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(57) ABSTRACT

A camera system captures images from a set of cameras to
generate binocular panoramic views of an environment. The
cameras are oriented in the camera system to maximize the
minimum number of cameras viewing a set of randomized
test points. To calibrate the system, matching features
between images are identified and used to estimate three-
dimensional points external to the camera system. Calibra-
tion parameters are modified to improve the three- dimen-
sional point estimates. When images are captured, a pipeline
generates a depth map for each camera using reprojected
views from adjacent cameras and an image pyramid that
includes individual pixel depth refinement and filtering
between levels of the pyramid. The images may be used
generate views of the environment from different perspec-
tives (relative to the image capture location) by generating
depth surfaces corresponding to the depth maps and blend-
ing the depth surfaces.
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PANORAMIC CAMERA SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/485,381, titled “Panoramic Cam-
era Systems” filed Apr. 13, 2017, which is incorporated by
reference in its entirety.

BACKGROUND

[0002] Effectively capturing an environment or scene by a
set of cameras and rendering that environment to simulate
views that differ from the actually-captured locations of the
cameras is a challenging exercise. These cameras may be
grouped together in a rig to provide various views of the
environment to permit capture and creation of panoramic
images and video that may be referred to as “omnidirec-
tional,” “360-degree” or “spherical” content. The capture
and recreation of views is particularly challenging when
generating a system to provide simulated stereoscopic views
of'the environment. For example, for each eye, a view of the
environment may be generated as an equirectangular pro-
jection mapping views to horizontal and vertical panoramic
space. In the equirectangular projection, horizontal space
represents horizontal rotation (e.g., from 0 to 2m) and
vertical space represents vertical rotation (e.g., from 0 to m,
representing a view directly downward to a view directly
upward) space for display to a user. To view these images,
a user may wear a head-mounted display on which a portion
of the equirectangular projection for each eye is displayed.

[0003] Correctly synthesizing these views from physical
cameras to simulate what would be viewed by an eye is a
difficult problem because of the physical limitations of the
cameras, difference in inter pupillary distance in users, fixed
perspective of the cameras in the rig, and many other
challenges.

[0004] The positioning and orientation of cameras is dif-
ficult to effectively design, particularly because of various
physical differences in camera lenses and to ensure effective
coverage of the various directions of view from the center of
the set of cameras. After manufacture of a rig intended to
position and orient cameras according to a design, these
cameras may nonetheless be affected by variations in manu-
facturing and installation that cause the actual positioning
and orientation of cameras to differ. The calibration of these
cameras with respect to the designed positioning and orien-
tation is challenging to solve because of the difficulties in
determining effective calibration given various imperfec-
tions and variations in the environment in which the cali-
bration is performed.

[0005] When generating render views, each captured cam-
era image may also proceed through a pipeline to generate
a depth map for the image to effectively permit generation
of synthetic views. These depth maps should generate depth
in a way that is consistent across overlapping views of the
various cameras and that effectively provides a depth esti-
mate for pixels in the image accurately and efficiently and
account for changing depth across frames and between
objects and backgrounds that may share similar colors or
color schemes. In generating the depth maps, a large amount
of inter-frame and inter-camera data may be processed,
requiring extensive computational resources.

Oct. 18,2018

[0006] Finally, in render views, the various overlapping
camera views can create artifacts when combined, and in
some systems create unusual interactions when two or more
cameras depict different colors or objects in an overlapping
area. Resolving this problem in many systems may create
popping, warping, or other problems in a render view. In
addition, systems which use a single camera or stitch images
together may not realistically simulate views for different
eyes or at different locations.

SUMMARY

[0007] An arrangement of a set of cameras considers
camera positioning and orientation to optimize or improve
field of view coverage for a space, such as a panoramic 360
degree space. The positioning of the cameras is determined
by evaluating the distance of one or more of the cameras
from one another and adjusting positioning to optimize a
scoring function. For a set of camera positions, the orien-
tation of the cameras is optimized given the fields of view of
the cameras to maximize the minimum number of cameras
at viewing any given point. Multiple possible orientations
are initialized, and each initialization is solved to find the
configuration of cameras with optimal coverage of a set of
test points. During application of the solver, the orientations
of the cameras are solved with a set of points generated
semi-randomly. To evaluate the solutions of the different
initial configuration, the solutions are evaluated with a set of
evenly distributed points.

[0008] Animage capture system has a set of cameras, each
camera having an expected orientation and position, for
example an optimal orientation and position. Since the
actual manufacture of the cameras may differ from a
designed or planned orientation, to determine a set of
calibrations for the cameras, an image is captured from each
camera. The images are compared to find pairwise feature
point matches between the images. The feature point
matches are filtered and analyzed to exclude matches that
are not consistent with the current camera orientations and
positions or that create high reprojection error compared to
other matches for the image pair. Sets of feature matches are
assembled into traces, which are also filtered and used to
calibrate the cameras of the image capture system with a
computational solver, such as a nonlinear solver. The cali-
bration process may iterate by re-considering initial feature
matches and recalculating feature match consistency, repro-
jection error, and traces based on the new camera calibra-
tions.

[0009] A set of cameras captures images of a scene to be
rendered based on depth information. A pipeline generates a
depth map of the images that can be parallelized across
several processors which may be operating on separate
machines to process different frames. Rendering of each
frame may recursively request underlying steps in the pipe-
line which may require data from other cameras or from
other frames forward or backwards in time from the current
frame. For a given frame, as data is generated, it is marked
as used in the current frame. To reduce memory require-
ments, when beginning a new frame, data cached from the
prior frame that was not marked is removed from the cache
(and existing marks cleared).

[0010] Depth maps are generated for pixels of a reference
image based on overlapping images at least partially sharing
the field of view of the reference image. An image pyramid
of images at various sizes are generated for the reference
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image and the overlapping images. The overlapping images
are reprojected to the reference camera. At a given level of
the image pyramid, the depth map solution for a prior level
is upscaled and the pixels in the reference image are sequen-
tially evaluated by adopting neighbor pixel depth estimates,
if better, and performing a single step of a gradient descent
algorithm. Improvements in the depth from the single gra-
dient step can propagate throughout the reference image and
up the levels of the image pyramid. The refined depth map
may be filtered before upscaling to the next image pyramid
level. The filters may use a guide to determine a combination
of neighboring pixels for a pixel in an image. In the depth
estimates, the filters may use various edge-aware guides to
smooth the depth maps for the image and may use prior
frames, color, and other characteristics for the guide.
[0011] A set of filters blurs a depth map for an image based
on a machine-learned set of image transforms on the image.
The image transforms are applied to the image to generate
a guide for filtering the depth map. The parameters for the
image transforms are learned from a set of images each
having a known depth map. To train the parameters, the
known depth map for an image is randomly perturbed to
generate a depth map to be improved by the filter. The
parameters for the transforms are then trained to improve the
correspondence of an output depth map to the original depth
map when the transformed image guides the filtering.
[0012] A view of a scene can be rendered from a set of
images with corresponding depth maps. Each image with a
depth map can be rendered as a “depth surface” with respect
to the desired view. The depth surfaces from each image can
be added and blended based on alpha channels associated
with each image. To render an image with an equirectangular
projection, each depth surface triangle can be selectively
shifted to correct for the equirectangular projection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 illustrates an example image capture sys-
tem, according to one embodiment.

[0014] FIG. 2 illustrates the useable image area of a
camera sensor, according to one embodiment.

[0015] FIG. 3A illustrates the estimated coverage area of
an image, according to one embodiment.

[0016] FIG. 3B is a graph illustrating an example camera
coverage function for a camera, according to one embodi-
ment.

[0017] FIG. 4A illustrates an example randomized set of
test points, according to one embodiment.

[0018] FIG. 4B illustrates an example evenly distributed
set of test points, according to one embodiment.

[0019] FIG. 5 is a graph illustrating an example coverage
scoring function, according to one embodiment.

[0020] FIG. 6 is a flowchart illustrating an example pro-
cess for selecting camera position and orientation according
to one embodiment.

[0021] FIG. 7 is a block diagram illustrating an example
computing environment in which an image capture system
operates.

[0022] FIG. 8 is a flowchart illustrating an example pro-
cess for capturing and using content in an image capture
system, according to one embodiment.

[0023] FIG. 9 is a flowchart illustrating an example pro-
cess for storing and rendering image capture system content,
according to one embodiment.

Oct. 18,2018

[0024] FIG. 10A illustrates example memory management
state, according to one embodiment.

[0025] FIG. 10B illustrates a second example memory
management state, according to one embodiment.

[0026] FIG. 11 is a block diagram illustrating an example
computing environment in which in which an image capture
system is calibrated, according to one embodiment.

[0027] FIG. 12 illustrates an example scene captured from
two overlapping cameras of an image capture system,
according to one embodiment.

[0028] FIG. 13A illustrates example matched feature
points between two images of an example scene, according
to one embodiment.

[0029] FIG. 13B illustrates an example list of matching
feature points, according to one embodiment.

[0030] FIG. 14A illustrates an example triangulation based
on two triangulation rays, according to one embodiment.
[0031] FIG. 14B illustrates an example triangulation based
on multiple triangulation rays, according to one embodi-
ment.

[0032] FIGS. 15A and 15B illustrate example reprojec-
tions and reprojection errors between feature points and
reprojected points, according to one embodiment.

[0033] FIG. 16 is a graph illustrating an example trace,
according to one embodiment.

[0034] FIG. 17 is a flowchart illustrating an example
process for calibrating an image capture system, according
to one embodiment.

[0035] FIG. 18 is a flowchart illustrating an example
calibration process for iteratively improving the calibration
of an image capture system, according to one embodiment.
[0036] FIG. 19 illustrates an example image pyramid,
according to one embodiment.

[0037] FIG. 20 illustrates an example reprojection of over-
lap images to a reference image, according to one embodi-
ment.

[0038] FIG. 21A illustrates an example order to refine the
depth estimation of pixels of an image, according to one
embodiment.

[0039] FIG. 21B illustrates an example pixel with propos-
als from neighboring pixels, according to one embodiment.
[0040] FIG. 22A illustrates an example reference image
with a reprojected overlap image overlaid, according to one
embodiment.

[0041] FIG. 22B illustrates an example reference image
with an applied depth map, according to one embodiment.
[0042] FIG. 23 is a flowchart illustrating an example
process for determining a depth estimate for a set of images
based on an image pyramid.

[0043] FIG. 24 is a flowchart illustrating an example
process for refining the depth estimate of an image, accord-
ing to one embodiment.

[0044] FIG. 25 is a flowchart illustrating an example
process for maintaining consistency between depth esti-
mates, according to one embodiment.

[0045] FIG. 26 illustrates an example process for filtering
a depth map based on a guide, according to one embodiment.
[0046] FIG. 27A illustrates an example process for train-
ing a set of transforms to filter a depth estimate, according
to one embodiment.

[0047] FIG. 278 illustrates an example process for using
a set of transforms to filter a depth estimate, according to one
embodiment.
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[0048] FIG. 28 illustrates an example environment in
which a scene is rendered from a set of depth surfaces.
[0049] FIG. 29 is an illustration of a render view com-
prising a rendered depth surface, according to one embodi-
ment.

[0050] FIG. 30 is an illustration of a render view com-
prising a set of blended rendered depth surfaces, according
to one embodiment.

[0051] FIG. 31A illustrates an example depth surface with
discontinuities around an obstructing object, according to
one embodiment.

[0052] FIG. 31B illustrates an example depth surface with
discontinuity correction, according to one embodiment.
[0053] FIG. 31C illustrates an example sectioned depth
surface, according to one embodiment.

[0054] FIG. 32A illustrates an example situation in which
a sectioned depth surface is rendered from a different angle,
according to one embodiment.

[0055] FIG. 32B illustrates an example situation in which
an extended sectioned depth surface is rendered from a
different angle, according to one embodiment.

[0056] FIG. 33 illustrates rendering a triangle for a render
view using an equirectangular projection, according to one
embodiment.

[0057] FIG. 34 is a flowchart outlining an example process
for generating a render view based on a set of depth surfaces,
according to one embodiment.

[0058] The figures depict various embodiments of the
present invention for purposes of illustration only. One
skilled in the art will readily recognize from the following
discussion that alternative embodiments of the structures
and methods illustrated herein may be employed without
departing from the principles of the invention described
herein.

DETAILED DESCRIPTION

System Architecture and Design

[0059] To effectively capture images of an environment
for rendering views, an image capture system obtains
images from a number of cameras that are positioned and
oriented to increase the number of cameras having a view of
any particular location in the environment. That is, an image
capture system may be designed to increase the minimum
number of cameras that may capture information about any
given environment around the image capture system.

[0060] FIG. 1 illustrates an example image capture sys-
tem, according to one embodiment. An image capture sys-
tem can be used to, for example, capture multiple images of
a scene (for example, a physical environment in which an
image capture system is located) from different viewpoints
(from each camera’s position) that can be processed to be
later presented to a user via a head mounted display or other
stereoscopic viewing display, and in some cases for presen-
tation on a monoscopic display or other suitable system. For
example, the captured images from an image capture system
100 can be used to generate a virtual reality version of a
scene, to render a 360 degree images of a scene from one or
more points of view, or to generate any other suitable view
of a scene. Image content captured by an image capture
system 100 can be associated into image sets comprising a
simultaneously (or substantially simultaneously) captured
image or video frame from each camera of the image capture
system 100. In some embodiments, the images captured by
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the image capture system 100 captures images of the envi-
ronment in a full panoramic, 360-degree view of the scene
in which it is located. The image capture system 100 of FIG.
1 includes a plurality of cameras 110 mounted to the image
capture system body 115 of the image capture system. Each
camera captures a field of view (“FOV”) representing the
portion of the environment captured by the sensor of the
camera. By analyzing the images from each camera, pan-
oramic views of the environment may be generated for the
environment.

[0061] Each camera 110 can be a still or video camera
capable of capturing image data about the scene through an
image sensor of the camera. Each camera 110 can have a
defined or variable angle of view (“AOV”), for example
based on a lens of the camera 110. An angle of view
represents the angle through which the lens of a camera 110
can direct light into the image sensor of the camera 110
capture image data, therefore determining how wide or
narrow the field of view of the camera 110 is. For example
a camera 110 can have a wide angle lens with a high AOV
(for example a fisheye lens), alternatively a camera can have
a telephoto lens with a comparatively low AOV. In some
embodiments, each camera 110 is similar or identical, for
example having an identical focal length to each other
camera 110. In other embodiments, different cameras 110
can vary, comprising different lenses, sensors, or focal
lengths from other cameras 110 of the image capture system
100, for example a camera pointed vertically can be distinct
from the other cameras 110 of the image capture system 100.
In some embodiments, the cameras of the image capture
system 100 are globally synchronized to capture images
and/or video at the same time, for example using a global
shutter to improve performance for capturing fast moving
objects. The cameras 110, according to the embodiment of
FIG. 1, are supported and positioned by the image capture
system body 115.

[0062] When designing an image capture system 100 the
position and orientation of the cameras 110 can be deter-
mined to maximize the field of view coverage of the
environment by the cameras 110. The positioning of the
cameras in the image capture system body 115 describes the
location of a cameras with respect to the image capture
system body 115, while an orientation of a camera describes
the rotation of the camera and affects the portion of the
environment viewed by the camera. Similarly, the lens
characteristics of a camera can describe the AOV of the
camera, centering of the lens on the image sensor, and the
distance of the lens plane from the image sensor of the
camera 110. A “camera configuration” can collectively
describe the position, orientation, and lens characteristics of
a camera 110, enabling the determination of the FOV of the
camera. Similarly, the configuration of the image capture
system includes configurations for each camera 110.

[0063] According to some embodiments, optimal camera
positions for the image capture system 100 are determined
to “evenly” distribute the cameras in the image camera
system body 115. This positioning may be determined by
modeling the positions of the cameras as having a cost or
“energy” reflecting the closeness of the cameras to one
another. For a camera close to other cameras, this camera
may have a relatively high cost or energy, suggesting the
camera should be moved to reduce the energy. In some
implementations, camera positions for the image capture
system 100 are determined by modeling each camera in a
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Thomson problem for the system. The Thomson problem
can be solved to determine the optimal positioning of a given
number of cameras 110 around a spherical body. The Thom-
son problem can be solved by assigning each camera 110 an
energy inversely proportional to the pairwise distances
between that camera 110 and each other camera 110 in the
image capture system 100. Then the energy of the entire
system can be minimized (for example, iteratively using a
non-linear solver), resulting in the optimal camera positions
for the image capture system 100. Then, the camera orien-
tations can be determined to maximize the image coverage
of the surrounding environment.

[0064] FIG. 2 illustrates the useable image area of a
camera sensor, according to one embodiment. The environ-
ment of FIG. 2 comprises an image sensor 210 of a camera
110, a lens image 220 projected on the image sensor 210 by
light passing through the lens, and a corresponding useable
image area 230 of the image sensor 210 where the lens
image 220 intersects with the image sensor 210. In some
embodiments, a lens of a camera 110 casts a lens image onto
the image sensor 210, allowing the image sensor 210 to
capture images for use in the image capture system 100.
[0065] An image sensor 210 captures light on a series of
pixels of the image sensor 210 in a raw image format from
which an image can be generated. For example, the image
sensor 210 of FIG. 2 comprises a rectangular grid of pixels
able to capture light from a lens image 220 projected onto
the image sensor 210. In some implementations the lens
image 220 projected by a lens of a camera 110 does not
precisely align with the image sensor 210. The area of the
image sensor 210 on which the lens image 220 is projected
can be referred to as the useable image area 230. However,
in some embodiments, such as the embodiment of FIG. 2,
the useable image area 230 does not extend to the entire
image sensor 210. Therefore, some pixels of the image
sensor 210 outside of the useable image area 230 do not
carry useful image data. In some embodiments, the raw
image is cropped to remove unusable sections of image, but
in other embodiments, the full raw image can be used.
Similarly, a lens image 220 can exhibit progressive distor-
tion near its edges (for example caused by limitations in the
design or manufacture of the lens itself), and therefore the
quality and usability of the raw image data captured by the
image sensor 210 can degrade towards the edges of the
image sensor 210 and lens image 220.

[0066] When determining the field of view (and therefore
coverage area) of a given camera 110 (for example based on
the camera configuration of the camera 110), the degradation
of image quality and therefore coverage towards the edges
of the raw images captured from the image sensor can be
accounted for by applying an image coverage gradient to an
expected captured image. Even where the image quality
does not degrade, or does not degrade significantly, an image
coverage gradient may be applied to permit orientation of
the camera to partially effect calculated coverage of a pixel.
As discussed below, this may improve differentiation of the
coverage function for a camera and improve a solver (e.g.,
a non-linear solver) calculating how changes in orientation
affect the view of points in the environment.

[0067] FIG. 3A illustrates the estimated coverage area of
an image, according to one embodiment. The example
captured image 310 of FIG. 3A comprises full coverage area
320 which slowly degrades through a partial coverage area
325 to a no coverage area 330. According to some embodi-
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ments, the estimated coverage of a captured image 310 can
be set to reflect the (typically) degrading quality of the image
towards the edges of the captured image 310. Similarly, FI1G.
3B is a graph illustrating an example camera coverage
function for a camera, according to one embodiment. The
graph of camera coverage function 350 of FIG. 3B com-
prises a full coverage area 320 which slowly tapers off
towards the edges of the frame. In some implementations, a
sigmoid curve is used to model the camera coverage func-
tion for a camera 110 of the image capture system 100.
[0068] To compare different possible camera orientations,
a coverage scoring function can be generated to score
camera orientation configurations, where a camera orienta-
tion configuration comprises the orientation of each camera
110 of the image capture system 100. A coverage scoring
function is a measure of the camera coverage of the envi-
ronment by an image capture system with a given configu-
ration. According to some embodiments, the field of view
(that is, the portion of a scene that would be visible in an
image captured from a camera 110) for each camera 110 of
the image capture system 100 can be estimated from the
camera orientation configuration. This field of view may be
determined with respect to a set of test points in the
environment, which may be evenly distributed or generated
to have some random perturbations. The test points having
random perturbations may be generated randomly or semi-
randomly as discussed below.

[0069] To calculate the coverage scoring function for a
given camera orientation configuration, the configuration
can be evaluated with respect to the set of test points and
scored based on the amount and quality of coverage of the
test points of the set. Based on the results of the coverage
scoring function, the camera orientation configuration can
be iteratively adjusted until an optimal camera orientation
configuration is determined from the prior camera orienta-
tion configuration.

[0070] FIG. 4A illustrates an example randomized set of
test points, according to one embodiment. In some imple-
mentations, a random or semi-random set of test points is
employed to avoid iterative improvements overfitting the
camera configuration to the specific set of test points. The set
of randomized test points can be re-generated between
iterations to avoid overfitting, according to some embodi-
ments. The test point set 400 of FIG. 4A comprises a
plurality of test points 410 distributed around a spherical
shell. In some embodiments, each test point set 400 com-
prises approximately 3000 test points 410. To generate a set
of semi-random test points, first a set of random points are
generated. Each test point 410 is assigned an energy based
on its proximity to other test points. For example, the energy
of each test point in one embodiment is inversely propor-
tional to the distance from that test point to nearby test
points. The highest energy test points, that is, the test points
most closely clustered with its neighbors can then be elimi-
nated and replaced with new random test points until the
maximum energy of any test point 410 is reduced below a
threshold level, or based on any other suitable criteria being
met. In one example, several test points are eliminated at
once, for example test points that exceed the threshold level.
[0071] FIG. 4B illustrates an example evenly distributed
set of test points, according to one embodiment. A spherical
Fibonacci lattice distribution (or Fibonacci spiral distribu-
tion) is an example of an evenly-distributed set of test points.
The Fibonacci lattice set 450 of FIG. 4B comprises a
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plurality of Fibonacci lattice points evenly distributed in a
Fibonacci lattice. In some embodiments, the evenly-distrib-
uted test points, such as a Fibonacci lattice set, is used in an
evaluation of a camera orientation configuration. In other
embodiments, various other mathematically-generated or
evenly-distributed points are used.

[0072] FIG. 5 is a graph illustrating an example coverage
scoring function for a given set of test points, according to
one embodiment. The graph 500 of FIG. 5 plots an example
coverage scoring function 520 score 505 over different
possible camera configuration 510. The coverage scoring
function has a plurality of local maxima 530 and is a
complicated, possibly nonlinear function. The graph 500 is
an abstraction of a general coverage scoring function rep-
resenting orientation configurations of the cameras 110 in a
large number of various possible orientations. Thus, in some
embodiments, a similar graph to accurately represent the
degrees of freedom of the configurations would include
many more dimensions, or be otherwise difficult to generate.
[0073] In some embodiments, the coverage scoring func-
tion 520 is determined to measure and maximize the mini-
mum coverage of cameras for any given test point. That is,
for the test points, the coverage scoring function 520 may
measure the minimum number of cameras viewing any
given test point. For a given camera orientation configura-
tion and test point set, each test point of the test point set can
be evaluated for coverage by determining if that test point
would be visible in an estimated image from each camera
110 and where in the estimated captured image 310 that test
point would fall (i.e. the estimated coverage 350 of that point
in the image ranging from 1-0), according to some imple-
mentations. The camera coverage functions 350 as shown in
FIG. 3 and discussed above may thus be used to score the
value of the view of a test point from a given camera, and
may prefer a view of a test point that is more central to a
camera. In addition, the camera coverage function 350 may
improve the ability of a nonlinear solver (or other suitable
solving method) to evaluate and improve the camera orien-
tations by providing differentiable coverage functions for the
test points with respect to changes in camera orientation.
[0074] In some embodiments, the estimated coverage for
each camera for a test point can be summed, resulting in a
coverage number for each test point representing the number
of cameras 110 in which the test point is in the camera’s
FOV. In some implementations, the coverage number is then
rounded down to the nearest integer and the minimum
coverage number in the test point set is selected as the result
of'the coverage scoring function for the test point set, though
the coverage numbers can also be averaged or otherwise
weighted according to other embodiments. In some embodi-
ments, a decimal is appended to the rounded coverage
numbers to provide a secondary score representing the
percentage of test points having greater than the minimum
coverage number. For example, a coverage scoring function
of 3.75 can represent a minimum coverage of 3, i.e. at least
3 cameras 110 can see any given test point, with 75% of test
points having a coverage greater than 3. The second score
may also improve performance of the nonlinear solver (or
other suitable iterative optimization method) by providing a
means to evaluate an orientation’s partial coverage towards
the next highest number of minimum cameras viewing all
test points.

[0075] According to some implementations, multiple
camera orientation configurations are simultaneously gen-
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erated and iteratively improved, as the coverage scoring
function 520 for a given system can generally be assumed to
have multiple local maxima 530. Starting with several
disparate (for example, randomly generated) camera orien-
tation configurations can allow the optimization process to
be optimize camera orientation configurations to different
local maxima 530 of the coverage scoring function 520, out
of which the most efficient camera orientation configuration
can be chosen (that is, the configuration at the “best” local
maxima). To optimize the coverage scoring function for a
given initialization, any suitable method, for example a
nonlinear solver, can be used. Thus, in this example the
nonlinear solver may optimize the orientation configuration
of the cameras jointly using the camera coverage function
350 reflecting the quality (or centrality) of the coverage of
a test point for a camera 110 and to optimize the scoring
function that maximizes the minimum number of cameras
viewing the test points (e.g., the coverage scoring function
520).

[0076] FIG. 6 is a flowchart illustrating an example pro-
cess for selecting camera position and orientation according
to one embodiment. The process 600 begins by determining
610 camera positions to optimize the distance between
cameras, for example by solving the Thomson problem for
the desired number of cameras in the image capture system.
Then, a set of test points are generated 620 against which to
evaluate the coverage of the camera orientation configura-
tion. For example, the test points can be generated semi-
randomly, randomly, or optimally (for example, using a
Fibonacci lattice set). Next, a set of camera orientation
configuration are initialized (generated 630) and scored 640
with respect to the generated test point set. For example,
each camera orientation configuration can be evaluated
based on a coverage scoring function accounting for the
minimum number of cameras in which any given test point
will be visible in. The configurations are optimized 650 to
improve the scoring for each camera orientation configura-
tion, for example, based on the coverage scoring function.
This optimization may use a nonlinear solver as discussed
above. Once each configuration is optimized 660, the final
camera orientation configurations are evaluated 670 using
the coverage scoring function based on an evenly-distributed
test point set, such as a Fibonacci lattice set. The highest-
scoring camera orientation configuration can then be
selected 680 based on the evenly- distributed test point set
and used to design and manufacture the image capture
system 100. Based on the determined camera positions and
orientations, the image capture system 100 can be manu-
factured.

Image Processing System Overview

[0077] When cameras are positioned and oriented, the
camera system may capture images for use in rendering
views of an environment. To do so, the camera system may
calibrate the manufactured cameras, process images cap-
tured from the cameras, determine depth maps associated
with the captured images, and use the depth maps in
rendering views of the environment.

[0078] A depth map describes the estimated depth of the
pixels in an image. In captured images, there may be many
different objects at different locations in the image, such as
nearby objects, distant objects, and objects in between. The
depth map may specify a depth for each individual pixel of
the image, or may provide a depth estimate for groups or
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blocks of pixels in the image (for example, when the depth
map is lower resolution than the associated image). Typi-
cally, depth may be stored inversely to the depth distance,
such that distances in the far distance (approaching infinity)
are stored as values approaching 0. For example, the depth
may be stored as 1/d, such that a distance of 50 m is stored
as 1/50 or 0.02, and a distance of 1 km is stored as 1/1000.
This provides a large range of values for close depths which
may be more important to distinguish.

[0079] FIG. 7 is a block diagram illustrating an example
computing environment in which an image capture system
operates. The environment of FIG. 7 comprises an image
capture system 100 and an image processing system 710
connected by a network 720.

[0080] The image capture system 100 can be any suitable
image capture system capable of capturing images of a scene
to be processed and combined. According to some embodi-
ments, the image capture system 100 is connected to an
image processing system over the network 720, and can
receive instructions (for example, instructions to capture or
transmit previously captured images), and transmit informa-
tion (such as raw or processed image data and/or metadata)
to the image processing system 710 over the network 720.
For example, as described above, an image capture system
100 can be used to, for example, capture images to render a
version of a captured scene, or to render a 360 degree image
of'a scene. In other embodiments, the image capture system
100 can be any suitable system to capture images of a scene.
[0081] The network 720 can be any suitable network or
communication method. For example, the network 720 can
be any suitable wired or network, and can be a local area
network (LAN), wide area network (WAN), the Internet, or
any other suitable network.

[0082] Inthe embodiment of FIG. 7, the image processing
system 710 can be any suitable computing device capable of
receiving and processing image data from the image capture
system 100. For example, the image processing system 710
can be a laptop, desktop, mobile device, server, server group,
or other suitable computing device. The image processing
system 710 receives captured images from the image capture
system 100, processes the received images, calculate depth
maps for the processed images, and render output images
from specific viewpoints to represent the scene based on the
received images and the calculated depth maps (herein, a
viewpoint represents a specific field of view, position, posi-
tion and orientation of a camera or rendered image). For
example, a final image can be any image depicting a scene
so that the scene can be recreated in virtual reality or
otherwise displayed to the user, for example a panoramic,
spherical panoramic, or suitably wide angle image designed
to be viewed through a head mounted display. The output
image can be in cubemap, equirectangular, or cylindrical
formats in resolutions such as “8K” (for example 8192 by
8192 pixels). In addition, multiple views may be generated,
such that one view is generated for each display correspond-
ing to each eye of the user.

[0083] Inthe embodiment of FIG. 7, the image processing
system 710 comprises a calibration module 712, processing
module 714, depth calculation module 716, and rendering
module 718. In some embodiments, the image processing
system 710 or certain functionality of the image processing
system 710 is integrated into the image capture system 100.
[0084] The calibration module 712 determines the posi-
tion and orientation of the cameras 110 of the image capture
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system 100 to calibrate the actual position and orientation of
the cameras as-manufactured compared to the intended
positon and orientation of the cameras as designed. The
functionality of the calibration module 712 is discussed
further below. Based on the calibration, the processing
module 714 processes raw images received from the image
capture system 100 to prepare the images for depth map
calculation. For example, the processing module 714 can
process raw image data received from the image capture
system 100 into a processed and filtered RGB image (such
as using a joint bilateral filter to reduce noise in the image).
The depth calculation module 716 receives an image set of
simultaneously captured images or synchronized video and
calculate a depth map for each image of the image set or
frame of video. The depth calculation module 716 is dis-
cussed in further detail below.

[0085] Finally, the rendering module 718 renders image
sets or synchronized video (in some implementations with
associated depth maps) into output images and or video for
a user to view. The process for rendering an output image is
discussed further below. In some implementations, the func-
tionality of the rendering module 718 can be performed in
real time or substantially in real time, and/or at a client
device (such as at a head mounted display rendering the
view) separate from the image processing system 110.

[0086] FIG. 8 is a flowchart illustrating an example pro-
cess for capturing and using content in an image capture
system, according to one embodiment. The process of FIG.
8 begins after calibration of the image capture system, for
example, as described below. The image capture system
captures raw image content from the surrounding environ-
ment and sends the raw image content to the image pro-
cessing system, where it is received 810 and stored. For
example, the raw image content can be in the form of image
sets in a raw image format (i.e. unprocessed or minimally
processed data from the image sensors of the cameras 110 of
the image capture system 100). The raw image content is
then filtered 820 at the image processing system, for
example for de-noising purposes, by a median filter,
weighted median filter, bilateral filter, joint bilateral filter, or
any other suitable edge aware filter. For example, image
content and/or depth maps can be filtered using a joint
bilateral filter with any suitable guide image. Similarly, one
or more of the filters may have a time dependency, for
example a joint bilateral filter with a 3D kernel requiring
image data from adjacent frames of the image content. Then
the image processing system converts 830 the filtered raw
image content into standard image content. For example,
standard image content can be a RGB raster image in a
standard compressed or uncompressed image format, such
as bmp, png, tiff, or any other suitable format. Next, the
standard image content 840 is filtered, for example for
de-noising purposes, by any suitable filter, and depth maps
are generated 850 for each image of the standard image
content. The process for generating a depth map based on
image content is discussed in detail below. The generated
depth maps can then be filtered 860, for example for
de-noising purposes or to maintain the consistency of depth
maps across multiple images. Finally, final image content is
rendered 870 based on the depth maps and the processed
image content. The process for rendering final image content
will be discussed in greater detail below.

[0087] In some embodiments, the image processing sys-
tem 710 processes and manages a large amount of data,
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including uncompressed raw image data, and stores the data
in memory to be able to efficiently generate and filter depth
maps and/or render final image content. Therefore, in some
implementations, the image processing system 710 uses a
“mark and sweep” system of memory management when
processing and storing image content from the image cap-
ture system 100. For example, mark and sweep methods can
be used when depth maps for many successive frames (each
with an associated image set from the image capture system
100) need to be generated sequentially or when filters with
a large time dependency (requiring image data from many
successive frames) are used.

[0088] FIG. 9 is a flowchart illustrating an example pro-
cess for storing and rendering image capture system content,
according to one embodiment. The process of FIG. 9 begins
when a frame is selected for a depth map calculation 910, for
example, the first frame of a video clip captured by the
image capture system to be rendered. Then, the image
processing system 710 checks for components required for
the depth calculation and makes a recursive call 920 to
retrieve the end product of the depth calculation (for
example, the filtered depth map). If the subject of the
recursive call is not found, the process generates the subject,
issuing further recursive calls for any component parts of the
subject. For example, if the filtered depth map is not found,
a recursive call is issued for the depth map, and when the
depth map is returned, the filtered depth map is generated.
Similarly, if the depth map is not found, recursive calls can
be issued for the filtered images from several previous and
future frames to generate the depth maps for the current
frame (the additional time dependency may be cause by
time-dependent filters used to generate the depth maps
1050). In some implementations, each recursive call
“marks” or flags 930 any of the calculated components
stored in memory. Other implementations mark 930 used
components after the depth calculation (for example based
on the current frame or any other suitable criteria). Finally,
any unmarked (i.e. unused) components still stored in
memory are “swept” or deleted 940 from memory and marks
are reset. The process continues for the next frame in
sequence if all frames are not completed 950. In some
implementations, depth map calculations for a sequence of
frames can be split between multiple image processing
systems 710. To ensure temporal consistency between depth
estimates calculated between the different image processing
systems 710, information about additional buffer frames
based on the total time dependency of the pipeline are
required (that is, if an image processing system were to
calculate the frames 0-50 of a sequence using a pipeline with
a time dependency of 5, the image processing system may
receive and use information for the frames 0-55 to calculate
the needed section). In some embodiments, depth maps are
calculated for the buffer frames (and potentially discarded),
but in other embodiments information for the buffer frames
is received and used at the image processing system 710
without calculating a depth map for the buffer frames.

[0089] FIG. 10A illustrates example memory management
state, according to one embodiment. The environment 1000
of FIG. 10A shows the state of memory after the calculation
of a filtered depth map 1060 for frame 4. In the state 1000
the filtered depth map 1060 for frame 4, the depth map 1050
for frame 4, the filtered images 1040 for frames 4-6, etc.
were required to calculate the filtered depth map 1060 and
are therefore marked. During the following sweep step, each
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component stored in memory is found to be marked, and
therefore all components stored in memory are retained,
albeit with no marks. For example each recursive call can
operate based on a similar process; a recursive call may first
determine a set of precursor components needed to generate
the subject component and check to if each precursor
component is already in memory. Any precursor compo-
nents already in memory are marked, and additional recur-
sive calls are made to generate or retrieve any missing
components. Then the subject of the recursive call can be
generated based on the precursor components, and the
recursive call returns (for example, to a parent recursive
call).

[0090] Moving to the next frame of calculation, FIG. 10B
illustrates a second example memory management state,
according to one embodiment. The environment 1005 of
FIG. 10B shows the state of memory after the calculation of
a filtered depth map 1060 for frame 5 (immediately after the
calculation of the filtered depth map for frame 4 as depicted
in FIG. 10A). In the new state 1005 the filtered depth map
1060 for frame 5, the depth map 1050 for frame 5, the
filtered images 1040 for frames 5-7, etc. were required to
calculate the filtered depth map 1060 for the new frame 5
and are therefore marked by virtue of that use. However, in
this state 1005 several components used in the calculation
for frame 4 were unused and remain unmarked, for example
the filtered raw images 1020 for frame 2. During the
following sweep step, each unmarked component stored in
memory is removed from memory (though, in some embodi-
ments, retained in long term storage) and the remaining
(marked) components stored are retained in memory, albeit
with no marks. In other embodiments, any suitable marking
scheme can be used.

Image Capture System Calibration

[0091] Calibrating an image capture system 100 refers to
determining the actual physical positions, orientations, and
lens characteristics of the cameras 110 of a physical image
capture system 100. ISE calibration is based on the expected
configuration of the ICS as it was designed. However, in
some implementations, small differences between image
capture systems 100 (for example, due to manufacturing
tolerances) mean that calibration is necessary to determine
the correct positions and orientations of the cameras 110.

[0092] FIG. 11 is a block diagram illustrating an example
computing environment in which in which an image capture
system is calibrated, according to one embodiment. The
environment 1100 FIG. 11 comprises an image capture
system 100 capable of capturing images, a calibration device
1110 to calibrate the image capture system 100, and a
network 1120 connecting the calibration device 1110 to the
image capture system 100. The image capture system 100
can be any suitable image capture system comprising mul-
tiple cameras with an expected position and/or orientation.
For example, the image capture system 100 can be an image
capture system such as the image capture system illustrated
in FIG. 1 and associated description. The network 1120 can
be any suitable network, for example the network 720
described above. According to some embodiments, the cali-
bration system 1110 can be any suitable device, for example
an image processing system 710 comprising a calibration
module 712, or a separate suitable computing device. Thus,
the calibration performed by the calibration device 1110 may
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also or alternatively be performed by the calibration module
712 of the image processing system 710.

[0093] According to some embodiments, calibration of the
image capture system 100 can occur based on a calibration
set comprising single calibration images captured simulta-
neously from each camera 110 of the image capture system
100, for example of a scene in which the image capture
system 100 is located. Using the calibration set and an initial
calibration derived from the expected (but not necessary
actual) position and orientation of each camera 110 the
calibration device 1110 can determine the actual position
and orientation of each camera 110 in the image capture
system 100 and describe the position and orientation of the
cameras using a set of calibration parameters for the cam-
eras. FIG. 12 illustrates an example scene captured from two
overlapping cameras of an image capture system, according
to one embodiment. The environment of FIG. 12 comprises
two cameras 1210 and 1220 with an overlapping field of
view 1230 and calibration images 1212 and 1222 captured
from the cameras with a corresponding overlapping area
1232. For example, the expected overlap between two
cameras 1210 and 1220 can be determined based on the field
of view of the two cameras according to the current cali-
bration. In some embodiments, each of the cameras 1210
and 1220 are cameras of the image capture system 100 and
are oriented such that the field of view of camera 1 1210
overlaps 1230 with the field of view of camera 2 1220; i.e.
an object can be positioned in a scene such that the object
will be captured in simultaneously captured images from
both camera 1 1210 and camera 2 1220. Similarly, the
calibration images 1212 and 1222 can be simultaneously
captured calibration images from camera 1 1210 and camera
2 1220, respectively. In some embodiments, the expected
overlapping area 1232 can correspond to the overlapping
field of view 1230 of the cameras 1210 and 1220.

[0094] To calibrate an image capture system based 100 on
a calibration set the calibration device 1110 can first attempt
to identify objects visible in multiple images of the calibra-
tion set by identifying and matching feature points in
common between images. FIG. 13A illustrates example
matched feature points between two images of an example
scene, according to one embodiment. The environment 1300
of FIG. 13A comprises calibration images 1310 and 1320
expected to overlap at the expected overlapping arca 1340,
where each calibration image 1310 and 1320 is associated
with a set of feature points, 1312-1318 and 1322-1328
respectively, and a set of feature matches 1332-1338.

[0095] Initial identification of matching feature points
across the images of the calibration set can occur by any
suitable method. According to some implementations, a
feature matching algorithm, for example COLMAP, ORB,
or any another suitable feature matching algorithm, can be
used to generate an initial feature set. In some implemen-
tations, for example implementations using COLMAP to
generate the initial feature set, initial feature identification
operates over the entire calibration set, independent of the
current calibration of the image capture system 100. For
example, the feature matching algorithm can determine and
return a set of pairwise features (that is, features matching
between two images of the calibration set), even for cali-
bration images associated with cameras not expected to
overlap based on the expected calibration of the image
capture system 100. Initial feature identification can return
a numbered list of features (each associated with a coordi-
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nate point in the calibration image) for each calibration
image of the calibration set as well as a list of feature
matches between images of the calibration set. FIG. 13B
illustrates an example list of matching feature points,
according to one embodiment. The table 1350 of FIG. 13B
comprises feature matches between the feature points 1312
and 1322, 1314 and 1324, 1316 and 1326, and 1318 and
1328.

[0096] According to some implementations, the initial
feature set can comprise many false positive (or seemingly
false positive) features, for example matching features
between calibration images not expected to overlap based on
the initial calibration or matching features in regions of
calibration images not expected to overlap, even if other
areas of those calibration images are expected to overlap.
Therefore, each initial feature match can be compared to the
expected overlapping areas of each calibration image. If the
initial feature match falls outside of an appropriate overlap-
ping area, that feature match can be discarded. As discussed
above, expected overlap can be calculated based on the
current calibration information of the image capture system
100 (for example based on current knowledge of the posi-
tion, orientation, and lens characteristics of each camera
110). For example, an initial feature match between the
calibration image 1310 and the calibration image 1320 of
FIG. 13A would be discarded if either feature of the match
was outside of the expected overlapping area 1340. Based on
current knowledge of the image capture system 100 cali-
bration, this step can reduce false positive matches. Thus,
the set of feature matches after removing “impossible”
matches can be determined (hereinafter, the “possible match
set”).

[0097] Next, each remaining feature match of the possible
match set can be triangulated to associate the feature match
with a specific position in 3D space. For example, a feature
match can be triangulated by calculating an estimated point
in 3D space based on the location of the feature point in the
view and the location of calibration of the cameras in which
the point appears. For example, the 3D point may be
triangulated from rays originating at the camera in a direc-
tion based on the camera calibration and the position of the
feature in the image. FIG. 14A illustrates an example
triangulation based on two triangulation rays, according to
one embodiment. The environment 1400 of FIG. 14A com-
prises two triangulation rays 1405 originating from the 3D
ray origins 1410 which are estimated to pass in close
proximity at the closest points 1415, resulting in the esti-
mated 3D feature location at 1420. FIG. 14B illustrates an
example triangulation based on multiple triangulation rays,
according to one embodiment and is discussed further
below.

[0098] To triangulate a feature match, first a triangulation
ray 1405 is calculated for each feature in the feature match.
For example, the feature points 1318 in calibration image
1310 and 1328 in calibration image 1320 are matched in the
example of FIG. 13. Therefore, a triangulation ray 1405 is
calculated for each of the feature points 1318 and 1328. The
origin point 1410 of each triangulation ray 1410 is calcu-
lated based on the position (i.e. the known position accord-
ing to the current calibration of the image capture system
100) of the associated camera 110. For example the 3D ray
origin of the triangulation ray 1405 associated with the
feature point 1318 can be based on the position of camera 1
1210 (camera 1 1210 is assumed to have captured the
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calibration image 1 1310). In some implementations the 3D
ray origin is simply set to an origin point of the appropriate
camera, but embodiments can also take into account the
position on the image sensor where the pixel associated with
the feature point is located.

[0099] After the ray origin 1410 is determined, the direc-
tion of each triangulation ray can be determined based on the
location of the feature point within the calibration image.
Each pixel in a calibration image captured by a camera 110
can represent a ray of light passing through the lens of the
camera 110 and striking the image sensor of the camera 110
in a location corresponding to that pixel. Based on known
information about the camera 110 (i.e. the known position,
orientation, and lens characteristics of the camera 110
according to the current calibration of the image capture
system 100) this ray can be calculated and reversed to
become a triangulation ray pointing from the relevant image
sensor location towards the point in 3D space assumed to
have generated that ray.

[0100] Once the triangulation rays 1405 corresponding to
each feature point of the feature map are calculated the
points can be triangulated. Ideally, all the triangulation rays
1405 for the feature map would intersect at the precise 3D
location of the feature 1420, in practice, however, this is
unlikely to occur even if the feature match does represent an
accurate match for the same feature visible across multiple
calibration images. For example, rounding error, errors in
the calibration of the image capture system 100 (for
example, an error in the actual orientation of a camera 110
can skew the direction of a triangulation ray 1405 associated
with that camera), or other minor errors cause triangulation
rays 1405 not to perfectly intersect. In addition the feature
match may not be a true match, i.e. the feature match can be
between similar-looking areas of separate objects (for
example a match between two distinct but similar looking
blades of grass) or due to a bug or oversight in the generation
of the initial feature set. Therefore, the “closest” location
between the triangulation rays 1405 can be calculated to
determine the estimated 3D feature location 1420. In some
embodiments the estimated 3D feature location 1420 is
simply the average of the closest points 1415 on each
triangulation ray 1405, but any suitable triangulation method
can be used.

[0101] For example, a calibration module 712 can trian-
gulate an estimated 3D position by first solving a system

d —> s
comprised of equations of the form py/t,+dy~x/t, for each
triangulation ray 1405 where 1;:, is the known vector ray

e
origin position for the nth triangulation vector, d, is the
known unit vector of the direction of the nth triangulation
ray 1405, t,, is unknown the (scalar) approximate distance of

the estimated 3D position along the triangulation ray, and X
is the unknown estimated 3D position for the triangulation.

In some implementations, minimizing the error of ?/tn
introduces a bias towards further away estimated 3D posi-
tions (i.e. solutions with a greater depth are preferred to
maintain consistency between the depth estimates for across
different images). In some implementations, to solve the
system of equations each t,, is assumed equal to each other
t,,, due to the relatively close proximity of cameras in image
capture system 100, setting each t,, equal provides a good
initial assumption. After the system of equations is solved to
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find an estimated X, a nonlinear solver (or other suitable
optimization method) can be used to iteratively optimize the
estimated solution. In some implementations, each t,, is now
allowed to float (and is no longer assumed equal to each
other t,).

[0102] After a 3D location for each feature match of the
possible match set is calculated, for example by triangulat-
ing each feature match, the reprojection error of each feature
match can be calculated. In this context, the reprojection of
a feature match refers to the expected location within a
calibration image that a feature at the 3D location of the
feature match would be located. According to some embodi-
ments, reprojection error is based on the difference between
the expected and actual location (represented by the feature)
of the feature. This reprojection error may be used as an
estimate to show the likely errors in the calibration, and as
discussed below, when the reprojection error for a matching
feature point significantly differs from other matching
points, it suggests the point may actually not be a strong
match and may not be considered for analyzing further
calibration.

[0103] FIGS. 15A and 15B illustrate example reprojec-
tions and reprojection errors between feature points and
reprojected points, according to one embodiment. The cali-
bration image 1500 of FIG. 15A comprises a feature point
1505, a reprojected point 1510, and a reprojection error
1515, as well as a trace reprojected point 1520 and a trace
reprojection error which are discussed below.

[0104] Inthe example of FIG. 15A, the feature point 1505
is associated with a feature match which has been triangu-
lated to a 3D location in space. Based on the current
calibration of the image capture system 100 (in this case,
current knowledge about the position, orientation, and lens
characteristics of the relevant camera 110), the estimated
position of the 3D location within the calibration image
1500 can be determined. This estimated position is the
reprojection point 1510. In some embodiments, a ray is
generated from the triangulated 3D location to the image
sensor of the relevant camera 110 to determine the repro-
jection point, but any suitable technique can be used. For
example, a reprojection point can be determined based on
knowledge of the lens characteristics and field of view of the
cameras 110, such as by associating pixels of the calibration
image with defined ranges of angles from the centerline of
the camera 110. In some embodiments, it is unlikely that the
reprojection point 1510 and the original feature point 1505
will be the same, therefore a reprojection error 1515 between
the reprojection point 1510 and the feature point 1505 can be
calculated using any suitable error calculation method. For
example, the squared error between the feature point 1505
and the reprojection point 1510 can be used. This process
can be repeated for to calculate the reprojection error for
each other feature of the feature match. In some embodi-
ments, the final reprojection error is the sum of the squared
errors of each feature of the feature match. Reprojection
error can also be calculated with respect to a trace repro-
jection point 1520 as described above.

[0105] Based on calculated reprojection errors, the pos-
sible match set can be further refined. In some embodiments,
feature matches with greater than a threshold reprojection
error are discarded. The threshold reprojection error can be
fixed or predetermined, or generated based on statistics of
the possible match set such as thresholds set based on
multiples of the average or median reprojection error. In
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some embodiments, a threshold reprojection error can be
determined separately for feature matches between the same
images. For example, the median reprojection error for the
set of feature matches between two given images is deter-
mined and feature matches of the set with a reprojection
error of greater than five times the median reprojection error
between the two matches are discarded. Based on this
process, unreasonable (or outlier) feature matches are dis-
carded from the set of feature matches resulting in a “rea-
sonable match set” of pairwise feature matches.

[0106] The pairwise feature matches of the reasonable
match set can now be assigned into “traces” or feature
matches comprising 2 or more feature points. FIG. 16 is a
graph illustrating an example trace, according to one
embodiment. The graph 1600 is a plot of features of five
cameras comprising the feature matches 1610-1650 and an
assumed feature match 1660. Each feature match 1610-1650
represents an example pairwise feature match of a reason-
able match set. For example, the feature match 1610 repre-
sents a match between feature 3 of camera 1 and feature 1
of camera 3 and the feature match 1650 represents a match
between feature 7 of camera 4 and feature 4 of camera 5.
Based a trace generation algorithm, the calibration device
1110 can determine that the feature matches 1610-1650 are
interconnected and form a trace. In some embodiments, the
calibration device 1110 then generates assumed feature
matches, even when those matches were not present in the
initial feature set, based on the feature matches of the trace.
For example, the assumed feature match 1660 can be
generated based on both feature 5 of camera 2 and feature 7
of camera 4 being included in the same trace.

[0107] To determine a trace, the calibration device 1110
can use a trace generation algorithm to sequentially evaluate
each pairwise feature match to assign the associated features
to a trace or use any other suitable method to determine
traces. For example, a trace generation algorithm can deter-
mine if neither feature of the pairwise feature match is
assigned to a trace, both features are assigned to a new trace,
if one feature of the pairwise feature match is already
assigned to a trace, the remaining feature is assigned to the
same trace, and if both features of the pairwise feature match
are already assigned to different traces, the traces are com-
bined.

[0108] In some embodiments, the reasonable match set
can be used to determine a “trace set” using the trace
generation algorithm. Each trace of the trace set can then be
triangulated using the process described earlier to determine
a 3D location for the trace. FIG. 14B illustrates an example
triangulation based on multiple triangulation rays, according
to one embodiment. The environment 1450 of FIG. 14B
comprises several triangulation rays 1455 originating from
the 3D ray origins 1460 which are estimated to pass in close
proximity at the closest points 1465, resulting in the esti-
mated 3D trace location at 1470. The process for triangu-
lating a trace can be similar to the described process for
triangulating two rays, with the addition of several more
triangulation rays 1455. Now the 3D trace location 1470 can
be reprojected into each of the relevant cameras and new
reprojection error for each feature match of the reasonable
match set can be calculated using the 3D trace location. In
the example of FIG. 15A this is represented by the trace
reprojection point 1520 and the trace reprojection error
1525.
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[0109] Based on calculated trace reprojection errors, the
reasonable match set can be further refined as described
above. For example, the median trace reprojection error
between each pair of two images for the reasonable match
set can be determined and feature matches with a trace
reprojection error of greater than five times the median trace
reprojection error between their two images are discarded.
Based on this process, additional feature matches can be
discarded from the set of feature matches resulting in a
“refined reasonable match set” of pairwise feature matches.
In some implementations, if a feature match of a trace is
discarded, the entire trace (for example, including all feature
matches associated with the trace) is discarded.

[0110] According to some implementations, the trace gen-
eration algorithm is then applied to the refined reasonable
match set to generate a “refined trace set.” The refined trace
set can comprise more or different traces based on the
removal of pairwise matches from the reasonable match set.
Therefore, removing matches can have the effect of “split-
ting” traces i.e. separating a trace into separate traces in the
refined trace set. The altered trace assignments of the refined
trace set can alter or improve the reprojection error of
affected feature matches. For example, the revised trace
reprojection error 1565 is much less than the trace repro-
jection error 1525, which can be the result of assignment of
the associated feature to a new or modified trace.

[0111] In some embodiments, the resulting “refined trace
set” is used to iteratively optimize the calibration of the
image capture system 100. For example, a standard nonlin-
ear solver (or other suitable optimization method) can be
used to minimize the reprojection error for matches of the
refined trace set by adjusting various parameters of the
calibration. The revised calibration is then used to initialize
a new iteration of the optimization, starting from the initial
feature set, according to some embodiments. In some
embodiments, the calibration parameters to be optimized
include camera orientation, camera position, and various
lens corrections such as lens distortion, lens centering, and
lens image scale. In some embodiments, each iteration
additionally includes the triangulated positions of each trace
or match of the refined trace set to aid the nonlinear solver
in converging to a satisfactory solution for the iteration. The
parameters the nonlinear solver optimizes over can vary
based on the iteration of the calibration process, for
example, in the first iteration of the calibration process the
nonlinear solver of the first iteration can optimize over fewer
parameters (such as the parameters assumed to have the
largest variance) than the later iterations, which can intro-
duce more granular parameters. For example, the first itera-
tion of the calibration process can optimize camera orien-
tation only, the second can optimize camera orientation and
position, and the third (and further iterations) can optimize
camera orientation, camera position, and lens corrections.
Similarly, iterations can optimize parameters in a fixed
pattern, or in any other suitable order. In some implemen-
tations, certain parameters can be changed on a per-camera
basis (such as camera position and orientation), while others
(such as lens distortion) can be globally used for all cameras
at once or for a set of cameras at once (such as all cameras
of'the image capture system 100 using the same lens design).
[0112] In some implementations, a predetermined number
of iterations of the calibration process occur, for example 10
iterations. In each iteration of the calibration process, the set
of initial feature matches is refined based on the updated
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calibration of the image capture system 100 and a new or
different refined trace set can result, according to some
embodiments. In other embodiments, iterations of the cali-
bration process occur until the final change in calibration
parameters is less than a threshold amount, or until any other
suitable condition is met.

[0113] FIG. 17 is a flowchart illustrating an example
process for calibrating an image capture system, according
to one embodiment. The process of FIG. 17 begins when a
calibration set of calibration images are captured 1710 at the
image capture system and received by the calibration device
1110. Then, an initial feature set is generated by identifying
1720 and matching 1730 feature points between the cali-
bration images of the calibration set. The camera calibration
parameters are initialized 1730 to provide an initial calibra-
tion of the image capture system. Then the calibration is
iteratively revised 1750 based on the initial calibration and
initial feature set. Finally the optimized calibration is
applied 1760 to the image capture system and stored.
[0114] FIG. 18 is a flowchart illustrating an example
calibration process for iteratively improving the calibration
of an image capture system, according to one embodiment.
The process of FIG. 18 begins when the initial camera
calibration and the initial feature set of pairwise matches are
received 1810, 1820. Then the initial feature set can be
refined 1830 based on expected overlap between the cali-
bration images to generate the possible match set. Next, 3D
positions for each match of the possible match set can be
triangulated 1840, and the possible match set can be refined
based on the projection error of each match, forming the
reasonable match set. Traces are then identified between
multiple features (comprising multiple matches) are then
identified 1850 forming the trace set. 3D positions for the
traces of the trace set can then be identified by triangulation
1860, and the set of traces is refined based on the reprojec-
tion error for each trace. Finally, the camera calibration can
be iteratively improved 1870 based on the refined trace set.
Further iterations of the calibration process 1880 can be
started from the step 1820, beginning with the original
feature match set but the newly updated calibration param-
eters.

Depth Calculation

[0115] To calculate depth maps for captured images from
the image capture system 700, the depth calculation module
716 of the image processing system 710 can employ a
technique to progressively refine a depth estimate by begin-
ning with a small-resolution image and scaling the depth
estimates to larger-resolution images. The large-to-small
resolution images may be represented as an “image pyra-
mid” that is progressed up in determining the depth esti-
mates.

[0116] FIG. 19 illustrates an example image pyramid,
according to one embodiment. The image pyramid 1900 of
FIG. 19 comprises three successive levels 1910, 1920, and
1930. Each level of the image pyramid 1900 can comprise
the same images in progressively lower resolutions, i.e. the
first level 1910 comprises a set of images and the second
level 1920 includes lower resolution versions of the same set
of images. In the image pyramid 1900, the first level 1910
comprises the images 1912-1916, the second level 1920
comprises lower resolution versions 1922-1926, and the
third level 1930 comprises the lowest resolution images
1932-1936. The image pyramid 1900 has three levels for
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example purposes, but an image pyramid can have any
suitable number of levels, for example 10 or 15 levels.
[0117] The first level 1910 of an image pyramid 1900
comprises the highest resolution images in the image pyra-
mid. For example, the first level 1910 can comprise the input
images captured by the image capture system 100 at full
resolution. In other embodiments, the first level 1910 can
comprise the input images downsampled to a reduced size
(e.g., by a scaling factor) of the original images captured by
the image capture system 100. For example, the first level
1910 can comprise images 25% of the scale of the original
captured images (a scale factor of 0.25), but any suitable
starting scale factor can be used. Starting the image pyramid
at a 0.25 scale factor will result in a depth map at 25% of the
scale of the original input images (i.e. depth for the input
image is calculated in 4x4 pixel blocks).

[0118] To generate a lower level of the image pyramid
1900 the images of the previous level can be downsampled
1940 to generate a lower resolution versions for inclusion in
the lower level of the image pyramid 1900. For example, the
second image 1914 can be downsampled 1940 to become
the low res. second image 1924, which can be further
downsampled to be the lowest res. second image 1934.
According to some implementations, each successively
lower level of an image pyramid 1900 can be at a specific
scale factor of the previous (higher resolution) level, for
example a 0.75 or 0.90 scale factor, where each lower level
is 75% or 90% the size of the previous level. Calculation of
an image pyramid can continue until a threshold number of
levels is reached (for example, 20 levels), or until a lower
resolution level would fall below a threshold resolution in
one dimension (for example 100 pixels). Based on the image
pyramid 1900, depth maps can be calculated for each image,
starting at the lowest resolution level of each image, and
progressively being refined towards the higher resolution
levels of the image pyramid 1900.

[0119] To calculate or refine a depth map for a given image
(hereinafter, the reference image), images with overlapping
field of views to the reference image (hereinafter, overlap
images) can be reprojected to the viewpoint of the reference
image. For example, the process of reprojection can project
the overlap image into space based on the position and
orientation of the camera that captured the overlap image.
Then the projected overlap image can be reprojected to the
viewpoint of the reference camera. The reprojected overlap
images can then be used to calculate or refine the depth map
for the reference image.

[0120] FIG. 20 illustrates an example reprojection of over-
lap images to a reference image, according to one embodi-
ment. The environment of FIG. 20 includes a reference
image 2010, overlap images 2020 and 2030, reprojected
overlap images 2025 and 2035, and reprojected overlap
images 2040 and 2045.

[0121] According to some embodiments, overlap images
such as the overlap images 2020 and 2030 are identified
based on the relative position, orientation, and field of view
of the reference camera (i.e. the camera 110 which captured
the reference image 2010) and the overlap cameras (i.e. the
cameras 110 which captured the overlap images 2020 and
2030). To reproject the overlap images 2020 and 2030, the
overlap images can be projected into 3D space based on an
existing depth map for the overlap images 2020 and 2030 or,
in other embodiments, based on an assumption of the depth
for the overlap images 2020 and 2030. For example, in some
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embodiments, each overlap image 2020 and 2030 is treated
having an infinite distance from the overlap camera. Then,
the overlap image is reprojected 2040 or 2045 based on the
position of the reference camera relative to the overlapping
camera to generate the reprojected overlap images 2025 and
2035. For example, the overlap image 2020 and the refer-
ence image 2010 overlap in the estimated overlapping area
2022. When reprojected, the overlap image 2020 is repro-
jected 2040 to the viewpoint, resulting in the reprojected
overlap image 2025 comprising an approximation the over-
lapping portion of the reference image 2010 using the
estimated overlapping area 2022 of the overlap image 2020.
The reprojected overlap images 2025 and 2035 can be used
both to generate an initial depth map for the reference image
2010 and to refine the depth map of the reference image
2010.

[0122] To begin the depth map refinement process, an
initial depth map is generated for each image of the lowest
resolution level of the image pyramid 1900, according to
some embodiments. In some implementations, depth map
initialization can utilize “brute force” techniques that would
not be practical at higher resolution levels of the image
pyramid 1900, for example due to increased requirements
for storage or computation power when initializing a depth
map for a higher resolution image.

[0123] In some embodiments, depth map initialization for
a given reference image can begin by identifying and
reprojecting all overlap images to the viewpoint of the
reference image. To evaluate a potential depth for a pixel in
the reference image 2210, the possible depth value is applied
to the reference image to determine the corresponding pixel
in the reprojected overlapping image. As discussed below,
the pixel of the reference image is compared to the corre-
sponding pixel in the reprojected overlapping image based
on a cost function that may incorporate a variety of factors
that assess the likely accuracy of the correspondence of the
reference image pixel to the overlapping image.

[0124] To initiate the depth map at the lowest resolution of
the image pyramid, the cost may be evaluated for each
possible corresponding pixel in an overlapping image. For
example, the cost may be determined based on candidate
depths that designate each possible pixel in the overlapping
image as a corresponding pixel. As an alternative, the
possible depth may be incremented, for example by constant
increments of 1/d, to identify candidate corresponding pixels
in the overlapping image. Since the lowest level of the image
pyramid may have a relatively small resolution, such as
100x100, this may be performed without extensive compu-
tational time. Using the calculated costs, a depth estimate
may be set for the pixel in the reference image that had the
lowest calculated cost.

[0125] In some embodiments, the depth calculation mod-
ule 716 begins calculating depth maps for a set of images by
generating an image pyramid 1900. Then, initial depth maps
are generated for each image of the lowest resolution version
of'the image pyramid 1900. Based on the initial depth maps,
the depth calculation module 716 then begins to refine the
initial depth estimates for each image of the image pyramid
1900. In some embodiments, the depth calculation module
716 upscales the initial depth estimates to the resolution of
the next layer of the image pyramid 1900 to further refine
each depth map. In some implementations, each depth map
is then checked for consistency with the other depth maps of
the same level of the image pyramid. For example, the depth
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maps of each overlapping view can be reprojected to the
reference camera viewpoint and the reprojected depth esti-
mates can be compared to the current depth estimates (for
example, using a cost functions as discussed below), then
the lowest cost depth estimate can be adopted.

[0126] To refine a calculated depth map for a given
reference image, the depth calculation module 716 can
proceed sequentially through the pixels of the reference
image in a defined order, refining the depth estimate for each
pixel. FIG. 21A illustrates an example order to refine the
depth estimation of pixels of an image, according to one
embodiment. The depth map 2100 of FIG. 21A comprises a
plurality of pixels including the example pixel 2110, the first
refined pixel 2120, and the last refined pixel 2125 which are
evaluated sequentially based on the traversal order 2130.
According to some implementations, the depth map 2100 is
associated with a corresponding reference image in an image
pyramid 1900, where each pixel of the depth map 2100
holds a depth estimate (for example in 1/d format) for the
corresponding pixel of the reference image. In the example
of FIG. 21A, the pixels of the depth map 2100 are refined
based on the traversal order 2130, starting in the upper left
with the first refined pixel 2120 and proceeding right and
down, ending at the last refined pixel 2125. According to
some embodiments, after each pixel of the depth map 2100
is evaluated according to the traversal order 2130, the depth
map 2100 can be further refined in reverse traversal order,
i.e. progressing left and up from the last refined pixel 2125
to the first refined pixel 2120. Refining the depth map 2100
both in traversal order 2130 and reverse traversal order can
allow improvements in the depth map 2100 to propagate
through the entire depth map 2100.

[0127] To refine the depth estimate for a given pixel of a
depth map 2100, for example the example pixel 2110, the
depth calculation module 216 can first consider proposals
from neighbors of the example pixel 2110. FIG. 21B illus-
trates an example pixel with proposals from neighboring
pixels, according to one embodiment. FIG. 21B comprises
an example pixel 2110 and the left and upper neighbors 2150
and 2155 of the example pixel 2110. In some implementa-
tion, proposals are taken from neighbors of the example
pixel 2110 which have already evaluated in the traversal
order 2130, in this case the left neighbor 2150 and the upper
neighbor 2155 as those pixels have already been evaluated
in prior to the example pixel 2110. Similarly, when evalu-
ating in reverse traversal order, proposals from the lower and
right neighbors can be considered. In some embodiments,
other suitable proposals are also considered, such as random
permutations of the current depth estimate for the example
pixel 2110, or any other suitable proposal.

[0128] After the depth proposals are identified for the
example pixel 2110 (for example, the set of depth proposals
can include the current depth estimate as well as depth
estimates from appropriate neighbors of the example pixel
2110) each depth proposal can be evaluated based on a cost
function to determine the best proposal, i.e. the proposal
with the lowest cost as measured by the cost function. The
lowest cost proposal is then adopted as the depth estimate for
the example pixel 2110 and the depth estimate is further
refined by performing one step of a gradient descent process
for the current pixel based on the gradient of the cost
function. Any suitable method of gradient descent can be
used, however in some implementations, only one gradient
descent step (or any other suitable limited number of gra-
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dient descent steps) is performed. Limiting the rate of
convergence of the depth map by performing only one step
of gradient descent for each pixel of the depth map 2100
each time it is evaluated can reduce unnecessary computa-
tions, as the depth estimate will converge across levels of the
image pyramid, and based on refinements in the depth map
of the neighboring pixels, which can be taken as proposals
to the current depth estimate.

[0129] After each pixel of the depth map 2100 is refined,
for example according to both the traversal order 2130 and
the reverse traversal order, the depth map 2100 can be
filtered using a median filter, a joint bilateral filter, or any
other suitable type of filter to blur the depth estimates. The
filter may be edge-or time-aware and such filtering is
discussed in further detail below. After the depth map 2100
has been refined and filtered, the depth calculation module
716 progresses to the next (higher resolution) level of the
image pyramid 1900 and upscales the depth map 2100 to
serve as an initial depth map for the corresponding reference
image of the next level of the image pyramid 1900.

[0130] A cost function, according to some embodiments,
can be any suitable function which takes an input of the
current depth estimate for a pixel of a depth map 2100 and
returns a “cost” or measure of quality of the input depth
estimate. A cost function can have many terms based on the
current depth estimate, and each term can require one or
more additional inputs other than the current depth estimate
such as depth estimates for neighboring pixels of the depth
map 2100, values from the current reference image or
information derived from one or more images or other
datasets specifically calculated to aid in cost function cal-
culation (hereinafter, “features™). Features can include
reprojected overlap images, filtered or processed versions of
the reference image, filtered or processed versions of the
reprojected overlap images, or any other suitable feature,
such as the results of a deep learning model applied to the
current depth map. Features for calculating the cost function
can include, for example, the intensity of the reference
image (i.e. a grayscale or a one channel version of the
reference image), the intensity gradient (or the magnitude of
the intensity gradient) of the reference image, a blurred
reference image, and the intensity, intensity gradient, or
magnitude of the intensity gradient of the reprojected over-
lap images. Appropriate features for depth map evaluation
can be calculated as the image pyramid 1900 is generated,
as needed, or according to some implementations, as the
depth map for each image of the current level of the image
pyramid 1900 is initialized. In some implementations, suit-
able features for cost function evaluation are calculated
based on the image set for the current level of the image
pyramid 1900; i.e. the resolution of calculated features can
match the current resolution of the reference image and
associated depth map 2100.

[0131] In some embodiments, the cost function includes
one or more depth accuracy terms to measure the accuracy
of the current depth estimate based on difference between
the current pixel of the reference image and the correspond-
ing pixel in one or more reprojected overlap images. There-
fore, the depth calculation module 716 can determine the
pixel in each reprojected overlap image which corresponds
to the current pixel based on the current depth estimate. FIG.
22A illustrates an example reference image with a repro-
jected overlap image overlaid, according to one embodi-
ment. The reference image 2210 of FIG. 22A includes a
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reprojected overlap image 2220 overlaid over the reference
image 2210. In some implementations, the overlap image is
reprojected with an infinity depth assumption (i.e. during the
reprojection process the depth of each pixel of the overlap
image is assumed to be infinity), and therefore the repro-
jected overlap image 2220 does not perfectly align with the
reference image 2210, producing a difference 2230 between
the reference and reprojected images. For any objects far in
the distance in the reference image 2210 (i.e. features closer
to infinity depth) the infinity depth assumption reprojection
is relatively accurate, however for other, closer objects, for
example, the person or the tree in the reference image 2210,
there is a marked difference 2230.

[0132] Based on a depth map for the reference image
2210, the depth calculation module 716 can correct for the
differences 2230 between the reference image 2210 and the
reprojected overlap image using a suitable mathematical
process. The depth calculation module 716 can find the
corresponding pixel to each pixel of the reference image (the
difference between a pixel in the reference image 2210 and
the estimated corresponding pixel in a reprojected overlap
image is hereafter referred to as a “depth correction”). The
magnitude of a calculated depth correction can be based on
the relative positions of the reference and overlap cameras,
the current depth estimate, and any other suitable factor. For
example, FIG. 22B illustrates an example reference image
with an applied depth map, according to one embodiment.
The reference image with applied depth map 2250 of FIG.
22B comprises a corrected image 2260 which can be the
reprojected overlap image corrected based on the depth map
of the reference image 2210. In this example, the corre-
sponding pixels in the reprojected overlap image are shifted
by the appropriate depth correction to the location of their
counterparts in the reference image. Based on the correction,
the difference between the overlap and reference images is
much smaller. The remaining difference between the refer-
ence and overlap images can be viewed as a measure of the
accuracy 2270 of the depth map for the reference image
2210.

[0133] Similarly, the depth calculation module 716 can
determine a corresponding pixel in a reprojected overlap
image based on the current depth estimate. Features of the
current pixel in the reference image reference image and the
corresponding pixel in a reprojected overlap image can be
compared to evaluate the accuracy of the depth estimate of
the current pixel.

[0134] One or more depth accuracy terms of the cost
function compare various features (such as intensity, inten-
sity gradient, color values, or the like) of the current pixel in
the reference image to the corresponding pixel in a repro-
jected overlap image, according to some embodiments. In
some embodiments, the cost function comprises multiple
weighted depth accuracy terms, for example one depth
accuracy term for each reprojected overlap image.

[0135] For example, a depth accuracy term associated
with a first reprojected overlap image can comprise RGB
comparison terms of the form cg|Rz—Ry,|F+csllGr—Go, |+
¢5lIBx=-Bo,|I’, where Gy, is the value of the green channel in
the reference image (at the current pixel), G, is the value of
the green channel in the corresponding pixel of the first
reprojected overlap image, and c; is a predetermined
weighting coefficient for the green channel (in this example
similar conventions are followed for the red and blue
channels).
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[0136] Similar terms can be included in the depth accuracy
term for any other desired channel or feature of the reference
image, for example, c|ju,—u,, | and c|[v,—v,,||* can be used
to include optical flow information, in this example stored in
additional channels u and v of each image. Additionally, the
depth accuracy term can include an intensity comparison
term of the form ¢ |[I,-1,,|]* where I represents the intensity
feature, which is a one channel representation of an RGB
image, generated, for example, by a weighted combination
of each color (RGB) channel of the image. In some embodi-
ments, the depth accuracy term includes an intensity gradi-
ent term, cy,|[VIz—VIy, | where VI represents the gradient
of the intensity or the magnitude of the gradient of the
intensity.

[0137] A cost function can also include additional suitable
terms, for example smoothness terms, regularization terms,
and other terms. A smoothness term can be of the form
cd|d-d||* where d represents the current depth estimate and
dj represents a blurred depth estimate (for example, from a
blurred version of the current depth map). Similarly, a
regularization term can be of the form ¢, (1/d) where d
represents the current depth estimate and the regularization
term is weighted to prefer further depth estimates. In some
implementations, a variance weighted regularization term is
used of the form c,., (1/d)/(1+c,var) where var is the
variance of the depth map at the current pixel (computed
using any suitable method). Using variance weighted regu-
larization can improve the temporal stability of the final
depth map over time (i.e. depth maps over time are more
consistent with each other). Additionally, a cost function can
include any other suitable term, such as a term using a
feature map generated from a deep learning model.

[0138] In some implementations, the gradient of the cost
function is also determined, for example to perform gradient
descent steps to refine the depth map. The gradient of the
cost function can be determined from the cost function using
any suitable method.

[0139] FIG. 23 is a flowchart illustrating an example
process for determining a depth estimate for a set of images
based on an image pyramid. The process of FIG. 23 begins
when an image set is received 2305 and the image process-
ing system generates an image pyramid for the image set.
For example, the image set can be a set of simultaneously
captured images (for example, corresponding frames of
simultaneously captured video) for depth calculation. Then,
for the smallest (lowest resolution) level of the image
pyramid, a depth map for each of image of the image set is
initialized 2310 by the image processing system using a
brute force method. The next (higher resolution) level of the
image pyramid is selected 2320 for refinement, and a
reference image from the current level of the image pyramid
is selected 2330. Additionally, any overlap images for the
selected reference image are identified by the image pro-
cessing system. Then the image processing system then can
reproject 2340 the identified set of overlap images and
generate any other features needed to refine the depth
estimates. The previous level depth estimate for the refer-
ence image can then be upscaled 2350 to the resolution of
the current level of the image pyramid and in some embodi-
ments, checked against depth maps for the other images of
the current level. Then, a matching algorithm is used 2360
to refine the depth map for the reference image. Finally, the
depth map is filtered 2370, for example, using a median filter
and a joint bilateral filter. If there are more images 2380 in
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the image set, a new reference image is selected. Otherwise,
the next (higher resolution) level 2390 of the image pyramid
is selected.

[0140] FIG. 24 is a flowchart illustrating an example
process for refining the depth estimate of an image, accord-
ing to one embodiment. The process of FIG. 24, begins when
the depth calculation module of the image processing system
receives 2410 a reference image, a depth map for the
reference image, and calculated features for the reference
image. Then a specific sequential order of pixels in the
reference image is selected 2420. The depth calculation
module can select 2430 the next pixel in the determined
order and evaluate 2440, using a cost function, a set of
proposals, including the current pixel depth estimate a
neighboring pixel depth estimates. Based on the cost of each
proposal, the depth calculation module selects 2450 and
adopts the best proposal as the depth estimate for the current
pixel. The depth estimate is then refined 2460 by performing
one gradient descent step using the gradient of the cost
function and adopting the result as the new depth estimate
for the current pixel. If all pixels are refined 2470, the
process is repeated 2480 in reverse pixel order and the
refined depth map is returned 2490.

[0141] FIG. 25 is a flowchart illustrating an example
process for maintaining consistency between depth esti-
mates, according to one embodiment. The process of FIG.
25 begins when the depth calculation module retrieves 2510
a reference image and upscaled depth maps for the images
of the current image pyramid level including, for example,
depths map for the reference image and one or more overlap
images of the reference image. Then, the depth maps of the
overlapping images are reprojected 2520 to the reference
camera viewpoint. Then a pixel in the current depth map is
selected 2350 and the corresponding depth estimates in the
reprojected overlap depth maps are determined. The depth
calculation module can then evaluate 2540 the current depth
estimate and the reprojected depth estimate using a cost
function. Based on the results of the evaluation, the best
depth estimate (from the current depth estimate and the
reprojected depth estimates) is adopted 2550. If all pixels are
evaluated 2560, the process ends, otherwise a new pixel is
selected for evaluation.

[0142] FIG. 26 illustrates an example process for filtering
a depth map based on a guide, according to one embodiment.
The process of FIG. 26 is an example of a joint bilateral filter
process a depth map 2610 based on a guide image 2620,
although in other embodiments, any suitable joint bilateral
filter can be used. To filter the depth map 2610, each pixel
of the depth map is filtered using a kernel generated for that
pixel of the depth map based on the corresponding pixel of
the guide image 2620 and its surrounding region. For
example, the selected pixel 2615 can be filtered based on a
kernel 2635 generated based on the corresponding pixel
2625 in the guide image 2620. Based on a kernel generation
function 2630 and the corresponding pixel of the guide
image (and the similarities of the surrounding region of the
guide image 2620 to the corresponding pixel 2625), the
kernel 2635 is generated. When the kernel 2635 is applied to
the selected pixel 2615 and the surrounding region in the
depth map 2610, the filtered pixel 2645 of the filtered depth
map is determined. In some embodiments, the kernel 2635
is 3D, i.e. in the case of a time dependent filter.

[0143] For example, the guide image can be any suitable
feature, for example a depth map 2610 can be filtered using



US 2018/0302550 Al

the reference image associated with the depth map 2610,
with an optical flow map of the reference image (or depth
map), with a feature map generated based on applying a
deep learning model to the reference image (or depth map),
or any other suitable guide image 2620 or combination of
guide images 2620.

[0144] FIG. 27A illustrates an example process for train-
ing a set of transforms to filter a depth estimate, according
to one embodiment. In the examples of FIGS. 27A and 27B,
a set of image transforms is used to generate a feature map
of an image to learn an improved guide for a joint bilateral
filter of a depth estimate. The process of FIG. 27 A can begin
when a training image 2710 associated with a previously
known training depth estimate 2715 is received. The training
image 2710 is input into a set of image transforms 2720 to
generate a feature map 2725 for the training image. The
image transforms 2720 may include various modifications
and analyses of an image to generate a map of features for
the joint bilateral filter. The image transforms are trained to
learn the relevant transforms and weights thereof to generate
a feature map 2725 useful to improve a depth estimate. The
set of transforms may include various tensor or matrix
transforms for the image structures that are sequentially
performed to generate the depth guide. These transforms
may include convolutional layers, pooling layers, subsam-
pling, feed-forward, and other image processing or ‘deep
learning’ transforms of the image. The image transforms
may include weights and other learned parameters for per-
forming the transforms from the training image 2710 to the
feature map 2725.

[0145] In some embodiments the feature map 2725 has the
same dimensions as the training image, and can comprise
multiple features associated with each pixel of the input
image (in this case the training image 2710). According to
some implementations, the training depth estimate 2715 is
authoritative for training purposes and assumed to be true.
For example, the training depth estimate can be from labeled
data (i.e., from well-labeled training sets of data having
depth information for images), or generated from a 3D
computer rendering, where the depth for individual pixels
can be precisely calculated in the digital 3D environment.
The training depth estimate 2715 can be perturbed by
random noise 2730 to produce an imperfect noisy depth
estimate 2735 to be filtered by the deep-guided joint bilateral
filter (JBF) 2740. The noisy depth estimate 2735 is filtered
by the deep-guided JBF 2740 using the feature map 2725 as
a guide 2725 to generate the predicted depth estimate 2745.
[0146] By comparing the training depth estimate 2715 to
the predicted depth estimate 2745 (created by the noisy
depth estimate 2735 guided by the transformed training
image), the image transforms can be trained to improve the
similarity of the predicted depth estimates to training (i.e.,
known) training depth estimates. The training may modify
the weights and other parameters of the image transforms
2720. When performed across a range of training images and
comparing the depth estimates across the pixels of the
training images, the image transforms 2720 learn the
weights that improve the filtering of the noisy depth estimate
2735.

[0147] FIG. 278 illustrates an example process for using
a set of transforms to filter a depth estimate, according to one
embodiment. The process of FIG. 27B begins when a
reference image 2750 is input into a set of learned image
transforms 2760 to generate a feature map 2765 for the
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reference image 2750. The learned image transforms 2760
are the image transforms 2720 after the training process of
FIG. 27A determines the appropriate weights and param-
eters for the image transforms. The generated feature map
2765 can be used as a guide to filter the current depth
estimate 2755 using a deep-guided JBF 2770 to generate the
improved depth estimate 2780. In addition to use as a filter,
the improved depth estimate 2780 may also be used as a
component of a cost function for evaluating a depth estimate
as discussed above with respect to the depth map generation.
That is, the cost function may increase when a proposed
depth varies from the value of the improved depth estimate
2780, incentivizing the cost function to confirm with the
improved depth estimate 2780 pixel value but permitting
other factors in the cost function to outweigh the improved
depth estimate when other factors suggest a strong improve-
ment to the depth estimate.

Rendering

[0148] The rendering module 718, according to some
embodiments, processes a received image set of a scene, for
example, an image set captured by the image capture system
100, to generate one or more render views representing the
scene. In some implementations, each image set for render-
ing has an associated set of generated depth maps including
a depth map for each image of the image set. For example,
an image set can be associated with a set of depth maps
generated by the depth calculation module 716 (or from
another suitable source). A render view of a scene can be any
image depicting the scene to a viewer of the render view. For
example, a render view can allow the scene to be recreated
in a head-mounted display (HIVID), for example, through a
panoramic, spherical panoramic, or suitably wide angle
image (such as an image to be displayed as an eye view by
a HIVID). In some implementations, a render view is an
image output in cubemap, equirectangular, or cylindrical
formats in resolutions such as “8K” (for example 8192 by
8192 pixels), or any other suitable resolution. The render
view thus can represent the scene as captured by the image
capture system 100. The rendering module 718 may gener-
ate two (or more) render views based on a given image set
from one or more defined viewpoints; for example, a render
view can be generated from viewpoints for each of a user’s
eyes, thus providing a pair of stereoscopic images for
viewing using a HIVID device. For some output projections,
a sections of a single render view may be rendered from
multiple viewpoints, for example to approximate a user’s
eye view of a scene in a 360 degree panoramic image. In
some implementations, render viewpoints can be associated
with any suitable 3D position, for example, a render view-
point can be selected based on a tracked position of a user’s
head, based on a desired viewpoint of a scene other than a
camera viewpoint, or any other suitable location. In other
embodiments, a render view can be any image generated
from multiple images of the image set by the rendering
module 718. According to some embodiments, depth maps
(or other depth information) for the images of an image set
can allow various depth-based effects to be applied to a
render view. For example, a render view can be split into
multiple images based on depth information, for example, a
separately generated foreground image and background
image each with a defined range of depicted depths (such as
0-30 feet for the foreground image and 30 feet—infinity for
the background image). Similarly, a render view may have
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the background removed (and or replaced with other suitable
image information) based on depth information (possibly in
combination with other techniques), for example rendering
areas of the render view with an associated depth greater
than a threshold depth as white or transparent. Similarly,
render views can have depth-based fog or other virtual
objects inserted into the scene based on the depth informa-
tion.

[0149] To generate a render view, any suitable rendering
method can be used by the rendering module 718, including
ray tracing methods (for example, using a ray marching
algorithm to compute intersections between rays and depth
maps), forward splatting methods, triangle rasterization
methods, or any other suitable rendering methods. Similarly,
the rendering module 718 may utilize hardware acceleration
methods to speed up the process of rendering an image set.
In some embodiments, rendering may occur in realtime or
substantially in realtime based on render views requested
from a client device. For example, the rendering module 718
can receive render viewpoints from a client HMD device
representing stereoscopic views for presentation using the
client HMD device. In response, the client HIVID device
can render a scene from a predetermined image set with
previously calculated depth maps, for example, the next
frame in a synchronized video captured by the image capture
system 100.

[0150] FIG. 28 illustrates an example environment in
which a scene is rendered from a set of depth surfaces. The
environment 2800 of FIG. 28 comprises a plurality of
cameras 2810 each associated with a projected depth surface
2815. A render view can be rendered from the render
viewpoint 2820 based on the projected depth surfaces 2815.
[0151] In some implementations, a depth surface is gen-
erated for each image of the image set to be rendered.
Herein, a depth surface is a 3D surface generated based on
a reference image (such as an image captured by the image
capture system 100), a depth map associated with the
reference image (for example, a depth map generated based
on the reference image by the depth calculated module 716).
In some embodiments, a depth surface is additionally gen-
erated and oriented in 3D space based on camera calibration
information about the camera that captured the reference
image (for example, the position, orientation, and lens
information of the camera). A depth surface can be rendered
as a connected mesh of triangles, where each triangle of the
depth map shares color information with an associated pixel
of the reference image. In some implementations, two
connected triangles are associated with each pixel of the
reference image and the triangles are oriented in 3D space to
approximate the associated pixel when viewed from the
viewpoint of the capturing camera. A depth surface, accord-
ing to some embodiments, can approximate the reference
image projected into space based on the associated depth
map. For example, in the embodiment of FIG. 28, each of
the projected depth surfaces 2815 approximate their asso-
ciated camera 2810. Viewing one of the projected depth
surfaces 2815 from the perspective of the associated camera
2810 would provide an approximation of the reference
image.

[0152] FIG. 29 is an illustration of a render view com-
prising a rendered depth surface, according to one embodi-
ment. The render view 2910 of FIG. 29 comprises a rendered
depth surface 2920 with an occluded area 2925. In the
embodiment of FIG.29, the rendered depth surface 2920 is
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made up of a set of triangles 2930. The rendered depth
surface 2920 is shown as extending outside of the render
view 2910 in FIG. 29, however in some implementations
areas of a depth surface outside the render view would not
be calculated when rendering the depth surface.

[0153] The rendered depth surface 2920, according to this
example, also comprises an occluded area 2925 of the depth
surface which is not visible in the render view 2910. The
occluded area 2925 may be generated because the view from
the camera viewpoint differs from the view from the render
viewpoint. For example, from a capturing camera’s view-
point, the rendered surface may have varying depths, but
because the varying depths generate a three- dimensional
rendered depth surface 2920, from the render viewpoint
portions of the depth surface may appear behind a closer
portion of the depth surface from the perspective of the
render viewpoint. Different rendering methods may handle
an occluded area 2925 differently. For example, the rays of
a ray tracing method may strike the “upper,” non-occluded
area of the depth surface first, therefore the occluded area
2925 is never rendered in the rendered depth surface. In
contrast, “forward splatting” or “triangle rasterization” ren-
dering methods may implement a “z-buffering” technique
where the triangles of the rendered depth surface 2920 are
rendered from furthest to closest, resulting in the occluded
area 2925 being rendered, then covered up by later rendered
triangles.

[0154] FIG. 30 is an illustration of a render view com-
prising a set of blended rendered depth surfaces, according
to one embodiment. As shown in FIG. 30, multiple rendered
depth surfaces may correspond to the render viewpoint. The
render view 3010 of FIG. 30 comprises a first rendered depth
surface 3020 and a second rendered depth surface 3030
which overlap at an overlapping area 3040. Each rendered
depth surface 3020 and 3030 also includes an alpha channel
blending area 3045.

[0155] To generate the final render view 3010 the set of
rendered depth surfaces (here, including the first and second
rendered depth surfaces 3020 and 3030) are overlaid and
combined to generate the render view 3010. In some imple-
mentations, the rendered depth surfaces are combined
together based on an alpha channel associated with each
pixel of the rendered depth surfaces. For example, a ren-
dered depth surface can have an alpha channel blend 3045
around the edge of the rendered depth surface. An alpha
channel blend can gradually reduce the alpha channel of
pixels of a rendered depth surface to 0 based on the distance
from the given pixel to the edge of the rendered depth
surface. In other embodiments, the alpha channel for a pixel
of a rendered depth surface can be scaled from 1 to 0 as a
function of the distance from the center of the rendered
depth surface, resulting in a circle or oval shaped alpha
“cone” for the rendered depth surface. In some implemen-
tations, the alpha channel blend 3045 aids in smoothly
combining overlapping depth surfaces. Similarly, rendered
depth surfaces determined to be farther away in depth from
the render viewpoint of the render view 3010 can be
assigned a lower overall alpha value than other rendered
depth surfaces determined to be closer to the render view-
point, according to some embodiments. Combining the
rendered depth surfaces can, for example, be accomplished
using a weighted average by alpha value, or by any other
suitable method. For example, rendered depth surfaces can
be combined using an equation of the form v=a,v ,+a,v,.
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.. /a;+a, . . . where v is the final value for a pixel of the of
the render view 3010 (in some implementations, v may be
a vector including multiple channels of color information),
Vg, is the value for that pixel from the nth rendered depth
surface (for example, v, represents the value from the first
rendered depth surface 3020), and a, is the alpha channel
value for that pixel in the nth rendered depth surface. In
some implementations, pixels of the nth depth surface that
do not intersect with the nth depth surface are assigned
values a,=0 and v, =0. In other implementations, exponen-
tial or softmax combination functions can be used to com-
bine rendered depth surfaces based on an alpha channel.

[0156] Similarly, an accumulation method can be used to
reduce needed memory and storage space for rendering.
Some implementations use a set of two accumulation
images, the first accumulation image storing a running total
of acc,=a9,vg, +a,vs, . . . for each pixel of the render view
as each successive rendered depth surface is calculated.
Similarly, the second accumulation image can store a run-
ning total of acc,=a, +a, . . . for each pixel of the render view
as each successive rendered depth surface is calculated,
according to some embodiments. For example, after the first
depth surface is calculated acc, can store the value a, v, for
each pixel and acc, can store the value a, for each pixel.
After the second depth surface is rendered, acc, can store the
value a, v, +a,v, for each pixel and acc, can store the value
a, +a, for each pixel, and so on. When all depth surfaces have
been calculated, acc, can be divided by acc, to determine the
final values of the render view 3010.

[0157] In some situations, for example, where a depth
surface is rendered from a viewpoint different in angle from
the camera viewpoint, continuously rendered depth surfaces
(that is, a depth map rendered as a single surface without
separations or breaks) can give a “false depth” resulting
from discontinuities or sharp changes in depth between
pixels in the depth surface. FIG. 31A illustrates an example
depth surface with discontinuities around an obstructing
object, according to one embodiment. The environment of
FIG. 31 A comprises a camera 3105 capturing an image of an
obstructing object 3120 in front of a background object
3125. A depth map is generated based on the image captured
by the camera 3105, which is used to render a depth surface
3150. In this example, the generated depth map is fairly
accurate, as the obstructing object 3120 blocks the camera
3105 view of portions of the background object 3125.
However, the resulting depth surface 3150 includes several
discontinuities or sharp changes in depth estimate where the
reference image transitions between the obstructing object
3120 and the background object. In the embodiment of FIG.
31A, the depth map 3150 is continuously rendered and
therefore the depth surface 3150 is rendered including the
discontinuities.

[0158] When the depth surface 3150 is rendered from a
render viewpoint 3110 at a different angle 3115 than the
camera 3105 viewpoint discrepancies can occur between the
rendering of the depth surface 3150 and the actual scene
comprising the obstructing and background objects 3120
and 3125. For example at the depth surface intersection
3140, the correct rendering point 3130 occurs with a sub-
stantial rendering error 3135 when compared to the actual
scene. In some implementations, even if additional depth
surfaces with the correct rendering point 3130 exist, the
rendered depth surface 3150 would distort the rendering of
that area of the final rendered image.
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[0159] Therefore, a discontinuity correction method can
be applied when generating a depth surface from a depth
map. FIG. 31B illustrates an example depth surface with
discontinuity correction, according to one embodiment. The
environment of FIG. 31B includes the same camera 3105
and scene comprising the obstructing object 3120 and back-
ground object 3125 as FIG. 31A. However, the modified
depth surface 3160 includes low alpha sections 3165 in the
sections of the depth surface 3160 representing discontinui-
ties in the associated depth map. As described earlier, a depth
surface 3160 can be rendered with a corresponding alpha
channel to indicate the quality of the depth surface 3160 at
a given point (or to aid in transitions between different depth
surfaces).

[0160] Inthe embodiment of FIG. 31B, when the modified
depth surface 3160 is rendered from the render viewpoint
3110 (still at a different angle 3115 than the camera 3105
viewpoint) discrepancies still occur between the rendering
of the modified depth surface 3160 and the actual scene
comprising the obstructing and background objects 3120
and 3125. However, in the case of the modified depth surface
3160, the low alpha sections 3165 of the modified depth
surface comprise the areas where the discrepancies will
occur. For example, at the low alpha intersection 3145 the
modified depth surface 3160 is rendered with a low alpha
value. As a result, if an additional depth surface having a
view of the correct rendering point 3130 exists, because the
low alpha section 3165 reduces the alpha blending weight of
the rendered modified depth surface 3160 at that point, the
additional view comparatively has a higher weight to cor-
rectly reflect rendering point 3130.

[0161] In some embodiments, discontinuities in a depth
map can be detected based on the magnitude of the gradient
of the depth map exceeding a threshold value, based on the
difference in depth estimation between a pixel and a neigh-
boring pixel exceeding a threshold value, or any other
suitable method to detect abrupt changes in the depth
estimates of a depth map. Similarly, when a depth surface is
generated for the given depth map, sections or triangles of
the modified depth surface 3160 corresponding to the dis-
continuities can be assigned a low alpha value so as to have
a reduced weight if another depth surface has conflicting
color information for that area of the render view.

[0162] In other embodiments, a depth surface is rendered
as a disconnected series of sections associated, for example,
with a single pixel of the reference image. FIG. 31C illus-
trates an example sectioned depth surface, according to one
embodiment. The environment of FIG. 31C once again
includes the same camera 3105 and scene comprising the
obstructing object 3120 and background object 3125 as
FIGS. 31A and B. However, the environment of FIG. 31C
includes a sectioned depth surface 3170 rendered as a
collection of discrete sections. For example, each section of
the sectioned depth surface 3170 can represent a pixel of the
associated reference image. In some embodiments, each
section of the sectioned depth surface 3170 is rendered
parallel (or near-parallel) to the image sensor of the camera
3105. Similarly, a “billboard” method can be used in which
each section of the sectioned depth surface 3170 is rendered
parallel (or near-parallel) to the image plane of the render
viewpoint 3110. As an example, the near-parallel rendering
may tilt each section towards the render viewpoint by up to
a maximum angle, such as 25 degrees. Rendering a sec-
tioned depth surface 3170 can be relatively expensive in
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terms of number of triangles used in the depth surface, as
each pixel of the depth map can be represented by 2 triangles
in the sectioned depth surface 3170. To reduce the number
of rendered triangles, neighboring sections of the sectioned
depth surface 3170 can be joined or combined together to
form a joined section 3180 based on the neighboring sec-
tions being close in orientation and size.

[0163] Due to the gaps between sections, the sectioned
depth surface 3170 has large spaces between neighboring
sections of the depth surface with large differences in the
depth estimates of the corresponding pixels of the reference
image. Therefore, discontinuities in the depth map are not
rendered in the section depth surface 3170, as the sectioned
depth surface 3170 is not rendered continuously. For
example, where the original depth surface 3175 would
intersect be rendered at the previous intersection point 3145,
instead there is a gap in the sectioned depth surface 3170.
[0164] According to some embodiments, the sectioning of
a sectioned depth surface can result in render view artifacts
when rendered from a viewpoint not aligned with the camera
viewpoint associated with the depth surface. FIG. 32A
illustrates an example situation in which a sectioned depth
surface is rendered from a different angle, according to one
embodiment. In the embodiment of FIG. 32A the sectioned
depth surface 3210 associated with the camera 3205 is
rendered from the render viewpoint 3220. In this example,
the camera 3205 viewpoint (i.e. the natural viewpoint of the
sectioned depth map 3210) is different in angle from the
render viewpoint 3220 and may result in gaps in view
between sections of the sectioned depth surfaces. In this
example, the sectioned depth surface 3210 does not have any
discontinuities or other sharp changes in depth estimations,
and the sectioned depth surface 3210 can be assumed to
represent a continuous depth map of a single object or
surface. The difference in viewpoint between the camera
3205 viewpoint and the render viewpoint 3220 can indicate
that the render view from the render viewpoint 3220 should
be similar to the reference image used to generate the
sectioned depth surface 3210.

[0165] The render viewpoint 3220 is associated with a
series of depth rays 3230. In an implementation using ray
tracing methods to render, the depth rays 3230 can represent
rays used to determine pixels of the render view. As
expected, some of the depth rays 3230 intersect with the
sectioned depth surface 3210, for example at the intersection
point 3245 in this example. However, a set of non-intersect-
ing rays 3240 do not intersect with the sectioned depth
surface 3210, for example resulting in ray tracing rays that
do not intersect the depth surface, resulting in gaps in the
rendered sectioned depth surface 3210, according to some
embodiments.

[0166] To reduce or eliminate gaps between depth surface
sections in such viewing angles, each section of the sec-
tioned depth surface 3210 can be extended with neighbor
color information, according to some embodiments. FIG.
32B illustrates an example situation in which an extended
sectioned depth surface is rendered from a different angle,
according to one embodiment. In the environment of FIG.
32B, the same sectioned depth surface 3210 associated with
the camera 3205 is rendered from the same render viewpoint
3220. However, each section of the sectioned depth surface
3210 has been extended by a predetermined amount, for
example 50% or 25% of the previous width of a section.
Each extended section 3250 comprises the color information
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of the neighboring section with which it overlaps (therefore
maintaining direct view consistency) and can serve as an
additional surface for depth rays 3230 to intersect (or to be
rendered by any other suitable method). In some embodi-
ments, the extended sections 3250 are created by expanding
the triangles already forming each section of the sectioned
depth surface 3210, and thus using no extra triangles for
rendering. Due to the extended sections 3250, the depth rays
3230 continue to intersect with the sectioned depth surface
3210 at the previous intersection points 3245, but also at
additional intersection points 3260. In some implementa-
tions, the use of extended sections 3250 can reduce gaps or
other artifacts present when rendering a sectioned depth
surface 3210 from a slight off angle.

[0167] As mentioned previously, render views can be
generated in any suitable field of view or projection. In some
implementations, an equirectangular projection is used to
generate one or more render views (hereinafter, a render
view using an equirectangular projection will be referred to
as an “equirect view”). In some cases, an equirect view is a
monoscopic 360 degree image of the scene as viewed from
a single origin point (the render viewpoint). However, in
other embodiments, equirect views are used in stereoscopic
pairs (one equirect view for each eye of a user) to generate
a 3D 360 image which can be later displayed using a HIVID
or other suitable viewing device. In a stereoscopic pair, the
viewpoint of a user’s eye when turning in a 360 degree circle
does not remain in a static location, instead the user’s eye
viewpoint moves in a circle with a diameter of the user’s
interpupillary distance (“IPD”) as the user rotates through
360 degrees. Therefore, the process of rendering an equirect
view can be adapted to approximate the correct viewpoint
for a user’s eye at each angle of the equirect view. In
implementations using ray tracing methods for rendering,
the changing viewpoint can be accounted for by altering the
ray origin of each ray appropriately. However, in embodi-
ments using other rendering methods (for example, forward
splatting or triangle rasterization methods) the rendering
process can be adapted to render an equirect view with a
changing viewpoint. For example, each triangle of the depth
surfaces used to render the equirect view can be initially
rendered based on the origin point as normal, but then
shifted to approximate the correct location of that triangle
when viewed from the correct viewpoint for that specific
angle of the equirect view. In some implementations, an
equirect view is rendered using a single viewpoint (for
example, ray tracing methods), but other implementations
(for example, certain forward splatting or triangle rasteriza-
tion implementations) can render a cubemap from a set of
intermediate images (for example, images representing the
top, bottom, and sides of a cube) which are assembled to
approximate the equirect view. According to some embodi-
ments, rendering a cubemap for a equirect view with a
changing viewpoint can be similarly adapted to adjust for
the correct viewpoint.

[0168] FIG. 33 illustrates rendering a triangle for a render
view using an equirectangular projection, according to one
embodiment. The example of FIG. 33 comprises an origin
point 3310 for the equirect view and an IPD circle 3320 with
diameter equal to the IPD 3315 centered on the origin point
3310. In some embodiments, the IPD circle 3320 represents
the set of approximate viewpoints for each angle of the
equirect view. The correct viewpoint for any given angle is
the tangent point 3330 of a tangent line at that angle,
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according to some embodiments. In this case, there are two
possible tangent lines for any given angle 3360; the correct
tangent point 3330 can be determined based on if the left or
right eye viewpoint is desired.

[0169] To render a triangle, for example the initial triangle
3340, the triangle is first rendered as if the viewpoint was the
origin point. Then a tangent line 3335 is drawn from the
location of that triangle (here, the initial triangle location
3342) to the IPD circle 3320. The resulting tangent point
3330 is the approximate viewpoint for this triangle. Then,
the initial triangle is shifted 3350 to approximate the correct
viewpoint. In some embodiments, the initial triangle 3340 is
shifted by an amount equal to half the IPD 3315 in a
direction perpendicular to the tangent line 3335. This shift
3355 can maintain the same angle 3360 between the initial
triangle 3340 and the determined viewpoint (the tangent
point 3330) and between the shifted triangle 3345 and the
origin point 3310. In situations where an opposite side view
is needed, the opposite tangent point to the IPD circle 3320
is chosen. For example, in this example, the opposite would
be roughly opposite the tangent point 3330 and would result
in a shift of the initial triangle 3340 generally upwards.
[0170] FIG. 34 is a flowchart outlining an example process
for generating a render view based on a set of depth surfaces,
according to one embodiment. The process of FIG. 34
begins when a render viewpoint 3410 is selected. The
rendering module can the determine 3415 the set of depth
surfaces needed to generate the desired render view. A depth
surface is then selected 3420 and rendered 3430 from the
render viewpoint by any suitable method. At this point any
alpha values can be applied to the rendered depth surface
3450, or, for example, the rendered depth surface can be
added to an accumulation view based on the alpha values of
the depth surface. If all depth surfaces have been rendered,
all the rendered depth surfaces are combined to form the
final render view 3470, but if additional depth surfaces
remain, the process resumes from the step 3420.

Conclusion

[0171] The foregoing description of the embodiments of
the invention has been presented for the purpose of illus-
tration; it is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Persons skilled in
the relevant art can appreciate that many modifications and
variations are possible in light of the above disclosure.
[0172] Some portions of this description describe the
embodiments of the invention in terms of algorithms and
symbolic representations of operations on information.
These algorithmic descriptions and representations are com-
monly used by those skilled in the data processing arts to
convey the substance of their work effectively to others
skilled in the art. These operations, while described func-
tionally, computationally, or logically, are understood to be
implemented by computer programs or equivalent electrical
circuits, microcode, or the like. Furthermore, it has also
proven convenient at times, to refer to these arrangements of
operations as modules, without loss of generality. The
described operations and their associated modules may be
embodied in software, firmware, hardware, or any combi-
nations thereof.

[0173] Any of the steps, operations, or processes described
herein may be performed or implemented with one or more
hardware or software modules, alone or in combination with
other devices. In one embodiment, a software module is

Oct. 18,2018

implemented with a computer program product comprising
a computer-readable medium containing computer program
code, which can be executed by a computer processor for
performing any or all of the steps, operations, or processes
described.

[0174] Embodiments of the invention may also relate to an
apparatus for performing the operations herein. This appa-
ratus may be specially constructed for the required purposes,
and/or it may comprise a general-purpose computing device
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a non-transitory, tangible computer readable stor-
age medium, or any type of media suitable for storing
electronic instructions, which may be coupled to a computer
system bus. Furthermore, any computing systems referred to
in the specification may include a single processor or may be
architectures employing multiple processor designs for
increased computing capability.

[0175] Embodiments of the invention may also relate to a
product that is produced by a computing process described
herein. Such a product may comprise information resulting
from a computing process, where the information is stored
on a non-transitory, tangible computer readable storage
medium and may include any embodiment of a computer
program product or other data combination described herein.
[0176] Finally, the language used in the specification has
been principally selected for readability and instructional
purposes, and it may not have been selected to delineate or
circumscribe the inventive subject matter. It is therefore
intended that the scope of the invention be limited not by this
detailed description, but rather by any claims that issue on
an application based hereon. Accordingly, the disclosure of
the embodiments of the invention is intended to be illustra-
tive, but not limiting, of the scope of the invention, which is
set forth in the following claims.

What is claimed is:
1. A method comprising:
identifying positioning information for each camera in a
set of cameras, each camera having a position with
respect to an image capture system, an orientation, and
an angle of view;
determining a semi-random set of test points external to
the image capture system;
initializing a plurality of candidate camera orientation
configurations, each camera orientation configuration
comprising an orientation of each of the cameras in the
set of cameras, each orientation determining a field of
view of an environment for the camera based on the
camera angle of view and position;
scoring each of the camera orientation configurations by:
determining, for each test point of the set of test points,
the set of cameras which include the test point in the
camera field of view based on the angle of view,
position, and orientation of each camera in the cam-
era orientation configuration;
calculating, for each of the camera orientation options,
the minimum number of cameras that can view any
given test point of the set of test points based on the
angle of view, position, and orientation of each
camera;
optimizing each of the camera orientation configurations
to maximize the score for each of the camera orienta-
tion options;



US 2018/0302550 Al

evaluating each of the camera orientation configurations
based on a second set of evenly distributed test points;
and

selecting a camera orientation option based on the evalu-

ating.

2. The method of claim 1, wherein the positioning infor-
mation for each camera is generated based on the solution to
a Thomson problem for the set of cameras.

3. The method of claim 1, wherein determining a semi-
random set of test points comprises:

generating a random set of test points;

evaluating the closeness of each test point in the random

set of test points to the other test points of the random
set of test points;

discarding the test points closest to the other test points in

the random set of test points; and

re-generating replacement test points for the discarded

test points.

4. The method of claim 1, wherein optimizing each of the
camera orientation configurations comprises:

modeling the field of view of each camera in the optimi-

zation function as having a differentiable transition
function from a center of the field of view to an the edge
of the field of view.

5. The method of claim 1, wherein optimizing each of the
camera orientation configurations comprises:

evaluating the optimization of a camera orientation con-

figuration based on a secondary score reflecting a
percentage of the set of test points having more than the
calculated minimum number of cameras that can view
the test point.

6. The method of claim 1, wherein the second set of
evenly distributed test points is generated by a mathematical
function.

7. The method of claim 6, wherein the mathematical
function is a Fibonacci spiral.

8. The method of claim 1, further comprising assigning
each camera of the set of cameras a coverage function
modeling the field of view of the camera.

9. The method of claim 8, wherein optimizing each of the
camera orientation configurations to maximize the score for
each of the camera orientation options comprises using an
iterative solving method to maximize the score based on the
coverage functions of each camera of the set of cameras.

10. The method of claim 8, wherein each coverage
function is a differentiable sigmoid function.

11. A non-transitory computer readable storage medium
comprising instructions which, when executed by a proces-
sor, cause the processor to perform the steps of:

identifying positioning information for each camera in a

set of cameras, each camera having a position with
respect to an image capture system, an orientation, and
an angle of view;

determining a semi-random set of test points external to

the image capture system;

initializing a plurality of candidate camera orientation

configurations, each camera orientation configuration
comprising an orientation of each of the cameras in the
set of cameras, each orientation determining a field of
view of an environment for the camera based on the
camera angle of view and position;

scoring each of the camera orientation configurations by:

determining, for each test point of the set of test points,
the set of cameras which include the test point in the
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camera field of view based on the angle of view,
position, and orientation of each camera in the cam-
era orientation configuration;

calculating, for each of the camera orientation options,
the minimum number of cameras that can view any
given test point of the set of test points based on the
angle of view, position, and orientation of each
camera;

optimizing each of the camera orientation configurations

to maximize the score for each of the camera orienta-
tion options;

evaluating each of the camera orientation configurations

based on a second set of evenly distributed test points;
and

selecting a camera orientation option based on the evalu-

ating.

12. The non-transitory computer readable storage medium
method of claim 11, wherein the positioning information for
each camera is generated based on the solution to a Thomson
problem for the set of cameras.

13. The non-transitory computer readable storage medium
method of claim 11, wherein determining a semi-random set
of test points comprises:

generating a random set of test points;

evaluating the closeness of each test point in the random

set of test points to the other test points of the random
set of test points;

discarding the test points closest to the other test points in

the random set of test points; and

re-generating replacement test points for the discarded

test points.

14. The non-transitory computer readable storage medium
method of claim 11, wherein optimizing each of the camera
orientation configurations comprises:

modeling the field of view of each camera in the optimi-

zation function as having a differentiable transition
function from a center of the field of view to an the edge
of the field of view.

15. The non-transitory computer readable storage medium
method of claim 11, wherein optimizing each of the camera
orientation configurations comprises:

evaluating the optimization of a camera orientation con-

figuration based on a secondary score reflecting a
percentage of the set of test points having more than the
calculated minimum number of cameras that can view
the test point.

16. The non-transitory computer readable storage medium
method of claim 11, wherein the second set of evenly
distributed test points is generated by a mathematical func-
tion.

17. The non-transitory computer readable storage medium
method of claim 16, wherein the mathematical function is a
Fibonacci spiral.

18. The non-transitory computer readable storage medium
method of claim 11, further comprising assigning each
camera of the set of cameras a coverage function modeling
the field of view of the camera.

19. The non-transitory computer readable storage medium
method of claim 18, wherein optimizing each of the camera
orientation configurations to maximize the score for each of
the camera orientation options comprises using an iterative
solving method to maximize the score based on the coverage
functions of each camera of the set of cameras.



US 2018/0302550 Al
21

20. The non-transitory computer readable storage medium
method of claim 18, wherein each coverage function is a
differentiable sigmoid function.

#* #* #* #* #*
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