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Biomolecule Fitness Inference Using Machine Learning for Drug Discovery

with Directed Evolution
PRIORITY

[0001] This application claims the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional
Patent Application No. 63/417961, filed 20 October 2022, which is incorporated herein by

reference.

TECHNICAL FIELD

[0002] This disclosure generally relates to systems and methods for inferring biomolecule

fitness, and more specifically to machine-learning techniques for biomolecule selection.

BACKGROUND

[0003] Directed evolution, with iterated mutation and human-designed selection, is a
powerful approach for drug discovery, such as large molecule drug discovery. Mutation is an
important part of directed evolution. Directed evolution approaches for drug discovery use
genetic strategies (e.g., DNA-encoded, RNA-encoded, or phage-based) to create very large but
specific libraries of molecules whose amplification is driven by the target of interest. In other
words, directed evolution approaches can discover drug-like biomolecules, such as
macrocycles, with novel activities of interest.

[0004] Current multiplexed target-binding candidate screening analysis systems have
difficulty with the simultaneous selection of many nucleotide-containing peptide libraries for
binding to a desired target due to problems such as sample-to-sample variations and data
complexity. There is, therefore, a need for improved multiplexed target-binding candidate
screening analysis systems and methods to help simultaneous selection of candidate binders

against a desired binding target, e.g., a protein.

SUMMARY OF PARTICULAR EMBODIMENTS

[0005] Herein is provided a system and methods for biomolecule fitness inference.
Challenges exist in how to select diverse biomolecules with improved binding capabilities from
directed evolution experiments. One solution is to utilize machine-learning techniques to infer
biomolecule fitness based on sequencing time-series data obtained from directed evolution

experiments and then select biomolecules based on the inferred fitness.
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[0006] In particular embodiments, a molecule discovery system described herein utilizes
deep-learning techniques for biomolecule fitness selection. As an example and not by way of
limitation, the molecule discovery system may include a deep neural network that estimates
molecule fitness, representing at least the biological activity of the molecules, and use the
fitness to rank biomolecules (e.g., macrocyclic peptides, small molecules, other types of
peptide therapeutics such as bicyclic peptides, or any molecule that can be associated with or
tagged to a DNA encoded library or other similar technology) for selection. The molecule
discovery system may establish a fitness inference problem given on-target and off-target time
series DNA sequencing data. The molecule discovery system may utilize maximum likelihood
solutions for the nonlinear dynamical system induced by fitness-based competition. The
disclosed approach may learn from multiple time series rounds in a principled manner, in
contrast to prior work focused on two-round enrichment prediction. By ranking molecules
based on fitness, the molecule discovery system can identify low-frequency, high-fitness
molecules that may otherwise be missed by conventional systems. The molecule discovery
system may additionally predict on-target and off-target binding fitness accurately, discover
novel and diverse genotypes of the biomolecules, and improve the quantity and diversity of
identified molecules. The experiments show that inferring fitness while jointly learning a
sequence-to-fitness deep-learning model (e.g., a transformer) improves performance over a
baseline model without deep learning and a two-round enrichment baseline.

[0007] In particular embodiments, the molecule discovery system may access a
biomolecule representation of a first biomolecule. The molecule discovery system may then
process, by a machine-learning model, the biomolecule representation of the first biomolecule.
The machine-learning model was trained using sequencing time-series data associated with
biomolecule frequencies of particular biomolecules. The sequencing time-series data was
obtained from a directed evolution of a population of biomolecules over a plurality of
enrichment rounds. The population of biomolecules in each enrichment round may be a unique
set of biomolecules with respect to each other enrichment round. As used herein, “unique”
indicates that the population of biomolecules may have mutated in each enrichment round,
thereby resulting in the population of biomolecules in each enrichment round having at least
some unique biomolecules with respect to the population of biomolecules in each other
enrichment round. The sequencing time-series data for each enrichment round may comprise a
biomolecule frequency of each biomolecule of the population of biomolecules in the respective

enrichment round. The training may comprise learning inferred fitness scores of the population
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of biomolecules for each enrichment round by predicting biomolecule frequencies of the
population of biomolecules in the respective enrichment round given biomolecule frequencies
of the population of biomolecules in one or more prior enrichment rounds. The molecule
discovery system may further output, by the machine-learning model based on the processing
of the biomolecule representation of the first biomolecule, an inferred fitness score for the first
biomolecule.

[0008] Certain technical challenges exist for biomolecule fitness selection. One technical
challenge may include effectively establishing a fitness inference task for biomolecules
undergoing mutations in enrichment rounds. The solution presented by the embodiments
disclosed herein to address this challenge may be developing a model of evolutionary dynamics
which optimizes the inferred fitness given the biomolecule frequency as such model accounts
for the genetic drift and mutational process of the biomolecules in the enrichment rounds.
Another technical challenge may include disentangling the sequencing time-series data by both
on-target binding strength and off-target binding. The solution presented by the embodiments
disclosed herein to address this challenge may be accounting for off-target fitness, inferring
total fitness from standard directed evolution data, and then inferring on-target fitness, as this
approach may enable reasoning about the relative contributions of on-target and off-target
fitness. Another technical challenge may include the measured enrichment being less reliable
for lower counts due to high assay noise. The solution presented by the embodiments disclosed
herein to address this challenge may be using a Dirichlet-multinomial loss to optimize the
fitness inference task as the Dirichlet-multinomial loss may account for the increased difficulty
of predicting biomolecule frequency at a current round from a prior round when the total read
counts are lower.

[0009] Certain embodiments disclosed herein may provide one or more technical
advantages. A technical advantage of the embodiments may include identifying the fitness of
biomolecules not in the original enrichment rounds as the molecule discover system utilizes a
deep learning model that can infer fitness for any unseen biomolecules. Another technical
advantage of the embodiments may include more effective selection of discovered hits as the
molecule discover system infers fitness of biomolecules that indicates biological activity and
then determines discovered hits based on such biological activity. Another technical advantage
of the embodiments may include the ability to filter out low specificity binders from the results
of the selection as the molecule discover system may determine both on-target and off-target

bindings. Another technical advantage of the embodiments may include the ability to discover
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novel and diverse genotypes as the molecule discovery system may identify genotypes with
high fitness but low frequency (and vice versa), which may be missed through standard
approaches for biomolecule discovery. Certain embodiments disclosed herein may provide
none, some, or all of the above technical advantages. One or more other technical advantages
may be readily apparent to one skilled in the art in view of the figures, descriptions, and claims
of the present disclosure.

[0010] In particular embodiments, the techniques described herein relate to a method
including, by one or more computing systems: accessing a biomolecule representation of a first
biomolecule; processing, by a machine-learning model, the biomolecule representation of the
first biomolecule, wherein the machine-learning model was trained using sequencing time-
series data associated with biomolecule frequencies of particular biomolecules, wherein the
sequencing time-series data was obtained from directed evolution of a population of
biomolecules over a plurality of enrichment rounds, wherein the population of biomolecules in
each enrichment round was a unique set of biomolecules with respect to each other enrichment
round, wherein the sequencing time-series data for each enrichment round includes a
biomolecule frequency of each biomolecule of the population of biomolecules in the respective
enrichment round, and wherein the training includes learning inferred fitness scores of the
population of biomolecules for each enrichment round by predicting biomolecule frequencies
of the population of biomolecules in the respective enrichment round given biomolecule
frequencies of the population of biomolecules in one or more prior enrichment rounds; and
outputting, by the machine-learning model based on the processing of the biomolecule
representation of the first biomolecule, an inferred fitness score for the first biomolecule.
[0011] In particular embodiments, the techniques described herein relate to a method,
further including: determining, based on the inferred fitness score for the first biomolecule,
whether a biological activity associated with the first biomolecule meets a predetermined
criteria for selection.

[0012] In particular embodiments, the techniques described herein relate to a method,
wherein the plurality of enrichment rounds includes at least three enrichment rounds, and
wherein at least one of the enrichment rounds was a control round where the population of
biomolecules is analyzed without a presence of a target protein.

[0013] In particular embodiments, the techniques described herein relate to a method,
wherein the inferred fitness score for the first biomolecule indicates a biological activity of the

first biomolecule with respect to a target protein.
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[0014] In particular embodiments, the techniques described herein relate to a method,
wherein learning the inferred fitness scores in the training of the machine-learning model
includes optimizing a Dirichlet-multinomial loss function, and wherein the Dirichlet-
multinomial loss function utilizes an over-dispersed multinomial distribution to account for an
increased difficulty associated with predicting biomolecule frequencies of the population of
biomolecules in each enrichment round given biomolecule frequencies of the population of
biomolecules in a prior enrichment round.

[0015] In particular embodiments, the techniques described herein relate to a method,
wherein the training of the machine-learning model further includes calculating a Dirichlet loss
negative log-likelihood between the predicted biomolecule frequencies and actual biomolecule
frequencies as a negative log-likelihood.

[0016] In particular embodiments, the techniques described herein relate to a method,
wherein the inferred fitness score for the first biomolecule includes an on-target fitness score
associated the first biomolecule binding to a target protein.

[0017] In particular embodiments, the techniques described herein relate to a method,
wherein the inferred fitness score for the first biomolecule includes an off-target fitness score
associated the first biomolecule binding to a test instrument instead of a target protein.

[0018] In particular embodiments, the techniques described herein relate to a method,
wherein the inferred fitness score for the first biomolecule includes an on-target fitness score
associated the first biomolecule binding to a target protein and an off-target fitness score
associated the first biomolecule binding to a test instrument instead of the target protein,
wherein the method further includes: determining a binding specificity of the first biomolecule
based on a ratio of the on-target fitness score to the off-target fitness score.

[0019] In particular embodiments, the techniques described herein relate to a method,
wherein the machine-learning model includes one or more neural networks.

[0020] In particular embodiments, the techniques described herein relate to a method,
wherein the one or more neural networks include: a first neural network trained for predicting
on-target fitness scores associated with biomolecules, and a second neural network trained for
predicting off-target fitness scores associated with biomolecules.

[0021] In particular embodiments, the techniques described herein relate to a method,
further including: generating the biomolecule representation of the first biomolecule, wherein
the first biomolecule is a polypeptide corresponding to a first genotype, and wherein the

generating includes: determining a plurality of amino acids of the first biomolecule; applying,
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for each amino acid of the plurality of amino acids, a function to determine a feature
representation for the respective amino acid; and generating a genotype representation
corresponding to the first genotype based on the plurality of feature representations associated
with the plurality of amino acids.

[0022] In particular embodiments, the techniques described herein relate to a method,
wherein the first biomolecule is within the population of biomolecules in the plurality of
enrichment rounds.

[0023] In particular embodiments, the techniques described herein relate to a method,
wherein the first biomolecule is not within the population of biomolecules in the plurality of
enrichment rounds.

[0024] In particular embodiments, the techniques described herein relate to a method,
wherein the sequencing time-series data include DNA sequencing time-series data, and
wherein the biomolecule frequencies of particular biomolecules indicate genotype frequencies.
[0025] In particular embodiments, the techniques described herein relate to a method,
further including: processing a plurality of biomolecule representations associated with a
plurality of respective second biomolecules by the machine-learning model to determine a
plurality of inferred fitness scores for the plurality of second biomolecules, respectively; and
selecting, based on the inferred fitness scores for the plurality of second biomolecules, one or
more second biomolecules meeting a predetermined criteria for selection, wherein one or more
of the selected second biomolecules are each associated with a low relative biomolecule
frequency in a last round of the plurality of enrichment rounds.

[0026] In particular embodiments, the techniques described herein relate to a method,
further including: generating a genotype space based on the biomolecule frequencies and the
inferred fitness scores for the plurality of second biomolecules; and selecting the one or more
second biomolecules by identifying the one or more second biomolecules from one or more
regions in the genotype space, wherein each of the one or more regions is associated with a
particular biomolecule frequency range and a particular biomolecule fitness range.

[0027] In particular embodiments, the techniques described herein relate to a method,
wherein the training further includes pretraining an off-target model, including identifying one
or more off-target enrichment rounds from the plurality of enrichment rounds; and pretraining
the off-target model based on sequencing time-series data for the one or more off-target

enrichment rounds.
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[0028] In particular embodiments, the techniques described herein relate to a method,
wherein the training further includes accessing sequencing time-series data from one or more
on-target enrichment rounds from the plurality of enrichment rounds; and generating an on-
target model based on the accessed sequencing time-series data from the one or more on-target
enrichment rounds and the off-target model.

[0029] In particular embodiments, the techniques described herein relate to a method,
wherein the first biomolecule is a macrocycle.

[0030] In particular embodiments, the techniques described herein relate to a method,
wherein the population of biomolecules are amplified by polymerase chain reaction (PCR) in
each of the plurality of enrichment rounds.

[0031] In particular embodiments, the techniques described herein relate to a method,
further including: processing a plurality of biomolecule representations associated with a
plurality of respective second biomolecules by the machine-learning model to determine a
plurality of inferred fitness scores for the plurality of second biomolecules, respectively; and
selecting, based on the inferred fitness scores for the plurality of second biomolecules, one or
more diverse biomolecules from the plurality of second biomolecules, wherein the one or more
diverse biomolecules meet a predetermined criteria for selection, and wherein one or more of
the diverse biomolecules are each associated with a low relative biomolecule frequency in a
last round of the plurality of enrichment rounds.

[0032] In particular embodiments, the techniques described herein relate to one or more
computer-readable non-transitory storage media embodying software that is operable when
executed to: access a biomolecule representation of a first biomolecule; process, by a machine-
learning model, the biomolecule representation of the first biomolecule, wherein the machine-
learning model was trained using sequencing time-series data associated with biomolecule
frequencies of particular biomolecules, wherein the sequencing time-series data was obtained
from a directed evolution of a population of biomolecules over a plurality of enrichment
rounds, wherein the population of biomolecules in each enrichment round was a unique set of
biomolecules with respect to each other enrichment round, wherein the sequencing time-series
data for each enrichment round includes a biomolecule frequency of each biomolecule of the
population of biomolecules in the respective enrichment round, and wherein the training
includes learning inferred fitness scores of the population of biomolecules for each enrichment
round by predicting biomolecule frequencies of the population of biomolecules in the

respective enrichment round given biomolecule frequencies of the population of biomolecules
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in one or more prior enrichment rounds; and output, by the machine-learning model based on
the processing of the biomolecule representation of the first biomolecule, an inferred fitness
score for the first biomolecule.

[0033] In particular embodiments, the techniques described herein relate to a system
including: one or more processors; and a non-transitory memory coupled to the processors
including instructions executable by the processors, the processors operable when executing
the instructions to: access a biomolecule representation of a first biomolecule; process, by a
machine-learning model, the biomolecule representation of the first biomolecule, wherein the
machine-learning model was trained using sequencing time-series data associated with
biomolecule frequencies of particular biomolecules, wherein the sequencing time-series data
was obtained from a directed evolution of a population of biomolecules over a plurality of
enrichment rounds, wherein the population of biomolecules in each enrichment round was a
unique set of biomolecules with respect to each other enrichment round, wherein the
sequencing time-series data for each enrichment round includes a biomolecule frequency of
each biomolecule of the population of biomolecules in the respective enrichment round, and
wherein the training includes learning inferred fitness scores of the population of biomolecules
for each enrichment round by predicting biomolecule frequencies of the population of
biomolecules in the respective enrichment round given biomolecule frequencies of the
population of biomolecules in one or more prior enrichment rounds; and output, by the
machine-learning model based on the processing of the biomolecule representation of the first
biomolecule, an inferred fitness score for the first biomolecule.

[0034] In particular embodiments, the techniques described herein relate to a method
including, by one or more computing systems: accessing a plurality of biomolecule
representations of a plurality of respective biomolecules; processing, by a machine-learning
model, the plurality of biomolecule representations of the plurality of respective biomolecules,
wherein the machine-learning model was trained using sequencing time-series data associated
with biomolecule frequencies of particular biomolecules, wherein the sequencing time-series
data was obtained from directed evolution of a population of biomolecules over a plurality of
enrichment rounds, wherein the population of biomolecules in each enrichment round was a
unique set of biomolecules with respect to each other enrichment round, wherein the
sequencing time-series data for each enrichment round includes a biomolecule frequency of
each biomolecule of the population of biomolecules in the respective enrichment round, and

wherein the training includes learning inferred fitness scores of the population of biomolecules
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for each enrichment round by predicting biomolecule frequencies of the population of
biomolecules in the respective enrichment round given biomolecule frequencies of the
population of biomolecules in one or more prior enrichment rounds; outputting, by the
machine-learning model based on the processing of the plurality of biomolecule representation
of the plurality of biomolecules, a plurality of inferred fitness scores for the plurality of
biomolecules, respectively; and selecting, based on the inferred fitness scores for the plurality
of biomolecules, one or more biomolecules meeting a predetermined criteria for selection,
wherein one or more of the selected biomolecules are each associated with a low relative
biomolecule frequency in a last round of the plurality of enrichment rounds.

[0035] In particular embodiments, the techniques described herein relate to a method,
further comprising: generating a genotype space based on the biomolecule frequencies and the
inferred fitness scores for the plurality of biomolecules, wherein selecting the one or more
biomolecules meeting the predetermined criteria for selection comprises identifying the one or
more biomolecules from one or more regions in the genotype space, wherein each of the one
or more regions is associated with a particular biomolecule frequency range and a particular
biomolecule fitness range.

[0036] The embodiments disclosed herein are only examples, and the scope of this
disclosure is not limited to them. Particular embodiments may include all, some, or none of the
components, elements, features, functions, operations, or steps of the embodiments disclosed
herein. Embodiments according to the invention are in particular disclosed in the attached
claims directed to a method, a storage medium, a system and a computer program product,
wherein any feature mentioned in one claim category, e.g. method, can be claimed in another
claim category, e.g. system, as well. The dependencies or references back in the attached claims
are chosen for formal reasons only. However any subject matter resulting from a deliberate
reference back to any previous claims (in particular multiple dependencies) can be claimed as
well, so that any combination of claims and the features thereof are disclosed and can be
claimed regardless of the dependencies chosen in the attached claims. The subject-matter which
can be claimed comprises not only the combinations of features as set out in the attached claims
but also any other combination of features in the claims, wherein each feature mentioned in the
claims can be combined with any other feature or combination of other features in the claims.
Furthermore, any of the embodiments and features described or depicted herein can be claimed
in a separate claim and/or in any combination with any embodiment or feature described or

depicted herein or with any of the features of the attached claims.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0037] FIG. 1 depicts a system diagram illustrating an example of a molecule discovery
system, in accordance with some example embodiments.

[0038] FIG. 2A illustrates an example deep-learning fitness model with off-target oracle.
[0039] FIG. 2B illustrates another example deep-learning fitness model.

[0040] FIG. 3 illustrates an example distribution of the enrichment for each pair of rounds.
[0041] FIG. 4 illustrates example on-target fitness versus off-target fitness regarding
predictions on 100,000 holdout genotypes.

[0042] FIG. 5A illustrates an example genotype space generated based on last-round
frequency and last-round frequency winners.

[0043] FIG. 5B illustrates an example genotype space generated based on fitness and
fitness winners.

[0044] FIG. 5C illustrates an example last-round frequency versus fitness.

[0045] FIG. 6 illustrates an example method for biomolecule fitness inference.

[0046] FIG. 7 illustrates an example computer system.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Introduction

[0047] Macrocycles are a promising class of drug candidates that are an intermediate
between small and large molecules. One protocol uses DNA encoded libraries (DELs) to
discover macrocycles with very large library sizes up to 10 trillion. This protocol may enable
coupling any DNA codon with any amino acid (aa), natural or non-natural, by codon tables
that are constructed by scientists. This known 1:1 mapping allows next-generation sequencing
(NGS) readout of the macrocycle peptide’s amino acids. To discover hits, libraries undergo
multiple rounds of selection involving iterative steps of incubation with the target protein,
washing off non-binders, amplification, and re-translating DNA sequences to macrocycle
peptides. The amplification may be with intentionally high error rate to introduce mutations
during intermediate selection steps. This protocol can be intensive, and its complexity may
complicate a probabilistic model of observations. The molecule that undergoes selection in the
aforementioned protocol may be a peptide, a p-linker, and DNA.

[0048] In addition, there may be a particular interest in identifying shorter macrocycle hits
(<9 aa), since they are more likely to be cell permeable, but they are also much weaker

(specifically, weaker binding affinity) in binding with the target protein than long macrocycles
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(10-14 aa). Short macrocycles tend to be less diverse. While traditional methods may have
reasonable potency, drug-likeness and cell permeability may be optimized afterwards, which
can be challenging. Aa a result, it may be advantageous to first find hits that are cell-permeable
and drug-like, and later optimize potency. With traditional methods, selections can be run only
with short macrocycles, but the selection may be too harsh as no hits have any meaningful
enrichment. Noise instead may dominate, and the signal-to-noise ratio can be poor. One
particular kind of “noise” may be that the peptide-DNA linker binds non-specifically to the
target protein. For example, the linker enrichment may be about 0.1%, which may be
acceptable for large macrocycles with peak enrichment >1% (10:1 signal-to-noise ratio).
However, short macrocycles may have peak enrichment of about 0.1% (1:1 SNR), which
means the amplification ability of each short macrocycle may be “obscured” by the linker —
weak binders would still amplify because their linker bound to the target, so strong binders are
not as distinguished. The amplification ability indicates the ability to survive the selection
process to the next round, which is equivalent to the challenge of binding to the target protein
and surviving physical washes that can remove kinetically weak binders.

[0049] However, as discussed herein, laboratory directed evolution can be augmented with
machine-learning techniques to improve the activity and diversity of discovered hits, such as
particular macrocycle genotypes of interest, which generally have extended binding sites,
allowing for increased binding affinity and selectivity. The discovered hits may exhibit
improved performance, such as improved capability of binding to an antigen, such as a viral
antigen, a tumor antigen, and/or the like. In many directed evolution experiments, the main
result may include DNA sequencing data that measures the frequency of competing
biomolecules (e.g., macrocycles) in the evolving population of biomolecules. However,
biomolecule frequency may not be an accurate indicator of biological activity. To discover hits,
one may want to sort biomolecules by their biological activity. This poses an inference
problem, i.e., inferring biological activities of biomolecules given their frequencies.

[0050] A molecule discovery system may be used to run the directed evolution. In a DNA-
encoded library (DEL) setting, the molecule discovery system may translate a DNA sequence
into a peptide, or small protein, using a known codon table. In one embodiment, the alphabet
size of the DNA sequence may be 4 and the alphabet size of the small protein may be 20.
Peptides are physically connected to their DNA sequences by a linker.

[0051] At each time step, round, or generation of directed evolution, the molecule

discovery system may conduct activity-based selection. The plurality of enrichment rounds
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comprises at least three enrichment rounds, and at least one of the enrichment rounds was a
control round where the population of biomolecules is analyzed without the presence of a target
protein. A set of peptide-linker-DNA compounds, more than 10'* — 10'%, are challenged to bind
to target proteins immobilized on a solid support. The molecule discovery system 100 may
perform washing steps to remove peptide-linker-DNA compounds with weak binding strength
and extract survivors. In a single round of selection, candidates may be challenged to bind to a
target, then a washing step may be performed which may remove some binders (though
washing may be intended primarily to remove very weak binders or non-binders).

[0052] At each time step, round, or generation of directed evolution, there may be mutation
and amplification. The DNA sequence, and thus peptide identity, of binding compounds may
be determined by DNA sequencing. Peptide-linker-DNA compounds may be amplified by
polymerase chain reaction (PCR), which is a multi-step process that doubles DNA molecules
each step by duplication. In other words, the population of biomolecules may be amplified by
polymerase chain reaction (PCR) in each of the plurality of enrichment rounds. PCR can
introduce 1 x 10~ mutations per nucleotide per step.

[0053] After directed evolution is applied to the population of biomolecules, the molecule
discovery system described herein learns a deep-learning model for biomolecule fitness
selection. As an example and not by way of limitation, the molecule discovery system may
train a deep neural network that estimates molecule fitness, representing at least the biological
activity of the molecules, and use the fitness to rank biomolecules (e.g., macrocycles) for
selection. The molecule discovery system may establish a fitness inference problem given on-
target and off-target time series DNA sequencing data. The molecule discovery system may
utilize maximum likelihood solutions for the nonlinear dynamical system induced by fitness-
based competition. The disclosed approach may learn from multiple time series rounds in a
principled manner, in contrast to prior work focused on two-round enrichment prediction. By
ranking molecules based on fitness, the molecule discovery system can identify low-frequency,
high-fitness molecules that may otherwise be missed by conventional systems. The molecule
discovery system may additionally predict on-target and off-target binding fitness accurately,
discover novel and diverse genotypes of the biomolecules, and improve the quantity and
diversity of identified molecules. The experiments show that inferring fitness while jointly
learning a sequence-to-fitness deep-learning model (e.g., a transformer) improves performance

over a baseline model without deep learning and a two-round enrichment baseline.
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[0054] In particular embodiments, the molecule discovery system may access a
biomolecule representation of a first biomolecule. The molecule discovery system may then
process, by a machine-learning model, the biomolecule representation of the first biomolecule.
The machine-learning model was trained using sequencing time-series data associated with
biomolecule frequencies of particular biomolecules. The sequencing time-series data was
obtained from a directed evolution of a population of biomolecules over a plurality of
enrichment rounds. The population of biomolecules in each enrichment round may be a unique
set of biomolecules with respect to each other enrichment round. As used herein, “unique”
indicates that the population of biomolecules may have mutated in each enrichment round,
thereby resulting in the population of biomolecules in each enrichment round having at least
some unique biomolecules with respect to the population of biomolecules in each other
enrichment round. The sequencing time-series data for each enrichment round may comprise a
biomolecule frequency of each biomolecule of the population of biomolecules in the respective
enrichment round. The training may comprise learning inferred fitness scores of the population
of biomolecules for each enrichment round by predicting biomolecule frequencies of the
population of biomolecules in the respective enrichment round given biomolecule frequencies
of the population of biomolecules in one or more prior enrichment rounds. The molecule
discovery system may further output, by the machine-learning model based on the processing
of the biomolecule representation of the first biomolecule, an inferred fitness score for the first

biomolecule.

Automated System for Target-Binding Candidate Analysis

[0055] FIG. 1 depicts a system diagram illustrating an example of a molecule discovery
system 100, in accordance with some example embodiments. Referring to FIG. 1, the molecule
discovery system 100 may include a molecule discovery engine 110, an analysis engine 120, a
client device 130, a data store 145, a machine-learning model 150, and an automation facility
160. As shown in FIG. 1, the molecule discovery engine 110, the analysis engine 120, the data
store 145, the client device 130, and the automation facility 160 may be communicatively
coupled via a network 140. The network 140 may be a wired network and/or a wireless network
including, for example, a local area network (LAN), a virtual local area network (VLAN), a
wide area network (WAN), a public land mobile network (PLMN), the Internet, and/or the like.
The client device 130 may be a processor-based device including, for example, a workstation,

a desktop computer, a laptop computer, a smartphone, a tablet computer, a wearable apparatus,
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and/or the like. The data store 145 may be a database including, for example, a relational
database, a graph database, an in-memory database, a non-SQL (NoSQL) database, and/or the
like. In some example embodiments, the molecule discovery engine 110 and/or the analysis
engine 120 may be configured to support deep-learning based biomolecule fitness selection. In
particular embodiments, the biomolecule can be a macrocycle.

[0056] In some example embodiments, the data store 145 may store data, such as a DNA-
encoded library including a plurality of DNA sequences, which may be stored as peptides or
small proteins. The molecule discovery engine 110 and/or the analysis engine 120 may
perform, based on at least a portion of the data in the data store 145, an analytical workflow
that includes applying a variety of computational analyses. The analysis engine 120 may, based
on at least a portion of the data in the data store 145, train one or more machine-learning
models, such as the machine-learning model 150, for downstream analytical tasks, and/or the
like. For example, the results of the workflow may be used as training data to train a neural
network (or another type of machine-learning model 150).

[0057] Referring again to FIG. 1, the molecule discovery engine 110 and/or the analysis
engine 120 may perform the analytical workflow based on one or more user inputs received
from the client device 130. For example, as shown in FIG. 1, the analysis engine 120 may
generate, for display at the client device 130, a user interface 135. The one or more user inputs,
which may be received via the user interface 135, may specify one or more subsets of data
included in the data store 145. One or more visual representations of at least a portion of the
results of the analysis performed by the molecule discovery engine 110 and/or the analysis
engine 120 may be displayed as a part of the user interface 135. The user interface 135 may be
interactive such that the types of the visual representations and the contents presented therein
may be updated in response to the one or more user inputs.

[0058] In particular embodiments, the molecule discovery system 100 may utilize an
automated analytical workflow to rapidly discover potent biomolecules. The automated
analytical workflow may be performed by the automation facility 160. The automated
analytical workflow may enable simultaneous visual observation and comparison of a large
number of libraries for a round of selection for target binding and for round-to-round
comparison. The automated analytical workflow can comprise receiving quantification
information for a plurality of libraries of DNA-containing compositions. Receiving the
quantification information may include collecting quantitative data for input molecules,

positive molecules and negative molecules. The quantitative data may be generated after a
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round of automated library generation, target binding selection and DNA measurement by a
quantitative method. The automated analytical workflow can then transfer quantification data
and storing data in a database. Data transfer may include data scraping, in which a computer
program extracts data from human-readable output coming from another program, e.g., Excel.
The database stores each automatically export dataset and all associated metadata (e.g., date,
time, and plate barcode, etc.) The automated analytical workflow can then assign datasets to a
corresponding round of selection. Each exported dataset may be assigned to a corresponding
round of selection by a user, in accordance with some embodiments. The automated analytical
workflow can further visualize data on a graphical display surface. Once each dataset is
assigned to a corresponding round, all the heatmaps and charts are generated according to pre-
set criteria or a selection of filters.

[0059] More information on automated target binding analysis may be found in U.S. Patent
Application 17/502022, filed 14 October 2021, particularly paragraphs 0065-0085, among

other discussions in that patent application, the entirety of which is incorporated by reference.

A Model of Evolutionary Dynamics

[0060] Challenges exist in how to select diverse biomolecules with improved binding
capabilities from directed evolution experiments. One solution is to infer biomolecule fitness
by parameterizing log relative fitness value per genotype based on sequencing time-series data
obtained from directed evolution experiments and then select biomolecules based on the
inferred fitness. Another solution is to utilize machine-learning techniques to infer biomolecule
fitness based on sequencing time-series data obtained from directed evolution experiments and
then select biomolecules based on the inferred fitness. In particular embodiments, the molecule
discovery system 100 may use a model of evolutionary dynamics to handle the task of fitness
inference. As an example and not by way of limitation, the molecule discovery system 100 may
include a deep neural network that estimates biomolecule fitness, representing at least the
biological activity of the biomolecules, and use the fitness to rank biomolecules (e.g.,
macrocycles) for selection.

[0061] Let G be the number of unique genotypes in a population. At time or round #, denote
n, € N as the vector of the number of each genotype, and N, = »¢_, ng; as the total count.
This disclosure uses repeated subscripts for indexing: n; ; is the count of the i-th genotype at
time 7. In population genetics, absolute fitness W € (R™)¢ can be defined as

ey, = Wing;. (1)
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In this disclosure, W describes the change in genotype counts due to differences in binding
strength.

[0062] The molecule discovery system 100 infers absolute fitness from DNA sequencing
time series data. The inferred fitness score for the first biomolecule may indicate a biological
activity of the first biomolecule with respect to a target protein. The inferred fitness score for
the first biomolecule may comprise an on-target fitness score associated the first biomolecule
binding to a target protein. Denote m; as the count of sequencing reads, and M, = X; _;m,; as
the total read depth. The sequencing time-series data may comprise DNA sequencing time-
series data, and the biomolecule frequencies of particular biomolecules may indicate genotype
frequencies. DNA sequencing can be described with m; ~ Multinomial (n;/N;, M;) so one can
only estimate p; = n/N;, which are genotype frequencies. Without n;, one cannot infer W using

equation (1). Equation (1) can be rewritten as (based on a proposition on relative fitness):

Wi
Pre1i = = Pri- (D)
LjW;Dt.j

[0063] In one embodiment, the proof for the proposition on relative fitness is as follows.

[0064] Using Neyq = XiNpyr,i = 2 Wine,, we have:

Ney1,i = Wing,

P Wy .
Zeni - i (divided by Ny,,)
Netq Negp ™
R — (replace with definitions)
Pr+1i S Wineg b P
_ NW; m .
Pe+1,i = T Wine; N (multiply by N /N¢)
w; s
Pt+1i = T Pei (move N; through fraction)
LiWin,
Pre1,i = — Dt (replace with definitions)
T LjWipe

[0065] Equation (2) indicates that W is identifiable, given p;, p:+ 1, only up to an unknown
proportionality constant. Specifically, for any positive ¢, if equation (2) holds for some W, then
it may also hold for absolute fitness values ¢cW (based on a proposition on identifiability up to
proportionality).

[0066] In one embodiment, the proposition on identifiability up to proportionality is as

follows:
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w; .

[0067] Suppose  Pry1; = Z_W_‘pt‘ pti. Then, for any positive scalar ¢, pPry1; =
] Iet)

Wi .

Z] CWth] pt,l

[0068] The proof for the proposition on identifiability up to proportionality is as follows:
Wi
Pt+1i = S Wpe, Pti
CWi

Pt+1,i = m?’t.i :

cW;
Pet1i = m?c,i :

[0069] Due to this unidentifiability, the inference problem may be set up as: given m, for
t=0,1,..., T, infer relative fitness w = cW where ¢ > 0 is unknown.

[0070] Based on equation (2), the molecule discovery system 100 can simulate a non-linear
dynamical system forward in time given an initial po and relative fitness W. This simple model
may ignore genetic drift and lack a mutational process. Ignoring genetic drift may be reasonable
with 10'° population size, and PCR’s low mutation rate may enable ignoring mutation effects
for fitness inference purposes. Rewriting equation (2) using W in matrix notation, this
disclosure defines predictions of a fitness model for round ¢+ 1 given previous round
frequencies p; as

Pri1 = wLpt Op: Q)

[0071] where © denotes pointwise multiplication. Based on equation (3), the molecule
discovery system 100 may optimize W so that p; 4 , reflects p; , ; accurately according to
different noise models, thereby estimating fitness of biomolecules. Developing the model of
evolutionary dynamics which optimizes the inferred fitness given the biomolecule frequency
may be an effective solution for addressing the technical challenge of effectively establishing
a fitness inference task for biomolecules undergoing mutations in enrichment rounds as such
model accounts for the genetic drift and mutational process of the biomolecules in the
enrichment rounds. Fitness may have the following properties. Fitness values cannot be
negative. In addition, under strict mathematical assumptions, the W-bar (i.e., the multiplication
of fitness and genotype proportion) may only increase over time under the model. The
proportion of a genotype may increase if its fitness is above average and decrease if its fitness

is below average. Increasing selection stringency may have the effect of increasing the variance
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or range of fitness. Increasing washing stringency or selection strength may help to better
differentiate weak from strong binders. However, increasing washing too much may risk
everything washing off (everything dying).

[0072] In practice, time-series data can be influenced not just by on-target binding strength
but also off-target binding, where a molecule binds to the instrument instead of the target. In
this case, the inferred fitness score for the first biomolecule may comprise an off-target fitness
score associated the first biomolecule binding to a test instrument instead of the target protein.
The molecule discovery system 100 can infer off-target fitness Wy ¢ W from off-target
data: directed evolution time points where the target is not present, only the instrument, using
equation (3). Furthermore, the molecule discovery system 100 can infer that Wgpa € Wigeal
from standard directed evolution data, where both the target and the instrument are present.
The molecule discovery system 100 infers W, on-target binding fitness, where it is assumed
that Wietat = Won + Worr. Accounting for off-target fitness, inferring total fitness from standard
directed evolution data, and then inferring on-target fitness may be an effective solution for
addressing the technical challenge of handling the influence on the sequencing time-series data
by both on-target binding strength and off-target binding as this approach may enable reasoning
about the relative contributions of on-target and off-target fitness.

[0073] A challenge may include reconciling the unknown proportionality constants in these
two fitness inference problems: in general, the scale of inferred Wore may be different, in an

unknown manner, to the scale of Wiota, which may be illustrated as follows:

C1
c1Wiotal = ¢1Wop + P c;Wore. (4)

available goal

el available
unknown

[0074] In one embodiment, this disclosure discloses the following proposition for equation

(4) on upper bound for relative off-target activity. Suppose ¢;Wiota = ¢1Wopy +

available goal

C1

— ¢, Wy . Then

MR Weotal _ MiN €1 Weoral - C1

Cy . max Woffs max ¢; Wosr = C2
- available
unknown

[0075] The proof for the above proposition is as follows.

[0076] Using the property that absolute fitness is non-negative,

C
€1 Wiotal = ¢ Won + C_C
2

2 Wore

Cq
C1 wtotal =0+ ECZ Woff
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€1Wiotal > S

COWorr G
[0077] This relationship holds for each entry in the vector.
[0078] As can be seen, this disclosure proves an upper bound for c1 / ¢2, which enables
reasoning about the relative contributions of on-target and off-target fitness:

min Weotal > ﬁ (5)
max ws ¢y

[0079] Alternatively, the molecule discovery system 100 may learn a scale for W, relative
to Worr by fitting to the data. This disclosure uses this approach for the experiments. Although
this disclosure describes the model of evolutionary dynamics including particular covariates,
this disclosure contemplates that the model can be easily extended to include additional
covariates, if present.

[0080] Many conventional approaches learn enrichment scores, which may be equivalent
to relative fitness with two time points, but not with more than 2 time points (i.e., a proposition
on enrichment being not equivalent to relative fitness with % 2 time points). This proposition

may be illustrated as follows. Suppose p;yq; = %pm for some fitness W holds for po #
j Y jPej

p: # p2. Then, enrichments p2 /p1 # p1 /po. The proof is as follows.

[0081] Rearranging the relative fitness equation, each enrichment is equal to a fraction with
W in the numerator, and ;; W;p, ; in the denominator. The numerator is the same for p2 /p1, p1
/po, but the denominator is not the same. So, the enrichments are not equal.

[0082] Enrichment is equivalent to relative fitness with 2 time points. Specifically,
algebraic rewriting of equation (2) shows that enrichment is proportional to absolute fitness
with 2 time points. Relative fitness is also proportional to absolute fitness.

[0083] When there are more than 2 time points where each pair of time points are consistent
with the same W, computing enrichment may yield different enrichment values for each pair
of time points. Thus, enrichment cannot be equivalent to relative fitness.

[0084] In contrast to the prior works, the embodiments disclosed herein present a principled
method for datasets with more than 2 time points. For hit prioritization, biologists may rank
compounds by frequency in the last time point. However, the motto is “survival of the fittest”,
not “survival of the most frequent.” In other words, ranking by fitness may identify low-
frequency, high-fitness “rising stars™ otherwise missed, particularly by ranking by frequency

alone.
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Methodology

[0085] With the model of evolutionary dynamics established, the molecule discovery
system 100 may perform fitness inference on biomolecules for biomolecule selection. Fitness
inference can be split into two components. One component may include a differentiable
parameterization of W to map from genotype to fitness. Another component may include a
differentiable loss function used to optimize how well the predicted frequencies, p; 4 ; from
equation (3), match the observed frequencies p: +1. Given these two components, fitness may
be inferred using first order optimization.
[0086] In particular embodiments, fitness inference may be based on different loss
functions. One example loss function may be multinomial negative log-likelihood loss. A
simple approach to learning fitness may be to take the predicted frequencies from equation (3)
and treat them as the event probabilities in a multinomial distribution. Then the log-likelihood
of around of read counts given the fitness may be:

logp (My44|pe, w) = logMult [p = Pry1, C = Mpyq] (M) (6)
where Mult[p, C](m;,,) is the multinomial likelihood of m,,,; with event probabilities p and
event count C.
[0087] Another example loss function may be Dirichlet-multinomial negative log-
likelihood loss. In particular embodiments, learning the inferred fitness scores in the training
of the machine-learning model may comprise optimizing a Dirichlet-multinomial loss function.
The Dirichlet-multinomial loss function utilizes an over-dispersed multinomial distribution to
account for an increased difficulty associated with predicting biomolecule frequencies of the
population of biomolecules in each enrichment round given biomolecule frequencies of the
population of biomolecules in a prior enrichment round. The training of the machine-learning
model may further comprise calculating a Dirichlet loss negative log-likelihood between the
predicted biomolecule frequencies and actual biomolecule frequencies as a negative log-
likelihood.
[0088] By construction, relative fitness, i.e., equation (2), may account for the frequencies
and not the read counts at round t. However, in practice, the intrinsic high-assay noise may
make the measured enrichment less reliable for lower counts. The multinomial distribution
previously described may not account for prior round counts, preventing modeling of this
aspect. Therefore, the disclosure introduces an over-dispersed multinomial distribution, the

Dirichlet-multinomial (DM), to account for the increased difficulty (i.e., lower confidence) of
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predicting p:+1 from p: when the total read counts are lower. Using a Dirichlet-multinomial
loss to optimize the fitness inference task may be an effective solution for addressing the
technical challenge of the measured enrichment being less reliable for lower counts due to high
assay noise as the Dirichlet-multinomial loss may account for the increased difficulty of
predicting biomolecule frequency at a current round from a prior round when the total read
counts are lower.
[0089] The DM distribution is the posterior predictive distribution of a Dirichlet prior on a
multinomial model of count data. When updating a Dirichlet prior with concentration @ with
observed counts per category K, the posterior is Dirichlet distributed with concentration a+k.
The (otal concentration may increase from Y; @; to Y.;(a; + k;). Based on this observation, this
disclosure considers a DM likelihood & = M:p,,, with P;,, computed as in equation (3), and
M, being the total read counts. Note that the expected frequency of this distribution is P44 (as
in the multinomial distribution), but the total concentration is M, thus accounting for the total
counts. This yields the log-likelihood for m;, ¢:

logp (Myyq|lmy, w) =logDM[a = Mpyy1, C = Myy[(myy 1) (7)
where DM|a, C](m;,,) is the Dirichlet-multinomial likelihood of counts m;,; with
concentration parameters o and total count C. The DM loss may be differentiably calculated
using Pyro [7] as the negative DM log-likelihood.
[0090] The molecule discovery system 100 may utilize a variety of approaches for
parameterizing fitness. One approach may include defining one log relative fitness value per
genotype, which is referred per-genotype fitness in this disclosure. Another approach may
include using a neural network to map from genotype to log relative fitness, which is referred
deep-learning fitness model in this disclosure.
[0091] In e, one log w parameter may be trained for each genotype. The molecule discovery
system 100 may randomly initialize the log fitness values using a standard normal distribution.
Per-genotype fitness may have the advantage of training in a few seconds on GPU and having
relatively few hyperparameters to tune. It may have the disadvantages of being unable to make
predictions on genotypes on which it was not trained and not taking advantage of the fact that
similar genotypes likely have similar fitness. As an example and not by way of limitation, the
L-BFGS algorithm was found to be effective for training per-genotype fitness. The molecule

discovery system 100 may select the learning rate for each loss function using grid search.
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[0092] In deep-learning fitness model, a neural network model may parameterize the
mapping from genotype to log w. In other words, the machine-learning model may comprise
one or more neural networks. The model may learn general genotype motifs described in the
latent space, which are linked to high/low fitness values. Therefore, the model may leverage
the inductive bias that enrichment (and in general, fitness) is a function of the genotype.
Consequently, this parametrization may allow extrapolating fitness on new genotypes not
observed in the directed evolution experiment. This may enable further virtual screening,
discovery of high fitness motifs, and in-silico optimization. As a result, the embodiments
disclosed herein may have a technical advantage of identifying the fitness of biomolecules not
in the original enrichment rounds as the molecule discover system 100 utilizes a deep learning
model that can infer fitness for any unseen biomolecules.

[0093] In particular embodiments, the molecule discovery system 100 may generate the
biomolecule representation of the first biomolecule which may be a polypeptide corresponding
to a first genotype. The generating may comprise determining a plurality of amino acids of the
first biomolecule, applying a function to determine a feature representation for the respective
amino acid for each amino acid of the plurality of amino acids, and generating a genotype
representation corresponding to the first genotype based on the plurality of feature
representations associated with the plurality of amino acids. To represent the genotypes, instead
of one-hot encoding the amino acids (a;}, the molecule discovery system 100 may embed the
structure of each «; through its chemical descriptor MF (a;), where MF is the hashed Morgan
fingerprint function with substructure counts. By doing this, (1) the model may learn
generalizable amino acid features, and (2) the system may inject an inductive bias in the a;
space. Applying MF to genotype gi may yield the sequence of tokens x; = [MF(a;,1), MF(ai2)],
vy MF(a;, 1)].

[0094] In one example embodiment, the molecule discovery system 100 used a
transformer-like encoder [9] with multi-head attention to map from the embedded amino acid
sequences to log w. The transformer-like encoder may have 8-head multi-head attention, 64-
dimensional feedforward layers, and a single linear layer at the end to predict fitness. The
models were trained for 500 epochs of 25,600 samples using the AdamW optimizer with grid
search per loss function selected cosine annealed learning rate, batch size, and weight decay.
[0095] The molecule discovery system 100 may optimize hyperparameters for fitness
inference models with grid search. In particular embodiments, the one or more neural networks

may comprise a first neural network trained for predicting on-target fitness scores associated
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with biomolecules and a second neural network trained for predicting oft-target fitness scores
associated with biomolecules. For on-target and off-target fitness models, the molecule
discovery system 100 may first optimize the off-target model, and then the on-target model
using the frozen off-target model previously optimized. As an example and not by way of
limitation, the following grid of hyperparameters may be considered. The learning rate may be
[10* 107 _107]. The weight decay may be [0, 10 102 107 10']. The batch size may
be [64, 128, 256]. The weights from each training run may be taken using early stopping on the
validation loss. In one example embodiment, ten percent of training data may be randomly
selected as validation data for model selection.
[0096] In one embodiment, to learn the unsupervised genotype space, the molecule
discovery system 100 trained a VAE using the same encoder and featurization described for
the deep-learning fitness model. A fully connected decoder reconstructs both the peptide
sequence and the embedding of each amino acid, thus learning amino acid similarity on top of
sequence similarity. The final loss is therefore the sum of the KL-divergence, the sequence
reconstruction, and the amino acid reconstruction. Final representations are obtained from the
latent space and shown after 2D projection with UMAP.
[0097] Equation (3) may only enable predictions between two consecutive rounds, so each
minibatch may only contain two consecutive rounds with the same subset of genotypes. To
ensure the loss is defined for each batch, the molecule discovery system 100 may use a simple
batch sampling algorithm. The pseudo-code of this algorithm is shown below.
Def  sample_batch (
batch_size: int,
genotypes: np. Ndarray, # G x genotype embedding dimension
count_matrix: np. Ndarray, # G x T
)->  tuple(np. Ndarray, np. Ndarray): # X, y
T = count_matrix. Shape [1]
t = np. Random. Randint (0, T — 1)
log_enrichment_defined_mask = (
(count_matrix[:, t] > 0) & (count_matrix[:, t+ 11> 0)
)
log_enrichment_defined_idx = np. Where (
log_enrichment_defined_mask,

0]
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batch_idx = np. Random. Choice (
log_enrichment_defined_idx,
batch_size,

)

X = genotypes| batch_idx]

y = count_matrix[batch_idx, [t, t + 1]]

return X, y
[0098] FIG. 2A illustrates an example deep-learning fitness model with off-target oracle.
On-target neural network (i.e., on-target model 210) and off-target neural network (i.e., off-
target oracle 220) may predict fitness from genotype (represented by the sequence
representations 230), which can be used to predict future round genotype frequencies. As
previously described, the molecule discovery system 100 may separate total fitness Wioa into
an on-target and (one or more) off-target contributions. Wog may be inferred using the off-
target rounds, and Wo, using the all-target rounds through equation (4), with any combination
of fitness parameterization and loss function. In other words, the inferred fitness score for the
first biomolecule may comprise an on-target fitness score associated the first biomolecule
binding to a target protein and an off-target fitness score associated the first biomolecule
binding to a test instrument instead of the target protein. By inferring the fitness contributions
separately, the molecule discovery system 100 may select genotypes with better specificity.
The molecule discovery system 100 may determine a binding specificity of the first
biomolecule based on a ratio of the on-target fitness score to the off-target fitness score. As
used herein, “binding specificity” indicates the binding pattern of the first biomolecule with
respect to the target protein and the test instrument. For example, low binding specificity
indicates the first biomolecule binding more strongly to the test instrument whereas high
binding specificity indicates the first biomolecule binding more strongly to the target protein.
As a result, the embodiments disclosed herein may have a technical advantage of the ability to
filter out low specificity binders from the results of the selection as the molecule discovery
system 100 may determine both on-target and off-target bindings.
[0099] FIG. 2B illustrates another example deep-learning fitness model. A neural network
240 may predict fitness from genotype (represented by the sequence representations 230)
without separating total fitness into an on-target and (one or more) off-target contributions. The

predicted fitness W can be used to predict future round genotype frequencies.
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[0100] The training of the machine-learning model may further comprise pretraining an
off-target model. In practice, the molecule discovery system 100 may first pretrain an off-target
fitness model on the off-target rounds only. The pretraining may comprise identifying one or
more off-target enrichment rounds from the plurality of enrichment rounds, and pretraining the
off-target model based on sequencing time-series data for the one or more off-target enrichment
rounds. This may provide an effective solution, as (1) the molecule discovery system 100 may
leverage off-target data measured for different targets, thus potentially increasing the data size,
and (2) the molecule discovery system 100 may efficiently re-use the pretrained model for new
targets. The pretrained “off-target oracle” may be then frozen and the on-target model may be
trained using the all-target rounds through equation (4). In other words, the training of the
machine-learning model may further comprise accessing sequencing time-series data from one
or more on-target enrichment rounds from the plurality of enrichment rounds and generating
an on-target model based on the accessed sequencing time-series data from the one or more
on-target enrichment rounds and the off-target model. The embodiments disclosed herein
compared this approach to jointly learning on- and off-target fitness and observed that the latter

results in less stable training and significantly longer training time.

Examples

[0101] The presently disclosed subject matter provides for improved biomolecule selection
based on fitness. The following describes the examples for fitness inference and biomolecule

selection.

Example 1: Directed Evolution Data

[0102] The directed evolution experiment analyzed in the following includes seven rounds
(the first round is the random library), and three off-target rounds following rounds five, six
and seven. The directed evolution experiment selects for activity for the target, and the library
includes 8-mers (cyclic peptides). The embodiments disclosed herein split the data by genotype
into a training and a test set, and holdout round seven and off-target seven to use as holdout
rounds. The embodiments disclosed herein then filtered the training and test sets so that each
genotype had a count of at least 10 in one on-target round and appeared in at least two
consecutive rounds. The final number of training/test genotypes is summarized in Table 1.
FIG. 3 illustrates an example distribution of the enrichment for each pair of rounds. More
specifically, FIG. 3 shows kernel density plot of log enrichment ratios of the filtered genotypes

by pair of time points.
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Cohort M; M> M3 My Ms Ms M7
train 2180 14765 17419 18233 18476 16844 -
test 233 1598 1926 2025 2054 1878 1673
train (off- i - - - 15285 11834 -
target)
test (off target) - - 1675 1300 375

Table 1. Final number of training/test genotypes

Example 2: Fitness Inference Comparison with Baselines

[0103] The embodiments disclosed herein compared the disclosed fitness inference
approach to three baselines. Prior round frequency assumes that enrichment is equal to the
frequency in the final time point of the training data — in other words, the most fit genotypes
are the most frequent. Prior round enrichment assumes that the holdout round’s enrichment is
equal to the penultimate round’s enrichment. Enrichment regression introduces a regression
loss function that can be used with any of the fitness parameterizations. The loss is the mean
squared error between the predicted and actual log-enrichment for every pair of rounds.
Enrichment is defined as the ratio of genotype Irequencies in a round and the prior round,
P:/P:—1. This baseline may correspond to naively extending enrichment regression to data
with multiple time points. It may not account for the fact that enrichment depends not only on
a genotype, but also on the fitness of competing genotypes in the same selection round.

[0104] The embodiments disclosed herein evaluated model performance through two
generalization tasks. First, the embodiments disclosed herein evaluated all models’ abilities to
predict the enrichment of the holdout final round T trained on time points 1, . . ., T— 1, for the
training sequences (Table 2, Seen Molecules). In this case, the first biomolecule is within the
population of biomolecules in the plurality of enrichment rounds. Second, the embodiments
disclosed herein evaluated the ability of the deep-learning fitness model to predict the
enrichment in round 7 on holdout genotypes (Table 2, Unseen Molecules). In this case, the first
biomolecule is not within the population of biomolecules in the plurality of enrichment rounds.
In particular embodiments, the molecule discovery system 100 may determine, based on the
inferred fitness score for the first biomolecule, whether a biological activity associated with the
first biomolecule meets a predetermined criteria for selection. Pearson-r is reported to measure
the agreement between actual and predicted enrichment. Pearson-r weights the high enrichment
sequences most heavily, thus reflecting the goal of selecting high fitness genotypes. When an
off-target oracle is used, the individual contributions (on-target and off-target fitness) are

aggregated for the evaluation.
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r Seen molecules

Parameterization ( T) r Unseen molecules (T)
Prior round frequency 0.03 -
Prior round enrichment 0.29 -
Per-genotype (Ennchment 0.15 + 0.07 i
regression)
Per-genotype (Multinominal) 0.34 +0.13 -
Per-genotype (DM) 0.38 + 0.02 -
Deep-learning fltnc?ss (Enrichment 0.25 + 0.05 022 % 0.06
regression)
Deep-learning fitness (Multinominal) 0.16 £0.02 0.10+0.03
Deep-learning fitness (DM) 0.40 = 0.02 0.45 +0.07
Deep-learning fitness (DM, Off- 0.39 & 0.07 0.38 2 0.16

target oracle)
Table 2: Enrichment prediction Pearson correlation I for seen and unseen molecules in

holdout final round (higher is better). Bold indicates the difference from the best results were

not statistically significant.

[0105] The results show the benefits of using the fitness inference framework compared to
all the baselines. The prior-round frequency and enrichment baselines predicted enrichment
poorly compared to the disclosed fitness-based methods, demonstrating that enrichment is
driven by the most fit accounting for all rounds, not just the last round. Fitness inference with
the DM loss also outperformed enrichment regression when using either parameterization,
which shows the benefits of probabilistic losses built on the fitness framework. Between the
two fitness-based losses, the DM loss yielded improved results over the multinomial loss,
which struggled with the deep-learning fitness model parameterization. This may indicate that
accounting for prior round read counts improves model performance. As can be seen, the
embodiments disclosed herein may have a technical advantage of more effective selection of
discovered hits as the molecule discovery system 100 infers fitness of biomolecules that
indicates biological activity and then determines discovered hits based on such biological

activity.

Example 3: On-target and Off-target Fitness Inference

[0106] The embodiments disclosed herein analyzed the individual fitness contributions
Won and Wesr training the model with off-target and all-target rounds. FIG. 4 illustrates
example on-target fitness versus off-target fitness regarding predictions on 100,000 holdout
genotypes. The grayscale intensity corresponds to total fitness. As shown, the same total fitness
corresponds to different on-target/off-target ratios. The dataset is characterized by high off-

target binding, which translates into an overall high off-target fitness. Thus, the pipeline in this
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disclosure may be used to filter out low specificity binders from the results of the selection.
Retraining the model, the embodiments disclosed herein observed a high consistency for the
inferred on-target/off-target fitness ratios (pairwise Spearman correlation = 0.66, three
replicates).

[0107] The embodiments disclosed herein assessed the usefulness of the estimated fitness
to highlight novel and diverse genotypes not easily detected through the standard last-round
frequency pipeline, wherein the genotypes with high frequency in the last selection round are
considered to be the most fit ([12; 13; 14; 15; 16; 17; 18]). In particular embodiments, the
molecule discovery system 100 may process a plurality of biomolecule representations
associated with a plurality of respective biomolecules by the machine-learning model to
determine a plurality of inferred fitness scores for the plurality of biomolecules, respectively.
The molecule discovery system 100 may further select, based on the inferred fitness scores for
the plurality of biomolecules, one or more biomolecules meeting a predetermined criteria for
selection. One or more of the selected biomolecules may be each associated with a low relative

biomolecule frequency in a last round of the plurality of enrichment rounds.

Example 4: Discovery of Novel and Diverse Genotvpes

[0108] In particular embodiments, the molecule discovery system 100 may select a diverse
set of biomolecules as discovered hits based on the fitness scores. The biomolecules in the
diverse set of biomolecules may meet a predetermined criteria for selection. The molecule
discovery system 100 may calculate distance metrics between the biomolecules. As an example
and not by way of limitation, the distance metric may be based on edit distance. As another
example and not by way of limitation, the distance metric may be based on a distance
determined based on a method that identifies distinct peptides. More information on identifying
distinct peptides may be found in U.S. Patent Application 18/338772, filed 21 June 2023,
particularly paragraphs 0069-0120, among other discussions in that patent application, the
entirety of which is incorporated by reference. As yet another example and not by way of
limitation, the distance metric may be based on VAE (variational auto encoder). In one
embodiment, the training of the VAE may be performed with reconstruction loss and monomer
prediction. For further clarity, the VAE may be trained to reconstruct the biomolecule that was
input. The embedding layer at the bottleneck may allow for generating embeddings of
biomolecules by inserting biomolecules into the trained VAE and reading out the vector at the

embedding layer at the bottleneck of the VAE. Consequently, the distance between two
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biomolecules can be calculated based on the Euclidean distance between two vectors for the
two biomolecules generated this way. The molecule discovery system 100 may then cluster the
biomolecules based on the distance metric. The molecule discovery system 100 may further
select the diverse set of biomolecules based on both the fitness scores and the clusters (e.g.,
selecting biomolecules with high fitness scores from diverse clusters). In other words, the
predetermined criteria may be based on both the fitness scores and the clusters. As an example
and not by way of limitation, the molecule discovery system 100 may use an algorithm to select
the diverse set of biomolecules. The algorithm may be heuristic, mixing high fitness scores and
diverse clusters based on its assessment. For example, the algorithm may select biomolecules
from two or more diverse clusters.

[0109] The molecule discovery system 100 may further generate a genotype space based
on the biomolecule frequencies and the inferred fitness scores for the plurality of biomolecules.
The molecule discovery system 100 may then select the one or more biomolecules by
identifying the one or more biomolecules from one or more regions in the genotype space. Each
of the one or more regions may be associated with a particular biomolecule frequency range
and a particular biomolecule fitness range. FIG. SA illustrates an example genotype space
generated based on last-round frequency and last-round frequency winners. The grayscale
intensity corresponds to log-scaled frequency and fitness, respectively. FIG. 5B illustrates an
example genotype space generated based on fitness and fitness winners. FIG. 5C illustrates an
example last-round frequency versus fitness. The molecule discovery system 100 embedded
genotypes in a meaningful “genotype space” learned in an unsupervised fashion through a VAE
and embedded with UMAP and compared the high-frequency and high-fitness regions in this
space. (FIG. 5A). As shown, while several areas share high frequency and high fitness values,
one may also identify regions of genotypes characterized by high fitness but low frequency
(and vice-versa). Such regions may help improve the number and diversity of the identified
biomolecules. Focusing on the top-50 “winners” through the two criteria (FIG. 5B), one may
observe that the inferred fitness helps selecting genotypes distant (i.e., less similar) to those
selected through frequency. Indeed, analyzing the agreement between last-round frequency and
fitness, one may notice that, especially for low-frequency values, the estimated fitness spans a
broad frequency range (FIG. 5C). As can be seen, the embodiments disclosed herein may have
a technical advantage of the ability to discover novel and diverse genotypes as the molecule
discovery system 100 may identify genotypes with high fitness but low frequency (and vice

versa), which may be missed through standard approaches for biomolecule discovery.
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Example 5: Efficiency of Hits Discovery

[0110] The embodiments disclosed herein may identify hits months earlier than traditional
methods. Inferring fitness can identify hits multiple timepoints earlier. For example, in one
example case, each timepoint was up to 1 month apart, meaning one could potentially identify

hits more than 2 or 3 months earlier than the baseline.

Example 6: Identification of Short Macrocycles

[0111] The embodiments disclosed herein may additionally identify short macrocycle hits
without dedicated short macrocycle libraries. In a traditional protocol, dedicated short
macrocycle libraries may be not often run because historically they may not yield any good
results. Fitness inference with sufficiently deep sequencing depth may enable identifying short
macrocycles (6-9 aa) in a general macrocycle library (6-14 aa) even though long macrocycles

(10-14 aa) dominate in frequency.

Additional Denoising

[0112] As described earlier, to discover hits, biomolecules undergo multiple rounds of
selection involving iterative steps of incubation with the target protein, washing off non-
binders, amplification, and re-translating DNA sequences to macrocycle peptides. The
embodiments disclosed herein considered the washing steps when modeling the absolute
fitness, or the number of children, of each individual genotype. One may assume that each
genotype has a probability of binding, and then a probability of surviving the washing. Binding
probabilities may be exponentially distributed, with very few hits having high binding
probability and most genotypes having near zero probability. Since binders are rare, one may
imagine the washing as a bottleneck that funnels a large number of candidate genotypes (e.g.,
1013 genotypes) down to a much smaller number, e.g., 107 genotypes (indicating 1 in a million
chance of binding, averaged over all genotypes). For washing, it may be reasonable to assume
that each genotype’s likelihood of surviving the wash is independent, which means it follows
a binomial distribution. By the properties of the binomial distribution, washing may not change
fitness estimates, but it may add binomial sampling noise, especially when the number of
copies of a genotype that bound is low. Short macrocycles may be weak binders, so they may
leave very small number of copies of a genotype that bound after binding. The washing step

may then introduce binomial noise on small number of copies of a genotype that bound.
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[0113] Binomial sampling may introduce noise into genotype frequencies over time as
follows. Between each selection step, aliquots may be taken, and samples may be also taken
for DNA sequencing. As an example and not by way of limitation, frequency counts may be
convoluted by Ribosomal/translation biases and selection artifacts. The molecule discovery
system 100 may utilize a probabilistic model of observations to compute a p-value, or Bayes
factor, for genotype activity to determine how much of its time series trajectory is due to
random noise versus fitness-based selection. The strength of evidence can be evaluated using
a model of baseline to generate p-values, false discovery rate, or Bayes factor. For example,
the probability of observing three, rather than just one, sequences with timeline trajectories
suggestive of high fitness, may be lower under a noise model.

[0114] In an example case, Ribosomal/translation biases may complicate fitness inference
since sequences that ribosomes translate more efficiently effectively may have more “children”
each generation. In particular embodiments, the molecule discovery system 100 may handle
Ribosomal/translation biases by incorporating a simple model of ribosome translation
efficiency into deep-learning fitness model. As an example and not by way of limitation, a
method may be to include it as a log additive term. Let r be the ribosome translation efficiency
of a genotype, scaled such that if » of some genotype is 2x the r value of another genotype,
then the first genotype has twice as many translated products. Then the translation-controlled
fitness f may be inferred according to data such that fr=w, where w is the effective fitness that
governs population changes. A simple model of ribosome translation efficiency may be, for
instance, the average codon score in a sequence, since ribosome efficiency may have a bias by
codon.

[0115] The deep-learning fitness model can better distinguish signal from noise, thereby
identifying short macrocycles with meaningful activity. The deep-learning fithess model may
leverage more information, i.e., aggregating across all timepoints and using a probabilistic
model of observations and noise. The deep-learning fitness model may be used to infer the
fitness of each peptide by aggregating information across all timepoints under a probabilistic
model. The deep-learning fitness model may be able to control for ribosomal translation
efficiency. Furthermore, the molecule discovery system 100 may increase power by
aggregating information across peptides within the same family.

[0116] In particular embodiments, the deep-learning fitness model may further incorporate
family clustering. With the access to a pairwise amino acid similarity matrix, defined using

chemical atom-atom-path similarity and expert knowledge, the molecule discovery system 100
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may utilize a similarity function between two sequences as the average pairwise similarity in
their amino acids. A first step may be to cluster genotypes by similarity and report fitness
statistics for the cluster: max, median, mean, number of genotypes in cluster, cluster similarity,
etc. Family clustering may strengthen the evidence for individual hits, if there are highly related
genotypes with trajectories that also support high fitness estimates. The similarity metric may
be also used to generate unseen sequences from a seed input sequence. While experimentalists
may do this manually, they may find a computational algorithm useful to easily design libraries
at scale. As an example and not by way of limitation, an algorithm may be to generate all
mutants within a predetermined hamming distance from the seed, discard them if they were
observed in the data already, rank the rest by similarity, and return them.

[0117] In one embodiment, the molecule discovery system 100 may utilize a model for
sampling macrocycles and interpreting families. Descending from the root to a leaf of a
hierarchical clustering tree may be viewed as a denoising procedure, where one may start from
something general and gradually add specificity. However, while a single hierarchical
clustering is a tree, there can be multiple valid ways to cluster. Moreover, clustering may
typically maximize the sequence similarity between child nodes, but in certain embodiments,
it may be ok with clusters that are slightly more different in sequence but have more similarity
in fitness. In terms of macrocycles, there may be multiple families that a single macrocycle
peptide can belong to. Clustering may only assign individuals to a single family. The model
for sampling macrocycles and interpreting families, in contrast, may handle relationships better
described as Directed Acyclic Graphs (DAGs). As an example and not by way of limitation,
the initial state of the model may be a maximally generic macrocycle comprising amino acids.
At each state, the set of available actions may transform some abstract symbol into more
specific symbols: e.g., any amino acid can be transformed into a symbol representing the set
of amino acids that are hydrophobic, polar, or positively/negatively charged. The final states
may be the observed macrocycle peptide sequences. In particular embodiments, the model for
sampling macrocycles and interpreting families may be trained with r(x) = fitness, and once
trained, may be able to sample new macrocycles based on the fitness distribution, benefiting
from all the generalization power and potential composability of the model. To interpret
clusters, one may analyze and compare the flow of intermediate states (which represent

macrocycle families).
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Discussion

[0118] This disclosure introduced fitness inference for directed evolution time-series data
with on-target and off-target selection rounds. The embodiments disclosed herein developed
and compared two parameterizations of fitness, i.e., per-genotype and deep-learning fitness
model, with two different probabilistic loss functions. With both parameterizations, fitness
inference with the DM loss significantly improved results compared to baselines that do not
account for the competition induced in a multi-round selection experiment. Compared to the
per-genotype parameterization, deep-learning fitness model enabled fitness prediction on
novel-unseen genotypes learning a general “motifs to fitness” mapping, with the assumption
that similar genotypes result in similar fitness values.

[0119] This disclosure demonstrated the ability of the fitness framework to elegantly
include off-target binding data. Compared to regression modeling, the disclosed fitness
framework may not require learning explicit trade-off parameters for off-target binding. It is
observed that the on-target-and-off-target strategy slightly negatively impacted performance
with respect to directly learning total fitness. This may have been caused by the model requiring
twice the number of parameters and may be improved exploring weight sharing and other
regularization techniques. However, the performance impact may be worth the ability to
disentangle total fitness into its contributions for downstream filtering.

[0120] Finally, this disclosure assessed the diversity of the genotypes with the highest
fitness (estimated by deep-learning fitness model with the DM loss) compared to those with
the highest last-round {requency. It is found that, while the fitness-based selection rediscovers
genotypes similar to those selected solely through frequency, it also highlights genotypes in
unexplored regions, thus improving the overall diversity.

[0121] FIG. 6 illustrates an example method 600 for biomolecule fitness inference. The
method may begin at step 610, where the molecule discovery system 100 may access a
biomolecule representation of a first biomolecule, wherein the first biomolecule is a
macrocycle. At step 620, the molecule discovery system 100 may process, by a machine-
learning model, the biomolecule representation of the first biomolecule, wherein the machine-
learning model comprises one or more neural networks, wherein the machine-learning model
was trained using sequencing time-series data associated with biomolecule frequencies of
particular biomolecules, wherein the sequencing time-series data was obtained from a directed

evolution of a population of biomolecules over a plurality of enrichment rounds, wherein the
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plurality of enrichment rounds comprises at least three enrichment rounds, wherein at least one
of the enrichment rounds was a control round where the population of biomolecules is analyzed
without a presence of a target protein, wherein the population of biomolecules are amplified
by polymerase chain reaction (PCR) in each of the plurality of enrichment rounds, wherein the
population of biomolecules in each enrichment round was a unique set of biomolecules with
respect to each other enrichment round, wherein the sequencing time-series data for each
enrichment round comprises a biomolecule frequency of each biomolecule of the population
of biomolecules in the respective enrichment round, wherein the sequencing time-series data
comprise DNA sequencing time-series data, wherein the biomolecule frequencies of particular
biomolecules indicate genotype frequencies, wherein the training comprises learning inferred
fitness scores of the population of biomolecules for each enrichment round by predicting
biomolecule frequencies of the population of biomolecules in the respective enrichment round
given biomolecule frequencies of the population of biomolecules in one or more prior
enrichment rounds, wherein learning the inferred fitness scores in the training of the machine-
learning model comprises optimizing a Dirichlet-multinomial loss function, wherein the
Dirichlet-multinomial loss function utilizes an over-dispersed multinomial distribution to
account for an increased difficulty associated with predicting biomolecule frequencies of the
population of biomolecules in each enrichment round given biomolecule frequencies of the
population of biomolecules in a prior enrichment round. At step 630, the molecule discovery
system 100 may output, by the machine-learning model based on the processing of the
biomolecule representation of the first biomolecule, an inferred fitness score for the first
biomolecule, wherein the inferred fitness score for the first biomolecule indicates a biological
activity of the first biomolecule with respect to a target protein, wherein the inferred fitness
score for the first biomolecule comprises one or more of an on-target fitness score associated
the first biomolecule binding to a target protein or an off-target fitness score associated the first
biomolecule binding to a test instrument instead of the target protein. At step 640, the molecule
discovery system 100 may determine, based on the inferred fitness score for the first
biomolecule, whether a biological activity associated with the first biomolecule meets a
predetermined criteria for selection. Particular embodiments may repeat one or more steps of
the method of FIG. 6, where appropriate. Although this disclosure describes and illustrates
particular steps of the method of FIG. 6 as occurring in a particular order, this disclosure
contemplates any suitable steps of the method of FIG. 6 occurring in any suitable order.

Moreover, although this disclosure describes and illustrates an example method for
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biomolecule fitness inference, including the particular steps of the method of FIG. 6, this
disclosure contemplates any suitable method for biomolecule fitness inference, including any
suitable steps, which may include all, some, or none of the steps of the method of FIG. 6, where
appropriate. Furthermore, although this disclosure describes and illustrates particular
components, devices, or systems carrying out particular steps of the method of FIG. 6, this
disclosure contemplates any suitable combination of any suitable components, devices, or

systems carrying out any suitable steps of the method of FIG. 6.

Systems and Methods

[0122] FIG. 7 illustrates an example computer system 700. In particular embodiments, one
or more computer systems 700 perform one or more steps of one or more methods described
or illustrated herein. In particular embodiments, one or more computer systems 700 provide
functionality described or illustrated herein. In particular embodiments, software running on
one or more computer systems 700 performs one or more steps of one or more methods
described or illustrated herein or provides functionality described or illustrated herein.
Particular embodiments include one or more portions of one or more computer systems 700.
Herein, reference to a computer system may encompass a computing device, and vice versa,
where appropriate. Moreover, reference to a computer system may encompass one or more
computer systems, where appropriate.

[0123] This disclosure contemplates any suitable number of computer systems 700. This
disclosure contemplates computer system 700 taking any suitable physical form. As example
and not by way of limitation, computer system 700 may be an embedded computer system, a
system-on-chip (SOC), a single-board computer system (SBC) (such as, for example, a
computer-on-module (COM) or system-on-module (SOM)), a desktop computer system, a
laptop or notebook computer system, an interactive kiosk, a mainframe, a mesh of computer
systems, a mobile telephone, a personal digital assistant (PDA), a server, a tablet computer
system, or a combination of two or more of these. Where appropriate, computer system 700
may include one or more computer systems 700; be unitary or distributed; span multiple
locations; span multiple machines; span multiple data centers; or reside in a cloud, which may
include one or more cloud components in one or more networks. Where appropriate, one or
more computer systems 700 may perform without substantial spatial or temporal limitation one
or more steps of one or more methods described or illustrated herein. As an example and not

by way of limitation, one or more computer systems 700 may perform in real time or in batch
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mode one or more steps of one or more methods described or illustrated herein. One or more
computer systems 700 may perform at different times or at different locations one or more
steps of one or more methods described or illustrated herein, where appropriate.

[0124] In particular embodiments, computer system 700 includes a processor 702, memory
704, storage 706, an input/output (I/O) interface 708, a communication interface 710, and a bus
712. Although this disclosure describes and illustrates a particular computer system having a
particular number of particular components in a particular arrangement, this disclosure
contemplates any suitable computer system having any suitable number of any suitable
components in any suitable arrangement.

[0125] In particular embodiments, processor 702 includes hardware for executing
instructions, such as those making up a computer program. As an example and not by way of
limitation, to execute instructions, processor 702 may retrieve (or fetch) the instructions from
an internal register, an internal cache, memory 704, or storage 706; decode and execute them;
and then write one or more results to an internal register, an internal cache, memory 704, or
storage 706. In particular embodiments, processor 702 may include one or more internal caches
for data, instructions, or addresses. This disclosure contemplates processor 702 including any
suitable number of any suitable internal caches, where appropriate. As an example and not by
way of limitation, processor 702 may include one or more instruction caches, one or more data
caches, and one or more translation lookaside buffers (TLBs). Instructions in the instruction
caches may be copies of instructions in memory 704 or storage 706, and the instruction caches
may speed up retrieval of those instructions by processor 702. Data in the data caches may be
copies of data in memory 704 or storage 706 for instructions executing at processor 702 to
operate on; the results of previous instructions executed at processor 702 for access by
subsequent instructions executing at processor 702 or for writing to memory 704 or storage
706; or other suitable data. The data caches may speed up read or write operations by processor
702. The TLBs may speed up virtual-address translation for processor 702. In particular
embodiments, processor 702 may include one or more internal registers for data, instructions,
or addresses. This disclosure contemplates processor 702 including any suitable number of any
suitable internal registers, where appropriate. Where appropriate, processor 702 may include
one or more arithmetic logic units (AL Us); be a multi-core processor; or include one or more
processors 702. Although this disclosure describes and illustrates a particular processor, this

disclosure contemplates any suitable processor.
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[0126] In particular embodiments, memory 704 includes main memory for storing
instructions for processor 702 to execute or data for processor 702 to operate on. As an example
and not by way of limitation, computer system 700 may load instructions from storage 706 or
another source (such as, for example, another computer system 700) to memory 704. Processor
702 may then load the instructions from memory 704 to an internal register or internal cache.
To execute the instructions, processor 702 may retrieve the instructions from the internal
register or internal cache and decode them. During or after execution of the instructions,
processor 702 may write one or more results (which may be intermediate or final results) to the
internal register or internal cache. Processor 702 may then write one or more of those results
to memory 704. In particular embodiments, processor 702 executes only instructions in one or
more internal registers or internal caches or in memory 704 (as opposed to storage 706 or
elsewhere) and operates only on data in one or more internal registers or internal caches or in
memory 704 (as opposed to storage 706 or elsewhere). One or more memory buses (which may
each include an address bus and a data bus) may couple processor 702 to memory 704. Bus
712 may include one or more memory buses, as described below. In particular embodiments,
one or more memory management units (MMUSs) reside between processor 702 and memory
704 and facilitate accesses to memory 704 requested by processor 702. In particular
embodiments, memory 704 includes random access memory (RAM). This RAM may be
volatile memory, where appropriate. Where appropriate, this RAM may be dynamic RAM
(DRAM) or static RAM (SRAM). Moreover, where appropriate, this RAM may be single-
ported or multi-ported RAM. This disclosure contemplates any suitable RAM. Memory 704
may include one or more memories 704, where appropriate. Although this disclosure describes
and illustrates particular memory, this disclosure contemplates any suitable memory.

[0127] In particular embodiments, storage 706 includes mass storage for data or
instructions. As an example and not by way of limitation, storage 706 may include a hard disk
drive (HDD), a floppy disk drive, flash memory, an optical disc, a magneto-optical disc,
magnetic tape, or a Universal Serial Bus (USB) drive or a combination of two or more of these.
Storage 706 may include removable or non-removable (or fixed) media, where appropriate.
Storage 706 may be internal or external to computer system 700, where appropriate. In
particular embodiments, storage 706 is non-volatile, solid-state memory. In particular
embodiments, storage 706 includes read-only memory (ROM). Where appropriate, this ROM
may be mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM),
electrically erasable PROM (EEPROM), electrically alterable ROM (EAROM), or flash
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memory or a combination of two or more of these. This disclosure contemplates mass storage
706 taking any suitable physical form. Storage 706 may include one or more storage control
units facilitating communication between processor 702 and storage 706, where appropriate.
Where appropriate, storage 706 may include one or more storages 706. Although this disclosure
describes and illustrates particular storage, this disclosure contemplates any suitable storage.
[0128] In particular embodiments, I/O interface 708 includes hardware, software, or both,
providing one or more interfaces for communication between computer system 700 and one or
more I/O devices. Computer system 700 may include one or more of these I/O devices, where
appropriate. One or more of these I/O devices may enable communication between a person
and computer system 700. As an example and not by way of limitation, an I/O device may
include a keyboard, keypad, microphone, monitor, mouse, printer, scanner, speaker, still
camera, stylus, tablet, touch screen, trackball, video camera, another suitable I/O device or a
combination of two or more of these. An I/O device may include one or more sensors. This
disclosure contemplates any suitable I/O devices and any suitable I/O interfaces 708 for them.
Where appropriate, I/O interface 708 may include one or more device or software drivers
enabling processor 702 to drive one or more of these I/O devices. /O interface 708 may include
one or more I/O interfaces 708, where appropriate. Although this disclosure describes and
illustrates a particular 1/O interface, this disclosure contemplates any suitable I/O interface.
[0129] In particular embodiments, communication interface 710 includes hardware,
software, or both providing one or more interfaces for communication (such as, for example,
packet-based communication) between computer system 700 and one or more other computer
systems 700 or one or more networks. As an example and not by way of limitation,
communication interface 710 may include a network interface controller (NIC) or network
adapter for communicating with an Ethernet or other wire-based network or a wireless NIC
(WNIC) or wireless adapter for communicating with a wireless network, such as a WI-FI
network. This disclosure contemplates any suitable network and any suitable communication
interface 710 for it. As an example and not by way of limitation, computer system 700 may
communicate with an ad hoc network, a personal area network (PAN), a local area network
(LAN), a wide area network (WAN), a metropolitan area network (MAN), or one or more
portions of the Internet or a combination of two or more of these. One or more portions of one
or more of these networks may be wired or wireless. As an example, computer system 700 may
communicate with a wireless PAN (WPAN) (such as, for example, a BLUETOOTH WPAN),

a WI-FI network, a WI-MAX network, a cellular telephone network (such as, for example, a
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Global System for Mobile Communications (GSM) network), or other suitable wireless
network or a combination of two or more of these. Computer system 700 may include any
suitable communication interface 710 for any of these networks, where appropriate.
Communication interface 710 may include one or more communication interfaces 710, where
appropriate. Although this disclosure describes and illustrates a particular communication
interface, this disclosure contemplates any suitable communication interface.

[0130] In particular embodiments, bus 712 includes hardware, software, or both coupling
components of computer system 700 to each other. As an example and not by way of limitation,
bus 712 may include an Accelerated Graphics Port (AGP) or other graphics bus, an Enhanced
Industry Standard Architecture (EISA) bus, a front-side bus (FSB), a HYPERTRANSPORT
(HT) interconnect, an Industry Standard Architecture (ISA) bus, an INFINIBAND
interconnect, a low-pin-count (LPC) bus, a memory bus, a Micro Channel Architecture (MCA)
bus, a Peripheral Component Interconnect (PCI) bus, a PCI-Express (PCle) bus, a serial
advanced technology attachment (SATA) bus, a Video Electronics Standards Association local
(VLB) bus, or another suitable bus or a combination of two or more of these. Bus 712 may
include one or more buses 712, where appropriate. Although this disclosure describes and
illustrates a particular bus, this disclosure contemplates any suitable bus or interconnect.
[0131] Herein, a computer-readable non-transitory storage medium or media may include
one or more semiconductor-based or other integrated circuits (Ics) (such, as for example, field-
programmable gate arrays (FPGAs) or application-specific Ics (ASICs)), hard disk drives
(HDDs), hybrid hard drives (HHDs), optical discs, optical disc drives (ODDs), magneto-optical
discs, magneto-optical drives, floppy diskettes, floppy disk drives (FDDs), magnetic tapes,
solid-state drives (SSDs), RAM-drives, SECURE DIGITAL cards or drives, any other suitable
computer-readable non-transitory storage media, or any suitable combination of two or more
of these, where appropriate. A computer-readable non-transitory storage medium may be

volatile, non-volatile, or a combination of volatile and non-volatile, where appropriate.

Recitation of Embodiments

[0132] Embodiment 1: A method including, by one or more computing systems: accessing
a biomolecule representation of a first biomolecule; processing, by a machine-learning model,
the biomolecule representation of the first biomolecule, wherein the machine-learning model
was trained using sequencing time-series data associated with biomolecule frequencies of

particular biomolecules, wherein the sequencing time-series data was obtained from directed
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evolution of a population of biomolecules over a plurality of enrichment rounds, wherein the
population of biomolecules in each enrichment round was a unique set of biomolecules with
respect to each other enrichment round, wherein the sequencing time-series data for each
enrichment round includes a biomolecule frequency of each biomolecule of the population of
biomolecules in the respective enrichment round, and wherein the training includes learning
inferred fitness scores of the population of biomolecules for each enrichment round by
predicting biomolecule frequencies of the population of biomolecules in the respective
enrichment round given biomolecule frequencies of the population of biomolecules in one or
more prior enrichment rounds; and outputting, by the machine-learning model based on the
processing of the biomolecule representation of the first biomolecule, an inferred fitness score
for the first biomolecule.

[0133] Embodiment 2: The method of Embodiment 1, further including: determining,
based on the inferred fitness score for the first biomolecule, whether a biological activity
associated with the first biomolecule meets a predetermined criteria for selection.

[0134] Embodiment 3: The method of either of Embodiments 1-2, wherein the plurality of
enrichment rounds includes at least three enrichment rounds, and wherein at least one of the
enrichment rounds was a control round where the population of biomolecules is analyzed
without a presence of a target protein.

[0135] Embodiment 4: The method of any one of Embodiments 1-3, wherein the inferred
fitness score for the first biomolecule indicates a biological activity of the first biomolecule
with respect to a target protein.

[0136] Embodiment 5: The method of any one of Embodiments 1-4, wherein learning the
inferred fitness scores in the training of the machine-learning model includes optimizing a
Dirichlet-multinomial loss function, and wherein the Dirichlet-multinomial loss function
utilizes an over-dispersed multinomial distribution to account for an increased difficulty
associated with predicting biomolecule frequencies of the population of biomolecules in each
enrichment round given biomolecule frequencies of the population of biomolecules in a prior
enrichment round.

[0137] Embodiment 6: The method of any one of Embodiments 1-5, wherein the training
of the machine-learning model further includes: calculating a Dirichlet loss negative log-
likelihood between the predicted biomolecule frequencies and actual biomolecule frequencies

as a negative log-likelihood.
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[0138] Embodiment 7: The method of any one of Embodiments 1-6, wherein the inferred
fitness score for the first biomolecule includes an on-target fitness score associated the first
biomolecule binding to a target protein.

[0139] Embodiment 8: The method of any one of Embodiments 1-6, wherein the inferred
fitness score for the first biomolecule includes an off-target fitness score associated the first
biomolecule binding to a test instrument instead of a target protein.

[0140] Embodiment 9: The method of any one of Embodiments 1-6, wherein the inferred
fitness score for the first biomolecule includes an on-target fitness score associated the first
biomolecule binding to a target protein and an off-target fitness score associated the first
biomolecule binding to a test instrument instead of the target protein, wherein the method
further includes: determining a binding specificity of the first biomolecule based on a ratio of
the on-target fitness score to the off-target fitness score.

[0141] Embodiment 10: The method of any one of Embodiments 1-9, wherein the machine-
learning model includes one or more neural networks.

[0142] Embodiments 11: The method of Embodiment 10, wherein the one or more neural
networks include: a first neural network trained for predicting on-target fitness scores
associated with biomolecules, and a second neural network trained for predicting off-target
fitness scores associated with biomolecules.

[0143] Embodiment 12: The method of any one of Embodiments 1-11, further including:
generating the biomolecule representation of the first biomolecule, wherein the first
biomolecule is a polypeptide corresponding to a first genotype, and wherein the generating
includes: determining a plurality of amino acids of the first biomolecule; applying, for each
amino acid of the plurality of amino acids, a function to determine a feature representation for
the respective amino acid; and generating a genotype representation corresponding to the first
genotype based on the plurality of feature representations associated with the plurality of amino
acids.

[0144] Embodiment 13: The method of any one of Embodiments 1-12, wherein the first
biomolecule is within the population of biomolecules in the plurality of enrichment rounds.
[0145] Embodiment 14: The method of any one of Embodiments 1-12, wherein the first
biomolecule is not within the population of biomolecules in the plurality of enrichment rounds.
[0146] Embodiment 15: The method of any one of Embodiments 1-14, wherein the
sequencing time-series data include DNA sequencing time-series data, and wherein the

biomolecule frequencies of particular biomolecules indicate genotype frequencies.
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[0147] Embodiment 16: The method of any one of Embodiments 1-15, further including:
processing a plurality of biomolecule representations associated with a plurality of respective
second biomolecules by the machine-learning model to determine a plurality of inferred fitness
scores for the plurality of second biomolecules, respectively; and selecting, based on the
inferred fitness scores for the plurality of second biomolecules, one or more second
biomolecules meeting a predetermined criteria for selection, wherein one or more of the
selected second biomolecules are each associated with a low relative biomolecule frequency in
a last round of the plurality of enrichment rounds.

[0148] Embodiment 17: The method of Embodiment 16, further including: generating a
genotype space based on the biomolecule frequencies and the inferred fitness scores for the
plurality of second biomolecules; and selecting the one or more second biomolecules by
identifying the one or more second biomolecules from one or more regions in the genotype
space, wherein each of the one or more regions is associated with a particular biomolecule
frequency range and a particular biomolecule fitness range.

[0149] Embodiment 18: The method of any one of Embodiments 1-17, wherein the training
further includes pretraining an off-target model, including: identifying one or more off-target
enrichment rounds from the plurality of enrichment rounds; and pretraining the off-target
model based on sequencing time-series data for the one or more off-target enrichment rounds.
[0150] Embodiment 19: The method of Embodiment 18, wherein the training further
includes: accessing sequencing time-series data from one or more on-target enrichment rounds
from the plurality of enrichment rounds; and generating an on-target model based on the
accessed sequencing time-series data from the one or more on-target enrichment rounds and
the off-target model.

[0151] Embodiment 20: The method of any one of Embodiments 1-19, wherein the first
biomolecule is a macrocycle.

[0152] Embodiment 21: The method of any one of Embodiments 1-20, wherein the
population of biomolecules are amplified by polymerase chain reaction (PCR) in each of the
plurality of enrichment rounds.

[0153] Embodiment 22: The method of any one of Embodiments 1-21, further including:
processing a plurality of biomolecule representations associated with a plurality of respective
second biomolecules by the machine-learning model to determine a plurality of inferred fitness
scores for the plurality of second biomolecules, respectively; and selecting, based on the

inferred fitness scores for the plurality of second biomolecules, one or more diverse
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biomolecules from the plurality of second biomolecules, wherein the one or more diverse
biomolecules meet a predetermined criteria for selection, and wherein one or more of the
diverse second biomolecules are each associated with a low relative biomolecule frequency in
a last round of the plurality of enrichment rounds

[0154] Embodiment 23: One or more computer-readable non-transitory storage media
embodying software that is operable when executed to: access a biomolecule representation of
a first biomolecule; process, by a machine-learning model, the biomolecule representation of
the first biomolecule, wherein the machine-learning model was trained using sequencing time-
series data associated with biomolecule frequencies of particular biomolecules, wherein the
sequencing time-series data was obtained from a directed evolution of a population of
biomolecules over a plurality of enrichment rounds, wherein the population of biomolecules in
each enrichment round was a unique set of biomolecules with respect to each other enrichment
round, wherein the sequencing time-series data for each enrichment round includes a
biomolecule frequency of each biomolecule of the population of biomolecules in the respective
enrichment round, and wherein the training includes learning inferred fitness scores of the
population of biomolecules for each enrichment round by predicting biomolecule frequencies
of the population of biomolecules in the respective enrichment round given biomolecule
frequencies of the population of biomolecules in one or more prior enrichment rounds; and
output, by the machine-learning model based on the processing of the biomolecule
representation of the first biomolecule, an inferred fitness score for the first biomolecule.
[0155] Embodiment 24: A system including: one or more processors; and a non-transitory
memory coupled to the processors including instructions executable by the processors, the
processors operable when executing the instructions to: access a biomolecule representation of
a first biomolecule; process, by a machine-learning model, the biomolecule representation of
the first biomolecule, wherein the machine-learning model was trained using sequencing time-
series data associated with biomolecule frequencies of particular biomolecules, wherein the
sequencing time-series data was obtained from a directed evolution of a population of
biomolecules over a plurality of enrichment rounds, wherein the population of biomolecules in
each enrichment round was a unique set of biomolecules with respect to each other enrichment
round, wherein the sequencing time-series data for each enrichment round includes a
biomolecule frequency of each biomolecule of the population of biomolecules in the respective
enrichment round, and wherein the training includes learning inferred fitness scores of the

population of biomolecules for each enrichment round by predicting biomolecule frequencies
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of the population of biomolecules in the respective enrichment round given biomolecule
frequencies of the population of biomolecules in one or more prior enrichment rounds; and
output, by the machine-learning model based on the processing of the biomolecule
representation of the first biomolecule, an inferred fitness score for the first biomolecule.
[0156] Embodiment 25: A method including, by one or more computing systems:
accessing a plurality of biomolecule representations of a plurality of respective biomolecules;
processing, by a machine-learning model, the plurality of biomolecule representations of the
plurality of respective biomolecules, wherein the machine-learning model was trained using
sequencing time-series data associated with biomolecule frequencies of particular
biomolecules, wherein the sequencing time-series data was obtained from directed evolution
of a population of biomolecules over a plurality of enrichment rounds, wherein the population
of biomolecules in each enrichment round was a unique set of biomolecules with respect to
each other enrichment round, wherein the sequencing time-series data for each enrichment
round includes a biomolecule frequency of each biomolecule of the population of biomolecules
in the respective enrichment round, and wherein the training includes learning inferred fitness
scores of the population of biomolecules for each enrichment round by predicting biomolecule
frequencies of the population of biomolecules in the respective enrichment round given
biomolecule frequencies of the population of biomolecules in one or more prior enrichment
rounds; outputting, by the machine-learning model based on the processing of the plurality of
biomolecule representation of the plurality of biomolecules, a plurality of inferred fitness
scores for the plurality of biomolecules, respectively; and selecting, based on the inferred
fitness scores for the plurality of biomolecules, one or more biomolecules meeting a
predetermined criteria for selection, wherein one or more of the selected biomolecules are each
associated with a low relative biomolecule frequency in a last round of the plurality of
enrichment rounds.

[0157] Embodiment 26: The method of Embodiment 25, further including: generating a
genotype space based on the biomolecule frequencies and the inferred fitness scores for the
plurality of biomolecules, wherein selecting the one or more biomolecules meeting the
predetermined criteria for selection comprises identifying the one or more biomolecules from
one or more regions in the genotype space, wherein each of the one or more regions is
associated with a particular biomolecule frequency range and a particular biomolecule fitness

range..
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[0158] Embodiment 27: The method of either of Embodiments 25-26, further including:
determining, based on an inferred fitness score for a first biomolecule of the plurality of
biomolecules, whether a biological activity associated with the first biomolecule meets a
predetermined criteria for selection.

[0159] Embodiment 28: The method of any one of Embodiments 25-27, wherein the
plurality of enrichment rounds includes at least three enrichment rounds, and wherein at least
one of the enrichment rounds was a control round where the population of biomolecules is
analyzed without a presence of a target protein.

[0160] Embodiment 29: The method of any one of Embodiments 25-28, wherein the
inferred fitness score for each of the plurality of biomolecules indicates a biological activity of
the corresponding biomolecule with respect to a target protein.

[0161] Embodiment 30: The method of any one of Embodiments 25-29, wherein learning
the inferred fitness scores in the training of the machine-learning model includes optimizing a
Dirichlet-multinomial loss function, and wherein the Dirichlet-multinomial loss function
utilizes an over-dispersed multinomial distribution to account for an increased difficulty
associated with predicting biomolecule frequencies of the population of biomolecules in each
enrichment round given biomolecule frequencies of the population of biomolecules in a prior
enrichment round.

[0162] Embodiment 31: The method of any one of Embodiments 25-30, wherein the
training of the machine-learning model further includes: calculating a Dirichlet loss negative
log-likelihood between the predicted biomolecule frequencies and actual biomolecule
frequencies as a negative log-likelihood.

[0163] Embodiment 32: The method of any one of Embodiments 25-31, wherein the
inferred fitness score for each of the plurality of biomolecules includes an on-target fitness
score associated the corresponding biomolecule binding to a target protein.

[0164] Embodiment 33: The method of any one of Embodiments 25-31, wherein the
inferred fitness score for each of the plurality of biomolecules includes an off-target fitness
score associated the corresponding biomolecule binding to a test instrument instead of a target
protein.

[0165] Embodiment 34: The method of any one of Embodiments 25-31, wherein the
inferred fitness score for each of the plurality of biomolecules includes an on-target fitness
score associated the corresponding biomolecule binding to a target protein and an off-target

fitness score associated the corresponding biomolecule binding to a test instrument instead of
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the target protein, wherein the method further includes: determining a binding specificity of
the corresponding biomolecule based on a ratio of the on-target fitness score to the off-target
fitness score.

[0166] Embodiment 35: The method of any one of Embodiments 25-34, wherein the
machine-learning model includes one or more neural networks.

[0167] Embodiments 36: The method of Embodiment 35, wherein the one or more neural
networks include: a first neural network trained for predicting on-target fitness scores
associated with biomolecules, and a second neural network trained for predicting off-target
fitness scores associated with biomolecules.

[0168] Embodiment 37: The method of any one of Embodiments 25-36, further including:
generating the biomolecule representation of a first biomolecule of the plurality of
biomolecules, wherein the first biomolecule is a polypeptide corresponding to a first genotype,
and wherein the generating includes: determining a plurality of amino acids of the first
biomolecule; applying, for each amino acid of the plurality of amino acids, a function to
determine a feature representation for the respective amino acid; and generating a genotype
representation corresponding to the first genotype based on the plurality of feature
representations associated with the plurality of amino acids.

[0169] Embodiment 38: The method of any one of Embodiments 25-37, wherein each of
the plurality of biomolecules is within the population of biomolecules in the plurality of
enrichment rounds.

[0170] Embodiment 39: The method of any one of Embodiments 25-37, wherein each of
the plurality of biomolecules is not within the population of biomolecules in the plurality of
enrichment rounds.

[0171] Embodiment 40: The method of any one of Embodiments 25-39, wherein the
sequencing time-series data include DNA sequencing time-series data, and wherein the
biomolecule frequencies of particular biomolecules indicate genotype frequencies.

[0172] Embodiment 41: The method of any one of Embodiments 25-40, wherein the
training further includes pretraining an off-target model, including: identifying one or more
off-target enrichment rounds from the plurality of enrichment rounds; and pretraining the off-
target model based on sequencing time-series data for the one or more off-target enrichment
rounds.

[0173] Embodiment 42: The method of Embodiment 41, wherein the training further

includes: accessing sequencing time-series data from one or more on-target enrichment rounds
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from the plurality of enrichment rounds; and generating an on-target model based on the
accessed sequencing time-series data from the one or more on-target enrichment rounds and
the off-target model.

[0174] Embodiment 43: The method of any one of Embodiments 25-42, wherein a first
biomolecule of the plurality of biomolecules is a macrocycle.

[0175] Embodiment 44: The method of any one of Embodiments 25-43, wherein the
population of biomolecules are amplified by polymerase chain reaction (PCR) in each of the

plurality of enrichment rounds.
Miscellaneous

[0176] Herein, “or” is inclusive and not exclusive, unless expressly indicated otherwise or
indicated otherwise by context. Therefore, herein, “A or B” means “A, B, or both,” unless
expressly indicated otherwise or indicated otherwise by context. Moreover, “and” is both joint
and several, unless expressly indicated otherwise or indicated otherwise by context. Therefore,
herein, “A and B” means “A and B, jointly or severally,” unless expressly indicated otherwise
or indicated otherwise by context.

[0177] The scope of this disclosure encompasses all changes, substitutions, variations,
alterations, and modifications to the example embodiments described or illustrated herein that
a person having ordinary skill in the art would comprehend. The scope of this disclosure is not
limited to the example embodiments described or illustrated herein. Moreover, although this
disclosure describes and illustrates respective embodiments herein as including particular
components, elements, feature, functions, operations, or steps, any of these embodiments may
include any combination or permutation of any of the components, elements, features,
functions, operations, or steps described or illustrated anywhere herein that a person having
ordinary skill in the art would comprehend. Furthermore, reference in the appended claims to
an apparatus or system or a component of an apparatus or system being adapted to, arranged
to, capable of, configured to, enabled to, operable to, or operative to perform a particular
function encompasses that apparatus, system, component, whether or not it or that particular
function is activated, turned on, or unlocked, as long as that apparatus, system, or component
is so adapted, arranged, capable, configured, enabled, operable, or operative. Additionally,
although this disclosure describes or illustrates particular embodiments as providing particular

advantages, particular embodiments may provide none, some, or all of these advantages.
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CLAIMS

‘What is claimed is:

1. A method comprising, by one or more computing systems:
accessing a biomolecule representation of a first biomolecule;
processing, by a machine-learning model, the biomolecule representation of the first
biomolecule,
wherein the machine-learning model was trained using sequencing time-series
data associated with biomolecule frequencies of particular biomolecules,
wherein the sequencing time-series data was obtained from directed evolution
of a population of biomolecules over a plurality of enrichment rounds,
wherein the population of biomolecules in each enrichment round was a unique
set of biomolecules with respect to each other enrichment round,
wherein the sequencing time-series data for each enrichment round comprises a
biomolecule frequency of each biomolecule of the population of
biomolecules in the respective enrichment round, and
wherein the training comprises learning inferred fitness scores of the population
of biomolecules for each enrichment round by predicting biomolecule
frequencies of the population of biomolecules in the respective enrichment
round given biomolecule frequencies of the population of biomolecules in
one or more prior enrichment rounds; and
outputting, by the machine-learning model based on the processing of the biomolecule
representation of the first biomolecule, an inferred fitness score for the first

biomolecule.

2. The method of Claim 1, further comprising:
determining, based on the inferred fitness score for the first biomolecule, whether a
biological activity associated with the first biomolecule meets a predetermined

criteria for selection.

3.The method of Claim 1, wherein the plurality of enrichment rounds comprises at least three
enrichment rounds, and wherein at least one of the enrichment rounds was a control round

where the population of biomolecules is analyzed without a presence of a target protein.
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4. The method of Claim 1, wherein the inferred fitness score for the first biomolecule indicates

a biological activity of the first biomolecule with respect to a target protein.

5.The method of Claim 1, wherein learning the inferred fitness scores in the training of the
machine-learning model comprises optimizing a Dirichlet-multinomial loss function, and
wherein the Dirichlet-multinomial loss function utilizes an over-dispersed multinomial
distribution to account for an increased difficulty associated with predicting biomolecule
frequencies of the population of biomolecules in each enrichment round given biomolecule

frequencies of the population of biomolecules in a prior enrichment round.

6. The method of Claim 5, wherein the training of the machine-learning model further
comprises:
calculating a Dirichlet loss negative log-likelihood between the predicted biomolecule

frequencies and actual biomolecule frequencies as a negative log-likelihood.

7. The method of Claim 1, wherein the inferred fitness score for the first biomolecule comprises

an on-target fitness score associated the first biomolecule binding to a target protein.

8. The method of Claim 1, wherein the inferred fitness score for the first biomolecule comprises
an off-target fitness score associated the first biomolecule binding to a test instrument

instead of a target protein.

9. The method of Claim 1, wherein the inferred fitness score for the first biomolecule comprises
an on-target fitness score associated the first biomolecule binding to a target protein and an
off-target fitness score associated the first biomolecule binding to a test instrument instead
of the target protein, wherein the method further comprises:

determining a binding specificity of the first biomolecule based on a ratio of the on-

target fitness score to the off-target fitness score.

10. The method of Claim 1, wherein the machine-learning model comprises one or more neural

networks.

11. The method of Claim 10, wherein the one or more neural networks comprise:
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a first neural network trained for predicting on-target fitness scores associated with
biomolecules, and
a second neural network trained for predicting off-target fitness scores associated with

biomolecules.

12. The method of Claim 1, further comprising:

generating the biomolecule representation of the [irst biomolecule, wherein the first
biomolecule is a polypeptide corresponding to a first genotype, and wherein the
generating comprises:

determining a plurality of amino acids of the first biomolecule;

applying, for each amino acid of the plurality of amino acids, a function to determine a
feature representation for the respective amino acid; and

generating a genotype representation corresponding to the first genotype based on the

plurality of feature representations associated with the plurality of amino acids.

13. The method of Claim 1, wherein the first biomolecule is within the population of

biomolecules in the plurality of enrichment rounds.

14. The method of Claim 1, wherein the first biomolecule is not within the population of

biomolecules in the plurality of enrichment rounds.

15. The method of Claim 1, wherein the sequencing time-series data comprise DNA
sequencing time-series data, and wherein the biomolecule frequencies of particular

biomolecules indicate genotype frequencies.

16. The method of Claim 1, further comprising:
processing a plurality of biomolecule representations associated with a plurality of
respective second biomolecules by the machine-learning model to determine a
plurality of inferred fitness scores for the plurality of second biomolecules,
respectively; and
selecting, based on the inferred fitness scores for the plurality of second biomolecules,
one or more second biomolecules meeting a predetermined criteria for selection,

wherein one or more of the selected second biomolecules are each associated with
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a low relative biomolecule frequency in a last round of the plurality of enrichment

rounds.

17. The method of Claim 16, further comprising:
generating a genotype space based on the biomolecule frequencies and the inferred
fitness scores for the plurality of second biomolecules; and
selecling the one or more second biomolecules by identilying the one or more second
biomolecules from one or more regions in the genotype space, wherein each of the
one or more regions is associated with a particular biomolecule frequency range

and a particular biomolecule fitness range.

18. The method of Claim 1, wherein the training further comprises pretraining an off-target
model, comprising:

identifying one or more off-target enrichment rounds from the plurality of enrichment
rounds; and

pretraining the off-target model based on sequencing time-series data for the one or

more off-target enrichment rounds.

19. The method of Claim 18, wherein the training further comprises:
accessing sequencing time-series data from one or more on-target enrichment rounds
from the plurality of enrichment rounds; and
generating an on-target model based on the accessed sequencing time-series data from

the one or more on-target enrichment rounds and the off-target model.

20. The method of Claim 1, wherein the first biomolecule is a macrocycle.

21. The method of Claim 1, wherein the population of biomolecules are amplified by

polymerase chain reaction (PCR) in each of the plurality of enrichment rounds.

22. The method of Claim 1, further comprising:
processing a plurality of biomolecule representations associated with a plurality of

respective second biomolecules by the machine-learning model to determine a
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plurality of inferred fitness scores for the plurality of second biomolecules,
respectively; and

selecting, based on the inferred fitness scores for the plurality of second biomolecules,
one or more diverse biomolecules from the plurality of second biomolecules,
wherein the one or more diverse biomolecules meet a predetermined criteria for
selection, and wherein one or more of the diverse biomolecules are each associated
with a low relative biomolecule frequency in a last round of the plurality of

enrichment rounds.

23. One or more computer-readable non-transitory storage media embodying software that is
operable when executed to:
access a biomolecule representation of a first biomolecule;
process, by a machine-learning model, the biomolecule representation of the first
biomolecule,
wherein the machine-learning model was trained using sequencing time-series
data associated with biomolecule frequencies of particular biomolecules,
wherein the sequencing time-series data was obtained from a directed evolution
of a population of biomolecules over a plurality of enrichment rounds,
wherein the population of biomolecules in each enrichment round was a unique
set of biomolecules with respect to each other enrichment round,
wherein the sequencing time-series data for each enrichment round comprises a
biomolecule frequency of each biomolecule of the population of
biomolecules in the respective enrichment round, and
wherein the training comprises learning inferred fitness scores of the population
of biomolecules for each enrichment round by predicting biomolecule
frequencies of the population of biomolecules in the respective enrichment
round given biomolecule frequencies of the population of biomolecules in
one or more prior enrichment rounds; and
output, by the machine-learning model based on the processing of the biomolecule
representation of the first biomolecule, an inferred fitness score for the first

biomolecule.
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24. A system comprising: one or more processors; and a non-transitory memory coupled to the
processors comprising instructions executable by the processors, the processors operable
when executing the instructions to:

access a biomolecule representation of a first biomolecule;
process, by a machine-learning model, the biomolecule representation of the first
biomolecule,
wherein the machine-learning model was trained using sequencing time-series
data associated with biomolecule frequencies of particular biomolecules,
wherein the sequencing time-series data was obtained from a directed evolution
of a population of biomolecules over a plurality of enrichment rounds,
wherein the population of biomolecules in each enrichment round was a unique
set of biomolecules with respect to each other enrichment round,
wherein the sequencing time-series data for each enrichment round comprises a
biomolecule frequency of each biomolecule of the population of
biomolecules in the respective enrichment round, and
wherein the training comprises learning inferred fitness scores of the population
of biomolecules for each enrichment round by predicting biomolecule
frequencies of the population of biomolecules in the respective enrichment
round given biomolecule frequencies of the population of biomolecules in
one or more prior enrichment rounds; and
output, by the machine-learning model based on the processing of the biomolecule
representation of the first biomolecule, an inferred fitness score for the first

biomolecule.

25. A method comprising, by one or more computing systems:
accessing a plurality of biomolecule representations of a plurality of respective
biomolecules;
processing, by a machine-learning model, the plurality of biomolecule representations
of the plurality of respective biomolecules,
wherein the machine-learning model was trained using sequencing time-series
data associated with biomolecule frequencies of particular biomolecules,
wherein the sequencing time-series data was obtained from directed evolution

of a population of biomolecules over a plurality of enrichment rounds,
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wherein the population of biomolecules in each enrichment round was a unique
set of biomolecules with respect to each other enrichment round,
wherein the sequencing time-series data for each enrichment round comprises a
biomolecule frequency of each biomolecule of the population of
biomolecules in the respective enrichment round, and
wherein the training comprises learning inferred fitness scores of the population
of biomolecules for each enrichment round by predicting biomolecule
frequencies of the population of biomolecules in the respective enrichment
round given biomolecule frequencies of the population of biomolecules in
one or more prior enrichment rounds;
outputting, by the machine-learning model based on the processing of the plurality of
biomolecule representation of the plurality of biomolecules, a plurality of inferred
fitness scores for the plurality of biomolecules, respectively; and
selecting, based on the inferred fitness scores for the plurality of biomolecules, one or
more biomolecules meeting a predetermined criteria for selection, wherein one or
more of the selected biomolecules are each associated with a low relative

biomolecule frequency in a last round of the plurality of enrichment rounds.

26. The method of Claim 25, further comprising:
generating a genotype space based on the biomolecule frequencies and the inferred
fitness scores for the plurality of biomolecules,
wherein selecting the one or more biomolecules meeting the predetermined criteria for
selection comprises identifying the one or more biomolecules from one or more
regions in the genotype space, wherein each of the one or more regions is associated
with a particular biomolecule frequency range and a particular biomolecule fitness

range.
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a

610~ Access A Biomolecule Representation Of A First Biomolecule,
Wherein The First Biomolecule Is A Macrocycle

Y

Process, By A Machine-Learning Model, The Biomolecule Representation
Of The First Biomolecule, Wherein The Machine-Learing Model ComFrises
One Or More Neural Networks, Wherein The Machine-Learning Model Was
Trained Using Seguencing Time-Series Data Associated With Biomolecule

Frequencies Of Particular Biomolecules, Wherein The Sequencing
Time-Series Data Was Obtained From A Directed Evolution Of A
Population Of Biomolecules Over A Plurality Of Enrichment Rounds,
Wherein The Plurality Of Enrichment Rounds Comprises At Least Three
Enrichment Rounds, Wherein At Least One Of The Enrichment Rounds
Was A Control Round Where The Population Of Biomolecules Is Analyzed
Without A Presence Of A Target Protein, Wherein The Population Of
Biomolecules Are Propagated By Polymerase Chain Reaction (PCR) In
Each Of The Plurality Of Enrichment Rounds, Wherein The Population Of
Biomolecules In Each Enrichment Round Was A Unique Set Of
Biomolecules With Respect To Each Other Enrichment Round, Wherein

The Sequencin? Time-Series Data For Each Enrichment Round Comprises
620~ A Biomolecule Fre1qrtljency Of Each Biomolecule Of The Population Of
Biomolecules In The Respective Enrichment Round, Wherein The
Sequencing Time-Series Data Comprise DNA Sequencing Time-Series

Data, Wherein The Biomolecule Frequencies Of Particular Biomolecules

Indicate Genot)(pe Frequencies, Wherein The Training Comprises Learning
Inferred Fitness Scores For Each Enrichment Round By Predicting
Biomolecule Frequencies Of The Population Of Biomolecules In The
Respective Enrichment Round Given Biomolecule Frequencies Of The
Population Of Biomolecules In A Prior Enrichment Round, Wherein
Learning The Inferred Fitness Scores In The Training Of The
Machine-Learning Model Comprises Ortimizin? A Dirichlet-Multinomial
Loss Function, Wherein The Dirichlet-Multinomial Loss Function Utilizes An
Over-Dispersed Multinomial Distribution To Account For An Increased
Difficulty Associated With Predicting Biomolecule Frequencies Of The
Population Of Biomolecules In Each Enrichment Round Given Biomolecule

requencies Of The Population gf Bi%molecules In A Prior Enrichment
oun

Y

Output, By The Machine-Learning Model Based On The Processing Of The
Biomolecule Representation Of The First Biomolecule, An Inferred Fitness
Score For The First Biomolecule, Wherein The Inferred Fitness Score For
The First Biomolecule Indicates A Biological Activity Of The First
630~  Biomolecule With Respect To A Target Protein, Wherein The Inferred
Fitness Score For The First Biomolecule Comprises One Or More Of An
On-Target Fitness Score Associated The First Biomolecule Binding To A
Target Protein Or An Off-Target Fitness Score Associated The First
Biomolecule Binding To A Test Instrument Instead Of The Target Protein

Y

Determine, Based On The Inferred Fitness Score For The First
640~  Biomolecule, Whether A Biological Activity Associated With The First
Biomolecule Meets A Predetermined Criteria For Selection

FIG. 6
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