
US 20210216531A1
IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0216531 A1

Shveidel et al . (43) Pub . Date : Jul . 15 , 2021

(54) EFFICIENT HANDLING OF HIGHLY
AMORTIZED METADATA PAGE UPDATES
IN STORAGE CLUSTERS WITH DELTA
LOG - BASED ARCHITECTURES

(71) Applicant : EMC IP Holding Company LLC ,
Hopkinton , MA (US)

(72) Inventors : Vladimir Shveidel , Pardes - Hana (IL) ;
Daniel Krauthgamer , Ramat Hasharon
(IL) ; Adi Katzengold , Ramat Gan (IL)

(52) U.S. Ci .
CPC G06F 16/2379 (2019.01) ; G06F 16/2365

(2019.01)
(57) ABSTRACT
Techniques for handling highly amortized metadata page
updates in storage clusters with delta log - based architec
tures . In response to performance of a transaction commit
operation , bulk metadata pages are written in a transactional
area of persistent memory in association with a unique
transaction identifier . Further , raw delta updates to metadata
pages and , for each bulk metadata page , a specialized flag ,
are written to a metadata delta log in association with the
unique transaction ID . The specialized flag provides an
indication that all delta updates that have occurred previous
to the writing of a bulk metadata page are no longer relevant
and should be dropped . The raw delta updates to metadata
pages and specialized flags are updated in a volatile memory
structure . The bulk metadata pages are flushed from the
transactional buffer area directly to a metadata store of a
storage array in a manner that bypasses the metadata delta
log .

(21) Appl . No .: 16 / 742,076

(22) Filed : Jan. 14 , 2020

Publication Classification
(51) Int . Cl .

G06F 16/23 (2006.01)

100

Storage node 104
Communications

interface 112 Host
computer
102.1 Processing circuitry 114

Memory 116 Host
computer
102.2

Network
108 RAM 122

: NVRAM 124
103

Host
computer
102.n

Network
infrastructure 110

Operating system 126
Specialized code
and data 128

Storage array 106
Storage
object
118.1

Storage
object
118.2

Storage
object
118.m

Coded
object
120

100

Storage node 104 Communications interface 112

Host computer 102.1

Patent Application Publication

Processing circuitry 114 Memory 116

Host computer 102.2

Network 108

RAM 122 NVRAM 124

103

Host computer 102.n

Network infrastructure 110

Operating system 126 Specialized code and data 128

Jul . 15 , 2021 Sheet 1 of 4

Storage array 106

Storage object 118.1

Storage object 118.2

Storage object 118.m

Coded object 120

US 2021/0216531 A1

Fig . 1

2007

First layer metadata page 208

Patent Application Publication

First metadata layer 202

Entry 214.1

Entry 214.2

Entry 214.p

Second layer metadata page 210

Second metadata layer 204

Entry Entry 216.1 | 216.2

Entry 216.9

Jul . 15 , 2021 Sheet 2 of 4

Third layer metadata page 212

Third metadata layer 206

Entry Entry 218.1 218.2

Entry 218.1

US 2021/0216531 A1

Fig . 2

Bulk metadata pages 302

Raw delta updates and " drop - delta " flags 304
.

320

324

Patent Application Publication

-322

310

Head

Header 328
Segid 330

NsPages N 332
334

KATE
Tail

316

RAM 122

336

Deltas , A , A , A2 338 Footer Segla , CRO 340

Le

Jul . 15 , 2021 Sheet 3 of 4

312

314

Transactional buffer area (s) 308

NVRAM 124

Storage array 106

326

Metadata page store 318

US 2021/0216531 A1

Fig . 3

Start During performance of a transaction commit operation , write and persist one or more bulk metadata pages to a transactional buffer area of a persistent memory in association with a unique transaction identifier (ID)
402

Patent Application Publication

Write and persist raw delta updates to metadata pages , and , for each bulk metadata page , a drop - delta flag to a metadata delta log , also in association with the unique transaction ID 404 Update and synchronize the raw delta updates and drop
delta flags in a volatile memory structure 406

Jul . 15 , 2021 Sheet 4 of 4

Flush the bulk metadata pages from the transactional
buffer area directly to a metadata page store of a storage array in a manner that bypasses the metadata delta log ,

thereby avoiding overloading of the delta log infrastructure and increasing its efficiency 408

US 2021/0216531 A1

End Fig . 4

US 2021/0216531 A1 Jul . 15 , 2021
1

EFFICIENT HANDLING OF HIGHLY
AMORTIZED METADATA PAGE UPDATES
IN STORAGE CLUSTERS WITH DELTA

LOG - BASED ARCHITECTURES

BACKGROUND

[0001] Clustered storage systems (also referred to herein
as " clustered system (s) ”) employ various techniques and / or
methodologies to protect and / or distribute electronic data
such as metadata and / or user data . In response to receipt of
a write input / output (IO) request for a storage object (e.g. , a
volume , a logical unit (LU) , a file system) from a host
computer , a data storage processor (also referred to herein as
a “ storage node ”) of a clustered system writes pending
changes to metadata and / or user data of the storage object to
a journal in local memory before storing the pending
changes in a storage array . Once the pending changes to the
metadata and / or user data have been written to the journal ,
the storage node sends an acknowledgement message to the
host computer that issued the write 10 request . The storage
node then stores the pending changes to the metadata and / or
user data in the storage array .

SUMMARY

[0002] In a clustered system , a storage node can write
pending changes to metadata of a storage object (also
referred to herein as “ delta (s) ”) to a memory structure in
volatile memory and a metadata delta log in persistent
memory (also referred to herein collectively as the “ delta log
infrastructure ”) . Upon determination that the delta log infra
structure is full or at any other suitable time , the storage node
can perform a transaction commit operation to store at least
a portion of the deltas written to the delta log infrastructure
in a storage array . Before storing the deltas in the storage
array , the storage node can aggregate small delta updates
corresponding to the same metadata pages and store the
aggregated small delta updates in the storage array in an
amortized fashion . The storage node can also store metadata
pages with large numbers of delta updates and / or newly
created metadata pages , which themselves may be highly or
completely amortized . However , writing such metadata
pages with large numbers of delta updates and / or newly
created metadata pages to the delta log infrastructure can be
problematic , potentially resulting in an overload of the delta
log infrastructure and ultimately reducing its efficiency .
Moreover , storing such metadata pages directly in the stor
age array can also be problematic , due to recent delta
updates to the metadata pages potentially being contained in
the delta log infrastructure and not being appropriately
applied to the metadata pages .
[0003] Techniques are disclosed herein for handling
highly amortized metadata page updates in storage clusters
with delta log - based architectures . With regard to the dis
closed techniques , a clustered system can include at least
one storage node having processing circuitry , a volatile
memory , and a persistent memory . The volatile memory can
include a memory structure configured to store and / or aggre
gate delta updates to metadata pages . The persistent memory
can include one or more transactional buffer areas and a
metadata delta log . Each transactional buffer area can be
configured to store one or more metadata pages containing
bulk metadata (also referred to herein as “ bulk metadata
pages ”) . As employed herein , the term " bulk metadata

pages ” corresponds to metadata pages with large numbers of
delta updates and / or newly created metadata pages , which
may be highly or completely amortized . Each transactional
buffer area can have a one - to - one correspondence with one
of a plurality of transaction commit threads , each of which
can be executed by the processing circuitry . The metadata
delta log can be configured to store raw delta updates to
metadata pages and maintain the raw delta updates to the
metadata pages atomically with a particular transaction
commit operation .
[0004] During performance of a transaction commit
operation , the processing circuitry can write and / or persist ,
to one of the transactional buffer areas , one or more bulk
metadata pages in association with a transaction identifier
(ID) . Further , the processing circuitry can write and / or
persist raw delta updates to metadata pages and , for each
bulk metadata page , a specialized flag (also referred to
herein as the " drop - delta flag ”) to the metadata delta log ,
also in association with a transaction ID . Each transaction ID
for raw delta updates to metadata pages can be used to locate
a transactional buffer area with the same transaction ID
where a bulk update to the metadata pages may be located .
Each drop - delta flag is written and / or persisted to the
metadata delta log atomically as part of the same transaction
commit operation for writing a bulk metadata page . The
drop - delta flag for each bulk metadata page can provide an
indication that all delta updates that have occurred previous
to the writing of the bulk metadata page are no longer
relevant and should be dropped . In addition , the processing
circuitry can update and / or synchronize the raw delta
updates to metadata pages and the drop - delta flags in the
volatile memory structure . Having written and / or persisted
the raw delta updates and drop - delta flags to the metadata
delta log , and updated and / or synchronized the raw delta
updates and drop - delta flags in the volatile memory struc
ture , the processing circuitry can flush the bulk metadata
pages from the transactional buffer area directly to a meta
data page store of a storage array in a manner that bypasses
the metadata delta log .
[0005] During performance of an operation of recovery
from a disaster , data loss , and / or data corruption , the pro
cessing circuitry of the storage node can determine , for each
transactional buffer area storing bulk metadata pages ,
whether its associated transaction ID is persisted in the
metadata delta log , thereby determining whether a particular
transaction commit operation corresponding to the transac
tion ID was at least partially performed or successfully
completed . Having determined that the particular transaction
commit operation was at least partially performed or suc
cessfully completed , the processing circuitry can flush the
bulk metadata pages from the transactional buffer area to the
metadata page store of the storage array , thereby recovering
the metadata page store to a consistent state . The processing
circuitry can also replay the metadata delta log to apply the
delta updates written thereto to the volatile memory struc
ture , thereby recovering the volatile memory structure to a
consistent state .
[0006] By performing an atomic transaction commit
operation that includes (i) writing and / or persisting bulk
metadata pages to a transactional buffer area of persistent
memory , (ii) writing and / or persisting raw delta updates to
metadata pages and , for each bulk metadata page , a drop
delta flag to a metadata delta log , (iii) updating and / or
synchronizing the raw delta updates and drop - delta flags in

US 2021/0216531 A1 Jul . 15 , 2021
2

a volatile memory structure , and (iv) flushing the bulk
metadata pages from the transactional buffer area directly to
a metadata page store of a storage array in a manner that
bypasses the metadata delta log , overloading of the delta log
infrastructure can be avoided while increasing its efficiency .
[0007] In certain embodiments , method of handling
metadata page updates in a clustered system includes , during
performance of a transaction commit operation by a storage
node , writing , in association with a unique transaction
identifier (ID) , one or more bulk metadata pages to a
transactional buffer area of a persistent memory , writing , in
association with the unique transaction ID , raw delta updates
to metadata pages to a metadata delta log in the persistent
memory , updating the raw delta updates to metadata pages
in a volatile memory structure , and flushing the bulk meta
data pages from the transactional buffer area directly to a
metadata page store of a storage array in a manner that
bypasses the metadata delta log .
[0008] In certain arrangements , the method further
includes writing , for each bulk metadata page and in asso
ciation with the unique transaction ID , a specialized flag to
the metadata delta log in the persistent memory . The spe
cialized flag provides an indication that all delta updates that
have occurred previous to the writing of the bulk metadata
page to the transactional buffer area are to be dropped .
[0009] In certain arrangements , the transactional buffer
area has an associated header , and the method further
includes writing at least the unique transaction ID to the
header of the transactional buffer area . The unique transac
tion ID corresponds to the transaction commit operation .
[0010] In certain arrangements , the metadata delta log
includes a plurality of transaction commit entries , and the
raw delta updates are contained in a respective transaction
commit entry from among the plurality of transaction com
mit entries . The respective transaction commit entry has an
associated header , and the method further includes writing at
least the unique transaction ID to the header of the respective
transaction commit entry .
[0011] In certain arrangements , the method further
includes , during performance of a recovery operation by the
storage node , determining whether the unique transaction ID
associated with the transactional buffer area is persisted in
the metadata delta log .
[0012] In certain arrangements , the method further
includes , having determined that the unique transaction ID
associated with the transactional buffer area is persisted in
the metadata delta log , flushing the bulk metadata pages
from the transactional buffer area to the metadata page store
of the storage array , thereby recovering the metadata page
store to a consistent state .
[0013] In certain arrangements , the method further
includes replaying the metadata delta log to apply delta
updates written thereto to the volatile memory structure ,
thereby recovering the volatile memory structure to a con
sistent state .
[0014] In certain embodiments , a storage node in a clus
tered system includes a volatile memory , a persistent
memory , a program memory , and processing circuitry con
figured to execute program instructions out of the program
memory . During performance of a transaction commit
operation , the processing circuitry executes the program
instructions out of the program memory to write , in asso
ciation with a unique transaction identifier (ID) , one or more
bulk metadata pages to a transactional buffer area of a

persistent memory , to write , in association with the unique
transaction ID , raw delta updates to metadata pages to a
metadata delta log in the persistent memory , to update the
raw delta updates to metadata pages in a volatile memory
structure , and to flush the bulk metadata pages from the
transactional buffer area directly to a metadata page store of
a storage array in a manner that bypasses the metadata delta
log .
[0015] In certain arrangements , the processing circuitry is
further configured to execute the program instructions out of
the program memory to write , for each bulk metadata page
and in association with the unique transaction ID , a special
ized flag to the metadata delta log in the persistent memory .
The specialized flag provides an indication that all delta
updates that have occurred previous to the writing of the
bulk metadata page to the transactional buffer area are to be
dropped .
[0016] In certain arrangements , the transactional buffer
area has an associated header , and the processing circuitry is
further configured to execute the program instructions out of
the program memory to write at least the unique transaction
ID to the header of the transactional buffer area , the unique
transaction ID corresponding to the transaction commit
operation .
[0017] In certain arrangements , the metadata delta log
includes a plurality of transaction commit entries , and the
raw delta updates are contained in a respective transaction
commit entry from among the plurality of transaction com
mit entries . The respective transaction commit entry has an
associated header , and the processing circuitry is further
configured to execute the program instructions out of the
program memory to write at least the unique transaction ID
to the header of the respective transaction commit entry .
[0018] In certain arrangements , the processing circuitry is
further configured to execute the program instructions out of
the program memory , during performance of a recovery
operation by the storage node , to determine whether the
unique transaction ID associated with the transactional buf
fer area is persisted in the metadata delta log .
[0019] In certain arrangements , the processing circuitry is
further configured to execute the program instructions out of
the program memory , having determined that the unique
transaction ID associated with the transactional buffer area
is persisted in the metadata delta log , to flush the bulk
metadata pages from the transactional buffer area to the
metadata page store of the storage array , thereby recovering
the metadata page store to a consistent state .
[0020] In certain arrangements , the processing circuitry is
further configured to execute the program instructions out of
the program memory to replay the metadata delta log to
apply delta updates written thereto to the volatile memory
structure , thereby recovering the volatile memory structure
to a consistent state .
[0021] In certain embodiments , a computer program prod
uct includes a set of non - transitory , computer - readable
media having instructions that , when executed by processing
circuitry of a storage node in a clustered system , cause the
processing circuitry to perform a method that includes ,
during performance of a transaction commit operation by the
storage node , writing , in association with a unique transac
tion identifier (ID) , one or more bulk metadata pages to a
transactional buffer area of a persistent memory , writing , in
association with the unique transaction ID , raw delta updates
to metadata pages to a metadata delta log in the persistent

US 2021/0216531 A1 Jul . 15 , 2021
3

memory , updating the raw delta updates to metadata pages
in a volatile memory structure , and flushing the bulk meta
data pages from the transactional buffer area directly to a
metadata page store of a storage array in a manner that
bypasses the metadata delta log .
[0022] Other features , functions , and aspects of the present
disclosure will be evident from the Detailed Description that
follows .

.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] The foregoing and other objects , features , and
advantages will be apparent from the following description
of particular embodiments of the present disclosure , as
illustrated in the accompanying drawings , in which like
reference characters refer to the same parts throughout the
different views .
[0024] FIG . 1 is a block diagram of an exemplary data
storage environment , in which techniques can be practiced
for handling highly amortized metadata page updates in
storage clusters with delta log - based architectures ;
[0025] FIG . 2 is a block diagram of exemplary multiple
layers of metadata pages , which can be maintained by a
storage node in the data storage environment of FIG . 1 ;
[0026] FIG . 3 is a block diagram of volatile memory
components , persistent memory components , and storage
array components of a storage node in the data storage
environment of FIG . 1 ; and
[0027] FIG . 4 is a flow diagram of an exemplary method
of handling highly amortized metadata page updates in
storage clusters with delta log - based architectures .

DETAILED DESCRIPTION

of host computers 102.1 , ... , 102.n can be configured as a
web server computer , a file server computer , an email server
computer , an enterprise server computer , and / or any other
suitable client / server computer or computerized device . The
plurality of host computers 102.1 , 102.n can be
configured to provide , over the network 108 , storage input /
output (10) requests (e.g. , small computer system interface
(SCSI) commands , network file system (NFS) commands)
to the storage node 104. Such storage IO requests (e.g. , write
IO requests , read IO requests) can direct the storage node
104 to write or read data blocks , data pages , data files , or any
other suitable data elements to / from volumes (VOLs) , logi
cal units (LU) , file systems , and / or any other suitable
storage objects , such as a plurality of storage objects 118.1 ,
118.2 , ... , 118.m maintained in the storage array 106 .
[0030] The communications medium 103 can be config
ured to interconnect the plurality of host computers 102.1 , .

102.n with the storage node 104 to enable them to
communicate and exchange data and / or control signaling .
As shown in FIG . 1 , the communications medium 103 can
be illustrated as a “ cloud ” to represent different communi
cations topologies such as a backbone topology , a hub - and
spoke topology , a loop topology , an irregular topology , and
so on , or any suitable combination thereof . As such , the
communications medium 103 can include copper - based data
communications devices and cabling , fiber optic devices and
cabling , wireless devices , and so on , or any suitable com
bination thereof . The communications medium 103 can be
further configured to support storage area network (SAN)
based communications , network attached storage (NAS)
based communications , local area network (LAN) -based
communications , metropolitan area network (MAN) -based
communications , wide area network (WAN) -based commu
nications , wireless communications , distributed infrastruc
ture communications , and / or any other suitable communi
cations .
[0031] The storage node 104 can be connected directly to
the storage array 106 or by an optional network infrastruc
ture 110 , which can include an Ethernet (e.g. , layer 2 or layer
3) network , a fiber channel network , an InfiniBand network ,
and / or any other suitable network (s) . As shown in FIG . 1 ,
the storage node 104 can include a communications inter
face 112 , processing circuitry 114 , and a memory 116. The
communications interface 112 can include one or more of an
InfiniBand interface , an Ethernet interface , an IEEE 802.11x
(WiFi) interface , a Bluetooth interface , and / or any other
suitable communications interface . The communications
interface 112 can further include SCSI target adapters ,
network interface adapters , and / or any other suitable adapt
ers for converting electronic , optical , and / or wireless signals
received over the network 108 to a form suitable for use by
the processing circuitry 114 .
[0032] The memory 116 can include volatile memory such
as a random - access memory (RAM) 122 or any other
suitable volatile memory , as well as persistent memory such
as a nonvolatile random - access memory (NVRAM) 124 or
any other suitable persistent memory . The memory 116 can
also store a variety of software constructs realized in the
form of specialized code and data 128 (e.g. , program instruc
tions) that can be executed by the processing circuitry 114 to
carry out the techniques and / or methods disclosed herein .
The memory 116 can further include an operating system
126 , such as a Linux operating system (OS) , a Unix OS , a
Windows OS , or any other suitable operating system .

[0028] Techniques are disclosed herein for handling
highly amortized metadata page updates in storage clusters
with delta log - based architectures . During performance of a
transaction commit operation , one or more bulk metadata
pages can be written and / or persisted to a transactional
buffer area of a persistent memory in association with a
transaction identifier (ID) . Further , raw delta updates to
metadata pages and , for each bulk metadata page , a special
ized flag (drop - delta flag) can be written and / or persisted to
a metadata delta log , also in association with a transaction
ID . The raw delta updates to metadata pages and drop - delta
flags can also be updated and / or synchronized in a volatile
memory structure . Having written and / or persisted the raw
delta updates to metadata pages and drop - delta flags to the
metadata delta log , and updated and / or synchronized the raw
delta updates and drop - delta flags in the volatile memory
structure , the bulk metadata pages can be flushed from the
transactional buffer area directly to a metadata page store of
a storage array in a manner that bypasses the metadata delta
log , thereby avoiding overloading of the delta log infrastruc
ture and increasing its efficiency .
[0029] FIG . 1 depicts an illustrative embodiment of an
exemplary data storage environment 100 , in which tech
niques can be practiced for handling highly amortized
metadata page updates in storage clusters with delta log
based architectures . As shown in FIG . 1 , the data storage
environment 100 can include a plurality of host computers
102.1 , 102.2 , 102.n , at least one data storage processor
104 (also referred to herein as a “ storage node ”) , a storage
array 106 , and a communications medium 103 that includes
at least one network 108. For example , each of the plurality

US 2021/0216531 A1 Jul . 15 , 2021
4

.

[0033] The processing circuitry 114 can include one or
more physical storage processors and / or engines configured
to execute the specialized code and data 128 , as well as data
movers , director boards , blades , IO modules , storage drive
controllers , switches , and / or any other suitable computer
hardware or combination thereof . For example , the process
ing circuitry 114 can execute the specialized code and data
128 as program instructions out of the memory 116 , process
storage 10 requests (e.g. , write 10 requests , read IO
requests) issued by the respective host computers 102.1 , ..
. , 102.n , and / or store metadata and / or user data on the
storage array 106 in the data storage environment 100 ,
which can be a clustered RAID environment .
[0034] As shown in FIG . 1 , the storage array 106 can
include a coded object 120 , which can be configured to store
coded data for use in regenerating lost or corrupted data on
one or more of the plurality of storage objects 118.1 , 118.2 ,

118.m. In certain implementations , the coded object 120
can be stored on a hard disk drive (HDD) configured to store
parity data in a RAID array . Alternatively (or in addition) ,
the storage objects 118.1 , 118.2 , . . . , 118.m and the coded
object 120 can be stored on one or more HDDs , solid state
drives (SSDs) , flash devices , and / or any other suitable
storage device (s) . It is noted that the storage node 104 can
include a keyboard , a mouse , and / or any other suitable 10
device (s) , an uninterruptable power supply (UPS) , and / or
any other suitable storage node component (s) .
[0035] In the context of the processing circuitry 114 being
implemented using one or more processors executing the
specialized code and data 128 , a computer program product
can be configured to deliver all or a portion of the special
ized code and data 128 to the respective processor (s) . Such
a computer program product can include one or more
non - transient computer - readable storage media , such as a
magnetic disk , a magnetic tape , a compact disk (CD) , a
digital versatile disk (DVD) , an optical disk , a flash drive , a
solid state drive (SSD) , a secure digital (SD) chip or device ,
an application specific integrated circuit (ASIC) , a field
programmable gate array (FPGA) , and so on . Further , the
non - transient computer - readable storage media can be
encoded with sets of program instructions for performing ,
when executed by the respective processor (s) , the various
techniques and / or methods disclosed herein .
[0036] FIG . 2 depicts an exemplary metadata structure
200 that can be maintained by the storage node 104 of FIG .
1. It is noted that any other suitable metadata structure can
also be maintained by the storage node 104 , using the
techniques and / or methods disclosed herein . As shown in
FIG . 2 , the metadata structure 200 can include multiple
layers of metadata , namely , a first metadata layer 202 , a
second metadata layer 204 , and a third metadata layer 206 .
The first metadata layer 202 can include at least one first
layer metadata page 208. Likewise , the second metadata
layer 204 can include at least one second layer metadata
page 210 , and the third metadata layer 206 can include at
least one third layer metadata page 212. It is noted that the
first metadata layer 202 , the second metadata layer 204 , and
the third metadata layer 206 are depicted in FIG . 2 as
containing metadata " pages " for purposes of illustration
only , and that any other suitable metadata elements can be
employed .
[0037] As further shown in FIG . 2 , the first layer metadata
page 208 can include a plurality of entries 214.1 , 214.2 , .
. , 214.p. Likewise , the second layer metadata page 210 can

include a plurality of entries 216.1 , 216.2 , ... , 216.9 , and
the third layer metadata page 212 can include a plurality of
entries 218.1 , 218.2 , . . . , 218.r. The plurality of entries
214.1 , 214.2 , ... , 214.p included in the first layer metadata
page 208 can be configured to map and / or point to at least
some of the plurality of entries 216.1 , 216.2 , ... , 216.9
included the second layer metadata page (s) 210. For
example , the first metadata layer 202 can represent various
ranges of logical block addresses (LBAs) . Further , each of
the plurality of entries 214.1 , 214.2 , . 214.p of the first
layer metadata page 208 can be associated with a particular
LBA range . In certain implementations , the first metadata
layer 202 can be organized as a “ tree ” data structure (or any
other suitable data structure) , in which each “ leaf " of the tree
data structure corresponds to a particular LBA range . As a
result , the first layer metadata page 208 can maintain a
particular LBA mapping to the second layer metadata page
(s) 210 .
[0038] The plurality of entries 216.1 , 216.2 , 216.7
included in the second layer metadata page 210 can be
configured to map and / or point to at least some of the
plurality of entries 218.1 , 218.2 , ... , 218.r included the third
layer metadata page (s) 212. In certain implementations , the
second metadata layer 204 can be configured to isolate
logical addresses of metadata pages in the first metadata
layer 202 from actual physical storage locations of the
metadata page . Further , the second layer metadata page 210
can be configured to encapsulate a physical storage location
of a metadata page to allow for its relocation without having
to update first layer metadata page 208. In this way , the
second metadata layer 204 can decouple an LBA space from
a corresponding physical address space .
[0039] The plurality of entries 218.1 , 218.2 , 218.7
included in the third layer metadata page 212 can be
configured to store metadata pages . As such , the third
metadata layer 206 can be configured to describe actual
physical storage locations of metadata pages within the
storage array 106. In certain implementations , each third
layer metadata page (such as the third layer metadata page
212 ; see FIG . 2) can correspond to a metadata page having
a predefined amount of storage capacity (e.g. , 4K (kilo
bytes) , 8K) for bulk metadata (also referred to herein as a
“ bulk metadata page (s) ”) . Such a bulk metadata page , which
may be highly or completely amortized , can be stored in the
storage array 106 using the techniques and / or methods
described herein .
[0040] During performance of a transaction commit
operation , the processing circuitry 114 of the storage node
104 can write and / or persist , to a transactional buffer area of
a persistent memory (e.g. , the NVRAM 124 ; see FIG . 1) ,
one or more bulk metadata pages in association with a
transaction identifier (ID) . As employed herein , the term
“ bulk metadata page (s) ” corresponds to metadata pages with
large numbers of delta updates and / or newly created meta
data pages , which may be highly or completely amortized .
Further , each transactional buffer area can have a one - to - one
correspondence with one of a plurality of transaction com
mit threads , each of which can be executed by the processing
circuitry 114. The processing circuitry 114 can also write
and / or persist , to a metadata delta log in the NVRAM 124 ,
raw delta updates to metadata pages and , for each bulk
metadata page , a specialized flag (drop - delta flag) , also in
association with a transaction ID . Each transaction ID for
raw delta updates to metadata pages can be used to locate a

US 2021/0216531 A1 Jul . 15 , 2021
5

transactional buffer area with the same transaction ID where
a bulk update to the metadata pages may be located . Each
drop - delta flag is written and / or persisted to the metadata
delta log atomically as part of the same transaction commit
operation for writing a bulk metadata page . The drop - delta
flag for each bulk metadata page can provide an indication
that all delta updates that have occurred previous to the
writing of the bulk metadata page are no longer relevant and
should be dropped . In addition , the processing circuitry 114
can update and / or synchronize the raw delta updates to
metadata pages and drop - delta flags in a memory structure
of a volatile memory (e.g. , the RAM 122 ; see FIG . 1) .
Having written and / or persisted the raw delta updates and
drop - delta flags to the metadata delta log , and updated
and / or synchronized the raw delta updates and drop - delta
flags in the volatile memory structure , the processing cir
cuitry 114 can flush the bulk metadata pages from the
transactional buffer area directly to a metadata page store of
the storage array 106 in a manner that bypasses the metadata
delta log .
[0041] Moreover , during performance of an operation of
recovery from a disaster , data loss , and / or data corruption ,
the processing circuitry 114 of the storage node 104 can
determine , for each transactional buffer area storing bulk
metadata pages , whether the transaction ID associated with
the transactional buffer area is persisted in the metadata delta
log , thereby determining whether a particular transaction
commit operation corresponding to the transaction ID was at
least partially performed and / or successfully completed .
Having determined that the particular transaction commit
operation was at least partially performed and / or success
fully completed , the processing circuitry 114 can flush the
bulk metadata pages from the transactional buffer area to the
metadata page store of the storage array 106 , thereby recov
ering the metadata page store to a consistent state . The
processing circuitry 114 can also replay the metadata delta
log to apply the delta updates written thereto to the volatile
memory structure , thereby recovering the volatile memory
structure to a consistent state .
[0042] By performing an atomic transaction commit
operation that includes (i) writing and / or persisting bulk
metadata pages to a transactional buffer area of a persistent
memory , (ii) writing and / or persisting raw delta updates to
metadata pages and , for each bulk metadata page , a drop
delta flag to a metadata delta log , (iii) updating and / or
synchronizing the raw delta updates and drop - delta flags in
a volatile memory structure , and (iv) flushing the bulk
metadata pages from the transactional buffer area directly to
a metadata page store of a storage array in a manner that
bypasses the metadata delta log , overloading of the delta log
infrastructure can be avoided while increasing its efficiency .
[0043] The disclosed techniques for handling highly
amortized metadata page updates in storage clusters with
delta log - based architectures will be further understood with
reference to the following illustrative examples and FIGS . 1
and 3. FIG . 3 depicts several exemplary components of the
storage node 104 of FIG . 1 , namely , the RAM 122 , the
NVRAM 124 , and the storage array 106. As shown in FIG .
3 , the RAM 122 can be configured to include a volatile
memory structure 316 , which has a set of data containers H. ,
H1 , H2 , ... , Hy for storing delta updates to metadata pages .
In certain implementations , each of the data containers Ho ,
H1 , H2 , .. Hy can be configured as a tree data structure
such as a binary tree , or any other suitable memory structure .

The NVRAM 124 can be configured to include one or more
transactional buffer areas 308. As described herein , each
transactional buffer area can have a one - to - one correspon
dence with one of a plurality of transaction commit threads ,
each of which can be executed by the processing circuitry
114. In certain implementations , the number of transaction
commit threads executable by the processing circuitry 114
can be one hundred (100) , or any other suitable number . The
NVRAM 124 can therefore include up to one hundred (100)
transactional buffer areas 308 , such as a transactional buffer
area 314. As further shown in FIG . 3 , the transactional buffer
area 314 can be configured to store one or more bulk
metadata pages Lij , Liz , Liv . In certain implementa
tions , the transactional buffer area 314 can be configured to
include a header 328 that contains a transaction ID (“ Seqld ”)
330 , an indication (“ NºPages ”) 332 of the number of bulk
metadata pages Lin , Li2 , ... , Lin (e.g. , N = 100 or any other
suitable number) stored in the transactional buffer area 314 ,
as well as a cyclic redundancy code or checksum (“ CRC ”)
334 .
[0044] The NVRAM 124 can be further configured to
include a metadata delta log 310 for storing a plurality of
transaction commit entries Ck - 2 , Ck - 1 , Ck , Co , each of which
can contain raw delta updates to metadata pages and , for
each bulk metadata page Li , Liz , ... , Lin , a drop - delta flag .
In certain implementations , the metadata delta log 310 can
be configured as a ring buffer , in which a particular trans
action commit entry Ck - 2 , Ck - 1 Cko ... , or C , can be added
to a “ head ” of the ring buffer and subsequently released or
deleted from a “ tail ” of the ring buffer . In certain imple
mentations , each of the transaction commit entries Ck - 2 ,
Ck - 1 , Cka ... , C. (such as the transaction commit entry , CK
312) can be configured to include a header 336 that contains
at least a transaction ID (“ Seqld ”) , a footer 340 that contains
at least the transaction ID (“ Seqld ”) and a CRC , as well as
one or more deltas A1 , A2 , ... , AM 338 corresponding to raw
delta updates to metadata pages . The storage array 106 can
be configured to include a metadata page store 318 .
[0045] In a first example , the processing circuitry 114 of

node 104 performs a transaction commit opera
tion to commit bulk metadata pages 302 to storage in the
metadata page store 318 of the storage array 106. In this first
example , the bulk metadata pages 302 correspond to the
bulk metadata pages Lij , Li2 , ... , Lin , and raw delta updates
and drop - delta flags 304 include raw delta updates to meta
data pages and , for each bulk metadata page Li? , Li2 , ... ,
Lin , a drop - delta flag (marked by a cross , X) .
[0046] During performance of the transaction commit
operation , the processing circuitry 114 of the storage node
104 executes a transaction commit thread , writing and / or
persisting (as illustrated by an arrow 320) the bulk metadata
pages Lin , Li2 , ... , Lin in the transactional buffer area 314 ,
and updating the header 328 of the transactional buffer area
314 to include the transaction ID (“ Seqld ”) 330 , the indi
cation (“ N?Pages ”) 332 of the number , N , of bulk metadata
pages Lij , Liz , . . . , Lin , and the CRC 334. As described
herein , the transactional buffer area 314 has a one - to - one
correspondence with the transaction commit thread . The
processing circuitry 114 further executes the transaction
commit thread to write and / or persist (as illustrated by an
arrow 322) one or more transaction commit entries (such as
the transaction commit entries Ck - 2 , Ck - 1 , Ck , C.) containing
raw delta updates to metadata pages and , for each bulk
metadata page Lij , Li2 , ... , Lin , a drop - delta flag to the

the sto

US 2021/0216531 A1 Jul . 15 , 2021
6

metadata delta log 310 , and to update the headers and footers
included in the transaction commit entries . For example , the
processing circuitry 114 can execute the transaction commit
thread to write and / or persist the transaction commit entry ,
Ck 312 to the metadata delta log 310 , to update the header
336 to include the transaction ID (“ Seqld ”) 330 , and to
update the footer 340 to include at least the transaction ID
(“ Seqld ”) and the CRC .
[0047] It is noted that the deltas A1 , A2 , Am 338
contained in the transaction commit entry Ck 312 of the
metadata delta log 310 can correspond to raw delta updates
to metadata pages . It is further noted that the transaction
commit entry Ck 312 can include , for each metadata page
Lin , Liz , . . . , Liv , a drop - delta flag . While building an
up - to - date metadata page , e.g. , during a cache miss or
de - stage operation , the drop - delta flag can provide an indi
cation that all delta updates that have occurred previous to
the writing of the metadata page are no longer relevant and
should be dropped .
[0048] Having written and / or persisted one or more of the
transaction commit entries (e.g. , the transaction commit
entry , CK 312) to the metadata delta log 310 , the processing
circuitry 114 of the storage node 104 executes the transac
tion commit thread to update and / or synchronize (as illus
trated by an arrow 324) the raw delta updates to metadata
pages and the drop - delta flags in the volatile memory
structure 316. In certain implementations , the raw delta
updates can be converted into a metadata update “ tuple ”
(e.g. , Li , Ei , T , V) including multiple entries , such as (i) a
logical index , Li , of a corresponding metadata page , (ii) an
offset , Ei , within the metadata page , (iii) a record or delta
type , T , defining a size of the delta update , (iv) a payload or
value , V , of the delta update , and / or any other suitable entry
or entries . In such implementations , the designations Lij ,
Liz , . . . , Lin for the bulk metadata pages stored in the
transactional buffer area 314 can correspond to the logical
indices of the respective bulk metadata pages . Further , the
designations H. , H , H2 , ... , Hy for the data containers of
the volatile memory structure 316 can correspond to hash
values obtained by applying a hash function to the respective
logical indices , Lin , Li2 , ... , Lin , of the bulk metadata
pages . In this way , each of the data containers , H. , H? , H2 ,

Hp , for storing delta updates to metadata pages can be
associated with a particular metadata page , based at least in
part on the logical index of the particular metadata page .
[0049] Once one or more of the transaction commit entries
(e.g. , the transaction commit entry , Ck 312) have been
written and / or persisted to the metadata delta log 310 , and
the raw delta updates to metadata pages and drop - delta flags
have been updated and / or synchronized in the volatile
memory structure 316 , the processing circuitry 114 of the
storage node 104 executes the transaction commit thread to
flush (as illustrated by an arrow 326) the bulk metadata
pages , Lin , Li2 , ... , Lin , from the transactional buffer area
314 directly to the metadata page store 318 of the storage
array 106 in a manner that bypasses the metadata delta log
310 , thereby avoiding overloading of the delta log infra
structure and increasing its efficiency .
[0050] In a second example , the processing circuitry 114
of the storage node 104 performs an operation of recovery
from a disaster , data loss , and / or data corruption . In this
second example , such a disaster , data loss , and / or data
corruption may result in the set of data containers Ho , H? ,
H2 , . . . , Hy of the volatile memory structure 316 being

cleared of delta updates to metadata pages , and / or the bulk
metadata pages , Li? , Li2 , ... , Lin , not being flushed to the
metadata page store 318 of the storage array 106. During
performance of the recovery operation , the processing cir
cuitry 114 determines , for each transactional buffer area 308
storing bulk metadata pages , whether the transaction ID
associated with the transactional buffer area is persisted in
the metadata delta log 310 , thereby determining whether a
particular transaction commit operation corresponding to the
transaction ID was at least partially performed and / or suc
cessfully completed . For example , the processing circuitry
114 can determine , for the transactional buffer area 314
storing the bulk metadata pages , Lin , Liz , . . . , Lin , whether
the transaction ID (“ Seqld ”) 330 is persisted in the metadata
delta log 310 (e.g. , near the “ head ”) in association with the
transaction commit entry , Ck 312 (e.g. , in the header 336
and / or the footer 340) , and / or whether the transaction com
mit operation was torn or interrupted (e.g. , whether any
errors occurred while performing the transaction commit
operation)
[0051] Having determined that the transaction commit
operation corresponding to the transaction ID (“ Seqld ") 330
was at least partially performed and / or successfully com
pleted , and was not torn or interrupted , the processing
circuitry 114 can flush the bulk metadata pages , Lij , Liz , . .
. , Lin , from the transactional buffer area 314 to the metadata
page store 318 of the storage array 106 , thereby recovering
the metadata page store 318 to a consistent state . The
processing circuitry 114 can also address any cases in which
other transaction commit operation (s) may have been torn or
interrupted , using a record of transactions maintained in the
metadata delta log 310 to roll back the storage node 104 to
a previous point - in - time (or roll the storage node 104
forward in time) . In addition , the processing circuitry 114
can replay the metadata delta log 310 to apply delta updates
written thereto to the volatile memory structure 316 , thereby
recovering the volatile memory structure 316 to a consistent
state .

[0052] An exemplary method of handling highly amor
tized metadata page updates in storage clusters with delta
log - based architectures is described below with reference to
FIG . 4. This exemplary method of handling highly amor
tized metadata page updates can be performed in a clustered
system by at least one storage node communicably con
nected to a storage array . As depicted in block 402 , during
performance of a transaction commit operation , one or more
bulk metadata pages are written and persisted to a transac
tional buffer area of a persistent memory in association with
a unique transaction identifier (ID) . As depicted in block
404 , raw delta updates to metadata pages , and , for each bulk
metadata page , a drop - delta flag are written and persisted to
a metadata delta log , also in association with the unique
transaction ID . As depicted in block 406 , the raw delta
updates and drop - delta flags are updated and synchronized
in a volatile memory structure . As depicted in block 408 , the
bulk metadata pages are flushed from the transactional
buffer area directly to a metadata page store of a storage
array in a manner that bypasses the metadata delta log ,
thereby avoiding overloading of the delta log infrastructure
and increasing its efficiency .
[0053] Several definitions of terms are provided below for
the purpose of aiding the understanding of the foregoing
description , as well as the claims set forth herein .

US 2021/0216531 A1 Jul . 15 , 2021
7

[0054] As employed herein , the term “ storage system ” is
intended to be broadly construed to encompass , for example ,
private or public cloud computing systems for storing data ,
as well as systems for storing data comprising virtual
infrastructure and those not comprising virtual infrastruc
ture .
[0055] As employed herein , the terms “ client , " " host , ” and
" user ” refer , interchangeably , to any person , system , or other
entity that uses a storage system to read / write data .
[0056] As employed herein , the term “ storage device "
may refer to a storage array including multiple storage
devices . Such a storage device may refer to any non - volatile
memory (NVM) device , including hard disk drives (HDDs) ,
solid state drives (SSDs) , flash devices (e.g. , NAND flash
devices , NOR flash devices) , and / or similar devices that may
be accessed locally and / or remotely (e.g. , via a storage
attached network (SAN)) . A storage array (drive array , disk
array) may refer to a data storage system used for block
based , file - based , or object storage . Storage arrays can
include , for example , dedicated storage hardware containing
HDDs , SSDs , and / or all - flash drives . A data storage entity
may be any one or more of a file system , object storage , a
virtualized device , a logical unit (LU) , a logical unit number
(LUN) , a logical volume , a logical device , a physical device ,
and / or a storage medium . An LU may be a logical entity
provided by a storage system for accessing data from the
storage system and may be used interchangeably with a
logical volume . An LU or LUN may be used interchange
ably with each other . A LUN may be a logical unit number
for identifying an LU and may also refer to one or more
virtual disks or virtual LUNs , which may correspond to one
or more virtual machines . A physical storage unit may be a
physical entity such as a drive or disk or an array of drives
or disks for storing data in storage locations that can be
accessed by address . A physical storage unit may be used
interchangeably with a physical volume .
[0057] As employed herein , the term “ storage medium ”
may refer to one or more storage media such as a hard drive ,
a combination of hard drives , flash storage , a combination of
flash storage , a combination of hard drives , flash storage ,
and other storage devices , and / or any other suitable types or
combinations of computer readable storage media . A storage
medium may also refer to both physical and logical storage
media , include multiple levels of virtual - to - physical map
pings , and include an image or disk image . A storage
medium may be computer - readable and may be referred to
as a computer - readable program medium .
[0058] As employed herein , the term “ TO request " or
simply “ TO ” may be used to refer to an input or output
request such as a data read request or data write request .
[0059] As employed herein , the terms , “ such as , " " for
example , ” “ e.g. , ” “ exemplary , ” and variants thereof describe
non - limiting embodiments and mean “ serving as
example , instance , or illustration . ” Any embodiments
described herein using such phrases and / or variants are not
necessarily to be construed as preferred or more advanta
geous over other embodiments , and / or to exclude the incor
poration of features from other embodiments . In addition ,
the term " optionally ” is employed herein to mean that a
feature or process , etc. , is provided in certain embodiments
and not provided in other certain embodiments . Any par
ticular embodiment of the present disclosure may include a
plurality of " optional ” features unless such features conflict
with one another .

[0060] While various embodiments of the present disclo
sure have been particularly shown and described , it will be
understood by those skilled in the art that various changes in
form and details may be made therein without departing
from the scope of the present disclosure , as defined by the
appended claims .
What is claimed is :
1. A method of handling metadata page updates in a

clustered system , the clustered system including a storage
node communicably connected to a storage array , the
method comprising :

during performance of a transaction commit operation by
the storage node :
writing , in association with a unique transaction iden

tifier (ID) , one or more bulk metadata pages to a
transactional buffer area of a persistent memory ;

writing , in association with the unique transaction ID ,
raw delta updates to metadata pages to a metadata
delta log in the persistent memory ;

updating the raw delta updates to metadata pages in a
volatile memory structure ; and

flushing the bulk metadata pages from the transactional
buffer area directly to a metadata page store of the
storage array in a manner that bypasses the metadata
delta log .

2. The method of claim 1 further comprising :
writing , for each bulk metadata page and in association

with the unique transaction ID , a specialized flag to the
metadata delta log in the persistent memory , the spe
cialized flag providing an indication that all delta
updates that have occurred previous to the writing of
the bulk metadata page to the transactional buffer area
are to be dropped .

3. The method of claim 1 wherein the transactional buffer
area has an associated header , and wherein the method
further comprises :

writing at least the unique transaction ID to the header of
the transactional buffer area , the unique transaction ID
corresponding to the transaction commit operation .

4. The method of claim 1 wherein the metadata delta log
includes a plurality of transaction commit entries , wherein
the raw delta updates are contained in a respective transac
tion commit entry from among the plurality of transaction
commit entries , wherein the respective transaction commit
entry has an associated header , and wherein the method
further comprises :

writing at least the unique transaction ID to the header of
the respective transaction commit entry .

5. The method of claim 1 further comprising :
during performance of a recovery operation by the storage
node :
determining whether the unique transaction ID associ

ated with the transactional buffer area is persisted in
the metadata delta log .

6. The method of claim 5 further comprising :
having determined that the unique transaction ID associ

ated with the transactional buffer area is persisted in the
metadata delta log , flushing the bulk metadata pages
from the transactional buffer area to the metadata page
store of the storage array , thereby recovering the meta
data page store to a consistent state .

an

US 2021/0216531 A1 Jul . 15 , 2021
8

7. The method of claim 6 further comprising :
replaying the metadata delta log to apply delta updates

written thereto to the volatile memory structure ,
thereby recovering the volatile memory structure to a
consistent state .

8. A storage node in a clustered system , the storage node
comprising :

a volatile memory ;
a persistent memory ;
a program memory ; and
processing circuitry configured to execute program

instructions out of the program memory to :
during performance of a transaction commit operation :

write , in association with a unique transaction identifier
(ID) , one or more bulk metadata pages to a transac
tional buffer area of a persistent memory ;

write , in association with the unique transaction ID ,
raw delta updates to metadata pages to a metadata
delta log in the persistent memory ;

update the raw delta updates to metadata pages in a
volatile memory structure ; and

flush the bulk metadata pages from the transactional
buffer area directly to a metadata page store of a
storage array in a manner that bypasses the metadata
delta log .

9. The storage node of claim 8 further comprising :
wherein the processing circuitry is further configured to

execute the program instructions out of the program
memory to write , for each bulk metadata page and in
association with the unique transaction ID , a special
ized flag to the metadata delta log in the persistent
memory , the specialized flag providing an indication
that all delta updates that have occurred previous to the
writing of the bulk metadata page to the transactional
buffer area are to be dropped .

10. The storage node of claim 8 wherein the transactional
buffer area has an associated header , and wherein the pro
cessing circuitry is further configured to execute the pro
gram instructions out of the program memory to write at
least the unique transaction ID to the header of the transac
tional buffer area , the unique transaction ID corresponding
to the transaction commit operation .

11. The storage node of claim 8 wherein the metadata
delta log includes a plurality of transaction commit entries ,
wherein the raw delta updates are contained in a respective
transaction commit entry from among the plurality of trans
action commit entries , wherein the respective transaction
commit entry has an associated header , and wherein the
processing circuitry is further configured to execute the
program instructions out of the program memory to write at
least the unique transaction ID to the header of the respective
transaction commit entry .

12. The storage node of claim 8 wherein the processing
circuitry is further configured to execute the program
instructions out of the program memory , during performance
of a recovery operation by the storage node , to determine
whether the unique transaction ID associated with the trans
actional buffer area is persisted in the metadata delta log .

13. The storage node of claim 12 wherein the processing
circuitry is further configured to execute the program
instructions out of the program memory , having determined
that the unique transaction ID associated with the transac
tional buffer area is persisted in the metadata delta log , to
flush the bulk metadata pages from the transactional buffer

area to the metadata page store of the storage array , thereby
recovering the metadata page store to a consistent state .

14. The storage node of claim 13 wherein the processing
circuitry is further configured to execute the program
instructions out of the program memory to :

replay the metadata delta log to apply delta updates
written thereto to the volatile memory structure ,
thereby recovering the volatile memory structure to a
consistent state .

15. A computer program product including a set of
non - transitory , computer - readable media having instructions
that , when executed by processing circuitry of a storage
node in a clustered system , cause the processing circuitry to
perform a method comprising :

during performance of a transaction commit operation by
the storage node :
writing , in association with a unique transaction iden

tifier (ID) , one or more bulk metadata pages to a
transactional buffer area of a persistent memory ;

writing , in association with the unique transaction ID ,
raw delta updates to metadata pages to a metadata
delta log in the persistent memory ;

updating the raw delta updates to metadata pages in a
volatile memory structure ; and

flushing the bulk metadata pages from the transactional
buffer area directly to a metadata page store of a
storage array in a manner that bypasses the metadata
delta log .

16. The computer program product of claim 15 wherein
the method further comprises :

writing , for each bulk metadata page and in association
with the unique transaction ID , a specialized flag to the
metadata delta log in the persistent memory , the spe
cialized flag providing an indication that all delta
updates that have occurred previous to the writing of
the bulk metadata page to the transactional buffer area
are to be dropped .

17. The computer program product of claim 15 wherein
the transactional buffer area has an associated header , and
wherein the method further comprises :

writing at least the unique transaction ID to the header of
the transactional buffer area , the unique transaction ID
corresponding to the transaction commit operation .

18. The computer program product of claim 15 wherein
the metadata delta log includes a plurality of transaction
commit entries , wherein the raw delta updates are contained
in a respective transaction commit entry from among the
plurality of transaction commit entries , wherein the respec
tive transaction commit entry has an associated header , and
wherein the method further comprises :

writing at least the unique transaction ID to the header of
the respective transaction commit entry .

19. The computer program product of claim 15 wherein
the method further comprises :

during performance of a recovery operation by the storage
node :
determining whether the unique transaction ID associ

ated with the transactional buffer area is persisted in
the metadata delta log ; and

having determined that the unique transaction ID asso
ciated with the transactional buffer area is persisted
in the metadata delta log , flushing the bulk metadata
pages from the transactional buffer area to the meta

US 2021/0216531 A1 Jul . 15 , 2021
9

data page store of the storage array , thereby recov
ering the metadata page store to a consistent state .

20. The computer program product of claim 19 wherein
the method further comprises :

replaying the metadata delta log to apply delta updates
written thereto to the volatile memory structure ,
thereby recovering the volatile memory structure to a
consistent state .

