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LOOK UP TABLE (LUT) BASED CHIPLET
TO CHIPLET SECURE COMMUNICATION

FIELD OF TECHNOLOGY

[0001] Some embodiments pertain to systems and meth-
ods for lookup table based encryption for chiplet-to-chiplet
secure communication, and other embodiments pertain to
lookup table based encryption with tagging for verification.
In particular, some embodiments pertain to systems and
methods for lookup table based encryption for secure com-
munication that consumes fewer computing resources and
other embodiments for tag-based verification.

BACKGROUND

[0002] A chiplet is an integrated circuit that is designed to
be part of a larger whole. In some implementations, a chiplet
is an independent unit for processing and computing. A
chiplet may be a part of a package. In some implementa-
tions, a package may contain multiple homogenous or
identical chiplets. A package may contain multiple heterog-
enous chiplets. A chiplet may also contain one or more
sub-chiplets. A sub-chiplet is a dedicated hardware for a
specific purpose, such as for example, an artificial intelli-
gence engine, a machine learning engine, a communication
circuit, or other fixed purpose. A chiplet may also be part of
a larger integrated circuit, such as a computer processor.
[0003] Recently chiplets are part of a trend toward modu-
lar design of processors and other large integrated circuits.
One reason for this is reduced cost if there is a defect. If there
is a defect in a monolithic computer processor, the entire
computer processor may have to be discarded. In contrast if
there is a defect is a chiplet that forms part of a modular
computer processor, only that one defective chiplet need be
discarded.

[0004] Chiplets communicate with other chiplets via com-
munication channels. Traditionally the security of these
chiplet-to-chiplet communication channels has been given
minimal importance. Yet, it is often important that chiplet-
to-chiplet communication be as stable and error-free as
possible. Applications where this is true include applications
for detecting abnormal behavior in other applications and for
transmitting sensitive data. Therefore secure communication
between chiplets is desirable.

[0005] One challenge for secure chiplet-to-chiplet com-
munication has been secure communication in resource-
constrained devices. Resource-constrained devices include
devices that are constrained in at least one of computing
power, memory resources, or power supply. Examples of
resource-constrained devices include, without limitation,
smart cameras, smart home devices, smart telephones, rout-
ers and switches, and automotive devices. Another example
is Internet-of-things (IoT) devices.

[0006] The above examples of resource-constrained
devices have a variety of practical applications. For
example, smart cameras have application in surveillance.
Smart home devices may be useful for saving energy, home
automation, and for convenience and comfort. Smart
devices, such as telephones, have practical applications for
monitoring health and for customized user experiences.
Improved routers and switches may provide safer and
quicker communication. And automotive computing devices
have practical applications for safer transportation and for
reliable communication among automotive components.
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[0007] Many resource-constrained devices include chip-
lets and packages composed of chiplets. Secure and reliable
communication between these chiplets is desirable for real-
izing the maximum practical benefits of these resource-
constrained devices. Because these devices are resource-
constrained, they need to have secure communication
provided via lightweight protocols and technologies. Light-
weight protocols and technologies are those that require at
least one of fewer computer power, fewer memory
resources, or less electrical power compared to a device that
is not resource-constrained, such as for example, a server, a
cloud computer, or a desktop computer.

[0008] Verification of received messages is important to
secure communication. In particular, verification ensures
that a received message does not have errors and has not
been tampered with. Methods for verification are provided
by cryptography. A common verification method uses hash
functions. However, hash functions can be computationally
expensive for resource-constrained devices.

SUMMARY

[0009] Some embodiments include a cryptographic
method that is performed at least in part at a first chiplet. The
method includes at least (1) with the first chiplet, parsing a
message into at least one or more message blocks (2)
dynamically generating at least a first target value that is
associated with at least a first key (3) dynamically generat-
ing at least a second target value that is associated with at
least a second key (4) encrypting at least one message block
of the at least one or more message blocks to generate at
least some ciphertext, the encryption being performed with
at least one operation that includes at least one XOR
operation, the at least one XOR operation being performed
at least in part with the first target value and with at least the
second target value, the first target value and the second
target value being accessed at partly via the first and second
keys, respectively; and (5) with at least one processing
device associated with the first chiplet, transmitting the at
least some ciphertext to a second chiplet.

[0010] Some embodiments provide a cryptographic
method performed at least in part at a second chiplet. The
method includes (1) dynamically generating a first lookup
table that includes a plurality of first target values and a
plurality of first keys, a given first target value of the
plurality of first lookup values being obtainable based on
corresponding first key of the plurality of first keys, and
wherein the first lookup table is at least one of usable or
configurable as an inverse lookup table for obtaining the
corresponding first key based at least in part on the given
first target value, (2) dynamically generating at least a
second lookup table that includes a plurality of second target
values and a plurality of second keys, a given second target
value of the plurality of second target values being obtain-
able based on a corresponding second key of the plurality of
second keys, (3) decrypting at least one ciphertext block of
one or more ciphertext blocks to generate at least some
plaintext, the decryption being performed at least partly with
one or more operations that include at least one or more
XOR operations, the one or more XOR operations per-
formed at least in part with the corresponding first key
obtained at least partly via the given first target value and
with at least the given second target value obtained at least
partly via the corresponding second key, (4) verifying the at
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least some plaintext, and (5) outputting the at least some
plaintext responsive to a successful verification of the plain-
text.

[0011] Some embodiments include a cryptographic
method that is performed in a first chiplet. The method
includes at least (1) with one or more processing devices,
computing a tag on a nonce, a message, and other data, (2)
parsing the message into one or more message blocks to
create one or more ordered message blocks, (3) encrypting
the one or more ordered message blocks to obtain one or
more ordered message ciphertext blocks, the encryption
including at least one or more operations that include at least
one or more XOR operations, (4) parsing the tag into one or
more tag blocks to create one or more ordered tag blocks, (5)
encrypting the one or more ordered tag blocks to obtain one
or more ordered tag ciphertext blocks, the encryption includ-
ing at least one or more operations that include at least one
or more XOR operations, (6) concatenating the one or more
ordered message ciphertext blocks with the one or more
ordered tag ciphertext blocks to obtain final ciphertext, and
(7) transmitting the final ciphertext to a second chiplet.

[0012] Some embodiments provide a cryptographic
method that is performed in a first chiplet. The method
includes at least (1) receiving a message for encryption, (2)
encrypting the message to obtain message ciphertext, the
encryption including at least one or more operations that
include at least one or more XOR operations, (3) computing
a tag on a concatenation that includes at least a nonce, the
message ciphertext, and other data, (4) encrypting the tag to
obtain one or more ordered blocks of tag ciphertext, the
encryption including at least one or more operations that
include at least one or more XOR operations, (5) appending
the one or more ordered blocks of tag ciphertext to the
message ciphertext to obtain final ciphertext, and (6) trans-
mitting the final ciphertext to a second chiplet.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Representative embodiments are illustrated by way
of example and not by limitation in the accompanying
figures, in which:

[0014] FIG. 1 is a simplified block diagram of a resource-
constrained device—a smart camera—in which some
embodiments may be practiced.

[0015] FIG. 2 is a simplified block diagram of a package
with which some embodiments may be practiced, showing
the package as including a plurality of chiplets communi-
cably linked with a plurality of communication channels.

[0016] FIG. 3 is a simplified block diagram of a first
chiplet and a second chiplet that are communicably linked
via an insecure channel, showing various components of
both chiplets, consistent with some embodiments.

[0017] FIG. 4 is a simplified block diagram of an example
chiplet consistent with some embodiments, showing first
and second cores and various additional components.

[0018] FIG. 5 is a drawing of an exemplary lookup table
(LUT), consistent with some embodiments, showing a first
column with message data and a second column with target
values.

[0019] FIG. 6 is a drawing of an exemplary key stream
table (KST), consistent with some embodiments, showing a
first column with index values and a second column with
target values.

Aug. 31, 2023

[0020] FIG. 7 is a drawing of an exemplary sorted inverse
lookup table (designated LUT™'), consistent with some
embodiments, showing a second column of sorted target
values.

[0021] FIG. 8 is a simplified block diagram of a chiplet
consistent with some embodiments, showing encryption and
decryption circuits with each storing a lookup table, a key
stream table, and a counter (ctr).

[0022] FIG. 9 is a flow chart illustrating an exemplary
method of key generation performed at a sending device,
consistent with some embodiments.

[0023] FIG. 10 is a flow chart illustrating an exemplary
method of key generation performed at a receiving device,
consistent with some embodiments.

[0024] FIG. 11 is a flow chart illustrating an exemplary
method of encryption, consistent with some embodiments.
[0025] FIG. 12 is a flow chart illustrating an exemplary
method of decryption, consistent with some embodiments.
[0026] FIG. 13 is a sequence diagram showing an exem-
plary sequence of transmissions between two chiplets, con-
sistent with some embodiments.

[0027] FIG. 14 is a simplified block diagram of a chiplet
configured for basic half-duplex mode of communication,
consistent with some embodiments.

[0028] FIG. 15 is a sequence diagram showing an exem-
plary sequence of transmissions between two chiplets, con-
sistent with some embodiments, showing a basic half-duplex
mode of communication.

[0029] FIG. 16 is a simplified block diagram of a chiplet
configured for full-duplex mode of communication, consis-
tent with some embodiments.

[0030] FIG. 17 is a sequence diagram showing an exem-
plary sequence of transmissions between two chiplets, con-
sistent with some embodiments, showing a full-duplex mode
of communication.

[0031] FIG. 18 is a simplified block diagram of a chiplet
configured for no-delay half-duplex mode of communica-
tion, consistent with some embodiments.

[0032] FIG. 19 is a sequence diagram showing an exem-
plary sequence of transmissions between two chiplets, con-
sistent with some embodiments, showing a no-delay half-
mode of communication.

[0033] FIG. 20 is a simplified block diagram of a chiplet
configured for a space-saver mode of communication, con-
sistent with some embodiments.

[0034] FIG. 21 is a simplified block diagram of a chiplet
configured for a two-key encryption mode, consistent with
some embodiments.

[0035] FIG. 22 is a simplified block diagram of a chiplet
configured for two-key space-saver mode, consistent with
some embodiments.

[0036] FIG. 23A is a sequence diagram, consistent with
some embodiments, illustrating an exemplary sequence for
performing a tag-then-encrypt mode.

[0037] FIG. 23B is a sequence diagram, consistent with
some embodiments, illustrating an exemplary sequence for
performing an encrypt-and-tag mode.

[0038] FIG. 23C is a sequence diagram, consistent with
some embodiments, illustrating an exemplary sequence for
performing an encrypt-then-tag mode.

[0039] FIG. 24 is a process flow diagram, consistent with
some embodiments, illustrating an exemplary method for
encryption using encrypt-and-tag mode.
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[0040] FIG. 25 is a process flow diagram, consistent with
some embodiments, illustrating an exemplary method for
decryption using encrypt-and-tag mode.
[0041] FIG. 26 is a process flow diagram, consistent with
some embodiments, illustrating an exemplary method for
encryption using encrypt-then-tag mode.
[0042] FIG. 27 is a process flow diagram, consistent with
some embodiments, illustrating an exemplary method for
decryption using encrypt-then-tag mode.

DETAILED DESCRIPTION

[0043] In the above-described drawing, certain features
are simplified to avoid obscuring the pertinent features with
extraneous details. The above drawings are not necessarily
to scale.

[0044] It is to be understood that the disclosed embodi-
ments are merely exemplary of the invention, which may be
embodied in various forms. It is also to be understood that
multiple references to “some embodiments” are not neces-
sarily referring to the same embodiments.

[0045] As used in this document “secure lightweight chip-
let-to-chiplet communication” includes chiplet-to-chiplet
communication that is secure but uses at least one of less
computing power, less memory resources, or less electrical
power as compared with at least some alternative modes of
secure communication.

[0046] This document refers to various types of lookup
tables. While a variety of terminology is used for lookup
tables, as used in this document a lookup table contains
key-value pairs, where the “key” is a first data item in a
column that is used to look up a second data item in another
column. The second data item will be referred to in this
document as a “target value.” In some embodiments lookup
tables are implemented as table data structures.

[0047] As used in this document, a “dynamic” structure or
event is a structure or event that is constructed or performed
by executing programs during runtime or “on the fly.” In
contrast, a static structure refers to a structure that is
constructed at compile-time, before runtime.

[0048] This document refers to dynamic substitution
boxes, which in some embodiments are a lookup table
(LUT). Accordingly, this document interchangeably refers
to either dynamic substitution boxes or LUT’s.

[0049] This document uses the term inverse LUT or LUT™
1. An inverse LUT is an LUT but used in reverse. As
discussed above, a key in an LUT is used to access a target
value. But when an LUT is used or configured as an inverse
LUT, the target value is used to access the key. Inverse
LUT’s are discussed in detail relative to FIG. 6 below.
[0050] This document refers to dynamic keystream tables
(KST’s), which in some embodiments are a table data
structure. This document interchangeably refers to either
dynamic keystream tables or KST’s. A KST is also a type of
look-up table, but this document does not refer to KST’s as
LUT’s or LUT "’s.

[0051] This document uses the term “tag” to refers one or
more of a cyclic redundancy check (hereinafter “CRC”),
hash function, or the like.

[0052] This document frequently refers to the term coun-
ter, often designated as “ctr.”

[0053] This document uses the term “session key” to refer
to a concatenation of two random or pseudorandom bits
designated r, and r,, the concatenation being ry|lr;. In some
of the embodiments discussed below, a session key is used
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to generate an LUT and a KST. These and related concepts
are described in more detail below. In some of that discus-
sion, the letter “K” is used to refer to a session key.
[0054] In describing some embodiments, this document
uses the term “encryption key” to refer to a collection of data
structures and data. For example, with respect to some
embodiments, an encryption key is a tuple that includes an
LUT, a KST, and a ctr. With respect to some other embodi-
ments, an encryption key includes random or pseudo-ran-
dom bits ry, a KST, and a ctr. In describing some embodi-
ments, this document uses the term decryption key similarly.
Specifics of the contents of an “encryption key” or a
“decryption key” are discussed below with reference to
specific embodiments.

[0055] Some mathematical expressions used in this docu-
ment are:
[0056] a. A (lambda) which in this document refers to a

security parameter; and
[0057] b. €@ which indicates a bitwise XOR operation.
[0058] There is a need for secure lightweight chiplet-to-
chiplet communication. In particular, there is a need for
encryption and decryption technologies that avoid or mini-
mize use of resource-intensive multiplication operations.
And there is a need for technologies for verifying the
integrity and authenticity of messages while avoiding or
minimizing resource-intensive hash functions.
[0059] This need for secure lightweight chiplet-to-chiplet
communication is especially relevant for resource-con-
strained devices, which as used herein, refers to a computing
device that is constrained in at least one of computing power,
memory resources, or power supply. One example of a
resource-constrained device is an Internet-of-Things (IoT).
Other examples of resource-constrained devices include,
without limitation, smart cameras, smart home devices,
smart telephones, routers and switches, and automotive
devices. Examples of computing devices that are not
resource-constrained, for purposes of this document, are
servers, powerful cloud-based computers, and desktop com-
puters.
[0060] Practical applications for resource-constrained
devices with secure lightweight chiplet-to-chiplet commu-
nication include, for example, surveillance, energy effi-
ciency, home automation, health monitoring, secure and
efficient communication, and better functioning machines,
such as automobile engines.
[0061] Embodiments described herein provide such secure
lightweight chiplet-to-chiplet communication. For example,
some embodiments provide for communication between a
pair of chiplets linked by a communication link. In some
embodiments, the pair of chiplets are part of numerous
chiplets, and corresponding communication links, in a pack-
age. In some embodiments a pair of chiplets are on the same
die. In some embodiments, a pair of chiplets reside on
different dies and are linked by a series of network com-
munication links. In some embodiments, two chiplets may
communicate with each other across a network.
[0062] Embodiments described herein may provide a vari-
ety of services, such as for example, one or more of the
following services:
[0063] a. Lightweight methods of encryption and
decryption of messages;
[0064] b. Tag computation and verification; and
[0065] c. Support for various modes of communication
between chiplets.
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[0066] Not all embodiments provide all of the above
services. For example, in some embodiments chiplets com-
municate via a communication link that does not support
encryption or decryption. In some embodiments, tag com-
putation and verification are not performed. And some
embodiments are limited in their modes of communication.
[0067] Turning first to lightweight methods of encryption
and decryption, some embodiments described herein use at
least a portion of a dynamic substitution box (LUT). In
contrast to a static substitution box, an LUT is computed at
runtime, for example, during execution of an encryption or
decryption function. An LUT is a lookup table in which the
keys are bits representing message blocks and the target
values are substitution values composed of at least one of
randomly or pseudo-randomly selected bits. In some
embodiments the keys are sorted. Thus, if one has a message
block to encrypt, the LUT facilitates locating a key corre-
sponding to the message block and accessing the corre-
sponding target value, which is the substitution value (bits).
[0068] In some embodiments. the LUT is a table. In some
embodiments, the LUT is stored in memory of a chiplet and
in some further embodiments is 4 MB or less in size. And in
some particular embodiments, the LUT is a table which is
both stored in memory of a chiplet and is 4 MB or less in
size. For example, an LUT may be 4 MB in size when the
keys are only 16 bits and target values are only 512 bits. The
sizes of the keys and the target values are discussed later in
this document.

[0069] In some other embodiments, encryption is per-
formed in part by dynamically computing one or more
needed target values of the LUT and the entire LUT is not
computed or stored in memory. This approach allows
resource-constrained device to save on computation and
memory resources.

[0070] Some embodiments additionally use a dynamic
keystream table (KST). The KST is a lookup table in which
the keys are numerical index values (e.g. blocks of bits)
organized in numerical order. And the target values for a
KST are at least one of random and pseudo-random blocks
of bits. A KST thus matches numerical index values with
corresponding random or pseudo-random blocks of bits.
[0071] Thus, KST’s are useful for encrypting, for
example, an ordered plurality of message blocks. In some
embodiments, the key (the numerical index value) is a
number that corresponds to a position of a message block
within the ordered plurality of message blocks. If one has the
position of the message block within the ordered plurality of
blocks, then a KST facilitates locating an index value (a key)
that corresponds to that position and then assigning that
position a corresponding target value (e.g. a random or
pseudo-random block of bits). Therefore, when used to
create ciphertext, the use of a KST provides positional
information within the ciphertext. KST’s are useful for
thwarting attacks by a “man in the middle” who as part of
an attack reorders ciphertext blocks.

[0072] Although the KST is referred to as a “table”, the
use of the word table in this document is not intended to
preclude using other types of data structures. In some
embodiments an entire KST is computed and stored in
memory of a chiplet. In other embodiments, a KST is neither
computed nor stored in memory. Instead, target values of a
KST are computed dynamically, on the fly as needed.
[0073] The LUT and the KST are also used for decryption.
When an LUT is used for decryption, it is used or configured
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as an inverse LUT. That is, the target values which are the
randomly or pseudo-randomly selected block of bits are
mapped back to the bits representing the message blocks
(the keys). For LUT’s decryption requires that an LUT be
used or be configured to be used as an inverse lookup table.
[0074] When a KST is used for decryption, it is used in the
exact same way as used during encryption. That is, the keys
are numerical index values (e.g. blocks of bits) organized in
numerical order and the target values for a KST are at least
one of random and pseudo-random blocks of bits. A KST
thus matches numerical index values with corresponding
random or pseudo-random blocks of bits.

[0075] Use of the LUT and of the KST may result in
replacing computationally expensive multiplication opera-
tions used in some encryption and decryption protocols.
Thus, encryption and decryption are less computationally
expensive for resource-constrained devices.

[0076] Some embodiments also replace computationally-
expensive hash-based functions, which are commonly used
to verity data integrity, with a lightweight CRC which in
some embodiments is concatenated with and encrypted
along with the message. Computation of a CRC is less
computationally-expensive than computing a hash function.
Replacing hash functions with CRC’s in many cases causes
computationally-expensive multiplication to be replaced by
less computationally-expensive shift and XOR operations.

[0077] Some embodiments provide one or more of five
new modes of communication between chiplets. As com-
pared with traditional half duplex and full duplex, these new
modes of communication provide one or more of faster
communication with fewer waiting times, reduced data
storage requirements, higher security, or higher perfor-
mance. More details on these are provided below.

[0078] Thus, in some embodiments, a cryptographic
method performed at least in part with one or more chiplets
includes at least providing a message (e.g. a message M) for
encrypting at a first computing device, parsing at least the
message into at least one message (e.g. M[i]) block that
contains first message data (e.g. a block of the message
itself) and that is associated with a first index value (e.g. 1),
dynamically computing at least one row of a first lookup
table (e.g. at least one row of a dynamic substitution box),
the at least one row of the first lookup table including at least
second message data and at least a first target value (e.g.
intermediate ciphertext) associated in the at least one row of
the first lookup table with the second message data, at least
in part with the first message data, accessing the at least one
row of the first lookup table to obtain the first target value,
dynamically computing at least one row of a second lookup
table (e.g. at least one row of a dynamic keystream table),
the at least one row of the second lookup table including at
least a second index value and a second target value asso-
ciated in the at least one row of the second lookup table with
the second index value, at least in part with the first index
value, accessing the at least one row of the second lookup
table to obtain the second target value, computing at least
some ciphertext with at least one operation with at least the
first lookup value and the second lookup value, the at least
one operation including at least an XOR operation, and with
at least one processing device transmitting the at least some
ciphertext from the first computing device to a second
computing device.

[0079] Referencing FIG. 1, a resource-constrained device,
such as smart camera 1 provides an environment in which
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some embodiments may be at least partially practiced. Smart
camera 1 includes lens 2 coupled or integral with housing
10. Housing 10 includes a processing device such as CPU 8.
Housing 10 further includes artificial intelligence resources
such as for example Al engines 5A-5D, ethernet interface 9,
compression circuitry 7, and image processor 6, each of
which is communicably linked with CPU 8. An optical filter
3 and an image sensor 4 are provided and are positioned to
capture and process light entering lens 2. As has been
discussed above, smart camera 1 is just one example of a
resource-constrained device.

[0080] Referencing FIG. 2, a package 100 includes a
plurality of chiplets, including for example chiplets 101A-
101D. In some embodiments, package 100 is a component
of a processor, such as for example CPU 8 of FIG. 1. The
various chiplets, for example chiplets 101A-101D, are com-
municably linked with one or more other chiplets via
communication links, such as communication links 102A-
102D.

[0081] Referencing FIG. 3, a network 300 includes chip-
lets 305A, 305B and an insecure channel 330 (e.g. a bus)
communicably linking chiplets 305A and 305B. Chiplet
305A includes communication sub-chiplet 301A (same as
the transceiver circuit 113 of FIG. 4 which is implemented
as a communication sub-chiplet) which includes TRNG
328A (a true random-number generator), PRNG, 322A and
PRNG;, 324A (both pseudo-random number generators), a
CRC generator 326A, an LUT 310A and a KST 320A.
TRNG 328A is configured to output true random numbers,
such as for example, true random numbers r0 (327A) and rl
(327B).

[0082] Similarly, Chiplet 305B includes communication
sub-chiplet 301B which includes TRNG 328B (a true ran-
dom-number generator), PRNG, 322B and PRNG, 324B
(both pseudo-random number generators), a CRC generator
326B, an LUT 310B and a KST 320B.

[0083] In some embodiments, communication sub-chiplet
301A is configured to send an encrypted message (not
shown) to communication sub-chiplet 301B via insecure
channel 330. Communication sub-chiplet 301A encrypts the
message in part with LUT 310A and KST 320A. Commu-
nication sub-chiplet 301B receives the encrypted message
(ciphertext) and decrypts it in part with LUT 310B and KST
320B. In some embodiments, LUT’s 310A and 310B are
identical and KST’s 320A and 320B are identical.

[0084] In some embodiments, communication sub-chiplet
301A generates LUT 310A and KST 320A. In some embodi-
ments, this is performed by communication sub-chiplet
301A first generating true random numbers r0 (327A) and r1
(327B) with TRNG 328A. The true random number r0 is
input as a seed into PRNG,, 322A and true random number
rl is input as a seed into PRNG, 324A. Communication
sub-chiplet 301A then uses PRNG, 322A to generate the
LUT 310A. Communication sub-chiplet 301A uses PRNG;,
324A to generate the KST 320A. Communication sub-
chiplet 301A uses public key cryptography (e.g. PKC
Engine 105 of FIG. 4) to provide the true random numbers
r0 (327A) and rl (327B) via insecure channel 330 to
communication sub-chiplet 301B, which then provides the
true random numbers r0 (327A) and rl (327B) to PRNG,
322B and PRNG, 324B, respectively, for use as a seed.
Communication sub-chiplet 301B then uses PRNG,, 322B to
generate the LUT 310B and PRNG, 324B to generate the
KST 320B.
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[0085] In some embodiments, true random number gen-
erators, such as for example TRNG’s 328A, 328B, are
hardware-based true random number generators. A hard-
ware-based true random number generator generates ran-
dom numbers based on physical phenomena rather than
based on algorithms. Some examples of these physical
phenomena are thermal noise, random noise signals, pho-
toelectric effects, quantum effects, and other physical phe-
nomena.

[0086] In some embodiments, pseudo-random number
generators, such as for example, PRNG, 322A and PRNG;,
324A are deterministic random number generators that gen-
erate pseudo-random numbers based on an algorithm. In
some embodiments they are seeded at least in part with a
random number or a pseudo-random number. Pseudo-ran-
dom number generators are sometimes used instead of true
random number generators because of reduced computa-
tional overhead.

[0087] Referencing FIG. 4, a chiplet 400 is disclosed in
which some embodiments may be practiced. Chiplet 400
includes a secure host 104 (e.g. secure processing circuitry
such as for example one or more processors). Consistent
with some embodiments, chiplet 400 further includes at least
core-1 (107A) and core-2 (107B), an ML engine 109 (a
machine-learning engine), and an Al engine 111 (an artificial
intelligence engine), all of which are communicably linked
with secure host 104. Chiplet 400 further includes trans-
ceiver circuit 113 that is communicably linked with secure
host 104. Transceiver circuit 113 includes TX Circuit 115 (a
transmission circuit), an RX Circuit 128 (a receiver circuit),
a TRNG engine 126 (a true random number generator
engine), a PRNG engine 124 (a pseudo-random number
generator engine), and a CRC engine 122 (a cyclic redun-
dancy check engine). In some embodiments, CRC engine
122 accepts an input a message 117, a nonce 119, and some
associated data 121 for generating a CRC.

[0088] Although TX Circuit 115 and RX Circuit 128 are at
least similar, respectively, to communication sub-chiplet
301A (sender) and to communication sub-chiplet 301B
(receiver), there are some differences. For example, in FIG.
3, communication sub-chiplet 301A includes PRNG, 322A,
PRNG, 322B, TRNG 328A, CRC 326A, LUT 310A, and
KST 320A. And similarly, communication sub-chiplet 301B
includes PRNG, 322B, PRNG, 322B, TRNG 328B, CRC
3268, LUT 310B, and KST 320B. That is, communication
sub-chiplets 301 A, 301B do not share the foregoing internal
components. In contrast, TX Circuit 115 and RX Circuit 128
share (e.g. in a shared memory—not shown), TRNG engine
126, PRNG engine 124, and CRC engine 122.

[0089] TRNG engine 126, PRNG engine 124, and CRC
engine 122 are each communicably linked with, and there-
fore accessible to, both TX circuit 115 and RX circuit 128.
Each of TX circuit 115 and RX circuit 128 are communi-
cably linked with secure host 104 via communication link
170. Chiplet 400 further includes a public key cryptography
engine 105 (“PKC engine”) that is communicably linked
with secure host 104.

[0090] Continuing with reference to FIG. 4, Chiplet 400
further includes a bus controller 146, a communication bus
156, and a communication link 154 that communicably links
bus controller 146 with communication bus 156. Bus con-
troller 146 is communicably linked with PKC engine 105 via
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communication link 148, with TX circuit 115 via commu-
nication link 150, and with RX circuit 128 via communica-
tion link 152.

[0091] Referencing FIG. 5, LUT 500 is organized as a
table data structure that defines rows and columns. Those
skilled in the art will recognize that a table may include rows
and columns which can be organized as arrays or multi-
dimensional arrays. Those skilled in the art, after having
been appraised of the principles described herein, will
recognize that a variety of implementation choices are
possible. All are within the scope of this disclosure. For
simplicity this document will refer to rows and columns of
a table data structure.

[0092] LUT 500 includes a first column 502 of bits (e.g.
such as 0000, 0001, 0010, 0011 as shown) that define
message blocks 502A-502F (the keys of the LUT). These
bits are the actual content of a message M divided into
message blocks. After a message is divided into blocks, the
message blocks are numerically sorted. The result is mes-
sage blocks 502A-502F as shown.

[0093] LUT 500 also includes a second column 504 with
blocks of substitution bits 504A-504F (e.g. LUT[O0], LUT
[1], LUT[2], LUT[3], . . . LUT [2°-2], LUT [2°-1]) for the
corresponding message blocks 502A-502F. The blocks of
substitution bits 504A-504F are at times also referred to as
target values because they can be accessed in LUT 500 via
the message blocks 502A-502F (the keys) of the first column
502. That is, one may access a message block such as
message block 502 A and thereby access target value LUT[0]
(504A).

[0094] Further referencing FIG. 5, LUT 500 defines rows
501A-501F that include both a message block and its
associated block of substitution bits. For example, row 501A
includes both message block 502A which contains bits 0000
(e.g. 0000) and its corresponding block of substitution bits
504A, denominated LUT[O].

[0095] In this example, the message blocks defining col-
umn 502 are b bits wide. And the corresponding substitution
bits defining column 504 are w bits wide. This results in
ciphertext blocks that are w bits wide. For increased security
of the ciphertext, the value w is generally greater than the
value of b. For example, in an exemplary embodiment, b is
16 bits and w is 256 bits. Other values for b and w are of
course possible. For example, where increased security is
desirable w is 512 or perhaps 1024. The variables b and w
are relevant to various embodiments discussed below and
will be discussed below as needed.

[0096] The value b determines how many rows are in
columns 502 and 504, specifically 2°. But because message
block 502A has bits equal to zero (0000), the last row 502F
has bits equal to 2°-1. As discussed below, in some embodi-
ments, b and w are set by a security parameter A.

[0097] An example showing organization of sample mes-
sage blocks is now discussed. A message M (511) consists
of bits 0001000000110010. This message M is divided into
blocks M[0]=0001, M[1]=0000, M[2] 0011, and M]J3]
=0010. These blocks are then used to define column 502 of
LUT 500. But before being used to form column 502, the
blocks are numerically sorted. It can be seen that the bits in
message blocks 502A-502D are numerically sorted to be in
numerical order: 0000, 0001, 0010, 0011. These message
blocks are the keys for the LUT 500. LUT[O] is then the
block of substitution bits for 0000, LUT[1] is the block
substitution bits for 0001, LUT[2] is the block of substitu-
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tion bits for 0010, and LUT [3] is the block of substitution
bits for 0011. And LUT[0]-LUT[3] are target values for LUT
500. Then one intending to find the substitution bits for 0010
would search column 502 for the row (row 501C) with bits
0010, which is a key. Once the key is found, one then finds
the corresponding block of substitution bits as LUT[3] (the
target value).

[0098] Referencing FIG. 6, KST 600 is organized as a
table data structure that defines rows and columns. Those
skilled in the art will recognize that a table may include rows
and columns which can be organized as arrays or multi-
dimensional arrays. Those skilled in the art, after having
been appraised of the principles described herein, will
recognize that a variety of implementation choices are
possible. All are within the scope of this disclosure. For
simplicity this document will refer to rows and columns of
a table data structure.

[0099] KST 600 includes a first column 612 that includes
the index values from O to (2°-1), (612A-612F) where b is
number of bits in the index values. The value b also
determines the number of rows (601 A-601F) in the KST. For
example, if b is 4, then each index value has 4 bits and the
number of rows in the KST is 2*=16. The index values
612A-612F are the keys for looking up the target values,
which are discussed next.

[0100] KST 600 has a second column 614 with target
values that comprise random or pseudo-random blocks of
bits that correspond to the index values (the keys) in column
612. For example, target value KST[0] corresponds to index
0 (its key) where KST[0] is a block of random or pseudo-
random bits. Thus, for index values 0 to (2°-1) of column
612 (reference numbers 612A-612F), the corresponding
target values are KST[0]-KST[2%-1] of column 614 (refer-
ence numbers 614A-614F). Thus, if one seeks the target
value that correspond to index 3 (index value 612D in row
601D), then the corresponding target value is KST[3]
(614D).

[0101] KST 600 may also be seen as organized into rows
601A to 601F, where each row has an index value (e.g. index
value 0 of row 601A) and a corresponding target value (e.g.
KST[0] of row 601A).

[0102] The number of bits in the blocks of random or
pseudo-random bits of the target values (614A-614F) is w,
which is set based on security levels. Generally, if other
factors are held constant, as w increases the security level
also increases.

[0103] The index values 612A-612F are associated with
positions of message blocks and may be regarded as position
values. For example, returning to FIG. 5 to reference ordered
message blocks M[0], M[1], M[2], M[3], the numbers in
brackets are index values. For example, for message block
[3] the number 3 is an index value (e.g. index value 3 (612D
in row 601D in KST 600) associated with the position of
message block M[3] within the ordered message blocks
MJO0], M[1], M[2], M[3]. If a message block changes posi-
tions between encryption and decryption (e.g. if moves from
position 3 to position 2) the KST will provide one target
value during encryption and a different target value (based
on the different position) for decryption and an error will
result, because of which, during decryption, it is highly
unlikely to get the correct key value in the inverse LUT from
the obtained target value. Thus, the KST can be used to
detect a change in an ordering of blocks, perhaps the result
of an attack.
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[0104] Returning to reference FIG. 5, when LUT 500 is
used for encryption, the keys (message blocks 501A-501F)
are used to access the corresponding target values (e.g.
blocks of substitution bits 504A-504F). However, during
decryption, this operation is reversed. That is, the target
values (e.g. blocks of substitution bits 504A-504F) are used
to access the keys (message blocks 501A-501F). Therefore,
if one has a target value there is a way to find the target
value’s corresponding key. If one has a target value and can
find the target value in column 504, then the corresponding
message block is the message block that shares the same row
as the target value in LUT 500.

[0105] In FIG. 5 the target values LUT[0]-LUT[2°-1] are
blocks of random or pseudo-random bits. These blocks of
random or pseudo-random bits are not in any particular
order. Instead, the rows (501A-501F) of the LUT 500 are
sorted according to the numerical values of the bits of the
message blocks (502A-502F).

[0106] But there are times when it is necessary to find a
particular target value. For example, if during decryption a
ciphertext block has bits xxxx (i.e. arbitrary bits), then one
needs to determine which target value has bits that match
xxxx. One can compare those bits xxxx to the bits in the
target values of column 504 to locate the target value with
the correct matching bits. If the bits xxxx match the bits of
LUT][2], then one can determine that LUT[2] is in row 501C
and that the corresponding message block in row 501C is
message 0010 (502C). That raises the issue of how one
searches column 504 for the target value with the desired
block of bits. There are at least two possible scenarios.
[0107] Inthe first scenario, the target values in column 504
are not sorted. That is, the blocks of random or pseudo-
random bits defining the target values of column 504 are not
organized in any particular order. In this scenario, one may
search column 504 of LUT 500 for the target value that
matches a desired pattern of random or pseudo-random set
of bits. In one embodiment, this is a linear search. A linear
search cannot be replaced by, for example, binary search
because binary search requires a sorted set of values, (e.g. a
sorted list). While an LUT with unsorted target values in its
second column may be used as an inverse LUT (e.g. where
keys are accessed based on their corresponding target val-
ues), the linear search takes time and computational
resources. Nevertheless, this is one option. An LUT with
unsorted target values in its second column can be used as
an inverse LUT. But, there is at least one other scenario,
discussed below.

[0108] Referencing FIG. 7 a sorted inverse LUT 700 is
discussed. The content of sorted inverse LUT 700 (i.e.
LUT™) is the same as the content of LUT 500 except that
the rows 701A-701F have been sorted according to their
target values (714A-714F) in the second column 714. Spe-
cifically, the target values of column 714 are sorted to
achieve and ordering in which: LUT[i,|<LUT[1, ], LUT[i, |
<LUTIi,], LUT[,]<LUT[i;] and LUT[ip_,]<LUT[iz_,].
Rows 701A-701F and message blocks 712A-712F of first
column 712 are ordered consistently with the sorted target
values. This means that the blocks of random and pseudo-
random bits that define target values LUT[i,]|-LUT[i,5_, ] are
ordered. They may be searched with an efficient non-linear
search algorithm, such as binary search.

[0109] For example, if one searches for a target value with
a bit pattern that matches xxxx (i.e. random bits), then one
may perform a non-linear binary search to find a matching
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target value in sorted inverse LUT 700. If for example, the
matching target value is LUTJ[1,], then one may access the
correct corresponding message block 1,.

[0110] Referencing FIG. 8, a chiplet 800 includes a public
key cryptography engine 805 (PKC engine), a secure host
104, a TX circuit 815 (a transmission circuit), and an RX
circuit 828 (a receiving circuit). Chiplet 800 is communi-
cably coupled via communication links 150 and 152 with a
bus controller 146, and via communication link 154 with a
communication bus 156. TX circuit 815 and RX circuit 828
are communicably linked with local host 104 via commu-
nication link 170, and thus may receive commands, instruc-
tions, and data from local host 104.

[0111] PKC engine 805 includes a public key encryption
circuit PKC_E 858 which uses the public key of a receiver
chiplet to encrypt the message, and a public key decryption
circuit PKC_D 860 which uses the private key of the chiplet
800 to decrypt the ciphertext. PKC engine 805 is commu-
nicably coupled with bus controller 146 via communication
link 148. PKC engine 805 is also communicably linked with
secure host 104 (e.g. one or more processing devices, such
as for example, one or more CPU’s).

[0112] TX circuit 815 includes a key manager 806, a key
generation function (sender) 808, an Encryption Circuit 810,
apacket handler 818 for receiving transmissions from secure
host 104 and a packet handler 820 for transmitting to bus
controller 146 via communication link 150.

[0113] Encryption Circuit 810 includes a dynamic substi-
tution box in the form of LUT 812, a dynamic keystream
table in the form of KST 814, and a counter in the form of
ctr 816. The KST 814 is optional. In some embodiments,
target values that would be obtained from KST 814 are
instead generated on the fly as needed, saving the need to
generate and store the KST. The key generation function
(sender) 808 is communicably linked for sending and receiv-
ing with TRNG 126 (a true random number generator) and
for sending and receiving with PRNG 124 (a pseudo-random
number generator). Encryption Circuit 810 is communicably
linked for sending and receiving with CRC 122 (a CRC
generator).

[0114] RX circuit 828 includes a key manager 830, a key
generation function (receiver) 832, a Decryption Circuit
840, a packet handler 844 for sending transmissions to
secure host 104 and a packet handler 842 for receiving
communications from bus controller 146 via communication
link 152. Decryption Circuit 840 includes a dynamic sub-
stitution box in the form of LUT 834, a dynamic keystream
table in the form of KST 836, and a counter in the form of
ctr 838. In some embodiments, LUT 812 and LUT 834 share
the same data, KST 814 and KST 836 share the same data,
and ctr 816 and ctr 838 share the same data. The KST 836
is optional. In some embodiments, target values that would
be obtained from KST 836 are instead generated on the fly
as needed, saving the need to generate and store the KST.
The key generation function (receiver) 832 is communicably
linked for sending and receiving with PRNG 124 (a pseudo-
random number generator). Decryption Circuit 840 is com-
municably linked for sending and receiving with CRC 122.
[0115] A process is now described in which Chiplet 800 (a
first chiplet) generates a session key K and transmits K to a
second chiplet for use by the second chiplet in performing
encryption. Consistent with some embodiments, the chiplet
800 may perform the following steps with the indicated
components: (1) key generation function (sender) 808 com-
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puting a session key K consistent with method 900 of FIG.
9 (discussed below), (2) the key generation function (sender)
808 sending K to key manager 806 of the TX Circuit 815,
(3) the key manager 806 receiving K and further sending K
to the Secure Host 104, (4) Secure Host 104 configured for
receiving K and further sending K to public key cryptogra-
phy (PKC) engine 805 with a request for encryption opera-
tion on K and for transmission to a second chiplet, (5) PKC
engine 805 receiving and then sending K along with the
public key of the second chiplet to public key encryption
module PKC_E 858, (6) public key encryption module
PKC_E 858 receiving K and public key of second chiplet,
(7) public key encryption module PKC_E 858 encrypting K
to obtain encrypted session key KEnc, the encryption
including at least one or more operations that include at least
some public key cryptography method, (8) public key
encryption module PKC_E 858 further configured for send-
ing KEnc to the PKC Engine 805, and (9) PKC engine 805
receiving key KEnc and transmitting KEnc to the second
chiplet via the communication link 148 to bus controller 146
and then via communication link 154 to the communication
bus 156 for delivery to the second chiplet.

[0116] The second chiplet then continues the process with
the following steps by the indicated components: (1) a PKC
engine receiving KEnc from the first chiplet via the com-
munication link via a bus controller the communication bus
156, (2) the PKC engine sending key KEnc along with the
private key of the second chiplet to a public key decryption
module PKC_D, (3) the public key decryption module
PKC_D receiving KEnc and the private key of second
chiplet, (4) the public key decryption module PKC_D
decrypting KEnc to obtain session key K, the decryption
including at least one or more operations that include at least
some public key cryptography method, (5) the public key
decryption module PKC_D sending K to a PKC Engine of
the second chiplet, (6) the PKC engine receiving K and then
sending K to the Secure Host of the second chiplet, (7) the
Secure Host receiving K and sending K to a key manager of
the RX circuit of the second chiplet, (8) the key manager K
and sending K to the key generation function (receiver) 832,
(9) the key generation function (receiver) receiving K from
key manager of the RX Circuit of the second chiplet, and
(10) key generation function (receiver) 832 computing the
decryption key (LUT, KST, ctr) consistent with method 1000
of FIG. 10 (discussed below).

[0117] FIG. 9 and some subsequent drawings illustrate
exemplary methods that are capable of being performed in
one or more of the physical environments (e.g. chiplets)
illustrated in other drawings. However, the exemplary meth-
ods are not limited to the disclosed physical environments
and may be performed in a variety of other physical envi-
ronments. In addition, although the exemplary methods have
steps or operations that are illustrated as being performed in
certain orders or sequences, it should be understood that at
least some of the illustrated steps and orders may be per-
formed in different orders or sequences or may be performed
concurrently.

[0118] Referencing FIG. 9, a method 900 of initializing a
sender (e.g. TX circuit 815) for encryption is illustrated. The
input is a security parameter A (lambda). The output is a
session key (K), and the encryption key (LUT, KST, ctr)
comprising of a dynamic substitution box (LUT), a dynamic

Aug. 31, 2023

keystream table (KST), and a counter (ctr). Method 900 will
be referred to at times as the Sender’s Key Generation
Function (“K_Gen_Sender”).

[0119] After a start operation 902, control proceeds to
operation 904 which inputs the security parameter A. The A
controls various security matters such as the size of b and w
from FIGS. 5-7 above. In addition to controlling message
block size, the value b in some embodiments, also controls
a nonce size. The nonce is important for security and is
discussed further below.

[0120] Other matters set dependent on A may include the
length of CRC’s (parameter len_crc), the size of the counter
ctr (setting parameter len_ctr), the maximum size of a
message (setting parameter max_mess_size), the maximum
number of message blocks in a session (setting parameter
max_blk_cnt), the refresh rate for the session keys (setting
parameter ref_rate). Other start-up items include initializing
the true random number generator TRNG 126, initializing
the pseudo-random number generators, such as PRNG 124,
and initializing the counter ctr (discussed below).

[0121] Control proceeds to operation 906 which computes
random numbers r, and r,. In some embodiments, operation
906 is performed with a TRNG 126. The number of bits (e.g.
the length) of r0 and r, is a security setting controlled by A.
Having been generated by, for example, TRNG 126, r0 and
rl are true random numbers. In some alternative embodi-
ments, 10 and rl are generated with a pseudo-random
number generator, such as for example PRNG 124.

[0122] Control proceeds to operation 908 which computes
a dynamic substitution box (LUT) using r0. In some embodi-
ments, operation 908 is performed with a pseudo-random
number generator which could be designated PRNG,, and by
using r0 as at least a portion of a seed for PRNG,.

[0123] In some embodiments, rQ is used as at least a
portion of a seed to compute the target values of LUT 500.
For example, LUT[MJ[O0]] could be computed with just
r0+M]0] as the seed for a pseudo-random number generator,
such as for example, PRNG,, 322 A with M[0] in this context
being the numerical bits at M[0]. Then, LUT[M[1]] could be
computed by seeding PRNG, 322A with r0+M[1], LUT[M
[2]] could be computed with rO+M][2] as the seed for PRNG,
322A. Other target values LUT[M][i]] could be similarly
computed. In another example, the target values LUT[M[{]]
could be computed on a combination of the intermix of a bit
0 (to distinguish the use of PRNG, 322A from PRNG,
324A), value of message block M[i] and random string r0 as
the seed for PRNG 124. In another embodiment, the entire
LUT table can be computed using PRNG, 322A (or PRNG
124, with an additional distinguisher O bit as input) with rQ
as seed and specifying “w*2° bits as the length of output
string. The generated random bit-string could be parsed and
stored in the subsequent locations to populate the LUT.
[0124] Control proceeds to operation 910 which computes
a KST using rl. In some embodiments, rl is used as a
portion of a seed for a different pseudo-random number
generator which can be, for example, PRNG, 324A. In some
embodiments, the individual target values for KST are
computed by seeding PRNG, with r1+4x, where x is an index
value. For example, KST[0] may be computed with the seed
for PRNG, being r140. KST[1] may be computed with the
seed for PRNG, being r1+1. KST[2] may be computed with
the seed for PRNG, being r1+2. Other KST target values
could be similarly computed. In another example, the target
values KST[i] could be computed on a combination of the
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intermix of a bit 1 (to distinguish the use of PRNG, 324A
from PRNG, 322A), index i and random string r1 as the seed
for PRNG 124.

[0125] Control proceeds to operation 912 which initializes
counter ctr. In some embodiments, counter ctr is initialized
at zero. In other embodiments, the counter ctr can be
initialized to a random number that is dependent on one or
more of the random numbers r0 and rl, generated using
PRNG 124, or any other mathematical function.

[0126] Control proceeds to operation 914 which computes
a session key, designated K. In some embodiments, K=r0J|r1,
that is, rO concatenated with rl. After this, in operation 916,
the Control proceeds to compute the encryption key, desig-
nated (LUT, KST, ctr), consisting of the dynamic substitu-
tion box (LUT), dynamic keystream table (KST) and the
counter ctr. And in operation 918, the following are output:
(1) the session key K, and (2) the encryption key (LUT, KST,
ctr) consisting of dynamic substitution table LUT, the
dynamic keystream table KST, and counter ctr. Operation
920 is a stop operation.

[0127] Referencing FIG. 10, a method 1000 of initializing
a receiver (e.g. RX circuit 828) for decryption is illustrated.
The input is the security parameter A and the session key K
computed in method 900. The output is the decryption key
(LUT, KST, ctr) comprising of the dynamic substitution box
(LUT), the dynamic keystream table (KST), and the counter
ctr. Method 1000 will be referred to at times as the Receiv-
er’s Key Generation Function (“K_Gen_Receiver”).
[0128] After start operation 1001, control moves to opera-
tion 1002 which inputs the security parameter A and session
key K. The session key, K was computed in method 900
discussed above. The discussion of A above regarding
method 900 is fully applicable.

[0129] Control moves to operation 1004 which extracts
random numbers r0 and rl from K. The computation of r0
and rl and how they are concatenated to form K is all
discussed above relative to method 900.

[0130] Control moves to operations 1006 and 1008 which,
respectively, compute a dynamic substitution table (LUT)
using r0 and computing a dynamic keystream table (KST)
using rl. At least similar operations are discussed above
relative to method 900 and that discussion is fully applicable
here.

[0131] Control moves to operation 1010 which initializes
a counter ctr. In some embodiments, ctr is initialized to zero.
Some other methods of computation of ctr are discussed
above relative to method 900.

[0132] After this, in operation 1011, the Control proceeds
to compute the decryption key, designated (LUT, KST, ctr),
consisting of the dynamic substitution box (LUT), dynamic
keystream table (KST) and the counter ctr.

[0133] Control moves to operation 1012 which outputs the
decryption key (LUT, KST, ctr). Control then moves to stop
operation 1014.

[0134] Referencing FIG. 11, a method 1100 of encrypting
a message is described. In discussing method 1100, it is
assumed that both of methods 900 and 1000 have been
performed.

[0135] The input for method 1100 is the encryption key
(LUT, KST, ctr), consisting of a dynamic substitution box
(LUT), a dynamic keystream table (KST), and the counter
ctr. Other inputs include some associated data A and a
message M to encrypt. The output is a ciphertext with a
“tag” and an updated counter ctr.
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[0136] Of the above inputs, the LUT, KST, and ctr have
been previously discussed. The associated data A refers to
data that is not encrypted but that is incorporated into a CRC.
The associated data A and its use is discussed further below.
[0137] The following discussion of FIG. 11 references an
encryption algorithm A. Encryption algorithm embodies a
particular embodiment within the scope of method 1100.
Those with skill in the art, once appraised of the principles
discussed herein, will be aware of more alternatives to those
stated below.

[0138] Encryption Algorithm A

Enc((LUT, KST, ctr), A, M)

1. If (ctr + len + 2 = ref rate) *
a. Refresh Session Key (Execute Key Exchange Protocol.)
2. Compute nonce as N := KST[ctr] .
3. Compute CRC on message M as T := CRC(N || A || M).
4, Parse M[1] || M[2] || ... [ M[len] ;=M || T.
5. Initialize the temporary variable, temp = N 1.
6. Fori:=12, .., len
a. Parse t; | t, || ... | t,, := temp.
b. Compute val :=t, D t, B .. D1, 2
¢. Compute C[i] := temp := LUT[M[i] € val]
KSTlctr + i] 4.
7. Compute C[len] := C[len] & KST[ctr + len + 1].
8. Update counter ctr := ctr + len + 2.
9. Compute ciphertext C := C[1] || C[2] || - || C[len].
0. Return C and ctr.
*: If counter is initialized as ctr := KST[0] mod 2%, then,
depending on the implementation, the condition will be:
a. (blk_ctr + len + 2 = ref rate), or
b. (ctr + len + 2 — KST[0] = ref_rate).
F: Nonce can also be randomized as:
a. Compute b :=N & 0 x 01. (For the first value, N := KST[0])
b. Compute idx :=idx + 1.  (For the first value, idx := 0)
¢. Compute N := PRNG,_,(r; | idx).
: Variable temp can also be computed as temp := LUT[N].
#. For some Integer s, variable val can also be computed as:
val =t D (t, <<s) D ... D (t,, <<s(m - 1))
. C[i] can also be computed as:
a. Compute temp := LUT[M[i] €@ val].
b. Compute C[i] := temp D KST[ctr + i].

=

[0139] Again referencing FIG. 11, after a start operation
1102, control moves to operation 1104 which inputs the
encryption key (LUT, KST, ctr), associated data A, and a
message M to be encrypted.

[0140] Control moves to operation 1106 which determines
if a block count exceeds a parameter ref_rate. Ref _rate is a
refresh rate for session keys. In the embodiments of encryp-
tion algorithm A, it is determined if (ctr+len+2) are greater
than or equal to the ref _rate. In this equation, len is the
number of blocks to be encrypted and the number 2 is related
to the computing of the nonce in process block 1110 and of
a last block of ciphertext in process block 1124, discussed
below.

[0141] If the block count does not exceed the ref_rate, the
control moves to operation 1110, discussed below.

[0142] If the block count does exceed the ref rate, then
control moves to operation 1108 of refreshing the session
key K. In some embodiments, this is performed by executing
a key exchange protocol that includes at least:

[0143] a. Chiplet-1 (sender) executes the Sender’s Key
Generation Function (method 900). This function, is
described above relative to FIG. 9. As noted above, the
input is the security parameter A and the outputs are a
session key K, and an encryption key (LUT, KST, ctr).
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[0144] b. Chiplet-1 sends the session key K to chiplet-2.
In some embodiments, this step includes at least:

[0145] i. A public key of chiplet-2 is used to encrypt
session key K.

[0146] 1ii. The encrypted session key KEnc is trans-
mitted to Chiplet 2.

[0147] c. Chiplet-2 (receiver) uses its private key to
decrypt the encrypted session key KEnc and thereby
obtain the session key K.

[0148] d. Chiplet-2 executes the Receiver’s Key Gen-
eration Function (method 1000). This function is
described above relative to FIG. 10. As noted above,
the inputs are the session key K and the security
parameter A. The output is the decryption key (LUT,
KST, ctr).

[0149] It is important to regularly execute the key
exchange protocol because XOR operations produce iden-
tical output for a large set of input values. For example:
0P3=3, 1P2=3, 4P7=3, 5b6=3 and so on. This is called
collision. The probability of collision increases with an
increase in the number of input sets. For an XOR with b-bit
inputs, after 2*> input sets, the probability of collision
becomes significant. To avoid collision, the LUT and KST
must be modified. Therefore, after a specified number of
encryptions of message blocks, as defined by the parameter
ref_rate, the session key is refreshed by invoking the key
exchange protocol. The value of ref_rate, in some embodi-
ments, is less than 2”2 In some further embodiments,
ref_rate is 22>V,

[0150] Control moves to operation 1110 which initializes
a nonce N. In some embodiments, the value b, set with
security parameter A, determines the length of nonce N.
Generally, a longer length of nonce N is associated with
increased security relative to a shorter length of Nonce N.
Consistent with some embodiments, in encryption Algo-
rithm A, the initialization of nonce N may be performed by
setting Nonce N equal to KST][ctr], where ctr is a counter
initialized in operation 912. As discussed relative to opera-
tion 912, in some embodiments, ctr is initialized as zero. In
those embodiments, Nonce N is initialized to KST[0], that
is, the first target value in the first row of the KST.

[0151] Nonce N has a high degree of randomness because
it is initialized as KST[0] and the KST is, in some embodi-
ments, created using a random number rl computed with
TRNG. In those embodiments, rl is a true random number.
Nonce N therefore has a high degree of randomness. This
high degree of randomness of nonce N helps prevent nonce
forgery and nonce-reuse attacks.

[0152] Control moves to operation 1112 which computes
atag T on NJ||A|[M, where N is nonce N, A is associated data,
and M is a message to be encrypted. In some embodiments,
T is a CRC. In those embodiments, we have T=CRC
(NJJA|M). After the tag T is computed, it is concatenated
with the message M to be encrypted, that is M]||T.

[0153] Control moves to operation 1114 which parses M|[T
into message blocks, such as M[1], M[2], M[3], . .., M]len],
where len is the total number of blocks. The size of the
blocks in bits is governed by the value b, discussed above.

[0154] Control moves to operation 1116 which initializes
a counter variable i to 1. In some embodiments, a temp
variable is initialized to the value of nonce N.
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[0155] A loop is executed that includes the following
operations:

[0156] a. Operation 1118 determines if the variable i is
less than or equal to len, the number of message blocks
to be encrypted. If i is greater than len, then the loop is
exited and control moves to operation 1124 below.

[0157] ©b. Operation 1120 computes the ciphertext for
M[i], which is C[i]. Referencing encryption algorithm
A, in some specific embodiments, computing CJi]
includes at least:

[0158] i. Parse t1|t2] . . . |[tm:=temp, where, in some
embodiments, m is the number of b-bit blocks in
temp and computed as “m=w/b”. That is, temp is
parsed into w/b blocks of length b bits each. It will
be recalled that temp was initialized to the value of
Nonce N, above, which is w bits in length. This value
of temp is for the first time through the loop. As
indicated below, for subsequent loops, temp is set to
the value of CJi], thereby keeping some continuity
between blocks of the ciphertext.

[0159] ii. Compute val:=t1Dt2D . . . Dtm, where D
is the symbol for a bitwise XOR operation. This
equation XOR’s the w/b blocks of b bits of temp
together and stores the result in the variable val.

[0160] iii. Compute CJ[i]:=temp:=LUT[M[i]Dval]
DKST[ctr+i]. Here, in this step, C[i] and temp are
both set equal to the result of the mathematical
expression on the right. Turning to the mathematical
expression, in a left subexpression M[i] and val are
XOR’d and the result is the key used in the first
column of the LUT to obtain its corresponding target
value in the second column of the LUT. This target
value may be referred to as a first target value. In a
right subexpression, the value of the counter ctr is
added to the variable i, and the result is the key used
in the first column of the KST to obtain its corre-
sponding target value in the second column of the
KST. This target value may be referred to as the
second target value. Then, the right expression
XOR’s first and the second target values to obtain
both the ciphertext C[i] and the new value for temp.

[0161] c. Operation 1122 updates i incrementing by one.
Control then returns to operation 1118 and the loop then
repeats until in operation 1118, i is greater than len.
When i is greater than len, the loop terminates and
control moves to operation 1124.

[0162] Operation 1124 computes the value for the last
block of ciphertext C[len]. Referencing encryption algo-
rithm A, in some specific embodiments, computing C[len]
includes at least computing C[len]:=C[len]PKST[ctr+len+
1]. Turning to this equation and moving from the left, the last
ciphertext block C[len] is equal to a mathematical expres-
sion on the right. Moving to the mathematical expression,
the left subexpression C[len] is the ciphertext for the last
block computed as explained regarding operation 1120. The
right subexpression includes looking up a target value in
KST wherein the key is (ctr+len+1), that is the sum of
current value of the counter ctr, the value len, and the
number 1. The resulting KST target value is XOR’d with the
C[len] to arrive at the final value for C[len]. This operation
prevents the length-extension attacks on the cryptosystem.
[0163] Control moves to operation 1126 which updates the
counter ctr. Referencing encryption algorithm A, in some
specific embodiments, updating ctr includes ctr:=ctr+len+2.
This updates ctr by adding the number of message blocks
encrypted, len. And by adding the number two, which
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accounts for the additional processing of the nonce in
operation 1110 and the last block in operation 1124, we
ensure that no random number block is repeated.

[0164] In further explanation for the updating of ctr by
let+2, it is noted that the first block KST[ctr] is consumed in
assigning a fresh new random number for Nonce, operation
1110. The next len blocks—KST[ctr+1] to KST[ctr+len]—
are consumed in the encryption of message blocks, opera-
tion 1120. The last block KST[ctr+len+1] is consumed in the
extra encryption of the Last ciphertext block C[len]. So, to
avoid repetition of the value, ctr is updated by len+2.
[0165] Control moves to operation 1128 which calculates
the ciphertext by concatenating the ciphertext blocks C[1],
C[2], . . . C[len].

[0166] Control then moves to operation 1130 which out-
puts C and ctr as the outputs of the Encryption Circuit,
method 1100. Control then moves to Stop operation 1132.
[0167] The above method 1100 is subject to a variety of
implementations. For example, in some implementations it
is desired to disable one of more of authentication or
encryption. In the below encryption algorithm B, FlagA
enables or disables authentication and FlagE enables or
disables encryption. Encryption algorithm B is as follows:
[0168] Encryption Algorithm B

Enc((LUT, KST, ctr), A, M)

1. If (ctr + len + 2 = ref rate) *
a. Refresh Session Key (Execute Key Exchange Protocol.)
2. Compute nonce as N := KST[ctr] .
3. If (Flag, ==1)
a. Compute CRC on message M as T := CRC (N || A || M).
4. Else, Initialize T := €.
5. If (Flagz ==1)
a. Parse M[1] || M[2] || ... | M[len] :==M | T.
6. Else, Parse M[1] || M[2] || - || M[len] := T.
7. Initialize the temporary variable, temp = N 1.
8. Fori:=12, .., len
a. Parse t; | t, || ... | t,, := temp.
b. Compute val :==t, D t, D .. Dt, 4
¢. Compute C[i] := temp := LUT [M[i] D val] &
KST(otr + i]
9. Compute C[len] := C[len] & KST[ctr + len + 1].
10. Update counter ctr := ctr + len + 2.
11. If (Flagz == 1)
a. Compute ciphertext C := C[1] || C[2] || ... || C[len].
12. Else, Compute ciphertext C := M || C[1] || C[2] | ... || C[len].
13. Return C and ctr.
*: If counter is initialized as ctr := KST[0] mod 2%, then, depending
on the implementation, the condition will be:
a. (blk_ctr + len + 2 = ref rate), or
b. (ctr + len + 2 — KST[0] = ref_rate).
F: Nonce can also be randomized as:
a. Compute b := N & 0 x 01. (For the first value, N := KST[0])
b. Compute idx :=idx + 1.  (For the first value, idx := 0)
¢. Compute N := PRNG,_(r; | idx).
: Variable temp can also be computed as temp := LUT[N].
For some Integer s, variable val can also be computed as:
val =t D (t, <<s) D ... D (t,, <<s(m - 1))
% ([i] can also be computed as:
a. Compute temp := LUT[M[i] €@ val].
b. Compute C[i] := temp D KST[ctr + i].

» T

[0169] Referencing FIG. 12, decryption method 1200
decrypts ciphertext C created with method 1100. Method
1200 includes as inputs the decryption key (LUT, KST, ctr),
associated data A, and the ciphertext C output by method
1100. The outputs are the decrypted message M and an
updated counter ctr. In discussing method 1200, it is
assumed that methods 900 and 1100 have been performed at
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a first chiplet, chiplet-1, that method 1000 has been per-
formed at a second chiplet, chiplet-2, and that chiplet-1 has
transmitted ciphertext C to chiplet-2. Decryption method
1200 is performed at chiplet-2.

[0170] The discussion of FIG. 12 references decryption
algorithm C. Decryption algorithm C embodies specific
embodiments within the scope of method 1200 of FIG. 12.
Those with skill in the art, once appraised of the principles
discussed herein, will be aware of more alternatives to those
stated below.

[0171] Decryption Algorithm C
Dec((LUT, KST, ctr), A, C)
1. Compute nonce as N := KST[ctr] t.
2. Parse C[1] || C[2] || ... || C[len] := C.
3. Compute C[len] := C[len] €& KST[ctr + len + 1].
4. Initialize the temporary variable, temp := N 1.
5. Fori:=12,,len

a. Parse t; || ts || ... || t,,, = temp.
b. Compute val :==t, D t, D ... Dt e.
c. Compute temp := C[i] 4 .
d. Compute M[i] := LUTY[C[i] @ KST[ctr + i] @ val & .
6. Compute message M || T := M[1] || M[2] || - || M[len].
7. Compute CRC on message M as T' := CRC(N || A || M).
8. f(T==T)
a. Update counter ctr := ctr + len + 2.
b. Return M and ctr.
9. Else
a. Return Error.
F: Nonce can also be randomized as:
a. Compute b := N & 0 x 01. (For the first value, N := KST[0])
b. Compute idx :=idx + 1. (For the first value, idx := 0)
¢. Compute N := PRNG,_,(r, || idx).
: Variable temp can also be computed as temp := LUT[N].
: For some Integer s, variable val can also be computed as:
val =t D (L, <<s) D ... D (t,, <<s(m - 1))
#%: M[i] can also be computed as:
a. Compute temp := C[i] & KST[ctr + i].
b. Compute M[i] := LUT![temp] & val.

»

[0172] Again referencing method 1200, after a start opera-
tion 1202, control moves to operation 1204 which receives
as input the decryption key (LUT, KST, ctr), associated data
A, and the ciphertext C to be decrypted.

[0173] Control moves to 1206 which initializes nonce N.
This operation 1206 is unchanged from operation 1110 of
method 1100. Reference is made to the discussion of opera-
tion 1110.

[0174] Control moves to operation 1208 which parses C
into ciphertext blocks C[1], C[2], . . ., C[len], where len is
the total number of ciphertext blocks. The parameter w,
discussed above, governs the size of the ciphertext blocks.
[0175] Control moves to operation 1210 which processes
the last ciphertext block C[len]. In some specific embodi-
ments decryption Algorithm C uses the following equation
C[len]:=C[len]PKST][ctr+len+1]. The same XOR operation
with the same operands was performed in operation 1124 of
method 1100. Performing an XOR operation twice results in
the original values as they existed before the first XOR.
Thus, operation 1210 of method 1200 reverses the process-
ing of operation 1124. The result is that C[len] is the last
ciphertext block as it existed prior to the processing of
operation 1124.

[0176] Control moves to operation 1212 which initializes
a counter variable i to 1. In some embodiments, operation
1212 also initializes a “temp” variable to the value of nonce
N.
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[0177] A loop is executed that includes the following
operations:

[0178] a. Operation 1214 determines if the variable i is
less than or equal to the parameter len, the number of
ciphertext blocks to be decrypted. If i is greater than
len, then the loop is exited and control moves to
operation 1220 below.

[0179] b. Operation 1216 computes message block M[i]
by decrypting ciphertext C[i]. Referencing decryption
algorithm C, in some specific embodiments, computing
M][i] includes at least:

[0180] i. Parse t1)t2| . . . |[tm:=temp, where, in some
embodiments, m is the number of b-bit blocks in
temp and computed as “m=w/b”. Temp is parsed into
w/b blocks of length b bits each. Operation 1212
initialized temp to the value of Nonce N, which is w
bits in length, for the first time through the loop. For
subsequent loops, step iii (below) sets temp is set to
the value of CJ[i].

[0181] ii. Compute val:=t1P12D . . . Ptm. That is,
the b-bit w/b blocks of temp are XOR’d together and
the result is stored in the variable val.

[0182] iii. Assign Temp:=C[i]. Temp is set to equal
C[1] for second and subsequent iterations of the loop.

[0183] iv. Compute M[i]:=LUT}[C[i]BKST[ctr+i]]
@val. This equation sets M[i] as equal to the result
of the mathematical expression on the right. Turning
to the mathematical expression, in a left subexpres-
sion, LUT ' [C[i]®KST[ctr+i]], the LUT! refers to
an inverse LUT (i.e. LUT™) as described relative to
FIG. 7. As discussed above, for LUT™" the message
blocks in the first column are the target values and
the corresponding blocks of random or pseudo-
random bits are the keys. That is the reverse of
normal LUT operation. Thus key for the LUT™! is
[C[i]PKST[ctr+i]]. That key is simplified by
XOR’ing C[1] with the target value obtained by using
ctr+i as the key to the KST, ctr+i being the current
value of the counter ctr plus the value of counter
variable i. The value obtained via the left subexpres-
sion is then XOR’d with val.

[0184] c. Operation 1218 updates i by incrementing i by
one. Control then returns to operation 1214 and the
loop then repeats until in operation 1214, i is greater
than len. When i is greater than len, the loop terminates
and control moves to operation 1220.

[0185] Once the loop terminates, control moves to opera-
tion 1220, which concatenates M[1], M[2] . . . M][len] to
obtain M|[T, which was originally computed in operation
1112 of method 1100.

[0186] Control moves to operation 1222 which computes
a tag T'. In embodiments in which T'ls a CRC, operation
1222 computes CRC(N]||A|M).

[0187] Control moves to operation 1224 which determines
if T==T". That is, operation 1224 determines if the tag T that
was originally computed in operation 1112 of method 1100
and is received after decryption of ciphertext C in operation
1220, is equal to tag T' computed in operation 1222.
[0188] If no, control moves to operation 1228 which
outputs an error. Control then moves to stop operation 1232.
[0189] Ifyes, then control moves to operation 1226 which
updates the counter ctr. Referencing decryption algorithm C,
in some embodiments, the counter is updated by setting
ctr:=ctr+len+2. Thus, the value of ctr at chiplet-2 after

12

Aug. 31, 2023

method 1200 is the same as the value ctr at chiplet-1 after
method 1100. Control then moves to operation 1230 which
outputs the message M and updated counter ctr as the output
of method 1200. Control then moves to stop operation 1232.

[0190] The above method 1200 is an exemplary embodi-
ment. Various implementations are possible. For example, in
another implementation, flags are provided to enable/disable
authentication and to enable/disable encryption. This imple-
mentation is set forth as decryption algorithm D. In this
algorithm, FlagA enables/disables authentication and FlagE
enables/disables encryption.

[0191] Decryption Algorithm D

Dec((LUT, KST, ctr), A, C)

1. Compute nonce as N := KST[ctr] t.
2. If (Flagz ==1)

a. Parse C[1] || C[2] || ... || C[len] := C.
3. Else, If (Flag, == 1)
i. Parse M || C[1] || C[2] | ... || C[len] := C.
4. Compute C[len] := C[len] € KST[etr + len + 1].

5. Initialize the temporary variable, temp = N .
6. Fori:=1,2, , len

a. Parse t; || t, || ... |'t,, := temp.

b. Compute val :==t, D t, D ... Dt e.

¢. Compute temp := C[i]% .

d. Compute M[i] := LUT}[C[i] & KST[ctr + i]] & val& .
7. If (Flag, ==1)

a. If (Flagz == 1)

i. Compute message M || T := M[1] || M[2] || ... || M[len].
b. Else, Compute T := M[1] || M[2] || ... || M[len].
¢. Compute CRC on message M as T' := CRC(N || A || M).
dIf(T==T)

i. Update counter ctr := ctr + len + 2.
ii. Return M and ctr.
e. Else, Return Error.
8. Else
a. If (Flagz == 1)
i. Compute message M = M[1] || M[2] || ... || M[len].
b. Update counter ctr := ctr + len + 2.
c. Return M and ctr.
F: Nonce can also be randomized as:
d. Compute b := N & 0 x 01. (For the first value, N := KST[0])
e. Compute idx :=idx + 1.  (For the first value, idx := 0)
f. Compute N := PRNG_,(r; || idx).

I: Variable temp can also be computed as temp := LUT[N].
#: For some Integer s, variable val can also be computed as:
val =t D (L, <<s) D ... D (t,, <<s(m - 1))
#4: M[i] can also be computed as:
¢. Compute temp := C[i] & KST[ctr + i].
d. Compute M[i] := LUT![temp] D val.
[0192] Various example modes of communication

between a chiplet-1 (e.g. a first chiplet) and a chiplet-2 (e.g.
a second chiplet) are now discussed with reference to
exemplary sequences. A sequence of communication
between chiplet-1 and chiplet-2 may include multiple mes-
sages. Usually, communications are bi-directional. If both of
the chiplets may send data only sequentially, one-after-the-
other, then the communication is half-duplex. If both of the
chiplets may send data concurrently, then the communica-
tion is full-duplex.

[0193] For simplicity, in some exemplary sequences
described below only one chiplet (for example chiplet-1) is
sending messages to the other chiplet (for example chiplet-
2). However, this feature is not intended to be limiting.
Those skilled in the art will recognize that the exemplary
sequences described can be extended to bi-directional com-
munication without undue experimentation.
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[0194] In the example communication sequences
described below, the messages M,;, M,, . . . M, (of lengths
n,, n,, ... n;)are encrypted and sent by chiplet-1 to chiplet-2
in sequence. The counter variable ctr is synchronized with
the following procedures:

[0195] a. The variable ctr is initialized to identical value
in both chiplet-1 and chiplet-2.

[0196] b. The ctr is updated on the sender side (chiplet-
1) just after encryption of a message.

[0197] c. The ctr is updated on the receiver side (chip-
let-2) only after successful decryption and verification
of received ciphertext. (The ciphertext is resent if
verification fails).

[0198] Each of the example communication sequences
shown below begins with chiplet-1 and chiplet-2 authenti-
cating themselves to each other. There are a variety of
techniques for chiplets authenticating themselves to one
another. Some authentication techniques use the existing
Public Key Infrastructure (PKI) with the Digital Signature
Algorithm (DSA), others deploy a blockchain-based mecha-
nism. A discussion on chiplet authentication techniques is
beyond the scope of this document.

[0199] Referencing FIG. 13, communication sequence
1300 begins with chiplet authentication 1302 between chip-
let-1 1312 and chiplet-2 1314. A key exchange 1304 is then
performed between chiplet-1 and chiplet-2. In some embodi-
ments, the key exchange 1304 is performed by executing a
Key Exchange Protocol consistent with methods 900 and
1000 of FIGS. 9 and 10, respectively.

[0200] The communication sequence 1300 proceeds to
step 1 with chiplet-1 encrypting M, by computing ciphertext
C,. In some embodiments, chiplet-1 performs the encryption
by executing an encryption function such as method 1100.
[0201] In step 2, chiplet-1 transmits the ciphertext C, via
transmission 1306 to chiplet-2. In step 3, chiplet-2 decrypts
ciphertext C, and computes plaintext M,. In some embodi-
ments, chiplet-2 performs the decryption by executing a
decryption function such as method 1200.

[0202] The communication sequence 1300 continues with
chiplet-1, in step 4, encrypting a second message M, by
computing ciphertext C,. In step 5, chiplet-1 transmits
ciphertext C, to chiplet-2 via transmission 1308. In step 6,
chiplet-2 decrypts ciphertext C, and computes message M,.
[0203] In step 7, chiplet-1 encrypts message M, by com-
puting ciphertext C,. In step 8 chiplet-1 transmits ciphertext
C,; to chiplet-2 via transmission 1310. In step 9, chiplet-2
decrypts C, to compute M,.

[0204] The discussion below proceeds to discuss a chiplet
and a communication sequence for unoptimized basic half-
duplex mode of communication. Basic half-duplex mode of
communication is a known mode of communication that is
incorporated into embodiments herein, as discussed below.
[0205] In basic half-duplex mode of communication only
one chiplet at a time (e.g. chiplet-1) may transmit data. The
other chiplet (e.g. chiplet-2) must wait to transmit until the
data transmitted from chiplet-1 is all received and decrypted
successfully. The value of a counter ctr is the same for each
chiplet and is the same for both transmitting and receiving.
There are four types of control signals which allow smooth
transmission of data in the transmission channel or bus:

[0206] a. The SND signal: A chiplet sends the SND
signal when the chiplet secks to send data. When a
chiplet receives the SND signal, it stops all its trans-
mission-related activities and begins to wait for the data
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from the other chiplet. At the receiver’s side, the
waiting period is predefined. If the receiver does not
receive any data within the predefined period, the SND
signal is dropped. If the SND signal is dropped, the
sender then needs to re-send the SND signal before
starting to send data.

[0207] ©b. The ACK signal: A chiplet sends ACK when
the chiplet has successfully decrypted, and verified the
transmitted data. When a chiplet receives an ACK
signal, it is confirmation that its previously sent data
has been decrypted and verified successfully. If a
chiplet has not received an ACK signal within a pre-
defined period of time and if the SND signal has not
expired, the chiplet resends the data. If a chiplet has not
received an ACK signal within the predefined period of
time and if the SND signal has expired, then the chiplet
will resend the SND signal and then resend the data.

[0208] c. The NACK signal: A chiplet sends the NACK
signal when the chiplet has received the data but has not
successfully decrypted and verified the data. When a
chiplet receives the NACK signal, it resends the data.
The NACK signal is evidence of error at a higher-layer
of a network stack or of an attack by an adversary. If the
number of NACK signals exceeds a threshold, a ses-
sion may be terminated and a new session be estab-
lished.

[0209] d. The SND-ACK signal: This signal is a com-
bination of the SND and ACK signals. A chiplet sends
the SND-ACK signal when the chiplet has successfully
decrypted and verified data and then seeks to send data.
When a chiplet receives an SND-ACK signal, it is
confirmed that its previously sent data has been suc-
cessfully decrypted and verified and that the chiplet
must wait for the other chiplet to send data. The
SND-ACK signal provides a fair opportunity for a
receiving chiplet to send data. It also ensures that one
chiplet does not hold or occupy a communication
channel for too long.

[0210] Referencing FIG. 14, a chiplet 1400 is configured
for encryption and decryption, for example via methods
1100 and 1200, and for basic (e.g. unoptimized) half-duplex
mode of communication. Except where discussed below,
chiplet 1400 is at least similar to chiplet 800. Elements
present in chiplet 800 that are not changed in chiplet 1400
are not further discussed. Instead, for these unchanged
elements, this document relies on the discussion relative to
chiplet 800. The same applies below regarding drawings of
additional chiplets (i.e. chiplets 1600, 1800, 2000, 2100,
2200). For each of these additional chiplets, only new
elements or changed elements are discussed. And reliance is
placed on previous discussions regarding unchanged ele-
ments of chiplets.

[0211] Chiplet 1400 includes a secure host 1404 that
includes a basic half-duplex mode circuit 1457 that config-
ures local host 1404 for issuing instructions, commands, and
data for causing chiplet 1400 to communicate via basic
half-duplex mode of communication. In some embodiments
basic half-duplex mode circuit 1457 is a memory bearing
executable instructions for causing chiplet 1400 to commu-
nicate via basic half-duplex mode. In some other embodi-
ments, basic half-duplex mode circuit 1457 is hard-wired
logic. And in yet some other embodiments, basic half-duplex
mode circuit 1457 includes both a memory with executable
instructions and hard-wired logic.
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[0212] The chiplet 1400 includes a TX circuit 1415 (a
transmission circuit). TX circuit 1415 includes Encryption
Circuit 1410. In contrast to the chiplet 800 of FIG. 8,
Encryption Circuit 1410 does not include, but is instead
communicably linked with an LUT 1412, a KST 1414, a
counter in the form of ctr 1416, and a CRC 122 (a CRC
generator). Access to the foregoing elements is shared
between Encryption Circuit 1410 and Decryption Circuit
1440 (discussed below).

[0213] Chiplet 1400 includes a RX circuit 1428 (a receiv-
ing circuit). RX circuit 1428 includes a Decryption Circuit
1440. In contrast to Decryption Circuit 840 of FIG. 8,
Decryption Circuit 1440 does not include but is instead
communicably linked with the LUT 1412, the KST 1414, the
counter ctr 1416, and the CRC 122. The foregoing elements
are shared between Decryption Circuit 1440 and Encryption
Circuit 1410. A shared LUT, KST and ctr offers the advan-
tage of saving a huge memory space, which otherwise would
be double, as shown in FIG. 8. The shared memory could be,
for example, one or more SRAM’s (not shown).

[0214] Referencing FIG. 15, a communication sequence
1500 illustrates an example of basic half-duplex mode of
communication. Time proceeds as shown by timeline 1526.
Sequence 1500 begins with chiplet authentication 1502
between chiplet-1 (1522) and chiplet-2 (1524). After chiplet
authentication, chiplet-1 and chiplet-2 perform a key
exchange 1504.

[0215] At step 1, chiplet-1 generates a message M, and
checks whether chiplet-2 has sent an SND signal. After
determining that chiplet-2 has not sent an SND signal, at
step 2, chiplet-1 sends an SND signal to chiplet-2 via
transmission 1506.

[0216] At step 3, chiplet-2 is waiting for M, and also
generates a message M';.

[0217] At step 4, chiplet-1 completes the encryption of M,
by computing ciphertext C,. In some embodiments, chip-
let-1 performs the encryption by executing an encryption
function such as method 1100 of FIG. 11. In step 5, chiplet-1
transmits C, to chiplet-2 via transmission 1508.

[0218] In step 6, chiplet-2 decrypts C, and thereby gen-
erates M;. In some embodiments, chiplet-2 performs the
decryption by executing a decryption function such as
method 1200 of FIG. 12.

[0219] In step 7, chiplet-2 generates a message M',. And
in step 8, chiplet-2 sends an SND-ACK signal to chiplet-1
via transmission 1510. This signal confirms decryption and
verification of M, and places chiplet-1 in a waiting mode.
Chiplet-1 is waiting for M';.

[0220] Instep 9, chiplet-2 completes the encryption of M',
by computing ciphertext C'; and in step 10 sends C'; to
chiplet-1 via transmission 1512.

[0221] At step 11, chiplet-1 decrypts C', and thereby
computes M';. At step 12, Chiplet-1 sends an ACK signal to
chiplet-2 via transmission 1514. This signal confirms
decryption and verification of M'; and also signals to chip-
let-2 that chiplet-1 does not have a message to send.
[0222] At step 13, chiplet-2 sends an SND signal to
chiplet-1 via transmission 1516. Chiplet-1 begins waiting
for M',. At step 14, chiplet-2 encrypts M', by computing the
ciphertext C',. In step 15, chiplet-2 sends C', to chiplet-1 via
transmission 1518.

[0223] In step 16, chiplet-1 decrypts C', to compute M',.
At step 17, chiplet-1, having successfully decrypted and
verified M', sends an ACK signal via transmission 1520. The
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ACK signal confirms successful decryption and verification
of M', and also signals that chiplet-1 does not have a
message to send.

[0224] Advantages of the basic half-duplex mode of com-
munication are the need to store only one counter and the
simplicity of Chiplet 1400 of FIG. 14. Disadvantages
include low channel utilization and secure time-stamping of
the control signals is required to resolve conflicts.

[0225] The discussion below proceeds to discuss a chiplet
and a communication sequence for unoptimized full-duplex
mode of communication. Full-duplex mode of communica-
tion is a known mode of communication that is incorporated
into embodiments herein, as discussed below.

[0226] In full-duplex mode of communication both chip-
lets can send data simultaneously. The encryption/decryp-
tion process and the transmission of data are not dependent
on another chiplet. A chiplet has two counters, ctr and ctr":
one for sending messages and one for receiving messages.
The session key K is the same for both sending and
receiving.

[0227] Referencing FIG. 16, a chiplet 1600 is configured
for encryption and decryption, for example via methods
1100 and 1200, and for full-duplex mode of communication.
Unlike chiplet 1400 of FIG. 14, this chiplet 1600 has a
counter ctr 1616 for transmission and another counter ctr'
1638 for receiving.

[0228] Chiplet 1600 includes a secure host 1604 that
includes a full-duplex mode circuit 1657 that configures
local host 1604 for issuing instructions, commands, and data
for causing chiplet 1600 to communicate via full-duplex
mode of communication. In some embodiments, full-duplex
mode circuit 1657 is a memory bearing executable instruc-
tions for causing chiplet 1600 to communicate via full-
duplex mode. In some other embodiments, full-duplex mode
circuit 1657 is hard-wired logic. And in yet some other
embodiments, full-duplex mode circuit 1657 includes both a
memory with executable instructions and hard-wired logic.
[0229] The chiplet 1600 includes a TX circuit 1615 (a
transmission circuit). TX circuit 1615 includes encryption
circuit 1610 which includes a counter ctr 1616 dedicated to
the TX circuit 1615. That is, ctr 1616 is not shared with RX
circuit 1628 (below).

[0230] Chiplet 1600 includes an RX circuit 1628 (a receiv-
ing circuit). RX circuit 1628 includes decryption circuit
1640 which includes a counter ctr' 1638 dedicated to the RX
circuit 1628. That is, ctr' 1638 is not shared with TX circuit
1615. The separate counters ctr 1616 and ctr' 1638 at least
partially configure chiplet 1600 for full-duplex mode.
[0231] Referencing FIG. 17, a communication sequence
1700 illustrates full-duplex mode of communication
between chiplet-1 (1718) and chiplet-2 (1720). In some
embodiments, chiplet-1 is chiplet 1600 above and stores: a)
A session key K that equals rO|lr1, b) an LUT generated with
random number r0, ¢) a counter ctr for sending data, and d)
a counter ctr' for receiving data. Although FIG. 16 shows
KST 1414 shared by encryption circuit 1610 and decryption
circuit 1640, this is optional. A KST need not be stored
because values from a KST can be computed on the fly.
[0232] In those embodiments, chiplet-2 stores a) the same
session key K that equals rO|r1, b) the same LUT generated
with random number 10, ¢) the counter ctr but for receiving
data, and d) the counter ctr' but for sending data. Thus, in
chiplet-2 the role of the counters is reversed compared to
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their role in chiplet-1. A KST need not be stored because
values from a KST can be computed on the fly.

[0233] The number of control signals for full-duplex mode
is simplified and includes two control signals:

[0234] a. The ACK signal: A chiplet sends the ACK
signal to indicate that it has successfully decrypted and
verified the transmitted data. When a chiplet receives
the ACK signal, it is confirmed that its previously sent
data has been decrypted and verified successtully. If a
chiplet does not receive an ACK signal within a pre-
defined period of time after sending data, the data is
resent.

[0235] b. The NACK signal: A chiplet sends the NACK
signal when the chiplet has received the data but has not
successfully decrypted and verified the data. When a
chiplet receives the NACK signal, it resends the data.
The NACK signal is evidence of error at a higher-layer
of'a network stack or of an attack by an adversary. If the
number of NACK signals exceeds a threshold, a ses-
sion may be terminated and a new session be estab-
lished.

[0236] The direction of time for communication sequence
1700 is shown by timeline 1722. Communication sequence
1700 begins with chiplet authentication 1702 between chip-
let-1 (1718) and chiplet-2 (1720). After chiplet authentica-
tion, chiplet-1 and chiplet-2 perform a key exchange 1704.
In some embodiments, chiplet-1 and chiplet-2 perform the
key exchange by executing a Key Exchange Protocol con-
sistent with methods 900 and 1000 of FIGS. 9 and 10,
respectively.

[0237] Atstep 1, chiplet-1 generates a message M,. Mean-
while, at step 2, chiplet-2 generates message M';.

[0238] At step 3, chiplet-1 encrypts message M, by com-
puting ciphertext C,. In parallel, at step 4, chiplet-2 encrypts
message M', by computing ciphertext C';.

[0239] At step 5, chiplet-1 transmits C, to chiplet-2 via
transmission 1706. At step 6, chiplet-2 decrypts C, to obtain
M,. At step 7, chiplet-2 transmits C'; to chiplet-1 via
transmission 1708.

[0240] At step 8, chiplet-1 decrypts C'; to compute M',. At
step 9, chiplet-2 generates M',, but chiplet-2 has not
received an ACK for M', so it awaits taking action on M',.
At step 10 chiplet-2 sends an ACK signal to chiplet-1 via
transmission 1710, signaling that chiplet-2 has decrypted
and verified M. At step 11, chiplet-1 sends an ACK signal
to chiplet-2 via transmission 1712, signaling that chiplet-1
has decrypted and verified M';.

[0241] At step 12 chiplet-2 encrypts message M', by
computing ciphertext C',. And at step 13 chiplet-2 transmits
(', to chiplet-1 via transmission 1714.

[0242] At step 14 chiplet-1 decrypts C', to compute M',
and at step 15 chiplet-1 sends an ACK signal to chiplet-2 via
transmission 1716, signaling that chiplet-2 has decrypted
and verified M',.

[0243] The discussion below proceeds to discuss a chiplet
and a communication sequence for a new communication
mode, no-delay half-duplex mode. In no-delay half-duplex
mode, a chiplet may, while waiting for a message after
receiving an SND signal, encrypt its own message using a
different counter. And while a chiplet is decrypting received
data, it can transmit its own encrypted data over the channel,
improving the channel utilization.

[0244] Referencing FIG. 18, a chiplet 1800 is configured
for encryption and decryption, for example via methods
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1100 and 1200, and for communication via no-delay half-
duplex mode. The no-delay half-duplex mode is enabled at
least in part by no-delay half duplex mode circuit 1857 and
by having two counters, a counter ctr 1616 for transmission
and another counter ctr' 1638 for receiving.

[0245] Chiplet 1800 includes a secure host 1804 that
includes a no-delay half-duplex mode circuit 1857 that
configures local host 1804 for issuing instructions, com-
mands, and data for causing chiplet 1800 to communicate
via no-delay half-duplex mode of communication. In some
embodiments, no-delay half-duplex mode circuit 1857 is a
memory bearing executable instructions for causing chiplet
1800 to communicate via no-delay half-duplex mode. In
some other embodiments, no-delay half-duplex mode circuit
1857 is hard-wired logic. And in yet some other embodi-
ments, no-delay half-duplex mode circuit 1857 includes
both a memory with executable instructions and hard-wired
logic.

[0246] As described above regarding chiplet 1600, Chiplet
1800 includes a TX circuit 1615 with Encryption Circuit
1610 which includes a counter ctr 1616 dedicated to the TX
circuit 1615. And, as does chiplet 1600, chiplet 1800
includes an RX circuit 1628 which includes decryption
Circuit 1640 which includes a counter ctr' 1638 dedicated to
the RX circuit 1628.

[0247] In chiplet 1600, the counters ctr 1616 and ctr' 1638
were used for full-duplex mode, but in chiplet 1800 they are
configured to be used for no-delay half-duplex mode at least
partly by no-delay half-duplex mode circuit 1857.

[0248] Referencing FIG. 19, a communication sequence
1900 illustrates no-delay half-duplex mode of communica-
tion between chiplet-1 (1924) and chiplet-2 (1926). In some
embodiments, chiplet-1 is chiplet 1800 above and stores: a)
A session key K that equals rO|lr1, b) an LUT generated with
random number r0, ¢) a counter ctr for sending data, and d)
a counter ctr' for receiving data. Although FIG. 18 shows
KST 1414 shared by encryption circuit 1610 and decryption
circuit 1640, this is optional. A KST need not be stored
because values from a KST can be computed on the fly.

[0249] In those embodiments, chiplet-2 stores a) the same
session key K that equals rO|r1, b) the same LUT generated
with random number 10, ¢) the counter ctr but for receiving
data, and d) the counter ctr' but for sending data. Thus, in
chiplet-2 the role of the counters is reversed compared to
their role in chiplet-1. A KST need not be stored because
values from a KST can be computed on the fly.

[0250] With no-delay half-duplex mode there is a risk of
collision of counters ctr and ctr'. It is possible that after
encryption of M[i] and M[i'] message blocks on both chip-
lets, that the counters may collide such that (ctr+i)=(ctr'+i").
This collision may leak some partial information, which
may allow for several kinds of attacks. Therefore, the
collision is highly undesirable.

[0251] A risk of collision is present when Ictr—ctr'|<ref_
rate, where ref_rate is the refresh rate of the session key. The
risk may be mitigated by choosing ctr and ctr' differently, for
example by choosing ctr probabilistically and choosing ctr'
deterministically. For example, during the execution of the
sender’s and the receiver’s Key Generation Functions the
counter ctr' can be computed as ctr':=ctr+2”?. The following
are some other options for avoiding collisions:

[0252] a. Assigning ctr' a random value. For example,
ctr':=KST[1] mod 2°.
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[0253] b. Using an initial value IV. For example, ctr|ctr":
=IV.
[0254] c. Using the two PRNG’s. For example ctr:

=PRNG(rl) and ctr:=PRNG;, (10).
[0255] d. Using a single PRNG. For example, ctr:
=PRNG(KSTI[0]||0) and ctr:=PRNG(KST[O0]||1).

[0256] With no-delay half-duplex mode, the control sig-
nals are the same control signals as for basic half-duplex
mode (SND, ACK, NACK, SND-ACK). In some embodi-
ments, the above control signals are timestamped to resolve
conflicts.
[0257] Referencing FIG. 19, the direction of time for
communication sequence 1900 is shown by timeline 1928.
Communication sequence 1900 begins with chiplet authen-
tication 1902 between chiplet-1 (1924) and chiplet-2 (1926).
After chiplet authentication, chiplet-1 and chiplet-2 perform
a key exchange 1904. In some embodiments, chiplet-1 and
chiplet-2 perform the key exchange 1904 by executing a
Key Exchange Protocol consistent with methods 900 and
1000 of FIGS. 9 and 10, respectively.
[0258] At step 1, chiplet-1 generates a message M, . Chip-
let-1 then checks if chiplet-2 has sent an SND signal. At step
2, after determining that chiplet-2 has not sent an SND
signal, chiplet-1 sends an SND signal to chiplet-2 via
transmission 1906.
[0259] At step 3, chiplet-2 is waiting for M, but never-
theless generates message M';. But because chiplet-1 has
sent an SND signal, chiplet-2 does not send its own SND
signal.

[0260] At step 4, chiplet-1 encrypts M, by computing
ciphertext C,.
[0261] Atstep 5, chiplet-2 is still waiting for M, but under

no-delay half-duplex mode, nevertheless encrypts M'; by
computing ciphertext C';.

[0262] At step 6, via transmission 1908, chiplet-1 trans-
mits C, to chiplet-2 which is waiting for M, because of the
SND signal from chiplet-1.

[0263] At step 7, chiplet-2 decrypts C, to compute M,.
And in step 8, sends an SND signal to chiplet-1 via trans-
mission 1910. Chiplet-1 is now waiting for M';. And in step
9, chiplet-2 transmits C'; to chiplet-1 via transmission 1912.
[0264] In step 10, chiplet-1 decrypts C'; to compute M';.
[0265] Instep 11, chiplet-2 generates message M',. And in
step 12, chiplet-2 sends an ACK signal to chiplet-1 via
transmission 1914. This ACK signal acknowledges that
chiplet-2 has decrypted and verified M.

[0266] In step 13, chiplet-1 sends an ACK signal to
chiplet-2 via transmission 1916. The ACK signal acknowl-
edges that chiplet-1 has decrypted and verified M',.

[0267] At step 14, chiplet-2 sends an SND signal to
chiplet-1 via transmission 1918. Chiplet-1 is now waiting
for M',. At step 15, chiplet-2 encrypts M', by computing C'5.
And at step 16, chiplet-2 sends C', to chiplet-1 (and chiplet-1
stops waiting) via transmission 1920.

[0268] Chiplet-1, in step 17, decrypts C', to compute M',.
And in step 18, chiplet-1 sends an ACK signal to chiplet-2
via transmission 1922. The ACK signal acknowledges that
chiplet-1 has decrypted and verified M',.

[0269] The no-delay half-duplex mode has advantages and
disadvantages. Advantages include a high utilization rate of
the channel compared with basic half-duplex mode, smaller
waiting times, and timeliness of data transmissions. Disad-
vantages include extra logic (e.g. no-delay half-duplex mode
circuit 1857), a requirement to store an additional counter
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(as compared with one counter for basic half-duplex mode),
and a requirement, in some embodiments, to time-stamp
control signals to resolve conflicts.

[0270] The discussion below proceeds to discuss a chiplet
2000 configured for a space-saver mode. Chiplet 2000 is
configured to communicate via at least one of basic half-
duplex mode or full-duplex mode, but is optimized to save
space by avoiding the computation and storage of an entire
LUT in the TX circuit 2015. Instead, components in TX
circuit 2015 compute only a target value (e.g. LUT[M[i]]) of
the LUT on the fly as needed, and this target value is, in
some embodiments, not stored. The operation of communi-
cation sequences is, in some embodiments, at least one of
sequence 1500 for half-duplex mode or 1700 for full-duplex
mode.

[0271] The space optimization for space-saver mode is
especially significant for IoT devices, which may include
one or more chiplets at least similar to chiplet 2000. IoT
devices are constrained in computing power, memory stor-
age, and access to electrical power, and space saver mode
allows an IoT device to conserve resources.

[0272] Ina further possible optimization, in some embodi-
ments, an loT device includes chiplets (e.g. chiplet 2000)
that perform only encryption using space-saver mode, but
that do not perform decryption and thus, do not include
circuitry for decryption. That is, the IoT device may not
include RX circuit 2028 or may include a simplified receiv-
ing circuit (now shown), but not one configured for decryp-
tion (e.g. lacks key manager 830, key generation function
(receiver) 2032, and decryption circuit 2040). Instead, an
IoT device may gather data from, for example, sensors and
then encrypt and transmit that data to a network device (e.g.
a server) (not shown), which performs the decryption.
[0273] Referencing FIG. 20, chiplet 2000 includes a
secure host 2004 that includes a half-duplex/full-duplex
modes circuit 2057 that configures local host 2004 for
issuing instructions, commands, and data for causing chiplet
2000 to communicate via at least one of half-duplex or full
duplex mode in space-saver mode. In some embodiments,
half-duplex/full-duplex modes circuit 2057 is a memory
bearing executable instructions for causing chiplet 2000 to
communicate via at least one of half-duplex or full-duplex
mode while in space-saver mode. In some other embodi-
ments, half-duplex/full-duplex modes circuit 2057 is hard-
wired logic. And in yet some other embodiments, half-
duplex/full-duplex modes circuit 2057 includes both a
memory with executable instructions and hard-wired logic.
[0274] Chiplet 2000 includes a TX circuit 2015 that
includes a modified key generation function (sender) 2008
that does not return an LUT as output. Instead key genera-
tion function (sender) 2008 interfaces with true random
number generator TRNG 126 and provides random number
r0 (2017) to an Encryption Circuit 2010 that computes
Encryption Key ((r0, KST, ctr), A, M). That is, Encryption
Circuit 2010 does not receive an LUT, but, instead, a random
number r, to dynamically compute target values of an LUT
on the fly as they are needed.

[0275] Encryption Circuit 2010 does not compute, store,
or utilize an entire LUT in encryption. Instead, Encryption
Circuit 2010 includes an LUT space-saver circuit 2059 that
is configured to dynamically compute a target value of an
LUT on the fly using random number r0 (2017) as discussed
below. In some embodiments, space-saver circuit 2059 does
not retain the computed target value and therefore does not
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utilize memory (such as an SRAM) for storing the dynami-
cally computed target value. For computing a target value of
an LUT, in some embodiments, the following formula is
used: LUT[M[i]]=PRNG,(mix(r0, M[i])). The function mix(
) diffuses values of rO and M[i] (the message block i) to
produce a string that acts as a seed for pseudo-random
number generator PRNG,. Method 1100 for encryption is
modified. In that, operation 1120 utilizes the dynamically
computed LUT[M[i]] rather than target values from an LUT.
[0276] In some embodiments, chiplet 2000 includes an
RX circuit 2028 that includes a modified key generation
function (receiver) 2032 that computes an LUT 2034
according to the same formula LUT[M[i]|=PRNG(mix(r0,
M[i])). That is, in those embodiments, the foregoing is
utilized by key generation function (receiver) 2032 to com-
pute an entire LUT 2034 rather than just a single target
value. Decryption Circuit 2040 receives as input this LUT
2034 generated by the foregoing formula, but its operation
is otherwise unchanged.
[0277] The mix( ) function is, in some embodiments,
computed according method one or method two:
[0278] Method 1: Using Rearrangements.
[0279] a)If:
[0280] a. The input to PRNG,, say, Iseed|=128 bits,
[0281] b. The message block size, IM[i]I=16 bits,
[0282] b) Then, we have Ir0I=128-16=112 bits.
[0283] c¢) Then, to compute mix( ) function, the M[i] can
be:
[0284]
[0285]
[0286]

a. Appended—added at the end
=mix(r0, M[i]):=r0|M[i].
b. Prefixed—added at the start
[0287] =mix(r0, M[i]):=M[i]||rO.
[0288] c. Prefixed and appended—added half at start
and half at end
[0289] =mix(r0, M[i]):=M[i], |[rO||M[i]..
[0290] d. Diffused—added throughout the rO
[0291] =mix(r0, M[i]):=M[i],|[r0,|M[i],|[r0,]| . . .
M[i]Ir0,|M[il,,
[0292] Method 2: Using Functions.

[0293] a) Compute the value of mix( ) function with the
help of a mathematical function using r0 and M[i] as
inputs.

[0294] b) The potential functions are: Hash function,
Compression function, XORing, multiplication, etc.

[0295] In addition to the advantages discussed above for
IoT devices, the space-saver mode has several advantages.
Advantages include that for small messages, a large com-
putation cost is avoided. These avoided computation costs
include the cost of computing all but a few target values of
an otherwise large LUT. Generating an LUT, in some
embodiments, requires computing all 2° entries of w bits
each (for instance, in one example, 2'® entries of 64 bits
each). Avoiding the above computation avoids high utiliza-
tion of a PRNG. A further advantage is, in some embodi-
ments, avoiding the need to store the LUT in memory, such
as SRAM.

[0296] The discussion below proceeds to discuss a chiplet
2100 configured for a two-key encryption mode. Chiplet
2100 provides high security for, in some embodiments, at
least one of basic half-duplex mode or full-duplex mode, but
is configured with two encryption keys for greater security.
The operation of communication sequences is, in some
embodiments, at least one of sequence 1500 for half-duplex
mode or 1700 for full-duplex mode.
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[0297] Two-key encryption mode utilizes two session
keys: K and K'. The session key K is used for communica-
tion from a first chiplet, chiplet-1, to a second chiplet,
chiplet-2. And session key K' is used for communication
from chiplet-2 to chiplet-1.

[0298] In some embodiments, chiplet-1 is chiplet 2100
above and stores the following for transmitting circuit: a) A
session key K that equals rO||r1, b) an LUT generated with
random number r0, and c¢) a counter ctr for sending data.
Although FIG. 21 shows encryption circuit 2110 as includ-
ing KST 2114, this is optional. A KST need not be stored
because values from a KST can be computed on the fly. The
chiplet-1 also stores the following for receiving circuit: a) A
session key K' that equals rO'||r1", b) an LUT' generated with
random number r0', and ¢) a counter ctr' for receiving data.
Although FIG. 21 shows decryption circuit 2140 as includ-
ing KST' 2136, this is optional. A KST' need not be stored
because values from a KST' can be computed on the fly.
[0299] In those embodiments, chiplet-2 stores the follow-
ing for transmitting circuit: a) A session key K' that equals
r0'r1", b) an LUT' generated with random number r0', and c)
a counter ctr' for sending data. A KST' need not be stored
because values from a KST' can be computed on the fly. The
chiplet-2 also stores the following for receiving circuit: a) A
session key K that equals rO||r1, b) an LUT generated with
random number r0, and c) a counter ctr for receiving data.
A KST need not be stored because values from a KST can
be computed on the fly. Thus, in chiplet-2, the role of the
session keys, LUT’s, counters and KST’s are reversed
compared to their role in chiplet-1.

[0300] Referencing FIG. 21, a chiplet 2100 includes a
secure host 2104 that includes a half-duplex/full-duplex
modes circuit 2157 that configures local host 2104 for
issuing instructions, commands, and data for causing chiplet
2100 to communicate via at least one of half-duplex or
full-duplex mode while in two-key encryption mode. In
some embodiments, half-duplex/full-duplex modes circuit
2157 is a memory bearing executable instructions for caus-
ing chiplet 2100 to communicate via at least one of half-
duplex or full-duplex mode while in two-key encryption
mode. In some other embodiments, half-duplex/full-duplex
modes circuit 2157 is hard-wired logic. And in yet some
other embodiments, half-duplex/full-duplex modes circuit
2157 includes both a memory with executable instructions
and hard-wired logic.

[0301] Chiplet 2100 includes a TX circuit 2115 with a key
generation function (sender) 2108 that utilizes random num-
bers r0 and rl to generate a session key K (e.g. where
K:=r0|[r1). Outputs from key generation function (sender)
2108 to Encryption Circuit 2110 include LUT 2112, KST
2114, and counter ctr 2116. LUT 2112, KST 2114, and
counter ctr 2116 are stored for use of encryption circuit 2110
for encrypting outgoing data. The foregoing outputs from
key generation function (sender) 2108 are for the use of TX
circuit 2115 and are not shared with RX circuit 2128
(discussed below). The session key K is shared to the second
chiplet, chiplet-2 via the key exchange performed between
chiplet-1 and chiplet-2. In some embodiments, the key
exchange is performed by executing a Key Exchange Pro-
tocol consistent with methods 900 and 1000 of FIGS. 9 and
10, respectively.

[0302] Chiplet 2100 further includes an RX circuit 2128
with a key generation function (receiver) 2132 that utilizes
two different random numbers r0' and r1'. In one embodi-



US 2023/0275742 Al

ment, the values of r0' and r1' are generated by the TX circuit
2115 of the second chiplet, chiplet-2, using a true random
number generator, at least similar to TRNG 126. After this,
the chiplet-2 utilizes random numbers r0' and r1' to generate
a different session key K' (e.g. where K"=r0'|r1"). The
session key K' is shared by the chiplet-2 to the chiplet-1 via
the key exchange performed between chiplet-2 and chiplet-
1. In another embodiment, the key generation function
(receiver) 2132 may be given access to TRNG 126 to
generate two different random numbers r0' and rl' for the
generation of a different session key K' (e.g. where
K":=r0'||r1"). The session key K' is shared by the chiplet-1 to
the chiplet-2 via the key exchange performed between
chiplet-1 and chiplet-2. In some embodiments, the key
exchange is performed by executing a Key Exchange Pro-
tocol consistent with methods 900 and 1000 of FIGS. 9 and
10, respectively. Outputs from key generation function (re-
ceiver) 2132 to decryption circuit 2140 include LUT' 2134,
KST' 2136, and counter ctr' 2138. At least LUT' 2134, KST'
2136, and counter ctr' 2138 are stored for use by decryption
circuit 2140. The foregoing are for the use of RX circuit
2128 and are not shared with TX circuit 2115.

[0303] The discussion below proceeds relative to FIG. 22
to discuss a chiplet 2200 configured for a two-key space-
saver encryption mode. Chiplet 2200 saves on memory use
and provides high security for, in some embodiments, at
least one of basic half-duplex mode or full-duplex mode.
The operation of communication sequences is, in some
embodiments, at least one of sequence 1500 for half-duplex
mode or 1700 for full-duplex mode.

[0304] Two-key space-saver encryption mode is a space-
saver variant of two-key encryption mode. In two-key
space-saver encryption mode. both a first chiplet (chiplet-1)
and a second chiplet (chiplet-2) use space-saver encryption
mode for their transmitting circuit. Storage of an LUT in the
TX circuit is thereby avoided. During encryption, the
desired LUT target value is computed on the fly without
computing or storing an entire table.

[0305] In some embodiments, chiplet-1 is chiplet 2200
above and stores the following for transmitting circuit: a) A
session key K that equals rO|rl, and b) a counter ctr for
sending data. Although FIG. 22 shows encryption circuit
2210 as including KST 2114, this is optional. A KST need
not be stored because values from a KST can be computed
on the fly. The chiplet-1 also stores the following for
receiving circuit: a) A session key K' that equals r0'|r1', b) an
LUT' generated with random number r0', and c¢) a counter
ctr' for receiving data. Although FIG. 22 shows decryption
circuit 2140 as including KST' 2136, this is optional. A KST'
need not be stored because values from a KST' can be
computed on the fly.

[0306] In those embodiments, chiplet-2 stores the follow-
ing for transmitting circuit: a) A session key K' that equals
r0'|[r1", and b) a counter ctr' for sending data. A KST' need not
be stored because values from a KST' can be computed on
the fly. The chiplet-2 also stores the following for receiving
circuit: a) A session key K that equals rO|rl, b) an LUT
generated with random number r0, and ¢) a counter ctr for
receiving data. A KST need not be stored because values
from a KST can be computed on the fly. Thus, in chiplet-2,
the role of the session keys, LUT’s, counters and KST’s are
reversed compared to their role in chiplet-1.
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[0307] Thus, the management of keys is similar to two-
key encryption mode, but the avoidance of computing and
storing an LUT in the TX circuit is similar to space-saver
mode.

[0308] Referencing FIG. 22, a chiplet 2200 includes a
secure host 2204 that includes a half-duplex/full-duplex
modes circuit 2257 that configures local host 2204 for
issuing instructions, commands, and data for causing chiplet
2200 to communicate via at least one of half-duplex or
full-duplex mode in two-key space-saver encryption mode.
In some embodiments, half-duplex/full-duplex modes cir-
cuit 2257 is a memory bearing executable instructions for
causing chiplet 2200 to communicate via at least one of
half-duplex or full-duplex mode while in two-key space-
saver encryption mode. In some other embodiments, half-
duplex/full-duplex modes circuit 2257 is hard-wired logic.
And in yet some other embodiments, half-duplex/full-du-
plex modes circuit 2257 includes both a memory with
executable instructions and hard-wired logic.

[0309] Chiplet 2200 includes a TX circuit 2215 with a key
generation function (sender) 2208 that utilizes random num-
bers r0 and rl to generate a session key K (e.g. where
K:=r0|[r1). Outputs from key generation function (sender)
2208 to Encryption Circuit 2210 include K, r0 (2017), KST
2114, and counter ctr 2116, but not an LUT. These outputs
are stored for use of Encryption Circuit 2210 for encrypting
outgoing data. The foregoing outputs are for the use of TX
circuit 2215 and are not shared with RX circuit 2128
(discussed below). The session key K is shared to the second
chiplet, chiplet-2 via the key exchange performed between
chiplet-1 and chiplet-2. In some embodiments, the key
exchange is performed by executing a Key Exchange Pro-
tocol consistent with methods 900 and 1000 of FIGS. 9 and
10, respectively.

[0310] As noted above, key generation function (sender)
2208 does not return an LUT as output. Instead, key gen-
eration function (sender) 2208 interfaces with true random
number generator TRNG 126 and provides random number
r0 (2017) to an encryption circuit 2010, which is described
above relative to FIG. 20 and which will not be discussed
further relative to FIG. 22.

[0311] Two-key space-saver encryption mode has advan-
tages and disadvantages. One advantage is that the risk of
collision of two counters ctr and ctr'—discussed above
regarding no-delay half-duplex mode—is rendered negli-
gible. Another advantage is that the session keys K and K'
are refreshed independently of each other. In some embodi-
ments, a key is refreshed with the number of blocks
encrypted equals or exceeds ref_rate (the refresh rate). It is
possible that K and K' will be used for k blocks at different
times. Another advantage is saving the cost of storing an
additional LUT. A disadvantage is the requirement, in some
embodiments, to store one more session key.

[0312] An additional mode is high-volume data encryp-
tion mode, a mode that utilizes data compression. High-
volume data encryption mode operates in any of the above
communication modes, including for example half-duplex
or full-duplex. It is utilized where a high data transfer rate
is desired. There are at least the following two modes of
implementing high-volume data encryption mode.
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[0313] Method 1: Uses loss-less compression and decom-
pression functions. The following are applicable:
[0314] a. Method 1 uses a compression function Comp:
{0,137 {0,1}? in the transmission circuit.
[0315] b. Method 1 uses a decompression function
Decomp: {0,1}* + {0,1}7 in the receiving circuit.

[0316] c. At the Sender’s side, the steps are:
[0317] i. Receive a message block M, of q bits.
[0318] ii. Compress M, into a b-bit message block:

M,,:=Comp(M,).
[0319] iii. Encrypt M, to generate a w-bit ciphertext
block: C,:=Enc(M,).

[0320] iv. Send w-bit ciphertext block C,, to the
Receiver.
Message block M.
| Compression
Compressed Message block M.

| Encryption

Ciphertext block C,,.
| Send to Receiver

[0321] d. At the Receiver’s side, the steps are:

[0322] i. Receive w-bit ciphertext block C,, from
Sender.

[0323] 1ii. Decrypt w-bit ciphertext block C,, to gen-
erate a compressed b-bit message block: M,:=Dec
(C.)-

[0324] iii. Decompress M, to a g-bit message block:

M,:=Decomp(M,,).
[0325] iv. Accept M,,.

| Receive from Sender
Ciphertext block C,,.
| Decryption
Compressed Message block M.
| Decompression
Message block M.

[0326] Method 2: Uses a lossy compression and decom-
pression with error correction. The following are applicable:
[0327] a. Method-2 uses a compression function Comp:
10,1} {0,1}7 in the transmission circuit.
[0328] b. Method-2 uses a decompression function
Decomp: {0,1}9+ {0,1}" along with error correction
in the receiving circuit.

[0329] c. At the Sender’s side, the steps are:
[0330] 1i. Receive a message block M, of b bits.
[0331] ii. Encrypt M, to generate a w-bit ciphertext

block C,: C, :=Enc(M,).

[0332] iii. Compress C,, into a compressed g-bit
ciphertext block C,: C,:=Comp(C,,).

[0333] iv. Send compressed g-bit ciphertext block C,
to the Receiver.

Message block M,,.
| Encryption
Ciphertext block C,,.
| Compression
Compressed Ciphertext block C,.
| Send to Receiver
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[0334] d. At the Receiver’s side, the steps are:

[0335] 1. Receive compressed g-bit ciphertext block
C, from Sender.

[0336] ii. Decompress C, to obtain a w-bit uncom-
pressed ciphertext block C',): C',:=Decomp(C,).

[0337] iii. Correct error in C', to obtain C,,.

[0338] iv. Decrypt C,, to obtain b-bit message block
M,:M,:=Dec(C,).

[0339] v. Accept M,.

| Receive from Sender
Compressed Ciphertext block C,.
| Decompression
Ciphertext block C',,.
| Error-Correction
Ciphertext block C,,.
| Decryption
Message block M,,.

[0340] The use of compression and decompression has
advantages and disadvantages. An advantage is increased
performance (e.g. high data transfer rate). A disadvantage is
an increased computation cost due to executing compression
and decompression functions.

[0341] Some embodiments are now discussed. In discuss-
ing exemplary methods, exemplary structures that could
perform some actions or functions are discussed. The dis-
cussion of structures is not intended to be limiting or
exhaustive. Those skilled in the art will appreciate that
depending on context, other structures could also be used.
[0342] In some embodiments a cryptographic method is
performed at least in part at a first chiplet. The method
includes at least with the first chiplet, parsing a message into
at least one or more message blocks (e.g. secure host 104
parsing the message). The method further includes at least
dynamically generating at least a first target value that is
associated with at least a first key (e.g. encryption circuit 810
using LUT 812 or encryption circuit 2010 generating target
value on the fly with LUT space-saver circuit 2059). The
method further includes at least dynamically generating at
least a second target value that is associated with at least a
second key (e.g. at least encryption circuit 810 or encryption
circuit 2010 using KST 814 or KST 1414 or generating
target value on the fly). The method further includes at least
encrypting at least one message block of the at least one or
more message blocks to generate at least some ciphertext,
the encryption being performed with at least one operation
that includes at least one XOR operation, the at least one
XOR operation being performed at least in part with the first
target value and with at least the second target value, the first
target value and the second target value being accessed at
partly via the first and second keys, respectively (e.g. with
encryption circuit 810 with, for example, encryption algo-
rithm A). The method further includes at least one process-
ing device associated with the first chiplet, transmitting the
at least some ciphertext to a second chiplet (e.g. with secure
host 104 and TX circuit 815).

[0343] In some further embodiments, the cryptographic
method further includes at least wherein the first key is the
message block of the one or more message blocks (e.g.
message block 502A) and the first target value is at least one
of a random number or a pseudo-random number accessed
as a substitute for the first key (e.g. target value 504A).
[0344] In some further embodiments, the cryptographic
method further includes at least wherein the one or more
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message blocks are one or more ordered message blocks
(e.g. at least message blocks 504A-504D), wherein the
second key is a numerical index value associated with a
position of the at least one message block within the one or
more ordered message blocks (e.g. at least keys 612A-612D
corresponding to positions M[0],M[1], M[2], M[3] of FIG.
5), and wherein the second target value is at least one of a
random number or a pseudo-random number (e.g. KST[0]-
KST[3] of FIG. 6).

[0345] In some further embodiments, the cryptographic
method further includes at least wherein dynamically gen-
erating at least a first target value that is associated with at
least a first key includes at least generating a dynamic
substitution box (e.g. LUT 500) that includes at least (i) the
first key (e.g. 502A) and (ii) the first target value (e.g. 504A),
the generating the dynamic substitution box including at
least: a) generating a plurality of keys (e.g. 502A-502D) that
include the first key, including at least generating the plu-
rality of keys to include at least respective numerical rep-
resentations of the one or more message blocks (e.g. 0000
for 502A, 0001 for 502B, etc.), and b) generating a plurality
of target values, including at least generating the first target
value as a substitute value for a numerical representation
associated with the first key (e.g. 504A-504D). In some
further particular embodiments, the cryptographic method
further includes at least ¢) sorting the plurality of keys in the
dynamic substitution table, the sorting being based on at
least in part on the respective numerical representations of
the plurality of keys (e.g. 0000 of 502A, 0001 of 502B, etc.)
and d) accessing the first target value (e.g. LUT[0], LUT[1],
etc.) in the dynamic substitution box by locating the first key,
the locating being performed at least in part by searching the
sorted numerical representations of the plurality of keys to
locate the numerical representation of the first key.

[0346] In some further embodiments, the cryptographic
method further includes at least wherein dynamically gen-
erating at least a second target value that is associated with
at least a second key includes at least generating a lookup
table (e.g. KST 600) that includes at least (i) the second key
(e.g. 612A) and (ii) the second target value (e.g. 614A), the
generating the lookup table including at least, a) generating
a plurality of keys (e.g. 612A-612D) that include at least the
second key, the plurality of keys including at least respective
numerical index values (e.g. 0000 for 612A, 0001 for 612B,
etc.), and b) generating a plurality of target values (e.g.
614A-614D) that include at least the second target value,
respective ones of the plurality of target values being acces-
sible in the lookup table at least in part via the respective
numerical index values of the plurality of keys. In some
further particular embodiments, the cryptographic method
further includes at least accessing the second target value
(e.g. KST[O], KST[1], etc.) in the lookup table by locating
the second key (e.g. keys 0 of 612A, 1 of 612B, 2 of 612C,
etc.), the locating being performed at least in part by
searching the respective numerical index values of the
plurality of keys to locate a numerical index value associated
with the second key.

[0347] In some further embodiments, the cryptographic
method includes at least wherein generating the first target
value includes at least generating a first random number (e.g.
r0 327A) with a true random number generator (e.g. 126,
328A) and wherein generating the second target value
includes at least generating a second random number (e.g. rl
327B) with the true random number generator (e.g. 126,
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328A). In some further particular embodiments, the crypto-
graphic method includes at least wherein generating the first
target value additionally includes generating the first target
value based at least in part on an output of a pseudo-random
number generator (e.g. PRNGO 322A) seeded with a seed
that includes at least the first random number (e.g. r0), and
wherein generating the second target value additionally
includes generating the second target value based at least in
part on an output of a pseudo-random number generator (e.g.
PRNG1 324A) seeded with a seed that includes at least the
second random number (e.g. rl).

[0348] In some further embodiments, the cryptographic
method further includes at least generating a tag based at
least in part on the message, a nonce value, and some
additional data, and concatenating the tag with at least the
message block of the one or more message blocks. The
encrypting at least a message block of the at the one or more
message blocks further includes encrypting at least the
concatenation of the tag with the at least one message block.
[0349] In some further embodiments, the cryptographic
method further includes at least wherein the method is
performed with a first chiplet that is part of a resource
constrained device (e.g. smart camera 1).

[0350] In some further embodiments, the cryptographic
method further includes at least wherein the dynamically
generating at least a first target value that is associated with
at least a first key includes at least dynamically generating
at least a first substitute value for the first key and wherein
the generating the first substitute value does not include
generating a lookup table containing the first substitute value
(see e.g. encryption circuit 2010 with LUT space-saver
circuit 2059 with input r0 (2017).

[0351] In some further particular embodiments, the cryp-
tographic method further includes at least with at least one
processing device associated with the first chiplet, transmit-
ting the at least some ciphertext to a second chiplet with at
least one of the following communication modes: a) trans-
mitting in a no-delay half-duplex mode in which the first
chiplet encrypts a message block of the one or more message
blocks while waiting for a message from the second chiplet,
b) transmitting in a space-saver mode in which the first
chiplet saves memory resources by generating the first target
value without generating a dynamic substitution box, c)
transmitting in a two-key encryption mode in which a first
security configuration is used for transmitting from the first
chiplet to the second chiplet and a second security configu-
ration is used for transmitting from the second chiplet to the
first chiplet, d) transmitting in a two-key space-saver mode
in which the security configuration is a combination of the
space-saver mode and the two-key encryption mode, or e)
transmitting in a high performance mode that utilize data
compression and data decompression.

[0352] In some embodiments, a cryptographic method is
performed at least in part at a second chiplet. The method
includes at least dynamically generating a first lookup table
(e.g. LUT 500) that includes a plurality of first target values
and a plurality of first keys, a given first target value of the
plurality of first lookup values being obtainable based on
corresponding first key of the plurality of first keys, and
wherein the first lookup table is at least one of usable or
configurable as an inverse lookup table (e.g. LUT 500 used
as an inverse lookup table, sorted inverse LUT 700, etc.), for
obtaining the corresponding first key based at least in part on
the given first target value. The method further includes at
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least dynamically generating at least a second lookup table
(e.g. KST 600) that includes a plurality of second target
values and a plurality of second keys, a given second target
value of the plurality of second target values being obtain-
able based on a corresponding second key of the plurality of
second keys. The method further includes at least decrypting
at least one ciphertext block of one or more ciphertext blocks
to generate at least some plaintext, the decryption being
performed at least partly with one or more operations that
include at least one or more XOR operations, the one or
more XOR operations performed at least in part with the
corresponding first key obtained at least partly via the given
first target value and with at least the given second target
value obtained at least partly via the corresponding second
key (See e.g. method 1200). The method further includes at
least verifying the at least some plaintext. And the method
further including at least outputting the at least some plain-
text responsive to a successful verification of the plaintext.
[0353] In some further embodiments, the cryptographic
method further includes at least wherein the at least one
XOR operation reverses at least one previous XOR opera-
tion, performed at the first chiplet during encryption, of the
one or more ciphertext blocks.

[0354] In some further embodiments, the cryptographic
method further includes at least receiving ciphertext at the
second chiplet transmitted from a first chiplet and parsing
the ciphertext into the one or more ciphertext blocks.
[0355] In some further embodiments, the cryptographic
method further includes at least wherein the verifying the at
least some plaintext includes at least a) separating the at least
some plaintext into a first tag and at least a portion of a
message, b) computing a second tag based at least in part on
the at least a portion of a message, on a nonce, and on
additional data, ¢) comparing the first tag and the second tag,
and d) if the first tag and the second tag do not match issuing
an error message indicating that verification of the at least
some plaintext has failed.

[0356] In some further embodiments, the cryptographic
method further includes at least wherein the first target
values are at least one of random or pseudo-random numbers
and wherein the first lookup table is usable as an inverse
lookup table by at least a) selecting a block of ciphertext of
the one or more ciphertext blocks, the block of ciphertext
including at least a numerical value, b) searching the target
values of the first lookup table for a particular target value
that matches the numerical value of the selected block of
ciphertext, the searching performed with at least a linear
search algorithm; and c¢) based at least in part on the
particular target value obtaining a first key of the plurality
that corresponds in the first lookup table with the particular
target value.

[0357] In some further embodiments, the cryptographic
method further includes at least wherein the first target
values of the plurality are at least one of random or pseudo-
random numbers, and wherein the first lookup table is
configurable and usable as an inverse lookup table by at least
a) sorting the plurality of first target values, b) selecting a
block of ciphertext of the one or more ciphertext blocks, the
block of ciphertext including at least a numerical value, c¢)
searching the target values of the first lookup table for a
particular target value that matches the numerical value
associated with the selected block of ciphertext, the search
performed with at least a non-linear search algorithm, and d)
based at least in part on the particular target value obtaining
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a first key of the plurality that is associated in the first lookup
table with the particular target value.

[0358] In some embodiments, a cryptographic method is
performed at least in part at a first chiplet based on a
resource-constrained computing device. The method
includes a) at least with the first chiplet, parsing a message
into at least one or more message blocks, b) dynamically
generating at least a first target value that is associated with
at least a first key, ¢) dynamically generating at least a
second target value that is associated with at least a second
key, d) encrypting at least a message block of the at least one
or more message blocks to generate at least some ciphertext,
the encryption being performed with at least one or more
operations that include one or more XOR operations, the at
least one XOR operation being performed at least in part
with the first target value and with at least the second target
value, the first target value and the second target value being
accessed at partly via the first and second keys, respectively,
e) with at least one processing device associated with the
first chiplet, transmitting the at least some ciphertext to a
second chiplet, ) receiving ciphertext for decryption and
transmitting the ciphertext to another computing device for
decryption.

[0359] Part Two

[0360] In the encryption and decryption algorithms of
methods 1100 and 1200, the tag is authenticated after the
decryption. For example, in method 1100, if the tag is a
CRC, it is computed as T=:CRC(NJ||A|M), where N is a
nonce, A is associated data, and M is the message. Method
1100 then concatenates the tag to the message, as in M||T.
The concatenation is then encrypted.
[0361] And in performing decryption, method 1200
decrypts the ciphertext C to obtain M||T and then M and T.
Then for authentication, method 1200 then computes tag
T":=CRC(NJ||A|M). The method then verifies the computed
CRC T' against the decrypted CRC T. Thus, the decryption
takes place before the authentication.
[0362] But decryption takes more time and computing
resources than CRC-based authentication. Therefore, for at
least some implementations it is desirable to authenticate
before incurring the computational expense of decryption.
[0363] One approach is the encrypt-then-tag mode. In the
encrypt-then-tag mode, the following are performed during
encryption:
[0364] a. Encrypt the message M using the LUT and
KST to obtain the ciphertext C,,.
[0365] b. Compute the CRC on the ciphertext C, along
with the nonce N and the associated data A.
[0366] c. Encrypt the CRC using the LUT and KST to
obtain the ciphertext C,.
[0367] d. Compute the ciphertext C as the concatenation
of C,and C,.

[0368] The following steps are performed during decryp-
tion:
[0369] a. Parse ciphertext C into C, and C,.
[0370] b. Decrypt the ciphertext C to obtain the CRC.
[0371] c. Recompute the CRC on ciphertext C, along

with the nonce N and the associated data A.

[0372] d. Verify the computed CRC against the
decrypted CRC.

[0373] e. If verification is successful, decrypt the
ciphertext C, to obtain the message M.
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[0374] Before proceeding to discuss specific embodi-
ments, this discussion turns to a high-level overview of three
modes of authenticated encryption.

[0375] Referencing FIG. 23A, a sequence 2300 of com-
puting a tag and then encrypting illustrates tag-then-encrypt
mode. This mode is used in method 1100. Sequence 2300
begins with plaintext 2302. Plaintext 2302 is input to tag
algorithm 2306 along with a TKey 2310. In some embodi-
ments, tag algorithm 2306 is a CRC routine performed by,
for example, CRC engine of 122. In some alternative
embodiments, tag algorithm 2306 is a hash function. In
some particular alternative embodiments, tag algorithm
2306 is a keyed hash function that accepts as input key 2304
(e.g. a cryptographic key). Tag algorithm 2306 outputs tag
2312. In some embodiments, tag 2312 is a CRC. In some
alternative embodiments, tag 2312 is a hash.

[0376] Although FIG. 23A includes a key (TKey 2310) as
input to tag algorithm 2306, this does not indicate that a key
is necessarily used for the tagging. For example, where the
tag algorithm 2306 is a CRC, no key is used in computing
the CRC. However, a key may be used for encrypting the
CRC value. In some embodiments, TKey 2310 is an encryp-
tion key that includes at least LUT, KST, ctr. In some other
embodiments, TKey 2310 is another type of key. Regardless
of the type of key used, for security the CRC must be
encrypted. In some embodiments key 2304 and Tkey 2310
are the same key. In other embodiments key 2304 and TKey
2310 are different keys. Various modes that include encryp-
tion of a CRC (or other type of tag) are described with
reference to FIGS. 23A-23C. And the above discussion
applies to those various modes.

[0377] Continuing with sequence 2300, plaintext 2302 is
concatenated (as shown) with the tag 2312. The concatena-
tion 2308 of plaintext 2302 and tag 2312 is then processed
via encryption 2314, which utilizes key 2304 to produce
ciphertext 2316.

[0378] Thus, in the above sequence 2300 illustrating tag-
then-encrypt mode, the tag is computed and concatenated
with the plaintext before both are encrypted. The tag-then-
encrypt mode has an advantage of high security because the
tag 2312 is computed on a plaintext, which is encrypted
before the transmission, and tag 2312 is encrypted, which is
part of the ciphertext 2316. A disadvantage is that a com-
putational cost for decryption is incurred even if authenti-
cation fails.

[0379] Referencing FIG. 23B, a sequence 2330 of com-
puting a tag in parallel with encrypting a message illustrates
encrypt-and-tag mode. Sequence 2330 begins with plaintext
2302 that is input in parallel to encryption 2314 and to tag
algorithm 2306. Encryption 2314 accepts a key 2304 as
input and outputs ciphertext 2316. Tag Algorithm 2306
accepts a TKey 2310 and outputs tag 2312. Ciphertext 2316
and tag 2312 are concatenated to form concatenation 2340.

[0380] Thus, in the above sequence 2330 illustrating
encrypt-and-tag mode, a device such as a chiplet computes
in parallel (a) a tag 2312 from plaintext 2302, and (b)
ciphertext 2316 from the encryption of plaintext 2302.
Encryption algorithm A, discussed above in tandem with
method 1100 can be modified into encrypt-and-tag mode as
is discussed below. The encrypt-and-tag mode has an advan-
tage of performing encryption and computing a tag in
parallel. A disadvantage is that authentication is verified
after the decryption of the entire plaintext.
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[0381] Referencing FIG. 23C, a sequence 2360 of encrypt-
ing and computing a tag illustrates encrypt-then-tag mode.
Sequence 2360 begins with plaintext 2302 being input to
Encryption 2314. Encryption 2314 also accepts key 2304 as
input and then outputs ciphertext 2316, which may be
referred to as message ciphertext 2316. Tag Algorithm 2370
accepts the ciphertext 2316 along with a TKey 2310 as input
and outputs a tag 2376 of the ciphertext 2316, which may be
referred to as tag ciphertext 2376. The tag 2376 is concat-
enated with the ciphertext 2316 to form concatenation 2372.

[0382] Thus, in encrypt-then-tag mode a chiplet encrypts
the plaintext 2302 to obtain ciphertext 2316 and then com-
putes a tag 2376 from the ciphertext 2316. Encryption
algorithm A, discussed above in tandem with method 1100
can be modified into encrypt-then-tag mode. Instead of
computing the tag as T:=CRC(N]||A||M), the tag is computed
as T:=CRC(N]||A||C), where C is the ciphertext.

[0383] Referencing FIG. 24, method 2400 provides a
method of encryption for encrypt-and-tag mode. The dis-
cussion of method 2400 will be in tandem with encryption
algorithm E.

[0384] Encryption Algorithm E

Enc((LUT, KST, ctr), A, M)

1. If (ctr + len + 2 + len' + 2 = ref_rate) *
a. Refresh Session Key (Execute Key Exchange Protocol.)

2. Compute nonce as N := KST[ctr] 7.

3. Compute CRC on message M as T := CRC (N || A || M).
4. Parse M[1] || M[2] || ... || M[len] := M.

5. Parse M'[1] || M'[2] || ... | M'[len’] := T.

6

7

. Initialize the temporary variable, temp = N 1.
. Fori=12,..,len
a. Parse t; || t, || ... |'t,, := temp.
b. Compute val :==t, D t, D ... Dt e.
¢. Compute C[i] = temp := LUT [M[i] D val] &
KSTjctr + i] & .
8. Compute C[len] := C[len] & KST[ctr + len + 1].
9. Initialize the temporary counter, ctr' := ctr + len + 2.
10. Initialize the temporary variable, temp' := KST[ctr'].
11. Fori' :==1,2, ..., len’

a. Parse t’ ||t || ... || t,’ := temp".
b. Compute val' ==t D t,' D ... Dt 'e.
¢. Compute C'[i'] := temp' := LUT[M'[i'] © val] D

KSTjctr' + i'] &F .
12. Compute C'[len’] := C'[len'] & KST[ctr’ + len’ + 1].
13. Update counter ctr := ctr + len + 2 + len' + 2.
14. Compute ciphertext C := C[1] ] C[2] | ... || C[len] || C'[1] ] C'[2] | .-
|| C'[len’].
15. Return C and ctr.
*: If counter is initialized as ctr := KST[0] mod 2%, then, depending
on the implementation, the condition will be:
a. (blk_ctr + len + 2 = ref rate), or
b. (ctr + len + 2 — KST[0] = ref_rate).
F: Nonce can also be randomized as:
d. Compute b := N & 0 x 01. (For the first value, N := KST[0])
e. Compute idx :=idx + 1.  (For the first value, idx := 0)
f. Compute N := PRNG_,(r; || idx).
: Variable temp can also be computed as temp := LUT[N].
: For some Integer s, variable val can also be computed as:
val i=t, D (t, <<s) D ... D (t, <<s(m - 1))
% C[i] can also be computed as:
a. Compute temp := LUT[M[i] €@ val].
b. Compute C[i] := temp D KST[ctr + i].

»

[0385] Encryption algorithm E has a number of changes
relative to encryption algorithm A. But first, unchanged are
methods 900 and 1000 for key generation for sender and
receiver, respectively. Also, the inputs and outputs for
encryption algorithm E are the same as for encryption
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algorithm A. These changes are discussed below in the
context of the discussion of the operations of method 2400.
[0386] Algorithm E, as well as Algorithms F through H
discussed below, have operations that specifically refer to a
CRC. This is not intended to be limiting. The CRC is just
one example of a tag algorithm. Those skilled in the art will
recognize that where a CRC is specifically referred to, that
other types of tag algorithms, such as hash functions, could
be substituted.

[0387] Returning to reference FI1G. 24, after a start opera-
tion 2401, method 2400 proceeds to operation 2402 of
inputting the encryption key (LUT, KST, ctr), associated
data A, and message M for encryption.

[0388] Control moves to operation 2404 of determining if
the block count exceeds ref rate, where ref rate is the
refresh rate of the session key. Encryption algorithm E
makes this determination as: If (ctr+len+2+len'+2) is greater
than or equal to ref rate. A difference from encryption
algorithm A is that len', the length of the CRC is included in
the condition for refreshing the session key. And the addi-
tional 2 is for processing of a nonce and the last block of tag
ciphertext (below).

[0389] 1If it is determined that the block count exceeds
ref_rate, then control moves to operation 2406 for refreshing
the session key. This is unchanged from method 1100 of
FIG. 11 and reference is made to that discussion. After the
session key is refreshed, control moves to operation 2408
below.

[0390] If it is determined that the block count does not
exceed the ref rate, then in operation 2408 nonce N is
initialized. This operation is unchanged from operation 1110
of method 1100. Reference is made to the discussion of
operation 1110.

[0391] Control moves to operation 2410 of computing tag
T on NJ|A|M. This operation is unchanged from operation
1112 of method 1100. Reference is made to the discussion of
operation 1112.

[0392] Control moves to operation 2414 of Parsing M into
M[1], M[2], . . ., M[len]. This is different than operation
1114 where the concatenation of M||T is parsed. In method
2400 the message M and the CRC are parsed separately. The
message M is parsed in operation 2414 and the CRC is
parsed in operation 2426 (discussed below).

[0393] Control moves to operation 2416 of initializing a
counter variable i with 1.

[0394] A loop is executed that includes operation 2418 of
determining if the counter i is less than or equal to the
number of message blocks len. If the counter i is greater than
len, the control moves to exiting the loop and proceeding to
operation 2424 discussed below. If the counter i is less than
or equal to len, then control stays in the loop to execute
operation 2420 of computing ciphertext block C[i] and then
to operation 2422 of updating the counter i. This loop is
unchanged from operations 1118, 1120, and 1122 of method
1100 of FIG. 11, and reference is made to that discussion.
[0395] Control moves to operation 2424 of computing the
last ciphertext block C[len]. This operation is unchanged
from operation 1124 of method 1100. Reference is made to
that discussion.

[0396] Control moves to operation 2426 which parses the
tag T into tag blocks M' [1], M' [2], . . . M'[len']. M'[ ] refers
to tag blocks (i.e. the parsed blocks of tag) and len' is the
number of tag blocks. In some embodiments, the size of the
tag blocks is the same as the size of the message blocks and
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is governed by the value “b” discussed above. Operation
2426 corresponds to step 5 of encryption algorithm E.
[0397] Control moves to operation 2428 which initializes
a counter variable i' to 1. Encryption algorithm E includes at
step 9, initializing an additional counter ctr:=ctr+len+2,
which is the current value of the counter ctr, plus len which
is the number of message blocks, plus 2. Encryption algo-
rithm E further includes initializing a temporary variable,
temp' to KST[ctr'], which is the KST target value associated
with a key value equal to ctr'.

[0398] A loop is executed that includes operation 2430
which determines if the counter 1' is less than or equal to the
number of tag blocks len'. If no, then control exits the loop
and proceeds to operation 2436 discussed below. If yes, then
control stays in the loop to execute operation 2432 which
computes tag ciphertext block C'[i'] where C'[i'] is a tag
ciphertext block (i.e. ciphertext of a tag block). The loop
then continuing to operation 2434 which updates the counter
i' before repeating the loop. The loop repeats until operation
2430 evaluates to yes, then control moves to operation 2436.
[0399] This loop is at least substantially similar to opera-
tions 1118, 1120, and 1122 of method 1100 of FIG. 11,
except that the variable temp' replaces temp, temp' is parsed
into t'[ ] blocks instead of t[ ] blocks and the variable val'
replaces val. Therefore, reference is again made to that
discussion.

[0400] After control exits the loop, operation 2436 pro-
cesses the last tag ciphertext block C'[len']. This operation is
substantially similar to operation 1124 of method 1100
except that the ciphertext block is C' instead of C, the
number of blocks is len' for the number of CRC ciphertext
blocks instead of len for the number of message blocks, and
the counter variable used is ctr' instead of ctr. Reference is
made to that discussion.

[0401] Control moves to operation 2438 of updating the
counter ctr. In some embodiments, in accordance with
encryption algorithm E, the update is ctr:=ctr+len+2+len'+2,
which is the usual update from operation 1126 plus len'
which is the number of tag blocks plus an additional 2 for
processing of the nonce value and the last tag ciphertext
block.

[0402] Control moves to operation 2440 of concatenating
C[1],C[2], ... C[len] and C' [1], C' [2], . . . C'[len'], to form
the final ciphertext C. That is, the message ciphertext blocks
corresponding to the message M are concatenated, the
ciphertext blocks corresponding to the CRC (e.g. the tag) are
concatenated, and then the tag ciphertext is appended to the
message ciphertext to form the final ciphertext C.

[0403] Control moves to operation 2446 of outputting C
and ctr before moving to a stop operation 2448.

[0404] Referencing FIG. 25, method 2500 provides a
method of decryption for encrypt-and-tag mode. Method
2500 decrypts the ciphertext C output by method 2400. The
discussion of method 2500 will be in tandem with decryp-
tion algorithm F.

[0405] Decryption Algorithm F
Dec((LUT, KST, ctr), A, C)
1. Compute nonce as N := KST[ctr] t.
2. Parse C[1] || C[2] || ... | Cllen] | C'[1] | C'[2] || ... || C'[len] == C.
3. Compute C[len] := C[len] €& KST[ctr + len + 1].
4. Initialize the temporary variable, temp := N 1.
5. Fori:=12,..,len
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-continued

Dec((LUT, KST, ctr), A, C)

a. Parse t; |t || ... || t, = temp.

b. Compute val :==t, ©t, D ... Dt e.

¢. Compute temp = C[i]% .

d. Compute M[i] := LUT™! [C[i] @ KST[ctr + i]] D vals¥ .
. Compute message M = M[1] || M[2] | ... || M[len].
. Initialize the temporary counter, ctr' == ctr + len + 2 .
. Compute C'[len’] := C'[len'] D KST[ctr' + len’ + 1].
. Initialize the temporary variable, temp' := KST[ctr'] .
. Fori':==1,2, ..., len

a. Parse t,' |t || ... | t,,’ = temp".

b. Compute val' ==t Dt D ... Dt &.

¢. Compute temp' := C'[i"|4# .

O O 0 =1 Oy

—

d. Compute MY[i"] := LUT'[C'[i"] @ KST[otr' + i']] © val'# .
11. Extract T := M1] || M'[2] || ... || M[len].
12. Compute CRC on message M as T' := CRC(N || A | M).
13. If(T==T)

a. Update counter ctr := ctr + len + 2 +len' + 2.
b. Return M and ctr.
Else
a. Return Error.
: Nonce can also be randomized as:
g. Compute b := N & 0 x 01. (For the first value, N := KST[0])
h. Compute idx :=idx + 1.  (For the first value, idx :=0)
i. Compute N := PRNG_,(r; || idx).
: Variable temp can also be computed as temp := LUT[N].
: For some Integer s, variable val can also be computed as:
val =t D (t, <<s) D ... D (t,, <<s(m - 1))
: M[i] can also be computed as:
e. Compute temp := C[i] & KST[ctr + i].
f. Compute M[i] := LUT![temp] & val.

14.

»

[0406] Decryption algorithm F has a number of changes
relative to decryption algorithm B. But first, unchanged are
methods 900 and 1000 for key generation for sender and
receiver respectively. Also, the inputs and outputs for
decryption algorithm F are the same as for decryption
algorithm B. Changes from decryption algorithm B are
discussed below in the context of the discussion of the
operations of method 2500.

[0407] Returning to reference FIG. 25, after a start opera-
tion 2502, method 2500 proceeds to operation 2504 of
inputting the decryption key (LUT, KST, ctr), associated
data A, and ciphertext C for decryption.

[0408] Control moves to operation 2506 of initializing
Nonce N. This operation is unchanged from operation 1206
of method 1200. Reference is made to that discussion.
[0409] Control moves to operation 2508 of parsing cipher-
text C into ciphertext blocks, including message ciphertext
blocks denominated C[ ] associated with the encrypted
message and tag ciphertext blocks denominated C'[ | asso-
ciated with the encrypted tag. More specifically, in some
embodiments, C is parsed into C[1], C[2], . . . C[len] and
C'[1], C'[2], . . . C'[len']. In the foregoing, len is once again
the number of ciphertext blocks associated with the message
M and len' is the number of ciphertext blocks associated with
the CRC.

[0410] Control moves to operation 2510 of processing the
last message ciphertext block, C[len]. This operation is
unchanged from operation 1210 of method 1200 and there-
fore reference is made to the discussion of operation 1210
above.

[0411] Control moves to operation 2512 of initializing
counter variable i to 1. Consistent with some embodiments,
decryption algorithm F also includes initializing a temp
variable to be equal to nonce N. This operation is unchanged
from that discussed in association with operation 1212 of

24
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method 1200. Reference is therefore made to the discussion
related to operation 1212 above.

[0412] A loop is executed that includes operation 2514 of
determining if the counter i is less than or equal to the
number of message blocks len. If no, then control exists the
loop and proceeds to operation 2520 (below). If yes, then
control stays in the loop to execute operation 2516 which
computes decrypted message block M[i] and then to opera-
tion 2518 which updates the counter i. This loop is
unchanged from operations 1214, 1216, and 1218 of method
1200 and reference therefore is made to that discussion
regarding method 1200.

[0413] Upon exiting the above loop, control moves to
operation 2520 of concatenating the message blocks M[1],
MJ2], ..., M[len] to form the complete decrypted message
M. Operation 2520 is different from operation 1220 of
method 1200 in that the concatenated message blocks form
only message M. In operation 1220 the concatenated blocks
form a concatenation of the message M and a tag T, as in
M||T. However, in method 2500 the processing of tag
ciphertext blocks is performed separately.

[0414] The processing of the tag ciphertext blocks begins,
in some embodiments, with operation 2522 of processing
the last tag ciphertext block, that is C'[len']. Except for the
substitution of len' for len and C' for C, this operation is
unchanged from operation 1210 of method 1200. Reference
is made to discussion of operation 1210.

[0415] Consistent with some embodiments, decryption
algorithm F also includes initializing a counter ctr'. In some
particular embodiments, this takes the form of, for example,
ctr:=ctr+len+2, which is the counter ctr plus len for the
number of message blocks plus 2 for the processing of the
nonce in operation 2506 and the last message ciphertext
block in operation 2510.

[0416] Control moves to operation 2524 of initializing
counter variable i' with 1. Consistent with some embodi-
ments, decryption algorithm F also includes initializing a
variable temp' as equal to KST[ctr'].

[0417] A loop is executed that includes operation 2526 of
determining if the counter i' is less than or equal to len',
which is the number of tag ciphertext blocks. If no, then
control exits the loop and proceeds to operation 2532
(below). If yes, then control stays in the loop to execute
operation 2528 of computing decrypted tag block M'[i] and
then to operation 2530 which updates the counter i'. This
loop is analogous to the operations 1214, 1216, and 1218 of
method 1200, except that the variable temp' is substituted for
temp, temp' is parsed into t'[ | blocks instead of t[ ]| blocks
and the variable val' is substituted for val. With those
changes in mind, reference therefore is made to that discus-
sion regarding method 1200.

[0418] Control moves to operation 2532 which concat-
enates the decrypted tag blocks M'[1], M'[2], . . . M'[len'] to
obtain the complete decrypted tag T (e.g. a CRC). This is
different from operation 1220 of method 1200 where the
concatenated blocks M[1], M[2], . . . M[len] yielded a
concatenation of the message and the tag, as in M|[T. In
operation 2500 the ciphertext blocks associated with the tag
T are processed separately from the ciphertext blocks asso-
ciated with the message M.

[0419] Control moves to operation 2534 of computing a
tag T' (e.g a CRC) on NJ|A|M. This step is at least similar to
the operation 1222 of the method 1200. Reference is made
to that discussion.
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[0420] Control moves to operation 2536 of determining if
the computed tag T' is equal to the decrypted tag T. If no,
then control moves to operation 2542 of outputting an error
message and then to stop operation 2544.

[0421] If yes, then control moves to operation 2538 of
updating the counter ctr. Referencing decryption algorithm
F, in some embodiments, operation 2538 is performed by
ctr:=ctr+len+2+len'+2, which includes the usual update of
ctr plus the number of tag blocks plus 2 for the processing
of the nonce and the last tag ciphertext block. Control then
moves to operation 2540 which is the outputting of M and
ctr. Finally, there is a stop operation 2544.

[0422] Referencing FIG. 26, method 2600 provides a
method of encryption for encrypt-then-tag mode. In this
mode, encryption of a message M and computation of a tag
T on the encrypted message is performed first before they
are joined to form a final ciphertext C. The discussion of
method 2600 will be in tandem with encryption algorithm G

[0423] Encryption Algorithm G

Enc((LUT, KST, ctr), A, M)

1. If (ctr + len + 2 + len' + 2 = ref_rate) *
a. Refresh Session Key (Execute Key Exchange Protocol.)
2. Compute nonce as N := KST[ctr] .
3. Parse M[1] || M[2] || ... | M[len] := M.
4. Initialize the temporary variable, temp := N .
5. Fori:=12,..,len
a. Parse t; |t || ... || t, = temp.
b. Compute val :==t, ©t, D ... Dt e.
¢. Compute C[i] := temp := LUT[M[i] € val] &
KST(otr + i]*F .
6. Compute C[len] := C[len] & KST[ctr + len + 1].
7. Compute ciphertext C := C[1] || C[2] | ... || C[len].
8. Compute CRC on ciphertext C as T := CRC(N || A || C).
9. Parse M'[1] || M'[2] | ... | M'[len'] := T.
10. Initialize the temporary counter, ctr' := ctr + len + 2.
11. Initialize the temporary variable, temp’ := KST[ctr'] 8 .
12. Fori' =1,2, ..., len

a. Parse t;' || to' || ... || t,,,’ = temp’.
b. Compute val' ==t Dt,' D ... Dt 'e.
¢. Compute C'[i'] := temp' := LUT[M'[i'] © val] D

KST[etr' + '] 4 .
13. Compute C'[len’] := C'[len'] & KST[ctr’ + len’ + 1].
14. Update counter ctr := ctr + len + 2 + len' + 2.
15. Compute ciphertext C := C || C'[1] | C'[2] || ... || C'[len"].
16. Return C and ctr.
*: If counter is initialized as ctr := KST[0] mod 2%, then, depending
on the implementation, the condition will be:
a. (blk_ctr + len + 2 = ref rate), or
b. (ctr + len + 2 — KST[0] = ref_rate).
F: Nonce can also be randomized as:
g. Compute b := N & 0 x 01. (For the first value, N := KST[0])
h. Compute idx :=idx + 1.  (For the first value, idx :=0)
i. Compute N := PRNG_,(r; || idx).
I: Variable temp can also be computed as temp := LUT[N].
4% temp’ can also be initialized as C[len]. This will reduce the cost of
invoking one PRNG.
#: For some Integer s, variable val can also be computed as:
val =t D (t, <<s) D ... D (t,, <<s(m - 1))
#¢: CJ[i] can also be computed as:
e. Compute temp := LUT[M[i] €@ val].
f. Compute C[i] := temp @ KST[ctr + i].

[0424] Encryption algorithm G has a number of changes
relative to encryption algorithm A. But first, unchanged are
methods 900 and 1000 for key generation for sender and
receiver, respectively. Also, the inputs and outputs for
encryption algorithm G are the same as for encryption
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algorithm A. These changes from encryption algorithm A are
discussed below in the discussion of the operations of
method 2600.

[0425] Returning to reference FIG. 26, after a start opera-
tion 2602, the control moves to operation 2604 of inputting
the encryption key (LUT, KST, ctr), associated data A, and
message M to be encrypted.

[0426] Control moves to operation 2606 of determining if
a block count exceeds the session key refresh rate, ref_rate.
Consistent with some embodiments, Encryption algorithm G
makes this determination as: If (ctr+len+2+len'+2) is greater
than or equal to ref rate. A difference from encryption
algorithm A is that len', the number of the tag blocks plus an
additional 2, for processing the nonce and the last block of
ciphertext is included in the condition for refreshing the
session key.

[0427] If operation 2606 evaluates to yes, then control
moves to operation 2608 of refreshing the session key.
Operation 2608 is unchanged from operation 1108 of
method 1100. Therefore, the discussion of operation 1100 is
referenced. After the refreshing of the session key, control
moves to operation 2610 below.

[0428] Returning to operation 2606, if operation 2606
evaluates to no, the control moves to operation 2610 of
initializing Nonce N. Operation 2610 is unchanged from
operation 1110 of method 1100. Therefore, reference is
made to the discussion above of operation 1110.

[0429] Control moves to operation 2612 of Parsing M into
M[1], M[2], . . ., M[len]. This is different than operation
1114 where the concatenation of M||T is parsed. In method
2600, the message M and the tag (e.g. CRC) are parsed
separately.

[0430] Control moves to operation 2614 of initializing a
counter variable i with 1. For some specific embodiments,
encryption algorithm G also initializes temporary variable
temp to nonce N.

[0431] A loop is executed that includes operation 2616 of
determining if the counter i is less than or equal to the
number of message blocks len. If no, control exits the loop
and proceeds to operation 2622 (below). If yes, then control
stays in the loop to execute operation 2618 which encrypts
message block M[i] to compute message ciphertext block
C[i] and then to operation 2620 which updates the counter
i. The loop is repeated with 1 incremented on each loop until
operation 2616 evaluates to no and control exits the loop.
This loop is unchanged from operations 1118, 1120, and
1122 of method 1100 of FIG. 11, and reference is made to
that discussion.

[0432] Control moves to operation 2622 of computing the
last message ciphertext block C[len]. This operation is
unchanged from operation 1124 of method 1100. Reference
is made to that discussion.

[0433] Control moves to operation 2624 of concatenating
message ciphertext blocks C[1], C[2], . . . C[len] to obtain
C, which is a ciphertext of just message M. This is different
from operation 1128 of method 1100 where the concatena-
tion of the C[ | blocks yields a ciphertext of a concatenation
of a message M and a tag T, that is M]||T. This operation 2624
concludes the encrypting of the message M. The next
operations include computing and encrypting a tag T.

[0434] Control moves to operation 2626 of computing a
tag T (e.g. a CRC) on NJA||C, where C is the message
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ciphertext computed above. Then in operation 2628, T is
parsed into tag blocks (denominated M'[ ]), thatis M' [1], M
[2], ... M'len'].

[0435] Control moves to operation 2630 of initializing a
counter variable i' to 1. Encryption algorithm G includes
initializing an additional counter ctr':=ctr+len+2, which is
the current value of the counter ctr, plus len which is the
number of message blocks, plus 2. Encryption algorithm G
further includes initializing a temporary variable, temp' to
KST[ctr.

[0436] A loop is executed that includes operation 2632 of
determining if the counter i' is less than or equal to the
number of tag blocks, which is len'. If no, control exits the
loop and proceeds to operation 2638 (below). If yes, then
control stays in the loop to execute operation 2634 of
encrypting tag block M'[1'] to compute tag ciphertext block
C'[i'"]. The loop then continues to operation 2636 which
updates the counter i' before repeating the loop. The loop
repeats until the counter i' exceeds len', then control moves
to operation 2638.

[0437] This loop is at least substantially similar to opera-
tions 1118, 1120, and 1122 of method 1100, except that the
variable temp' replaces temp, temp' is parsed into t'[ | blocks
instead of t[ ] blocks and the variable val' replaces val.
Therefore, reference is again made to that discussion of
operations 1118, 1120, and 1122.

[0438] After control exits the loop, operation 2638 pro-
cesses the last tag ciphertext block C'[len']. This operation is
substantially similar to operation 1124 of method 1100
except that the ciphertext block is C' instead of C, the
number of blocks is len' for the number of tag ciphertext
blocks instead of len for the number of message blocks, and
the counter variable used is ctr' instead of ctr. Reference is
made to that discussion of operation 1100.

[0439] Control moves to operation 2640 of updating the
counter ctr. In some embodiments, in accordance with
encryption algorithm G, the update is ctr:=ctr+len+2+len'+2,
which in addition to the usual update from operation 1126
includes adding len' which is the number of tag blocks plus
an additional 2 for processing of the nonce value and the last
tag ciphertext block.

[0440] Control moves to operation 2642 of appending C'
[1], C' [2], . . . C'[len'], to C to form the final ciphertext C.
[0441] Control moves to operation 2644 of outputting C

and ctr before moving to a stop operation 2646.

[0442] Referencing FIG. 27, method 2700 provides a
method of decryption for encrypt-then-tag mode. Method
2700 is directed at verifying and decrypting the ciphertext C
created in method 2600. The discussion of method 2700 will
be in tandem with decryption algorithm H.

[0443] Decryption Algorithm H
Dec((LUT, KST, ctr), A, C)
1. Compute nonce as N := KST[ctr] .
2. Parse C || C'[1] || C[2] ] ... | C'[len] := C.
3. Initialize the temporary counter, ctr' := ctr + len + 2 1.
4. Compute C'[len’] := C'[len'] & KST[ctr’ + len’ + 1].
> Initialize the temporary variable, temp' := KST[ctr'] &
6. Fori' :=1,2, ..., len

a. Parse t;' || t5' || ... || t,,,’ = temp'.
b. Compute val' :=t,' @ t,' D ... Dt &,
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-continued

Dec((LUT, KST, ctr), A, C)

¢. Compute temp’ = C'[i"] 2.
d. Compute M[i'] := LUTY[C'[i'] & KST[otr' + i']] @
val' &,

7. Extract T == M[1] || M'[2] || ... | M'[len].

8. Compute CRC on ciphertext C as T' := CRC(N || A | C).

9. If(T=T)

a. Return Error.
10. Parse C[1] || C[2] || ... || C[len] := C.

11. Compute Cl[len] := C[len] & KST[ctr + len + 1].

12. Initialize the temporary variable, temp = N .

13. Fori:=1,2, .., len
a. Parse t; |t || ... || t, = temp.
b. Compute val :==t, D t, D ... Dt e.
¢. Compute temp := C[i] 2.
d. Compute M[i] := LUT[C[i] B KSTctr + i]] & val' .

14. Compute message M = M[1] || M[2] || ... | M[len].

15. Update counter ctr := ctr + len + 2 + len' + 2.

16. Return M and ctr.

F: Nonce can also be randomized as:

a. Compute b :=N & 0 x 01. (For the first value, N := KST[0])
b. Compute idx :=idx + 1.  (For the first value, idx := 0)
¢. Compute N := PRNG,_,(r; | idx).

&. temp' can also be initialized as C[len]. This will reduce the cost of

invoking one PRNG.
I: Variable temp can also be computed as temp := LUT[N].
4. For some Integer s, variable val can also be computed as:
val =t D (t, <<s) D ... D (t,, <<s(m - 1))

. MJi] can also be computed as:
e. Compute temp := C[i] & KST[ctr + i].
f. Compute M[i] := LUT![temp] & val.

[0444] Decryption algorithm H has a number of changes
relative to decryption algorithm B. But first, methods 900
and 1000 for key generation for sender and receiver respec-
tively are unchanged. Also, the inputs and outputs for
decryption algorithm H are the same as for decryption
algorithm B. The changes relative to decryption algorithm B
are discussed below in the discussion of the operations of
method 2700.

[0445] Returning to reference method 2700, after a start
operation 2702, the control moves to operation 2704 of
inputting the decryption key (LUT, KST, ctr), associated
data A, and ciphertext C to be decrypted.

[0446] Control moves to operation 2706 of initializing
Nonce N. This operation is unchanged from operation 1206
of method 1200. Reference is made to that discussion.
[0447] Control moves to operation 2708 of parsing cipher-
text C into message ciphertext C and tag ciphertext blocks
C'[1], C [2], ... C'[len'], len' is the number of tag ciphertext
blocks. That is tag ciphertext C' (encrypted tag) which was
previously appended to C is removed and parsed. The result
is message ciphertext C and C' [1], C' [2], . . . C'[len'].
[0448] Control moves to operation 2710 of processing the
last tag ciphertext block, C'[len']. Consistent with some
embodiments, decryption algorithm H performs this opera-
tion by first initializing a temporary counter ctr':=ctr+len+2,
where ctr is the current value of counter and len is the
number of message ciphertext blocks. Then the following
computation is performed: C'[len']:=C'[len] DKST[ctr'+
len'+1], len' is the number of tag ciphertext blocks. Thus, the
last tag ciphertext block C'[len'] is set to C'[len'] XOR’d with
the subexpression KST[ctr'+len'+1]. The KST[ctr'+len'+1] is
the target value in the KST associated with a key equal to
(ctr'+len'+1). This reverses the computation of the last tag
ciphertext block in operation 2638.
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[0449] Control moves to operation 2712 of initializing a
counter variable i' with 1. Consistent with some embodi-
ments, decryption algorithm H also initializes a temp' vari-
able as equal to KST[ctr']. In another embodiment, the
variable temp' could be initialized as equal to C[len], that is
the last w bits of the message ciphertext C. A difficulty is that
according to FIG. 27, ciphertext C is not parsed until
operation 2728 (below). There are at least two possible
solutions. A first solution is to access the last w bits of C
directly, regardless of whether C is parsed or not. It will be
recalled that w is the length in bits of the ciphertext blocks
(See discussion of w bits relative to FIG. 5). A second
solution is to move operation 2728 to occur before operation
2712. Decryption algorithm H also initializes counter vari-
able ctr' as ctr+len+2.

[0450] A loop is executed that includes operation 2714
which determines if the counter i' is less than or equal to the
number of tag ciphertext blocks len'. If no, then control exits
the loop and proceeds to operation 2720 (below). If yes, then
control stays in the loop to execute operation 2716 of
decrypting tag ciphertext block C'[1'] to compute decrypted
tag block M'[1'] and then to operation 2718 of updating the
counter 1'. The loop is repeated until operation 2714 evalu-
ates to no. This loop is analogous to the operations 1214,
1216, and 1218 of method 1200, except that the variable
temp' is substituted for temp, temp' is parsed into t'[ | blocks
instead of t[ ] blocks and the variable val' is substituted for
val. With those changes in mind, reference therefore is made
to that discussion regarding method 1200.

[0451] Control moves to operation 2720 of concatenating
the decrypted tag blocks M' [1], M' [2], . . . M'[len'] to obtain
the complete tag T. As will be recalled, in operation 2626 of
method 2600, the tag T was computed on NJ||A||C, that is
partly on the ciphertext. Therefore, the tag T is a tag partly
on ciphertext. The foregoing is in contrast to operation 1220
of method 1200 where the concatenated blocks M[1], M[2],
... M[len] yielded a concatenation of the message and the
tag, as in M||T. And in operation 1220, the tag was on
NJ|A|M, partly on the message, not on ciphertext.

[0452] Control moves to operation 2722 which computes
a tag T' (e.g a CRC) on NJ|Allc.

[0453] Control moves to operation 2724 which determines
if the computed tag T' is equal to the decrypted tag T. If no,
then control moves to operation 2726 of outputting an error
message, and then to stop operation 2746.

[0454] If the operation 2724 evaluates to yes, then control
moves to operation 2728 of parsing message ciphertext C
into message ciphertext blocks C[1], C[2], . . . C[len].
[0455] Control moves to operation 2730 of processing the
last message ciphertext block C[len]. This operation is
unchanged from operation 1210 of method 1200 and there-
fore reference is made to the discussion of operation 1210
above.

[0456] Control moves to operation 2732 of initializing
counter variable i to 1. Consistent with some embodiments,
decryption algorithm H includes initializing a temp variable
to be equal to nonce N. This operation is unchanged from
that discussed in association with operation 1212 of method
1200. Reference is therefore made to the discussion related
to operation 1212 above.

[0457] A loop is executed that includes operation 2734 of
determining if the counter i is less than or equal to the
number of message blocks, len. If no, control exits the loop
and proceeds to operation 2740 (below). If yes, then control
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stays in the loop to execute operation 2736 of decrypting
C[i] to compute decrypted message block M[i] and then to
operation 2738 of updating the counter i. The loop repeats
until operation 2734 evaluates to no. This loop is unchanged
from operations 1214, 1216, and 1218 of method 1200 and
reference therefore is made to that discussion regarding
method 1200.

[0458] Upon exiting the above loop, control moves to
operation 2740 which concatenates the message blocks
M[1], M[2], . . ., M[len] to form the complete decrypted
message M. Operation 2740 is different from operation 1220
of method 1200 in that the concatenated message blocks
form only message M. In operation 1220, the concatenated
blocks form a concatenation of the message M and a tag T,
as in MJ|T.

[0459] Control moves to operation 2742 of updating coun-
ter ctr. Consistent with some embodiments, decryption algo-
rithm H updates counter with the following formula: ctr:
=ctr+len+2+len'+2. Thus, the ctr update additionally
includes adding the number of tag blocks len' plus an
additional 2 for the processing of the nonce and the last tag
ciphertext block.

[0460] Control moves to operation 2744 which outputs M
and ctr as the output of method 2700. Control then moves to
a stop operation 2746.

[0461] Some embodiments are now discussed. In discuss-
ing exemplary methods or circuits, exemplary structures that
could perform some actions or perform some functions are
discussed. The discussion of structures is not intended to be
limiting or exhaustive. Those skilled in the art will appre-
ciate that depending on context, other structures could also
be used.

[0462] In some embodiments, a cryptographic method
(e.g. method 2400) is performed in a first chiplet. The
cryptographic method includes at least (1) with one or more
processing devices, computing a tag on a nonce (e.g. 119),
a message (e.g. 117), and other data (e.g. associated data
121), (2) parsing the message into one or more message
blocks to create one or more ordered message blocks (e.g.
blocks M[0], M[1], etc. of FIG. 5), (3) encrypting the one or
more ordered message blocks to obtain one or more ordered
message ciphertext blocks, the encryption including at least
one or more operations that include at least one or more
XOR operations, (4) parsing the tag into one or more tag
blocks to create one or more ordered tag blocks, (5) encrypt-
ing the one or more ordered tag blocks to obtain one or more
ordered tag ciphertext blocks, the encryption including at
least one or more operations that include at least one or more
XOR operations, (6) concatenating the one or more ordered
message ciphertext blocks with the one or more ordered tag
ciphertext blocks to obtain final ciphertext, and (7) trans-
mitting the final ciphertext to a second chiplet.

[0463] In some further embodiments, the cryptographic
method includes at least one of a) computing a CRC on a
concatenation that includes at least the nonce, the message,
and the other data, or b) computing a hash with a hash
function on a concatenation that includes at least a the
nonce, the message, and other data.

[0464] In some further embodiments, the cryptographic
method includes at least wherein the encrypting the one or
more ordered message blocks to obtain one or more ordered
message ciphertext blocks, the encryption including at least
one or more operations that include at least one or more
XOR operations includes at least a) obtaining one or more
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substitute values (e.g. encryption circuit 810 with LUT,
encryption circuit 2010 with space-saver circuit 2059 with
r0 2017) corresponding to the one or more ordered message
blocks, b) obtaining, via a keystream table (KST), one or
more target values corresponding to one or more position
values, a given position value of the one or more position
values being associated with a position of a given message
block within the one or more ordered message blocks, ¢)
performing one or more operations that include at least one
or more XOR operations to obtain the ordered message
ciphertext blocks, the one or more XOR operations per-
formed at least partly with (i) the one or more substitute
values and (ii) the one or more target values. In some further
particular embodiments, the obtaining one or more substi-
tute values corresponding to the one or more ordered mes-
sage blocks includes at least one of a) obtaining the one or
more substitute values from a dynamic substitution box (e.g.
encryption circuit 810) or b) computing the one or more
substitute values as needed without accessing a dynamic
substitution box (e.g. encryption circuit 2010).

[0465] In some further embodiments, the cryptographic
method includes at least wherein encrypting the one or more
ordered tag blocks to obtain one or more ordered tag
ciphertext blocks, the encryption including at least one or
more operations that include at least one or more XOR
operations includes at least a) obtaining one or more sub-
stitute values (e.g. encryption circuit 810 with LUT, encryp-
tion circuit 2010 with space-saver circuit 2059 with r0 2017)
corresponding to the one or more ordered tag blocks, b)
obtaining, via a keystream table (KST), one or more target
values corresponding to one or more position values, a given
position value of the one or more position values being
associated with a position of a given tag block within the one
or more ordered tag blocks, and ¢) performing one or more
operations that include at least one or more XOR operations
to obtain the one or more ordered tag ciphertext blocks, the
one or more XOR operations performed at least partly with
(1) the one or more substitute values and (ii) the one or more
target values. In some further particular embodiments, the
obtaining one or more substitute values corresponding to the
one or more ordered tag blocks includes at least one of a)
obtaining the one or more substitute values from a dynamic
substitution box (e.g. encryption circuit 810), orb) comput-
ing the one or more substitute values as needed without
accessing a dynamic substitution box (e.g. encryption circuit
2010).

[0466] In some further embodiments, the cryptographic
method (e.g. method 2500) further includes at least a)
receiving a ciphertext from the second chiplet, b) parsing the
ciphertext into at least tag ciphertext and message ciphertext,
¢) decrypting the tag ciphertext to obtain a decrypted tag, the
decryption including at least one or more operations that
include at least one or more XOR operations; d) decrypting
the message ciphertext to obtain a message, the decryption
including at least one or more operations that include at least
one or more XOR operations, e) computing a tag based on
the nonce (e.g. 119), the message (e.g. 117) and the other
data (e.g. associated data 121) to obtain a computed tag, f)
attempting to verify the message with a comparison of the
decrypted tag with the computed tag, g) outputting an error
if the verification is unsuccessful, and h) outputting the
message if the verification is successful.

[0467] In some further particular embodiments, the cryp-
tographic method further includes at least wherein the

28

Aug. 31, 2023

decrypting the tag ciphertext to obtain a tag, the decryption
including at least one or more operations that include at least
one or more XOR operations includes at least a) parsing the
tag ciphertext into one or more ordered blocks of tag
ciphertext, b) obtaining, from an inverse lookup table, one or
more original values using one or more substitute values as
keys into the inverse lookup table, c¢) obtaining, via a
keystream table (KST), one or more target values corre-
sponding to one or more position values, a given position
value of the one or more position values being associated
with a position of a given tag ciphertext block within the one
or more ordered blocks of tag ciphertext, and d) performing
one or more operations that include at least one or more
XOR operations to obtain one or more ordered blocks of
decrypted tag, the one or more XOR operations being
performed with at least (i) the one or more substitute values
and (ii) the one or more target values.

[0468] In some further particular embodiments, the cryp-
tographic method further includes at least wherein decrypt-
ing the message ciphertext to obtain a message, the decryp-
tion including at least one or more operations that include at
least one or more XOR operations includes at least a)
parsing the message ciphertext into one or more ordered
blocks of message ciphertext, b) obtaining, from an inverse
lookup table, one or more original values using one or more
substitute values as keys into the inverse lookup table, c¢)
obtaining, from a keystream table (KST), one or more target
values corresponding to one or more position values, a given
position value of the one or more position values being
associated with a position of a given message ciphertext
block within the one or more ordered blocks of message
ciphertext, and d) performing one or more operations that
include at least one or more XOR operations to obtain the
one or more ordered blocks of message, the one or more
XOR operations being performed with at least (i) the one or
more substitute values and (ii) the one or more target values.
[0469] A cryptographic method (e.g. method 2600) is
performed in a first chiplet. The method includes at least (1)
receiving a message for encryption, (2) encrypting the
message to obtain message ciphertext, the encryption
including at least one or more operations that include at least
one or more XOR operations, (3) computing a tag on a
concatenation that includes at least a nonce (e.g. 119), the
message ciphertext (computed above in step 2), and other
data (e.g. associated data 121), (4) encrypting the tag to
obtain one or more ordered blocks of tag ciphertext, the
encryption including at least one or more operations that
include at least one or more XOR operations, (5) appending
the one or more ordered blocks of tag ciphertext to the
message ciphertext to obtain final ciphertext, and (6) trans-
mitting the final ciphertext to a second chiplet.

[0470] In some embodiments, the cryptographic method
further includes at least wherein the computing a tag on a
concatenation that includes at least a nonce, the message
ciphertext, and other data includes at least one of a) com-
puting a CRC on a concatenation that includes at least a
nonce, the message ciphertext, and other data, or b) com-
puting a hash with a hash function on a concatenation that
includes at least a nonce, the message ciphertext, and other
data.

[0471] In some embodiments, the cryptographic method
further includes at least wherein the encrypting the message
to obtain message ciphertext, the encryption including at
least one or more operations that include at least one or more
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XOR operations includes at least a) parsing the message to
obtain at least one or more ordered message blocks, b)
obtaining one or more substitute values (e.g. encryption
circuit 810 with LUT, encryption circuit 2010 with space-
save circuit 2059 with r0 2017) corresponding to the one or
more ordered message blocks, ¢) obtaining, via a keystream
table (KST), one or more target values associated with one
or more position values, a given position value of the one or
more position values being associated with a position of a
given message block within the one or more ordered mes-
sage blocks, d) performing one or more operations that
include at least one or more XOR operations to obtain one
or more ordered message ciphertext blocks, the one or more
XOR operations being performed with at least (i) the one or
more substitute values and (ii) the one or more target values,
and e) concatenating the one or more ordered blocks of
message ciphertext to obtain the message ciphertext. In
some further particular embodiments the cryptographic
method further includes at least wherein the obtaining one or
more substitute values corresponding to the one or more
ordered message blocks includes at least one of a) obtaining
the one or more substitute values from a dynamic substitu-
tion box (e.g. encryption circuit 810), orb) computing the
one or more substitute values as needed without accessing a
dynamic substitution box (e.g. encryption circuit 2010).

[0472] In some embodiments, the cryptographic method
further includes at least wherein encrypting the tag to obtain
one or more ordered blocks of tag ciphertext, the encryption
including at least one or more operations that include at least
one or more XOR operations includes at least a) parsing the
tag to obtain at least one or more ordered tag blocks, b)
obtaining one or more substitute values (e.g. encryption
circuit 810 with LUT, encryption circuit 2010 with space-
save circuit 2059 with r0 2017) corresponding to the one or
more ordered tag blocks, ¢) obtaining, via a keystream table
(KST), one or more target values corresponding to one or
more position values, a given position value of the one or
more position values being associated with a position of a
tag block within the one or more ordered tag blocks, and d)
performing one or more operations that include at least one
or more XOR operations to obtain the one or more ordered
tag ciphertext blocks, the one or more XOR operations
performed at least partly with (i) the one or more substitute
values and (ii) the one or more target values. In some further
particular embodiments, the cryptographic method further
includes at least wherein the obtaining one or more substi-
tute values corresponding to the one or more ordered tag
blocks includes at least one of a) obtaining the one or more
substitute values from a dynamic substitution box (e.g.
encryption circuit 810), orb) computing the one or more
substitute values as needed without accessing a dynamic
substitution box (e.g. encryption circuit 2010).

[0473] In some embodiments the cryptographic method
(e.g. method 2700) further includes at least a) receiving a
ciphertext from the second chiplet, the ciphertext being a
concatenation of a tag ciphertext and a message ciphertext,
wherein the tag ciphertext is encryption of a tag previously
computed on a concatenation of the message ciphertext, a
nonce (e.g. 119), and other data (e.g. associated data 121), b)
parsing the ciphertext into (i) one or more ordered blocks of
tag ciphertext and (ii) the message ciphertext, c) decrypting
the one or more ordered blocks of tag ciphertext to obtain a
decrypted tag, the decryption including at least one or more
operations that include at least one or more XOR operations,
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d) computing a tag based on the message ciphertext, the
nonce (e.g. 119), and the other data (e.g. associated data 121)
to obtain a computed tag, e) attempting verification of the
message ciphertext by comparing the decrypted tag with the
computed tag, f) outputting an error if the verification is
unsuccessful, and g) if the verification is successful: (i)
decrypting the message ciphertext to obtain a message, the
decryption including at least one or more operations that
include at least one or more XOR operations, and (ii)
outputting the message.

[0474] In some particular embodiments, the cryptographic
method further includes at least wherein the decrypting the
one or more ordered blocks of tag ciphertext to obtain a
decrypted tag, the decryption including at least one or more
operations that include at least one or more XOR operations
includes at least a) obtaining, from an inverse lookup table,
one or more original values using one or more substitute
values as keys into the inverse lookup table, b) obtaining,
from a keystream table (KST), one or more target values
corresponding to one or more position values, a given
position value of the one or more position values being
associated with a position of a given tag ciphertext block
within the one or more ordered blocks of tag ciphertext, c)
performing one or more operations that include at least one
or more XOR operations to obtain one or more ordered tag
blocks, the one or more XOR operations performed at least
partly with at least (i) the one or more original values
corresponding to substitute values and (ii) the one or more
target values, and d) concatenating the one or more ordered
tag blocks to obtain the decrypted tag.

[0475] Insome particular embodiments, the cryptographic
method further includes at least wherein decrypting the
message ciphertext to obtain a message, the decryption
including at least one or more operations that include at least
one or more XOR operations includes at least a) parsing the
message ciphertext to obtain one or more ordered message
ciphertext blocks; b) obtaining, from an inverse lookup
table, one or more original values using one or more
substitute values as keys into the inverse lookup table, c¢)
obtaining, from a keystream table (KST), one or more target
values corresponding to one or more position values, a given
position value of the one or more position values being
associated with a position of a given message ciphertext
block within the one or more ordered blocks of message
ciphertext, d) performing one or more operations that
include at least one or more XOR operations to obtain one
or more ordered message blocks, the one or more XOR
operations performed at least partly with at least (i) the one
or more substitute values and (ii) the one or more target
values, and e) concatenating the one or more ordered mes-
sage blocks to obtain the decrypted message.

[0476] In some embodiments, a chiplet includes at least
(1) a receiving circuitry (e.g. Communication sub-chiplet
113, bus controller 146, communication bus 156) configured
for receiving a message for encryption, (2) encryption
circuitry configured for encrypting the message to obtain
message ciphertext, the encryption including at least one or
more operations that include at least one or more XOR
operations (e.g. encryption circuit 810), (3) tag circuitry
configured for computing a tag on a concatenation that
includes at least a nonce, the message ciphertext, and other
data (e.g. CRC 122), (4) encryption circuitry configured for
encrypting the tag to obtain one or more ordered blocks of
tag ciphertext, the encryption including at least one or more
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operations that include at least one or more XOR operations
(e.g. encryption circuit 810), (5) processing circuitry con-
figured for appending the one or more ordered blocks of tag
ciphertext to the message ciphertext to obtain final cipher-
text (e.g. secure host 104, encryption circuit 810), and (6)
transmitting circuitry configured for transmitting the final
ciphertext to a second chiplet (e.g. communication sub-
chiplet 113, bus controller 146, communication bus 156)
(See e.g. method 2600).

[0477] In some embodiments the chiplet further includes
at least (1) receiving circuitry configured for receiving a
ciphertext from the second chiplet (e.g. e.g. Communication
sub-chiplet 113, bus controller 146, communication bus
156), the ciphertext being a concatenation of a tag ciphertext
and a message ciphertext, wherein the tag ciphertext is
ciphertext of a tag previously computed on a concatenation
of the message ciphertext, a nonce, and other data, (2)
parsing circuitry configured for parsing the ciphertext into
(1) one or more ordered blocks of tag ciphertext and (ii) the
message ciphertext (e.g. secure host 104, TX circuit 830),
(3) decryption circuitry configured for decrypting the one or
more ordered blocks of tag ciphertext to obtain a decrypted
tag, the decryption including at least one or more operations
that include at least one or more XOR operations, (decryp-
tion circuit 840), (4) tag circuitry configured for computing
a tag based on the message ciphertext, the nonce, and the
other data to obtain a computed tag (CRC 122), (5) verifi-
cation circuitry configured for attempting verification of the
message ciphertext by comparing the decrypted tag with the
computed tag (e.g. secure host 104), (6) error detecting
circuitry configured for outputting a error if the verification
is unsuccesstul (e.g. secure host 104), and (7) the verifica-
tion circuitry configured for if the verification is successful
(e.g. secure host 1040, causing: (i) decryption circuitry (e.g.
decryption circuit 840) configured for decrypting the mes-
sage ciphertext to obtain a message, the decryption includ-
ing at least one or more operations that include at least one
or more XOR operations, the decryption circuitry configured
to be responsive, at least in part to the verification circuitry,
and (ii) transmission circuitry (e.g. RX circuit 830) config-
ured for outputting the message, the decryption circuitry
configured to be responsive, at least in part to the verification
circuitry (See, e.g. method 2700).

[0478] It will be understood by those skilled in the art that
the terminology used in this specification and in the claims
is “open” in the sense that the terminology is open to
additional elements not enumerated. For example, the word
“includes” should be interpreted to mean “including at least”
and so on. Even if “includes at least” is used sometimes and
“includes” is used other times, the meaning is the same:
includes at least. In addition, articles such as “a” or “the”
should be interpreted as not referring to a specific number,
such as one, unless explicitly indicated. At times a conven-
tion of “at least one of A, B, or C” is used, the intent is that
this language includes any combination of A, B, C, includ-
ing, without limitation, any of A alone, B alone, C alone, A
and B, B and C, A and C, all of A, B, and C or any
combination of the foregoing, such as for example AABBC,
or ABBBCC. The same is indicated by the conventions “one
of more of A, B, or C” and “and/or”.

[0479] In addition, references to circuits, such as for
example TX circuit, RX circuit, encryption circuit, decryp-
tion circuit, or LUT space-saver circuit, refer to circuitry for
causing a chiplet to perform their respective functions. In
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some embodiments, these circuits are implemented as sub-
chiplets, In some embodiments, these circuits have internal
logic. In some embodiments, these circuits include a link to
secure host for processing and are associated with execut-
able instructions stored in memory. These executable
instructions when executed would cause secure host to
perform the respective functions. In some embodiments,
these circuits instead contain or are configured to access
hard-wired logic. And some embodiments contain a combi-
nation of executable instructions and hard-wired logic. In
some embodiments, these circuits may be part of a process-
ing device, such as a CPU, a processor, a controller, a
field-programmable gate array, or hard-wired logic. These
circuits may contain memory, may be configured to access
stored memory, may be configured to access remote
memory, or may not contain or access memory, dependent
on their function.

[0480] Various functional logic blocks, such as for
example, a TRNG engine may, in some embodiments, be
implemented as circuits. And the above discussion of cir-
cuits would be fully applicable.

[0481] Although embodiments have been described in
detail, it should be understood that various changes, substi-
tutions, and alterations could be made hereto without depart-
ing from the spirit and scope of the invention as defined by
the appended claims and equivalents thereof.

[0482] The following twenty aspects are additionally pos-
sible:
[0483] Aspect 1. A cryptographic method performed in a

first chiplet, the method comprising:

[0484] (1) with one or more processing devices, com-
puting a tag on a nonce, a message, and other data;

[0485] (2) parsing the message into one or more mes-
sage blocks to create one or more ordered message
blocks;

[0486] (3) encrypting the one or more ordered message
blocks to obtain one or more ordered message cipher-
text blocks, the encryption including at least one or
more operations that include at least one or more XOR
operations;

[0487] (4) parsing the tag into one or more tag blocks to
create one or more ordered tag blocks;

[0488] (5) encrypting the one or more ordered tag
blocks to obtain one or more ordered tag ciphertext
blocks, the encryption including at least one or more
operations that include at least one or more XOR
operations;

[0489] (6) concatenating the one or more ordered mes-
sage ciphertext blocks with the one or more ordered tag
ciphertext blocks to obtain final ciphertext; and

[0490] (7) transmitting the final ciphertext to a second
chiplet.

[0491] Aspect 2. The cryptographic method of aspect 1,
wherein computing a tag on a nonce, a message, and other
data comprises:

[0492] at least one of:

[0493] computing a CRC on a concatenation that
includes at least the nonce, the message, and the other
data; or

[0494] computing a hash with a hash function on a
concatenation that includes at least a nonce, the mes-
sage, and other data.

[0495] Aspect 3. The cryptographic method of aspect 1,
wherein the encrypting the one or more ordered message
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blocks to obtain one or more ordered message ciphertext
blocks, the encryption including at least one or more opera-
tions that include at least one or more XOR operations
comprises:

[0496] obtaining one or more substitute values corre-
sponding to the one or more ordered message blocks;

[0497] obtaining, via a keystream table (KST), one or
more target values corresponding to one or more posi-
tion values, a given position value of the one or more
position values being associated with a position of a
given message block within the one or more ordered
message blocks; and

[0498] performing one or more operations that include
at least one or more XOR operations to obtain the one
or more ordered message ciphertext blocks, the one or
more XOR operations performed at least partly with (i)
the one or more substitute values and (ii) the one or
more target values.

[0499] Aspect 4. The cryptographic method of aspect 3,
wherein the obtaining one or more substitute values corre-
sponding to the one or more ordered message blocks com-
prises:

[0500] at least one of:

[0501] obtaining the one or more substitute values from
a dynamic substitution box; or

[0502] computing the one or more substitute values as
needed without accessing a dynamic substitution box.

[0503] Aspect 5. The cryptographic method of aspect 1,
wherein the encrypting the one or more ordered tag blocks
to obtain one or more ordered tag ciphertext blocks, the
encryption including at least one or more operations that
include at least one or more XOR operations comprises:

[0504] obtaining one or more substitute values corre-
sponding to the one or more ordered tag blocks;

[0505] obtaining, via a keystream table (KST), one or
more target values corresponding to one or more posi-
tion values, a given position value of the one or more
position values being associated with a position of a
given tag block within the one or more ordered tag
blocks; and

[0506] performing one or more operations that include
at least one or more XOR operations to obtain the one
or more ordered tag ciphertext blocks, the one or more
XOR operations performed at least partly with (i) the
one or more substitute values and (ii) the one or more
target values.

[0507] Aspect 6. The cryptographic method of aspect 5,
wherein the obtaining one or more substitute values corre-
sponding to the one or more ordered tag blocks comprises:

[0508] at least one of:

[0509] obtaining the one or more substitute values from
a dynamic substitution box; or

[0510] computing the one or more substitute values as
needed without accessing a dynamic substitution box.

[0511] Aspect 7. The cryptographic method of aspect 1,
further comprising:

[0512] receiving a ciphertext from the second chiplet;

[0513] parsing the ciphertext into at least tag ciphertext
and message ciphertext;

[0514] decrypting the tag ciphertext to obtain a
decrypted tag, the decryption including at least one or
more operations that include at least one or more XOR
operations;
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[0515] decrypting the message ciphertext to obtain a
message, the decryption including at least one or more
operations that include at least one or more XOR
operations;

[0516] computing a tag based on a nonce, the message
and other data to obtain a computed tag;

[0517] attempting to verify the message with a com-
parison of the decrypted tag with the computed tag;
[0518] outputting an error if the verification is unsuc-

cessful; and

[0519] outputting the message if the verification is
successful.

[0520] Aspect 8. The cryptographic method of aspect 7,
wherein the decrypting the tag ciphertext to obtain a tag, the
decryption including at least one or more operations that
include at least one or more XOR operations comprises:

[0521] parsing the tag ciphertext into one or more
ordered blocks of tag ciphertext;

[0522] obtaining, from an inverse lookup table, one or
more original values using one or more substitute
values as keys into the inverse lookup table;

[0523] obtaining, via a keystream table (KST), one or
more target values corresponding to one or more posi-
tion values, a given position value of the one or more
position values being associated with a position of a
given tag ciphertext block within the one or more
ordered blocks of tag ciphertext; and

[0524] performing one or more operations that include
at least one or more XOR operations to obtain one or
more ordered blocks of decrypted tag, the one or more
XOR operations being performed with at least (i) the
one or more original values corresponding to substitute
values and (ii) the one or more target values.

[0525] Aspect 9. The cryptographic method of aspect 7,
wherein decrypting the message ciphertext to obtain a
message, the decryption including at least one or more
operations that include at least one or more XOR operations
comprises:

[0526] parsing the message ciphertext into one or more
ordered blocks of message ciphertext;

[0527] obtaining, from an inverse lookup table, one or
more original values using one or more substitute
values as keys into the inverse lookup table;

[0528] obtaining, from a keystream table (KST), one or
more target values corresponding to one or more posi-
tion values, a given position value of the one or more
position values being associated with a position of a
given message ciphertext block within the one or more
ordered blocks of message ciphertext; and

[0529] performing one or more operations that include
at least one or more XOR operations to obtain the one
or more ordered blocks of message, the one or more
XOR operations being performed with at least (i) the
one or more original values corresponding to substitute
values and (ii) the one or more target values.

[0530] Aspect 10. A cryptographic method performed in a
first chiplet, the method comprising:

[0531] (1) receiving a message for encryption;

[0532] (2) encrypting the message to obtain message
ciphertext, the encryption including at least one or
more operations that include at least one or more XOR
operations;
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[0533] (3) computing a tag on a concatenation that
includes at least a nonce, the message ciphertext, and
other data;

[0534] (4) encrypting the tag to obtain one or more
ordered blocks of tag ciphertext, the encryption includ-
ing at least one or more operations that include at least
one or more XOR operations;

[0535] (5) appending the one or more ordered blocks of
tag ciphertext to the message ciphertext to obtain final
ciphertext; and

[0536] (6) transmitting the final ciphertext to a second
chiplet.

[0537] Aspect 11. The cryptographic method of aspect 10,
wherein the computing a tag on a concatenation that
includes at least a nonce, the message ciphertext, and other
data comprises:

[0538] at least one of:

[0539] computing a CRC on a concatenation that
includes at least a nonce, the message ciphertext, and
other data; or

[0540] computing a hash with a hash function on a
concatenation that includes at least a nonce, the mes-
sage ciphertext, and other data.

[0541] Aspect 12. The cryptographic method of aspect 10,
wherein the encrypting the message to obtain message
ciphertext, the encryption including at least one or more
operations that include at least one or more XOR operations
comprises:

[0542] parsing the message to obtain at least one or
more ordered message blocks;

[0543] obtaining one or more substitute values corre-
sponding to the one or more ordered message blocks;

[0544] obtaining, via a keystream table (KST), one or
more target values associated with one or more position
values, a given position value of the one or more
position values being associated with a position of a
given message block within the one or more ordered
message blocks;

[0545] performing one or more operations that include
at least one or more XOR operations to obtain one or
more ordered message ciphertext blocks, the one or
more XOR operations being performed with at least (i)
the one or more substitute values and (ii) the one or
more target values; and

[0546] concatenating the one or more ordered blocks of
message ciphertext to obtain the message ciphertext.

[0547] Aspect 13. The cryptographic method of aspect 12,
wherein the obtaining one or more substitute values corre-
sponding to the one or more ordered message blocks com-
prises:

[0548] at least one of:

[0549] obtaining the one or more substitute values from
a dynamic substitution box; or

[0550] computing the one or more substitute values as
needed without accessing a dynamic substitution box.

[0551] Aspect 14. The cryptographic method of aspect 10,
wherein encrypting the tag to obtain one or more ordered
blocks of tag ciphertext, the encryption including at least one
or more operations that include at least one or more XOR
operations comprises:

[0552] parsing the tag to obtain at least one or more
ordered tag blocks;

[0553] obtaining one or more substitute values corre-
sponding to the one or more ordered tag blocks;
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[0554] obtaining, via a keystream table (KST), one or
more target values corresponding to one or more posi-
tion values, a given position value of the one or more
position values being associated with a position of a tag
block within the one or more ordered tag blocks; and

[0555] performing one or more operations that include
at least one or more XOR operations to obtain the one
or more ordered tag ciphertext blocks, the one or more
XOR operations performed at least partly with (i) the
one or more substitute values and (ii) the one or more
target values.

[0556] Aspect 15. The cryptographic method of aspect 14,
wherein the obtaining one or more substitute values corre-
sponding to the one or more ordered tag blocks comprises:

[0557] at least one of:

[0558] obtaining the one or more substitute values from
a dynamic substitution box; or

[0559] computing the one or more substitute values as
needed without accessing a dynamic substitution box.

[0560] Aspect 16. The cryptographic method of aspect 10,
further comprising:

[0561] receiving a ciphertext from the second chiplet,
the ciphertext being a concatenation of a tag ciphertext
and a message ciphertext, wherein the tag ciphertext is
ciphertext of a tag previously computed on a concat-
enation of the message ciphertext, a nonce, and other
data;

[0562] parsing the ciphertext into (i) one or more
ordered blocks of tag ciphertext and (ii) the message
ciphertext;

[0563] decrypting the one or more ordered blocks of tag
ciphertext to obtain a decrypted tag, the decryption
including at least one or more operations that include at
least one or more XOR operations;

[0564] computing a tag based on the message cipher-
text, the nonce, and the other data to obtain a computed
tag;

[0565] attempting verification of the message ciphertext

by comparing the decrypted tag with the computed tag;

[0566] outputting an error if the verification is unsuc-
cessful; and

[0567] if the verification is successful:

[0568] (i) decrypting the message ciphertext to obtain a
message, the decryption including at least one or more
operations that include at least one or more XOR
operations; and

[0569] (ii) outputting the message.

[0570] Aspect 17. The cryptographic method of aspect 16,
wherein the decrypting the one or more ordered blocks of tag
ciphertext to obtain a decrypted tag, the decryption includ-
ing at least one or more operations that include at least one
or more XOR operations comprises:

[0571] obtaining, from an inverse lookup table, one or
more original values using one or more substitute
values as keys into the inverse lookup table;

[0572] obtaining, from a keystream table (KST), one or
more target values corresponding to one or more posi-
tion values, a given position value of the one or more
position values being associated with a position of a
given tag ciphertext block within the one or more
ordered blocks of tag ciphertext;

[0573] performing one or more operations that include
at least one or more XOR operations to obtain one or
more ordered tag blocks, the one or more XOR opera-
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tions performed at least partly the with at least (i) the
one or more original values corresponding to substitute
values and (ii) the one or more target values; and

[0574] concatenating the one or more ordered tag
blocks to obtain the decrypted tag.

[0575] Aspect 18. The cryptographic method of aspect 16,
wherein decrypting the message ciphertext to obtain a
message, the decryption including at least one or more
operations that include at least one or more XOR operations
comprises:

[0576] parsing the message ciphertext to obtain one or
more ordered message ciphertext blocks; obtaining,
from an inverse lookup table, one or more original
values using one or more substitute values as keys into
the inverse lookup table;

[0577] obtaining, from a keystream table (KST), one or
more target values corresponding to one or more posi-
tion values, a given position value of the one or more
position values being associated with a position of a
given message ciphertext block within the one or more
ordered blocks of message ciphertext;

[0578] performing one or more operations that include
at least one or more XOR operations to obtain one or
more ordered message blocks, the one or more XOR
operations performed at least partly with at least (i) the
one or more original values corresponding to substitute
values and (ii) the one or more target values; and

[0579] concatenating the one or more ordered message
blocks to obtain the message

[0580] Aspect 19. A chiplet comprising:

[0581] (1) a receiving circuitry configured for receiving
a message for encryption;

[0582] (2) encryption circuitry configured for encrypt-
ing the message to obtain message ciphertext, the
encryption including at least one or more operations
that include at least one or more XOR operations;

[0583] (3) tag circuitry configured for computing a tag
on a concatenation that includes at least a nonce, the
message ciphertext, and other data;

[0584] (4) encryption circuitry configured for encrypt-
ing the tag to obtain one or more ordered blocks of tag
ciphertext, the encryption including at least one or
more operations that include at least one or more XOR
operations;

[0585] (5) processing circuitry configured for append-
ing the one or more ordered blocks of tag ciphertext to
the message ciphertext to obtain final ciphertext; and

[0586] (6) transmitting circuitry configured for trans-
mitting the final ciphertext to a second chiplet.

[0587] Aspect 20. The chiplet of aspect 19, further com-
prising:
[0588] (1) receiving circuitry configured for receiving a

ciphertext from the second chiplet, the ciphertext being
a concatenation of a tag ciphertext and a message
ciphertext, wherein the tag ciphertext is ciphertext of a
tag previously computed on a concatenation of the
message ciphertext, a nonce, and other data;

[0589] (2) parsing circuitry configured for parsing the
ciphertext into (i) one or more ordered blocks of tag
ciphertext and (ii) the message ciphertext;

[0590] (3) decrypting circuitry configured for decrypt-
ing the one or more ordered blocks of tag ciphertext to
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obtain a decrypted tag, the decryption including at least
one or more operations that include at least one or more
XOR operations;

[0591] (4) tag circuitry configured for computing a tag
based on the message ciphertext, the nonce, and the
other data to obtain a computed tag;

[0592] (5) verification circuitry configured for attempt-
ing verification of the message ciphertext by comparing
the decrypted tag with the computed tag;

[0593] (6) error detecting circuitry configured for out-
putting an error if the verification is unsuccessful; and

[0594] (7) the verification circuitry configured for if the
verification is successful, causing:

[0595] (i) decryption circuitry configured for decrypting
the message ciphertext to obtain a plaintext message,
the decrypting including at least one or more operations
that include at least one or more XOR operations, the
decryption circuitry configured to be responsive, at
least in part to the verification circuitry; and

[0596] (ii) transmission circuitry configured for output-
ting the message, the decryption circuitry configured to
be responsive, at least in part to the verification cir-
cuitry.

We claim:

1. A cryptographic method performed at least in part at a

first chiplet, the method comprising:

(1) with the first chiplet, parsing a message into at least
one or more message blocks;

(2) dynamically generating at least a first target value that
is associated with at least a first key;

(3) dynamically generating at least a second target value
that is associated with at least a second key;

(4) encrypting at least one message block of the at least
one or more message blocks to generate at least some
ciphertext, the encryption being performed with at least
one operation that includes at least one XOR operation,
the at least one XOR operation being performed at least
in part with the first target value and with at least the
second target value, the first target value and the second
target value being accessed at partly via the first and
second keys, respectively; and

(5) with at least one processing device associated with the
first chiplet, transmitting the at least some ciphertext to
a second chiplet.

2. The cryptographic method of claim 1, wherein:

the first key is the message block of the one or more
message blocks; and

the first target value is at least one of a random number or
a pseudo-random number accessed as a substitute for
the first key.

3. The cryptographic method of claim 1, wherein:

the one or more message blocks are one or more ordered
message blocks;

the second key is a numerical index value associated with
a position of the at least one message block within the
one or more ordered message blocks; and

the second target value is at least one of a random number
or a pseudo-random number.

4. The cryptographic method of claim 1, wherein dynami-

cally generating at least a first target value that is associated
with at least a first key comprises:
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generating a dynamic substitution box that includes at

least (i) the first key and (ii) the first target value, the

generating the dynamic substitution box including at
least:

a) generating a plurality of keys that include the first
key, including at least generating the plurality of
keys to include at least respective numerical repre-
sentations of the one or more message blocks; and

b) generating a plurality of target values, including at
least generating the first target value as a substitute
value for a numerical representation associated with
the first key.

5. The cryptographic method of claim 4, further compris-
ing:

sorting the plurality of keys in the dynamic substitution

table, the sorting being based on at least in part on the

respective numerical representations of the plurality of
keys; and

accessing the first target value in the dynamic substitution

box by locating the first key, the locating being per-

formed at least in part by searching the sorted numeri-
cal representations of the plurality of keys to locate the
numerical representation of the first key.

6. The cryptographic method of claim 1, wherein dynami-
cally generating at least a second target value that is asso-
ciated with at least a second key comprises:

generating a lookup table that includes at least (i) the

second key and (ii) the second target value, the gener-

ating the lookup table including at least:

a) generating a plurality of keys that include at least the
second key, the plurality of keys including at least
respective numerical index values; and

b) generating a plurality of target values that include at
least the second target value, respective ones of the
plurality of target values being accessible in the
lookup table at least in part via the respective
numerical index values of the plurality of keys.

7. The cryptographic method of claim 6, further compris-
ing:

accessing the second target value in the lookup table by

locating the second key, the locating being performed

at least in part by searching the respective numerical
index values of the plurality of keys to locate a numeri-
cal index value associated with the second key.

8. The cryptographic method of claim 1, wherein gener-
ating the first target value includes at least generating a first
random number with a true random number generator and
wherein generating the second target value includes at least
generating a second random number with the true random
number generator.

9. The cryptographic method of claim 8,

wherein generating the first target value additionally

includes generating the first target value based at least

in part on an output of a pseudo-random number
generator seeded with a seed that includes at least the
first random number; and

wherein generating the second target value additionally

includes generating the second target value based at

least in part on an output of a pseudo-random number
generator seeded with a seed that includes at least the
second random number.

10. The cryptographic method of claim 1, further com-
prising:
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generating a tag based at least in part on the message, a
nonce value, and some additional data; and

concatenating the tag with at least the message block of
the one or more message blocks; and

wherein the encrypting at least a message block of the at
the one or more message blocks further includes
encrypting at least the concatenation of the tag with the
at least one message block.

11. The cryptographic method of claim 1, wherein the
method is performed with a first chiplet that is part of a
resource constrained device.

12. The cryptographic method of claim 1, wherein the
dynamically generating at least a first target value that is
associated with at least a first key comprises:

dynamically generating at least a first substitute value for
the first key and wherein the generating the first sub-
stitute value does not include generating a lookup table
containing the first substitute value.

13. The cryptographic method of claim 1, wherein the
with at least one processing device associated with the first
chiplet, transmitting the at least some ciphertext to a second
chiplet comprises:

at least one of:

transmitting in a no-delay half-duplex mode in which the
first chiplet encrypts a message block of the one or
more message blocks while waiting for a message from
the second chiplet;

transmitting in a space-saver mode in which the first
chiplet saves memory resources by generating the first
target value without generating a dynamic substitution
box;

transmitting in a two-key encryption mode in which a first
security configuration is used for transmitting from the
first chiplet to the second chiplet and a second security
configuration is used for transmitting from the second
chiplet to the first chiplet;

transmitting in a two-key space-saver mode in which the
security configuration is a combination of the space-
saver mode and the two-key encryption mode; or

transmitting in a high performance mode that utilize data
compression and data decompression.

14. A cryptographic method performed at least in part at

a second chiplet, the method comprising:

(1) dynamically generating a first lookup table that
includes a plurality of first target values and a plurality
of first keys, a given first target value of the plurality of
first lookup values being obtainable based on corre-
sponding first key of the plurality of first keys, and
wherein the first lookup table is at least one of usable
or configurable as an inverse lookup table for obtaining
the corresponding first key based at least in part on the
given first target value;

(2) dynamically generating at least a second lookup table
that includes a plurality of second target values and a
plurality of second keys, a given second target value of
the plurality of second target values being obtainable
based on a corresponding second key of the plurality of
second keys;

(3) decrypting at least one ciphertext block of one or more
ciphertext blocks to generate at least some plaintext,
the decryption being performed at least partly with one
or more operations that include at least one or more
XOR operations, the one or more XOR operations
performed at least in part with the corresponding first
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key obtained at least partly via the given first target
value and with at least the given second target value
obtained at least partly via the corresponding second
key;

(4) verifying the at least some plaintext; and

(5) outputting the at least some plaintext responsive to a

successful verification of the plaintext.

15. The cryptographic method of claim 14, wherein the at
least one XOR operation reverses at least one previous XOR
operation performed at the first chiplet during encryption of
the one or more ciphertext blocks.

16. The cryptographic method of claim 14, further com-
prising:

receiving ciphertext at the second chiplet transmitted from

a first chiplet; and

parsing the ciphertext into the one or more ciphertext

blocks.

17. The cryptographic method of claim 14, wherein the
verifying the at least some plaintext comprises:

separating the at least some plaintext into a first tag and

at least a portion of a message;

computing a second tag based at least in part on the at

least a portion of a message, on a nonce, and on
additional data;

comparing the first tag and the second tag; and

if the first tag and the second tag do not match issuing an

error message indicating that verification of the at least
some plaintext has failed.

18. The cryptographic method of claim 14,

wherein the first target values are at least one of random

or pseudo-random numbers; and

wherein the first lookup table is usable as an inverse

lookup table by at least:

selecting a block of ciphertext of the one or more
ciphertext blocks, the block of ciphertext including
at least a numerical value;

searching the target values of the first lookup table for
a particular target value that matches the numerical
value of the selected block of ciphertext, the search-
ing performed with at least a linear search algorithm;
and

based at least in part on the particular target value
obtaining a first key of the plurality that corresponds
in the first lookup table with the particular target
value.
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19. The cryptographic method of claim 14,

wherein the first target values of the plurality are at least
one of random or pseudo-random numbers; and

wherein the first lookup table is configurable and usable
as an inverse lookup table by at least:

sorting the plurality of first target values;

selecting a block of ciphertext of the one or more
ciphertext blocks, the block of ciphertext including
at least a numerical value;

searching the target values of the first lookup table for
a particular target value that matches the numerical
value associated with the selected block of cipher-
text, the search performed with at least a non-linear
search algorithm; and

based at least in part on the particular target value
obtaining a first key of the plurality that is associated
in the first lookup table with the particular target
value.

20. A cryptographic method performed at least in part at
a first chiplet based in a resource-constrained computing
device, the method comprising:

with the first chiplet, parsing a message into at least one

or more message blocks;

dynamically generating at least a first target value that is

associated with at least a first key;

dynamically generating at least a second target value that

is associated with at least a second key;
encrypting at least a message block of the at least one or
more message blocks to generate at least some cipher-
text, the encryption being performed with at least one
or more operations that include one or more XOR
operations, the at least one XOR operation being per-
formed at least in part with the first target value and
with at least the second target value, the first target
value and the second target value being accessed at
partly via the first and second keys, respectively;

with at least one processing device associated with the
first chiplet, transmitting the at least some ciphertext to
a second chiplet;

receiving ciphertext for decryption and transmitting the

ciphertext to another computing device for decryption.
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