w0 2022/093339 A1 |0 000 KO A 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert J
(o wer Orgmiation 2 00 O 00 OO 0 T

International Bureau

/ (10) International Publication Number
(43) International Publication Date ——’/ WO 2022/093339 Al
05 May 2022 (05.05.2022) WIPO I PCT
(51) International Patent Classification: UsS 17102156 (CON)
GO6F 16/2457 (2019.01) Filed on 23 November 2020 (23.11.2020)
(21) International Application Number: (71) Applicant: SNOWFLAKE INC. [US/US]; Suite 3A, 106
PCT/US2021/040001 East Babcock Street, Bozeman, Montana 59715 (US).
(22) International Filing Date: (72) Inventors: AVANES, Artin; Suite 3A, 106 East Babcock
30 June 2021 (30.06.2021) Street, Bozeman, Montana 59715 (US). BIJON, Khalid
B ' Zaman, Suite 3A, 106 East Babcock Street, Bozeman,
(25) Filing Language: English Montana 59715 (US). LI, Yujie; Suite 3A, 106 East Bab-
(26) Publication Language: English cock Street, Bozeman, Montana 59715 (US). Ml, Zheng;
o Suite 3A, 106 East Babcock Street, Bozeman, Montana
(30) Priority Data: 59715 (US). MURALIDHAR, Subramanian; Suite 3A,
63/108,215 30 October 2020 (30.10.2020) US 106 East Babcock Street, Bozeman, MT 59715, Bozeman,
17/102,156 23 November 2020 (23.11.2020) US Montana 59715 (US). SCHULTZ, David; Suite 3A, 106

(63) Related by continuation (CON) or continuation-in-part East Babcock Street, Bozeman, Montana 59715 (US).

(CIP) to earlier application: (74) Agent: SCHEER, Bradley W. et al.; P.O. Box 2938, Min-
neapolis, Minnesota 55402 (US).

(54) Title: SYSTEM FOR IMPLEMENTING AN OBJECT TAGGING FRAMEWORK

/ 400

¢ Oreanization
{ Organizalion }
Ny %
o ‘\\\
’’’’’’ i Acoount]
‘‘‘‘‘‘‘‘‘‘‘‘ ./>‘*""’<< \‘\“\.
/,MA::’\”M b e T
7 R 4 AN e N 7 \3
{ Databass o User QVarehcuse) { Ros
M M —_ S
g R
/""\ \\\ ,f"/: .
{ Schema) | Desson
\\‘ﬁ“"/ R
R
¢ Schema
\ Objects /
\.‘.“_,.—r/
.
VN
{\ SubObj |
N
FIG. 4

(57) Abstract: A method of implementing object tagging framework starts with the processor receiving a tag creation command in-
cluding a tag name. In response to the tag creation command, the processor creates a current tag. The processor then receives an asso-
ciation command, the tag name and a target object identifier. The processor determines a target object associated with the target object
identifier. The target object includes a tag value. The processor associates the current tag with the target object. The processor identifies
a first child object of the target object. The target object and the first child object are hierarchical objects. In response to determining
that the first child object is tag-unassociated, the processor associates the current tag with the first child object. In response to receiving
a query including the tag name, the processor generates an output based on the tag name. Other embodiments are also described herein.

[Continued on next page]

WO 2022/093339 A [IN00] 0000000 00O

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP,KR,KW,KZ LA, LC,LK,LR,LS,LU,LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ,UA, UG, US,UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2022/093339 PCT/US2021/040001

SYSTEM FOR IMPLEMENTING AN OBJECT TAGGING FRAMEWORK

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application Serial No.
63/108,215, filed on October 30, 2020, and U.S. Patent Application Serial No. 17/102,156
filed November 23, 2020, the contents of which are incorporated herein by reference in their

entirety.

TECHNICAL FIELD

[0002] The present disclosure relates systems, methods, and devices for databases and

more particularly relates to customer-defined object tagging.

BACKGROUND

[0003] Databases are widely used for data storage and access in computing applications.
Databases may include tables having rows and columns that include or reference data that

can be read, modified, or deleted using queries.

[0004] In some instances, organizations, that collect data from disparate databases, and
analyze and share that data with consumers and providers, face a number of data governance
requirements such as retention policy, data sovereignty, auditing, anonymization,
attribution, a variety of compliance regimes, etc. Currently, the organizations are forced to
utilize cumbersome naming schemes, comment fields and workflows in order to manage and

analyze data in scale and to achieve the many data governance requirements.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0005] In the drawings, which are not necessarily drawn to scale, like numerals may
describe similar components in different views. To easily identify the discussion of any
particular element or act, the most significant digit or digits in a reference number refer to
the figure number in which that element is first introduced. Some embodiments are
illustrated by way of example, and not limitation, in the figures of the accompanying
drawings in which:

[0006] FIG. 1 is a diagrammatic representation of a networked environment in which the
present disclosure may be deployed, in accordance with some examples.

[0007] FIG. 2 illustrates a diagrammatic representation of tag management models within
the object tagging framework that can be implemented by the tag controller, in accordance

with some examples.

WO 2022/093339 PCT/US2021/040001

[0008] FIG. 3 illustrates a diagrammatic representation of the tag controller implementing

replication within the object tagging framework, in accordance with some examples.

[0009] FIG. 4 illustrates a diagrammatic representation of an entity hierarchy for tag

lineage, in accordance with some examples.

[0010] FIG. S illustrates a diagrammatic representation of the tag controller implementing

an object tagging framework, in accordance with some examples.

[0011] FIG. 6 illustrates a diagrammatic representation of the tag controller implementing

an object tagging framework, in accordance with some examples.

[0012] FIG. 7 illustrates a diagrammatic representation of the tag controller implementing

an object tagging framework, in accordance with some examples.

[0013] FIG. 8 illustrates a process 800 of implementing an object tagging framework in

accordance with one embodiment.

[0014] FIG. 9 is a diagrammatic representation of a machine in the form of a computer
system within which a set of instructions may be executed for causing the machine to
perform any one or more of the methodologies discussed herein, in accordance with some

example embodiments.

[0015] FIG. 10 is a block diagram showing a software architecture within which the

present disclosure may be implemented, according to an example embodiment.

DETAILED DESCRIPTION

[0016] Databases can store enormous sums of data in an organized manner for providers
and customer across a networked environment. In order to maintain order with the data
volumes doubling or tripling every year, there is a need to deal with the metadata associated
with the data in order to categorize, govern, and keep track of the data such that it can be

usable.

[0017] Among other things, embodiments described in the present disclosure improve the
functionality of the database service system 100 by implementing an object tagging
framework. A tag is a user-defined portion of metadata that can be attached to or detached
from one or more metadata objects in the database service system 100. Using the tag,
organizations, providers, and consumers can effectively categorize data or objects and

perform various management tasks on these data or objects.

[0018] FIG. 1 is a diagrammatic representation of a networked environment in which the
present disclosure may be deployed, in accordance with some examples. The database

service system 100 in FIG. 1 is a processing platform that provides for database services. In

2

WO 2022/093339 PCT/US2021/040001

one embodiment, the database service system 100 can implement an object tagging

framework.

[0019] The database service system 100 includes a tag service manager 108 that is
accessible by multiple users via a network 110 (e.g., the Internet). The users can access the
tag service manager 108 using client device 102, client device 106, and client device 104,
respectively. Tag service manager 108 can support any number of users desiring access to
data or services of the database service system 100. The users of client devices 102, 104,
106 may include, for example, end users providing data storage and retrieval queries and
requests, system administrators managing the systems and methods described herein,
software applications that interact with a database, and other components/devices that

interact with tag service manager 108.

[0020] The tag service manager 108 may provide various services and functions that
support the operation of the systems and components within the database service system
100. The tag service manager 108 has access to stored metadata associated with the data
stored throughout database service system 100. In some embodiments, metadata includes a
summary of data stored in remote data storage systems (e.g., database 112, database 116,
database 114, etc.) as well as data available from a local cache. Additionally, metadata may
include information regarding how data is organized in the remote data storage systems and

the local caches.

[0021] Tag service manager 108 is further in communication with a plurality of data
storage devices including database 112, database 116, and database 114 to perform various
data storage and data retrieval operations. Although three databases 112, 114, and 116 are
shown in FIG. 1, the database service system 100 is capable of including any number of
data storage devices. In some embodiments, databases 112, 114, and 116 are cloud-based
storage devices located in one or more geographic locations. For example, databases 112,
114, and 116 may be part of a public cloud infrastructure or a private cloud infrastructure,
or any other manner of distributed storage system. Databases 112, 114, and 116 may include
hard disk drives (HDDs), solid state drives (SSDs), storage clusters, or any other data
storage technology. Additionally, while not shown, the databases 112, 114, and 116 can be
comprised in a storage platform that may further include a distributed file system (such as

Hadoop Distributed File Systems (HDFS)), object storage systems, and the like.

[0022] While the tag service manager 108 and the databases 112, 114, 116 are shown in
FIG. 1 as individual components, each of the tag service manager 108 and the databases

112, 114, 116 may be implemented as a distributed system (e.g., distributed across multiple

WO 2022/093339 PCT/US2021/040001

systems/platforms at multiple geographic locations) or may be combined into one or more

systems.

[0023] As shown in FIG. 1, the tag service manager 108 includes a tag controller 118 that
implements the object tagging framework in the database service system 100, according to
some embodiments. The object tagging framework provides a mechanism to attach
annotations in the form of tags to data and objects within the database service system 100.
An object within database service system 100 can be an entity such as, schema objects (e.g.,
tables, views, materialized views (MVs), pipes, streams, functions, procedures, etc.),
databases, schemas, warehouses, accounts, users, roles, columns and constraints, sessions,

etc.

TAG DESCRIPTION

[0024] A tag can be a customer supplied extensible metadata for an object such that the
customer can associate a tag (e.g., cost_center) and a corresponding value (e.g., sales) with
an object (e.g., database). In one example, the tag is a schema-level entity and therefore, the
tag names are unique within the schema. The tag can also be associated with an entity

outside of its own schema.

[0025] In another example, the tag can be associated with other entities such as databases
and tables, or with account-level entities like warehouses, or with organization-level

entities. The tag can also be associated with an account or a column within a table.

[0026] In one example, when the customer attaches a tag to the object, a global unique
identification (ID) that is assigned to that tag is being attached to the object. The tag has a
name that is unique in the entity and a data type (e.g., string, boolean, integer, double, array,
structured tag, enumerated values, etc.). The tag can also have one or more possible object

types that are the target of the tag.

[0027] The tag can also support an implicit lineage or hierarchy. Examples of the different
kinds of lineage or hierarchy include:
1. Sub-object lineage (Sub-object -> Object -> Schema -> Database -> Account ->
Organization). Example: Column -> Table -> Schema -> Database -> ...
2. Schema-object lineage. (Object -> Schema -> Database -> Account -> Organization)

Session lineage (Session -> User -> Account -> Organization)

4. User lineage (User -> Account -> Organization)
5. Warehouse lineage (Warehouse -> Account -> Organization)
6. Account lineage (Account -> Organization)

WO 2022/093339 PCT/US2021/040001

7. Organization lineage

TAG MANAGEMENT

[0028] The tag controller 118 can provide the ability to create a tag, read a tag, modify
some properties of a tag and delete a tag. In one example, the tag controller 118 can manage
the tags based on instructions received from the client devices 102, 104, 106. For example,
the data description language (DDL) syntax (e.g., Create, Alter and Drop) can be used to
manage the tags. “Create Tag” can be used to create a tag, “Alter Tag” can be used to set or
update the comment of a tag or renaming the tag, and “Drop Tag” can be used to drop an
existing tag. In one example, a tag can be prevented from dropping if the tag is attached to
an entity. In this example, before dropping a tag, the tag controller 118 may require that all

existing associations be removed.

[0029] In one example, a customer can create a tag called Personally Identifiable

Information (PII).

[0030] A tag, for instance, can be a dictionary object that is stored as the following data
persistence object TagDPO which extends BaseDictionaryDPO. A high-level class Tag
represents a tag in the system and accesses the tag using a data persistence object TagDAO.

TagDPO can also store the type of data the tag supports as a field.

TAG MAPPING MANAGEMENT OR ASSOCIATION

[0031] Once a tag has been created, tag controller 118 can receive and execute commands
(or syntax) that cause tags to be assigned to or unassigned from objects within database
service system 100. For example, the commands “Set Tag” and “Unset Tag” can be used to
associate a tag with and dissociate a tag from objects, respectively. In one example, a tag is
generally set with a value, but if a value is not specified, it is considered that the value is an
empty value. Further, if the entity already has the same tag association with a different

value, the command “Set Tag” will replace the old value with the new one.

[0032] In one example, given a column ADDRESS of a table EMPLOYEE INFO,
customer can assign PII tag to the column ADDRESS with a value ADDRESS.

[0033] TagObjectMappingDPO, for instance, stores the mapping of a tag and a
corresponding value to an object, e.g., table. In another example, in order to perform tag
mapping management, the tag controller 118 stores the tag account identification (ID), the
tag ID, the entity account ID, the entity domain ID, and the entity ID in a DPO slice format.

This ensures that the tag persists across accounts and platforms.

S

WO 2022/093339 PCT/US2021/040001

TAG ASSOCIATION DISCOVERY

[0034] Another main component of the object tagging framework is the listing the tags and
each tag's associations. A proper Application Programming Interface (API) is provided

where users can discover existing tags and their associations with objects.

[0035] In order to access a list of existing tags, the customers can use the show command
(e.g., Show Tags) which causes the tag controller 118 to cause a list of tags for the current
or specified database or schema or across the entire account to be displayed (or showed) on
client devices 102, 104, 106. The customers can also submit the describe command (or
information function) to cause the tag controller 118 to provide a description of the given

tag or describe all tags associated with an object.

[0036] In another example, the customers can get a tag on an entity by using the “Get Tag”
or “Get Local Tag” functions. For instance, the tag controller 118 can receive the get tag
function with a tag name, an entity domain and an entity name as strings and returns the

value associated with the entity.

[0037] Alternatively, the customers can perform tag-based entity discovery by using a “tag
references” command that causes the tag controller 118 to find all the objects having a given
tag associated therewith. For instance, the customers can locate or enumerate entities based
on tags or other attributes. In one example, the customers can request and be presented with
all entities having a tag “sensitivity” that has a value of "Personally Identifiable Information
(PI)". In another example, the customers can request and be presented with all entities

having a tag "regulatory regime" that has a value of "EuropeanUnion".

[0038] On a more granular level, the customers can also, in another example, list all tables
in a specific schema (e.g., the SalesData schema) that have tag (e.g., "product line") set to a
given value (e.g., "productX"). The tag-based entity discovery can also further allow
customers to perform auditing of the database service system 100. For instance, the
customers can request and obtain a list of all of the columns where tag "sensitivity" has

value "PII", but which do not have the masking policy pii_masking compliance policy.

[0039] FIG. 2 illustrates a diagrammatic representation 200 of tag management models
within the object tagging framework that can be implemented by the tag controller 118, in
accordance with some examples. As shown in FIG. 2, tag management models include a
centralized management model and a decentralized management model. In the centralized
management model, the central governance administrator (e.g., user of client device 102 or

Governance officer in FIG. 2)) is responsible for creating and tagging objects in the whole

WO 2022/093339 PCT/US2021/040001

account. For example, a central governance administrator can be a compliance administrator
who is responsible to associate proper Personally Identifiable Information (PII) tags (e.g.,

Social Security Numbers) to all the objects in an account.

[0040] In a decentralized management model, each of the department administrators or
individual object owner (e.g., Team data steward in FIG. 2) is responsible to manage their
department specific tag. In both cases, an administrator (e.g., Governance officer or Team

data steward in FIG. 2) can discover objects that have association to a particular tag.

[0041] In one example, tag management operations can be authorized by role-based access
control. Privileges can be further introduced for tag management. These privileges allow for
tag management similarly in both centralized and decentralized manner. For example, the
“Create Tag on Schema” is a schema level privilege to authorize tag creation operation, the
“Apply on Tag” is a privilege on a tag to authorize tag association operation on an entity,
and the "Apply tag on Account" is an account level privilege to authorize tag association

operation on all the entities within an account.

[0042] The tag controller 118 thus provides for a secure tag management system where a
tag can be managed either by a centralized governance admin within an account or in a
decentralized manner where individual object owners or department administrators manage

their own tags.

[0043] Tags can be created, deleted, applied, removed, enumerated, and discovered
transactionally in a manner that satisfies database transaction properties of: atomicity,
consistency, isolation and durability (e.g., or in an ACID-compliant manner). In one
example, the ACID-compliance is achieved by storing tags and the tag associations as part
of a database's metadata store (e.g., FoundationDB or FDB), which uses a distributed
transaction protocol similar to two-phase commit. In another example, the state of the tag
controller 118 and at least one of the databases 112, 114, 116 may be placed together in a
single database management system (DBMS) on a single machine. These embodiments are
an improvement to current tagging systems that do not provide consistent and atomic
operations which can result in these current tagging system's controllers being out of sync

with the underlying databases for a period of time.

AUDIT

[0044] The tag controller 118 can also perform an audit on Tag create, alter, drop and tag
set and unset on the entities and columns operations in response to receiving the commands

"Query History" and “account usage share views”.

WO 2022/093339 PCT/US2021/040001

CLONE

[0045] The tag controller 118 supports cloning for certain entities including, for instance,
table, schema and database. When cloning an entity, the tag controller 118 causes the tag
associations with source entities to be maintained for the cloned entities (e.g., cloned
entities get the same tag associations). When cloning a container (e.g., schema and

database), the tags associated with entities in the container are also cloned.

[0046] For example, the tag controller 118 can clone a table T1 in a schema to be cloned to
table T2. Tag propagation ensures that the table T2 (cloned from T1) will get all the existing
tags such that all the objects in table T2 will have the tags as in table T1. However, when
cloning the table T1 to table T2, there are two copies of the associations of a given tag in
the tables. Accordingly, when a given tag is deleted from table T2, the corresponding tag in
table T1 will not be affected.

CREATE TABLE WITH LIKE

[0047] When a table is created with the command “Like”, the tag controller 118 causes the

tags from the source table to be associated with the target table.

REPLICATION

[0048] FIG. 3 illustrates a diagrammatic representation 300 of the tag controller 118
implementing replication within the object tagging framework, in accordance with some
examples. In general, a database can be replicated from one customer account (in one cloud
region or storage location) to another customer account (in different region or storage
location). Database replication involves replication of the entire primary database (e.g.,
database 112) to a secondary database (¢.g., database 116). The source database can be
called the primary database and the target database can be called the secondary database. In
database replication, the database is the atomic unit of replication such that it can be

replicated in its entirety or not at all.

[0049] A tagis a schema level object and it is replicated with the parent database
replication. When an entity is replicated as part of the parent database replication, all the
associated tags and values are replicated with the database. As shown in FIG. 3, tag
controller 118 is replicating the database TAGS from the west account to the east account

and the schema accounting and the tag cost_center are replicated with the database TAGS.

WO 2022/093339 PCT/US2021/040001

[0050] As shown in FIG. 3, the tags are not confined to one account in one region but
rather the tags are global and can be replicated. In this example, the same tags can be used
throughout different accounts because the tags are global and have the same syntax. This
allows for cross-platform usage of the tags and the customer does not need to perform any

configurations at the cloud-level for the tags to function cross-platform.

[0051] In one example, if some referred tags reside outside the replication group, the
replication may fail. Similarly, account level entities are replicated with the tags and the

replication may fail if some referred tags reside outside the replication group.

[0052] Given that the tags are global, the tag controller 118 can also execute an undelete
tag command that undeletes a previously deleted tag and also undeletes the references

associated with the previously deleted tag.

LINEAGE

[0053] FIG. 4 illustrates a diagrammatic representation 400 of an entity hierarchy for tag

lineage, in accordance with some examples.

[0054] As shown in FIG. 4, entities are hierarchical such that one entity (e.g., schema) is
considered to be a parent of another entity, (e.g., schema objects such as tables). Tag lineage
is a feature in the object tagging framework maintained by the tag controller 118 where a
tag specified on a parent entity is implicitly inherited by the child entities if child entities do
not have the tag (e.g., tag-unassociated). When an entity (e.g., a parent entity or a child

entity) already has a tag associated therewith, the entity is considered tag-associated.

[0055] Accordingly, a tag specified on a parent level is inherited by all the child entities as
a default tag. For instance, a schema with a tag “department” and with a value
“engineering” can be considered as a default tag and value (e.g., “department”
“engineering”) for all the tables in that schema. The default tag and value set to at the
schema-level will apply to all current and future tables in that schema. In one example, an
individual table can also be set a more specific department tag value, e.g., “dg-engineering”.
In another example, the tag can be set explicitly on a specific table, which will then override
any tags set at the parent level.

[0056] Referring back to the FIG. 4, in this entity hierarchy for tag lineage, a table (e.g.,
schema-object) can inherit a tag from its parent database but it does not inherit a tag from
the owner role. The tag controller 118 can support two tag lineage approaches: implicit

lineage and explicit lineage.

WO 2022/093339 PCT/US2021/040001

IMPLICIT LINEAGE

[0057] In the implicit lineage approach, tag lookup for an entity is implicitly tied with the
entity hierarchy. When a tag controller 118 determines that a tag is not set on an entity, the
tag value of the closest parent of the entity is applied to the entity. For instance, if a tag
“department” is not set on a table, the system first looks at the parent schema. If the schema
has the tag, it returns the value of the tag. Otherwise, it looks at the parent database of the

schema and continues the process.

[0058] In this approach, a tag specified in a parent entity will be applied on all the child
entities that do not have a tag set thereon. For instance, if a tag “department” is set on a
schema, all its child entities, e.g. tables, functions, policies, will inherit that tag. In this
example, the inheritance is a tag lookup mechanism that finds the tags from the parent if no

tag is set on the child.

[0059] To address the scenario where some tags do not require default value specification
or where default value lookup may semantically return invalid value (e.g., a tag to capture
the creating user of an entity), the customers may use the following functions and can
determine which one to use for a tag. First, in response to receiving the “Get Tag” command
with an entity as an argument and a tag name, the tag controller 118 returns the value
associated with the entity. If the tag provided with the command is not associated, the tag
controller 118 traverses up on the lineage in FIG. 4 for example to find the default value.
Second, in response to receiving the “Get Local Tag” command with an entity as an
argument and a tag name, the tag controller 118 returns the value associated with the entity.
However, the tag controller 118 does not traverse up on the lineage to find the default value

in response to the “Get Local Tag” command.

EXPLICIT LINEAGE

[0060] In order to solve the limitation of the implicit lineage, the explicit lineage approach
requires that each tag explicitly mention the lineage by the property of a tag using “target
object lineage.” A tag can have multiple lineages encoded in “target object lineage.” In one
example, the tag controller 118 can cause the association of a tag on an entity to fail if the

entity is not in the specified lineage of the tag.

TAG PROPAGATION

10

WO 2022/093339 PCT/US2021/040001

[0061] In one example, some tags can be propagated by tag controller 118 from one entity
to another entity in some operational context. The operation context can includes, for
example, cloning an object, creating a table as select from another table, creating a view

from another view, etc.

[0062] For instance, when a view created on the table EMPLOYEE INFQ, the PII tag of
column ADDRESS of the table should be propagated to corresponding view column. Given
a set of tags and their values that can be assigned to an object, the tag controller 118 can

perform tag refinement to decide which subset of tags (with values) to assign.

USE CASES FOR OBJECT TAGGING FRAMEWORK - COST GOVERNANCE

[0063] FIG. 5 illustrates a diagrammatic representation 500 of the tag controller 118
implementing an object tagging framework, in accordance with some examples. FIG. 5
illustrates an example use case of cost governance where resource usage can be tracked for
cost visibility. In this use case example, the customers have a single account or the

customers have multiple accounts that are managed using an organization.

[0064] As shown in FIG. 5, the customer has two cost centers: sales and finance. The goal
for the customer is to track usage of the resources that result for example in costs (e.g.,
credits spent). In this example, the billing administrator via client device 102 creates a tag

called Cost_Center in a centralized database Tags.

[0065] It is understood that the database Tags is used to exemplify the scenario and
centrally managed artifacts (tags, policies, etc.) can be stored in a separate (central)

database or location. A tag can be created in any database.

[0066] The billing administrator then associates the tag Cost Center to the objects with
values Sales and Finance, respectively. As shown in FIG. 5, Warehouse 1, Table 1, Pipe 1,
Materialized View 1 are associated with Cost Center, Sales and Warehouse 2, Table 2, Pipe

2, Materialized View 2 are associated with Cost_Center, Finance.

[0067] There are two administrators Sales Admin and Finance Admin that manage objects
that belong to sales and finance respectively. Tag administrator grants the tag Cost_Center
to them so that they can associate tag on their objects. Sales Admin associates Cost Center
to the objects with value ‘SALES’ and Finance Admin associates Cost_Center to the

objects with value ‘Finance’.

[0068] Using queries and the tags, the administrator can obtain and monitor the credits

being spent (cost) associated with the finance objects and the sales objects, respectively.

11

WO 2022/093339 PCT/US2021/040001

USE CASES FOR OBJECT TAGGING FRAMEWORK - DATA GOVERNANCE,
SECURITY, COMPLIANCE

[0069] FIG. 6 illustrates a diagrammatic representation 600 of the tag controller
implementing an object tagging framework, in accordance with some examples. FIG. 6
illustrates an example use case of data governance, security, and compliance where data
objects within database service system 100 that represent sensitive information (e.g., PII)
are classified. In this use case example, an audit for classified columns within the single
account or within the organization can be performed and policy can be enforced for the

classified columns.

[0070] In this example, the goal is to facilitate PII tracking by eliminating the need of a

table owner to notify policy admin about column containing PII.

[0071] As shown in FIG. 6, the data owner owns a table EMPLOYEE INFO which has a
column EMPLOYEE_ SSN. The administrator has a masking policy SSN. MASK to mask
social security numbers and periodically audits if a table column containing social security

number skipped SSN. MASK enforcement.

[0072] The administrator can create a tag called PII which is a centrally defined tag to
efficiently discover classified objects as PII. The administrator grants “apply” privilege on
PII to Data Owner in FIG. 6. In this example, decentralized management approach is
implemented where the individual object owner or data steward can tag the PII data in their
table EMPLOYEE INFO. In this example, the Data Owner binds tag PII and a value ‘SSN’
to EMPLOYEE SSN column of table EMPLOYEE INFO. The Data Owner classifies their
data in table EMPLOYEE INFO with a centrally defined PII tag.

[0073] Using queries and the tags, the administrator can find all the columns with the tag

TAGS.SECURITY .PII:"SSN' that do not have a masking policy association. Accordingly,

the administrator is able to take action based on the centrally defined tag PII.

USE CASES FOR OBJECT TAGGING FRAMEWORK - DATA AND TAG
SHARING

[0074] FIG. 7 illustrates a diagrammatic representation 700 of the tag controller
implementing an object tagging framework, in accordance with some examples.

[0075] In one example, one account (provider) can share a tag in a shared database with
consumers. Each consumer can also correspond to an account. In one example, the provider
account can be sharing an object with another account that is not part of the same

organization. The provider can create a tag “disease” in the schema.

12

WO 2022/093339 PCT/US2021/040001

[0076] The privilege “apply” on the tag “disease” can be granted to a share in a provider

account as shown in FIG. 7. The shared tag is a read only in a consumer account.

[0077] The provider account may be sharing data from an entity (e.g., a schema) on a
novel disease with a number of providers and consumers. In this example, the actual object
(e.g., schema with data on the disease) is shared as read-only such that the consumer gets

the object but cannot modify it.

[0078] A consumer account can associate the shared tag to an object in the consumer
account (e.g., table Covid Data in FIG. 7). The consumer account can discover objects by
shared tag if the object is owned by the consumer account or if the object is shared to the
consumer account. The provider is thus able to share data and all the annotations on the data

while the consumers can use the tag to annotate their own objects.

[0079] While the FIG. 7 illustrates data and tag sharing within a local region, it is
understood that a tag can be a globally listed tag such that the data and tag are shared
between multiple regions (e.g., globally). In this example, in the local region, a tag can be
shared in a shared database from a DX Admin (Data Exchange Administrator) to both

DX Provider (Data Exchange Provider) and DX Consumer (Data Exchange Consumer)
accounts. The DX Provider and DX Consumer mount the database from share.

DX Provider can apply the tag to a listing that it owns. The tag is mapped to a listing by the
global ID of the listing. DX _Consumer can discover listings in a DX by a shared tag if the

consumer is a member of the same DX.

[0080] In the remote region, the DX Admin replicates the tag from local region to remote
region. In the remote region, the same tag is applied to the listing and DX Admin shares the
tag to DX_Consumer. The DX Consumer in the remote region discovers the listing in a DX

by the shared tag.

PROCESS OF IMPLEMENTING OBJECT TAGGING: LINEAGE

[0081] Although the described flowcharts can show operations as a sequential process,
many of the operations can be performed in parallel or concurrently. In addition, the order
of the operations may be re-arranged. A process is terminated when its operations are
completed. A process may correspond to a method, a procedure, an algorithm, etc. The
operations of methods may be performed in whole or in part, may be performed in
conjunction with some or all of the operations in other methods, and may be performed by
any number of different systems, such as the systems described herein, or any portion

thereof, such as a processor included in any of the systems. For example, the processes can

13

WO 2022/093339 PCT/US2021/040001

be performed by the tag controller 118 or a processor included in the tag controller 118, or a

processor in tag service manager 108, or a combination thereof.

[0082] FIG. 8 illustrates a process 800 of implementing an object tagging framework in

accordance with one embodiment.

[0083] At operation 802, a processor in the tag controller 118 receives a tag creation

command including a tag name.

[0084] At operation 804, in response to the tag creation command, the tag controller 118

creates a current tag with the tag name. The current tag can be an object entity.

[0085] At operation 806, the processor receives an association command, the tag name and

a target object identifier.

[0086] At operation 808, the processor determines a target object associated with the target
object identifier. The target object can include a tag value. Referring to FIG. 5, for
example, the target object identifier can be an identifier “Warehouse (Wh) 1” and the tag

value can be “Sales” and the current tag can be “Cost_Center”.

[0087] At operation 810, the processor associates the current tag with the target object. In
one example, in response to receiving the association command, the processor determines
that the target object is tag-associated. For instance, the target object can be associated with
a previous tag. In this example, the processor then overwrites the previous tag using the

current tag.

[0088] At operation 812, the processor identifies a first child object of the target object.
The target object and the first child object can be hierarchical objects. Referring to FIG. 4,
the target object can be the account entity and the first child object can be the database
entity, the user entity, the warehouse entity, or the role entity. In one example, the first child
object can also be the schema entity, the schema objects entity, the sub-objects entity or the

session entity.

[0089] At operation 814, in response to determining that the first child object is tag-
unassociated, the processor associates the current tag with the first child object.
Accordingly, the processor can implement implicit lineage where a tag specified on a parent
entity is inherited by the child entities if child entities do not have the tag (e.g., tag-
unassociated). In one example, in response to determining that the first child object is tag-
associated, the processor causes no association of the current tag with the first child object

to be performed.

[0090] In another example, the processor can identify a second child object of the target

object. The target object and the second child object can be hierarchical objects. Similar to

14

WO 2022/093339 PCT/US2021/040001

the first child object, referring to FIG. 4, when the target object is the account entity, the
second child object can be the database entity, the user entity, the warehouse entity, or the
role entity. In one example, the second child object can also be the schema entity, the

schema objects entity, the sub-objects entity or the session entity.

[0091] In another example, the first child object and the second child object can also be
hierarchical objects. For instance, if the first child object is the database entity, the second

child object can be the schema entity, schema objects entity, or the sub-object entity

[0092] In response to determining that the second child object is tag-unassociated, the
processor can associate the current tag with the second child object. In this example, in
response to determining that the second child object is tag-unassociated, the processor can

also associate the current tag with the second child object.

[0093] In another example, the processor can implement explicit lineage by determining a
lineage information of the current tag and causing association of the current tag with the

first child object based on the lineage information.

[0094] At operation 816, in response to receiving a query including the tag name, the
processor generates an output based on the tag name. In one example, the output includes a
list of entities associated with the tag name. For instance, the list of entities can include the
target object and the first child object. The output can also include the tag value of the target
object and a child tag value included in the child object.

MACHINE ARCHITECTURE

[0095] FIG. 9 is a diagrammatic representation of the machine 900 within which
instructions 910 (e.g., software, a program, an application, an applet, an app, or other
executable code) for causing the machine 900 to perform any one or more of the
methodologies discussed herein may be executed. For example, the instructions 910 may
cause the machine 900 to execute any one or more of the methods described herein. The
instructions 910 transform the general, non-programmed machine 900 into a particular
machine 900 programmed to carry out the described and illustrated functions in the manner
described. The machine 900 may operate as a standalone device or may be coupled (e.g.,
networked) to other machines. In a networked deployment, the machine 900 may operate in
the capacity of a server machine or a client machine in a server-client network environment,
or as a peer machine in a peer-to-peer (or distributed) network environment. The machine
900 may comprise, but not be limited to, a server computer, a client computer, a personal

computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a

15

WO 2022/093339 PCT/US2021/040001

personal digital assistant (PDA), an entertainment media system, a cellular telephone, a
smartphone, a mobile device, a wearable device (e.g., a smartwatch), a smart home device
(e.g., a smart appliance), other smart devices, a web appliance, a network router, a network
switch, a network bridge, or any machine capable of executing the instructions 910,
sequentially or otherwise, that specify actions to be taken by the machine 900. Further,
while only a single machine 900 is illustrated, the term “machine" shall also be taken to
include a collection of machines that individually or jointly execute the instructions 910 to
perform any one or more of the methodologies discussed herein. The machine 900, for
example, may comprise the client device 102 or any one of a number of server devices
forming part of the Tag service manager 108. In some examples, the machine 900 may also
comprise both client and server systems, with certain operations of a particular method or
algorithm being performed on the server-side and with certain operations of the particular

method or algorithm being performed on the client-side.

[0096] The machine 900 may include processors 904, memory 906, and input/output

I/0O components 638, which may be configured to communicate with each other via a bus
938. In an example, the processors 904 (e.g., a Central Processing Unit (CPU), a Reduced
Instruction Set Computing (RISC) Processor, a Complex Instruction Set Computing (CISC)
Processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an
Application Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit
(RFIC), another processor, or any suitable combination thereof) may include, for example,
at least one processor 908 that execute the instructions 910. The term "processor” is
intended to include multi-core processors that may comprise two or more independent
processors (sometimes referred to as “cores”) that may execute instructions
contemporaneously. Although FIG. 9 shows multiple processors 904, the machine 900 may
include a single processor with a single-core, a single processor with multiple cores (e.g., a
multi-core processor), multiple processors with a single core, multiple processors with

multiples cores, or any combination thereof.

[0097] The memory 906 includes a main memory 912, a static memory 914, and a storage
unit 916, both accessible to the processors 904 via the bus 938. The main memory 906, the
static memory 914, and storage unit 916 store the instructions 910 embodying any one or
more of the methodologies or functions described herein. The instructions 910 may also
reside, completely or partially, within the main memory 912, within the static memory 914,
within machine-readable medium 918 within the storage unit 916, within at least one of the
processors 904 (e.g., within the processor’s cache memory), or any suitable combination

thereof, during execution thereof by the machine 900.

16

WO 2022/093339 PCT/US2021/040001

[0098] The I/O components 902 may include a wide variety of components to receive
input, provide output, produce output, transmit information, exchange information, capture
measurements, and so on. The specific /O components 902 that are included in a particular
machine will depend on the type of machine. For example, portable machines such as
mobile phones may include a touch input device or other such input mechanisms, while a
headless server machine will likely not include such a touch input device. It will be
appreciated that the I/O components 902 may include many other components that are not
shown in FIG. 9. In various examples, the I/O components 902 may include user output
components 924 and user input components 926. The user output components 924 may
include visual components (e.g., a display such as a plasma display panel (PDP), a light-
emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray
tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory
motor, resistance mechanisms), other signal generators, and so forth. The user

input components 926 may include alphanumeric input components (e.g., a keyboard, a
touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other
alphanumeric input components), point-based input components (e.g., a mouse, a touchpad,
a trackball, a joystick, a motion sensor, or another pointing instrument), tactile input
components (e.g., a physical button, a touch screen that provides location and force of
touches or touch gestures, or other tactile input components), audio input components (e.g.,

a microphone), and the like.

[0099] In further examples, the /O components 902 may include biometric components
928, motion components 930, environmental components 932, or position components 934,
among a wide array of other components. For example, the biometric components

928 include components to detect expressions (e.g., hand expressions, facial expressions,
vocal expressions, body gestures, or eye-tracking), measure biosignals (e.g., blood pressure,
heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice
identification, retinal identification, facial identification, fingerprint identification, or
electroencephalogram-based identification), and the like. The motion components

930 include acceleration sensor components (e.g., accelerometer), gravitation sensor

components, rotation sensor components (e.g., gyroscope).

[0100] The environmental components 932 include, for example, one or cameras (with still
image/photograph and video capabilities), illumination sensor components (e.g.,
photometer), temperature sensor components (e.g., one or more thermometers that detect
ambient temperature), humidity sensor components, pressure sensor components (e.g.,

barometer), acoustic sensor components (e.g., one or more microphones that detect

17

WO 2022/093339 PCT/US2021/040001

background noise), proximity sensor components (e.g., infrared sensors that detect nearby
objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous
gases for safety or to measure pollutants in the atmosphere), or other components that may
provide indications, measurements, or signals corresponding to a surrounding physical

environment.

[0101] The position components 934 include location sensor components (e.g., a GPS
receiver component), altitude sensor components (e.g., altimeters or barometers that detect
air pressure from which altitude may be derived), orientation sensor components (e.g.,

magnetometers), and the like.

[0102] Communication may be implemented using a wide variety of technologies. The I/O
components 902 further include communication components 936 operable to couple the
machine 900 to a network 920 or devices 922 via respective coupling or connections. For
example, the communication components 936 may include a network interface component
or another suitable device to interface with the network 920. In further examples, the
communication components 936 may include wired communication components, wireless
communication components, cellular communication components, Near Field
Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy),
Wi-Fi® components, and other communication components to provide communication via
other modalities. The devices 922 may be another machine or any of a wide variety of

peripheral devices (e.g., a peripheral device coupled via a USB).

[0103] Moreover, the communication components 936 may detect identifiers or include
components operable to detect identifiers. For example, the communication components
936 may include Radio Frequency Identification (RFID) tag reader components, NFC smart
tag detection components, optical reader components (e.g., an optical sensor to detect one-
dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional
bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph,
MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or
acoustic detection components (e.g., microphones to identify tagged audio signals). In
addition, a variety of information may be derived via the communication components 936,
such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal
triangulation, location via detecting an NFC beacon signal that may indicate a particular

location, and so forth.

[0104] The various memories (e.g., main memory 912, static memory 914, and memory of

the processors 904) and storage unit 916 may store one or more sets of instructions and data

18

WO 2022/093339 PCT/US2021/040001

structures (e.g., software) embodying or used by any one or more of the methodologies or
functions described herein. These instructions (e.g., the instructions 910), when executed

by processors 904, cause various operations to implement the disclosed examples.

[0105] The instructions 910 may be transmitted or received over the network 920, using a
transmission medium, via a network interface device (e.g., a network interface component
included in the communication components 936) and using any one of several well-known
transfer protocols (e.g., hypertext transfer protocol (HTTP)). Similarly, the instructions 910
may be transmitted or received using a transmission medium via a coupling (e.g., a peer-to-

peer coupling) to the devices 922.

SOFTWARE ARCHITECTURE

[0106] FIG. 10 is a block diagram 1000 illustrating a software architecture 1004, which
can be installed on any one or more of the devices described herein. The software
architecture 1004 is supported by hardware such as a machine 1002 that includes processors
1020, memory 1026, and I/O components 1038. In this example, the software architecture
1004 can be conceptualized as a stack of layers, where each layer provides a particular
functionality. The software architecture 1004 includes layers such as an operating system
1012, libraries 1010, frameworks 1008, and applications 1006. Operationally, the
applications 1006 invoke API calls 1050 through the software stack and receive messages

1052 in response to the API calls 1050.

[0107] The operating system 1012 manages hardware resources and provides common
services. The operating system 1012 includes, for example, a kernel 1014, services 1016,
and drivers 1022. The kernel 1014 acts as an abstraction layer between the hardware and the
other software layers. For example, the kernel 1014 provides memory management,
processor management (e.g., scheduling), component management, networking, and security
settings, among other functionality. The services 1016 can provide other common services
for the other software layers. The drivers 1022 are responsible for controlling or interfacing
with the underlying hardware. For instance, the drivers 1022 can include display drivers,
camera drivers, BLUETOOTH® or BLUETOOTH® Low Energy drivers, flash memory
drivers, serial communication drivers (e.g., USB drivers), WI-FI® drivers, audio drivers,

power management drivers, and so forth.

[0108] The libraries 1010 provide a common low-level infrastructure used by the
applications 1006. The libraries 1010 can include system libraries 1018 (e.g., C standard

library) that provide functions such as memory allocation functions, string manipulation

19

WO 2022/093339 PCT/US2021/040001

functions, mathematic functions, and the like. In addition, the libraries 1010 can include
API libraries 1024 such as media libraries (e.g., libraries to support presentation and
manipulation of various media formats such as Moving Picture Experts Group-4 (MPEG#4),
Advanced Video Coding (H.264 or AVC), Moving Picture Experts Group Layer-3 (MP3),
Advanced Audio Coding (AAC), Adaptive Multi-Rate (AMR) audio codec, Joint
Photographic Experts Group (JPEG or JPG), or Portable Network Graphics (PNG)),
graphics libraries (e.g., an OpenGL framework used to render in two dimensions (2D) and
three dimensions (3D) in a graphic content on a display), database libraries (e.g., SQLite to
provide various relational database functions), web libraries (e.g., WebKit to provide web
browsing functionality), and the like. The libraries 1010 can also include a wide variety of

other libraries 1028 to provide many other APIs to the applications 1006.

[0109] The frameworks 1008 provide a common high-level infrastructure that is used by
the applications 1006. For example, the frameworks 1008 provide various graphical user
interface (GUI) functions, high-level resource management, and high-level location
services. The frameworks 1008 can provide a broad spectrum of other APIs that can be used
by the applications 1006, some of which may be specific to a particular operating system or

platform.

[0110] In an example, the applications 1006 may include a home application 1036, a
contacts application 1030, a browser application 1032, a book reader application 1034, a
location application 1042, a media application 1044, a messaging application 1046, a game
application 1048, and a broad assortment of other applications such as a third-party
application 1040. The applications 1006 are programs that execute functions defined in the
programs. Various programming languages can be employed to create one or more of the
applications 1000, structured in a variety of manners, such as object-oriented programming
languages (e.g., Objective-C, Java, or C++) or procedural programming languages (e.g., C
or assembly language). In a specific example, the third-party application 1040 (e.g., an
application developed using the ANDROID™ or [OS™ software development kit (SDK) by
an entity other than the vendor of the particular platform) may be mobile software running
on a mobile operating system such as [OS™ ANDROID™ K WINDOWS® Phone, or
another mobile operating system. In this example, the third-party application 1040 can
invoke the API calls 1050 provided by the operating system 1012 to facilitate functionality

described herein.

20

WO 2022/093339 PCT/US2021/040001

GLOSSARY

[0111] "Carrier signal" refers to any intangible medium that is capable of storing,
encoding, or carrying instructions for execution by the machine, and includes digital or
analog communications signals or other intangible media to facilitate communication of
such instructions. Instructions may be transmitted or received over a network using a

transmission medium via a network interface device.

[0112] "Client device" refers to any machine that interfaces to a communications network
to obtain resources from one or more server systems or other client devices. A client device
may be, but is not limited to, a mobile phone, desktop computer, laptop, portable digital
assistants (PDAs), smartphones, tablets, ultrabooks, netbooks, laptops, multi-processor
systems, microprocessor-based or programmable consumer electronics, game consoles, set-

top boxes, or any other communication device that a user may use to access a network.

[0113] "Communication network" refers to one or more portions of a network that may be
an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN
(WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a
portion of the Public Switched Telephone Network (PSTN), a plain old telephone service
(POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network,
another type of network, or a combination of two or more such networks. For example, a
network or a portion of a network may include a wireless or cellular network and the
coupling may be a Code Division Multiple Access (CDMA) connection, a Global System
for Mobile communications (GSM) connection, or other types of cellular or wireless
coupling. In this example, the coupling may implement any of a variety of types of data
transfer technology, such as Single Carrier Radio Transmission Technology (1xRTT),
Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS)
technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation
Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks,
Universal Mobile Telecommunications System (UMTS), High Speed Packet Access
(HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term
Evolution (LTE) standard, others defined by various standard-setting organizations, other

long-range protocols, or other data transfer technology.

[0114] "Component" refers to a device, physical entity, or logic having boundaries defined
by function or subroutine calls, branch points, APIs, or other technologies that provide for

the partitioning or modularization of particular processing or control functions. Components

21

WO 2022/093339 PCT/US2021/040001

may be combined via their interfaces with other components to carry out a machine process.
A component may be a packaged functional hardware unit designed for use with other
components and a part of a program that usually performs a particular function of related
functions. Components may constitute either software components (e.g., code embodied on
a machine-readable medium) or hardware components. A "hardware component” is a
tangible unit capable of performing certain operations and may be configured or arranged in
a certain physical manner. In various example embodiments, one or more computer systems
(e.g., a standalone computer system, a client computer system, or a server computer system)
or one or more hardware components of a computer system (e.g., a processor or a group of
processors) may be configured by software (e.g., an application or application portion) as a
hardware component that operates to perform certain operations as described herein. A
hardware component may also be implemented mechanically, electronically, or any suitable
combination thereof. For example, a hardware component may include dedicated circuitry
or logic that is permanently configured to perform certain operations. A hardware
component may be a special-purpose processor, such as a field-programmable gate array
(FPGA) or an application specific integrated circuit (ASIC). A hardware component may
also include programmable logic or circuitry that is temporarily configured by software to
perform certain operations. For example, a hardware component may include software
executed by a general-purpose processor or other programmable processor. Once configured
by such software, hardware components become specific machines (or specific components
of a machine) uniquely tailored to perform the configured functions and are no longer
general-purpose processors. It will be appreciated that the decision to implement a hardware
component mechanically, in dedicated and permanently configured circuitry, or in
temporarily configured circuitry (e.g., configured by software), may be driven by cost and
time considerations. Accordingly, the phrase "hardware component"(or "hardware-
implemented component") should be understood to encompass a tangible entity, be that an
entity that is physically constructed, permanently configured (e.g., hardwired), or
temporarily configured (e.g., programmed) to operate in a certain manner or to perform
certain operations described herein. Considering embodiments in which hardware
components are temporarily configured (e.g., programmed), each of the hardware
components need not be configured or instantiated at any one instance in time. For example,
where a hardware component comprises a general-purpose processor configured by software
to become a special-purpose processor, the general-purpose processor may be configured as
respectively different special-purpose processors (e.g., comprising different hardware

components) at different times. Software accordingly configures a particular processor or

22

WO 2022/093339 PCT/US2021/040001

processors, for example, to constitute a particular hardware component at one instance of
time and to constitute a different hardware component at a different instance of time.
Hardware components can provide information to, and receive information from, other
hardware components. Accordingly, the described hardware components may be regarded as
being communicatively coupled. Where multiple hardware components exist
contemporaneously, communications may be achieved through signal transmission (e.g.,
over appropriate circuits and buses) between or among two or more of the hardware
components. In embodiments in which multiple hardware components are configured or
instantiated at different times, communications between such hardware components may be
achieved, for example, through the storage and retrieval of information in memory
structures to which the multiple hardware components have access. For example, one
hardware component may perform an operation and store the output of that operation in a
memory device to which it is communicatively coupled. A further hardware component may
then, at a later time, access the memory device to retrieve and process the stored output.
Hardware components may also initiate communications with input or output devices, and
can operate on a resource (e.g., a collection of information). The various operations of
example methods described herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software) or permanently configured to
perform the relevant operations. Whether temporarily or permanently configured, such
processors may constitute processor-implemented components that operate to perform one
or more operations or functions described herein. As used herein, "processor-implemented
component" refers to a hardware component implemented using one or more processors.
Similarly, the methods described herein may be at least partially processor-implemented,
with a particular processor or processors being an example of hardware. For example, at
least some of the operations of a method may be performed by one or more processors 904
or processor-implemented components. Moreover, the one or more processors may also
operate to support performance of the relevant operations in a "cloud computing”
environment or as a "software as a service" (SaaS). For example, at least some of the
operations may be performed by a group of computers (as examples of machines including
processors), with these operations being accessible via a network (e.g., the Internet) and via
one or more appropriate interfaces (e.g., an API). The performance of certain of the
operations may be distributed among the processors, not only residing within a single
machine, but deployed across a number of machines. In some example embodiments, the
processors or processor-implemented components may be located in a single geographic

location (e.g., within a home environment, an office environment, or a server farm). In other

23

WO 2022/093339 PCT/US2021/040001

example embodiments, the processors or processor-implemented components may be

distributed across a number of geographic locations.

[0115] "Computer-readable storage medium" refers to both machine-storage media and
transmission media. Thus, the terms include both storage devices/media and carrier

PR INA

waves/modulated data signals. The terms “machine-readable medium,” “computer-readable
medium” and “device-readable medium” mean the same thing and may be used

interchangeably in this disclosure.

[0116] "Machine storage medium" refers to a single or multiple storage devices and media
(e.g., a centralized or distributed database, and associated caches and servers) that store
executable instructions, routines and data. The term shall accordingly be taken to include,
but not be limited to, solid-state memories, and optical and magnetic media, including
memory internal or external to processors. Specific examples of machine-storage media,
computer-storage media and device-storage media include non-volatile memory, including
by way of example semiconductor memory devices, e.g., erasable programmable read-only
memory (EPROM), electrically erasable programmable read-only memory (EEPROM),
FPGA, and flash memory devices; magnetic disks such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-ROM disks The terms "machine-

storage medium," "device-storage medium," "computer-storage medium" mean the same

thing and may be used interchangeably in this disclosure. The terms "machine-storage

media," "computer-storage media," and "device-storage media" specifically exclude carrier
waves, modulated data signals, and other such media, at least some of which are covered

under the term "signal medium."

[0117] "Non-transitory computer-readable storage medium" refers to a tangible medium

that is capable of storing, encoding, or carrying the instructions for execution by a machine.

[0118] "Signal medium" refers to any intangible medium that is capable of storing,
encoding, or carrying the instructions for execution by a machine and includes digital or
analog communications signals or other intangible media to facilitate communication of
software or data. The term "signal medium" shall be taken to include any form of a
modulated data signal, carrier wave, and so forth. The term "modulated data signal” means a
signal that has one or more of its characteristics set or changed in such a matter as to encode
information in the signal. The terms "transmission medium" and "signal medium" mean the

same thing and may be used interchangeably in this disclosure.

24

WO 2022/093339 PCT/US2021/040001

CLAIMS

What is claimed is:
1. A method of implementing an object tagging framework comprising:

receiving, by a processor, a tag creation command including a tag name;

in response to the tag creation command, creating a current tag with the tag name;

receiving an association command, the tag name, and a target object identifier;

determining a target object associated with the target object identifier, the target
object including a tag value;

associating the current tag with the target object;

identifying a first child object of the target object, wherein the target object and the
first child object are hierarchical objects,

in response to determining that the first child object is tag-unassociated, associating
the current tag with the first child object; and

in response to receiving a query including the tag name, generating an output based

on the tag name.

2. The method of claim 1, wherein the current tag is an object entity.

3. The method of claim 1, wherein the output includes a list of entities associated with the

tag name.

4. The method of claim 3, wherein the list of entities includes the target object and the first

child object.

5. The method of claim 3, wherein the output includes the tag value of the target object and

a child tag value included in the first child object.

6. The method of claim 1, further comprising:

in response to receiving the association command,

determining that the target object is tag-associated, wherein the target object is
associated with a previous tag, and

overwriting the previous tag using the current tag.

7. The method of claim 1, further comprising:

25

WO 2022/093339 PCT/US2021/040001

in response to determining that the first child object is tag-associated,

causing no association of the current tag with the first child object to be performed.

8. The method of claim 1, further comprising:
identifying a second child object of the target object, wherein the target object and

the second child object are hierarchical objects.

9. The method of claim 8, wherein the first child object and the second child object are

hierarchical objects.

10. The method of claim 8, further comprising:
in response to determining that the second child object is tag-unassociated,

associating the current tag with the second child object.

11. The method of claim 8, further comprising:
in response to determining that the second child object is tag-associated,

causing no association of the tag with the second child object to be performed.

12. The method of claim 1, further comprising;
determining a lineage information of the current tag; and
causing association of the current tag with the first child object based on the lineage

information.

13. A system of implementing an object tagging framework comprising:

a processor; and

a memory having instructions stored therein, when executed by the processor, causes
the system to perform operations comprising:

receiving a tag creation command including a tag name;

in response to the tag creation command, creating a current tag with the tag name;

receiving an association command, the tag name, and a target object identifier;

determining a target object associated with the target object identifier, the target
object including a tag value;

associating the current tag with the target object;

identifying a first child object of the target object, wherein the target object and the

first child object are hierarchical objects,

26

WO 2022/093339 PCT/US2021/040001

in response to determining that the first child object is tag-unassociated, associating
the current tag with the first child object; and
in response to receiving a query including the tag name, generating an output based

on the tag name.

14. The system of claim 13, wherein the current tag is an object entity.

15. The system of claim 13, wherein the output includes a list of entities associated with the

tag name.

16. The system of claim 15, wherein the list of entities includes the target object and the

first child object.

17. The system of claim 15, wherein the output includes the tag value of the target object

and a child tag value included in the first child object.

18. The system of claim 13, wherein the system to perform operations comprising:

in response to receiving the association command,

determining that the target object is tag-associated, wherein the target object is
associated with a previous tag, and

overwriting the previous tag using the current tag.

19. The system of claim 13, wherein the system to perform operations comprising:
in response to determining that the first child object is tag-associated,

causing no association of the current tag with the first child object to be performed.

20. The system of claim 13, wherein the system to perform operations comprising:
identifying a second child object of the target object, wherein the target object and

the second child object are hierarchical objects.

21. The system of claim 20, wherein the first child object and the second child object are

hierarchical objects.

22. The system of claim 20, wherein the system to perform operations comprising:

in response to determining that the second child object is tag-unassociated,

27

WO 2022/093339 PCT/US2021/040001

associating the current tag with the second child object.

23. The system of claim 20, wherein the system to perform operations comprising:
in response to determining that the second child object is tag-associated,

causing no association of the tag with the second child object to be performed.

24. The system of claim 13, wherein the system to perform operations comprising:
determining a lineage information of the current tag; and
causing association of the current tag with the first child object based on the lineage

information.

25. A non-transitory computer-readable storage medium including instructions that, when
processed by a computer, configure the computer to perform operations comprising:

receiving a tag creation command including a tag name;

in response to the tag creation command, creating a current tag with the tag name;

receiving an association command, the tag name, and a target object identifier;

determining a target object associated with the target object identifier, the target
object including a tag value;

associating the current tag with the target object;

identifying a first child object of the target object, wherein the target object and the
first child object are hierarchical objects,

in response to determining that the first child object is tag-unassociated, associating
the current tag with the first child object; and

in response to receiving a query including the tag name, generating an output based

on the tag name.

26. The non-transitory computer-readable storage medium of claim 25, wherein the
computer to perform operations comprising:

in response to receiving the association command,

determining that the target object is tag-associated, wherein the target object is
associated with a previous tag, and

overwriting the previous tag using the current tag.

27. The non-transitory computer-readable storage medium of claim 25, wherein the

computer to perform operations comprising:

28

WO 2022/093339 PCT/US2021/040001

in response to determining that the first child object is tag-associated,

causing no association of the current tag with the first child object to be performed.

28. The non-transitory computer-readable storage medium of claim 25, wherein the
computer to perform operations comprising:
identifying a second child object of the target object, wherein the target object and

the second child object are hierarchical objects.

29. The non-transitory computer-readable storage medium of claim 28, wherein the first

child object and the second child object are hierarchical objects.

30. The non-transitory computer-readable storage medium of claim 28, wherein the
computer to perform operations comprising:
in response to determining that the second child object is tag-unassociated,
associating the current tag with the second child object; and
in response to determining that the second child object is tag-associated,
causing no association of the tag with the second child object to be

performed.

29

WO 2022/093339

1/10
106\
CLIENT DEVICE
102%
CLIENT DEVICE o
-
110
jog
; TAG CONTROLLER L~ 118 !
==EEEH] E
boooed flfj--——f"f7"""""""""""""""~"""~=~=--
SErER TAG SERVICE MANAGER
EEEEH

FIG. 1

PCT/US2021/040001

CLIENT DEVICE

112
>
DATABASE
116
>
DATABASE
114
>
DATABASE

PCT/US2021/040001

WO 2022/093339

2/10

¢9ld

DIERES

#IB(] LB,

1By

DOTRIEI(]
+ PERLRAUBY
")
Ww\ £y N
R N
she) T 0 DUBHEEURY
e Ty
BOUBLBALC)
m.:{«\\)\
£
R
mgﬁmm é@ﬁ

UTDD

(s

i peneaue

wm@ ey

siepoy wewdoidan snouss wawsbsusy Bey

00¢

WO 2022/093339

3/10

%:Nvm

300

- Jat
SNy pX &1
: =
e D 5
TUE LS L (RS
= ‘1;!? i oy
A A A\ v 3 847 e
&2 Nl S a2 1 @

s

TN,

.,

s

7

nannan
S 7

W R L
o RSN f)
g2 (IHED 1@t
<T fprgdnadd yS
g bl
&2

r
7

o
W4
>

PCT/US2021/040001

FIG. 3

WO 2022/093339 PCT/US2021/040001

4/10

/ 400

A —————
o~ e,

.‘-"f \\
;! NOANIPR 3 }
{ Org:m.mim/

.
., -~
gt

T

********* A\fkccc»tmi j

-~ iaan

e e I
e P S R
.r"'-w&:::’\ .f’"“”“&i\ e “AN\ .«-"‘::ﬁw“\
ot 7 N e > o
i Database o User Warshouse) (Roe)
\'\\ ,,.-'f. \\\. e \‘\\W,_,,// \\\Mmu,,f'/
P

/ Schema™,
\ Chjects /

Iy
7
§

S 8u%}{3b§>

\\\“A““__,f

FIG. 4

WO 2022/093339

5/1

PCT/US2021/040001

0 / 500

AoeountACCOUNT-WEST

Dalahase TAGS

Schema ACCOUNTING

..}

T s _
T“ \x\\\\
\\
o N

{ s
S
R ey
™ [‘““““3

&

BILLING_ADMIN

N

COST CENTER=FINANCE "'"“”"Qﬁj
Whi

ST

T §

e
COST_CENTER=FINANCE" wf;:::z

B

PERN

AN
/ I\
A B
< J

H \\

i

COST ¢ E‘\ITER"“SALE’
{ !

¥ ¥
N s o
< f,} -
U v

i P e
Wh T &1

FIG.5

WO 2022/093339

6/10

PCT/US2021/040001

/ 600

A PN

ML

ounbACCOUNTWEST

N

=0 EMPLOYEE SSH

Data Gwner

ol

~ Table
(EMPLOYEE_INFO)

FIG. 6

WO 2022/093339 PCT/US2021/040001

7/10

/ 700

Account Provider

Database:DBY

Schema 0K

{"*M\(‘ o _ﬂ..a""" - ‘-é " .
Acoount: Consumer ‘&fi.ﬂ”“ Jag ,
e DISEASE

Iy DISEASE SO0V \\"{
N e
M-

!
H
z
e *n}\l

4 Q‘ (} \&. e
‘LJ‘\«*E"’? ==f-‘s3’ e Bhate
A
e V'),

Datebase:Bxporter DBY

FIG. 7

WO 2022/093339

PCT/US2021/040001

8/10

/ 800

802 ~

RECEIVING A TAG CREATION COMMAND

v
CREATING A CURRENT TAG

806~

A 4
RECEIVING AN ASSOCIATION COMMAND

808

A 4
DETERMINING A TARGET OBJECT

\ 4
ASSOCIATING THE CURRENT TAG WITH THE TARGET OBJECT

A 4
IDENTIFYING A FIRST CHILD OBJECT

!

IN RESPONSE TO DETERMINING THAT THE FIRST CHILD OBJECT IS TAG-
UNASSOCIATED, ASSOCIATING THE CURRENT TAG WITH THE FIRST CHILD
OBJECT

i

IN RESPONSE TO RECEIVING A QUERY INCLUDING THE TAG NAME,
GENERATING AN QUTPUT BASED ON THE TAG NAME

FIG. 8

WO 2022/093339 PCT/US2021/040001

_________________ ' 900
PROCESSORS 904 ¥

ROGSsoRaes] S 7T o ,

INSTRUCTIONS 910

MAIN MEMORY 972 STATIC MENMORY 914
INSTRUCTIONS 910 INSTRUCTIONS 910
STORAGE UNIT 916

MACHINE-READABLE MEDIUM 918

raY

1

PROCESSOR 908
INSTRUCTIONS 910

f INSTRUCTIONS 91

e

/0 COMPONENTS
924\ 926\ 928\ f 902
USER OUTPUT USER INPUT BIOMETRIC
MOTION ENVIRONMENT POSITION
930 932 934
COMMUNICATION 936

922 .~ DEVICES 920 w

FIG. 9

WO 2022/093339 PCT/US2021/040001
10/10
1050 1004 v/moo
i A
SOFTWARE ARCHITECTURE /
APPLICATIONS 1052
1036 4| HOME LOCATION THIRD-PARTY 1 1A 1040
APPLICATION
0
1042
1030 L CONTACTS MEDIA
1032 N L 1006
N 1044
BROWSER MESSAGING
1034 ___
N 1046
BOOK READER GAME MESSAGES
API
CALLS 1048
FRAMEWORKS L~ 1008
1018 1024 1028
j LIBRARIES j J
SYSTEM APl OTHER N (00
1014 1022
f OPERATING SYSTEM j
KERNEL SERVICES DRIVERS
{
v N (
)
1016 \wmz
1020 1026 1038
J MACHINE J J
PROCESSORS MENORY /0 COMPONENTS | = 1002

FIG. 10

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2021/040001

A. CLASSIFICATION OF SUBJECT MATTER

IPC: GO6F 16/2457
CPC: GO6F 16/24573

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
CPC: GO6F 16/24573

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

US-PGPUB; USPAT; USOCR,; FIT (CN, FR, WO); FPRS; EPO; JPO; DERWENT; IBM_TDB; Search Terms: object, hierarch
$, child, without, unassociat$, tag, child$, tag$, apply$, node

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2017/0295190 A1 (BROWN) 12 October 2017 (12.10.2017) ,
A entire document. 1-30

US 2013/0290377 A1 (PUROHIT) 31 October 2013 (31.10.2013),
A entire document. 1-30

Unity Answers, Is there an easy way to apply the same tag to all children of an object?,
accessed 9 February 2021 at https://answers.unity.com/questions/167644/is-thcrc-an-casy-
way-to-apply-the-same-tag-to-all.html (Year: 2015)

X entire document. 1-30

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
war d defining th 1 fth hichi idered date and not in conflict with the agpllcanon_ but cited to understand
A” document defining the general state of the art which is not considere the principle or theory underlying the invention
to be of particular relevance N X . ;
wp» d ited by th i in the i ional anolicati «X” document of particular relevance; the claimed invention cannot be
D” document cited by the applicant in the international application considered novel or cannot be considered to involve an inventive step
“E” earlier application or patent but published on or afier the international when the document is taken alone
filing date «y” document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O» document referring to an oral disclosure, use, exhibition or other “&”
means

«p» document published prior to the international filing date but later than
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
03 August 2021 (03.08.2021) AUG Io 2021
Name and mailing address of the ISA/US Authorized officer
COMMISSIONER FOR PATENTS MAIL STOP PCT,
ATTN: ISA/US P.O. BOX 1450 ALEXANDRIA, VA HARRY C. KIM
22313-1450, UNITED STATES OF AMERICA
Facsimile No. (571)273-8300 Telephone No. 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report

