US 20170308697A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0308697 A1

LAVASANI 43) Pub. Date: Oct. 26, 2017
(54) SYSTEMS AND METHODS FOR COMPILER Publication Classification
GUIDED SECURE RESOURCE SHARING
(51) Imt.CL
(71) Applicant: BigStream Solutions, Inc., Mountain GO6F 21/55 (2013.01)
View, CA (US) GOG6F 13/20 (2006.01)
’ (52) US. CL
(72) Inventor: Maysam LAVASANI, Cupertino, CA CPC GO6F 21/556 (2013.01); GO6F 13/20
(US) (2013.01); GOG6F 2221/034 (2013.01)
) . .) 57 ABSTRACT
(73) Assignee: gigfvtrézmgg;utlons, Inc., Mountain A data processing system is disclosed that includes an
’ Input/output (I/0) interface to receive incoming data and an
(21) Appl. No.: 15/493,878 in-line accelerator coupled to the I/O interface. The in-line
PPl O ’ accelerator is configured to receive the incoming data from
o the I/O interface and to automatically remove all timing
(22) Filed: Apr. 21, 2017 channels that potentially form through any shared resources.
Related U.S. Application Data A generic technique of the present design avoids timing
>+ APP channels between different types of resources. A compiler is
(60) Provisional application No. 62/325,938, filed on Apr. enabled to automatically apply this generic pattern to secure

21, 2016.

1800

shared resources.

configuring an in-line accelerator based on a compiler to perform a generic > 1802
bandwidth reservation technigue based on a latency insensitive design.

between the interconnecting design module

1
detecting language constructs for interconnecting design modules > 1804
I}
automatically inserting arbiters if contention occurs in an interface
y & —> 1806

1

modifying a design of the arbiters to provide timing channel guarantees for

whether the bidder uses a resource in an allocated time slot

the design modules that function as bidders of any shared resources 1808
1
reserving bandwidth for each bidder, with the arbiters, irrespective of 1810

!

utilizing valid and ready based interfaces between design modules with a user
not being aware of timing aspects of interactions between the design modules

—> 1812

g

automatically removing all timing channels that potentially form through
any shared resources of design modules based on performing the generic | —> 1814
bandwidth reservation technique

US 2017/0308697 Al
W

auig 4
i
005y 000y 005¢ 000€ 0052 0007 \ 008
= L
~
S
=
v
w iy
=
N
~ 06l
v
<>
Q gee
o
< SoUBIBIHD
m 174 G|
B]
= 00e
2
< B %
S 05¢
=
=
A 00y
S SHOVLLY (3103130 SLSINTTY MDIOVLLY _, -
5 NEIMEIS IONTHRHIC AN T NEEIMLEE 3ONIEHIC T WL 0L
olm
p H
2 o7
=
L
=
[~

US 2017/0308697 Al

Oct. 26,2017 Sheet 2 of 17

Patent Application Publication

¢ Ol

Fung

Gy 00se

ooie poez

A

SADYLLEY Q3103130
N MIZG ZONIEAG WL

clfffo

~ (Y2
x

SLSINTIY HDHOVLLY
NFFMLIE FONIHIHT WL

oo

-

0id

%

008

004

008

BOUSIRLD
Ui

US 2017/0308697 Al

Oct. 26,2017 Sheet 3 of 17

Patent Application Publication

3 ufisan a ubisag J gm,mmmm
o ubissq e BUQY y
a ubiseq w\ v ufisag
g ubisag v ubissg
173
o ubisag g g ubisag
y ubiseq N ubissn e Jaugny v/,
2 ub1eeg v ubissg
2%
W& g ublisag
&
g ubissn v ubisag
y ubisag
‘@..@:AM,

US 2017/0308697 Al

auig
28y §&¥ vy 193517 A LS 05y
3TAD F10AD 41040 410AD 4T10AD 410AD 41340
o~
Yo
o b
=]
-
7
o~
Yo
S
>
o

<o

=

Patent Application Publication

8GN

Apeay

P Bl

Apesy

US 2017/0308697 Al

ey
{
~
o
M i
v, 004
7 0gi
~
e
5 90z
-3
(g\]
g 95T gounisip
° s
00¢
058
e , ooy
SLSINTEY ¥IMOVLLY o o
NAMIES JONZHEAIG FWIL _ A 4

Patent Application Publication

Patent Application Publication Oct. 26,2017 Sheet 6 of 17 US 2017/0308697 A1

830
}
- el
1 MDYy '
0.98 A 4.9
.98 08
‘ " 0.7
0.94 610 Ny . 0.8
09 N\ S S 0.4
R N W 0.3
0.88 W D A
\ 0.2
0.88 a1
0.84 - ,
NoShare Round Robin Randwidth
Arbiter Reservation
LUT Area =e= Throughput
8343
820
J
1 £ 1
(95 821 822 0.9
ST - J
8 . .
i 7 74 8
0.85 s 7
0.8 830 g 06
0.75 810 # 0.5
o7 < 811 812 o
0.65) ; 0.3
- e ~
0.6 N g 8.2
0.55 N ' N 0.1
e
0.5 ™ : : 0
NoShare Round Robin Bandwidth
Arbiter Reservation

SRR LUT Area == Throughput

Patent Application Publication Oct. 26,2017 Sheet 7 of 17 US 2017/0308697 A1

80

IMAGE FEEDER IMAGE FEEDER

ARBITER

728

%

¥

AES

730
T T P P 0T r oo
P ! by . by | t o |

TR E TTMG R o R R X T

SRR T N Y S SO SR SR S ST

Patent Application Publication Oct. 26,2017 Sheet 8 of 17 US 2017/0308697 A1

800

EMHD;U __.é

o j

; SURTRACT MULTIFLY ADD E

é & & r-y E

; ¥ ¥ ¥ E

distancefU

i 910 |

| |

| a |

¥
KEnging
S&

S | .
i |
| add i
| |
i |
i E
i Partial Centroid NumOiPaints E
i Accumulator Mem 937 Mem 833 E
: 831 !
! KEQ |
| 36 |

Patent Application Publication Oct. 26,2017 Sheet 9 of 17 US 2017/0308697 A1

fe>d ST P «€«o [<3 [ap] od ~
- Lo S - S - S ST o S S v SR e S o S
L}
<3
7 [t]
::}
L
[3
&
o , 5
& 2 robin W
= &
0
+
> > - NoShare @
% 7 I
[
£
[ww)]
s
o P
S £
|
Li
(<3
<
. s 5
X _“ —d
= QN
2 v
X \ \
& !]
% 77 NoShare s
@
=5
ay
o
7
A
\ ~4 Bandwidth
Vi 4 reservation
fan)
o
}i%{;«fﬂd <
v - A robin b
N
NoShare
7 . %
o= [a>) [so] P~ (<o) [Rgd ~f
o oy o - o =

US 2017/0308697 Al

s ongiasid
* LAOINGLISIG |
{Joyoeny
0 i Apeay £
| : I PleA iqpy,
. e
3 m ; fpesy ,WH/
2 ioopen £ Y
E S
- 0 P ofpeay
H HERN
= m L N 1] 7 N
& wunuﬂunuﬁnunmﬁvvw
< IR
. 0 m P fpeay
5 : HEN
S | w e i
R EL A
g 0 fpeay |
E | piEA oY
= masezamanad FEFE
_._m IHIRIE m
= i fpeary |
£ | piea |)
= femeraranaans ,M.w“\"\
S
2 o T e T e O Yoo
[="
[="
<
~N—
=
g
o]
[~™

Patent Application Publication Oct. 26,2017 Sheet 11 of 17 US 2017/0308697 A1

US 2017/0308697 Al

Oct. 26,2017 Sheet 12 of 17

Patent Application Publication

el "Old

B8y Doy HE PDY o

001 Huh PRy DRRyg

81el - Zigl L1E} 018l
indybnolyy eneds ppy g~ INJUBNOIYL UG PRV ~-o-- B3Iy D8Y [B1IRAS PPY i
5 g i g g y ¢ 4 ¢
Q H R H H H H :

e | L °

0 < Y e S—— A S— 0
Ommonm " [
20 R e T : AN b
IRt el
€0 T £0
70 YA 7
ZLel .,
mO 2, R S WG
%D 90
¢

L0 “ FY
80 g0
mQ 1
eibL o

) @ G b 2 &% % %

US 2017/0308697 Al

Oct. 26,2017 Sheet 13 of 17

Patent Application Publication

Eivl 452 Livl 01yl
indybnosyy eneds WION -wg-- NAUEN0IL HE dION cup-- BoIY 08y BIRAS LLON e 28JY BOY HE ULON melom
8 8 i g g 4 £ 4 b {
Y _ ¢
L0 b
A 20
£9 el
70 o
50 g0
90 g0
PRy L0
o0 :31\\ -
89 gl

O0PL N BOUBISI(| WION DRUBYS

US 2017/0308697 Al

Oct. 26,2017 Sheet 14 of 17

Patent Application Publication

£151 AN 1161 0151
ndybnosyl euedS ONF--e-- NAULNGIYL HE O8-0e- B82Y B8 20848 O30 —@— 881y BH HE ONT i
6 ¢ L 9 g ¥ & Z i 0
’ m W °
V0 H0
I 0
L e e B B, -, i £0
7o 70
R4 ¢'0

R e —— 190
’ \ S

£0 | \ IR

80 \ 0

60

[ee)

00G JiUR S0URISI UBSIONT PBIBYS

US 2017/0308697 Al

Oct. 26,2017 Sheet 15 of 17

Patent Application Publication

u.:
58691 DPREBL C00' 03681 9360}
)] o !

k. {
%

apeo; mwmm SPESL L dEBRl| B2pesl

Y N\A 0\

2269, 9769 078 ©269:

-

LAY Yl

) ! 3
piegl 2168t 9168L Bighl

9L "9l

JBHAE MY BIN0AG

191048 8IN0asH]

a4l
5831 881
B Mereed 5 Meqe--d = b
= fj m .,/ m ...,;..
B M @ : < B T
= Gigy | o vi%l
L {
} 3
0ESL 028l
gogt

Patent Application Publication Oct. 26,2017 Sheet 16 of 17

US 2017/0308697 Al
12@@
1202
DATA
PROCESSING /\ 1210
SYSTEM P
PROCESSOR
g » L o VIDEQ DISPLAY
IN-LINE ~1228
ADCELERATORT Y
1208
1204 1212
USER
MEMORY | p e Bl INPUT DEVICE
1214
1208 -
P s CAMERA
STATIC MEMORY Le 5
2
B 1220
-1222
GRAPHIC USER
;E?Eﬁ&%é N B INTERFACE
DEVICE h i
—1218
4
DATA STORAGE
» DEVICE
1224
NETWORK
RF
B TRANSCEIVER

US 2017/0308697 Al

Oct. 26,2017 Sheet 17 of 17

Patent Application Publication

PI8T <—

8T 9n314

anbiuydal UOIIBAIISAI YIpIMpuEe]
J149u33 9y} 3ulwiopad uo paseq saNPoW UISIP JO SB2IN0S3J paJseys Aue
y3noayy wuoy Ajjernuaod eyl sjpuueyd sujwi [je 3uinowal Ajjesiewoline

1

CI81 <—

sg|npow ugISap syl USIMISQ SUOI1ILIDIUI JO s3d3dse ulwil Jo sieme 3ulaq Jou
13sn e Yyim sajnpow ugisap uaamiag sadeiaul paseq Apeas pue pijea 3uizijnn

OT8T <—

808T <—

908T <—

08T <—

C08T <—

1

1O|S SWI} PIILIO||E UB Ul 924N0SII B SISN JIPPI] Sy J3yIaym
40 9A1109dsaudl ‘S191IgJe 3YY YUM USpPIg Yoes 10} yapimpued Suinlasal

T

$324n0SaJ paJeys Aue Jo S19ppIg Se uolouny 1eyl sajnpow ugisap ayj
40} sa91uesens [ouueyd ujwil apiaoad 01 si911gJe 3y3 4o udisap e SulAjipow

i

a|npow udisap 8uI1D3UU0IIBIUI BY] UDIMI(]
92B}J91UI UE U] SINII0 UOIFUIIU0I JI S133IgJe Suipiasu) Ajjedijewolne

T

sg|npow udisap 3u1I3aUU0IIILUI JOS 519N11sU0d adendue| u11da19p

T

"ugdIsap aAllsuasul Aauaje| e uo paseq anbiuyaal uoizeasasal yipimpueq
J149U33 e WJ0J49d 03 4911dWO0 B U0 PIaseq JO1eJD|DIJE. Ul|-Ul Ue 3ulngdijuod

0081

US 2017/0308697 Al

SYSTEMS AND METHODS FOR COMPILER
GUIDED SECURE RESOURCE SHARING

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/325,938, filed on Apr. 21, 2016,
entitled Systems and Methods for Compiler Guided Secure
Resource Sharing, the entire contents of which are hereby
incorporated by reference.

[0002] This application is related to U.S. Non-Provisional
application Ser. No. 15/215,374, filed on Jul. 20, 2016,
entitled Systems and Methods for In-Line Stream Processing
of Distributed Dataflow Based Computations, the entire
contents of which are hereby incorporated by reference.

TECHNICAL FIELD

[0003] Embodiments described herein generally relate to
the field of data processing, and more particularly relate to
Systems and methods for compiler guided secure resource
sharing.

BACKGROUND

[0004] Secure resource sharing in the context of memory
controllers have been reviewed in prior approaches. The first
approach discusses temporal partitioning in which a speci-
fied amount of cycles is allocated to each resource, while a
second approach discusses a different type of bandwidth
reservation specific to memory read requests. Another
approach discusses timing channels in the context of system
bus protocols. These approaches are tied to memory con-
troller interfaces and bus protocols.

[0005] Presence of hardware Trojan in third party design
IPs have been looked at by prior approaches in which HL.S
and concurrent error detection techniques have been used to
detect and recover from the presence of malicious hardware
IPs. However these approaches do not consider timing
channel attacks by such IPs, nor are their designs accelerator
oriented.

[0006] Certain approaches discuss providing orthogonal
security using FPGAs. In these approaches, FPGAs are
considered as trusted computing modules, performing
secure operations after decryption and relaying the results of
operation after encryption. In this usage model, a third party
user cannot directly interact with FPGAs nor detect appli-
cation being processed upon.

[0007] An alternate paradigm to latency insensitive design
methodology includes side-channel secure cryptographic
accelerators using a GALS methodology. This approach
makes use of random clock frequencies for their local
synchronous designs in order to obfuscate the power signa-
tures of the design. Also in their approach the accelerator is
not shared with other users. Power channel attacks for
reconfigurable logic has been reviewed by prior approaches
as well.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a differential timing pattern observed by
the attacker in accordance with one embodiment.

[0009] FIG. 2 shows results of differential timing analysis
of attacker when temporal partitioning arbiter is used in
accordance with one embodiment.

[0010] FIGS. 3a-3fillustrate Chain relations in accordance
with one embodiment.

Oct. 26, 2017

[0011] FIG. 4 conveys cycle accurate information of a
timing diagram having cycles 450-456 to illustrate how an
arbiter works in accordance with one embodiment.

[0012] FIG. 5, no timing information is now observable to
the attacker in accordance with one embodiment.

[0013] FIG. 6 illustrates a performance-area comparison
chart in accordance with one embodiment.

[0014] FIG. 7 shows the architecture of AES when it is
shared between two engines in accordance with one embodi-
ment.

[0015] FIG. 8 illustrates a performance impact of sharing
this encryption engine in accordance with one embodiment.
[0016] FIG. 9 illustrates an architecture of a single
instance of a K-means in accordance with one embodiment.
[0017] FIG. 10 shows a performance-area comparison
between these three approaches in accordance with one
embodiment.

[0018] FIG. 11 illustrates how ready from attacker propa-
gates backwards through the chain to stall the arbiter in
accordance with one embodiment.

[0019] FIGS. 12a-12¢ illustrate a design space of D
designs in accordance with one embodiment

[0020] FIG. 13 illustrates a shared add unit in accordance
with one embodiment.

[0021] FIG. 14 illustrates a shared Norm-1 unit in accor-
dance with one embodiment.

[0022] FIG. 15 illustrates a shared Euclidean distance unit
in accordance with one embodiment.

[0023] FIGS. 16A-16B illustrate an arbiter interfacing
mechanism with resource and bidders.

[0024] FIG. 17 is a diagram of a computer system includ-
ing a data processing system according to an embodiment.
[0025] FIG. 18 is a flow diagram illustrating a method
1800 for automatically removing all timing channels that
potentially form through any shared resources of design
modules according to an embodiment.

DESCRIPTION OF EMBODIMENTS

[0026] Accelerators are becoming more main-stream in
modern data centers, with prior approaches exploring archi-
tectures, where FPGAs are shared between cloud users as
compute resources. Under such a multi-tenant environment,
FPGAs provide more options for resource sharing, than
traditional servers, as users can share design IPs which can
potentially be provided by third party vendors. In this
rapidly evolving ecosystem of accelerators, it is critical to
assess the security aspects associated with resource sharing.
In traditional servers, despite hypervisor security mecha-
nisms, co-location based timing attacks have been shown to
be effective in a multi-tenant environment. Accelerators are
more vulnerable as they do not have a hypervisor layer and
in this patent application, the present design addresses such
timing channel attacks.

[0027] Since using accelerators has become a mainstream
in multi-tenant environments, the problem of leaking infor-
mation from one tenant to another has become extremely
important. One of the important types of information leak
can occur through timing channels. In cryptography a timing
attack is a side channel attack in which the attacker attempts
to compromise a cryptosystem by analyzing the time taken
to execute cryptographic algorithms Reviewing a design to
make sure that there is no timing channel in it is a tedious
process. Previous approaches are not generic for accelera-
tors and are not interface agnostic. These previous

US 2017/0308697 Al

approaches are also not compiler-based. When sharing
resources, users are not oblivious to the possible information
flow that might get formed through timing channels asso-
ciated with sharing of resources. These shortcomings are
addressed in the present design.

[0028] In a multi-tenant accelerator environment, efficient
utilization can only be achieved through sharing of limited
resources. However, sharing resources should not lead to
timing channel attacks. Thus, a secure means of design
interface protocols needs to be established for resource
sharing.

[0029] Identifying the trusted computing base (TCB) of a
security mechanism is one of the primary steps. Trusted
computing base is the total set of hardware and software
components that must function correctly in order for security
to be maintained. Naturally, it is critical to maintain a
minimal TCB. In conventional accelerators, all programs,
along with the hardware, is part of trusted computing base.
However, programs or IPs, written by third party developers
or malicious insiders, can leak information. Hence, in the
present design, trusted computing base includes only the
compiler and compiler-generated hardware.

[0030] This design includes a threat model that considers
timing attacks as possible between any two different users
controlling any number of modules.

[0031] One of the major goals of security in a data-center
environment is orthogonal security, which is persistent secu-
rity mechanisms provided without user being able to detect
or interact with security mechanism. The present design
addresses orthogonal and oblivious means of achieving
security through a compiler.

[0032] The present design includes generic bandwidth
reservation technique based on latency insensitive design, a
methodology for interface agnostic and orthogonal timing
channel security for shared resources, and implementation
of' above methodology for cryptographic and analytic appli-
cations. A compiler based solution automatically ensures no
timing channel on all shared resources.

[0033] In RSA, decryption is done through modular expo-
nentiation of encrypted text as shown in Eqn. 1 where ‘n’ is
the product of two large prime numbers from which public
and private keys are derived.

Equation 1:RSA Decryption Through Modular

Exponentiation
[0034] encryptedText?"**%< mod n
[0035] A common implementation of modular exponen-

tiation involves using left to right binary exponentiation
technique, in which, based on a corresponding bit in a
private key a square operation and modulo or two square
operations and modulo are performed. It has been shown
previously in memory controller designs that using a shared
cache, the RSA key can be extracted by another attacker core
sharing the same cache. In this design, it is possible to
exploit RSA vulnerability if a DSP multiplier is shared with
an attacker thread in FPGA. Note that DSP resources are
scarce in FPGAs and naturally sharing them is a common
practice. The victim thread performs RSA decryption in
FPGA while using the shared DSP for performing square
operation in modular exponentiation. The attacker thread
continuously sends dummy numbers to DSP multiplier and
measures the response time between successive requests. A
round robin arbiter decides which user gets control of the

Oct. 26, 2017

DSP multiplier. In one example, the DSP unit in consider-
ation is non-pipelined with 6 cycle latency.

[0036] FIG. 1 is a diagram 100 of a differential timing
pattern observed by the attacker. A vertical axis 110 plots a
time difference between previous attacks versus a horizontal
axis 120 that has units of time in nanoseconds. The solid line
130 in FIG. 1 denotes the response time between attacker’s
successive requests. The peaks in the response time denote
when the shared resource was performing the victim’s
computation, which implies the number of digits in the
prime number key. This by itself is dangerous information as
the distribution of prime numbers reduces with more number
of digits and it might be possible to scan the number of
primes within that range. The discontinuous dots 140, which
are above the line 130, denote the time taken between
successive peaks in solid line 130. A peak among dots 140
indicates that the previous processed bit had value 1. The
peaks among dots 140 are due to timing differences between
execution time of the modular exponentiation kernel when
processing O or 1 bit in private key. As the number of bits in
the key increases, this method of detecting the key is
scalable as this is a deterministic approach.

[0037] Two intuitive approaches to avoid such problems
are spatial isolation, in which each user gets their own
resource, and temporal partitioning, in which each user
accesses the resource for a given period (called turn length
in the context of memory controller). First approach has high
area overhead, while the latter suffers from detrimental
throughput.

[0038] FIG. 2 shows a diagram 200 with results of differ-
ential timing analysis of attacker when temporal partitioning
arbiter is used. A vertical axis 210 plots a time difference
between previous attacks versus a horizontal axis 220 that
has units of time in nanoseconds. The dots 240 of peaks here
denote turn length given to each resource. Turn length has an
inverse effect on performance. The solid line 230 in FIG. 2
denotes the response time between attacker’s successive
requests.

[0039] Malicious insiders can also create covert channels
through shared resources to leak information. Attacks simi-
lar to one shown above, can be performed with any shared
design and hence a generic and efficient solution is needed
to address timing channels between any shared resource.

[0040] In a latency insensitive design, stallable design
modules (e.g., logic, design cores) communicate with each
other through interfaces, which are based on a tagged signal
model. AMBA R AXI4-Stream is an example of industry
standard protocol which uses valid/ready based tags for
achieving latency insensitive design interfacing. In a valid/
ready based interface the consumer waits for input, that is
signaled valid and the producer removes the valid signal
when consumer acknowledges through ready. The valid tag
handles variable latency of designs, while lack of ready
denotes back-pressure from the consumer. In such latency
insensitive designs, timing becomes a property of valid/
ready. The design includes a technique of bandwidth reser-
vation making use of valid/ready based interfaces between
design modules, while relying on a compiler for generating
the composition of design modules, so that user is oblivious
to timing aspects of design interactions. In such a method-
ology, the user only describes the computation algorithm or
specifies a particular design IP, while the compiler takes care

US 2017/0308697 Al

of scheduling and interfacing aspects of the design. This
opens up opportunities for providing orthogonal timing
security.

[0041] The present design chooses an open source version
of a high level compiler, which uses valid/ready based
interface for interconnecting designs and implemented this
technique of the present design. For this compiler, an
algorithm 1is specified through C-styled kernels called
engines, while design interconnections are specified in a
separate composition code. There are two basic kinds of
relations in which designs can be connected with each other
through its composition compiler

[0042] An Offload Relation is defined as a relation where
one design behaves similar to a high-level function for other
designs. A user thread from other designs can send requests
to the offloaded design, but need to stall in the same state
until the offloaded design finishes computation and provides
a reply.

[0043] FIG. 3a illustrates this simple offload architecture
300 along with Scala based DSL code (e.g., val comp=Chain
(A, B)) for specifying this relation between design modules
A and B in accordance with one embodiment. A chain
relation is a relation in which one design module acts as a
producer and the other as consumer. This is a one-directional
relation, where consumer cannot relay any data back to
producer but can stall the producer’s thread by refusing to
accept input. A simple example of chain relation architecture
310 along with Scala based DSL code (e.g., val
comp=Offload (A, B)) for design modules A and B is
illustrated in FIG. 34.

[0044] The present design extended the chain relation with
fork relation of FIG. 3d and join relation of FIG. 3¢. FIG. 3¢
illustrates a join relation architecture 330 along with Scala
based DSL code (e.g., val comp=join (ArrayBuffer (A,B),
C)) for specifying this join relation between design modules
A, B, and C in accordance with one embodiment. In this
example, multiple designs feed to one consumer.

[0045] FIG. 3d illustrates a fork relation architecture 330
along with Scala based DSL code (e.g., val comp=fork (A,
ArrayBuffer (B, C)) for specifying this fork relation between
designs module A, B, and C in accordance with one embodi-
ment. In this example, the design modules A feeds multiple
design modules B and C.

[0046] These relations are language constructs for inter-
connecting design modules. The compiler automatically
inserts arbiters if there is contention in the interface, as
illustrated in FIGS. 3e and 3f for chain and offload relations
respectively. Thus, it is compiler’s responsibility to generate
correct interconnections for any type of relations specified
using such language constructs.

[0047] FIG. 3e illustrates an offload relation architecture
340 along with Scala based DSL code (e.g., val
comp=offload (ArrayBuffer (A,B), C)) for specifying this
offload relation between design modules A, B, and C in
accordance with one embodiment.

[0048] FIG. 3fillustrates a join and fork relation architec-
ture 350 along with Scala based DSL code (e.g., val
merged=join (A, ArrayBuffer (A, B), C), val comp=fork
(merged, ArrayBuffer (D, E)) for specifying these relations
between designs module A, B, C, D, and E in accordance
with one embodiment.

[0049] Arbiters, generated through compiler, have infor-
mation about contention in that interconnect, and hence the
present design modified the design of arbiter to provide

Oct. 26, 2017

timing channel guarantees for bidders of each resource as
illustrated in architecture 1600 of FIG. 16A. The architec-
ture 1600 includes an arbiter 1610, a resource 1620, and a
distributor 1630. Valid communication signals 1670-1675
and ready communication signals 1680-1685 are sent
between victims 1650, 1651, attackers 1660, 1661 and the
arbiter, resource, and distributor. In order for the arbiter 1610
to uniquely identify the bidders and track interfaces in
hardware, each design’s interface was modified with the
signals thread_id, user_id, valid, and ready.

[0050] In one embodiment, a modified arbiter reserves
bandwidth for each bidder, irrespective of whether they use
the resource in their allocated time or not. The amount of
bandwidth allocated for each bidder depends on the input
processing latency of the resource. If the resource under
contention accepts inputs every ‘n’ cycles, then arbiter
switches bidder for every ‘n’ cycles thereby allocating ‘n’
cycles to each bidder. During their allocated bandwidth, the
bidder can choose not to use the resource. In memory
controller based bandwidth reservation techniques, a
dummy memory read is performed when bidder does not use
the resource, whereas in our model, read or write is a
property of user interface and should not be overridden with
a controlled value from another principal or entity. In order
to achieve this, arbiter propagates valid signal (e.g., valid
signal 1670, 1671) from the bidder, who is chosen, to the
resource and applies artificial back-pressure to other bidders
through ready signal (e.g., 1680, 1681). This method of
bandwidth reservation is generic and can be applied to any
resource, irrespective of interface type.

[0051] FIG. 16B illustrates a timing diagram 1690 for an
insecure arbiter and a secure arbiter in accordance with one
embodiment. An insecure arbiter has victim bids 1691 a-c
and attacker bids 1692a-e. A secure arbiter has victim bids
1694a-¢ and attacker bids 1698a-¢ with victim bids 1694d-e
being stalled or eliminated.

[0052] Let us consider the example of FIG. 3e where
design module C becomes our resource which is shared
between victim (design module A) and attacker (design
module B). Let us start with the case that resource C accepts
inputs every cycle and occupancy delay is 1. Our bandwidth
reservation based arbiter is the neutral component interfac-
ing A and B with resource C. A grant register inside the
arbiter points to the bidder whose inputs are passed on to the
resource.

[0053] FIG. 4 conveys cycle accurate information of a
timing diagram having cycles 450-456 to illustrate how an
arbiter works in accordance with one embodiment. Signals
marked valid are outputs of that corresponding design (e.g.,
410, 420, 430), whereas ready is the input from the module
connected to its output. For the victim and attacker, ready
signal is provided by arbiter, whereas valid is passed from
victim and attacker to the arbiter.

[0054] In this example, at first cycle 450, both victim and
attacker request for the resource through valid. Since grant
register points to victim, ready is signaled only to victim. In
the next cycle 451 grant register points to the attacker and so
ready is lowered for victim and raised for attacker and this
toggling of ready between bidders repeats continuously.
Lowering ready serves to apply back pressure to non chosen
bidders. The purpose of connecting bidder’s valid signal to
the resource’s valid comes into picture when the user
pointed to by grant register does not need the resource in that

US 2017/0308697 Al

cycle, in which case the output valid of arbiter is low as can
be seen at cycles 454 and 456 in the FIG. 4.

[0055] In the case where the latency between successive
inputs is multiple cycles, the present design inserts dead
cycles equal to latency of the resource. The present design
uses dead cycles in order to prevent the bidder from issuing
multiple requests during their bandwidth. If a resource has
variable latency between inputs, then the number of dead
cycles will be that of maximum latency. A fully pipelined
design does not need any dead cycles and hence perfor-
mance impact of sharing such a resource is minimal.
[0056] The present design uses the same modular expo-
nentiation design but used the bandwidth reservation based
arbiter.

[0057] As seen in FIG. 5, no timing information is now
observable to the attacker when using bandwidth reservation
in accordance with one embodiment. A vertical axis 510
plots a time difference between previous attacks versus a
horizontal axis 520 that has units of time in nanoseconds.
The solid line 530 in FIG. 5 denotes the response time
between attacker’s successive requests. In contrast to FIGS.
1 and 2, no discontinuous dots or peaks are visible for a time
difference between detected attacks.

[0058] On the other hand, round-robin based arbiter leaks
timing information because it allows attacker requests to
access the resource if there is no contention. This exposes a
contention based timing channel. The present design closes
this channel, by reserving bandwidth for each bidder. It is
important to note that under full resource contention, the
behavior of both round robin and bandwidth reservation is
the same as these techniques both try to enforce fairness.
[0059] The present design can observe from the perfor-
mance-area comparison chart 600 in FIG. 6 that perfor-
mance degradation of modular exponentiation design that is
illustrated with throughout 630 is less than 15% while
sharing a DSP multiplier when compared to spatial isolation
(shown in the first column 610-612). One noticeable and
interesting fact in FIG. 6 is that sharing a resource increases
LUT area (e.g., 620-622) for this design as this is a register
heavy design with small combinational logic and introduc-
ing arbiter increases combinational area of the design. A
compiler based solution can analyze such trends and make
smart choices of whether spatial isolation is better under
provided constraints.

[0060] AES is a common symmetric key encryption algo-
rithm used in security protocols like IPSec, TLS/SSL, SSH,
etc. and is common among cryptographic accelerators. In
one example, the present design includes a 128-bit key AES
encryption engine through high-level language.

[0061] FIG. 7 shows the architecture 700 of AES when it
is shared between two engines (e.g., Configuration similar to
3e, image feeders 710-711), which send blocks of image for
encryption to the design 730 via arbiter 720 in accordance
with one embodiment. The interface between both the
modules is a 128-bit bus for sending plain text and receiving
encrypted text back. This design illustrates an example
where a design IP is shared between two designs and our
bandwidth reservation technique still works according to
intent.

[0062] As can be observed from a chart 800 illustrated in
FIG. 8 in accordance with one embodiment, the performance
impact (e.g., throughput 830) of sharing this encryption
engine is quite high for round robin arbiter and bandwidth
reservation in comparison to no share. Register area 810-812

Oct. 26, 2017

is illustrated for these techniques and LUT area 820-822 is
also illustrated for these techniques. Depending on how
frequently the offloaded unit is used, throughput optimiza-
tions can give better results.

[0063] K-Means clustering is a popular data-mining algo-
rithm where the objective is to find ‘K’ centroids if we need
‘K’ clusters among data points. Dedicated FPGA accelera-
tors for K-Means have been explored in prior approaches. In
this implementation of the present design, multiple instances
of K-means accelerator are created and consider sharing
common resources for efficient utilization. The architecture
900 of a single instance of our K-means is shown in FIG. 9
in accordance with one embodiment. In the present design’s
iterative version of K-Means, points are streamed through
accelerator while distance between each centroid and the
point is computed. The centroid, with the closest distance,
updates its cumulative sum with the new distance. Once all
points are streamed through, new centroids are computed.
This process is repeated until centroids converge.

[0064] The data points used in our case are double preci-
sion floating point numbers. In FIG. 9, the distanceFU
offload unit 910 of DFU 902 computes Euclidean distance
between points. Partial Accumulator 931 is a BRAM
memory used to store cumulative sum of distances between
each centroid and points in its cluster. Centroid Memory 932
is another small memory which saves centroid locations for
each round. NumO{fPoints Memory 933 stores number of
points in each cluster. The composition code for shared
configuration is shown below.

vat kengine = Engine("KEngine.c")

vat kmWithDist = Offload(kengine, distanceFU) val kmeansAcc =
Offload (kmWithDist, KEO)

vat result = fork(distributer,
ArrayBuffer.fill(NUM_USERS)(kmeansAcc))

[0065] NUM_USERS specifies number of accelerator
instances needed.

A. Shared Memory Units

[0066] As number of K-Means instances increase, sharing
BRAM units, which are infrequently used increases effec-
tive utilization. When BRAM units are shared for different
users, our modified compiler creates memory partition for
each user. Address translation and bounds checking is per-
formed by the arbiter for each user. If a user tries to access
out of his bounds, the address is wrapped around over the
users’ bounds.

B. Sharing K-Means Offloads

[0067] While creating multiple instances of K-Means
accelerators, three major configurations of shared offloads is
possible. We discuss performance area trade-offs associated
with each choice for two instances of K-Means.

[0068] KEO Configuration: Two instances of K-Means
accelerators share all memory and floating point units (e.g.,
marked KEO 930 in FIG. 9).

[0069] KbDistanceFU Configuration: Two instances of
KMeans share the distance computing engine along with its
offloads (e.g., marked DFU 902 in FIG. 9). Distance com-
puting engine is performance optimized and area heavy
design than rest of the offloads.

US 2017/0308697 Al

[0070] KEO+KDistanceFU Configuration: All offloads of
KEngine (e.g., KEngine 920) are shared between two
instances.

[0071] FIG. 10 shows a performance-area comparison
chart 1000 between these three approaches in accordance
with one embodiment. The performance impact (e.g.,
throughput 1030) of sharing memories and DSP add unit is
minimal for KEO 1010 since these operations are fully
pipelined. This is not the case with distanceFU unit 1020 and
hence performance overhead 1031 in the second configura-
tion is much more. In the third scenario the performance
degradation 1032 of bandwidth reserved arbiter drops even
lower due to consistent loss of synchronization between
reading from memory and computing distance.

[0072] The bandwidth reservation technique discussed
herein does not apply, if the shared resource is connected in
chain configuration with attacker and victim. An example of
such a chain configuration, by using fork and join constructs,
is shown in FIG. 3f. In this scenario, design ‘A’ and ‘D’ form
the attacker, while ‘B’ and ‘E’ form the victim designs. The
arbiter, inserted automatically through the compiler, is con-
nected between attacker and victim. Design ‘C’ is the
resource under contention and distributes the result to either
‘D’ or ‘E’ based on user id. In this scenario, the attacker at
the end of chain can stall the modules as ready propagates
backward, while valid travels forward.

[0073] FIG. 11 illustrates timing information with timing
diagram 1100 to show how ready from attacker propagates
backwards through the chain to stall the arbiter in accor-
dance with one embodiment. Thus, in a chain relationship
attacker can throttle the resource bandwidth, thereby creat-
ing a timing channel Signals marked valid are outputs of that
corresponding design (e.g., 1110-1116), whereas ready is the
input from the module connected to its output. For the victim
and attacker, ready signal is provided by arbiter, whereas
valid is passed from victim and attacker to the arbiter.
[0074] A compiler can analyze performance and area
objectives of a design and choose the preferred method
among spatial isolation and bandwidth reservation for
achieving security. A composition compiler of the present
design explores design points and creates a performance
area model in order to find the Pareto-optimal choice for this
2-objective problem. A linear model reduces number of
synthesis runs required for full design space exploration and
chooses a preferred solution.

[0075] In one example, both area and performance objec-
tives are scalarized into one utility function.

a, and t, represent area and effective latency (inverse of
throughput) of the baseline design while, a, and t, represent
area and effective latency of the design being explored. The
smaller the values of a,, t, and 9, the better the design. . and
[are weightage associated with area and performance
objects that user can specify.

Utility Function for Integrating Performance Area Objecives Equation 2

a(ay — ax)
Qr

}+max{0’ ﬁ(lx—ln)}

5= max{O, .
¢4

[0076] For a design that chooses spatial isolation for N
number of bidders, the utility function (d,,) is given by Eqn.
3. With spatial isolation, the present design does not sacrifice
performance, but area increases linearly with number of

Oct. 26, 2017

bidders. On the other hand, Eqn 4 represents utility (3,) of
a shared design, where latency increases with number of
bidders. a,,, represents the area of arbiter inserted that
increases with number of bidders. In another example, the
present design could also have a hybrid solution, where k
groups among N bidders share the resource and this is
represented by Eqn. 5. The design space (e.g., 1280, 1281,
1282) of D designs is represented by FIGS. 12a-¢, where
Eqn 3, 4 and 5 are represented by FIG. 12¢,6 and ¢
respectively with N=2 and k=2.

Utility Function for Non- Shared Resources Equation 3
Nay — n-1
Sus = o(Nay — az) +ﬁ'(x 7)
ar I
Utility Function for Shared Resources Equation 4
_ al(ar + Nagr,) = az) N BNty — 1)
s [Iy
Utility Function for Hybrid Resources Equation 5

Of(kax +kagm, + %aarbz - qu) ﬁ((%u) - [,r)
+

Oy =
Ar Ir

[0077] For this, a synthetic experiment in which three
designs of increasing area and DSP usage are shared with
different number of users is performed. In prior approaches
involving shared FPGAs, the number of users is below 4.
The present design considers up to 8 users for a given design
and illustrates how a compiler can choose between gener-
ating spatially isolated resource for each user or share the
resource with different users based on area throughput
trade-offs.

[0078] The designs chosen for offload are a shared floating
point add unit as illustrated in FIG. 13, a shared two
dimensional Norm-1 distance computation unit as illustrated
in FIG. 14, and a shared two dimensional Euclidean distance
computation unit as illustrated in FIG. 15.

[0079] FIG. 13 illustrates a shared add unit in accordance
with one embodiment. The shared add unit diagram 1300
illustrates normalized numbers for area throughput trade-
offs including add BRAM (BR) Registers area 1310, add
spatial registers area 1311, add BR throughput 1312, and add
spatial throughput 1313.

[0080] FIG. 14 illustrates a shared Norm-1 unit in accor-
dance with one embodiment. The shared Norm-1 unit dia-
gram 1400 illustrates normalized numbers for area through-
put trade-offs including norm BR Registers area 1410, norm
spatial registers area 1411, norm BR throughput 1412, and
norm spatial throughput 1413.

[0081] FIG. 15 illustrates a shared Euclidean distance unit
in accordance with one embodiment. The shared Euclidean
distance unit diagram 1500 illustrates normalized numbers
for area throughput trade-offs including Euclidean distance
BR Registers area 1510, Euclidean distance spatial registers
area 1511, Euclidean distance BR throughput 1512, and
Euclidean distance spatial throughput 1513.

US 2017/0308697 Al

TABLE 1

Oct. 26, 2017

Area-Throughput Tradeoffs for Synthetic Benchmark:

BR
Registers

LUT

Throughput

FEuclidean Distance Unit

Num No share

Users Registers LUT Throughput
2 0.2590951062 0.3002077562 0.3694367177
3 0.3618651893 0.4144044321 0.3694367177
4 0.4646121884 0.5302631579 0.3694367177
5 0.5673822715 0.6495844875 0.3694367177
6 0.6701292705 0.7603647276 0.3694367177
7 0.7728762696 0.8779778393 0.3694367177
8 0.8756232687 1 0.3694367177

0.1673361034
0.1766851339
0.1859418283
0.1952908587
0.2045475531
0.2138042475
0.2230609418

Norm-1 Distance Unit

0.2021006464
0.2180055402
0.2292243767
0.2590027701
0.258933518

0.2862419206
0.2952216066

0.2023809524
0.1350063532
0.1011904762
0.0809832317
0.0674603175
0.0578388677
0.0505952381

2 0.1793167128 0.2123377101 0.5666666667 0.115143121 0.1391735919 0.3269230769
3 0.254478301 0.301800554 0.5666666667 0.1244921514 0.1549861496 0.2181724846
4 0.3296168052 0.392867036 0.5666666667 0.1337488458 0.1662280702 0.1634615385
5 0.4047783934 04873037858 0.5666666667 0.1430978763 0.1960064635 0.1308497537
6 0.4799168975 0.5732686981 0.5666666667 0.1523545706 0.1957987073 0.108974359
7 0.5550554017 0.6677516159 0.5666666667 0.161611265 0.2232686981 0.0934476693
8 0.6301939058 0.7634579871 0.5666666667 0.1708679594 0.2322714681 0.0817307692
Add Unit
2 0.0750692521 0.0922206833 1 0.0541320406 0.0671514312 0.6538461538
3 0.1040166205 0.1271698984 1 0.0605263158 0.0770083102 0.4372427984
4 01329409049 0.1639427516 1 0.0668282548 0.0853416436 0.3269230769
5 0.1618882733 0.2009926131 1 0.07322253 0.1003231764 0.2616995074
6 0.1908125577 0.2358956602 1 0.0795244691 0.108910434 0.2181724846
7 0.2197368421 0.2760387812 1 0.0838264081 0.1216528163 0.1870598592
8 0.2486611265 0.3174746076 1 0.0921283472 0.1304478301 0.1634615385
[0082] Table 1 shows normalized numbers for area ring. Unlike other compilers, a compiler of the present

throughput trade-offs. From this, the design size grows large,
shared offloads becomes the natural choice. A linear model
can predict which choice is better under given set of area,
throughput, DSP constraints. A compiler of the present
design can perform this design space exploration for user
and make the right choice, under given set of constraints

[0083] A generic methodology for resource sharing with
the help of composition compiler is presented herein. A
compiler can securely interconnect designs irrespective of
interface type, while also automatically making smart
choices about isolation techniques.

[0084] Alternate methods of implementing a similar
design include using a high level synthesis tool instead of a
compiler tool. Also, the bandwidth reservation mechanism
can be implemented on communications between different
substrates including DSPs, FPGAs, and ASIC and for dif-
ferent application specific designs.

[0085] A method of the present design is automated since
it is compiler-based and makes the security oblivious to the
user. It supports any generic accelerator designed using our
environment. Also, this method automatically finds the least
expensive way to block the timing channels when choosing
between isolation and bandwidth reservation for sub-mod-
ules in the design.

[0086] The present design can be implemented with a
variety of big-data/machine-learning FPGA accelerators.
This technology shares the resources of FPGAs between
multiple applications without having any timing channel.
The present design removes all timing channels that poten-
tially may form through any shared resource. The present
design removes all timing channels automatically for appli-
cations and user does not need to pay attention to the details.
The present design provides automatic timing channel deter-

design is based on specific execution model that allows
detecting all shared resources in the pre-defined design
patterns and that is the fundamental requirement to detect,
and deter the timing channels.

[0087] FIG. 17 is a diagram of a computer system includ-
ing a data processing system according to an embodiment of
the invention. Within the computer system 1200 is a set of
instructions for causing the machine to perform any one or
more of the methodologies discussed herein. In alternative
embodiments, the machine may be connected (e.g., net-
worked) to other machines in a LAN, an intranet, an
extranet, or the Internet. The machine can operate in the
capacity of a server or a client in a client-server network
environment, or as a peer machine in a peer-to-peer (or
distributed) network environment, the machine can also
operate in the capacity of a web appliance, a server, a
network router, switch or bridge, or any machine capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine. Further, while
only a single machine is illustrated, the term “machine” shall
also be taken to include any collection of machines (e.g.,
computers) that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein.

[0088] Data processing system 1202, as disclosed above,
includes a processor 1227 and an in-line accelerator 1226.
The processor may be one or more processors or processing
devices (e.g., microprocessor, central processing unit, or the
like). More particularly, data processing system 1202 may
be a complex instruction set computing (CISC) micropro-
cessor, reduced instruction set computing (RISC) micropro-
cessor, very long instruction word (VLIW) microprocessor,
processor implementing other instruction sets, or processors

US 2017/0308697 Al

implementing a combination of instruction sets. The in-line
accelerator may be one or more special-purpose processing
devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, many light-
weight cores (MLWC) or the like. Data processing system
1202 is configured to implement the data processing system
for performing the operations and steps discussed herein. A
compiler for performing operations of the present disclosure
(e.g., operations for automatically removing all timing chan-
nels that potentially form through any shared resources of
design modules) can be located in the data processing
system, processor, in-line accelerator, memory, data storage
device, or at a different network location.

[0089] The exemplary computer system 1200 includes a
data processing system 1202, a main memory 1204 (e.g.,
read-only memory (ROM), flash memory, dynamic random
access memory (DRAM) such as synchronous DRAM
(SDRAM) or DRAM (RDRAM), etc.), a static memory
1206 (e.g., flash memory, static random access memory
(SRAM), etc.), and a data storage device 1216 (e.g., a
secondary memory unit in the form of a drive unit, which
may include fixed or removable computer-readable storage
medium), which communicate with each other via a bus
1208. The storage units disclosed in computer system 1200
may be configured to implement the data storing mecha-
nisms for performing the operations and steps discussed
herein.

[0090] The computer system 1200 may further include a
network interface device 1222. In an alternative embodi-
ment, the data processing system disclose is integrated into
the network interface device 1222 as disclosed herein. The
computer system 1200 also may include a video display unit
1210 (e.g., a liquid crystal display (LCD), LED, or a cathode
ray tube (CRT)) connected to the computer system through
a graphics port and graphics chipset, an input device 1212
(e.g., a keyboard, a mouse), a camera 1214, and a Graphic
User Interface (GUI) device 1220 (e.g., a touch-screen with
input & output functionality).

[0091] The computer system 1200 may further include a
RF transceiver 1224 provides frequency shifting, converting
received RF signals to baseband and converting baseband
transmit signals to RF. In some descriptions a radio trans-
ceiver or RF transceiver may be understood to include other
signal processing functionality such as modulation/demodu-
lation, coding/decoding, interleaving/de-interleaving,
spreading/dispreading, inverse fast Fourier transforming
(IFFT)/fast Fourier transforming (FFT), cyclic prefix
appending/removal, and other signal processing functions.

[0092] The Data Storage Device 1216 may include a
machine-readable storage medium (or more specifically a
computer-readable storage medium) on which is stored one
or more sets of instructions embodying any one or more of
the methodologies or functions described herein. Disclosed
data storing mechanism may be implemented, completely or
at least partially, within the main memory 1204 and/or
within the data processing system 1202 by the computer
system 1200, the main memory 1204 and the data processing
system 1202 also constituting machine-readable storage
media.

[0093] The computer-readable storage medium 1224 may
also be used to one or more sets of instructions embodying
any one or more of the methodologies or functions described
herein. While the computer-readable storage medium 1224

Oct. 26, 2017

is shown in an exemplary embodiment to be a single
medium, the term “computer-readable storage medium”
should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database, and/or
associated caches and servers) that stores the one or more
sets of instructions. The terms “computer-readable storage
medium” shall also be taken to include any medium that is
capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention. The term “computer-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media.

[0094] FIG. 18 is a flow diagram illustrating a method
1800 for automatically removing all timing channels that
potentially form through any shared resources of design
modules according to an embodiment of the disclosure.
Although the operations in the method 1800 are shown in a
particular order, the order of the actions can be modified.
Thus, the illustrated embodiments can be performed in a
different order, and some operations may be performed in
parallel. Some of the operations listed in FIG. 18 are
optional in accordance with certain embodiments. The num-
bering of the operations presented is for the sake of clarity
and is not intended to prescribe an order of operations in
which the various operations must occur. Additionally,
operations from the various flows may be utilized in a
variety of combinations.

[0095] The operations of method 1800 may be executed
by a data processing system, a machine, a server, a web
appliance, or any system, which includes an in-line accel-
erator and a compiler. The in-line accelerator may include
hardware (circuitry, dedicated logic, etc.), software (such as
is run on a general purpose computer system or a dedicated
machine or a device), or a combination of both. In one
embodiment, at least one of a compiler and an in-line
accelerator performs the operations of method 1800.

[0096] At operation 1802, the method includes configur-
ing an in-line accelerator based on a compiler to perform a
generic bandwidth reservation technique based on a latency
insensitive design. At operation 1804, the method includes
detecting language constructs for interconnecting design
modules. At operation 1806, the method includes automati-
cally inserting arbiters if contention occurs in an interface
between the interconnecting design modules. At operation
1808, the method includes modifying a design of the arbiters
to provide timing channel guarantees for the design modules
that function as bidders of any shared resources. At opera-
tion 1810, the method includes reserving bandwidth for each
bidder, with the arbiters, irrespective of whether the bidder
uses a resource in an allocated time slot. At operation 1812,
the method includes utilizing valid and ready based inter-
faces between design modules with a user not being aware
of timing aspects of interactions between the design mod-
ules. The compiler modifies an interface for each design
module with thread id and user id signal to identify bidders
and track interfaces in hardware. At operation 1814, the
method includes automatically removing all timing channels
that potentially form through any shared resources of design
modules based on performing the generic bandwidth reser-
vation technique. In one example, the design modules com-
prise at least one of design IP cores and hard coded units.
The above description of illustrated implementations of the
invention, including what is described in the Abstract, is not

US 2017/0308697 Al

intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific implementations of,
and examples for, the invention are described herein for
illustrative purposes, various equivalent modifications are
possible within the scope of the invention, as those skilled
in the relevant art will recognize.

[0097] These modifications may be made to the invention
in light of the above detailed description. The terms used in
the following claims should not be construed to limit the
invention to the specific implementations disclosed in the
specification and the claims. Rather, the scope of the inven-
tion is to be determined entirely by the following claims,
which are to be construed in accordance with established
doctrines of claim interpretation.

1. A data processing system comprising:

an Input/output (I/O) interface to receive incoming data;
and

an in-line accelerator coupled to the /O interface, the
in-line accelerator is configured to receive the incoming
data from the I/O interface and to automatically remove
all timing channels that potentially form through any
shared resources.

2. The data processing system of claim 1, wherein the
in-line accelerator is further configured based on a compiler
to perform a generic bandwidth reservation based on latency
insensitive design for automatically removing all timing
channels that potentially form through any shared resources.

3. The data processing system of claim 2, wherein the
generic bandwidth reservation utilizes valid and ready based
interfaces between design modules with a user not being
aware of timing aspects of interactions between the design
modules.

4. The data processing system of claim 3, wherein the
compiler detects language constructs for interconnecting
design modules, automatically inserts arbiters if contention
occurs in an interface between the interconnecting design
modules, and modifies a design of the arbiters to provide
timing channel guarantees for the design modules that
function as bidders of any shared resources.

5. The data processing system of claim 4, wherein the
compiler modifies an interface for each design module with
thread id and user id signals to identify bidders and track
interfaces in hardware.

6. The data processing system of claim 1, further com-
prising:

a general purpose instruction-based processor coupled to
the I/O processing unit, wherein the in-line accelerator
is configured to automatically remove all timing chan-
nels that potentially form through any shared resources
without utilizing the general purpose instruction-based
processor.

7. The data processing system of claim 1, wherein the
in-line accelerator is implemented on a Field Programmable
Gate Array (FPGA), a many-core, a graphical processing
unit (GPU), or an application specific integrated circuit
(ASIC).

Oct. 26, 2017

8. A computer-implemented method comprising:
configuring an in-line accelerator based on a compiler to
perform a generic bandwidth reservation technique
based on a latency insensitive design; and

automatically removing all timing channels that poten-
tially form through any shared resources of design
modules.

9. The computer-implemented method of claim 8, further
comprising:

detecting language constructs for interconnecting design

modules; and

automatically inserting arbiters if contention occurs in an

interface between the interconnecting design modules.

10. The computer-implemented method of claim 9, fur-
ther comprising:

modifying a design of the arbiters to provide timing

channel guarantees for the design modules that function
as bidders of any shared resources.

11. The computer-implemented method of claim 10, fur-
ther comprising:

reserving bandwidth for each bidder, with the arbiters,

irrespective of whether the bidder uses a resource in an
allocated time slot.

12. The computer-implemented method of claim 11, fur-
ther comprising:

utilizing valid and ready based interfaces between design

modules with a user not being aware of timing aspects
of interactions between the design modules.

13. The computer-implemented method of claim 12,
wherein the design modules comprise at least one of design
IP cores and hard coded units.

14. The computer-implemented method of claim 12,
wherein the compiler modifies an interface for each design
module with thread id and user id signal to identify bidders
and track interfaces in hardware.

15. A computer-readable storage medium on which is
stored one or more sets of instructions embodying a com-
puter-implemented method comprising:

analyzing, with a compiler, performance and area objec-

tives of different designs including spatial isolation
having spatially isolated resources for each user, a
shared design having shared resources for each user,
and a hybrid design; and

generating a single utility function for each design based

on the area and performance objectives for each design.

16. The computer-readable storage medium of claim 15,
the method further comprising:

creating a performance area model based on the utility

functions.

17. The computer-readable storage medium of claim 16,
the method further comprising:

selecting a Pareto-optimal choice among the different

designs based on the performance area model.

18. The computer-readable storage medium of claim 17,
wherein the performance area model reduces a number of
synthesis runs required for full design space exploration.

#* #* #* #* #*

