component can create the specified test cases and run
them in the unit test framework. For example, the functionality of Audit 404 can be
implemented using a Jenkins build process.

[0070] In some embodiments, Audit 404 retrieves the metadata descriptive of the
logical model, analyzes the metadata to determine relationships among the data
structures that comprise the logical model, and generates logical queries to test the
logical model for inconsistencies. For example, one or more pairs of queries (e.g., a
reference query and a test query) can be generated to test for inconsistencies in
aggregation functionality, queries can be generated to enumerate joins of a data
schema, queries of increasing complexity can be generated to detect performance
issues indicative of schema flaws, among other query strategies.

[0071] Embodiments can generate one or more logical queries using the following
algorithm. The retrieved and analyzed metadata can be used to select one or more
measures. For example, an implemented test strategy (e.g., software functionality
for a given test strategy) can select the measures based on the analyzed metadata.
In some embodiments, the implemented test strategy can then define groups of
attributes that the measures can be grouped by. For example, the test strategy can
determine attributes to group by based on an analysis of the metadata relevant to
the selected measures. In some embodiments, the test strategy can select one

attribute per dimension based on a criteria (e.g., PK column), can enumerate drill

-28 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

keys or description columns to be tested as a single group criteria, or can implement
any other suitable technique to determine attributes for grouping.

[0072] In some embodiments, the test strategy can generate a list of data
structures based on the selected measures and determined group by attributes. For
example, each data structure can define measures and group by attributes (e.g.,
attributes relevant for a test pair, or reference query and test query). In some
embodiments, a query generator can use the data structure to issue queries. For
example, a reference query can sum measures (e.g., all the relevant measures)
according to their aggerate rule (e.g., SUM, MIN, MAX, and the like, as defined in the
metadata). The result from the reference query can be captured for comparison. A
second test query can also be generated that performs the same operation on the
measures AND groups them based on the supplied list of one or more attributes.
Results from the test query can then be captured for comparison as well.

[0073] For example, Audit 404 can generate and issue the reference query and
test query such that the queries yield an inconsistent result if the RPD model is not
consistent (e.g., aligned the data in the physical data schema, or is otherwise
inconsistent). For example, given a list of measures and attributes (e.g., generated
data structure), Audit 404 can create a pair of logical SQL queries that can be run
(e.g. using a separate API). In some embodiments, the reference query can create
the total for each provided measure (e.g., roll all measures to Grand Total for all
dimensions). In some embodiments, the test query can report on the same
measures and group them by one or multiple attributes. The resulting records can
be aggregated back into one record and compared with results from the reference
query. In some embodiments, the reference query can query against one, some, or

all measures of a fact table and capture the single record as a reference, and the

-29 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

test query can aggregate the same measures and group them by one or multiple
attributes.

[0074] In some implementations, it is indicated that the semantic model 410 (e.g.,
RPD model) is inconsistent with the underlying data (e.g., database 412 which
implements the data schema) if the sum of measures in the records returned by the
test query is not the same as the result of the reference query. In some
embodiments, the model has a flaw if one or both of the queries fails with a
structured query language (“SQL”) error.

[0075] In some embodiments, Audit 404 can generate one logical query per
subject area that returns one or an array of measures that are aggregated to grand
total for multiple dimensions (e.g., of a star in a star schema). For example, the
result row can be used to compare the result set of each other test cases in this
subject area. In some embodiments, the query can include fact measures that are
additive (and not level-based). In other embodiments, the query can include any
suitable fact measures.

[0076] In some embodiments, the underlying data schema may be a star schema,
which can dictate query specifics such that a type of structured query can be
represented by simple data structures. For example, much of the query complexity
(how facts and dimensions are joined and how normalized dimensions are
constructed) can be contained in the logical model (e.g., based on the metadata that
represents the schema relationships). Embodiments of the test strategies
functionality can provide options about which test strategy to administer. In some
embodiments, the number of test cases can be limited to a few hundred or a few
thousand. In theory, millions of possible test cases can be generated given the

relationships of some data schema/logical models, with runtimes exceeding practical

-30 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

requirements. Embodiments of the test strategy functionality efficiently construct
queries to test using practical resource constraints.

[0077] Figs. 5 and 6 illustrate a pair of database queries and their results
according to an example embodiment. In some embodiments, queries can be
generated that group the same measures based on one or multiple dimension
attributes and aggregate the measures using the model's aggregation rule for the
resulting result rows. In the depicted embodiment of Figs. 5 and 6, query 502 is a
reference query that is issued at the subject areas "Asset - Service History" against
the measure "Count of Service Histories". The SQL of query 502 indicates that the
measure is summed without any grouping. Results 504 depict the results of query
502, which has a data value of 3502.

[0078] In the depicted embodiment, query 602 is a test query that is issued at the
same subject areas "Asset - Service History" against the same measure "Count of
Service Histories". Query 602 differs from query 502 because the SQL of query 602
indicates that the measure is grouped by an attribute "Permit ID" (which is of a
referenced logical "Permission" dimension). Results 604 depict the results of query
602, which has 16 rows that group the “Count of Service Histories” measure data
values by the “Permit ID” attribute of the “Permission” dimension.

[0079] In the depicted embodiment, the sum of the 16 rows of results 604 for the
“Count of Service Histories” measure data values is 3502. This equals the summed
measure data value without grouping returned for query 502 in results 504. Because
these values are equal, query results 504 and 604 do not indicate logical model
inconsistency.

[0080] Figs. 7 and 8 illustrate another pair of database queries and their results

according to an example embodiment. In the depicted embodiment of Figs. 7 and 8,

-31 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

query 702 is a reference query that is issued at the subject areas "Asset — Timesheet
Detail" against the measures "Timesheet Detail Count" and “Total Cost”. The SQL of
query 702 indicates that the measures are summed without any grouping. Results
704 depict the results of query 702, which has a data value of 1662 for the
“Timesheet Detail Count” measure and 511369.45 for the “Total Cost” measure.
[0081] In the depicted embodiment of Figs. 7 and 8, the SQL of query 802, the
test query, groups additive measures by the PK column '"Timesheet ID' (of the
referenced Timesheet dimension). Results 804 depict the results of query 802,
which includes multiple results that have been aggregated (because query 802 uses
the SUM aggregation rule) per measure. In some embodiments, logical SQL is used
to aggregate measures to reduce the logic in the business logic, minimize rounding
errors, and improve query performance. For example, this can be accomplished by
aggregating measures with the supported aggregate functions. Query 802 repeats
the aggregated measure for each group-by attribute (e.g., “Timesheet Detail Count”
and “Total Cost”) and therefore a first row can be returned (e.g., by database 412 of
Fig. 4). In some embodiments, results 804 are reduced to one row by defining
RANK() on the first dimension attribute and by limiting the rows to the first one with
the condition C1 = 1 in the WHERE clause of query 802.

[0082] In the depicted embodiment, the sum in results 804 for the relevant
measures does not equal the sum in results 704. Because these values are not
equal, query results 704 and 804 indicate an inconsistency. For example, the
illustrated inconsistency can be caused by undefined keys, namely that the fact view
refers to keys in the Timesheet dimension that are not defined (e.g., data

inconsistency).

-32 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

[0083] In some embodiments, aggregation functionality is used within one or
more of the reference queries and/or the test queries generated for the logical
model. The following aggregation functions can be used when aggregating

measures after grouping with a specified aggregation role:

Aggregation Role Aggregation Function

SUM SUM

COUNT SUM

COUNT DISTINCT | SUM

MIN MIN

MAX MAX

[0084] In some implementations, inconsistencies or flaws can be caused by one
or more of the following:
o For the following issues the reported measure values of the reference
query is larger than the summed measure values of the test query:

o A join between fact table or dimension table uses an inner join but
should be an outer join. This is likely the case because of incorrect
metadata at the fact table FK column.

o The fact table refers to a dimension with an FK value that does not
have a matching PK in the targeted dimension. This may be the result
of incorrect data load operations.

o Afact or dimension table refers to a description column lookup with an
incorrect join. This is likely the case because of incorrect metadata at

the fact table Flag column.

-33-

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

o Results are incorrect if a binned column is used to group results. This
likely implies that the bucket definition is incomplete and does not
cover the range of possible binned column values. It may also imply
that the selected Bucket type is incorrect.

o For the following issues the reported measure values of the reference
query may be smaller than the summed measure values of the test query:

o Incorrectly defined calculated measures or incorrectly defined cross-
drilling may be that root cause for this situation.

[0085] In some embodiments, queries issued by Audit 404 can also experience
errors, such as SQL errors. For example, SQL Errors can indicate the following
Issues:
o A physical fact or dimension view in the database (e.g., Oracle® DB) is not
correctly defined and triggers a SQL exception.
o Physical tables or columns do not exist (e.g., due to Oracle® Utilities
Application Framework (“OUAF”) metadata issues)
o The RPD created a virtual table with a defect that causes a SQL exception
(e.g., fact wrapper, Characteristics table mapping, binning table)
o Connection issues with server 406, which may be a network issue and a
recovery can be attempted by logging in again and retrying to issue the query.
[0086] In some embodiments, Audit 404 can implement one or more query
strategies to enhance resource efficiency and inconsistency discovery. For example,
in order to efficiently arrive at a number of issued queries, reference and test queries
can include all measures of the fact table under validation/test that can be

aggregated (e.g., using SUM, MIN, and MAX aggregation functions). In some

-34-

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

embodiments, the aggregation rules defined in the column metadata can define how
each measure column is aggregated for the data record created by the test query.
[0087] In some embodiments, limiting queries against the time dimension can
speed up the runtime of the test strategy and can help to minimize the results set
returned. For example, time dimensions can be grouped based on the highest level
(e.g., AM/PM drill key) or grouping on Time dimension attributes can be skipped.
For example, grouping on the time dimension can be skipped after an initial test
validates that the time dimension is properly loaded. In addition, a correlation
between inconsistencies of the calendar and time dimensions may exist (e.g.,
because both are based on the same metadata), and thus individually testing the
time dimension may be redundant. Embodiments can explode the time dimension
from consideration if the PK regular expression excludes the time dimension PK and
drill key regular expression excludes drill keys of the time dimension.

[0088] In some embodiments, Audit 404 can generate queries to enumerate joins
indicated by the retrieved metadata. For example, one or more of PK, drill keys,
binned, and description columns of presentation dimensions associated with a
subject area can be identified. Audit queries can group based on one or more of the
PK, drill keys, binned, and description columns (e.g., to ensure that parent and
grandparent tables are included). Audit queries can also group based on binned and
description columns on the fact table. In some embodiments, drill keys of the
calendar dimensions can be targeted to ensure that joins between aggregate tables
referring to shrunken dimensions are tested. In some embodiments, attribute
columns of a child table that is integrated into a logical dimension can also be
targeted by generated queries to enumerate joins. In some embodiments, the

queries generated to enumerate joins will return an error for a test query if the query

-35-

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

takes longer than a specified timeout. For example, the timeout can be a fixed
duration of time (e.g., 2 minutes, 5 minutes, and the like) or may be configured as a
timeout that is X times larger than the typical query time (e.g., 5x more than the
default query time threshold of 1 minute per query).

[0089] In some embodiments, one or more queries generated to enumerate joins

may be configured to limit the columns to be grouped to a subset of the available

features:
. PK,
o drill keys on dimensions (without PK),
o table description columns,
o code description column,
. binned columns on dimension,
o code description on fact,
. binned columns on fact, and
o child table attributes (feature will be enabled in future version).

[0090] In some embodiments, a series of queries can be generated by Audit 404
in which the test queries increase in complexity. For example, a series of queries

can be added that sequentially add, as group criteria:

. PK,

o drill keys on dimensions (without PK),
o table description columns,

o code description column, or

. binned columns on dimension,

o drill keys on fact,

-36 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

. binned columns on fact, and
o child table attribute on dimension.
[0091] In some embodiments, a flaw can be detected based on results for one or
more of these issued audit queries if the query duration is longer than a specified
timeout, has an inconsistent result, or the time difference between a current query in
the series and a previous query in the series is more than a configurable threshold.
Some embodiments for generating queries that test complexity can target description
and binned columns on fact tables and other available dimension features (e.g.,
listed above) for the N dimensions of the fact with a highest number of such features.
By default, N can be any default number (e.g., 3) and the value can be changed
through a configuration option. In some embodiments, calendar and time dimensions
are excluded from consideration due to their low complexity. In case two dimensions
have a same number of features and already N-1 dimensions have been processed,
the first dimension based on an alphanumerical sorting criteria can be selected in
some embodiments.
[0092] Embodiments can run multiple test cases concurrently. In some
embodiments, Audit 404 includes a software tool that supports the following:
usage: Audit.py [-h] --url URL [--port PORT] --user USER --pass PASSWORD
[-1] [-s START] [-e END] [-pk] [-desc] [-bin] [-drill] [-noCalendar] [-one]
Autonomous Dimensional Tester (AUDIT) 1.0.0

optional arguments:

-h, —-help show this help message and exit
--url URL Bl server URL.

--port PORT Bl server port.

--user USER Bl server administrative user.

-37 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

--pass PASSWORD Bl server administrator password.
-l, —-list List of available subject areas in the Bl
Server.

-s START, --startinterval START Start index for Subject Area list.

-e END, --endinterval END End index for Subject Area list.
-pk, —-primarykeys Group by primary keys.

-desc, --descriptionColumns Group by description columns.
-bin, --binColumns Group by Bin columns.

-drill, --drillKeyColumns Group by drill key columns.

-noCalendar, --noCalendarAndTime
Skip grouping by calendar and time dimensions attributes.

-one, --oneMeasure Creates queries with one measure.
[0093] Embodiments improve that quality of an implemented logical model and/or
database without excessive manual testing. For example, the following can be
identified by embodiments: inconsistencies between a database schema, its sample
data, and the RPD model; FKs that are declared not nullable + required in the RPD
model but contain NULL or Strings with spaces (this is typically an issue with fact
views); tables that have not been fully loaded or updated; and queries with
unexpected performance degradation indicating modeling issues or view definition
Issues.
[0094] Fig. 9 illustrates an example flow diagram for autonomously testing a
logical model for inconsistencies according to an example embodiment. In one
embodiment, the functionality of Fig. 9 is implemented by software stored in memory
or other computer-readable or tangible medium, and executed by a processor. In

other embodiments, each functionality may be performed by hardware (e.g., through

-38 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

the use of an application specific integrated circuit (*ASIC”), a programmable gate
array (“PGA”), a field programmable gate array (“FPGA”), etc.), or any combination
of hardware and software.

[0095] At 902, metadata descriptive of a logical model can be retrieved, where
the logical model is an abstraction for a database schema, the database schema is
implemented at a database, and the database schema includes a fact table and one
or more dimension tables. For example, metadata for portions of a logical model
(e.g., a subject area) can be retrieved from a server that implements the logical
model. In some embodiments the metadata is retrieved using a web service API.
[0096] In some embodiments, the metadata describes a logical schema against
which logical queries can be issued. For example, the server that manages the
metadata and/or implements the logical model can translate logical queries issued
against the logical model to database queries issued against the underlying
database. In some embodiments, the metadata can be managed in the form of an
RPD.

[0097] At 904, a plurality of logical queries including at least a first logical query
and a second logical query can be automatically generated based on the retrieved
metadata, where the first logical query and second logical query target a logical
object of the logical model. For example, logical queries for issuance against the
logical model as defined by the RPD metadata can be generated based on the
retrieved metadata.

[0098] At 906, at least the first logical query and the second logical query can be
issued to the server that hosts the logical model, where, at the server, the first logical
query is translated to a first database query and the second logical query is

translated to a second database query, and the first database query and second

-39 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

database query target at least a fact table and a dimension table from the database
schema. In some embodiments, the first and second logical queries can be
generated based on metadata associated with the targeted logical object, and the
first and second database queries can target the fact table and the dimension table
from the database schema based on mappings for the targeted logical object that
are used to translate the first logical query and second logical query.

[0099] In some embodiments, the first and second database queries are a pair of
database queries configured to test the logical model using an aggregation function
associated with the targeted logical object. In some embodiments, the first database
query aggregates measure data values along one or more dimensions based on
aggregation function definitions for the measure data defined in the metadata and
the second database query groups multiple of the measure data values by one or
more dimension attributes. In some embodiments, the first database query
aggregates measure data values along all dimensions for the measure based on
dimension definitions for the measure and aggregation function definitions for the
measure data defined in the metadata

[00100] At 908, query results received from execution of the first database query
and second database query can be compared. For example, comparing query
results for the pair of database queries can include comparing the aggregated
measure data value (e.g., returned by the first database query) to a sum of the
grouped measure data values (e.g., returned by the second database query).
[00101] At 910, one or more inconsistencies can be identified when the
comparison of the query results for the first database query and second database
query does not meet a criterion, wherein the one or more inconsistencies can be an

inconsistency with the logical model as defined by the metadata or an inconsistency

- 40 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

at the database. In some embodiments, the at least one inconsistency is identified
when a difference between the aggregated measure data value and the sum of the
grouped measure data values is greater than a threshold value. The at least one
inconsistency can be identified for one or more of a relationship between the
targeted logical object and the targeted fact table and dimension table defined in the
metadata, data loaded into the targeted fact table and dimension tables in the
database, and column configuration metadata defined for the targeted fact table and
the dimension table in the metadata.

[00102] In some embodiments, automatically generating the plurality database
queries includes automatically generating a plurality of pairs of database queries
such that a first of each pair of database queries includes aggregation of a given
measure data value across one or more dimensions and a second of each pair of
database queries groups multiple of the given measure data values by one or more
dimension attributes. For example, the plurality of pairs of logical queries can be
issued to the server that hosts the logical model, where, at the server, each pair of
logical queries can be translated to a pair of database queries that target at least a
fact table and a dimension table from the database schema. In some embodiments,
the query results received from execution of the pairs of database queries can be
compared and one or more inconsistencies can be identified when the comparison of
the query results for each pair of database queries does not meet a criterion, where
the one or more inconsistencies comprise an inconsistency with the logical model as
defined by the metadata or an inconsistency at the database.

[00103] In some embodiments, the automatically generated pairs of database
queries are configured to test the logical model using an aggregation function

associated with at least one logical object targeted by each pair. For example, for

41 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

the issued pairs of logical queries, a given pair of the logical queries can be
generated based on metadata associated with the at least one logical object targeted
by the given pair, and a given pair of database queries translated based on the given
pair of logical queries can target at least a fact table and a dimension table from the
database schema based on mappings for the given logical object targeted that are
used to translate the given pair of logical queries. In some embodiments, the
automatically generated pairs of database queries test multiple logical objects from
the logical model and the translated pairs of database queries test multiple fact and
dimension tables from the database.

[00104] Embodiments achieve autonomous testing of a logical model for
inconsistencies. For example, data schemas can at times require complex queries
that target relevant data from numerous tables/fields using joins and other
sophisticated query structures. To alleviate this query burden, some databases
implementations and reporting tools include a logical model, or a layer that maps the
underlying complex data schema to a more simplified logical model. For example,
the logical model can then be queried using more simplistic logical queries, which
can be translated to queries that target the underlying data schema (e.g., translated
into complex queries that can access/retrieve data from the underlying data
schema).

[00105] Some embodiments of logical models can include multiple layers of
intricacies, including various aggregation functionality, drill-down functionality, join
behaviors, and much more. For example, one or more tools can be used to rapidly
develop a complex logical model, such as by defining metadata that can be used to
deploy the model. In some embodiments, a tool can be used to define a conceptual

data model through a user interface, and the output of such a tool can be metadata

-42 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

that stores the conceptual relationships of the components that comprise the logical
data model.

[00106] In some embodiments, these tools can improve the efficiency of deploying
a complex database, however the deployment can sometimes include low level
inconsistencies and/or flaws. For example, aggregation functionality defined in the
logical model may not align with the underlying data schema, one or more tables
may not be properly loaded, the configurations for a data field (e.g., cannot be null)
may not be properly set, and many more. These inconsistencies and/or flaws
conventionally require detailed manual effort to debug.

[00107] Embodiments generate queries based on the metadata for a logical model
that autonomously test for inconsistencies and/or flaws in the logical model’s
implementation with the underlying data schema. For example, metadata for a
logical model can be retrieved and analyzed to determine conceptual relationships
among the components of the model. In some embodiments, queries can be
generated based on the expected behavior of the logical model and data schema
given the analyzed metadata. For example, a pair of queries can be generated that
test for expected aggregation functionality (e.g., across one or more dimensions of
the data schema).

[00108] Embodiments analyze the results of the queries. For example, two or
more queries can be designed to return a similar result set (e.g., the same data
values) when the logical data model accurately reflects the data relationships in the
data schema. Returned result sets that are not similar for these two or more queries
can indicate an inconsistency with the logical model. In other examples, query errors
may be returned due to improper loading of data, missing database tables or

columns, incorrect embedded SQL expressions, and/or improper configuration for

-43-

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

data fields. In some embodiments, these results that deviate from expected results
can be used to identify one or more of these inconsistencies.

[00109] The features, structures, or characteristics of the disclosure described
throughout this specification may be combined in any suitable manner in one or
more embodiments. For example, the usage of “one embodiment,” “some

” o

embodiments,” “certain embodiment,” “certain embodiments,” or other similar
language, throughout this specification refers to the fact that a particular feature,
structure, or characteristic described in connection with the embodiment may be
included in at least one embodiment of the present disclosure. Thus, appearances

” o

of the phrases “one embodiment,” “some embodiments,” “a certain embodiment,”
“certain embodiments,” or other similar language, throughout this specification do not
necessarily all refer to the same group of embodiments, and the described features,
structures, or characteristics may be combined in any suitable manner in one or
more embodiments.

[00110] One having ordinary skill in the art will readily understand that the
embodiments as discussed above may be practiced with steps in a different order,
and/or with elements in configurations that are different than those which are
disclosed. Therefore, although this disclosure considers the outlined embodiments,
it would be apparent to those of skill in the art that certain modifications, variations,
and alternative constructions would be apparent, while remaining within the spirit and

scope of this disclosure. In order to determine the metes and bounds of the

disclosure, therefore, reference should be made to the appended claims.

-44 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

WE CLAIM:
1. A method for autonomously testing a logical model for inconsistencies, the
method comprising:

retrieving metadata descriptive of a logical model, wherein the logical model
comprises an abstraction for a database schema, the database schema is
implemented at a database, and the database schema comprises a fact table and
one or more dimension tables;

automatically generating a plurality of logical queries comprising at least a first
logical query and a second logical query based on the retrieved metadata, wherein
the first logical query and second logical query target a logical object of the logical
model;

issuing at least the first logical query and the second logical query to a server
that hosts the logical model, wherein, at the server, the first logical query is
translated to a first database query and the second logical query is translated to a
second database query, and the first database query and second database query
target at least a fact table and a dimension table from the database schema;

comparing query results received from execution of the first database query
and second database query; and

identifying one or more inconsistencies when the comparison of the query
results for the first database query and second database query does not meet a
criterion, wherein the one or more inconsistencies comprise an inconsistency with

the logical model as defined by the metadata or an inconsistency at the database.

2. The method of claim 1, wherein the first and second database queries

comprise a pair of database queries configured to test the logical model using an

-45-

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

aggregation function associated with the targeted logical object.

3. The method of claim 2, wherein the first and second logical queries are
generated based on metadata associated with the targeted logical object, and the
first and second database queries target the fact table and the dimension table from
the database schema based on mappings for the targeted logical object that are

used to translate the first logical query and second logical query.

4. The method of claim 3, wherein the first database query aggregates measure
data values along one or more dimensions based on aggregation function definitions
for the measure data defined in the metadata and the second database query groups

multiple of the measure data values by one or more dimension attributes.

. The method of claim 4, wherein the first database query aggregates measure
data values along all dimensions for the measure based on dimension definitions for
the measure and aggregation function definitions for the measure data defined in the

metadata.

6. The method of claim 4, wherein comparing query results for the pair of
database queries comprises comparing the aggregated measure data value to a

sum of the grouped measure data values.

7. The method of claim 6, wherein the at least one inconsistency is identified
when a difference between the aggregated measure data value and the sum of the

grouped measure data values is greater than a threshold value.

- 46 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

8. The method of claim 7, wherein the at least one inconsistency is identified for
one or more of a relationship between the targeted logical object and the targeted

fact table and dimension table defined in the metadata, data loaded into the targeted
fact table and dimension tables in the database, and column configuration metadata

defined for the targeted fact table and the dimension table in the metadata.

9. The method of claim 3, wherein automatically generating a plurality database
queries comprises automatically generating a plurality of pairs of database queries
such that a first of each pair of database queries includes aggregation of a given
measure data value across one or more dimensions and a second of each pair of
database queries groups multiple of the given measure data values by one or more

dimension attributes.

10. The method of claim 9, further comprising:

issuing the plurality of pairs of logical queries to the server that hosts the
logical model, wherein, at the server, each pair of logical queries is translated to a
pair of database queries that target at least a fact table and a dimension table from
the database schema;

comparing query results received from execution of the pairs of database
queries; and

identifying one or more inconsistencies when the comparison of the query
results for each pair of database queries does not meet a criterion, wherein the one
or more inconsistencies comprise an inconsistency with the logical model as defined

by the metadata or an inconsistency at the database.

-47 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

11. The method of claim 10, wherein the automatically generated pairs of
database queries are configured to test the logical model using an aggregation

function associated with at least one logical object targeted by each pair.

12. The method of claim 11, wherein, for the issued pairs of logical queries, a
given pair of the logical queries is generated based on metadata associated with the
at least one logical object targeted by the given pair, and a given pair of database
queries translated based on the given pair of logical queries targets at least a fact
table and a dimension table from the database schema based on mappings for the
given logical object targeted that are used to translate the given pair of logical

queries.

13. The method of claim 12, wherein the automatically generated pairs of
database queries test multiple logical objects from the logical model and the
translated pairs of database queries test multiple fact and dimension tables from the

database.

14. A system for autonomously testing a logical model for inconsistencies, the
system comprising:

a processor; and

memory storing instructions for execution by the processor, the instructions
configuring the processor to:

retrieve metadata descriptive of a logical model, wherein the logical model

comprises an abstraction for a database schema, the database schema is

-48 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

implemented at a database, and the database schema comprises a fact table and
one or more dimension tables;

automatically generate a plurality of logical queries comprising at least a first
logical query and a second logical query based on the retrieved metadata, wherein
the first logical query and second logical query target a logical object of the logical
model;

issue at least the first logical query and the second logical query to a server
that hosts the logical model, wherein, at the server, the first logical query is
translated to a first database query and the second logical query is translated to a
second database query, and the first database query and second database query
target at least a fact table and a dimension table from the database schema;

compare query results received from execution of the first database query and
second database query; and

identify one or more inconsistencies when the comparison of the query results
for the first database query and second database query does not meet a criterion,
wherein the one or more inconsistencies comprise an inconsistency with the logical

model as defined by the metadata or an inconsistency at the database.

15. The system of claim 14, wherein the first and second database queries
comprise a pair of database queries configured to test the logical model using an

aggregation function associated with the targeted logical object.

16. The system of claim 15, wherein the first and second logical queries are
generated based on metadata associated with the targeted logical object, and the

first and second database queries target the fact table and the dimension table from

- 49 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

the database schema based on mappings for the targeted logical object that are

used to translate the first logical query and second logical query.

17. The system of claim 16, wherein the first database query aggregates measure
data values along one or more dimensions based on aggregation function definitions
for the measure data defined in the metadata and the second database query groups

multiple of the measure data values by one or more dimension attributes.

18. The system of claim 17, wherein the first database query aggregates measure
data values along all dimensions for the measure based on dimension definitions for
the measure and aggregation function definitions for the measure data defined in the

metadata.

19. The system of claim 17, wherein comparing query results for the pair of
database queries comprises comparing the aggregated measure data value to a

sum of the grouped measure data values.

20. A non-transitory computer readable medium having instructions stored
thereon that, when executed by a processor, cause the processor to autonomously
test a logical model for inconsistencies, wherein, when executed, the instructions
cause the processor to:

retrieve metadata descriptive of a logical model, wherein the logical model
comprises an abstraction for a database schema, the database schema is
implemented at a database, and the database schema comprises a fact table and

one or more dimension tables;

-50 -

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

automatically generate a plurality of logical queries comprising at least a first
logical query and a second logical query based on the retrieved metadata, wherein
the first logical query and second logical query target a logical object of the logical
model;

issue at least the first logical query and the second logical query to a server
that hosts the logical model, wherein, at the server, the first logical query is
translated to a first database query and the second logical query is translated to a
second database query, and the first database query and second database query
target at least a fact table and a dimension table from the database schema;

compare query results received from execution of the first database query and
second database query; and

identify one or more inconsistencies when the comparison of the query results
for the first database query and second database query does not meet a criterion,
wherein the one or more inconsistencies comprise an inconsistency with the logical

model as defined by the metadata or an inconsistency at the database.

-51 -

CA 03215243 2023-09-27

PCT/US2022/016435

WO 2022/220916

1/10

N
i

<

L

.

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

R

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\x.
4

CA 03215243 2023-09-27

PCT/US2022/016435

WO 2022/220916

2110

§ X
N
xR
TNy
RN
s
N

N
N

\.\\\\.\\R\. \
P FT RN
o eI~
% “ ARV S Y

PR g . A
el I ot
it 7 e s
K [73 m\“

. .

s

il

CA 03215243 2023-09-27

PCT/US2022/016435

WO 2022/220916

3/10

O

=

W

PN

s

3
s

<

<

D

e

s

R

R
N
N
NN

S

P

N

N

PCT/US2022/016435
4/10

WO 2022/220916

-
i ww\\“\\w\

Z

Dol % ey
7y

7t

(ars

CA 03215243 2023-09-27

5/10

WO 2022/220916

PCT/US2022/016435

Rt
™
ey A

3 ey
NN &

o -~
T of
Pl Nevwx.

Noa® SN <
LR £
X W WS
S 3
MY i S
B ol SNy
= I 3y
T W oo
ke b3 Y
T e & S\
§ S &S
.

T

Nnan
S
i ot RN AN
3

pitrrseseseseasssssrens

GOLOILOLOLEILOI 000000000

P
b

ST
N N
ES

5

. &
3 & 3
gy o & AR AR AR
o' RN

2 -
ko 1O
o, ANl
o™
RS
s

*
B

=
SN
RN
N
W
N

7////

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

6/10

N
N
R

%

7//
Ul

=
RO
N
AN
NN
N
\\\\V

V//// “
A,

e
Lot wt dlen

A N
W W

CA 03215243 2023-09-27

7110

WO 2022/220916 PCT/US2022/016435

&

X

2

7

=

Ny
RN
N

N
e

V////

CA 03215243 2023-09-27

WO 2022/220916 PCT/US2022/016435

8/10

~aad

=
RO
NN
ANSY
RN
N
¥
\\\\V

A
N

X
Noed

V////

CA 03215243 2023-09-27

9/10

WO 2022/220916

foeee
§
Q\

s

§
Rl

>

PCT/US2022/016435

%

4%
2%

%

=

RO
NN
ANSY
RN
N
¥
\\\\V

V////

PCT/US2022/016435

10/10

CA 03215243 2023-09-27

s 24 o,
i wn “h
Lo 7 s
i A o
whs “hr “it
re
7 7 /
4, 4,)
” “ %
I 7 ‘2
7 7 ;
e
L2
S L,
Licd P4t
L o s
<. i o
Iy i [
4.] R B
P it Y ‘
o Lid ey
iy ooy s e,
rid et e s
e .7 P A
3% iz ot
e, R o S
i BN
eed 77y LA v et
feors S LEE 1Ty
7 o et £y
4.5 L e o,
Jrisy S/ P P..\.
s 77 aan s, e
7 Ys 7 o
b i |5 A
.t ol , L b 2
Py 1 \\\\w
g R wut 7
4 a4 Lih
L i op =y
s s kY . %

7% e e 7
o , AR , B B it
. 7 % iiE oeeielfpy esoees iy s d
frors » 7 g 7 w i 2 w6

7 £ .

e [%z

e, £ py ered 22

e ify Yot

Goen iy
7 Aer L
P . e
fered B “./ UL
) v PR
= % KO A
“s (esvd e

s 4 Pt
o %) ., i
i e,
Lhl .\ ¥
R
e s 1
L. . Ysrr
Yrns freee
g B3
i A
Vil e
7y [
i pre

Lol

WO 2022/220916

N
.-
-
jest
//, (RN
Qo
T b
N
Q
N
N
N
N
N
N
N
N
N
N
o0 N
N o o N
o & ™ N
H S N
N W
N , <
H N SN
// // e LS
N N NN
oy
7///////////////////// -
3 R
W sy
w/,o,. /-m!!
W
AN
%//////4
n
Y
=
A
RN
NN
RN
NN
X W
O &5
o Nt
S o
& N T
// - D \ RN
<3S Y
// m.w.l. £ // N
T S
Loty N e Y-
PR R
N 11 e
7///////////////////// WY
R R NN
- T N
RN OF o
Wy T
. 0

oy W

O
oy U
TR

SR
NI

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - CLAIMS
	Page 49 - CLAIMS
	Page 50 - CLAIMS
	Page 51 - CLAIMS
	Page 52 - CLAIMS
	Page 53 - CLAIMS
	Page 54 - CLAIMS
	Page 55 - DRAWINGS
	Page 56 - DRAWINGS
	Page 57 - DRAWINGS
	Page 58 - DRAWINGS
	Page 59 - DRAWINGS
	Page 60 - DRAWINGS
	Page 61 - DRAWINGS
	Page 62 - DRAWINGS
	Page 63 - DRAWINGS
	Page 64 - DRAWINGS
	Page 65 - REPRESENTATIVE_DRAWING

