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1
GLOBAL SCALING FOR
GEOMETRY-BASED POINT CLOUD
CODING

This application claims the benefit of U.S. Provisional
Application No. 63/007,288, filed Apr. 8, 2020, U.S. Pro-
visional Application No. 63/010,546, filed Apr. 15, 2020,
U.S. Provisional Application No. 63/013,934, filed Apr. 22,
2020, and U.S. Provisional Application No. 63/041,668,
filed Jun. 19, 2020, the entire contents of each of which are
hereby incorporated by reference.

TECHNICAL FIELD

This disclosure relates to point cloud encoding and decod-
ing.

SUMMARY

In general, this disclosure describes techniques for
improving quantization and scaling of point cloud data. The
techniques of this disclosure may be used in conjunction
with any techniques for compressing (e.g., encoding and
decoding) point cloud data, including geometry-based point
cloud compression (G-PCC) techniques. In particular, points
of a frame may be globally scaled. That is, all points of the
frame may be scaled in the same manner. Scaling, whether
global or local, may be performed in a manner that avoids
causing positions for points from exceeding their corre-
sponding bounding box.

In one example, a method of decoding point cloud data
includes decoding a frame of point cloud data including a
plurality of points, each of the points being associated with
position values defining a respective position of the point;
determining a global scaling factor for the frame; and
scaling the position values of each of the points by the global
scaling factor.

In another example, a device for decoding point cloud
data includes a memory configured to store point cloud data;
and one or more processors implemented in circuitry and
configured to: decode a frame of the point cloud data
including a plurality of points, each of the points being
associated with position values defining a respective posi-
tion of the point; determine a global scaling factor for the
frame; and scale the position values of each of the points by
the global scaling factor.

In another example, a computer-readable storage medium
has stored thereon instructions that, when executed, cause a
processor to: decode a frame of point cloud data including
a plurality of points, each of the points being associated with
position values defining a respective position of the point;
determine a global scaling factor for the frame; and scale the
position values of each of the points by the global scaling
factor.

In another example, a device for decoding point cloud
data, the device comprising: means for decoding a frame of
point cloud data including a plurality of points, each of the
points being associated with position values defining a
respective position of the point; determining a global scaling
factor for the frame; and scaling the position values of each
of the points by the global scaling factor.

In another example, a method of encoding point cloud
data includes encoding a frame of point cloud data including
a plurality of points, each of the points being associated with
position values defining a respective position of the point;
determining an initial global scaling factor for the frame;
determining a number of bits used to specify a refinement
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value to be applied to the initial global scaling factor;
determining a scale factor refinement value having the
number of bits; and generating a bitstream including data
representing the encoded frame, the number of bits used to
specify the refinement value, and the scale factor refinement
value.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example encod-
ing and decoding system that may perform the techniques of
this disclosure.

FIG. 2 is a block diagram illustrating an example Geom-
etry Point Cloud Compression (G-PCC) encoder.

FIG. 3 is a block diagram illustrating an example G-PCC
decoder.

FIG. 4 is a graph illustrating an example step size func-
tion.

FIG. 5 is a flowchart illustrating an example method for
encoding geometry-based point cloud data according to the
techniques of this disclosure.

FIG. 6 is a flowchart illustrating an example method for
decoding geometry-based point cloud data according to the
techniques of this disclosure.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating an example encod-
ing and decoding system 100 that may perform the tech-
niques of this disclosure. The techniques of this disclosure
are generally directed to coding (encoding and/or decoding)
point cloud data, i.e., to support point cloud compression. In
general, point cloud data includes any data for processing a
point cloud. The coding may be effective in compressing
and/or decompressing point cloud data.

As shown in FIG. 1, system 100 includes a source device
102 and a destination device 116. Source device 102 pro-
vides encoded point cloud data to be decoded by a destina-
tion device 116. Particularly, in the example of FIG. 1,
source device 102 provides the point cloud data to destina-
tion device 116 via a computer-readable medium 110.
Source device 102 and destination device 116 may comprise
any of a wide range of devices, including desktop comput-
ers, notebook (i.e., laptop) computers, tablet computers,
set-top boxes, telephone handsets such as smartphones,
televisions, cameras, display devices, digital media players,
video gaming consoles, video streaming devices, terrestrial
or marine vehicles, spacecraft, aircraft, robots, LIDAR
devices, satellites, or the like. In some cases, source device
102 and destination device 116 may be equipped for wireless
communication.

In the example of FIG. 1, source device 102 includes a
data source 104, a memory 106, a G-PCC encoder 200, and
an output interface 108. Destination device 116 includes an
input interface 122, a G-PCC decoder 300, a memory 120,
and a data consumer 118. In accordance with this disclosure,
G-PCC encoder 200 of source device 102 and G-PCC
decoder 300 of destination device 116 may be configured to
apply the techniques of this disclosure related to: (1) deter-
mining whether a scaled point cloud is in violation of a
sequence parameter set (SPS) boundary box constraint; (2)
determining a global scaling factor of a point cloud using a
normative scaling syntax element; (3) determining a scale
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power value based on a syntax element or one or more QP
values; and/or (4) determining a bounding box within a SPS
boundary box. Thus, source device 102 represents an
example of an encoding device, while destination device 116
represents an example of a decoding device. In other
examples, source device 102 and destination device 116 may
include other components or arrangements. For example,
source device 102 may receive data (e.g., point cloud data)
from an internal or external source. Likewise, destination
device 116 may interface with an external data consumer,
rather than include a data consumer in the same device.

System 100 as shown in FIG. 1 is merely one example. In
general, other digital encoding and/or decoding devices may
perform of the techniques of this disclosure related to: (1)
determining whether a scaled point cloud is in violation of
a sequence parameter set (SPS) boundary box constraint; (2)
determining a global scaling factor of a point cloud using a
normative scaling syntax element; (3) determining a scale
power value based on a syntax element or one or more QP
values; and/or (4) determining a bounding box within a SPS
boundary box. Source device 102 and destination device 116
are merely examples of such devices in which source device
102 generates coded data for transmission to destination
device 116. This disclosure refers to a “coding” device as a
device that performs coding (encoding and/or decoding) of
data. Thus, G-PCC encoder 200 and G-PCC decoder 300
represent examples of coding devices, in particular, an
encoder and a decoder, respectively. In some examples,
source device 102 and destination device 116 may operate in
a substantially symmetrical manner such that each of source
device 102 and destination device 116 includes encoding
and decoding components. Hence, system 100 may support
one-way or two-way transmission between source device
102 and destination device 116, e.g., for streaming, play-
back, broadcasting, telephony, navigation, and other appli-
cations.

In general, data source 104 represents a source of data
(i.e., raw, unencoded point cloud data) and may provide a
sequential series of “frames™) of the data to G-PCC encoder
200, which encodes data for the frames. Data source 104 of
source device 102 may include a point cloud capture device,
such as any of a variety of cameras or sensors, e.g., a 3D
scanner or a light detection and ranging (LIDAR) device,
one or more video cameras, an archive containing previ-
ously captured data, and/or a data feed interface to receive
data from a data content provider. Alternatively or addition-
ally, point cloud data may be computer-generated from
scanner, camera, sensor or other data. For example, data
source 104 may generate computer graphics-based data as
the source data, or produce a combination of live data,
archived data, and computer-generated data. In each case,
G-PCC encoder 200 encodes the captured, pre-captured, or
computer-generated data. G-PCC encoder 200 may rear-
range the frames from the received order (sometimes
referred to as “display order”) into a coding order for coding.
G-PCC encoder 200 may generate one or more bitstreams
including encoded data. Source device 102 may then output
the encoded data via output interface 108 onto computer-
readable medium 110 for reception and/or retrieval by, e.g.,
input interface 122 of destination device 116.

Memory 106 of source device 102 and memory 120 of
destination device 116 may represent general purpose
memories. In some examples, memory 106 and memory 120
may store raw data, e.g., raw data from data source 104 and
raw, decoded data from G-PCC decoder 300. Additionally or
alternatively, memory 106 and memory 120 may store
software instructions executable by, e.g., G-PCC encoder
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200 and G-PCC decoder 300, respectively. Although
memory 106 and memory 120 are shown separately from
G-PCC encoder 200 and G-PCC decoder 300 in this
example, it should be understood that G-PCC encoder 200
and G-PCC decoder 300 may also include internal memories
for functionally similar or equivalent purposes. Further-
more, memory 106 and memory 120 may store encoded
data, e.g., output from G-PCC encoder 200 and input to
G-PCC decoder 300. In some examples, portions of memory
106 and memory 120 may be allocated as one or more
buffers, e.g., to store raw, decoded, and/or encoded data. For
instance, memory 106 and memory 120 may store data
representing a point cloud.

Computer-readable medium 110 may represent any type
of medium or device capable of transporting the encoded
data from source device 102 to destination device 116. In
one example, computer-readable medium 110 represents a
communication medium to enable source device 102 to
transmit encoded data directly to destination device 116 in
real-time, e.g., via a radio frequency network or computer-
based network. Output interface 108 may modulate a trans-
mission signal including the encoded data, and input inter-
face 122 may demodulate the received transmission signal,
according to a communication standard, such as a wireless
communication protocol. The communication medium may
comprise any wireless or wired communication medium,
such as a radio frequency (RF) spectrum or one or more
physical transmission lines. The communication medium
may form part of a packet-based network, such as a local
area network, a wide-area network, or a global network such
as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that
may be useful to facilitate communication from source
device 102 to destination device 116.

In some examples, source device 102 may output encoded
data from output interface 108 to storage device 112. Simi-
larly, destination device 116 may access encoded data from
storage device 112 via input interface 122. Storage device
112 may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray
discs, DVDs, CD-ROMs, flash memory, volatile or non-
volatile memory, or any other suitable digital storage media
for storing encoded data.

In some examples, source device 102 may output encoded
data to file server 114 or another intermediate storage device
that may store the encoded data generated by source device
102. Destination device 116 may access stored data from file
server 114 via streaming or download. File server 114 may
be any type of server device capable of storing encoded data
and transmitting that encoded data to the destination device
116. File server 114 may represent a web server (e.g., for a
website), a File Transfer Protocol (FTP) server, a content
delivery network device, or a network attached storage
(NAS) device. Destination device 116 may access encoded
data from file server 114 through any standard data connec-
tion, including an Internet connection. This may include a
wireless channel (e.g., a Wi-Fi connection), a wired con-
nection (e.g., digital subscriber line (DSL), cable modem,
etc.), or a combination of both that is suitable for accessing
encoded data stored on file server 114. File server 114 and
input interface 122 may be configured to operate according
to a streaming transmission protocol, a download transmis-
sion protocol, or a combination thereof.

Output interface 108 and input interface 122 may repre-
sent wireless transmitters/receivers, modems, wired net-
working components (e.g., Ethernet cards), wireless com-
munication components that operate according to any of a
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variety of IEEE 802.11 standards, or other physical compo-
nents. In examples where output interface 108 and input
interface 122 comprise wireless components, output inter-
face 108 and input interface 122 may be configured to
transfer data, such as encoded data, according to a cellular
communication standard, such as 4G, 4G-LTE (Long-Term
Evolution), LTE Advanced, 5G, or the like. In some
examples where output interface 108 comprises a wireless
transmitter, output interface 108 and input interface 122 may
be configured to transfer data, such as encoded data, accord-
ing to other wireless standards, such as an IEEE 802.11
specification, an IEEE 802.15 specification (e.g., ZigBee™),
a Bluetooth™ standard, or the like. In some examples,
source device 102 and/or destination device 116 may include
respective system-on-a-chip (SoC) devices. For example,
source device 102 may include an SoC device to perform the
functionality attributed to G-PCC encoder 200 and/or output
interface 108, and destination device 116 may include an
SoC device to perform the functionality attributed to G-PCC
decoder 300 and/or input interface 122.

The techniques of this disclosure may be applied to
encoding and decoding in support of any of a variety of
applications, such as communication between autonomous
vehicles, communication between scanners, cameras, sen-
sors and processing devices such as local or remote servers,
geographic mapping, or other applications.

Input interface 122 of destination device 116 receives an
encoded bitstream from computer-readable medium 110
(e.g., a communication medium, storage device 112, file
server 114, or the like). The encoded bitstream may include
signaling information defined by G-PCC encoder 200,
which is also used by G-PCC decoder 300, such as syntax
elements having values that describe characteristics and/or
processing of coded units (e.g., slices, pictures, groups of
pictures, sequences, or the like). Data consumer 118 uses the
decoded data. For example, data consumer 118 may use the
decoded data to determine the locations of physical objects.
In some examples, data consumer 118 may comprise a
display to present imagery based on a point cloud.

G-PCC encoder 200 and G-PCC decoder 300 each may be
implemented as any of a variety of suitable encoder and/or
decoder circuitry, such as one or more microprocessors,
digital signal processors (DSPs), application specific inte-
grated circuits (ASICs), field programmable gate arrays
(FPGAs), discrete logic, software, hardware, firmware or
any combinations thereof. When the techniques are imple-
mented partially in software, a device may store instructions
for the software in a suitable, non-transitory computer-
readable medium and execute the instructions in hardware
using one or more processors to perform the techniques of
this disclosure. Each of G-PCC encoder 200 and G-PCC
decoder 300 may be included in one or more encoders or
decoders, either of which may be integrated as part of a
combined encoder/decoder (CODEC) in a respective device.
A device including G-PCC encoder 200 and/or G-PCC
decoder 300 may comprise one or more integrated circuits,
microprocessors, and/or other types of devices.

G-PCC encoder 200 and G-PCC decoder 300 may operate
according to a coding standard, such as video point cloud
compression (V-PCC) standard or a geometry point cloud
compression (G-PCC) standard. This disclosure may gen-
erally refer to coding (e.g., encoding and decoding) of
pictures to include the process of encoding or decoding data.
An encoded bitstream generally includes a series of values
for syntax elements representative of coding decisions (e.g.,
coding modes).
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This disclosure may generally refer to “signaling” certain
information, such as syntax elements. The term “signaling”
may generally refer to the communication of values for
syntax elements and/or other data used to decode encoded
data. That is, G-PCC encoder 200 may signal values for
syntax elements in the bitstream. In general, signaling refers
to generating a value in the bitstream. As noted above,
source device 102 may transport the bitstream to destination
device 116 substantially in real time, or not in real time, such
as might occur when storing syntax elements to storage
device 112 for later retrieval by destination device 116.

ISO/IEC MPEG (JTC 1/SC 29/WG 11) is studying the
potential need for standardization of point cloud coding
technology with a compression capability that significantly
exceeds that of the current approaches and will target to
create the standard. The group is working together on this
exploration activity in a collaborative effort known as the
3-Dimensional Graphics Team (3DG) to evaluate compres-
sion technology designs proposed by their experts in this
area.

Point cloud compression activities are categorized in two
different approaches. The first approach is “Video point
cloud compression” (V-PCC), which segments the 3D
object, and project the segments in multiple 2D planes
(which are represented as “patches” in the 2D frame), which
are further coded by a legacy 2D video codec such as a High
Efficiency Video Coding (HEVC) (ITU-T H.265) codec. The
second approach is “Geometry-based point cloud compres-
sion” (G-PCC), which directly compresses 3D geometry i.e.,
position of a set of points in 3D space, and associated
attribute values (for each point associated with the 3D
geometry). G-PCC addresses the compression of point
clouds in both Category 1 (static point clouds) and Category
3 (dynamically acquired point clouds). A recent draft of the
G-PCC standard is available in G-PCC DIS, ISO/IEC JTC1/
SC29/WG11 w19088, Brussels, Belgium, January 2020, and
a description of the codec is available in G-PCC Codec
Description v6, ISO/IEC JTC1/SC29/WG11 w19091, Brus-
sels, Belgium, January 2020.

A point cloud contains a set of points in a 3D space, and
may have attributes associated with the point. The attributes
may be color information such as R, G, B or Y, Cb, Cr, or
reflectance information, or other attributes. Point clouds may
be captured by a variety of cameras or sensors such as
LIDAR sensors and 3D scanners and may also be computer-
generated. Point cloud data are used in a variety of appli-
cations including, but not limited to, construction (model-
ing), graphics (3D models for visualizing and animation),
and the automotive industry (LIDAR sensors used to help in
navigation).

The 3D space occupied by a point cloud data may be
enclosed by a virtual bounding box. The position of the
points in the bounding box may be represented by a certain
precision; therefore, the positions of one or more points may
be quantized based on the precision. At the smallest level,
the bounding box is split into voxels which are the smallest
unit of space represented by a unit cube. A voxel in the
bounding box may be associated with zero, one, or more
than one point. The bounding box may be split into multiple
cube/cuboid regions, which may be called tiles. Each tile
may be coded into one or more slices. The partitioning of the
bounding box into slices and tiles may be based on number
of points in each partition, or based on other considerations
(e.g., a particular region may be coded as tiles). The slice
regions may be further partitioned using splitting decisions
similar to those in video codecs.
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FIG. 2 is a block diagram illustrating an example set of
components of G-PCC encoder 200. FIG. 3 is a block
diagram illustrating an example set of components of
G-PCC decoder 300. The modules shown are logical, and do
not necessarily correspond one-to-one to implemented code
in the reference implementation of G-PCC codec, i.e.,
TMC13 test model software studied by ISO/IEC MPEG
(JTC 1/SC 29/WG 11).

In both G-PCC encoder 200 and G-PCC decoder 300,
point cloud positions are coded first. Attribute coding
depends on the decoded geometry. In FIG. 2 and FIG. 3, the
gray-shaded modules are options typically used for Category
1 data. Diagonal-crosshatched modules are options typically
used for Category 3 data. All the other modules are common
between Categories 1 and 3.

For Category 3 data, the compressed geometry is typically
represented as an octree from the root all the way down to
a leaf level of individual voxels. For Category 1 data, the
compressed geometry is typically represented by a pruned
octree (i.e., an octree from the root down to a leaf level of
blocks larger than voxels) plus a model that approximates
the surface within each leaf of the pruned octree. In this way,
both Category 1 and 3 data share the octree coding mecha-
nism, while Category 1 data may in addition approximate
the voxels within each leaf with a surface model. The surface
model used is a triangulation comprising 1-10 triangles per
block, resulting in a triangle soup. The Category 1 geometry
codec is therefore known as the Trisoup geometry codec,
while the Category 3 geometry codec is known as the Octree
geometry codec.

At each node of an octree, an occupancy is signaled (when
not inferred) for one or more of its child nodes (up to eight
nodes). Multiple neighborhoods are specified including (a)
nodes that share a face with a current octree node, (b) nodes
that share a face, edge or a vertex with the current octree
node, etc. Within each neighborhood, the occupancy of a
node and/or its children may be used to predict the occu-
pancy of the current node or its children. For points that are
sparsely populated in certain nodes of the octree, the codec
also supports a direct coding mode where the 3D position of
the point is encoded directly. A flag may be signaled to
indicate that a direct mode is signaled. At the lowest level,
the number of points associated with the octree node/leaf
node may also be coded.

Once the geometry is coded, the attributes corresponding
to the geometry points are coded. When there are multiple
attribute points corresponding to one reconstructed/decoded
geometry point, an attribute value may be derived that is
representative of the reconstructed point.

There are three attribute coding methods in G-PCC:
Region Adaptive Hierarchical Transform (RAHT) coding,
interpolation-based hierarchical nearest-neighbour predic-
tion (Predicting Transform), and interpolation-based hierar-
chical nearest-neighbour prediction with an update/lifting
step (Lifting Transform). RAHT and Lifting are typically
used for Category 1 data, while Predicting is typically used
for Category 3 data. However, either method may be used
for any data, and, just like with the geometry codecs in
G-PCC, the attribute coding method used to code the point
cloud is specified in the bitstream.

The coding of the attributes may be conducted in a
level-of-detail (LOD), where with each level of detail a finer
representation of the point cloud attribute may be obtained.
Each level of detail may be specified based on distance
metric from the neighboring nodes or based on a sampling
distance.
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8
At G-PCC encoder 200, the residuals obtained as the
output of the coding methods for the attributes are quantized.
The quantized residuals may be coded using context adap-
tive arithmetic coding.

In the example of FIG. 2, G-PCC encoder 200 may
include a coordinate transform unit 202, a color transform
unit 204, a voxelization unit 206, an attribute transfer unit
208, an octree analysis unit 210, a surface approximation
analysis unit 212, an arithmetic encoding unit 214, a geom-
etry reconstruction unit 216, an RAHT unit 218, a LOD
generation unit 220, a lifting unit 222, a coefficient quanti-
zation unit 224, and an arithmetic encoding unit 226.

As shown in the example of FIG. 2, G-PCC encoder 200
may receive a set of positions and a set of attributes. The
positions may include coordinates of points in a point cloud.
The attributes may include information about points in the
point cloud, such as colors associated with points in the
point cloud.

Coordinate transform unit 202 may apply a transform to
the coordinates of the points to transform the coordinates
from an initial domain to a transform domain. This disclo-
sure may refer to the transformed coordinates as transform
coordinates. Color transform unit 204 may apply a transform
to transform color information of the attributes to a different
domain. For example, color transform unit 204 may trans-
form color information from an RGB color space to a
YCbCr color space.

Furthermore, in the example of FIG. 2, voxelization unit
206 may voxelize the transform coordinates. Voxelization of
the transform coordinates may include quantization and
removing some points of the point cloud. In other words,
multiple points of the point cloud may be subsumed within
a single “voxel,” which may thereafter be treated in some
respects as one point.

According to the techniques of this disclosure, voxeliza-
tion unit 206 may determine a global quantization factor that
may be applied to position values for all points in a frame of
geometry-based point cloud data. In some examples, G-PCC
encoder 200 may explicitly signal data representative of the
global quantization factor (which may also be referred to as
a global scaling factor, in that G-PCC decoder 300 may
perform scaling using this factor). In some examples, posi-
tion values for the points may be expressed at a first, high bit
depth, and voxelization unit 206 may quantize the position
values for the points to a second, lower bit depth. In some
examples, G-PCC encoder 200 may encode data represent-
ing the second bit depth.

Voxelization unit 206 may quantize position values for
points of the frame of geometry-based point cloud data using
a quantization (or scaling) factor having two parts: a first
portion that is a power of two and a second portion that acts
as a refinement value. The refinement value may have a
certain number of bits, and thus, a certain number of
divisions between power of two values. Likewise, G-PCC
encoder 200 may encode data representing the number of
bits for the refinement value. As an example, if there are two
bits for the refinement value, the refinement value may be
one of 0, 1, 2, or 3, and the intervals between powers of 2
may be divided into fourths. The table below represents an
example of quantization/scaling factors and corresponding
powers of two and refinement values:
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Power of two
value

Quantization/

scaling factor Refinement value

1 0(2°=1) 0(2-1)/4*0=0)

1.25 0(2%=1) 1((2-1y4*1=.25)
1.5 0(2°=1) 2(2-1)4*2=.5)
1.75 002%=1) 3(2-1)4*3=.75)
2 0@2'=2) 0((4-2)4*0=0)
2.5 0@2'=2) 1(4-24*1=.5)
3 0R=2) 2(4-2)4%2=1)
3.5 0R'=2) 3((4-2)4%3=15)
4 0(22=4) 0((8 - 4)/4*0=0)
5 0(22=4) 1(8-4)y4*1=1)
6 0(22=4) 2(8-4)4*2=2)
7 0(22=4) 3(8-4)/4*3=3)
N R € [0, 3]

oo (2o
2V + 7 «R

Furthermore, octree analysis unit 210 may generate an
octree based on the voxelized transform coordinates. Addi-
tionally, in the example of FIG. 2, surface approximation
analysis unit 212 may analyze the points to potentially
determine a surface representation of sets of the points.
Arithmetic encoding unit 214 may entropy encode syntax
elements representing the information of the octree and/or
surfaces determined by surface approximation analysis unit
212. G-PCC encoder 200 may output these syntax elements
in a geometry bitstream.

Geometry reconstruction unit 216 may reconstruct trans-
form coordinates of points in the point cloud based on the
octree, data indicating the surfaces determined by surface
approximation analysis unit 212, and/or other information.
The number of transform coordinates reconstructed by
geometry reconstruction unit 216 may be different from the
original number of points of the point cloud because of
voxelization and surface approximation. This disclosure
may refer to the resulting points as reconstructed points.
Attribute transfer unit 208 may transfer attributes of the
original points of the point cloud to reconstructed points of
the point cloud.

Furthermore, RAHT unit 218 may apply RAHT coding to
the attributes of the reconstructed points. Alternatively, or
additionally, LOD generation unit 220 and lifting unit 222
may apply LOD processing and lifting, respectively, to the
attributes of the reconstructed points. RAHT unit 218 and
lifting unit 222 may generate coefficients based on the
attributes. Coeflicient quantization unit 224 may quantize
the coefficients generated by RAHT unit 218 or lifting unit
222. Arithmetic encoding unit 226 may apply arithmetic
coding to syntax elements representing the quantized coet-
ficients. G-PCC encoder 200 may output these syntax ele-
ments in an attribute bitstream.

In the example of FIG. 3, G-PCC decoder 300 includes a
geometry arithmetic decoding unit 302, an attribute arith-
metic decoding unit 304, an octree synthesis unit 306, an
inverse quantization unit 308, a surface approximation syn-
thesis unit 310, a geometry reconstruction unit 312, a RAHT
unit 314, a LOD generation unit 316, an inverse lifting unit
318, an inverse transform coordinate unit 320, and an
inverse transform color unit 322.

G-PCC decoder 300 may obtain a geometry bitstream and
an attribute bitstream. Geometry arithmetic decoding unit
302 of decoder 300 may apply arithmetic decoding (e.g.,
Context-Adaptive Binary Arithmetic Coding (CABAC) or
other type of arithmetic decoding) to syntax elements in the

10

15

20

25

30

35

40

45

50

55

60

65

10

geometry bitstream. Similarly, attribute arithmetic decoding
unit 304 may apply arithmetic decoding to syntax elements
in the attribute bitstream.

Octree synthesis unit 306 may synthesize an octree based
on syntax elements parsed from the geometry bitstream. In
instances where surface approximation is used in the geom-
etry bitstream, surface approximation synthesis unit 310
may determine a surface model based on syntax elements
parsed from the geometry bitstream and based on the octree.

Furthermore, geometry reconstruction unit 312 may per-
form a reconstruction to determine coordinates of points in
a point cloud. Inverse transform coordinate unit 320 may
apply an inverse transform to the reconstructed coordinates
to convert the reconstructed coordinates (positions) of the
points in the point cloud from a transform domain back into
an initial domain.

In accordance with the techniques of this disclosure,
geometry reconstruction unit 312 may scale position values
of points in a frame of geometry-based point cloud data by
a scaling factor. In some examples, geometry reconstruction
unit 312 may scale the position values in a manner that
avoids exceeding the boundaries of a corresponding bound-
ing box. For example, if the scaling would cause one of the
position values to exceed the boundaries of the correspond-
ing bounding box, geometry reconstruction unit 312 may
clip the one of the position values to instead be within the
boundaries of the corresponding bounding box.

In some examples, geometry reconstruction unit 312 may
decode a global scaling factor for a frame of geometry-based
point cloud data. The global scaling factor may have two
components: a power of two component and a refinement
component.

Geometry reconstruction unit 312 may calculate the
global scaling factor to be used to scale position values for
all points of the frame of geometry-based point cloud data
using the power of two component and the refinement
component. In general, conceptually, geometry reconstruc-
tion unit 312 may decode N as an exponent to be applied to
calculate the power of two factor (2V), divide a range
between 2V and 2V+1 by a number of possible refinement
values, multiply the refinement value R (having B bits) by
the value resulting from the division

()

and concatenating the result with the power of two factor. As
discussed above, geometry reconstruction unit 312 may
achieve this calculation according to the following pseudo-
code:
GlobalScaleBase=1<<global_scale_refinement_num_bits
GlobalScaleShift=global_scale_refinement_num_bits
GlobalScaleOffset=GlobalScaleShift ? 1<<(GlobalScale-
Shift-1): 0
GlobalScale=(GlobalScaleBase+global_scale_refine-
ment_factor)<<global_scale_factor_log 2
In particular, as discussed above, G-PCC decoder 300
may decode a logarithmic value portion of a global scale
factor (e.g., global_scale_factor log 2), a value representing
a number of refinement bits (e.g., global_scale_refinement_
num_bits), and a global scale refinement value (e.g.,
global_scale_factor_refinement). G-PCC decoder 300 may
decode these values from a sequence parameter set. Geom-
etry reconstruction unit 312 may then apply these values in
the pseudocode above to calculate the global scale factor.
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Ultimately, geometry reconstruction unit 312 may then
globally scale the position values of the points as discussed
above using the global scale factor.

Additionally, in the example of FIG. 3, inverse quantiza-
tion unit 308 may inverse quantize attribute values. The
attribute values may be based on syntax elements obtained
from the attribute bitstream (e.g., including syntax elements
decoded by attribute arithmetic decoding unit 304).

Depending on how the attribute values are encoded,
RAHT unit 314 may perform RAHT coding to determine,
based on the inverse quantized attribute values, color values
for points of the point cloud. Alternatively, LOD generation
unit 316 and inverse lifting unit 318 may determine color
values for points of the point cloud using a level of detail-
based technique.

Furthermore, in the example of FIG. 3, inverse transform
color unit 322 may apply an inverse color transform to the
color values. The inverse color transform may be an inverse
of a color transform applied by color transform unit 204 of
encoder 200. For example, color transform unit 204 may
transform color information from an RGB color space to a
YCbCr color space. Accordingly, inverse color transform
unit 322 may transform color information from the YCbCr
color space to the RGB color space.

The various units of FIG. 2 and FIG. 3 are illustrated to
assist with understanding the operations performed by
encoder 200 and decoder 300. The units may be imple-
mented as fixed-function circuits, programmable circuits, or
a combination thereof. Fixed-function circuits refer to cir-
cuits that provide particular functionality, and are preset on
the operations that can be performed. Programmable circuits
refer to circuits that can be programmed to perform various
tasks, and provide flexible functionality in the operations
that can be performed. For instance, programmable circuits
may execute software or firmware that cause the program-
mable circuits to operate in the manner defined by instruc-
tions of the software or firmware. Fixed-function circuits
may execute software instructions (e.g., to receive param-
eters or output parameters), but the types of operations that
the fixed-function circuits perform are generally immutable.
In some examples, one or more of the units may be distinct
circuit blocks (fixed-function or programmable), and in
some examples, one or more of the units may be integrated
circuits.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may represent the original point cloud in a
floating point format or at a very high bit depth. The G-PCC
coder may quantize the input point cloud and voxelize the
quantized input point cloud at a certain bit depth, denoted by
voxelization unit 206 of FIG. 2 and inverse quantization unit
308 of FIG. 3, then Quantize and remove points (Voxelize)
block in the G-PCC block diagram (e.g., see FIG. 2). The
G-PCC encoder 200 may apply a quantization at the encoder
in this block for the purpose of voxelization, and a scaling
may be performed at the decoder side mainly for the
mapping of the decoded point cloud (i.e., in voxels unit) in
application specific physical space (i.e., in physical dimen-
sion). A scale value that may be used by the decoder for this
operation is signaled using the syntax elements sps_sourc-
e_scale_factor_numerator_minusl and sps_source_scale_
factor_denominator_minusl. The quantization process
being a pre-processing step (e.g., prior to encoding) and the
scaling process being a post-processing step (e.g., after
decoding) does not impact the overall coding process, e.g.,
they are non-normative in nature.
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sps__source_ scale_ factor numerator__minusl ue(v)
sps__source_scale factor denominator minusl ue(v)

For purposes of this disclosure at the encoder side (e.g.,
G-PCC encoder 200), the point cloud before the non-
normative quantization may be referred to as unquantized
point cloud and the point cloud after the non-normative
quantization may be referred to as the quantized point cloud;
this quantization is not related to the quantization that may
be done by a G-PCC codec. Similarly, the output of G-PCC
decoder 300 is referred to as the quantized point cloud; the
output of any non-normative scaling at the decoder-side is
referred to as unquantized point cloud. The output of G-PCC
decoder 300 may be the result of normative scaling opera-
tions.

Similar to the notion of picture width and height in images
and video, point clouds may have a notion of bounding box
whereby all the points in a point cloud are considered to be
present within a bounding box. In other words, a bounding
box may be defined such that the bounding box includes or
contains all the points in the point cloud.

At the time of capture or generation of a point cloud, a
bounding box may be specified to capture all the points. This
bounding box may be referred to as the source bounding
box. In G-PCC, a SPS bounding box is specified that may be
indicating of the source bounding box. For the purpose of
this disclosure, the SPS bounding box may be referred to as
the source bounding box. The units of describing the source
bounding box are not defined in G-PCC and it is left for the
application to determine these units. The syntax and seman-
tics associated with the SPS bounding box are provided
below.

It is presumed (because this behavior is not defined in the
G-PCC specification) that the output of G-PCC decoder 300
may be scaled using the source scale factor (derived from
sps_source_scale_factor_numerator_minus1 and sps_sourc-
e_scale_factor_denominator_minusl) and the output of this
(non-normative) scaling is contained within the SPS bound-
ing box.

The following table represents an example sequence
parameter set (SPS) including example source bounding box
syntax elements:

Descriptor
seq__parameter_set( ) {
main_ profile_ compatibility flag u(l)
reserved__profile_ compatibility_ 2bits u(22)
[Ed. assign bits from this when there is a profile defined]
unique__point_ positions_ constraint flag u(l)
level__ide u(8)
sps__seq__parameter_ set_ id ue(v)
sps__bounding box_ present flag u(l)
if( sps_bounding box_ present_flag ) {
sps__bounding box_ offset_x se(v)
sps__bounding box_ offset_y se(v)
sps__bounding box_ offset_z se(v)
sps__bounding box_ offset_log2_ scale ue(v)
sps__bounding box_ size_ width ue(v)
sps__bounding box_ size height ue(v)
sps__bounding box_ size_ depth ue(v)
¥
sps__source__scale__factor__numerator__minusl ue(v)
sps__source_scale factor denominator minusl ue(v)
sps__num__attribute__sets ue(v)

for( i = 0; i< sps_num__attribute__sets; i++ ) {
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Semantics for certain syntax clements of the example
source bounding box syntax in the example SPS above may
be defined as follows:
main_profile_compatibility_23bitsflag equal to 1 specifies
that the bitstream conforms to the Main profile. main_pro-
file_compatibility_flag equal to O specifies that the bitstream
conforms to a profile other than the Main profile.
reserved_profile_compatibility_22 shall be equal to 0 in
bitstreams conforming to this version of this Specification.
Other values for reserved_profile_compatibility_22bits are
reserved for future use by ISO/IEC. Decoders shall ignore
the value of reserved_profile_compatibility_2bits.
unique_point_positions_constraint_flag equal to 1 indicates
that in each point cloud frame that refers to the current SPS,
all output points have unique positions. unique_point_posi-
tions_constraint_flag equal to 0 indicates that in any point
cloud frame that refers to the current SPS, two and more
output points may have the same position.

Note—For example, even if all points are unique in each
slices, the points from different slices in a frame may
overlap. In that case, unique_point_positions_constraint_
flag should be set to 0.

level_idc indicates a level to which the bitstream conforms
as specified in Annex A. Bitstreams shall not contain values
of level_idc other than those specified in Annex A. Other
values of level_idc are reserved for future use by ISO/IEC.
sps_seq_parameter_set_id provides an identifier for the SPS
for reference by other syntax elements. The value of sps_se-
q_parameter_set_id shall be 0 in bitstreams conforming to
this version of this Specification. The value other than 0 for
sps_seq_parameter_set_id is reserved for future use by
ISO/IEC.

sps_bounding_box_present_flag equal to 1 indicates that
bounding box parameters are signalled in the SPS. sps_
bounding_box_present_flag equal to O indicates that the size
of the bounding box is undefined.
sps_bounding_box_offset_x,sps_bounding_box_offset_y,
and sps_bounding_box_offset_z indicate quantised x, y, and
z offsets of the source bounding box in Cartesian coordi-
nates. When not present, the values of sps_bounding
box_offset_x, sps_bounding_box_offset_y, and sps_bound-
ing_box_offset_z are each inferred to be 0.
sps_bounding_box_offset log 2_scale indicates the scaling
factor to scale the quantised x, y, and z source bounding box
offsets. When not present, the value of sps_bounding
box_offset_log 2_scale is inferred to be 0.
sps_bounding_box_size_width, sps_bounding box_size_
height, and sps_bounding_box_size_depth indicate the
width, height, and depth of the source bounding box in
Cartesian coordinates.
sps_source_scale_factor_numerator_minusl plus 1 indi-
cates the scale factor numerator of the source point cloud.
sps_source_scale_factor_denominator_minus1 plus 1 indi-
cates the scale factor denominator of the source point cloud.
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In addition to the source bounding box, a G-PCC coder
may determine (e.g, specify) tile bounding boxes. Tile
bounding boxes may be associated with the points of a tile.
A G-PCC encoder (e.g., G-PCC encoder 200) may signal the
tile bounding boxes in the tile_inventory( ) syntax. Each
tile_inventory( ) syntax structure may be associated with a
frame specified by tile_frame_idx.

The table below represents an example tile inventory
syntax structure:

Descriptor

tile__inventory( ) {

tile_frame_ idx ?

num__tiles_ minusl u(16)

for( i =0;i <= num_tiles_minusl; i++ ) {
tile__bounding_ box_ offset_ x[ i ]
tile__bounding_ box_ offset_y[i ]
tile_bounding_ box_ offset_z[ i ]

se(v)
se(v)
se(v)

tile__bounding_ box_size_ width[ i ] ue(v)
tile__bounding box_ size_ height[ i ] ue(v)
tile__bounding_ box_ size depth[ i ] ue(v)

byte__alignment( )

Semantics for the example tile inventory syntax structure
may be defined as follows:

num_tiles_minusl plus 1 specifies the number of tile
bounding boxes present in the tile inventory.

tile_bounding_box_offset_x[i], tile bounding_box_off-
set_y[i], and tile_bounding box_offset_z[i] indicate the x, v,
and z offsets of the i-th tile in cartesian coordinates.

tile_bounding_box_size_width[i], tile bounding box_
size_height[i], and tile_bounding_box_size_depth[i] indi-
cate the width, height, and depth of the i-th tile in the
Cartesian coordinates.

Although a bounding box may not explicitly specified for
slices, a G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may determine (e.g., specify) a box may that
includes the points in a slice (which may be referred to as a
slice box or slice bounding box). The specification of the
slice box may include a slice origin that specifies one corner
of the box and the width, height and depth of the box.

A geometry parameter set (GPS) may have indication
whether an explicit slice origin is signaled for slices. If an
explicit slice origin is present, a G-PCC encoder (e.g.,
G-PCC encoder 200) may signal an associated scale value at
the GPS or at the Geometry slice header (GSH). When
explicit slice origin is not signaled, a G-PCC decoder (e.g.,
G-PCC decoder 300) may infer the associated scale value to
be equal to (0, 0, 0).

Example syntax structures for a slice (bounding) box are
shown in the tables below, which include examples of a GPS
and a geometry slice header.

Descriptor
geometry__parameter_set( ) {

gps__geom__parameter_ set__id ue(v)
gps__seq__parameter_set_id ue(v)
gps__box_ present_ flag u(l)
if( gps_box__present_ flag ){

gps__gsh__box_log2_ scale_ present_flag u(l)

if( gps_gsh_box_log2_ scale_ present_flag ==0)

gps__gsh box_log2 scale ue(v)

)

unique__geometry_ points_ flag

u(l)

geometry_ slice__header( ) {
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Descriptor

gsh_geometry_ parameter_set_id

gsh_tile_id

gsh_slice_id

frame__idx

gsh_num_ points

if( gps_box__present_flag ) {
if( gps__gsh_ box_log2_scale_ present_flag )

gsh_ box_log2_ scale

gsh__box_origin_x
gsh__box_origin_y
gsh__box_origin_z

if ( gps_implicit_geom_ partition_ flag ) {
gsh__log2 max_ nodesize_ x
gsh__log2 max_nodesize_y minus_x
gsh__log2 max_nodesize_z_minus_y

}else {

gsh__log2 max_ nodesize

__minusl if( geom_scaling enabled_ flag ) {

[Ed: this should be last in the gsh?]

ue(v)
ue(v)
ue(v)
u(m)

u(24)

ue(v)
ue(v)
ue(v)
ue(v)

ue(v)
se(v)
se(v)

ue(v)

Semantics for the syntax elements of the example GPS
above may be defined as follows:
gps_geom_parameter_set_id provides an identifier for the
GPS for reference by other syntax elements. The value of
gps_seq_parameter_set_id shall be in the range of 0 to 15,
inclusive.
gps_seq_parameter_set_id specifies the value of sps_se-
q_parameter_set_id for the active SPS. The value of gps_se-
q_parameter_set_id shall be in the range of 0 to 15, inclu-
sive.
gps_box_present_flag equal to 1 specifies an additional
bounding box information is provided in a geometry header
that references the current GPS. gps_bounding_box_pre-
sent_flag equal to 0 specifies that additional bounding box
information is not signalled in the geometry header.
gps_gsh_box_log 2_scale_present_flag equal to 1 specifies
gsh_box_log 2_scale is signalled in each geometry slice
header that references the current GPS.
gps_gsh_box_log 2_scale_present_flag equal to 0 specifies
gsh_box_log 2_scale is not signalled in each geometry slice
header and common scale for all slices is signalled in
gps_gsh_box_log 2_scale of current GPS.
gps_gsh_box_log 2_scale indicates the common scale factor
of bounding box origin for all slices that references the
current GPS.

The following are the semantics of the relevant syntax
elements in the Geometry slice header:
gsh_geometry_parameter_set_id specifies the value of the
gps_geom_parameter_set_id of the active GPS.
gsh_tile_id specifies the value of the tile id that is referred
to by the GSH. The value of gsh_tile_id shall be in the range
of 0 to XX, inclusive.

gsh_slice_id identifies the slice header for reference by other
syntax elements. The value of gsh_slice_id shall be in the
range of 0 to XX, inclusive.

frame_idx specifies the log 2_max_frame_idx+1 least sig-
nificant bits of a notional frame number counter. Consecu-
tive slices with differing values of frame_idx form parts of
different output point cloud frames. Consecutive slices with
identical values of frame_idx without an intervening frame
boundary marker data unit form parts of the same output
point cloud frame.

gsh_num_points specifies the maximum number of coded
points in the slice. It is a requirement of bitstream confor-
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mance that gsh_num_points is greater than or equal to the
number of decoded points in the slice.
gsh_box_log 2_scale specifies the scaling factor of bounding
box origin for the slice.
gsh_box_origin_x specifies the x value of bounding box
origin that scaled by gsh_box_log 2_scale value.
gsh_box_origin_y specifies the y value of bounding box
origin that scaled by gsh_box_log 2_scale value
gsh_box_origin_z specifies the z value of bounding box
origin that scaled by gsh_box_log 2_scale value.
The variable slice_origin_x, slice_origin_y, and slice_orig-
in_z are derived as follows:
If gps_gsh_box_log 2_scale_present_flag is equal to 0,
originScale is set equal to gsh_box_log 2_scale
Otherwise (gps_gsh_box_log 2_scale_present_flag is
equal to 1),
originScale is set equal to gps_gsh_box_log 2_scale
If gps_box_present_{flag is equal to O,
the value of slice_origin_x and slice_origin_y and slice_
origin_z are inferred to be 0.
Otherwise (gps_box_present_flag is equal to 1), the fol-
lowing applies:
slice_origin_x=gsh_box_origin_x<<originScale
slice_origin_y=gsh_box_origin_x<<originScale
slice_origin_z=gsh_box_origin_x<<originScale
gsh_log 2_max_nodesize_x specifies the bounding box size
in the x dimension, i.e., MaxNodesizeX[.og 2 that is used in
the decoding process as follows.
MaxNodeSizeXLog 2=gsh_log 2_max_nodesize_x
MaxNodeSizeX=1<<MaxNodeSizeXLog 2
gsh_log 2_max_nodesize_y_minus_x specifies the bound-
ing box size in the y dimension, i.e., MaxNodesizeYLog2
that is used in the decoding process as follows:
MaxNodeSizeYLog 2=gsh_log 2_max_nodesize_y_mi-
nus_x+MaxNodeSizeXLog2.
MaxNodeSizeY=1<<MaxNodeSizeYLog 2.
gsh_log 2_max_nodesize_z_minus_y specifies the bound-
ing box size in the z dimension, i.e., MaxNodesizeZLog 2
that is used in the decoding process as follows.
MaxNodeSizeZl.og 2=gsh_log 2_max_nodesize_z_mi-
nus_y+MaxNodeSizeYLog 2
MaxNodeSizeZ=1<<MaxNodeSizeZl.og 2
It gps_implicit_geom_partition_flag equals to 1, gsh_log
2_max_nodesize is derived as follows.
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gsh_log  2_max_nodesize=max{MaxNodeSizeXLog2,
MaxNodeSizeYLog 2, MaxNodeSizeZLog 2}
gsh_log 2_max_nodesize specifies the size of the root geom-
etry octree node when gps_implicit_geom_partition_flag is
equal to 0. The variables MaxNodeSize, and MaxGeom-
etryOctreeDepth are derived as follows.

MaxNodeSize=1<<gsh_log 2_max_nodesize

MaxGeometryOctreeDepth=gsh_log 2_max_nodesize—
log 2 trisoup_node_size
The variables K and M are then updated as follows.

gsh_log2 min_nodesize = min{ MaxNodeSizeXLog?2,

MaxNodeSizeYLog?2,

MaxNodeSizeZLog2}

if (K > (gsh__log2_ max_ nodesize — gsh_log2_ min_ nodesize))
K = gsh_log2 max_nodesize — gsh_log2 min_nodesize;

if (M > gsh_log2 min_nodesize)
M = gsh_log2_ min_ nodesize;

if (gsh__log2 max_ nodesize == gsh_ log2_ min_ nodesize)
M=0;

if (log2__trisoup__node__size != 0) {
K = gsh_log2 max_ nodesize — gsh_ log2_ min_ nodesize;
M=0;

In addition to the bounding boxes specified above, a
G-PCC coder (e.g., G-PCC encoder 200 or G-PCC decoder
300) may support the signaling of a region box that is used
to indicate a modified QP value to the attributes of a
particular region of the point cloud. Typically, the QP value
associated with an attribute may be specified in the attribute
slice header (in addition to some syntax elements in the
attribute parameter set). However, certain regions of the
point cloud may have peculiar characteristics that may be
different from the rest of the slice; e.g., a denser region of the
slice may require a finer representation (lower QP) or a
sparser region of the slice may only need a coarser repre-
sentation (higher QP). The region box may be useful for
specifying a different QP for attributes of certain region of
a slice.

The following table represents an example attribute slice
header including region box related syntax elements:

Descriptor
attribute_ slice__header( ) {
ash_ attr_parameter_ set_id ue(v)
ash_attr_sps_ attridx ue(v)
ash_attr_geom_ slice_id ue(v)
if ( aps_slice_qp_ delta_present_flag ) {
ash_attr qp_ delta_ luma se(v)
if{ attribute__dimension__minus1[
ash_ attr_sps_attr_idx ] >0 )
ash_attr_qp_ delta_ chroma se(v)
ash_attr layer qp_ delta_ present_flag u(l)
if (ash_attr_layer qp_ delta_present_flag ) {
ash_attr num_ layer qp_ minusl ue(v)
for( i = 0; i < NumLayerQp; i++ ){
ash_ attr layer qp_ delta_ lumal[i] se(v)
if{ attribute__dimension__minus1[
ash_ attr_sps_attr_idx ] >0 )
ash_ attrlayer qp_ delta_ chromali] se(v)
¥
ash_ attr_region_ qp_ delta_ present_ flag u(l)
if (ash_attr_region_qgp_ delta_ present_flag ) {
ash_attr_ qp_ region_ box_ origin_x ue(v)
ash_attrqp_ region_box_ origin_y ue(v)
ash_attr qp_ region_box_ origin_z ue(v)
ash_attr qp_ region_ box_ width ue(v)
ash_attr qp_ region_ box__height ue(v)
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-continued
Descriptor
ash_attr qgp_ region_ box_ depth ue(v)

ash_attr_qp_ region_ box_ delta se(v)

}
byte__alignment( )

Semantics for the region box syntax elements in the table
above may be defined as follows:
ash_attr_parameter_set_id specifies the value of the aps_at-
tr_parameter_set_id of the active APS.
ash_attr_sps_attr_idx specifies the order of attribute set in
the active SPS. The value of ash_attr_sps_attr_idx shall be
in the range of 0 to sps_num_attribute_sets in the active
SPS.
ash_attr_geom_slice_id specifies the value of the gsh_sli-
ce_id of the active Geometry Slice Header.
ash_attr_layer_qp_delta_present_flag equal to 1 specifies
that the ash_attr_layer_qp_delta_luma and ash_attr_layer_
qp_delta_chroma syntax elements are present in current
ASH. ash_attr_layer_qp_delta_present_flag equal to O
specifies that the ash_attr_layer_qp_delta_luma and ash_at-
tr_layer_qp_delta_chroma syntax elements are not present
in current ASH.
ash_attr_num_layer_qp_minus] plus 1 specifies the number
of layer in which ash_attr_qp_delta_luma and ash_at-
tr_qp_delta_chroma are signalled. When ash_attr_num_lay-
er_qp is not signalled, the value of ash_attr_num_layer_qp
is inferred to be 0. The value of NumLayerQp is derived as
follows:

NumlLayerQp=num_layer_qp_minus1+1
ash_attr_qp_delta_luma specifies the luma delta qp from the
initial slice qp in the active attribute parameter set. When
ash_attr_qp_delta_luma is not signalled, the value of ash_at-
tr_qp_delta_luma is inferred to be 0.
ash_attr_qp_delta_chroma specifies the chroma delta gp
from the initial slice qp in the active attribute parameter set.
When ash_attr_qgp_delta_chroma is not signalled, the value
of ash_attr_qp_delta_chroma is inferred to be 0.

The variables InitialSliceQpY and InitialSliceQpC are
derived as follows:

InitialSliceQpY=aps_attrattr_initial_qgp+ash_attr_qp_del-
ta_luma

InitialSliceQpC=aps_attrattr_initial_qp+aps_attr_chro-
ma_qp_offset+ash_attr_qp_delta_chroma
ash_attr_layer_qgp_delta_luma specifies the luma delta gp
from the InitialSliceQpY in each layer. When ash_attr_lay-
er_qp_delta_luma is not signalled, the value of ash_attr_lay-
er_qgp_delta_luma of all layers are inferred to be 0.
ash_attr_layer_qp_delta_chroma specifies the chroma delta
qp from the InitialSliceQpC in each layer. When ash_attr_
layer_qp_delta_chroma is not signalled, the value of ash_at-
tr_layer_qp_delta_chroma of all layers are inferred to be 0.
The variables SliceQpY[i] and SliceQpCJi] with i=0 . . .
NumlLayerQPNumQPLayer-1 are derived as follows:

for (i = 0; i < NumLayerQPNumQPLayer; i++) {

SliceQpY[ i ] = InitialSliceQpY +
ash_attr layer_ qp_ delta_ luma[ i ]
SliceQpC[ i ] = InitialSliceQpC +

ash_attrlayer_ qp_ delta_ chroma[ i ]
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ash_attr_region_qp_delta_present_flag equal to 1 indicates
the ash_attr_region_gp_delta and region bounding box ori-
gin and size are present in current ASH. ash_attr_region_
qp_delta_present_flag equal to O indicates the ash_attr_re-
gion_qp_delta and region bounding box origin and size are
not present in current ASH.
ash_attr_qp_region_box_origin_x indicates the x offset of
the region bounding box relative to slice_origin_x. When
not present, the value of ash_attr_qp_region_box_origin_x
is inferred to be 0.

ash_attr_qp_region_box_origin_y indicates the y offset of
the region bounding box relative to slice_origin_y. When not
present, the value of ash_attr_qp_region_box_origin_y is
inferred to be 0.

ash_attr_qp_region_box_origin_z indicates the z offset of
the region bounding box relative to slice_origin_z. When not
present, the value of ash_attr_qp_region_box_origin_z is
inferred to be 0.

The variable RegionboxX, RegionboxY and RegionboxZ
specifying the region box origin are set equal to ash_at-
tr_qp_region_box_origin_x, ash_attr_qp_region_box_orig-
in_y and ash_attr_qp_region_box_origin_z respectively.
ash_attr_qp_region_box_size_width indicates the width of
the region bounding box. When not present, the value of
ash_attr_qp_region_box_size_width is inferred to be 0.
ash_attr_qp_region_box_size_height indicates the height of
the region bounding box. When not present, the value of
ash_attr_qp_region_box_size_height is inferred to be O.
ash_attr_qp_region_box_size_depth indicates the depth of
the region bounding box. When not present, the value of
ash_attr_qp_region_box_size_depth is inferred to be 0.
The variable RegionboxWidth, RegionboxHeight and
RegionboxDepth specifying the region box size are set equal
to ash_attr_qp_region_box_size_width, ash_attr_qp_re-
gion_box_size_height and ash_attr_qp_region_box_size
depth respectively.

ash_attr_region_qp_delta specifies the delta qp from the
SliceQpY[i] and SliceQpC[i](with i=0 . . . NumLayer-
QPNumQPLayer-1) of the region specified by ash_at-
tr_qp_region_box. When not present, the value of ash_attr_
region_qp_delta is inferred to be 0.

The variable RegionboxDeltaQp specifying the region box
delta quantization parameter is set equal to ash_attr_region_
qp_delta.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may control quantization and/or scaling of
geometry coordinates and/or positions within the codec, or
geometry scaling as referred to in G-PCC, by a flag in the
geometry parameter set and a QP value. The G-PCC encoder
may specify and/or modify the QP value in multiple levels.
The syntax elements associated with geometry scaling in the
various parts of the syntax are described below.

2.6.1 Geometry parameter set

Descriptor
geometry__parameter_set( ) {
gps__geom_ parameter_ set__id ue(v)
ue(v)
geom_ scaling enabled_ flag u(l)
if{ geom_scaling_ enabled_ flag )
geom__base_ qp ue(v)

u(l)

The syntax element geom_scaling_enabled_flag may
enable a G-PCC decoder (e.g., G-PCC decoder 300) to scale
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the geometry coordinates. A G-PCC coder (e.g., G-PCC
encoder 200 or G-PCC decoder 300) may use geom_
base_qp to derive the scale value used in the process.
An example set of syntax elements for a geometry slice
header is shown in the table below:

Descriptor

geometry_ slice__header( ) {
gsh__geometry_ parameter_ set_id ue(v)
if( geom__scaling _enabled_ flag ) {
[Ed: this should be last in the gsh?]
geom__slice__qp__offset
geom__octree_qp_ offsets_enabled_ flag
if( geom__octree_ qp_ offsets__enabled_ flag )
geom__octree__qp_ offsets__depth

se(v)

u(l)
ue(v)

byte__alignment( )

}

In the geometry slice header (GSH), a G-PCC encoder
(e.g., G-PCC encoder 200) may signal a QP offset that is
used to modify the scale value used for points belonging to
the slice. The GSH may include or contain a flag, (geo-
m_octree_qp_offsets_enabled_flag) that controls whether
QP offset control is enabled in lower octree levels and if yes,
the depth (geom_octree_qp_offsets_depth) at which the QP
parameter is specified is signaled.

An example set of syntax elements for a geometry node
structure is shown in the table below:

Descriptor
geometry__node( depthX, depthY, depthZ, partitionSkip,
nodeldx, xN, yN, zN ) {
if( depth = = GeomScalingDepth &&
geom__octree__qp_ offsets__enabled_ flag) {
geom_ node_ qp_ offset_eq0_ flag ae(v)
[Ed. sense mismatch between m50924 and CE
implementation]
if( !geom__node_qp_ offset_eqO_flag) {
geom_node_ qp_ offset_sign_ flag ae(v)
geom__node_ qp_ offset__abs_ minus1 ae(v)
¥
¥
When the current octree depth is equal to Geom-
ScalingDepth as derived from geom_octree_qp_offsets_

depth, a G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may apply a QP offset for the points belonging
to that node.

A G-PCC encoder (e.g., G-PCC encoder 200) may deter-
mine the QP value for the geometry scale factor depending
on the node that is being processed. The scaling process may
modify the effective node size of the child nodes, and this
may be determined by the process described below. In this
process, when depth of the octree node is less than
GeomScalingDepth, a G-PCC encoder (e.g., G-PCC
encoder 200) may lossless code the coordinates or the bits
(e.g., QP equal to 4). When the depth is equal to
GeomScalingDepth, the QP may be set equal to the sum of
the geom_base_qgp, geom_slice_qp_offset and nodeQpOfi-
set. For a depth larger than GeomScalingDepth, the QP may
be set equal to the QP of the parent tree depth (which may
be the same as the QP at GeomScalingDepth).
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The variable NodeQp is derived as follows:

When depth is equal to GeomScalingDepth:

NodeQp=geom_base qp+geom_slice_qp_offset+nod-
eQpOfiset

When depth is greater than GeomScalingDepth:

NodeQp=NodeQpMap|depth][nodeldx]

Otherwise, depth is less than GeomScalingDepth, Nod-

eQp is set equal to 4.
The variables EffectiveChildNodeSizel.og 2 and Effecti-
veDepth are derived as follows:

EffectiveChildNodeSizel.og
2-(NodeQp-4)/6

EffectiveDepth=depth+(NodeQp-4)/6

The geometry scaling process at the decoder (e.g., G-PCC
decoder 300) may be invoked in Section 8.2.2.2 Octree node
decoding process (e.g., shown below), where the
geomScale( ) function is used. At each node, a G-PCC coder
(e.g., G-PCC encoder 200 or G-PCC decoder 300) may
derive the positions corresponding to the child nodes; there
are GeometryNodeChildrenCnt child nodes. The value of

2=ChildNodeSizel.og

10
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a spatial location (XN, yN, zN) specifying the position of

the current geometry octree node in the current slice.

The outputs of this process may include the modified
array PointPos and the updated variable PointCount.

If both EffectiveDepth is less than MaxGeometryOc-
treeDepth—1, and direct_mode_flag is equal to 0, no points
are output by this process. Otherwise, if either Effective-
Depth is greater than or equal to MaxGeometryOc-
treeDepth-1, or direct_mode_flag is equal to 1, the remain-
der of this process generates one or more point positions.

The function geomScale(val, cldx) is defined as the
invocation of the scaling process for a single octree node
position component 8.2.2.3 with the position val, the com-
ponent cldx, and the variable qP set equal to NodeQp as
inputs.

The spatial location of points in each occupied child is
determined according to the number of duplicate points in
each child and the use of direct coded positions as follows:

The scaling of the node position using the QP is derived
using the geomScale( ) function as follows:

for( child = 0; child < GeometryNodeChildrenCnt; child++ ) {
childldx = GeometryNodeChildren[ child ];
Xx=2xxXN+ (childldxk &4 )==1;
y=2xyN+ (childldxk &2 )==1;
z=2xzN+ (childldx&1)==1;

for( i =0; i < GeometryNodeDupPoints[ child ] + 1 ;

i++, PointCount++ ) {

PointPos[ PointCount ][ 0 ] = geomScale( x , 0);
PointPos[ PointCount ][ 1 ] = geomScale( y , 1);
PointPos[ PointCount ][ 2 ] = geomScale( z , 2);

¥
if( direct_mode_ flag ) {
if (!duplicated_ point_ flag) {

for( i = 0; i <= num__direct_points__minus1; i++, PointCount++ ) {

PointPos[ PointCount ][ 0 ] = geomScale( (X <<
EffectiveChildNodeSizeLog?2 ) + PointOffsetX[ i ] , 0);

PointPos[ PointCount ][ 1 ] = geomScale( ( y <<
EffectiveChildNodeSizeLog?2 ) + PointOffsetY[ i ], 1);

PointPos[ PointCount ][ 2 ] = geomScale( (  z <<
EffectiveChildNodeSizeLog?2 ) + PointOffsetZ[ i ] , 2);

else {
for( i = 0; i <= num__direct_points__minus1; i++, PointCount++ ) {

PointPos[ PointCount ][ 0 ] = geomScale( (X <<
EffectiveChildNodeSizeLog2 ) + PointOffsetX[ 0 ], 0);

PointPos[ PointCount ][ 1 ] = geomScale( ( y <<
EffectiveChildNodeSizeLog2 ) + PointOffsetY[ 0 ], 1);

PointPos[ PointCount ][ = geomScale( (  z <<

2]
EffectiveChildNodeSizeLog?2 ) + PointOffsetZ[ 0

¥
¥

}

1,2)%

GeometryNodeChildrenCnt may be at most 8. The index of
the child nodes within the GeometryNodeChildrenCnt child
nodes may be specified using a 3 bit number, and a quantized
position of the child node (x, y, z) are derived from the
coordinates of the parent node (xN, yN, zN) and childldx.
For each child node, the G-PCC coder may derive the
unquantized (scaled) position PointPos| |[i] for i=0, 1, 2
using the geomScale( ) function. For nodes that coded using

55

the direct coding mode (indicated by direct_mode_flag), the 60

G-PCC coder may obtain the respective scaled positions
from the child node position and the PointOffsetX][ |, Point-
OffsetY[ | and PointOffsetZ] | values, also using the
geomScale( ) function.
Inputs to an octree node decoding process may include:
an octree node location (depth, nodeldx) specifying the
position of the current geometry octree node

65

In the geomScale( ) function, the node position is scaled
and the inverse-quantized position value is derived as
described below:

Inputs to an example scaling process for a single octree
node position component may include:

a variable val representing an unscaled position compo-

nent value,

a variable cldx specifying the position component index,

a variable qP specifying the quantization parameter.

The output of this process may include the scaled position
component value pos.

(NOTE?) When geom_scaling_enabled_flag is equal to O,

the output of this process is equal to the input value pos.

The variable scalingExpansionl.og 2 is set equal to
(qP-4)/6.
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The variables highPart and lowPart representing concat-
enated parts of the unscaled position component value are
derived as follows:

1 highPart=val>>(ScalingNodeSizel.og 2[cldx]-scaling-

ExpansionlLog 2)
2 lowPart=val & ((1<<(ScalingNodeSizel.og 2[cldx]-
scalingExpansionlog 2))-1)
The list geomlevelScale is specified as geomlevelScale
[1]={659445, 741374, 831472, 933892, 1048576, 1175576}
with i=0 . . . 5.

The output variable pos is derived as follows:

3 highPartS=highPart<<ScalingNodeSizel.og 2[cldx]

4 lowPartS=(lowPart*(geomLevelScale[qP % 6]<<

(qP/6))+(1<<19))>>20

5 pos=highPart/lowPart

An alternate mechanism to the geometry scaling process
was proposed in G-PCC: Integer step sizes for in-tree
geometry quantisation, m52522, D. Flynn, K. Mammou,
Brussels, Belgium, January 2020 (hereinafter, “m52522”),
where the following step sizes were used for the scaling
operation.

geomLevelScale[i]={1, 1.25, 1.5, 1.75}

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may use scaled versions of the
above values for fixed-point implementation (e.g., values 4,
5, 6, 7); a shift and rounding operations may be accompanied
to bring apply the correct scale factor. The QP value of 0
may correspond to the lossless case (e.g., a scale value 1)
and the QP step sizes doubles for every four QP values. The
G-PCC coder may derive the step sizes as follows, where
floor( ) stands for the floor operation:

qS=(Va)*[4+(QP mod 4)]*2eor@r

FIG. 4 is a graph illustrating an example step size func-
tion. The resultant step sizes for most QPs are integers but

. . . 3
some non-integer step sizes are also specified. Table 1

specifies the step sizes for various QP values, and FIG. 4
illustrates the same step size function.

TABLE 1
Qp StepSize
0 1
1 1.25
2 1.5
3 1.75
4 2
5 2.5
6 3
7 35
8 4
9 5
10 6
11 7
12 8
13 10
14 12
15 14
16 16
17 20
18 24
19 28
20 32
21 40
22 48
23 56
24 64
25 80
26 96
27 112
28 128
29 160
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TABLE 1-continued
Qp StepSize
30 192
31 224
32 256
33 320
34 384
35 448
36 512
37 640
38 768
39 896
40 1024
41 1280
42 1536
43 1792
44 2048
45 2560
46 3072
47 3584
48 4096
49 5120
50 6144
51 7168

One or more techniques described in this disclosure may
be applied independently or in combination. For the ease of
description, the term geometric period of a sequence may be
defined as the number of points in a sequence for the value
to double. For example, for the following sequence: 1, 1.5,
2,3,4,6,8, 12, ..., the geometric period is 2. For the
sequence 1, 1.1, 1.2, 1.4, 1.5,2,2.2,24,28,3,4, ...the
geometric period is 5. Note that if there is a combination of
two sequences with different geometric periods, the two
geometric period would apply to the respective points in the
combined sequences. For example, the following sequence

5 has a geometric period of 2 for values up to 8 and beyond

8, has a geometric period of 4: 1, 1.5, 2, 3, 4, 6, 8, 10, 12,
14, 16, 20, 24, 28,32, . . ..

The values between any two powers or 2 may also be
referred to as a geometric period. For example, for the
sequence 1, 1.1, 1.2, 1.4,1.5,2,22,24,2.8,3,4,...,the
first geometric period may be [1, 1.1, 1.2, 1.4, 1.5] and the
second geometric period may be [2, 2.2, 2.4, 2.8, 3] and so
on.

Currently, although the semantics of the SPS bounding
box are specified, the specification (e.g., processes compli-
ant with the specification) does not explicitly mention how
the point cloud data are related to the SPS bounding box.
The G-PCC bitstream also carries two syntax elements to
derive a scale factor, but again the exact process to use these
syntax elements are not specified.

In the TMC13 (test model), the output geometry points of
the point cloud data are scaled using the scale factor, and the
non-normative scaled points are clipped to be within the SPS
bounding box.

The scaling and clipping process used in the TMC13 seem
to be straight-forward. However, lack of a clear description
in the specification of how to use the syntax elements, or
even indication of how to use the syntax elements, could
result in undesirable situations. For example, it is possible
that an “evil” encoder may deliberately try to signal values
that are incorrect in such a way that only certain decoders
(that know the intention of the “evil” encoder) would be able
to correctly process these syntax elements; other decoders
(or devices), despite being conformant, would be unable to
process these syntax elements properly. Such scenarios
should not be permitted in a standard.
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At least the following should be specified: ranges and
derivation process that use the syntax elements such that at
least the syntax elements should make some sense for a
normal decoder. It is to be noted that such a derivation does
not preclude this scaling process to be non-normative.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may be configured to operate according to a
scaling process using the non-normative scaling syntax
elements.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may be configured to operate according to one
or more constraints that the output of the above scaling value
does not violate the SPS bounding box constraints.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may be configured such that a violation of SPS
bounding box constraint may include that the scaled coor-
dinate positions should not be larger the respective dimen-
sion of the source bounding box (e.g., the x coordinate
should not exceed the width, y coordinate should not exceed
the height, and the z coordinate should not exceed the
depth).

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may be configured such that a violation of SPS
bounding box constraint may also include that the scaled
coordinate positions should not be outside the bounding box
specified by the bounding box boundaries (e.g., a min and
max value for each dimension).

In some examples, the G-PCC coder may additionally
perform clipping operations to clip the reconstructed point
clouds after scaling to be contained within the bounding box.
The G-PCC coder may be configured with restraints for the
clipping operations, similar to the above, for a point, such
that performance of the clipping operations ensure that a
point contained within a tile bounding box of a tile that
contains the point remains within the tile. That is, constraints
may apply for clipping operations similar to the above for a
point to be containing with the tile bounding box of the tile
that contains the point.

Semantics of the example SPS bounding box and non-
normative scaling process may be modified as discussed
below. Thus, a G-PCC coder may code an SPS bounding box
and perform a scaling process according to the example
techniques explained below. The addition of these changes
need not make the scaling process normative; whether or not
the process is normative may be determined by how the
conformance is specified for various G-PCC profile(s). The
current TMC13-v9.0 still uses floating point operations for
the non-normative scaling; this document describes tech-
niques to specify fixed point arithmetic for the same. The
source scale factor signalled in the current TMCI13 is the
inverse of the scale factor to be applied on the reconstructed
point cloud, and the semantics below reflect that. In some
examples, G-PCC coders may code data representative of
the scale factor (instead of the inverse).

Example semantics for the SPS bounding box may be
defined as follows, and G-PCC coders may code and inter-
pret values of the SPS bounding box as follows: sps_bound-
ing_box_present_flag equal to 1 indicates that bounding box
parameters are signalled in the SPS. sps_bounding_box_pre-
sent_flag equal to 0 indicates that the size of the bounding
box is undefined.
sps_bounding_box_offset_x,
and
sps_bounding_box_offset_z indicate quantised X, y, and z
offsets of the source bounding box in Cartesian coordinates.
When not present, the values of sps_bounding box_oft-

sps_bounding_box_offset_y,
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set_x, sps_bounding_box_offset_y, and sps_bounding_box_
offset_z are each inferred to be 0.
sps_bounding_box_offset log 2_scale indicates the scaling
factor to scale the quantised x, y, and z source bounding box
offsets. When not present, the value of sps_bounding_box_
offset_log 2_scale is inferred to be 0.
sps_bounding_box_size_width, sps_bounding box_size_
height, and sps_bounding_box_size_depth indicate the
width, height, and depth of the source bounding box in
Cartesian coordinates.
sps_source_scale_factor_numerator_minusl plus 1 indi-
cates the scale factor numerator of the source point cloud.
sps_source_scale_factor_denominator_minus1 plus 1 indi-
cates the scale factor denominator of the source point cloud.

A G-PCC coder may derive a final position (xF, yF, zF) for
a reconstructed position (X, y, z) of each point of the point
cloud by dividing the reconstructed point positions by the
source scale factor, clipping the result to the SPS bounding
box dimensions, and shifting the points based on the SPS
bounding box origin offsets as follows:

off=(sps_source_scale_factor_numerator_minusl+1)>>1

scaleNum=sps_source_scale_factor_numerator_minus1+1
scaleDen=sps_source_scale_factor_denominator_minus
141

xS=(x*scaleDen+off)/scaleNum

yS=(y*scaleDen+off)/scaleNum

zS=(z*scaleDen+off)/scaleNum
bboxOftX=sps_bounding_box_offset_x<<
sps_bounding_box_offset log 2_scale
bboxOftY=sps_bounding_box_offset_y<<
sps_bounding_box_offset log 2_scale
bboxOftZ=sps_bounding_box_offset_z<<
sps_bounding_box_offset log 2_scale

xF=Min(xS, sps_bounding_box_width)+bboxOfftX

yF=Min(yS, sps_bounding_box_height)+bboxOffY

zF=Min(zS, sps_bounding_box_depth)+bboxOffZ

As described above, currently the non-normative quanti-
zation/scaling approach may assume to apply on the entire
point cloud, whereas a G-PCC coder may apply normative
quantization at certain node depth within slices. A G-PCC
coder may have no mechanism available for quantizing the
entire point cloud normatively. For several applications, it
may be desirable for a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) to apply point cloud scaling at
a global level normatively so that the encoder/applications
do not have to rely on how the decoders handle the non-
normative scaling. Without a normative global scaling, the
codec may have to rely on specifying the QP value for each
slice, and even that may only be applied at the highest octree
level.

Moreover, one of the purposes of the non-normative
scaling is to convert the point cloud data into real world
dimensions. It would be undesirable to re-use this for
indicating quantization values.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may be configured to perform a normative
scaling for the entire point cloud; this may be referred to as
global scaling.

A G-PCC encoder (e.g., G-PCC encoder 200) may be
configured to signal a syntax element to indicate whether
normative global scaling is applied to a picture.

Global scaling may be applied at the encoder at the
beginning of the encoding; at the decoder, this may be
applied after all the slice are decoded. For example, a
G-PCC coder (e.g., G-PCC encoder 200 or G-PCC decoder
300) may be configured to apply global scaling at the
beginning of encoding, at the decoder, after all the slices are
decoded, etc.
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In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may apply the global scaling to
each point cloud partition that is applicable to a slice
separately; similarly, each decoded slice may apply global
scaling independently.

A G-PCC decoder (e.g., G-PCC decoder 300) may control
the global scaling factor by a scale value that is signaled
(e.g., by G-PCC encoder 200) in the bitstream.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may derive the scaling factor (or scale value)
from a quantization parameter value that is signaled in the
bitstream; the derivation of the scale value from the quan-
tization parameter may use one or more existing schemes
specified in the G-PCC codec or by other means.

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may restrict the global scaling
factor to be a power of 2. This may enable the global scaling
process to be applied with shift operations, which may be
very simple to implement.

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may restrict the global scaling
factor to be integer values (non-negative).

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may determine (e.g., specify)
the global scaling factor using integer and non-integer
values; the G-PCC coder may apply the scaling using
floating point or fixed-point arithmetic.

A G-PCC decoder (e.g., G-PCC decoder 300) may derive
the scaling factor from the non-normative scaling factor
signaled (e.g., by G-PCC encoder 200) in the bitstream.

The scaling process itself may applied similar to a quan-
tization process specified for the G-PCC codec.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may apply a fixed point implementation of the
scaling process where the scale factor is stored at a particular
precision, and the scaling operation includes an offset and bit
shift operation. A rounding operation may be included in the
scaling process.

One or more attributes may be combined at the encoder
(e.g., G-PCC encoder 200) when the global scaling opera-
tion results in more than one point associated with a posi-
tion.

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may be configured to prohibit
global scaling when geometry points have unique positions,
or vice versa (e.g., when geometry points do not have unique
positions); the syntax may be updated to reflect these
restrictions (e.g., by avoiding signalling of some elements).
(This may be particularly relevant if scale values less than 1
are specified).

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may apply the unique points restriction to be
before the global scaling operation.

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may apply unique points
restriction after the global scaling operation.

In some examples, a G-PCC coder may determine a
respective quantization parameter for each of the three
components separately and quantize/scale each component
based on the respective quantization/scale parameter for the
corresponding component. In various examples, the G-PCC
coder may either derive or code data representative of the
quantization/scale parameters for the three components
along with in-loop geometry quantization.

In some examples, the G-PCC coder (e.g., G-PCC
encoder 200 or G-PCC decoder 300) may store the output of
the scaling operation at a higher bit depth than the input.
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This higher bit depth may be pre-determined, or it may be
derived using the global scale parameters. For example, if
the bit depth of the coordinates before global scaling is N,
and the precision of the global scale refinement value is M,
the internal bit depth may be set as M+N. G-PCC decoder
300 (or other application/entity at the decoding side) may
use additional precision to better derive the coordinate
positions. More generally, any value of higher bit depth may
be chosen as an (intermediate) precision for the global-
scaled coefficients. In some examples, the higher bit depth
may be in the range of [N, N+M]. In some examples, the
output of the scaling operation may be at a lower bit depth
than the input. For example, the input values may have
fractional precision, and after scaling, the scaled values may
have only integer precision.

In some examples, the G-PCC coder may derive the
maximum value of global scale from the maximum value of
coordinates of the point cloud. For example, the G-PCC
coder may determine the maximum QP value such that the
step size does not exceed the maximum value of the coor-
dinates of the point cloud.

The G-PCC coder may calculate the maximum value
according to a bounding box that is calculated after the
origin of the point cloud is shifted to (0,0,0). In some
examples, the G-PCC coder may calculate the maximum
value after adjusting the coordinates to a different origin.
The G-PCC coder may code data representing the adjust-
ment data for the different origin.

In some examples, the G-PCC coder may derive the
maximum value of the coordinates from a normative bound-
ing box of the point cloud.

In some examples, the G-PCC coder may determine a
pre-determined factor (Z, where Z<=1) and the maximum
QP wvalue, such that the scale value does not exceed
Z*maximum value of the coordinate of the point cloud.

In some examples, the G-PCC coder may determine the
maximum value of the coordinate used for determining the
maximum QP according to the minimum of the maximum
values of the individual coordinates (e.g., min (maxValX,
maxValY, maxValZ)).

If the maximum value is K, and refinement precision is
specified using M bits, the value of the global scale factor
may be restricted to be less than Ceil(log 2(K)), and the
maximum value of the refinement may be restricted to be
(1<<M)-1.

In some examples, the signalling of the SPS bounding box
and the non-normative scale values may be conditioned by
a flag. When these values are not signalled, the G-PCC coder
may infer default values (e.g., scale value of 1, slice origin
01'(0,0,0), and dimensions inferred to a maximum value such
as 2°2-1.

In some examples, the signalling of non-normative scale
values may be conditioned by a flag.

The scale value derivation from QP may be governed by
an underlying step size derivation model. For example, a
G-PCC coder (e.g., G-PCC encoder 200 or G-PCC decoder
300) may derive, in G-PCC, the scale value using an
exponential model 2(QP-4)/6. This may result in several
step sizes that are not a power of 2. A list of step sizes for
this scale value model is shown in the following table (as
Func2). An alternate approach was proposed in 3. G-PCC:
Integer step sizes for in-tree geometry quantization,
m52522, D. Flynn, K. Mammou, Brussels, Belgium, Janu-
ary 2020, and the scale values for this approach are also
included in the table.
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QP Funcl Func2
0 1 1
1 1.25 1.122462
2 1.5 1.259921
3 1.75 1.414214
4 2 1.587401
5 2.5 1.781797
6 3 2
7 3.5 2.244924
8 4 2.519842
9 5 2.828427
10 6 3.174802
11 7 3.563595
12 8 4
13 10 4.489848
14 12 5.039684
15 14 5.656854
16 16 6.349604
17 20 7.12719
18 24 8
19 28 8.979696
20 32 10.07937
21 40 11.31371
22 48 12.69921
23 56 14.25438
24 64 16
25 80 17.95939
26 96 20.15874
27 112 22.62742
28 128 25.39842
29 160 28.50876
30 192 32
31 224 35.91879
32 256 40.31747
33 320 45.25483
34 384 50.79683
35 448 57.01752
36 512 64
37 640 71.83757
38 768 80.63495
39 896 90.50967
40 1024 101.5937
41 1280 114.035
42 1536 128
43 1792 143.6751
44 2048 161.2699
45 2560 181.0193
46 3072 203.1873
47 3584 228.0701
48 4096 256
49 5120 287.3503
50 6144 322.5398
51 7168 362.0387

Both the models include all the powers of 2. As mentioned
previously, scale values that are powers of 2 are easy to
apply as they can be implemented using shift operations; this
may be quite convenient for simple decoders and also a
convenient option for encoders to achieve a global scaling.
However, only relying on powers of 2 may provide insuf-
ficient resolution for the quantization/scaling operations. A
finer resolution of the scale factor would be preferable for
some applications.

A G-PCC encoder (e.g., G-PCC encoder 200) may be
configured to signal a first value that specifies the scale
values as a power of 2 (coarse QP).

In some examples, this first value that specifies the scale
values as power of 2 may be specified by a QP value, where
the step size is derived from the QP values as 297 (QP 0
corresponds to scale 1, QP 1 corresponds to scale 2, QP 2
corresponds to scale 4, and so on).

A G-PCC encoder (e.g., G-PCC encoder 200) may be
configured to signal a flag to indicate whether the scaling
value includes a refinement. Signalling such a flag may
enable applications/profiles to allow/disallow scale value
refinement.
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In some examples, when refinement is applied to derive
the scale value, a G-PCC coder (e.g., G-PCC encoder 200 or
G-PCC decoder 300) may constrain the refinement applied
to derive the scale value to apply the refinement to all points
in the point cloud.

A G-PCC encoder (e.g., G-PCC encoder 200) may be
configured to signal a value to specify the refinement to be
applied to derive the scale value.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may be configured to determine (e.g., specify)
a precision value for the refinement. An n-bit precision may
correspond to 2” levels of refinement for each geometric
period.

e.g., a 1-bit precision may allow two values to be specified

for every geometric period (1, 1.5, 2,3, 4,6,8,...),
a 2-bit precision will allow four values to be specified
for every geometric period (1, 1.25, 1.5, 1.75, 2, 2.5, 3,
35,4,56,7,8,...).

The precision may be specified by a number of refinement
levels in the geometric period

E.g., 5 refinement levels may correspond to scale values
as follows (1, 1.2, 1.4, 1.6, 1.8,2,2.4,28,3.2, 3.6, 4,
3.6,42,...)

In some examples, a G-PCC encoder (e.g., G-PCC
encoder 200) may be configured to determine (e.g., specify)
a different precision to be different for different geometric
periods. For example, for scale value less than or equal to 8,
the G-PCC encoder may determine (e.g., specify) four
refinement levels for each geometric period, and for scale
values more than 8, the G-PCC encoder may determine (e.g,
specify) six refinement levels per geometric period.

A G-PCC encoder (e.g., G-PCC encoder 200) may be
configured to signal a value (refineVal) that specifies the
refinement level to be applied within a geometric period. If
there are N values of refinement for a particular geometric
period, the G-PCC may signal the value to specify in the
range of 0 to N-1, inclusive.

e.g., if four refinement levels are used, and a linear model

is used (allowed scale values 1, 1.25, 1.5, 1.75, 2, 2.5,
3,35,4,5,6,7,8,...), for specifying a scale value
or 3, the coarse QP may be specified to be 1, and the
refinement level may be specified to be 2.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may derive a refinedQP value from the coarse
QP Qc and refineVal. For example, if there are N levels of
refinement, the G-PCC coder may derive the refinedQP as
Qc*N+refineVal.

Specifying a model to convert the refinement indication to
a scale value is discussed in the following. In some
examples, a G-PCC coder (e.g., G-PCC encoder 200 or
G-PCC decoder 300) may use a linear model.

e.g., a linear model for N refinement levels may be
specified; if the coarse QP is x and the refinement value
is y (0<=y<N), the G-PCC coder may derive the scale
value as 2**(1+y/N).

In some examples, a G-PCC coder (e.g., G-PCC encoder

200 or G-PCC decoder 300) may use an exponential model.

e.g., an exponential model for N refinement levels may be
specified; if the coarse QP is x and the refinement value
is y (0<=y<N), the G-PCC coder may derive the scale
may as 2720,

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may use any non-linear model
to calculate the scale values from the refinement.

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may use a table based approach
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to specify the values that correspond to refinement and the
scale values may be specified at a particular bit-precision.

For example, 8 refinement levels may be specified as

ref] 148, 9, 10, 11, 12, 13, 14, 15] (this corresponds to
a linear refinement model with 8 refinement levels).
And the scale value may be specified as 2**(refy]/8);
the scale may be implemented in fixed point arithmetic
with multiplication and bitshift, and in some case an
offset before the bitshift.

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may apply different models to
different geometric periods.

For example, the G-PCC coder may apply a linear model

to a geometric period until a particular scale value, and
a table-based model for the geometric periods after the
particular scale value as follows: linear model with 4
refinement levels until period 8, and table based (with
values 8, 9, 10, 11, 12, 14) approach after 8. [1, 1.25,
1.5,2,2.5,3,3.5,4,5,6,7,8,9, 10, 11, 12, 14, 16, 18,
20, 22, 24, 28,32, .. .]

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may derive equivalent models
and step sizes/scale values using the refinedQP. The G-PCC
coder may apply the QP refinement approach to any quan-
tization process, including geometry scaling (global, or at
node level) or attribute scaling, for video coding, or the like.

When a QP offset is to be applied to a QP design above,
two techniques may be used. In a first example technique,
when refinement levels are not applied, a G-PCC encoder
(e.g., G-PCC encoder 200) may determine (e.g., specify) QP
offsets with respect to the coarse QP; when refinement levels
are applied, G-PCC encoder 200 may specify QP offsets
with respect to the refinedQP. In a second example tech-
nique, G-PCC encoder 200 may specify the QP offsets as a
coarse QP and a refinement value.

In some examples, the G-PCC coder may code data
representing a number of bits used to specify precision.
Then, depending on the number of bits, the G-PCC coder
may code a refinement value.

In some examples, a G-PCC decoder may perform a
normative scaling process that applies to an entire point
cloud frame. The G-PCC decoder may perform the global
scaling process after reconstruction of the point cloud.
G-PCC coders may code a GPS including syntax elements
of the example table below to denote the scaling process,
where “[added: “added text” | represents text that has been
added relative to the existing GPS:

Descriptor
geometry__parameter_set( ) {

gps__geom_ parameter_ set_id ue(v)
log2_ trisoup__node__size ue(v)
[added: “global_scale_ factor_log2 ue(v)”]
[added: “global_scale_ refinement_enabled_ flag u(1)’]
[added: “if( global_scale_ refinement enabled_ flag )”]

[added: “global_scale_ factor_ refinement u(3)”]
geom__scaling enabled_ flag u(l)
if( geom__scaling enabled_ flag )

geom__base_ qp__minus4 ue(v)
gps__implicit geom_ partition_ flag u(l)
if( gps__implicit_geom__partition_ flag ) {

gps__max_ num__impliqeit_ qtbt_before_ ot ue(v)

gps__min_size__implicit_ qtbt ue(v)

gps__extension_ flag u(l)
if( gps__extension_ flag )

while( more__data_ in_ byte_ stream( ) )
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-continued

Descriptor

gps__extension_ data_ flag
byte__alignment( )

u(l)
¥

Semantics for the added syntax elements may be defined
as follows:
global_scale_factor_log 2 is used to derive the global scale
factor to be applied to the positions of the point cloud. When
global-scale_factor_log 2 is equal to O, the global scale
factor is specified to be 1 and the global-scale_factor_re-
finement is not signalled. When global-scale_factor log 2 is
equal to 1, the syntax element global_scale_refinement_en-
abled_flag is signalled.
global_scale_refinement_enabled_flag equal to 1 specifies
that the syntax element global_scale_factor_refinement is
signalled. global_scale_refinement_enabled_flag equal to 0
specifies that the syntax element global_scale_factor_refine-
ment is not signalled. When not present, the value of
global_scale_refinement_enabled_flag is inferred to be
equal to 0.
global_scale_refinement_factor specifies the refinement to
the global scale factor. When not present, the value of
global_scale_refinement_factor is inferred to be equal to 0.
The value of global_scale_refinement_factor shall be in the
range of 0 to 7, inclusive.

A G-PCC coder may derive the global scale value as
follows: GlobalScale=(8+global_scale_refinement_{factor)
<<global_scale_factor_log 2

A G-PCC coder may perform a slice concatenation pro-
cess, forming outputs including:

the modified array RecPic with elements RecPic

[pointldx][attrldx] representing points in the recon-
structed point cloud frame, and

the modified variable RecPicPointCount representing the

number of points in the reconstructed point cloud
frame.

To perform this process, the G-PCC coder may initialize
RecPicPointCount to zero. The G-PCC coder may then
concatenate points and attributes of a current slice with a
reconstructed point cloud frame as follows:

for( pointldx = 0; pointldx <= gsh__num_ points_ minusl; pointldx++,
RecPicPointCount++) {
RecPic[ RecPicPointCount ][ 0] =
PointPos[ pointldx ][ 0 ] + slice__origin_ x;
RecPic[ RecPicPointCount ][ 1 ] =
PointPos[ pointldx ][ 1 ] + slice_origin_y;
RecPic[ RecPicPointCount ][ 2 ] =
PointPos[ pointldx ][ 2 ] + slice__origin_ z;
for( axis = 0; axis < 3; axis++ ) {
PointPos[ pointldx ][ axis ] = ( PointPos[ pointldx ][ axis ] *
GlobalScale + 4 ) >> 3
for( cldx = 0; cldx < NumAttributeComponents; cldx++ )
RecPic[ RecPicPointCount ][ 3 + cldx | = pointAttr[ pointldx ][
cldx ;

In another example, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may be configured to perform
a normative scaling process on an entire point cloud frame.
The G-PCC coder may perform a global scaling process
before conformance output of the point cloud.

The G-PCC coder may code syntax elements of a
sequence parameter set (SPS) to denote the scaling process.
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An example of a modifies SPS is shown below, where
“ladded: “added text” ]” represents additions to the current
G-PCC specification.

Descriptor
sequence__parameter_set( ) {
[added: “global__scale_ factor_log2 ue(v)”]
[added: “global_scale_ refinement num_ bits ue(v) 7]
[added: “if( global_scale_ refinement num_ bits )]
[added: “global_scale_ factor_ refinement u(v) ]

Semantics for the added syntax elements above may be
defined as follows:

global_scale_factor_log 2 is used to derive the global
scale factor to be applied to the positions of the point cloud.
The value of global_scale_factor_log 2 shall be in the range
of 0 to 31, inclusive.

global_scale_refinement_num_bits is used to specify the
number bits used to specify the refinement of the global
scale value. When global_scale_refinement_num_bits is
equal to 0, no refinement is applied. The value of global_s-
cale_refinement_num_bits shall be in the range of 0 to 31,
inclusive.

global_scale_refinement_factor specifies the refinement
to the global scale factor. When not present, the value of
global_scale_refinement_factor is inferred to be equal to O.
The number of bits used to signal global_scale_refinement_
factor is global_scale_refinement_num_bits.

In one alternative, global_scale_refinement_num_bits
may be coded using a fixed length code, e.g., u(5).

In one alternative, the value of global_scale_factor_log
2+global_scale_refinement_num_bits may be constrained to
be less than or equal to a certain value, e.g., 32.

In one alternative, the value of global_scale_refinement_
num_bits may be less than or equal to global_scale_factor_
log 2.

The G-PCC coder may derive the global scale value as
follows:

GlobalScaleBase=1<<global_scale_refinement_num_bits

GlobalScaleShift=global_scale_refinement_num_bits

GlobalScaleOffset=GlobalScaleShift ? 1<<(GlobalScale-

Shift-1): 0

GlobalScale=(GlobalScaleBase+global_scale_refine-

ment_factor)<<<global_scale_factor_log 2

The G-PCC coder may perform a slice concatenation
process, generating outputs including a modified array
RecPic with elements RecPic[pointldx]|[attrldx] represent-
ing points in the reconstructed point cloud frame, and a
modified variable RecPicPointCount representing the num-
ber of points in the reconstructed point cloud frame. The
G-PCC coder may initialize RecPicPointCount to a value of
zero. The G-PCC coder may concatenate points and attri-
butes of a current slice with a reconstructed point cloud
frame as follows:

for (pointldx = 0; pointldx <= geom__num_ points_minusl; pointldx++,
RecPicPointCound++) {
for (axis = 0; axis < 3; axis++)
RecPic[RecPicPointCount][axis] = ((PointPos[pointldx][axis] +
SliceOriginStv[axis]) * GlobalScale + GlobalScaleOffset ) >>
GlobalScaleShift;
for (cldx = 0; cldx < NumAttributeComponents; cIldx++)
RecPic[RecPicPointCount][3 + cldx] =
pointAttr[pointldx][cldx];
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The example for signaling of the scale is just one example
and may take other forms. That is, the techniques of this
disclosure may be performed in conjunction with other
forms of signaling the scale.

The current G-PCC specification does not have the notion
of'a normative bounding box. The SPS and the tile bounding
boxes are specified after applying the non-normative scaling
approaches. Associated with a tile, a slice may have a
bounding box specified and the coded points are clipped to
be within the slice bounding box. However, there are no
restrictions that the slice bounding box should not exceed
the tile boundary. In such cases, there is no notion of a box
defined within the G-PCC codec that contains all the points
in the point cloud.

Techniques for signal parameters associated with an addi-
tional bounding box in the SPS such that the points in the
point cloud are contained within the additional bounding
box are discussed in the following.

The parameters for such a bounding box may include one

or more of a width, a height, or a depth.

The parameters may also include an offset for the origin
of the bounding box (e.g., an X, y and z offset).

In some examples, a G-PCC encoder (e.g., G-PCC
encoder 200) may signal a minimum and maximum
values for x, y and z coordinates to specify the bound-
ing box.

For instance, a G-PCC encoder (e.g., G-PCC encoder
200) may signal one or more of six parameters to
specify a bounding box.

In some examples, a G-PCC decoder (e.g., G-PCC
decoder 300) may derive the additional bounding boxes
from the SPS bounding boxes signaled in the SPS.

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may be configured such that
restrictions points in the point cloud are contained within the
additional bounding box.

Similar additional bounding boxes may also be defined
for tiles that specify boxes that should contain the point
cloud data. For example, a G-PCC coder (e.g., G-PCC
encoder 200 or G-PCC decoder 300) may define additional
bounding boxes for tiles that specify boxes that should
contain the point cloud data.

In some examples, a G-PCC coder (e.g., G-PCC encoder
200 or G-PCC decoder 300) may derive the additional
bounding boxes from the tile bounding boxes.

A G-PCC coder (e.g., G-PCC encoder 200 or G-PCC
decoder 300) may be configured to perform clipping opera-
tions at various coding processes such that the reconstructed/
decoded points are contained within an additional bounding
box. For example, the G-PCC coder may apply such clip-
ping operations on the reconstructed point cloud, before the
reconstructed point cloud is used for prediction by other
points. The G-PCC coder may apply such clipping on the
reconstructed point clouds after the slice decoding process.
The G-PCC coder may apply such clipping on SPS bound-
ing boxes, tile bounding boxes or other bounding boxes, and
also on any respective additional bounding box.

In some examples, a G-PCC coder may code one or more
parameters associated with an SPS bounding box without
being conditioned on a presence flag. That is, the G-PCC
coder may always code these parameters in the SPS. For
example, the G-PCC coder may always code the SPS
bounding box width, height and depth values, without any
condition on the sps_bounding box_present_flag. One or
more parameters thus signalled (without presence flag) may
be used to specify the normative bounding box.
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In some examples, a G-PCC coder may code data speci-
fying a normative bounding box dimensions for point cloud
frames. The normative bounding box dimensions may be
specified in the SPS or the GPS. The SPS already contains
information describing the characteristics of the attributes.
Therefore, it would be appropriate to include the character-
istics (i.e., bounding box) of the geometry also in the same
location (e.g., the SPS).

In some examples, the G-PCC coder may specify the
origin of the normative box (which is assumed to be (0,0,0).
For example, the G-PCC coder may code values specifying
an x-, y-, and z-offset for the origin of the normative
bounding box.

In some examples, the G-PCC coder may code data
specifying the normative bounding box for the point cloud
frame such that all the reconstructed points in the point cloud
are constrained to be within the normative bounding box.
The reconstructed point positions would be clipped to those
bounding boxes. The slice origin may also be signalled with
respect to the origin of this normative bounding box (in this
proposal (0,0,0)).

The G-PCC coder may code an SPS including the fol-
lowing additional syntax elements relative to the existing
SPS:

point_cloud_ frame_ dim_ num_ bits_ minusl ue(v)
point_ cloud_ frame_ width u(v)
point_cloud_ frame_ height u(v)
point_ cloud_ frame_ depth u(v)

Semantics for these additional syntax elements may be
defined as follows: point_cloud_frame_dim_num_bits_mi-
nusl plus 1 specifies the number of bits used to signal the
syntax elements point_cloud_frame_width, point_cloud_
frame_height and point_cloud_frame_depth. The value of
point_cloud_frame_dim num bits_minus]l shall be in the
range of 0 to 31, inclusive.
point_cloud_frame_width, point_cloud_frame_height, and
point_cloud_frame_depth are used to specify the width,
height and depth of the bounding box specified for the point
cloud frames that refer to this GPS. The number of bits used
to signal these syntax elements is equal to point_cloud_fra-
me_dim_num_bits_minus1+1.

In some examples, the G-PCC coder may code data
representing a scaled version of the point cloud frame width,
depth, and height. The G-PCC coder may code syntax
elements having values specifying the scale value used for
one or more of width, depth, and/or height.

Furthermore, the G-PCC coder may clip reconstructed
points in the slice concatenation process to the point cloud
frame dimensions specified above. For example, the G-PCC
coder may perform the following process:

for( pointldx = 0; pointldx <= gsh_ num_ points_ minusl; pointIdx++,
RecPicPointCount++) {
RecPic[ RecPicPointCount ][ 0 ] = Min( PointPos[ pointldx ][ 0 ] +
slice__origin_ x, point_ cloud__frame_ width );
RecPic[ RecPicPointCount ][ 1 ] = Min( PointPos[ pointldx ][ 1 ] +
slice_origin_y, point_ cloud_ frame_ height );
RecPic[ RecPicPointCount ][ 2 ] = Min( PointPos[ pointldx ][ 2 ] +
slice_origin_ z, point_cloud_ frame_ depth );
for( cldx = 0; cIdx < NumAttributeComponents; cldx++ )
RecPic[ RecPicPointCount ][ 3 + cldx | =
pointAttr| pointldx ][ cIdx ];
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If the global normative scaling approach in the previous
section is also used, the G-PCC coder may apply the scaling
before clipping to the normative bounding.

In some examples, the G-PCC coder may apply the global
normative scaling after clipping the reconstructed point
positions to the normative bounding box.

In another example, the G-PCC coder may reuse the SPS
bounding box to code data representing a normative bound-
ing box. That is, the G-PCC coder may be configured to use
the signaling of the SPS bounding box to code data repre-
senting the normative bounding box according to the fol-
lowing modifications to the SPS bounding box:

sps__bounding box__present__flag

if( sps__bounding_ box_ present_flag ) {
sps__bounding_ box_ offset_ x
sps__bounding_ box_ offset_y
sps__bounding_ box_ offset_z

u(1)

se(v)
se(v)
se(v)

sps__bounding  box_ offset_log2_ scale ue(v)
sps__bounding box_ size_ width ue(v)
sps__bounding box_ size_ height ue(v)
sps__bounding box_ size_ depth ue(v)

The G-PCC coder may use the values of sps_bounding
box_size_width, sps_bounding_box_size_height, and sps_
bounding_box_size_depth to specify the normative bound-
ing box. The G-PCC coder may use these values to clip the
geometry position coordinates of the points accordingly.

FIG. 5 is a flowchart illustrating an example method for
encoding geometry-based point cloud data according to the
techniques of this disclosure. The method of FIG. 5 is
explained with respect to G-PCC encoder 200, but may be
performed by other such devices.

Initially, G-PCC encoder 200 may receive a frame of
point cloud data. G-PCC encoder 200 may apply a transform
to coordinates of points in the point cloud data (350). The
coordinates may also be referred to as position values, where
each position value may include values for an x-, y-, and
z-coordinate of a corresponding point. Transformation of the
coordinates may result in data being expressed in a trans-
form domain. G-PCC encoder 200 may then voxelize the
transform coordinates (352).

G-PCC encoder 200 may further, according to the tech-
niques of this disclosure, determine a global quantization
(scaling) factor (354). The global quantization (scaling)
factor may generally indicate an amount of quantization
applied to the position values to generate quantized position
values. The global quantization (scaling) factor may be
expressed as a combination (e.g., concatenation) of a power
of two value and a refinement value, as discussed above.
G-PCC encoder 200 may further encode the quantization
factor data (356), e.g., the exponent for the power of two
value and the refinement value. The refinement value may be
expressed in a certain number of bits, and G-PCC encoder
200 may also encode the value of the number of bits for the
refinement value. As noted above, for example, G-PCC
encoder 200 may encode a value for global_scale_factor_log
2 as the exponent for the power of two value, a value for
global_scale_refinement_num_bits as the number of bits for
the refinement value, and a value for global_scale_factor_
refinement as the refinement value (expressed using the
number of bits indicated by global_scale_refinement_num_
bits). G-PCC encoder 200 may also quantize the position
values using the global quantization (scaling) factor (358).



US 12,002,244 B2

37

G-PCC encoder 200 may then generate an octree using
the quantized voxelized transform coefficients (360). G-PCC
encoder 200 may then encode the octree and the position
values (362).

FIG. 6 is a flowchart illustrating an example method for
decoding geometry-based point cloud data according to the
techniques of this disclosure. The method of FIG. 6 is
explained with respect to G-PCC decoder 300, but may be
performed by other such devices.

Initially, G-PCC decoder 300 decodes data for an octree
and position values for points within bounding boxes
defined by the octree (380). G-PCC decoder 300 may then
generate an octree using the octree data (382). The octree
includes a root node and, for each node, either zero or eight
child nodes, depending on whether the current node is
partitioned into child nodes or not. Leaf nodes of the octree
may correspond to bounding boxes enclosing one or more
points of the geometry-based point cloud data.

G-PCC decoder 300 may also decode scaling factor data
(384). For example, G-PCC decoder 300 may decode data
representing a logarithmic value for a power of two portion
of a global scaling factor, a number of bits for a refinement
value, and the refinement value (represented using the
number of bits).

G-PCC decoder 300 may then determine the global scal-
ing factor from the decoded scaling factor data (386). For
example, as noted above, the global scaling factor may be
represented as a value including a power of two component
and a refinement component, which are concatenated or
added together. G-PCC decoder 300 may use the logarithmic
value, e.g., N, to calculate the power of two component, e.g.,
2%, G-PCC decoder 300 may then calculate the impact of a
refinement value, R (having B bits), according to

52

G-PCC decoder 300 may then concatenate the power of two
value with the refinement value to determine the global
scaling factor.

Ultimately, G-PCC decoder 300 may then scale the posi-
tion values for the points of the point cloud data (388) using
the global scaling factor. In some examples, if the scaling of
position values for a given point results in the point exceed-
ing a corresponding bounding box, G-PCC decoder 300 may
clip the scaled position values such that the position of the
point does not exceed the boundaries of the corresponding
bounding box.

In this manner, the method of FIG. 6 represents an
example of a method of decoding geometry-based point
cloud data, the method including decoding a frame of
geometry-based point cloud data including a plurality of
points, each of the points being associated with position
values defining a respective position of the point; determin-
ing a global scaling factor for the frame; and scaling the
position values of each of the points by the global scaling
factor.

Examples in the various aspects of this disclosure may be
used individually or in any combination.

The following clauses summarize certain techniques of
this disclosure.

Clause 1: A method comprising: determining a scaling
factor of a point cloud using a non-normative scaling syntax
element; applying the scaling factor to the point cloud to
generate a scaled point cloud; determining whether the
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scaled point cloud is in violation of an SPS boundary box
constraint; and coding the scaled point cloud in response to
determining that the scaled point cloud is not in violation of
the SPS boundary box constraint.

Clause 2: A method comprising: determining that norma-
tive scaling is enabled based on a syntax element for a point
cloud compression; determining a global scaling factor of a
point cloud using a normative scaling syntax element;
applying the global factor to the point cloud to generate a
global scaled point cloud; and coding the global scaled point
cloud.

Clause 3: A method comprising: determining a scale
power value based on a syntax element for a point cloud
compression or one or more QP values; determining a
scaling factor of a point cloud using the scale power value
and a QP value; applying the scaling factor to the point cloud
to generate a scaled point cloud; and coding the scaled point
cloud.

Clause 4: A method comprising: determining a bounding
box within a SPS boundary box based on a syntax element
for a point cloud compression; determining a point cloud for
the point cloud compression, wherein determining the point
cloud comprises determining the point cloud to be within the
boundary box; and coding the point cloud.

Clause 5: A method comprising the method of any of
clauses 1-4, further comprising performing a clipping opera-
tion to clip a reconstructed point cloud.

Clause 6: A method comprising coding a parameter set
including a bounding box syntax structure.

Clause 7: The method of any of clauses 1-6, further
comprising: determining one or more quantization or scaling
parameters for respective components of a point cloud; and
quantizing or scaling the components using the respective
quantization or scaling parameters.

Clause 8: The method of clause 7, wherein determining
comprises coding data representing the quantization or scal-
ing parameters.

Clause 9: The method of clause 7, wherein determining
comprises inferring the quantization or scaling parameters.

Clause 10: A device for processing a point cloud, the
device comprising one or more means for performing the
method of any of clauses 1-9.

Clause 11: The device of clause 10, wherein the one or
more means comprise one or more processors implemented
in circuitry.

Clause 12: The device of any of clauses 10 or 11, further
comprising a memory to store the data representing the point
cloud.

Clause 13: The device of any of clauses 10-12, wherein
the device comprises a decoder.

Clause 14: The device of any of clauses 10-13, wherein
the device comprises an encoder.

Clause 15: The device of any of clauses 10-14, further
comprising a device to generate the point cloud.

Clause 16: The device of any of clauses 10-15, further
comprising a display to present imagery based on the point
cloud.

Clause 17: A computer-readable storage medium having
stored thereon instructions that, when executed, cause one or
more processors to perform the method of any of clauses
1-9.

Clause 18: A method of decoding geometry-based point
cloud data, the method comprising: decoding a frame of
geometry-based point cloud data including a plurality of
points, each of the points being associated with position
values defining a respective position of the point; determin-
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ing a global scaling factor for the frame; and scaling the
position values of each of the points by the global scaling
factor.

Clause 19: The method of clause 18, wherein prior to
scaling, the position values are expressed using a first bit
depth, and wherein after scaling, the scaled position values
are expressed using a second bit depth higher than the first
bit depth.

Clause 20: The method of clause 19, further comprising
decoding data representative of the second bit depth.

Clause 21: The method of any of clauses 19 and 20,
wherein determining the global scaling factor comprises
decoding data representative of a number of bits used to
specify a refinement value to be applied to an initial global
scaling factor.

Clause 22: The method of clause 21, further comprising
decoding a scale factor refinement value having the number
of bits.

Clause 23: The method of clause 22, wherein determining
the global scaling factor comprises: decoding data repre-
senting the initial global scaling factor; determining a global
scale base value according to 1<<the number of bits used to
specify the refinement value, wherein ‘<<’ represents a
bitwise left shift operator; determining a global scale shift
value according to 1<<the number of bits used to specify the
refinement value; determining a global scale offset value
according to: when the global scale shift value is greater than
zero, 1<<the global scale shift value minus 1; or when the
global scale shift value is equal to zero, the global scale
offset value being equal to zero; and calculating the global
scaling factor according to (the global scale base value plus
the global scale refinement value)<<the initial global scaling
factor.

Clause 24: The method of any of clauses 18-23, further
comprising partitioning the frame into one or more bounding
boxes, at least one of the bounding boxes including a subset
of the points, wherein scaling the position values of the
subset of the points comprises: determining that scaling of
one of the position values for one of the subset of the points
would cause the one of the position values to exceed the at
least one of the bounding boxes; and clipping the one of the
position values for the one of the subset of the points to
prevent the one of the position values from exceeding the at
least one of the bounding boxes.

Clause 25: The method of any of clauses 18-24, further
comprising encoding the frame prior to decoding the frame.

Clause 26: A device for decoding geometry-based point
cloud data, the device comprising: a memory configured to
store geometry-based point cloud data; and one or more
processors implemented in circuitry and configured to:
decode a frame of the geometry-based point cloud data
including a plurality of points, each of the points being
associated with position values defining a respective posi-
tion of the point; determine a global scaling factor for the
frame; and scale the position values of each of the points by
the global scaling factor.

Clause 27: The device of clause 26, wherein prior to
scaling, the position values are expressed using a first bit
depth, and wherein after scaling, the scaled position values
are expressed using a second bit depth higher than the first
bit depth.

Clause 28: The device of clause 27, wherein the one or
more processors are further configured to decode data rep-
resentative of the second bit depth.

Clause 29: The device of any of clauses 27 and 28,
wherein to determine the global scaling factor, the one or
more processors are configured to decode data representa-
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tive of a number of bits used to specify a refinement value
to be applied to an initial global scaling factor.

Clause 30: The device of clause 29, wherein the one or
more processors are further configured to decode a scale
factor refinement value having the number of bits.

Clause 31: The device of clause 30, wherein to determine
the global scaling factor, the one or more processors are
configured to: decode data representing the initial global
scaling factor; determine a global scale base value according
to 1<<the number of bits used to specify the refinement
value, wherein ‘<<’ represents a bitwise left shift operator;
determine a global scale shift value according to 1<<the
number of bits used to specify the refinement value; deter-
mine a global scale offset value according to: when the
global scale shift value is greater than zero, 1<<the global
scale shift value minus 1; or when the global scale shift
value is equal to zero, the global scale offset value being
equal to zero; and calculate the global scaling factor accord-
ing to (the global scale base value plus the global scale
refinement value)<<the initial global scaling factor.

Clause 32: The device of any of clauses 26-31, wherein
the one or more processors are further configured to partition
the frame into one or more bounding boxes, at least one of
the bounding boxes including a subset of the points, and
wherein to scale the position values of the subset of the
points, the one or more processors are configured to: deter-
mine that scaling of one of the position values for one of the
subset of the points would cause the one of the position
values to exceed the at least one of the bounding boxes; and
clip the one of the position values for the one of the subset
of the points to prevent the one of the position values from
exceeding the at least one of the bounding boxes.

Clause 33: The device of any of clauses 26-32, wherein
the one or more processors are further configured to encode
the frame prior to decoding the frame.

Clause 34: The device of any of clauses 26-33, further
comprising a display configured to display the decoded
geometry-based point cloud data.

Clause 35: The device of any of clauses 26-34, wherein
the device comprises one or more of a camera, a computer,
a mobile device, a broadcast receiver device, or a set-top
box.

Clause 36: A computer-readable storage medium having
stored thereon instructions that, when executed, cause a
processor to: decode a frame of geometry-based point cloud
data including a plurality of points, each of the points being
associated with position values defining a respective posi-
tion of the point; determine a global scaling factor for the
frame; and scale the position values of each of the points by
the global scaling factor.

Clause 37: The computer-readable storage medium of
clause 36, wherein prior to scaling, the position values are
expressed using a first bit depth, and wherein after scaling,
the scaled position values are expressed using a second bit
depth higher than the first bit depth.

Clause 38: The computer-readable storage medium of
clause 37, further comprising instructions that cause the
processor to decode data representative of the second bit
depth.

Clause 39: The computer-readable storage medium of any
of clauses 37 and 38, wherein the instructions that cause the
processor to determine the global scaling factor comprise
instructions that cause the processor to decode data repre-
sentative of a number of bits used to specify a refinement
value to be applied to an initial global scaling factor.
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Clause 40: The computer-readable storage medium of
clause 39, further comprising instructions that cause the
processor to decode a scale factor refinement value having
the number of bits.

Clause 41: The computer-readable storage medium 40,
wherein the instructions that cause the processor to deter-
mine the global scaling factor comprise instructions that
cause the processor to: decode data representing the initial
global scaling factor; determine a global scale base value
according to 1<<the number of bits used to specity the
refinement value, wherein ‘<<’ represents a bitwise left shift
operator; determine a global scale shift value according to
1<<the number of bits used to specify the refinement value;
determine a global scale offset value according to: when the
global scale shift value is greater than zero, 1<<the global
scale shift value minus 1; or when the global scale shift
value is equal to zero, the global scale offset value being
equal to zero; and calculate the global scaling factor accord-
ing to (the global scale base value plus the global scale
refinement value)<<the initial global scaling factor.

Clause 42: The computer-readable storage medium of any
of clauses 36-41, further comprising instructions that cause
the processor to partition the frame into one or more
bounding boxes, at least one of the bounding boxes includ-
ing a subset of the points, wherein scaling the position
values of the subset of the points comprises: determine that
scaling of one of the position values for one of the subset of
the points would cause the one of the position values to
exceed the at least one of the bounding boxes; and clip the
one of the position values for the one of the subset of the
points to prevent the one of the position values from
exceeding the at least one of the bounding boxes.

Clause 43: The computer-readable storage medium of any
of clauses 36-42, further comprising instructions that cause
the processor to encode the frame prior to decoding the
frame.

Clause 44: A device for decoding geometry-based point
cloud data, the device comprising: means for decoding a
frame of geometry-based point cloud data including a plu-
rality of points, each of the points being associated with
position values defining a respective position of the point;
determining a global scaling factor for the frame; and
scaling the position values of each of the points by the global
scaling factor.

Clause 45: The device of clause 44, wherein prior to
scaling, the position values are expressed using a first bit
depth, and wherein after scaling, the scaled position values
are expressed using a second bit depth higher than the first
bit depth.

Clause 46: The device of clause 45, further comprising
means for decoding data representative of the second bit
depth.

Clause 47: The device of any of clauses 45 and 46,
wherein the means for determining the global scaling factor
comprises means for decoding data representative of a
number of bits used to specify a refinement value to be
applied to an initial global scaling factor.

Clause 48: The device of clause 47, further comprising
means for decoding a scale factor refinement value having
the number of bits.

Clause 49: The device of clause 48, wherein the means for
determining the global scaling factor comprises: means for
decoding data representing the initial global scaling factor;
means for determining a global scale base value according
to 1<<the number of bits used to specify the refinement
value, wherein ‘<<’ represents a bitwise left shift operator;
means for determining a global scale shift value according
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to 1<<the number of bits used to specify the refinement
value; means for determining a global scale offset value
according to: when the global scale shift value is greater than
zero, 1<<the global scale shift value minus 1; or when the
global scale shift value is equal to zero, the global scale
offset value being equal to zero; and means for calculating
the global scaling factor according to (the global scale base
value plus the global scale refinement value)<<the initial
global scaling factor.

Clause 50: The device of any of clauses 44-49, further
comprising means for partitioning the frame into one or
more bounding boxes, at least one of the bounding boxes
including a subset of the points, wherein the means for
scaling the position values of the subset of the points
comprises: means for determining that scaling of one of the
position values for one of the subset of the points would
cause the one of the position values to exceed the at least one
of'the bounding boxes; and means for clipping the one of the
position values for the one of the subset of the points to
prevent the one of the position values from exceeding the at
least one of the bounding boxes.

Clause 51: The device of any of clauses 44-50, further
comprising means for encoding the frame prior to decoding
the frame.

Clause 52: A method of decoding geometry-based point
cloud data, the method comprising: decoding a frame of
geometry-based point cloud data including a plurality of
points, each of the points being associated with position
values defining a respective position of the point; determin-
ing a global scaling factor for the frame; and scaling the
position values of each of the points by the global scaling
factor.

Clause 53: The method of clause 52, wherein prior to
scaling, the position values are expressed using a first bit
depth, and wherein after scaling, the scaled position values
are expressed using a second bit depth higher than the first
bit depth.

Clause 54: The method of clause 53, further comprising
decoding data representative of the second bit depth.

Clause 55: The method of clause 53, wherein determining
the global scaling factor comprises decoding data represen-
tative of a number of bits used to specify a refinement value
to be applied to an initial global scaling factor.

Clause 56: The method of clause 55, further comprising
decoding a scale factor refinement value having the number
of bits.

Clause 57: The method of clause 56, wherein determining
the global scaling factor comprises: decoding data repre-
senting the initial global scaling factor; determining a global
scale base value according to 1<<the number of bits used to
specify the refinement value, wherein ‘<<’ represents a
bitwise left shift operator; determining a global scale shift
value according to 1<<the number of bits used to specify the
refinement value; determining a global scale offset value
according to: when the global scale shift value is greater than
zero, 1<<the global scale shift value minus 1; or when the
global scale shift value is equal to zero, the global scale
offset value being equal to zero; and calculating the global
scaling factor according to (the global scale base value plus
the global scale refinement value)<<the initial global scaling
factor.

Clause 58: The method of clause 52, further comprising
partitioning the frame into one or more bounding boxes, at
least one of the bounding boxes including a subset of the
points, wherein scaling the position values of the subset of
the points comprises: determining that scaling of one of the
position values for one of the subset of the points would
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cause the one of the position values to exceed the at least one
of the bounding boxes; and clipping the one of the position
values for the one of the subset of the points to prevent the
one of the position values from exceeding the at least one of
the bounding boxes.

Clause 59: The method of clause 52, further comprising
encoding the frame prior to decoding the frame.

Clause 60: A device for decoding geometry-based point
cloud data, the device comprising: a memory configured to
store geometry-based point cloud data; and one or more
processors implemented in circuitry and configured to:
decode a frame of the geometry-based point cloud data
including a plurality of points, each of the points being
associated with position values defining a respective posi-
tion of the point; determine a global scaling factor for the
frame; and scale the position values of each of the points by
the global scaling factor.

Clause 61: The device of clause 60, wherein prior to
scaling, the position values are expressed using a first bit
depth, and wherein after scaling, the scaled position values
are expressed using a second bit depth higher than the first
bit depth.

Clause 62: The device of clause 61, wherein the one or
more processors are further configured to decode data rep-
resentative of the second bit depth.

Clause 63: The device of clause 61, wherein to determine
the global scaling factor, the one or more processors are
configured to decode data representative of a number of bits
used to specify a refinement value to be applied to an initial
global scaling factor.

Clause 64: The device of clause 63, wherein the one or
more processors are further configured to decode a scale
factor refinement value having the number of bits.

Clause 65: The device of clause 64, wherein to determine
the global scaling factor, the one or more processors are
configured to: decode data representing the initial global
scaling factor; determine a global scale base value according
to 1<<the number of bits used to specify the refinement
value, wherein ‘<<’ represents a bitwise left shift operator;
determine a global scale shift value according to 1<<the
number of bits used to specify the refinement value; deter-
mine a global scale offset value according to: when the
global scale shift value is greater than zero, 1<<the global
scale shift value minus 1; or when the global scale shift
value is equal to zero, the global scale offset value being
equal to zero; and calculate the global scaling factor accord-
ing to (the global scale base value plus the global scale
refinement value)<<the initial global scaling factor.

Clause 66: The device of clause 60, wherein the one or
more processors are further configured to partition the frame
into one or more bounding boxes, at least one of the
bounding boxes including a subset of the points, and
wherein to scale the position values of the subset of the
points, the one or more processors are configured to: deter-
mine that scaling of one of the position values for one of the
subset of the points would cause the one of the position
values to exceed the at least one of the bounding boxes; and
clip the one of the position values for the one of the subset
of the points to prevent the one of the position values from
exceeding the at least one of the bounding boxes.

Clause 67: The device of clause 60, wherein the one or
more processors are further configured to encode the frame
prior to decoding the frame.

Clause 68: The device of clause 60, further comprising a
display configured to display the decoded geometry-based
point cloud data.
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Clause 69: The device of clause 60, wherein the device
comprises one or more of a vehicle, a camera, a computer,
a mobile device, a broadcast receiver device, or a set-top
box.

Clause 70: A computer-readable storage medium having
stored thereon instructions that, when executed, cause a
processor to: decode a frame of geometry-based point cloud
data including a plurality of points, each of the points being
associated with position values defining a respective posi-
tion of the point; determine a global scaling factor for the
frame; and scale the position values of each of the points by
the global scaling factor.

Clause 71: The computer-readable storage medium of
clause 70, wherein prior to scaling, the position values are
expressed using a first bit depth, and wherein after scaling,
the scaled position values are expressed using a second bit
depth higher than the first bit depth.

Clause 72: The computer-readable storage medium of
clause 71, further comprising instructions that cause the
processor to decode data representative of the second bit
depth.

Clause 73: The computer-readable storage medium of
clause 71, wherein the instructions that cause the processor
to determine the global scaling factor comprise instructions
that cause the processor to decode data representative of a
number of bits used to specify a refinement value to be
applied to an initial global scaling factor.

Clause 74: The computer-readable storage medium of
clause 73, further comprising instructions that cause the
processor to decode a scale factor refinement value having
the number of bits.

Clause 75: The computer-readable storage medium 74,
wherein the instructions that cause the processor to deter-
mine the global scaling factor comprise instructions that
cause the processor to: decode data representing the initial
global scaling factor; determine a global scale base value
according to 1<<the number of bits used to specify the
refinement value, wherein ‘<<’ represents a bitwise left shift
operator; determine a global scale shift value according to
1<<the number of bits used to specify the refinement value;
determine a global scale offset value according to: when the
global scale shift value is greater than zero, 1<<the global
scale shift value minus 1; or when the global scale shift
value is equal to zero, the global scale offset value being
equal to zero; and calculate the global scaling factor accord-
ing to (the global scale base value plus the global scale
refinement value)<<the initial global scaling factor.

Clause 76: The computer-readable storage medium of
clause 70, further comprising instructions that cause the
processor to partition the frame into one or more bounding
boxes, at least one of the bounding boxes including a subset
of the points, wherein scaling the position values of the
subset of the points comprises: determine that scaling of one
of the position values for one of the subset of the points
would cause the one of the position values to exceed the at
least one of the bounding boxes; and clip the one of the
position values for the one of the subset of the points to
prevent the one of the position values from exceeding the at
least one of the bounding boxes.

Clause 77: The computer-readable storage medium of
clause 70, further comprising instructions that cause the
processor to encode the frame prior to decoding the frame.

Clause 78: A device for decoding geometry-based point
cloud data, the device comprising: means for decoding a
frame of geometry-based point cloud data including a plu-
rality of points, each of the points being associated with
position values defining a respective position of the point;
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determining a global scaling factor for the frame; and
scaling the position values of each of the points by the global
scaling factor.

Clause 79: The device of clause 78, wherein prior to
scaling, the position values are expressed using a first bit
depth, and wherein after scaling, the scaled position values
are expressed using a second bit depth higher than the first
bit depth.

Clause 80: The device of clause 79, further comprising
means for decoding data representative of the second bit
depth.

Clause 81: The device of clause 79, wherein the means for
determining the global scaling factor comprises means for
decoding data representative of a number of bits used to
specify a refinement value to be applied to an initial global
scaling factor.

Clause 82: The device of clause 81, further comprising
means for decoding a scale factor refinement value having
the number of bits.

Clause 83: The device of clause 82, wherein the means for
determining the global scaling factor comprises: means for
decoding data representing the initial global scaling factor;
means for determining a global scale base value according
to 1<<the number of bits used to specify the refinement
value, wherein ‘<<’ represents a bitwise left shift operator;
means for determining a global scale shift value according
to 1<<the number of bits used to specify the refinement
value; means for determining a global scale offset value
according to: when the global scale shift value is greater than
zero, 1<<the global scale shift value minus 1; or when the
global scale shift value is equal to zero, the global scale
offset value being equal to zero; and means for calculating
the global scaling factor according to (the global scale base
value plus the global scale refinement value)<<the initial
global scaling factor.

Clause 84: The device of clause 78, further comprising
means for partitioning the frame into one or more bounding
boxes, at least one of the bounding boxes including a subset
of the points, wherein the means for scaling the position
values of the subset of the points comprises: means for
determining that scaling of one of the position values for one
of the subset of the points would cause the one of the
position values to exceed the at least one of the bounding
boxes; and means for clipping the one of the position values
for the one of the subset of the points to prevent the one of
the position values from exceeding the at least one of the
bounding boxes.

Clause 85: The device of clause 78, further comprising
means for encoding the frame prior to decoding the frame.

Clause 86: A method of encoding point cloud data, the
method comprising: encoding a frame of point cloud data
including a plurality of points, each of the points being
associated with position values defining a respective posi-
tion of the point; determining an initial global scaling factor
for the frame; determining a number of bits used to specify
a refinement value to be applied to the initial global scaling
factor; determining a scale factor refinement value having
the number of bits; and generating a bitstream including data
representing the encoded frame, the number of bits used to
specify the refinement value, and the scale factor refinement
value.

It is to be recognized that depending on the example,
certain acts or events of any of the techniques described
herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described
acts or events are necessary for the practice of the tech-
niques). Moreover, in certain examples, acts or events may
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be performed concurrently, e.g., through multi-threaded
processing, interrupt processing, or multiple processors,
rather than sequentially.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium and
executed by a hardware-based processing unit.

Computer-readable media may include computer-read-
able storage media, which corresponds to a tangible medium
such as data storage media, or communication media includ-
ing any medium that facilitates transfer of a computer
program from one place to another, e.g., according to a
communication protocol. In this manner, computer-readable
media generally may correspond to (1) tangible computer-
readable storage media which is non-transitory or (2) a
communication medium such as a signal or carrier wave.
Data storage media may be any available media that can be
accessed by one or more computers or one or more proces-
sors to retrieve instructions, code and/or data structures for
implementation of the techniques described in this disclo-
sure. A computer program product may include a computer-
readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transitory media, but
are instead directed to non-transitory, tangible storage
media. Disk and disc, as used herein, includes compact disc
(CD), laser disc, optical disc, digital versatile disc (DVD),
floppy disk and Blu-ray disc, where disks usually reproduce
data magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable gate arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the terms “processor” and “process-
ing circuitry,” as used herein may refer to any of the
foregoing structures or any other structure suitable for
implementation of the techniques described herein. In addi-
tion, in some aspects, the functionality described herein may
be provided within dedicated hardware and/or software
modules configured for encoding and decoding, or incorpo-
rated in a combined codec. Also, the techniques could be
fully implemented in one or more circuits or logic elements.

The techniques of this disclosure may be implemented in
a wide variety of devices or apparatuses, including a wire-
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are
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described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a col-
lection of interoperative hardware units, including one or
more processors as described above, in conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What is claimed is:

1. A method of decoding point cloud data, the method
comprising:

decoding a frame of point cloud data including a plurality

of points, each of the points being associated with
position values defining a respective position of the
point;

decoding a sequence parameter set (SPS) for the frame of

point cloud data, including:

decoding an initial global scale value from the SPS;

decoding data from the SPS representing a number of
bits for a scale factor refinement value; and

decoding the scale factor refinement value from the
SPS, the scale factor refinement value having the
number of bits;

determining a global scaling factor for the frame using the

initial scale value, the value representing the number of
bits for the scale factor refinement value, and the scale
factor refinement value, the global scaling factor
including an integer component and a non-integer
component; and

scaling the position values of each of the points by the

global scaling factor.

2. The method of claim 1, wherein prior to scaling, the
position values are expressed using a first bit depth, and
wherein after scaling, the scaled position values are
expressed using a second bit depth different than the first bit
depth.

3. The method of claim 2, further comprising decoding
data representative of the second bit depth.

4. The method of claim 2, wherein the second bit depth is
higher than the first bit depth.

5. The method of claim 2, wherein the second bit depth
represents integer precision and the first bit depth represents
fractional precision.

6. The method of claim 1, wherein determining the global
scaling factor comprises:

determining a global scale base value according to 1<<the

number of bits used to specify the scale factor refine-
ment value, wherein ‘<<’ represents a bitwise left shift
operator;

determining a global scale shift value according to the

number of bits used to specify the scale factor refine-
ment value;

determining a global scale offset value according to:

when the global scale shift value is greater than zero,
1<<the global scale shift value minus 1; or
when the global scale shift value is equal to zero, the
global scale offset value being equal to zero; and
calculating the global scaling factor according to (the
global scale base value plus the scale factor refinement
value)<<the initial global scale value.

7. The method of claim 1, further comprising partitioning
the frame into one or more bounding boxes, at least one of
the bounding boxes including a subset of the points, wherein
scaling the position values of the subset of the points
comprises:
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determining that scaling of one of the position values for
one of the subset of the points would cause the one of
the position values to exceed the at least one of the
bounding boxes; and

clipping the one of the position values for the one of the

subset of the points to prevent the one of the position
values from exceeding the at least one of the bounding
boxes.

8. The method of claim 1, further comprising partitioning
the frame into two or more bounding boxes, at least one of
the bounding boxes including a subset of the points, wherein
scaling the position values of the subset of the points
comprises:

determining that scaling of one of the position values for

one of the subset of the points would cause the one of
the position values to exceed the at least one of the
bounding boxes; and

constraining the one of the position values to be within the

at least one of the bounding boxes.

9. The method of claim 1, further comprising encoding the
frame prior to decoding the frame.

10. A device for decoding point cloud data, the device
comprising:

a memory configured to store point cloud data; and

a processing system comprising one or more processors

implemented in circuitry, the processing system being
configured to:
decode a frame of the point cloud data including a
plurality of points, each of the points being associ-
ated with position values defining a respective posi-
tion of the point;
decode a sequence parameter set (SPS) for the frame of
point cloud data, wherein to decode the SPS, the
processing system is configured to:
decode an initial global scale value from the SPS;
decode data from the SPS representing a number of
bits for a scale factor refinement value; and
decode the scale factor refinement value from the
SPS, the scale factor refinement value having the
number of bits;
determine a global scaling factor for the frame using
the initial scale value, the value representing the
number of bits for the scale factor refinement value,
and the scale factor refinement value, the global
scaling factor including an integer component and a
non-integer component; and
scale the position values of each of the points by the
global scaling factor.

11. The device of claim 10, wherein prior to scaling, the
position values are expressed using a first bit depth, and
wherein after scaling, the scaled position values are
expressed using a second bit depth different than the first bit
depth.

12. The device of claim 11, wherein the processing system
is further configured to decode data representative of the
second bit depth.

13. The device of claim 10, wherein to determine the
global scaling factor, the processing system is configured to:

determine a global scale base value according to 1<<the

number of bits used to specify the scale factor refine-
ment value, wherein ‘<< represents a bitwise left shift
operator,

determine a global scale shift value according to the

number of bits used to specify the scale factor refine-
ment value;
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determine a global scale offset value according to:
when the global scale shift value is greater than zero,
1<<the global scale shift value minus 1; or
when the global scale shift value is equal to zero, the
global scale offset value being equal to zero; and
calculate the global scaling factor according to (the global
scale base value plus the scale factor refinement value)
<<the initial global scale value.

14. The device of claim 10, wherein the processing system
is further configured to partition the frame into one or more
bounding boxes, at least one of the bounding boxes includ-
ing a subset of the points, and wherein to scale the position
values of the subset of the points, the processing system is
configured to:

determine that scaling of one of the position values for

one of the subset of the points would cause the one of
the position values to exceed the at least one of the
bounding boxes; and

clip the one of the position values for the one of the subset

of the points to prevent the one of the position values
from exceeding the at least one of the bounding boxes.

15. The device of claim 10, wherein the processing system
is further configured to encode the frame prior to decoding
the frame.

16. The device of claim 10, further comprising a display
configured to display the decoded point cloud data.

17. The device of claim 10, wherein the device comprises
one or more of a vehicle, a camera, a computer, a mobile
device, a broadcast receiver device, or a set-top box.

18. A non-transitory computer-readable storage medium
having stored thereon instructions that, when executed,
cause a processor to:

decode a frame of point cloud data including a plurality of

points, each of the points being associated with position

values defining a respective position of the point;

decode a sequence parameter set (SPS) for the frame of

point cloud data, wherein the instructions that cause the

processor to decode the SPS comprise instructions that

cause the processor to:

decode an initial global scale value from the SPS;

decode data from the SPS representing a number of bits
for a scale factor refinement value; and

decode the scale factor refinement value from the SPS,
the scale factor refinement value having the number
of bits;

determine a global scaling factor for the frame using the

initial scale value, the value representing the number of
bits for the scale factor refinement value, and the scale
factor refinement value, the global scaling factor
including an integer component and a non-integer
component; and

scale the position values of each of the points by the

global scaling factor.
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19. A device for decoding point cloud data, the device
comprising:
means for decoding a frame of point cloud data including
a plurality of points, each of the points being associated
with position values defining a respective position of
the point;
means for decoding a sequence parameter set (SPS) for
the frame of point cloud data, including:
means for decoding an initial global scale value from
the SPS;
means for decoding data from the SPS representing a
number of bits for a scale factor refinement value;
and
means for decoding the scale factor refinement value
from the SPS, the scale factor refinement value
having the number of bits;
means for determining a global scaling factor for the
frame using the initial scale value, the value represent-
ing the number of bits for the scale factor refinement
value, and the scale factor refinement value, the global
scaling factor including an integer component and a
non-integer component; and
means for scaling the position values of each of the points
by the global scaling factor.
20. A method of encoding point cloud data, the method
comprising:
downscaling a frame of point cloud data including a
plurality of points using a global scaling factor, the
global scaling factor including an integer component
and a non-integer component, to form a downscaled
frame of point cloud data, each of the points being
associated with position values defining a respective
position of the point;
determining an initial global scaling factor for the frame
for the global scaling factor;
determining a number of bits for a scale factor refinement
value;
determining the scale factor refinement value for the
global scaling factor, the scale factor refinement value
having the number of bits;
encoding a sequence parameter set (SPS) for the frame of
point cloud data, the SPS including the initial global
scaling factor, the data representing the number of bits,
and the scale factor refinement value;
encoding the downscaled frame; and
generating a bitstream including data representing the
encoded downscaled frame and the SPS including the
initial global scaling factor, the number of bits for the
scale refinement value, and the scale factor refinement
value.



