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1
METHOD FOR GENERATING A 3D
PHYSICAL MODEL OF A PATIENT
SPECIFIC ANATOMIC FEATURE FROM 2D
MEDICAL IMAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 18/150,112, filed Jan. 4, 2023, now U.S. Pat. No.
11,715,210, which is a continuation of U.S. application Ser.
No. 17/656,189, filed Mar. 23, 2022, now U.S. Pat. No.
11,551,420, which is a continuation of U.S. application Ser.
No. 17/491,183, filed on Sep. 30, 2021, now U.S. Pat. No.
11,288,865, which is a continuation of U.S. application Ser.
No. 17/115,102, filed on Dec. 8, 2020, now U.S. Pat. No.
11,138,790, which is a continuation of U.S. application Ser.
No. 16/341,554, filed on Apr. 12, 2019, now U.S. Pat. No.
11,497,557, which claims the priority of PCT/GB2017/
053125, filed on Oct. 16, 2017, which claims priority to
United Kingdom Application No. GB 1617507.7, filed on
Oct. 14, 2016, the entire contents of each of which are
incorporated herein by reference.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The field of the invention relates to a method for 3D
printing a patient specific anatomic feature based on 2D
medical images. More particularly, but not exclusively, it
relates to methods and systems for managing the process of
printing 3D physical models of specific anatomic features,
methods and systems for automatically segmenting 2D
medical images, and methods and systems for automatically
identifying patient specific anatomic feature from 2D medi-
cal images.

A portion of the disclosure of this patent document
contains material, which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

2. Description of the Prior Art

Orthopaedic surgeons currently use traditional 2D radio-
logical imaging (such as CT or MRI) to plan patient specific
surgeries, which usually involve a clinician assessing a large
number of 2D radiological images and planning operations
based around their interpretations of the patient’s injuries.

In 2013, £129.5 million was paid out in litigation costs as
a result of complications within orthopaedic surgeries in the
NHS. The orthopaedic expenditure in the NHS was approxi-
mately £10 Billion in 2016. This represents the third largest
expenditure within the NHS, being just outweighed by
cardiac and mental health costs. With patients typically
having longer durations of life and with the increasing issue
of obesity within the UK there will be an ever-expanding
amount of patients requiring orthopaedic treatment and
backed up by the rise of consultants within orthopaedics
rising by ~250 in the past 3 years.

3D printing is receiving a great deal of attention, and may
be used to create custom medical prototypes, such as patient
specific implant devices. 3D printing of anatomical models
from medical data was traditionally based on manual tech-
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niques associated with collecting data and prescriptive infor-
mation from surgeons. The current available platforms avail-
able for processing medical data and creating 3D printed
models are often very technical and require experienced
users with extensive knowledge on the segmentation tech-
niques used. In addition, segmentation techniques are also
time consuming and are not automatic.

Hence current approaches do not cater to the entire
medical market, as the majority of surgeons are not willing
to allocate the software and training resources required to
process the medical images for each applicable case.

There is a need for an easy to use and intuitive system that
would leverage the advances in 3D printing and 3D visual-
ization. It would improve the effectiveness of the surgeons’
preoperative planning by producing a 3D printed model of
a particular patient’s injured anatomy in the required time-
frame whilst maintaining the highest quality. Such a system
would, in turn, further reduce costs to the healthcare pro-
vider by diminishing the chances of patient complications.

SUMMARY OF THE INVENTION

One aspect of the invention is a method for generating a
3D physical model of a patient specific anatomic feature
from 2D medical images, in which: the 2D medical images
are uploaded by an end-user via a Web Application and sent
to a server; the server processes the 2D medical images and
automatically generates a 3D printable, model of a patient
specific anatomic feature from the 2D medical images using
a segmentation technique; and the 3D printable model is 3D
printed as a 3D physical model such that it represents a 1:1
scale of the patient specific anatomic feature.

The 2D medical images may be uploaded alongside
metadata, wherein the metadata is either uploaded or entered
by the end-user.

The patient specific anatomic feature may automatically
be identified from analysing the 2D medical images.

The analysis of the 2D medical images may use machine
learning applied to an anatomical knowledge dataset.

The patient specific anatomic feature may automatically
be identified from an analysis of the metadata.

The analysis of the metadata may be done using Natural
Language Processing (NLP).

The metadata may include patient’s prescription informa-
tion, medical professional information or any other patient-
related additional information.

The metadata may be added by the end-user in real time
via the Web Application.

The 3D printable model may automatically be displayed
to the end-user via the Web Application, and the end-user is
able review, annotate and/or modify the 3D printable model
in real time.

The 2D medical images may be images from the patient
taken from a CT, MRI, PET and/or SPCET scanner.

The 2D medical images and any additional metadata may
be anonymised prior to being sent to the server such that no
identifiable healthcare or personal information is being
transferred to the server.

A cryptographic hash of the patient information may be
created to enable identification of a specific patient without
sharing sensitive patient information.

A smart contract object, may be required to order or
initiate the generation of the 3D physical model, contains
information about the requirements of the 3D physical
model to be printed including one or more of: stage quality



US 11,922,631 B2

3

gates, insurance status, payment status/limits, clinician,
patient consent, annotations, data sharing agreements and/or
data processing agreements.

The smart contract object may be incorporated into a
Blockchain.

The smart contract object may be pre-agreed between the
patient and the end-user.

The printing of the 3D physical model may only be
executed once the smart contract object has been validated.

Digital signatures may be used to verify identity and
approve decisions.

Dynamic pricing may be generated after the validation of
the smart contract object, and an instant quotation is dis-
played to the end-user.

A digital currency may be linked to the printing of the 3D
physical model.

The material used for printing may be automatically
selected depending on its resemblance to the specific ana-
tomic feature.

The material used for printing may be automatically
selected based on the requirement of the 3D physical model,
such as the time required to achieve the printing of the 3D
physical model.

The texture used for printing may be automatically
selected depending on the specific anatomic feature.

The 3D physical model may be optimized based on the
following patient related parameters: scan type, bone type,
tissue type, age, gender, weight.

Patient related parameters may be extracted from data
uploaded or entered via the Web Application.

Multiple 3D printable models may be generated and
multiple 3D physical models are printed and combined when
a single printer cannot print the patient anatomic feature.

One or more connective pieces may be printed in order for
the multiple 3D physical models to be combined together,
and the material used for printing the connective pieces is
automatically predicted.

The end user may select the specific anatomic feature they
wish to 3D print.

The segmentation technique may be one or a combination
of the following techniques: threshold-based, decision tree,
chained decision forest or neural network method.

Multiple segmentation techniques may be used, and the
results of each segmentation technique are combined
together to derive a final segmentation result.

A threshold-based segmentation method may be used and
the threshold value is generated from the 2D medical images
histogram analysis.

A threshold-based segmentation method may be used and
the threshold value is a function of the type of 2D medical
images (CT, MRI, PET or SPCET).

The segmentation technique may use a logistic or proba-
bilistic function to calculate the likelihood of a pixel of being
the tissue corresponding to the patient specific anatomic
feature.

A threshold-based segmentation method may be used in
combination with a pre-processing filter such as a Gaussian
filter.

A threshold-based segmentation method may be used and
the threshold value is a function of the 2D medical images
scanning parameters such as X-Ray energy and/or flux.

A threshold-based segmentation method may be used and
the threshold value is a function of the bone type (hard or
soft).

A threshold-based segmentation method may be used and
the threshold value is optimised based on one or more of the

10

15

20

25

30

35

40

45

50

55

60

65

4

following parameters: scan type, bone type, tissue type, age,
gender and weight of the patient.

A threshold-based segmentation method may be used and
the threshold value is generated from the 2D medical images
histogram analysis.

A threshold-based segmentation method may be used and
the threshold value is generated from detecting the peaks of
the 2D medical images histogram corresponding to tissues
similar to the tissue of the patient specific anatomic feature.

The segmentation technique may further comprise the
following steps: the detected peak inflection point is derived
by calculating the zero of the histogram second derivative in
proximity of each peak; the offset between a peak and the
inflection point is derived; the estimated threshold corre-
sponds to the position of the peak with an offset correspond-
ing to three time the inflection offset.

A threshold-based segmentation method may be used and
the threshold value is automatically generated and not
selected by the end-user.

A threshold-based segmentation may be used and multiple
thresholds are applied to the 2D medical images such that
multiple 3D printable models are automatically generated.

The segmentation technique may use a decision tree, in
which the following properties of the 2D medical images
pixels are selected in order to create the decision tree:
number of pixels resembling the tissue of interest located
near the pixel in question, number of pixels resembling the
tissue of interest located near the pixel in question, how
strong is the overall gradient of the image at the given pixel
if the consistency of the gradient direction within a small
neighbourhood of the pixel, and in which the tissue of
interest is the tissue corresponding to the patient specific
anatomic feature.

The segmentation technique may use a decision tree, in
which the decision tree is trained using existing pre-labelled
medical images.

The decision tree may be applied to a subset of pixel
within the original 2D medical images and the labels
obtained from this subset are then up scaled using standard
interpolation methods in order to recover the segmentation
of the full image.

The subset of pixel may be generated by subsampling the
original 2D medical images, and in which the subsampling
stride is selected depending on the pixel size.

The segmentation technique may use a chained decision
forest.

A hierarchy of decision forests may be used, in which the
results of a decision tree and the results from another
segmentation technique are fed to a new decision tree
alongside the original pixel values.

Each forest-node may be treated as a simple classifier that
produces a score as to how likely a pixel is to belong to the
tissue corresponding to the specific patient anatomic feature.

The segmentation technique may use a Neural Network
method, in which the Neural Network is trained from a
database of existing medical images.

The neural network may use a Fully Convolutional Neural
Network (FCNN).

The neural network may be a UNET Neural Network.

The Neural Network may include only convolutional,
downsampling and upsampling layers.

The Neural Network may not include any fully connected
layer and combines the ideas of uNET and FCNN in order
to obtain an optimised segmentation in terms of anatomical
fidelity regarding the edge of the anatomic feature.
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Upsampling layers may be added and in which the outputs
of previous layers are used to identify regions of the 2D
medical images in order to lead to a specific classification.

The training of the Neural Network may be performed by
using a database of existing medical images that have been
labelled and a medical imaging ontology.

The segmentation of the 2D medical images may be
performed to classify each pixel within the 2D medical
images.

The segmentation step may be combined with an ana-
tomic feature identification algorithm.

The anatomic feature identification algorithm may use a
graph database of medical images anatomic features.

The method further may include establishing links
between the different classified pixels from the exploration
of the graph database, and identifying the patient specific
anatomic feature from the established links.

The graph database may comprise nodes representing
anatomic features such as tissue type and/or organ type, and
edges associated with the relationships between the nodes,
such as: has part, proximity, attachment, ligament, func-
tional.

A node may include: a reference to a medical image with
the corresponding anatomic feature, a reference to the results
of'the segmentation of a medical image with the correspond-
ing anatomic feature, information relating to the anatomic
feature such as volume, surface area, Hounsfield Unit stan-
dard deviation or average.

The graph database may be updated after the generation
of' a 3D printable model.

A score or probability that the anatomic feature has been
correctly identified may be provided.

The method may further include a feature extraction
algorithm that takes advantage of both the segmentation as
well as the as the 2D medical images data in order to obtain
interesting properties of the tissue or organ corresponding to
the patient specific anatomic feature.

The feature extraction algorithm may be used to extract
one or more of the following: the anatomic feature volume,
the anatomic feature surface area, the anatomic feature
Hounsfield unit, the anatomic feature standard deviation
across the all available scans, histogram of the Hounsfield
Units corresponding to the anatomic feature across an ana-
tomical knowledge dataset or the smallest bounding box
containing the anatomic feature.

The feature extraction algorithm may be used to extract
one or more of the following: the presence of specific
keypoint landmarks, a number of predefined shapes and
volumes within the anatomic feature being considered or
specific features that are unique to the specific anatomical
component are detected.

The extracted interesting features may be added to the
graph database as part of the node properties.

The extracted interesting features may be used in order to
derive a classification of the anatomical components located
within the scan, using the following steps: derive accurate
segmentation using one or more automated segmentation
techniques; apply the feature extraction algorithm(s) to the
segmentation in order to derive the values of such features;
compare to the existing dataset of interesting features and
attempt to find a number of matches; the matches are
constrained and filtered depending on the proximity map
derived from the graph database; the standard models are
used to further refine the filtering and cross-checking by
fitting a linear transform between the semi-classified seg-
mented objects and what the standard model looks like; due
to the inherit inaccuracies of the segmentation step, each
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refinement of the matches produce a score or probability of
having matched the anatomical features correctly; the set of
scores obtained can be used in a decision tree (or forest) in
order to derive the final classification for a specific tissue or
organ;

A any deviation from standard dataset may be detected.

Touching organs or tissues may be detected within the 2D
medical images and an edge finding algorithm is used to
separate the different tissues or organs.

The anatomic feature classification may be re-estimated
once the different tissues or organs are separated.

Deformities and/or pathology of the anatomic feature may
be detected by measuring the deviation from the normal or
healthy appearance of the anatomic feature.

The method may be used for generating a 3D bio-
compatible physical model of a patient specific anatomic
feature or a portion of a patient specific anatomic feature, in
which the automatically segmented data is assessed against
statistical model of pre-segmented anatomy ‘Best fit model’,
and a 3D printable model is created based on a statistical
model for patients’ anatomy to insure an optimal reconstruc-
tion of tissue, and in which missing fragments are predeter-
mined with a best fit model and tissue scaffold models
created from this.

A 3D surface mesh model of the patient specific anatomic
feature may be generated from the segmented 2D medical
images.

The 3D surface mesh may be extracted from the scalar
volume data.

The 3D surface mesh model may be processed by a mesh
cleaning algorithm.

The 3D surface mesh model may be compressed,
smoothed and reduced before being sent back to the end-
user via the Web-Application.

The 3D surface mesh model may be 3D printable and has
the following properties: all disjointed surfaces are closed
manifolds; appropriate supports are used to keep the dis-
jointed surfaces/volumes in place, appropriate supports are
used in order to facilitate 3D printing; all surface volumes
are not be hollow; if a hollow volume is specifically
requested by an end-user: appropriate drainage holes are
added manually by an operation team.

A 3D model of the surface of the patient specific anatomic
feature may be extracted from the 3D mesh model, and in
which a marching cube algorithm is used in order to force
some vertices to be placed on voxels that do not intersect the
iso-surface directly.

The mesh may be as close to a printable model as
possible.

The method further may include a surface conditioning
step.

The surface conditioning step may include the following
step: poly-reduction algorithms are applied to the 3D mesh,
errors such as duplicated points, overlapping surfaces, miss-
ing surface are corrected to ensure the mesh is a manifold;
a mesh filter is applied; holes are detected and covered;
appropriate textures are selected.

The method may further include the following steps:
watertight surfaces are filled; dowels are added to support
the printing of a specific anatomic feature; print supports are
added by determining all local minima of the surface; the
print supports are removed during printing post processing.

The generation of the 3D printable model may be per-
formed by parallel processing.

One or more 3D printable models may be sent to the
end-user via the Web-application.
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The end-user may select a 3D printable model he wishes
to print.

The method may be configured to detect an anomaly
within the 2D medical images, such as: incorrect classifi-
cation of medical images, incorrect patient data, presence of
foreign objects in medical images or low quality imaging
data.

An end-user may be alerted when an anomaly is detected.

The method may be able to handle 2D medical images
which include unwanted artefacts or background noise, such
as foreign objects or a bed.

A preview of the 3D printable model may be displayed to
the end-user for approval before printing the 3D physical
model.

Information on the expected timeframe to generate a 3D
physical model may be calculated and displayed to the
end-user in real time.

The information on the expected timeframe may take into
consideration the segmentation, surface conditioning and
printing phases.

The printing of a 3D physical model may be scheduled
based on inbound models and surgical requirement.

The method may select a printer based on the printer
parameter and the 3D physical model parameter including
one or more of: build volume, materials available, minimum
feature size, hollow structures within the model.

The 2D medical images and any additional metadata may
be hard linked to the 3D physical model via a QR code, NFC
chip or RFID tag.

The profile of an end-user may be saved alongside the
end-user preference.

One or more end-users may be able to access the Web
application, and in which each end-user have their own user
preferences and user permissions levels.

An audit trail of the 3D printing process may be created
and continuously updated and tracked.

Another aspect is a 3D printable model or file of a patient
specific anatomic feature that is generated from any of the
above methods.

Another aspect is a 3D physical model representing a 1:1
scale of a patient specific anatomic feature that is generated
from any of the above methods.

Another aspect is a computer implemented system for
generating a 3D printed model of a patient specific anatomic
feature from 2D medical images, the system comprising: an
interface module configured to receive 2D medical images
and to send the 2D medical images to a server, a server
configured to process the 2D medical images and automati-
cally generate a 3D printable model of a patient specific
anatomic feature from the 2D medical images using a
segmentation technique; and a 3D printer configured to
receive the 3D printable model and to 3D print a 3D physical
model such that it represents a 1:1 scale of the patient
specific anatomic feature.

BRIEF DESCRIPTION OF THE FIGURES

Aspects of the invention will now be described, by way of
example(s), with reference to the following Figures, which
each show features of the invention:

FIG. 1 is a diagram illustrating the Axial3D system.

FIG. 2 is a high-level diagram illustrating three basic
segments for creating a 3D printed medical model.

FIG. 3 shows examples of 3D printed model reproducing
a patient’s injuries, such as calcaneus, pelvis and skull
fractures.
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FIG. 4 shows a workflow diagram illustrating how sur-
geons may use Axial3D for their preoperative planning
processes.

FIG. 5 is a screenshot of the Web application allowing an
end-user to upload patient data and order 3D models quickly
and easily.

FIG. 6 is a screenshot of the Web application allowing an
end-user to upload patient data and order 3D models quickly
and easily.

FIG. 7 is a diagram illustrating the workflow for upload-
ing data anonymously.

FIG. 8 is a diagram illustrating the workflow from receiv-
ing the data to displaying the data and obtaining 3D models
ready to print.

FIG. 9 is a diagram illustrating the main aspects of the
workflow.

FIG. 10 is a diagram illustrating the automated segmen-
tation workflow.

FIG. 11 is an example of medical image segmentation
using a threshold estimate.

FIG. 12 shows images displaying the bone threshold
estimated using our method for the Hounsfield unit histo-
gram from 24 CT scans.

FIG. 13 is an histogram of the threshold across 175 CT
scans.

FIG. 14 is an example of medical image segmentation
using random forest.

FIG. 15 is a diagram illustrating the chained decision
forest workflow.

FIG. 16 is a graph database containing primary anatomi-
cal features.

FIG. 17 are images illustrating image reconstruction using
comparison.

DETAILED DESCRIPTION

This Detailed Description section describes one imple-
mentation of the invention, called the Axial3D system.

The Axial3D system provides three-dimensional (3D)
printed models for use in medicine, manufactured using
patient data medical images to create custom products for
use in a wide variety of medical applications. More specifi-
cally, the Axial3D system provides software and services
that facilitates the production of bespoke 3D printed ana-
tomical models for use by medical professionals using
medical images as an input, hence bridging the gap between
3D printing technology and medicine.

FIG. 1 illustrates how the Axial3D system uses unique
visualization techniques and accurate anatomical knowledge
dataset to create a 3D representation (1) of a patient’s scan.
Medical images are processed and a 3D model is printed to
give a 1:1 scale representation of a patient’s injuries (2).
Hence, the 3D printed model is a reliable model reproducing
the patient’s exact anatomy and is designed to improve
diagnosis and to help plan a personalised treatment for each
individual patient. The medical images are often generated
by standard medical imaging techniques such as but not
limited to CT (Computerised Tomography) and MRI (Mag-
netic Resonance Imaging).

FIG. 2 is a diagram illustrating the three high-level
segments of the Axial3D system enabling the creation of a
3D printed medical model:

Sending medical images and prescribing requirements or

additional metadata (21)
Segmenting images to create 3D printable file of a patient
specific anatomic feature (22);
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Managing the print process and sending 3D printed physi-
cal model(s) (23);

The models produced can be used for a wide range of
healthcare applications, such as but not limited to preopera-
tive planning and education. Medical professional, such as
surgeons, are able to gain access to 3D printed models as
part of their daily routine in assessing treatment pathways
for their patients. 3D printable files can be created directly
within the hospital through their pre-existing web applica-
tion without the need to learn how to use cumbersome
software that will take hours to segment images.

The surgeons are therefore provided with a much more
comprehensive idea of what injury they will be treating, by
allowing them to conceptualise the patient’s injury in greater
detail therefore increasing the effectiveness of their surger-
ies. This results in improved patient care combined with a
reduction in resource burden on the hospital.

FIG. 3 shows examples of 3D printed model reproducing
a 1:1 scale representation of a patient’s injury, such as
calcaneus, pelvis and skull fractures.

The Axial3D system can easily be integrated with the
clinical workflows, thus giving medical professionals an
easy access to the process of 3D printing that is currently
detached from the medical world. Establishing this connec-
tion with 3D printing and healthcare is done by automating
and refining the processes and creating intuitive, easy to use
tools to seamlessly bridge the gap between 3D printing and
healthcare.

FIG. 4 is a diagram representing an example on how
surgeons may use Axial3D for their preoperative planning
processes in order to speed up surgery times. In this case,
surgeons are able to pre-bend and prepare all necessary
equipment required to treat a patient well in advance of
entering the operating theater, a process that is currently
completed when the patient is in surgery. These new meth-
ods can typically save around 30 minutes of procedure time,
which costs the NHS £60 per minute in direct surgical costs
(£1800 per procedure). As the patient spends less time in
surgery, they also experience less intraoperative bleeding
and a reduce risk of infection. This will then go onto reduce
the amount of post-operative care they will require, which in
ICU terms can typically cost £2000-£4700 per day.

The Axial 3D system therefore enables healthcare pro-
viders to improve patient care and to reduce overall costs.
Patient’s understanding of operations is also improved and
patients are then able to adjust their perception of the risk of
operations.

The Axial3D system fills the gap in the market for
providing software to streamline the integration of 3D
printing into hospitals by providing tools and infrastructure,
enabling 3D printing to seamlessly integrate with healthcare
systems and clinical care pathways. This allows the cus-
tomer to manage the printing process from start to finish,
within the Axial3D platform, removing bottlenecks in mar-
ket adoption.

FIGS. 5 and 6 show screenshots of the Web Application
allowing an end-user to upload patient data and order 3D
models quickly and easily. The Axial3D software automates
all of the steps in the process of creating 3D printed
pre-operative planning models for use in medicine. The
purchase of a model is vastly simplified using the Axial3D
system workflow management. For the clinician this lowers
the barrier to purchasing. The hospitals are also provided
with reporting and user management services allowing them
to manage their consumption of models as a whole. Having
a web-first platform enables Axial3D to market its services

20

25

30

40

45

55

10

to the global market by mitigating ‘the middle man’ in
collecting the patients’ data and prescriptive information.

Unique features include, but are not limited to:

Data science and machine learning techniques are applied
to deliver improved 3D models.

Anatomic features are recognised using an anatomical
dataset that improves using manual and/or machine
learning

The service is directly integrated into the medical field.

The need to liaise on a regular basis with the surgeon is
largely eliminated.

The workflow guides the user through the order process,
from the input of patient details through to anatomy
selection and delivery.

A non-technical person is able to order a 3D model.

Surgeons or non-technical person can easily and intui-
tively upload a patient’s data.

The drag and drop interface allows an easy upload of large
DICOM (Digital Imaging and Communications in
Medicine) image series.

DICOM images that come from a variety of sources (such
as but not limited to CI/MRI/PET) may be processed
together.

DICOM images which contains unwanted artifacts or
background noise, such as foreign objects or a bed, may
still be converted and processed.

Development of a DICOM conversion application that
takes a series of 2D DICOM images and a scan type as
an input. The conversion application utilises a series of
image processing operations that detect anatomical
regions on each image through automatic segmentation
of the anatomy from background.

Thresholding procedure is used for segmentation.

One or more thresholds are applied to the 2D medical
images in order to automatically generate one or more
different 3D printable models allowing the user to
select the printable model with the least background
noise. The generation of multiple models is performed
in parallel to increase performance.

The Web based viewer allows a user to easily select/
annotate the desired anatomy they wish to 3D print.

A preview of the anatomic feature for printing is acces-
sible before the order is completed.

DICOM images are processed in real time into a 3D
model for printing through a web application.

Data required to create a 3D printed model is uploaded
along with a prescription of specific needs.

The system displays an instant quotation.

Bespoke models are produced in 48 hours or less, which
in turns facilitates time constrained procedures, such as
trauma.

A surface mesh is generated from the representation of the
voxels directly taken from the two dimensional
DICOMS.

One or more end-users can have access to the Web
Application. The one or more end-users may be
assigned different permission or authorization levels.

1. Three Dimensional Printing in Healthcare Management
Workflow—Insight

The workflow management software (called the Insight
system) makes it possible to routinely employ 3D printing
for healthcare providers by making it simple to access the
Axial3D tools. The software is available through a web
client and a command line API. The Web application allows
the user to manage the process of procuring a 3D anatomical
model for pre-operative planning and investigation. The
Axial3D system also provides reference client implementa-
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tions (in python and javascript) that allow integration with
the Axial3D server Application Programing Interface. The
system is capable of receiving medical images from standard
equipment. The system then stores those files to enable
further analysis and captures annotations to facilitate a
prescription for the creation of a bespoke 3D anatomical
scale model printed using additive manufacturing tech-
niques. The system monitors the progress of the print
throughout the creation process. The system is therefore
capable of managing and reporting on the status of the print.
Real time information on specific timeframe before a print
is ready is also available—taking into consideration the
segmentation, surface conditioning and printing. A 3D
model can be produced in a matter of hours rather than days
and weeks using existing technologies.

The workflow management process is novel in combining
a number of emerging technologies to provide a single
service. We are using Blockchain to provide secure and
anonymous data transfer. Secondly we are leveraging the
successes in machine learning as applied to image process-
ing and visualisation to create 3D objects from 2D images.
Lastly we are then taking these and preparing 3D printed
versions of the anatomical objects. This is a unique combi-
nation of technologies that will deliver safe, speedy and
secure 3D objects to clinicians in a time sensitive manner in
order to allow pre-operative planning. These objects will, in
turns, improve the outcome for the patient being treated.
1.1 Upload—One Way Data Anonymisation

FIG. 7 is a diagram illustrating the workflow for upload-
ing data anonymously. Data can be uploaded via a reference
web application or via command line tools to interact with
the API. Data is then scrubbed to remove personally iden-
tifiable information from the original data. In this example,
the end-user has a file for upload on their PC (71). The
end-user can view the files using their File System browser
and select them for upload through their web browser. The
files are anonymised for upload prior to leaving the user’s
PC. The anonymised files are then transferred over the
Internet to an application server, which saves them to the file
system on a server (72).
1.1.1 Upload from PACS

A series of integrations, such as integrating directly with
a PACS supplier or a 3rd party client who manages secure
exchange of data are provided that allow end-users to send
data from their PACS provider directly to the analysis
platform to enable the printing of a 3D object. The analysis
could be run as a service inside the PACS infrastructure. Or
the data could be sent to the Axial3D server for analysis and
a 3D Printed object would then be returned. In the case of
integrating with the PACS supplier, the Axial3D server
would be configured to act as a teleradiology site and receive
data directly from the user’s PACS system. Where the user
has a 3rd party client for data exchange we would provide
an implementation of our client software to connect to the
Axial3D server and facilitate upload and analysis of the data.
1.1.2 Secure Data Transfer and Handling Through Block-
chain

Blockchain technologies have in recent years risen to
prominence as a method for the secure tracking and sharing
of information. They allow a decentralised and secure track-
ing system for any data interactions. The architecture allows
for storing proof of the existence of data without necessi-
tating the actual sharing of that data. This means it is
possible to prove the existence of data or metadata whilst
maintaining confidentiality.

For example, this could be the proof that a patient has
given consent for sharing of data without the need for us to
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see the agreement. The information about the consent form
and the patient data could all remain on the hospital system
and they provide us with the proof that the data exists.
Therefore we can proceed with sharing without the need to
see the patient information. We only need to see the exact
data required for processing.

We leverage this aspect of Blockchain technology for our
data sharing platform to ensure that we have received the
correct permissions and ordering information from users.
We are using Blockchain to build reliable clinical request
contracts. Blockchain technology allows us to stand over the
inviolability of the data we have received and to proof the
provenance of any data and associated metadata. This pro-
vides us with the ability to track all events in chronological
order. Once the data is received onto the Blockchain it is not
possible to alter it. This inviolability principle is crucial to
providing assurance about the provenance of information.
This ensures that once the conditions for a contract are met
it is possible to execute. Hence smart contracts executed on
the Blockchain are used to order and/or initiate the 3D
printing of medical data.
1.1.2.1 Data Initiation Phase

At the initiation phase, the data plan is agreed by all
parties in a smart contract. This allows for the collection of
information about the requirements of the prints such as for
example: insurance status, payment status/limits, clinician,
patient consent, annotations, data sharing agreements and/or
data processing agreements. When data is entered into the
Blockchain it is time stamped.
1.1.2.2 Print Initiation Phase

Before the print begins, more requirements are added to
the 3 dimensional file containing all relevant information for
what is required for printing. Information about the stage
quality gates is added to the smart contract objects about the
print. An example stage quality gate might be added by a
quality control technician confirming that the physical
printed model matches dimensional accuracy of two dimen-
sional image it was created from. They would be able to add
information about the protocol used to make this quality
decision—i.e. the metadata about how the data was pro-
cessed. Once the print object has passed all the required
quality gates in a smart contract it is available for printing.
A smart contract can execute this stage.

We will receive an encrypted one way hash to initiate an
order—This will allow the health care provider to initiate an
order, without passing personal healthcare information to the
Axial3D. This can be sent to the Axial3D server via the
Blockchain and allows for the creation of a smart contract.
This contract can be updated with stage gate information as
the model is generated by Axial3D.

The Blockchain is also used to record the stage gates that
the model passes through during processing, this allows us
to automate the initiation of a print once all the required
steps have taken place. This means that the network of
distributed printers can be controlled via the Blockchain
through the validation of a smart contract object in real time.
1.1.3 PCoin

The Blockchain infrastructure facilitates the exchange of
information and data required to implement the printing of
an anatomical model of patient data. Printing out a file also
requires the utilisation of our currency—PCoin. By linking
the printing of an object to the PCoin we ensure that the
requirements of the smart contract are validated. Users of the
printer are motivated to ensure the validity of the Blockchain
and the smart contracts as are those requesting the prints.
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This linking of the physical product to the smart contract on
the Blockchain allows for internally consistent pricing of the
transactions and contracts.

Leveraging the Blockchain like this allows us to treat it as
a safe deposit box, allowing handover of privileges. It is the
ultimate audit trail for verifying that steps have been
executed by parties in an agreement (smart contract). We
enable the ability to encode the properties of the data that is
printed into a physical 3D printed object and a virtual record
stored on the Blockchain. This is facilitated by a QR code
embedded in the 3D printed object and stored with the
digital record. This allows the linking of a QR code to a
specific print. The process of hardlinking is described in
more detail below. Properties that are recorded include the
3D representation of the printable object and the information
about the steps carried out by the Axial3D server to create
this printable object. Therefore it is possible for anyone to
verify that the appropriate quality control operations have
been carried out.

Print scheduling can be operated and managed using a
DApp executing smart contracts. This would be a Block-
chain based application that sits between the data processor
and the printer detecting when prints are ready to be sent to
the printer. It is capable of identifying when the criteria for
printing have been met and of deciding how best to arrange
the printing on one or more printers.

Hardlinking allows for the linking of the original order,
including the smart contract and data (e.g. image scans and
user specifications) to the physical object used by the
clinician and the auditing of all of the modifications of this
data. Key to the print management process is the transfer or
realisation of the software defined print in the physical
world. In order to track the transition a number of techniques
are employed to hardlink the software pipeline to the physi-
cal object produced on the printer. The aim of these tech-
niques is to create an object hyperlink. This hardlink is
capable of being represented in a number of different ways.
It can be a simple computational hash of the output of the
software pipeline. It can also be embedded into a Quick
Response (QR) code, NFC chip or RFID tag. This system
allows us to move between the virtual world that created the
3D printed physical object and the physical world that the
object is instantiated in.

QR/Compliance code for tracking 3D printing is an
inherently digital process. We are generating a digital supply
chain. Every part and process or modification is document-
able and attributable. This creates opportunities for tamper-
ing and theft. We have the ability to trace the objects from
order initiation through to production and potentially to
usage/implantation. Through hardlinking a single object is
provided from conception to implantation. Hardlinking is
the registration of a unique code to a single print—covering
the entire pipeline from initiation to print. This system
provides the infrastructure and oversight necessary for the
management of a 3D printing facility to provide anatomical
scale models from medical images. The system allows users
to upload medical images directly and annotate those images
in the workflow. We provide a reference implementation via
a website and a command line tool that accesses our appli-
cation programing interface.

At the initiation of an order a cryptographic hash of the
patient information is created by the ordering organisation.
This allows them to identify a patient without passing over
any sensitive patient identifying information. This is crucial
for the system as it allows the organisation placing the order
to validate for itself that the model printed is associated with
the correct patient without disclosing the patient data.
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1.2 Print Management

Tools are provided in order to determine if a given volume
is printable and to identify problems with the printability of
the object. Based on an understanding of printing volumes
rendered by computational or manual techniques, the print-
ability of 3D physical model of a patient specific anatomic
feature has been extensively studied and understood, such
as: how to print a diverse set of objects within a scene, the
management of printing a diverse set of objects, including
the ordering, orientation, placement on plate and across
multiple types of printer and printing technologies.

Connected machines may also operate in conjunction with
each other to create a required 3D print. This requires a
coordination layer sitting between the image processing
algorithm and the printer to determine the optimal print
delivery pipeline.

Text messaging may be used to report on status and
initiate commands to the server.

1.2.1 Scheduling of Prints

Print scheduling is used to facilitate the volume and
timing of print. Timelines for prints are scheduled based on
prints finishing within a 10 hour working window and based
on inbound models and surgical requirement. Delivery
schedules are also based on achieving lowest cost for arrival
of'an on time model.linked with the cost of the postal service
and provider, as well as method of transportation, including
autonomous vehicles known as drones. In each case, an
equation can also look for models that can fit within its print
volume for a single print.

Some examples below are given, in order to meet the
required date N for the delivery of a 3D printing model:

Model required date=N

i.e. If N>72 hours from upload—Ilookup—N<72 days if
no prints and schedule 48 hour royal mail pick up if
UK—if EU US schedule 48 hour DHL US & EU;

if N<72 hours lookup—instances for N<48 hours—if no
prints and schedule 24 hour royal mail pick up if
UK—if EU US schedule 24 hour DHL US & EU;

if N<48 hours lookup—instances for N<24 hours next
available printer slot and schedule—if no prints and
schedule 24 hour royal mail pick up if UK—if EU US
schedule 24 hour DHL US & EU;

if N<24 hours lookup—next available printer slot and
schedule drone pick up=length of print time+120 min-
utes;

If N<24 hours and not within drone/unmanned vehicle
range complete if statements above to the closest
geographical location of print farm to delivery address
of order.

1.2.2 Automated Material Selection

Different parts of the anatomy require different
approaches to 3D printing. The printing of multiple pieces of
anatomy in a single print or combining them requires the
construction of bespoke printing strategies.

To meet the expectations of users of the 3D prints, the
selection of the materials used are optimised to print the
anatomical features for their resemblance to the material
used for printing. For instance hard bone is printed in harder
materials and soft tissue in softer materials. Hence, the
software automatically selects the material for printing. This
selection may also be based on the requirements of the
model, e.g. speed with which it is required.

There are restrictions on the possible size of the prints
using existing 3D printing machines. To overcome this for
oversized pieces of anatomy we construct custom features
that allow the combining of multiple 3D prints into a single
3D printed model. The placement of these connective pieces
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follow a set of rules that which have been formalised such
that they can be applied also to new models. To achieve this,
the Axial3D system is able to predict the type of material
required for these connective pieces.

1.2.3 Automated Printer Selection

Depending on the type of anatomy to be printed we will
select the material and technology pairing best suited to the
final model. This relies on the ability to clearly identity the
anatomy beforehand. An input to this process is a pre
classified piece of anatomy (taken from the medical scans)
which is present in the object or objects to be printed. The
output of the process is a selection of the specific printer that
is best suited to the anatomy being printed. Printers have the
following dependencies: build volume, materials available,
minimum feature size. The parameters involved in the
selection of the 3D printer are: volume of 3D model, hollow
structures within the model & minimum feature size. The
algorithm matches the printer parameter to the model param-
eter as described above.

We have built up a series of profiles of users and their
preferences for particular model types. For example we have
data that indicates that oncology users prefer prints that can
incorporate clear models. We will use this information to
predict what kind of technology the model should be printed
on for the user’s requirements.

1.3 Axial3D Automated Pipeline

FIG. 8 shows a diagram illustrating the Axial3D Auto-
mated Pipeline workflow; once the data is received (8.1), the
Axial3D automated segmentation will identify the anatomi-
cal components within the scan and “label” them accord-
ingly (8.2). The Tissue and Organ Segmentation is then used
by the surface generation in order to create the organ
volumes (8.3); the volumes are then passed to the condi-
tioning phase (8.4) which will identify the volumes that
require printing, the associated correct materials and per-
form the printer selection. The three objects produced by the
Axial3D Automated Pipeline stages are used in different
ways: the segmentation data and the 3D Mesh produced by
the Segmentation and the Surface Generation stages (8.5 and
8.6 respectively) are used in the Axial3D review component
of the Web app; the user can interact with them by adding
annotation, select components to be printed and select
preferred materials for specific anatomical features; the 3D
printable object (8.7) is used at print time. All output files
and data are stored in the Axial3D Data Storage and can be
downloaded using the Axial3D CLI. All steps are described
in greater details below.

1.4 Model Annotation

The user is presented with the 3D model that is generated
using the steps described in the automated pipeline. This
process identifies pieces of the anatomy visible in the scene.
This allows the user to interact with the 3D model on screen.
Once the model is shown on the screen the user can zoom
in and out to visualize the model as well as provide anno-
tations. These are free hand drawings that are mapped onto
the model by our software. It is possible for this annotation
process to be completed on a mobile as well as on a desktop
or on other devices.

The annotations provided by the customer are then used
to, for example:

1. clearly and accurately define regions of the scene that

they want to print;

2. provide information about the anatomical components

contained within the scan, facilitating the task of ana-
tomical identification (see below).
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1.5 Image Manipulation and Download

Protocols for the handling of data by expert medical
visualization engineers have been developed. In addition,
tools for the exchange and storage of data and annotations
generated by the healthcare professionals have been devel-
oped.

It is possible in this view to overlay the 3D models, and
the original scans as well as the automatic segmentation
results in order to facilitate validation of the segmentation
algorithm. Through the web application the results of the
automated segmentation are presented and the engineers are
able to approve the segmentation. Tools and an interface also
allow the modification of the segmentation within the Web
App.

Methods are also developed to increase the speed of
transfer of data about medical images including specialized
formats and data structures. This includes the identification
of duplicate information prior to data transfer, enabling only
the sending and receiving of unique information. Hence less
information needs to be sent, resulting in faster transfer
times. This is key to ensuring that users experience faster
loading times and a better user experience. This requires the
development of infrastructure that enables the storage of a
large amount of data routinely. This also requires significant
investment in security to ensure that patient data can be
handled safely and securely.

Post image analysis, it is possible to download annotated
medical image files. These contain the output of our auto-
mated segmentation algorithms. They can be viewed in a
standard medical image viewer. These images are copies of
the original.

1.6 User and Task Management

FIG. 9 is a diagram illustrating the main aspects of the
workflow from the surgeon initiating an order to the delivery
and utilization of the 3D printed model by the clinician or
healthcare professional. The process of ordering and gener-
ating a 3D printable file and subsequent printing of it can be
broken down into a series of one or more tasks. Each of these
tasks can be carried out by a person or automated. We
provide the infrastructure, services and software as well as
management interface to facilitate the implementation of
these tasks. We offer a task-based approach to executing the
process of creating a 3D anatomical model. We allow
multiple users from an organisation to participate in the
process. This is in addition to the use case of a single user
operating the entire workflow on their own. This encom-
passes image processing specialists who can interact with
the data upload stages. Medical professionals can upload
data about the model being created and annotate the model
as it progresses through the workflow, as shown in FIG. 9.

We support all aspects of the ordering process within a
healthcare setting. Our software allows the role based pro-
visioning of the tasks required to order a 3D print. From the
surgeon requesting the print, anonymisation of the data
uploaded by a radiologist, sign off on the spend by clinical
director, procurement decisions by the healthcare provider,
transfer of files from the imaging systems, management of
the 3D print process internally and tracking all these autho-
risations within the system. The tracking facilitates the
production of an audit trail capable of providing the required
information about the transition of the data through the
workflow into the final 3D printable object. The workflow
management software holds all user types and assigns roles
appropriate to the user controlled by the group administrator.
Users can be grouped together for example by membership



US 11,922,631 B2

17

of the same organisation or group of organisations. In this
case an administrative user must be created to manage roles
and access.

1.7 Improved healthcare Experience Through 3D Printing

Patients experience an overall improvement of the level of
service provided by the healthcare institution when 3D
printed models are used. The models can be used by the
medical staff to improve the communications of the condi-
tions to the patient, allow a more informed decision as to the
course of treatment to be followed as well as improve their
confidence on the medical staff and institution caring for
them. This will lead to increased buy-in by the patient
thereby.

2. Axial3D Automated Segmentation

The goal of image segmentation is to assign to each pixel
within a digital image (volume) a label corresponding to a
given class (bone, fatty tissue, tubular tissues such as veins
and arteries, tissue with cavities such as lungs, etc) of
possible objects that may appear within the image. The
classes may represent any kind of object that may appear
within the image, including human tissues, organs and
foreign objects (the scanner bed, metal implants, pacemak-
ers etc). This means that we take medical images as input
and produce a new volume superimposed onto the original
scanned volume where each pixel of the original volume is
replaced by the label corresponding to the appropriate tissue
type.

This section will outline the algorithms implemented by
the Axial3D server in order to achieve accurate and reliable
segmentation of the medical scan for the purpose of 3D
printing. Each algorithm has a number of advantage and
disadvantages. The segmentation pipeline includes a final
step where the results of all algorithms are combined
together to derive a final segmentation that is then used to
combine the results of the various algorithms.

FIG. 10 shows the Automated 3D Segmentation work-
flow. The input data, consists of the scan DICOM stack
provided by the customer; the stack contains the 2D images
obtained from the medical scan; automatic anomaly detec-
tion will flag the presence of gross anomalies and inconsis-
tencies in the input date; the data is then passed to any
number of segmentation algorithm (three shown in this
example), each algorithm is run independently from the
others; each algorithm produces a segmentation map; the
results of all Segmentation workers are then combined by
the Reducer; the final Label DICOM stack is then outputted
and passed to the 3D surface generator code.

2.1 Anomaly Detection

Anomalies and erroneous information are often contained
within the data that is received with the patient order. Such
anomaly present itself as a mismatch between the expected
form of the date and what is being received; this mismatch
may appear both as a gross or very subtle deviations from
the expectation. Anomalies are any form of deviation from
the expected appearance of a scan that would impair the
results of any of the automated algorithms and lead to
incorrect 3D models.

Possible sources of anomalies are:

1. human errors such as: scan data may be classified as a
computer tomography where in reality it is an MRI
scan or incorrect patient data;

2. presence in the scan of foreign objects that causes
aberration and errors in the scan data;

3. low quality scan images dues to issues with the
scanning hardware or inconsistencies in the scanning
protocol (wrong X-Ray energy and flux; wrong scan-
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ning settings used during the scan; worn out X-Ray
source and/or other equipment);

The automated pipeline will detect these anomalies by
comparing the information provided against a simplified
standard set of parameters expected within the 3D volumes;
this standard implements a number of simple rules on the
expected color histogram to check against: for example, CT
scans will generally display strong components in the region
of'-1000, —80, 80 Hounsfield units roughly corresponding to
fatty tissues, tissues containing water and air; the lack of all
these three components will indicate that the scan may not
be CT as specified by the user. The same applies to MRI
scans. Detection of such cases will result in marking the scan
for revision by an engineer in the worktlow.

2.2 Threshold

The simplest method of image segmentation is to use a
thresholding algorithm based on the knowledge of the
typical Hounsfield of bones. FIG. 11 is an example of
medical image segmentation using a threshold estimate (see
below for an outline of the automated threshold estimation
algorithm). In this approach, all pixels with a value above
193 are classified as bone, while pixels below this value are
non-bone.

The Axial3D threshold algorithm expands on this concept
by using a logistic probabilistic function instead of a hard
threshold in order to calculate the likelihood of a pixel of
being the tissue in question instead of a binary value, e.g.
instead of “bone” VS “no-bone”, the threshold calculates a
value between 0 and 1 where higher number corresponds to
likelihood of being bone).

The main issues with this method are:

1. Noise of non-bone tissue: it is often found that non-
bone tissues may light up and appear as small regions
with pixels with values above 190; this is often caused
by the limitation of the imaging technology (the 2D
tomographic reconstruction in particular) which may
create small artefacts;

2. holes in bones: for the same reasons discussed above,
it is very common for small regions (typically 5-10
pixels in size) of bone to appear dimmer within the
image (less than 190); these regions appear as holes in
the bone;

3. foreign objects: it is quite common to observe foreign
objects within the CT scan such as the bed onto which
the patient is laid; these object often have very high
Hounsfield Units (HU) due to their relatively high
density; these objects are often segmented as bone due
to their large size and high pixel value.

The issues described above are partially mitigated using a
smoothing algorithm (Gaussian or median filtering); such
methods improve the overall quality of the segmentation
however will slightly reduce the fidelity of the bone vol-
umes.

Thresholding in combination with a small pre-processing
filtering (Gaussian) has been found to be the most appro-
priate method of image analysis for the generation of
Web-App models. The models have acceptable anatomical
fidelity as well as a very low number of mislabelled bones
as a relatively small number of holes. All anatomical fea-
tures are present, with the exception of very small bones
such as carpal feet and hand bones, in particular in proximity
to the physic and maxillofacial features in children and in
elderly people (in particular subjects with advanced arthri-
tis).

2.3 Programmatic Threshold

We have demonstrated that it is beneficial to apply dif-

ferent parameters as inputs to our algorithms on the basis of
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the application area. Specifically, we have optimised the
creation of the model based on key parameters such as the
scan type, bone type, tissue type, age, gender and weight of
the patient. We capture this information from the images and
by capturing this in the user interface to our software.

The Scan Type and Bone Type of the DICOM image
series are key parameters that provide information that is
used to make the threshold process more robust and accu-
rate. The end user selects a Scan Type (ST) of CT, MRL, PET
or SPECT and a bone type (BT) of Hard or Soft. The
threshold step segments out the bone from background
information e.g. skin and foreign objects such as a bed. It is
critical that all of the bone (and only the bone) is segmented
during this .step. Failure do this will generate an invalid 3D
model.

A considerable amount of work has been carried out in
order to determine the best threshold value to be used for a
given CT scan. It has been found that the ideal threshold
varies depending on the CT scanning parameters (X-Ray
energy and dux); these settings are ordinarily modified by
the radiologist performing the scan in order to maximise the
quality of the scan.

In order to obtain the best segmentation results, the
Axial3D Automatic Threshold Estimator uses an analysis of
the scan color histograms in order to derive the best esti-
mate. The algorithm performs the following steps:

1. detects the peaks of the histogram corresponding to the
tissues that are similar in color compared to the tissue
of interest;

2. once the peaks are detected, their infection points are
derived by calculating the zero of the histogram second
derivative in proximity of each peak

3. the offset between the peak and the inflection point is
derived;

4. the estimated threshold corresponds to the position of
the peak with an offset corresponding to three time the
inflection offset;

5. if an error occurred during the peak detection, a default
threshold is used depending on the tissue of interest and
scan type; errors include the lack of peaks in direct
proximity to the tissue of interest, peaks may not be
sufficiently prominent (too small); the scan modality
and/or tissue type may not be supported by the algo-
rithm

FIG. 12 shows the bone threshold estimated using our
method for the Hounsfield unit histogram from 24 CT scans.
As it can be seen, the 24 histograms vary considerably; this
variability is due to the varying ratio of different tissue type
within each scan as well as the CT scanner settings (voltage,
flux etc). FIG. 13 shows the histogram of the threshold
across 175 CT scans. The histogram shows the variability of
the estimated threshold; for the majority of scans the esti-
mated threshold is around 100 Hounsfield unit; this is the
lowest threshold value that can be used in order to remove
all non-bone tissue from the segmentation results.

2.4 Decision Forests

Decision trees are an improvements over the threshold
method described above. They involve the creation of a “tree
of thresholds” where pixels are classified based on a number
of properties, not just their value. Any property of the pixel
as well as its neighbours can be used to create a new
decision.

In the context of our application, the following properties
of the pixels have been selected in order to create the
decision tree:

1. how many pixels looking almost like bone are near the

pixel in question;
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2. how many pixels looking exactly like bone are near the
pixel in question;

3. how strong is the overall gradient of the image at the
given pixel if the consistency of the gradient direction
within a small neighbourhood of the pixel; Sobel filters
are used in order to derive this property;

The decision trees are trained using existing pre-labelled
Axial3D patient data. The decision tree is applied to a subset
of pixel within the original scan; the labels obtained from
this subset are then up scaled using standard interpolation
methods in order to recover the segmentation of the full
image. The pixel subset is generated by subsampling the
original images, typical subsampling strides are 5, 7 or 13 in
both the X and Y direction. The subsampling stride is
selected depending on the pixel size (derived from the
DICOM themselves); the subsampling stride is selected so
that the subsampled resolution does not fall below 5 mm in
the original space.

FIG. 14 is an example of medical image segmentation
using a random forest. Decision Trees produce lower fidelity
segmentation compared to thresholding algorithm(s) (the
edges of the anatomical components are not as accurate),
however it produces less noise.

2.5 Chained Decision Forests

In order to overcome the poor resolution of a single
decision tree forest approach, a new approach based on a
hierarchy of decision forests is developed.

FIG. 15 is a diagram illustrating the general concept. The
results from the decision tree and the results from another
classifier (e. g. the threshold) are fed to a new decision tree
alongside the original pixel values. In this approach, each
forest-node is treated as a simple classifier that produce a
score as to how likely the pixel is to being part of a bone.
Each following tree will consume this estimation and make
an overall assessment of the likelihood of the pixel actually
being part of a bone.

2.6 Neural Network

Neural networks are similar to the Decisions Forests
described above in the sense that they are built by creating
very simple decision units and chaining these units together,
so that what has been discovered by a few units helps a
following unit to make a new estimation as to what the
network is looking at.

Example of an advantage and a disadvantage of using
Neural Network methods are the following:

1. Advantage: as each neuron can be trained on recog-
nising one feature which may be either present or
absent from the image, Neural Networks are extremely
good at generalising common features of the subject
and outperforms almost any other algorithm in the
detection accuracy (including decision trees);

2. Disadvantage: although some neurons may be “look-
ing” at a small patch of the image, any following
neuron will be looking at larger and larger patches of
the image; in most Neural Networks, the final neurons
will be classifying very large sections if not the entire
image, which may lead to very poor resolution of the
boundary of the detected object.

6.1 Fully Convolutional Neural Networks: FCNN

In a typical Neural Network, the final layer will produce
estimations of the input pixel belonging to a given class; in
the most common approach, the neural network will take a
full image of a fixed size as input and classify the entire
image as to belonging to a given class. This effectively
means that in the standard approach, a neural network does
not produce a segmentation of the image, but a classification
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of' the entire image; this is a little like answering the question
what object is in the image, not where the object is.

An approach to solve this issue is to use a specific layout
of neural network called a Fully Convolutional Neural Net.
In this approach, all layers of the network are convolutional,
including the final layer. Using this approach allows the
system to minimise the down-scaling of the network using
max pooling.

The final output of a FCNN is typically a segmentation
array with a reduced resolution (a reduction of 16*16 is
typical for this kind of application when using 4 2*2 max
pooling layers). Just as for the decision trees discussed
above, this method is expected to produce very consistent
results, however a method for dealing the downscaled reso-
Iution is necessary.

2.6.2 UNETs

One of the key goals of a UNET neural network is to
upscale the results of a typical neural net to the original size
of the image and obtain accurate boundaries of the detected
object. This is done by adding a number of up-scaling layers
where the outputs of previous layers are used to identify the
regions of the image and lead to a specific classification. Due
to their reliance on generalised features, neural network and
UNETs in particular are used at Axial3D in order to generate
print ready models of CT bone tissue, bone type classifica-
tion (trabecular, cortical, etc) as well as MRI scans segmen-
tation.

3. Anatomical Feature Identification
3.1 Axial3D ATLAS

In order to facilitate the image segmentation of medical
scans and to perform further classification of the detected
objects, an existing knowledge of the anatomical features
that may be present and their appearance within a diagnostic
scan (CT, MRI, etc) must be available.

Axial3D uses a graph database in order to store such
information in an ATLAS of human anatomy relevant to
medical scanning techniques. In such a system, each ana-
tomical feature is represented as a node and relationship
between anatomical components are represented as relation-
ships. Both nodes and relationships between them can be of
any kind such as simple proximity, attachment, ligament,
functional, etc; the nodes can represent different tissue types
and organs. Both nodes and relationships contain additional
information; in particular they contain a reference to a image
containing such anatomical feature, its segmentation, gen-
eral features of the anatomical object such as volume,
surface area (if applicable), average and Standard Deviation
of its Hounsfield Units.

Key features of ATLAS are:

1. to provide the Axial3D R&D and segmentation group

a simple and fast information retrieval system (access-
ing the relevant scan and segmentation data);

2. provide a centralised area where specific information
on anatomical features is stored (organ appearance and
properties);

3. provide a simple method to access information of
related organs;

4. provide a backbone of Ground Truth data for organ
classification and automatic medical scan interpreta-
tion.

Typical examples of ATLAS usage include, but are not

limited to:

1. retrieve the reference of all scans in our data-store
related to hips in CT scans;

2. determine the volume of all radius and ulna available
in the scans;
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3. determine the histogram of the Hounsfield value of
lungs;

4. find all the bones typically located in close proximity
to the Clavicola;

FIG. 16 shows a sample of a graph database showing the
primary features to be included: the nodes represent con-
ceptual features of the human anatomy such as regions of the
skeletal system and specific bones; all the nodes are con-
nected between each other by a belonging relationship (the
ulna belong to the limb which in turns belong to the human
body).

3.2 Standard Anatomical Model

A set of standard anatomical models are generated by
retrieving all the available data within our data-store for a
given anatomical feature in its healthy state (no pathology).
The available segmentation data for a given anatomical
feature (a bone, a specific organ) is registered and scaled in
order to align the segmentation from the different data-sets
corresponding to the various scans. The aligned and scaled
segmentation data is then used to extract and compare the
Hounsfield values as well as the CT scans and/or the MRI
value; the similarity between each scan can then be used to
generate the standard anatomical model of the feature and its
expected appearance in a medical scan. Such models may
also need to take into account some important aspects
related to the patient from which the data comes from: for
example, anatomical features are expected to vary over time
as the patient ages (grow larger, some organs may become
“worn out” as a result of arthritis on bones for examples,
etc), sex and clinical history (some pathology will affect the
appearance of the scans).

The Standard anatomical model is stored as a reference
within the ATLAS and ATLAS is also available in order to
facilitate the retrieval of data. As new data is added to the
Axial3D database, the standard models are updated to
include the new data; the history of standard model gener-
ated for each anatomical feature is also preserved.

3.3 Interesting Feature Extraction

ATLAS is used to store and retrieve data related to
“interesting features” of each anatomical component. In a
similar fashion as for the Standard Anatomical Model, all the
segmentation related to a specific anatomical component of
the human body can be retrieved and feature extraction
algorithms are applied. The feature extraction algorithms
take advantage of both the segmentation as well as the actual
scan data in order to obtain interesting properties of the
tissue or organ under consideration.

Some simple feature extraction algorithms include:

1. the anatomical component volume,

2. the component surface area,

3. its average Hounsfield unit (if CT) and standard devia-

tion across all available scans,

4. histogram of the Hounsfield Units across all available
scans,

5. Smallest bounding box that contain the anatomical
component.

More complex features may include, for example:

1. key-point detection: determine the presence of keypoint
landmarks; standard algorithms can be used for this
purposes such as Fast, SURF, SIFT, ORB, etc; these
algorithms will require adaptation in order to work with
three dimensional data; the detected keypoints can be
compared between the various scans and similarity
between them can be preserved in the ATLAS data-
store;

2. Structural and shape analysis: a number of predefined
shapes and volumes can be detected within the ana-
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tomical feature being considered: for example, within
the femur, the main body can be compared to a cylinder
and the two heads as two spheres;

3. Anatomical Landmarks: in this approach, specific fea-
tures that are unique to the specific anatomical com-
ponent are detected.

The extracted interesting features are then added to the
Axial3D ATLAS as part of the node properties to facilitate
future reference. Axial3D is in a unique position to create
such a database: due to the large volume of CT scan data as
well as the availability of high quality segmentation for the
scans, Axial3D can generate values that are both statistically
relevant and sufficiently general to allow the creation of
more advanced detection and classification algorithms (see
below).

3.4 Anatomical Component Classification

The standard anatomical model and the extracted inter-
esting features can be used in order to derive a reliable and
consistent classification of the anatomical components
located within the scan.

The general approach to perform such a task is the
following:

1. derive accurate segmentation using the automated

segmentation algorithms;

2. apply the feature extraction algorithms to the segmen-
tation in order to derive the values of such features;
note that these features may be erroneously detected if
the segmentation produced poor results;

3. compare to the existing data-set of interesting features
and attempt to find a number of matches;

4. the matches are constrained and filtered depending on
the proximity map derived from Axial3D ATLAS;

5. the standard models are used to further refine the
filtering and cross-checking by fitting a linear transform
between the semi-classified segmented objects and
what the standard model looks like;

6. due to the inherit inaccuracies of the segmentation step,
each refinement of the matches produce a score or
probability of having matched the anatomical features
correctly;

7. the set of scores obtained can be used in a decision tree
(or forest) in order to derive the final classification of
bones;

Note that this method will not identify all anatomical
features present within the scan; it will however identity a
sufficient number of them to uniquely identify the region of
the human body that has been scanned, its orientation, as
well as the classification confidence.

3.5 Segmentation Curing, Deformities and Pathology Detec-
tion

The Anatomical classification described above provides
the basis to detect any deviation from standard of a given
scan:

1. Touching organ curing: It is often found that several
anatomical components made up of the same tissue
may be located in close proximity to each other; this is
the case for example of tarsal bones, carpal bones and
other joints, vessels and other cardiac tissue, etc. In
some instances, the tissue that makes up the bulk of the
organs are all segmented correctly, however, due to
their proximity, the organs themselves are not separated
correctly as individual components; in such scenarios,
the touching organs will be detected as a deviation from
the standard appearance of the scan and a specific
algorithm for edge finding can be used to separate them
as individual entities; once the segmentation curing is
performed, the Anatomical Component Classification
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can be re-estimated and the classification confidence
should have increased considerably (as more anatomi-
cal features should now be matched to the Axial3D
ATLAS);

2. Implants Artefacts curing: it is quite common to obtain
error in the segmentation due to the presence of foreign
objects that have been implanted within the patient
(pacemakers, tooth filling and braces, nails to cure
scoliosis, etc); these object will appear within the scan
as foreign objects with completely different properties
compared to any other tissue, in particular when made
of metal (titanium implants, etc); these objects will
inevitably cause errors in the segmentation algorithm
by introducing holes as well as misclassified organs; in
a similar fashion as the touching bones algorithms
described above, the implant can be identified as such
with a separate tailored segmentation and classification
set of algorithms; the identification of such items can
then be used to correct potential errors in the organ
segmentation;

3. Deformities and Pathology Detection: once the com-
ponents and the scan region is identified, deviation
from the normal appearance can also be used to assess
the presence of some form of pathological condition
and deformities; such estimation is different compared
to the standard pathology detection that is performed
using neural nets to classify/segment the patient data
directly, it rather employs a comparative analysis of the
expected appearance of an object and derives deviation
from such appearance; examples of applications of
such methods are the determination of skeletal defor-
mities (flat foot, scoliosis, etc), traumatic fractures, etc.

3.6 Reconstruction Using Comparison

FIG. 17 shows the results of image reconstruction using
comparison. Boolean differences for bio printing can be used
to assess the volume of material from a statistical model of
pre-classified ‘healthy’ volumes of tissues and create an
automatically generated 3D file of missing volume. Our
automatically segmented data is assessed against statistical
model of pre-segmented anatomy ‘Best fit model’ is created
based on a statistical model for patients’ anatomy to show
optimal reconstruction of tissue. Missing fragments are
predetermined with a best fit model and tissue scaffold
models created from this.
4. 3D Model Creation

In order to obtain a 3D printable model, the segmentation
data generated by applying the image segmentation algo-
rithms, anatomical component identification and segmenta-
tion correction, a 3D surface mesh must be extracted from
the scalar volumes.

For a 3D mesh to be printable, it must have the following

properties:

1. all disjointed surfaces are closed manifolds (3D vol-
umes).

2. appropriate supports are necessary to keep the dis-
jointed surfaces/volumes in place

3. appropriate supports are necessary in order to facilitate
3D printing;

4. in order to be printable using SLLA technology, all
surface volumes must not be hollow (no close surfaces
fully contained within other surfaces);

5. if a hollow volume is specifically requested by the
clinical staff, appropriate drainage holes must be added
manually by the operation team.

Once the 3D models are generated, they must be reviewed

and approved by a biomedical 3D printing technician within
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the operations team. Whenever necessary, appropriate modi-
fications are made by the operations team prior to printing.
4.1 Surface Extraction

For each scan, a 3D of model (surface) is created from the
segmentation obtained using the methods described above.
Different methods are available, including: marching cubes,
marching tetrahedrons, surface nets and other isosurface
methods.

A considerable amount of work has been done to compare
the results of the algorithms in order to obtain the best results
in terms of the following aspects:

1. anatomical accuracy: the resulting surface must be as

close to the original volumetric data as possible;

2. Minimise the cuberille effect: since the iso-surface is
derived from the labelled data (die segmentation) it is
important to minimise the block appearance of the
resulting mesh; this can be achieved by moditying the
marching cube algorithm in order to force some verti-
ces/faces to be placed on voxels that do not intersect the
iso-surface directly;

3. 3D printing specific requirements: the mesh should be
as close to a printable model as possible in order to
facilitate the following surface conditioning steps; this
means that the resulting mesh must be a manifold.

4.2 Surface Conditioning

Iso-surface extraction has a number of potential issues
that need to be addressed by a conditioning stage:

1. High Poly Mesh: meshes obtained using any iso-
surface extraction algorithm tend to generate models
with a number of faces that is proportional to the
number of voxels in the input volumetric data; meshes
obtained using these approaches tend to be extremely
high in their number of polygons; such a level of details
is often unnecessary (a large planar surface can be
represented by one single large polygon instead of
several hundred small segments); poly-reduction algo-
rithms are applied to the meshes; example of these
algorithms include short edge collapse, quadratic edge
decimation;

2. Mesh errors: this includes errors such as duplicated
points, overlapping surfaces, missing surface; remov-
ing point-like surfaces (small unnecessary surfaces);
the goal of this step is to correct some simple errors and
ensure the mesh is a manifold;

3. Mesh filtering: once the meshes are reduced in poly
number to an acceptable level and mesh errors are
removed, simple filtering algorithms are applied in
order to minimise the “pixelisation” given by the
original segmentation data; the filtering radius is
reduced to a minimum in order to preserve anatomical
accuracy.

4. Cover holes: some organs are often only partially
visible within the scan slices; in these situations the
surface mesh obtained from the segmentation will not
be closed; in these situations the holes are covered by
additional triangles; this step must be performed after
the mesh error correction and produces best results
when applied after the smoothing as well; the goal of
this step is to ensure all surfaces are closed manifolds.

5. Textures: The meshes are displayed to the user. We will
select appropriate textures that allow the user to better
visualise the anatomy. This will mean the automatic
selection of different textures and lighting procedures
within the display view of the application.

The expected results of this stage of mesh processing is to

obtain anatomically accurate and good quality meshes that
need minimal additional processing to make them “print
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ready”. The resulting conditioned meshes are also used for
displaying purposes within the web application after a
further poly reduction (typically to approximately 10,000
faces).

4.3 Print Ready Models

The conditioned meshes need a further processing step in
order to be printable. This step ensures that the 3D printing
will successfully complete with no failures. This step
includes the following modifications to the anatomically
accurate models:

1. Fill in the watertight surfaces: some organs such as
bones, blood vessels, stomach, etc are naturally hollow
in shape resulting in a watertight hollow surface; these
surfaces may fail to print when using a SLA printer due
to the lack of drainage channels for the trapped resin;
these organs may need to be filled prior to printing
(specific requirements from the clinical staff may
specify otherwise);

2. Addition of dowels to support the various organs: the
3D printed organs will require supports in order to keep
their position; small dowels are added along the short-
est line to join the organ together; once all possible
dowels are added between all organs to be printed, a
specific algorithm will remove the redundant dowels
starting from the longest;

3. Addition of print supports: in most 3D printing tech-
nology the addition of small supports is required in
order to facilitate the printing and achieve the best
results; the supports are added by determining all local
minima of the surface; the print supports are removed
during printing post processing.

5. Post-Processing of 3D Printed Models

Post-Processing techniques—clear contrast in stero-
lithograpghy models.

Models are created based on solid exterior X of a model
and a number of internal points of interest Yn. A boolean
difference is completed on X by removing Yn from its
internal structure automatically. A hollow cylinder of for
example 3 mm diameter is created from the surface of X to
the surface of Yn with the shortest distance taken.

Pre-cut model construction—Models that are outside the
bounding box of the available print volume of the printer
being used will be analysed and the bounding box—5% of
total model volume will be taken and a cut on the ZY plane
will be automatically created. Both models will have 4x3x3
mm cylinder holes inserted in the largest surface area of the
cut face. 4x2.8 mmx2.8 mm cylinders will also be created
and added to the print file.

Model created in situ for bone placement analysis—bones
within the scene with pre-segmented anatomy will be
assessed and articular surfaces will be detected and cylinders
will be inserted between two central points of articulation.
Diameter of cylinder will be determined on 50% of articular
surface cross sectional area.

6. Denture-Store

The methods and systems described above can also be
applied to generate 3D printed physical models for dental
and orthodontic labs.

In typical traditional orthodontists” practices, impressions
are made and stored for up to 5 years (patient records). In
busy practices, this ends up being a huge amount of physical
impressions having to be stored.

Dental impressions from across the years can be 3D
scanned (using available 3D scanners or with an IR laser and
a turntable) and catalogued on the site.
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A white light oral scanner may be purchased and all
impressions may be electronically done, stored and sorted in
a program.

All impressions, legacy or new, can be sent to the Axial3D
system in order to generate a 3D printed physical model. The
printing of the 3D physical model can also be directly
completed within the dental or orthodontic lab. So all that is
required is a computer and a printer to store patient data
within each lab.

7. Phantom Production

Phantoms may be created for use in X-ray and CT/MRI
calibration.

Different 3D printer filaments, resin or liquid have been
developed

A material that will not absorb the solute containing a
radioactive isotope is also developed; i.e. the model can be
washed with water after use and be non-radioactive.

8. Axial3D Training:

Modular system that allows surgeons to train on various
surgical procedures without the requirements for cadaver
models. A pre-segmented volumetric representation of a
human is displayed, using for example augmented reality
(derived from both CT & MRI data) and a surgeon is able
to swap out healthy tissues with the ones from Axial3D’s
database of rare pathologies in either virtual or physical 3D
printed format. Haptic feedback is incorporated into the
application to mimic different tissues when carrying out
procedures.

APPENDIX: CONCEPTS SUMMARY

This section summarises the most important high-level
features described above; an implementation of the inven-
tion may include one or more of these high-level features, or
one or more of the key subsidiary features, or any combi-
nation of any of these.

Concept A: Entire Workflow for Generating 3D Printed
Model of a Patient Specific Anatomic Feature from 2D
Medical Images—Performed Automatically

A method for generating a 3D physical model of a patient
specific anatomic feature from 2D medical images, in
which:

(a) the 2D medical images are uploaded by an end-user

via a Web Application and sent to a server;

(b) the server processes the 2D medical images and
automatically generates a 3D printable model of a
patient specific anatomic feature from the 2D medical
images using a segmentation technique; and

(c) the 3D printable model is 3D printed as a 3D physical
model such that it represents a 1:1 scale of the patient
specific anatomic feature.

The method may further include the following optional

steps:

(a) Clinical staff can upload the 2D medical images and
any additional information to the Axial3D servers using
the Axial3D online web application;

(b) Clinical staff can add annotation and patient specific
prescription through the Axial3D web application in
order to personalise the final 3D printed product and
obtain the desired results;

(c) Clinical staff can interact with any aspect of the
automated 3D model generation in order to improve the
final models, personalise the results and flag occasion-
als problems with the models prior to production and
shipping;

(d) the Axial3D automated 3D model generation is a fully
automated system that converts the 2D images into a
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final 3D printable model; the users can in real time
review, annotate and modify such models through the
web application prior to production and shipping;

(e) 3D model of the anatomical feature of interest (skel-
etal structure or joint, organ, specific tissue, etc) created
by the automated system and approved by the customer
is 3D printed in a 1:1 scale;

(® The Axial3D web application employs the Axial3D
fully automatic image segmentation and anatomical
recognition pipeline in order to achieve near real-time
display of the 3D models and allow seamless and near
instantaneous update of the 3D models based on the
customer feedback;

(g) All communication and the transferal of data through
the network and the web application is anonymized,
secured using encryption and takes advantage of Block-
chain in order to orchestrate the workflow, minimise the
risk of loss of data, increase transparency and minimise
the time required to deliver the final 3D model;

Optional features (each of which can be combined with

others) include the following:

2D medical images are uploaded alongside metadata.

metadata includes: patient’s prescriptive information,
medical professional information, patient information;

2D medical images are anonymised prior to being sent to
a server;

the patient specific anatomic feature is automatically
identified from an analysis of the 2D medical images
using an anatomical knowledge dataset; machine learn-
ing is used to improve this dataset.

the patient specific anatomic feature is automatically
identified from an analysis of the metadata.

analysis of the metadata is done using Natural Language
Processing (NLP).

2D medical images are anonymised such that no identi-
fiable healthcare information is being transferred;

a cryptographic hash of the patient information is created;

the system uses digital signatures to verify identity and
approve decisions

a smart contract object required to order or initiate the
generation of the 3D model

contains information about the requirements of the prints
such as: stage quality gates,

insurance status, payment status/limits, clinician, patient
consent, annotations, data

sharing agreements and/or data processing agreements;

the smart contract object is incorporated into a Block-
chain;

the smart contract object is pre-agreed between the patient
and the end-user;

printing of the 3D model is only executed once the smart
contract object has been

validated;

dynamic pricing is generated when the smart contract
object is validated; an instant quotation is displayed;

Digital currency is linked to the printing of the 3D model;

material used for printing is automatically selected
depending on the specific anatomic feature;

texture used for printed is automatically selected depend-
ing on the specific anatomic feature;

when the specific anonymised feature cannot be printed
by a single printer, custom 3D models are constructed,
printed and combined into a single [oversized] 3D
printed model.

end-user can upload data about the model being generated
and annotate the model as it progresses through the
workflow;
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end-user can select the specific anatomy they wish to 3D
print.

the uploading of the 2D medical images and the ordering
process is intuitive (nontechnical person can order a 3D
model);

an audit trail of the printing process is continuously
updated and tracked (authorization, etc);

anomalies of the 2D medical images are detected, such as:
incorrect classification of medical images, incorrect
patient data, presence of foreign objects in medical
images, low quality imaging data;

images which contains unwanted artefacts or background
noise, such as foreign objects or a bed, are still pro-
cessed;

2D medical images (CT/MRI/PET etc) can be processed
together;

a preview of the specific anatomy 3D model is displayed
to the end-user before the order is completed;

real time information on specific timeframe before a print
is ready is generated (taking into consideration the
segmentation, surface conditioning and printing); print
scheduling/distributed printing is based on inbound
models and surgical requirement;

the 3D printed model is optimized based on the following
patient specific parameters: scan type, bone type, tissue
type, age, gender, weight;

patient specific parameters are extracted from the
uploaded data;

[Hardlinking] original order and input data is applied to
the physical object QR code, NFC chip, RFID tag are
added to the printed model;

Profile of end-users are saved with their preferences for
particular model types; segmentation of the 2D medical
images is performed to classify each pixel within the
medical images;

segmentation technique that is used is one of the follow-
ing: threshold, decision tree, chained decision forest or
neural network method;

segmentation technique that is used is a combination of
the following techniques: threshold, decision tree,
chained decision forest or neural network method.

segmentation is done by applying a threshold to generate
a set of 2D threshold images representing a patient
specific anatomic feature;

the segmentation step is combined with an anatomic
feature identification algorithm;

a 3D surface mesh model is generated for each set of 2D
threshold images;

the threshold value is generated from the 2D medical
images histogram analysis;

the threshold value is generated from detecting the peaks
of histogram corresponding to tissues similar to the
tissue of the patient specific anatomic feature.

the threshold value is a function of the type of 2D medical
images (CT, MRI, PET or SPCET);

the threshold value is a function of the CT scanning
parameters (X-Ray energy and flux);

the threshold value is a function of the bone type (hard or
soft);

the end user selects the scan type or bone type.

the threshold value is not selected by an end-user.

the 3D surface mesh models are compressed, smoothed
and reduced before sending them back to the end-user
device;

the generation of the 3D model is performed by parallel
processing; end-user is alerted when an anomaly is
detected;
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one or more threshold values are used in order to generate
one or more 3D surface mesh model;

the end-user selects one of the one or more 3D surface
mesh models he wishes to print;

Concept B: UX—Real Time User Interaction

Computer implemented method comprising the steps of:
receiving from an end-user a set of 2D medical images
specific to a patient, automatically segmenting the set of 2D
medical images and creating a 3D printable model from the
set of 2D segmented medical images, and displaying the 3D
model to the end-user.

The computer implemented method may further comprise

the optional following steps:

a) The user can send a set of 2D medical images specific
to a patient to the Axial3D server through the web
application;

b) A 3D model candidate, generated by the Axial3D image
analysis pipeline identifying the anatomical compo-
nents within the images, is used to generate a 3D model
of the organs of interest;

¢) the results of the image analysis and the 3D printable
models created are displayed to the user through the
Axial3D web application;

d) The web application allows the user to provide con-
textual information regarding the patient and the pre-
scription;

e) The web application provides a basic level of func-
tionality to enable the end-user to interact with, modify
the results and select the 3D automatic image analysis;
this includes the selection of volumes to be printed,
select the materials and the anatomical fidelity level
required (the model accuracy), flag for gross mis-
calculations and require a segmentation engineer to
review the results;

f) The web application allows the user to trigger the
generation of a new model based on the prescription
and the annotation provided; a new model is then
displayed;

g) the clinical staft (customers) can accept the model once
satisfactory results are shown;

h) Using this semi-automatic approach allows extremely
accurate and high fidelity 3D printable models to be
obtained within a few minutes instead of the several
hours it would otherwise require;

i) the users can select to skip any of the steps described
above.

Optional features (each of which can be combined with

others) include the following:

this semi-automatic system relies on the ability to perform
image analysis and anatomical recognition to an excep-
tional degree of accuracy within very short timescales
(seconds) based on the user feedback; such feedback
can be expressed either as free text or as actions
performed on the 3D models; the task of performing the
image analysis is devolved to the Axial3D medical
image segmentation and recognition (see Concept C).

The data is sensitive in nature and covered by privacy law;
all data transmitted across the network is anonymized,
encrypted and compressed prior to transmission; the
integrity of all exchanged data is verified through data
checksum;

all data exchanged within one single order is covered by
a Blockchain virtual contract; the virtual contract is
created prior to the 2D scan image data is transmitted
to the Axial3D servers, such scan data alongside all
segmentation and 3D model data is also covered by the
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same virtual contract; acceptance of the final model
will trigger the completion of the virtual contract;
end-user can easily annotate the anatomic feature;
end-user can select anatomic feature they wish to 3D
print;
3D model is 3D printed to represent a 1:1 scale of the
specific anatomic feature;
threshold values are generated from the medical images
histogram analysis;
threshold values are function of the type of 2D medical
images (CT, MRI, PET or SPCET);
threshold values are function of the CT scanning param-
eters (X-Ray energy and flux);
threshold values are function of the bone type (hard or
soft);
the end user selects the scan type or bone type;
the threshold value is generated from the 2D medical
images histogram analysis;
the threshold value is generated from detecting the peaks
of histogram corresponding to tissues similar to the
tissue of the patient specific anatomic feature.
the set of 2D medical images is anonymised before being
sent to a server;
tine server sends back the 3D surface mesh models back
to the end-user device;
the 3D surface mesh models are compressed, smoothed
and reduced before sending them back to the end-user
device;
the generation of the 3D model is performed by parallel
processing;
end-user is alerted when an anomaly is detected;
end-user can upload data about the model being created
and annotate the model,;
instant quotation is displayed.
Concept C: Image Processing Method for Converting 2D
DICOM Image Series into a 3D Printable Model.

Computer implemented method for automatically con-
verting 2D DICOM image series into a 3D printable model
in which the method includes an automatic segmentation
step.

Optional features (each of which can be combined with

others) include the following:

1. Anatomical Tissue Segmentation: obtain accurate and
high fidelity detection of the tissue of interest;

a. tissues that are identified are: osseous tissue; fatty tissue
(including liver), epithelial tissue (glands, kidneys,
pancreas); squamous epithelial tissues (skin); cardiac
tissue; tubular tissue (veins, lymphatic vessels); lungs;
cerebral tissue (brain, primarily from MRI);

b. The segmentation is performed using multiple segmen-
tation algorithms (3 thresholds values, Decision Trees,
Neural Nets) and combines their results into one final
segmentation that is both high fidelity and accurate (the
NN is covered by Concept D);

2. Anatomical Recognition (Concept E): the tissues are
grouped into organs and a full picture of the body parts
is derived (E.G spleen, liver, part of the lungs and few
ribs may be recognised together within the same scan);
the grouping is performed by a classifying neural
network; this NN contains a small number of convo-
Iutional layers and is followed by a fully connected
section;

3. Segmentation Correction: once the anatomical organs
and features are correctly identified, minor errors in the
results of the tissue segmentations can be corrected;
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errors include primarily separation of tissues in close
proximity (joined bones) and small miss-detected
regions;

4. Foreign Bodies Identification (Concept E): implants
(orthopedic metal implants, dental implants and fill-
ings, etc), pacemakers, unknown foreign bodies (swal-
lowed objects);

5. Selection of the organs/anatomical features: these are
the features that will eventually be printed; the ana-
tomical features of interest are derived primarily from
the prescription provided by the clinicians;

6. Print Ready Model Generation: the segmented and
identified volumes are converted into a print ready
model:

a. The 3D surface for the anatomical features of interest
is generated;

b. die 3D surface undergoes simple mesh cleaning algo-
rithms in order to render it printable (decimation,
ensure manifold structures, fill holes within the mesh)

c. each volume is assigned a material

d. die 3D printing technology is selected

e. Dowels and support are added

Both the training of classifiers and the recognition algo-

rithms take advantage of the Axial3D database (Concept F)
of pre-labelled scans (Ground Truth); the Axial3D database
contains the GT itself as well as a Graph Database describ-
ing an Ontology of anatomical features; the ontology is
tailored taking into account 3D medical imaging practices
within the radiology and standard 3D medical imaging
techniques (see following concept)
Concept D: Specific Neural Network Processing
Computer implemented method for generating a 3D print-
able model of a patient specific anatomic feature from the
patient 2D medical images in which the method includes the
step of segmenting the patient 2D medical images using a
neural network trained from a database of existing medical
images.

Optional features (each of which can be combined with

others) include the following:

the segmentation step is performed automatically;

the method is capable of handling several scanning
modalities: in particular CT, MRI and/or PET scans are
supported;

A variety of tissues are supported: these include osseous
tissue; fatty tissue (including liver), epithelial tissue
(glands, kidneys, pancreas); squamous epithelial tis-
sues (skin); cardiac tissue; tubular tissue (veins, lym-
phatic vessels); lungs; cerebral tissue (brain, primarily
from MRI)

the neural network includes only convolutional, down-
sampling and upsampling layers; the neural network
design does not include any fully connected layer; the
technology combines the ideas of uNET and FCNN in
order to obtain the best segmentation in terms of
anatomical fidelity in regards to the edge of the ana-
tomical components;

the results of the neural network segmentation are com-
bined with the results of other segmentation techniques
such as: threshold-based, decision tree, chained deci-
sion forest method; This is done in order to maximise
the anatomical fidelity;

The training of the Neural Network is performed by using
the Axial3D Scan Database containing labelled data
(the Ground Truth) and the medical imaging ontology
(Concept E).
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Concept E: Anatomical Feature Identification

Computer implemented method for identifying an ana-
tomic feature from a medical image, the method includes:

(a) classitying each pixel with the medical image by using
a segmentation method;

(b) establishing links between the different pixels from the
exploration of a graph database, wherein the graph
database stores information on human anatomy rel-
evant to medical image scans; and

(c) identifying the anatomic feature from the previously
established links.

Optional features (each of which can be combined with

others) include the following:

segmentation method is automatic

method provides a score or probability that the anatomic
feature has been correctly identified.

The method is optionally, further configured to:

retrieve the reference of all scans in our data-store related
to hips in CT scans;

determine the volume of all radius and ulna available in
the scans;

determine the histogram of the Hounsfield value of lungs;

detect and identify the bones located in close proximity of
the Clavicola;

determine the state of the anatomic feature such as
healthy, or pathology;

identify the type of anatomic feature such as tissue type or
organ type.

extract additional information such as:
deviation or average value, estimated

anatomic feature volume, estimated anatomic feature sur-
face area;

update the graph database.

Concept F: 3D Medical Imaging DB

Computer implemented method for creating a graph data-
base of medical images anatomic features, the method
comprising the following steps:

a) Store medical images from CT, MRI, PET scans;

b) Store the labels (Ground Truth) for the scan;

¢) Populate a graph database based on standard medical
ontologies tailored to 3D medical imaging application;
the ontology is represented as a series of nodes con-
nected with each other through functions, proximity
and anatomical groupings and the frequency of appear-
ing in the same 2D medical image;

d) Holds links between the ontologies and GT datasets
(both the scan and the label data).

The GT database contains the 2D scan images alongside
the labels; each scan and relative labels data is approved by
the biomedical engineers prior to the insertion into the
database; each set of scan and relative labels are derived
from:

Manually labelled data, labelled either by clinical staff
and made available through an open database or by the
Axial3D team of biomedical engineers;

Data derived from the automated segmentation pipeline
that has been reviewed and corrected by a biomedical
engineer or clinical staff,

Data derived from manually labelled data to which syn-
thetic transformations have been applied (synthetic
GT);

The Axial3D Medical Imaging DB is used to perform the

following tasks:

1. retrieve all scans showing a specific anatomical feature;

2. create generalized models of anatomical features based
on the existing data;

HU standard
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3. generate the training and testing sets when training
image classifiers algorithms;

4. support the anatomical entity identifications once a
rough segmentation is performed.

Optional features (each of which can be combined with

others) include the following:

medical images are 2D medical scans such as CT, MRI
and/or PET scans;

a node contains a reference to a medical image with the
corresponding anatomic feature;

a node contains a reference to the results of the segmen-
tation of a medical image with the corresponding
anatomic feature;

a node also holds informations relating to the anatomic
feature such as volume, surface area, Hounsfield Unit
standard deviation or average.

additional metadata associated with the medical image are
also received alongside the medical images;

metadata includes: patient’s prescriptive information,
medical professional information, patient information.

Concept G: Design of Objects for Bioprinting—Including
Creation of Idealised Version of Anatomical Features

A method for generating 3D models of portions of
anatomy based on anatomical database or mirroring for use
in replacing pathological tissues in the body.

Optional features (each of which can be combined with

others) include the following:

(a) identification and classification of anatomy from 2D
medical images; leveraging a knowledge base of
healthy tissues and a connectivity map of the adjacent
tissue. This can be used to classify abnormal anatomy
as a deviation from the norm. The use of a generalised
knowledge base of the 3D shapes of anatomy and their
connectivity to identify non-normal features of
anatomy.

(b) the generation of idealized 3D models of patient
anatomy based on a database of known healthy tissues,
organs and anatomical features; the idealised model is
patient specific and involves a number of parameters
including age, gender, weight and height as well as the
identification of the analogous mirrored healthy organ
if available;

(c) a method to register and spatially align the 3D models
of pieces of anatomy. This method can be used to
identify differences between the defective and the ide-
alized models in order to derive the defective portion;

(d) a method to derive the defective portion; this method
will be sufficiently robust so that small differences
between the 3D models such as noise and the inherent
variability of the human anatomy are not included in
the final defective portion (edges);

(e) a method for generating the structure of the 3D
printable lattice for final 3D bioprinting; the lattice type
and structure (regular or irregular) and parameters (cell
size, density) will be tissue & patient specific to the
portion of anatomy in question that will be replaced;

(® a method to manually review and approve the final
defective portion against idealised anatomy and pre-
pare the model for final 3D bio-printing.

Note

It is to be understood that the above-referenced arrange-
ments are only illustrative of the application for the prin-
ciples of the present invention. Numerous modifications and
alternative arrangements can be devised without departing
from the spirit and scope of the present invention. While the
present invention has been shown in the drawings and fully
described above with particularity and detail in connection
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with what is presently deemed to be the most practical and
preferred example(s) of the invention, it will be apparent to
those of ordinary skill in the art that numerous modifications
can be made without departing from the principles and
concepts of the invention as set forth herein.

What is claimed:

1. A method for defining patient specific anatomical
features from medical images, the method comprising:

receiving, by a server, medical images of a patient com-

prising one or more patient specific anatomical fea-
tures;

automatically processing, by the server, the medical

images using a segmentation algorithm to assign a label
for each pixel of the medical images;

accessing, by the server, a database of medical image

anatomical features;

using, by the server, an anatomical feature identification

algorithm to probabilistically match the labeled pixels
of the medical images against the database of medical
image anatomical features to generate segmentation
data that defines the one or more patient specific
anatomical features based on the labeled pixels of the
medical images;

generating, by the server, a 3D model of the one or more

patient specific anatomical features using the generated
segmentation data; and

validating the segmentation algorithm based on the gen-

erated segmentation data.

2. The method of claim 1, wherein the database of medical
image anatomical features comprises pre-labeled medical
images and a graph database describing an ontology of the
medical image anatomical features, and wherein the ontol-
ogy takes into account standard medical imaging techniques.

3. The method of claim 2, wherein the ontology is
represented as a series of nodes representing the medical
image anatomical features, the nodes connected with each
other through at least one of: functions, proximity, anatomi-
cal groupings, or frequency of appearance in the same
medical image scan.

4. The method of claim 2, wherein the pre-labeled medical
images comprise at least one of segmentation data previ-
ously generated by the server via the anatomical feature
identification algorithm or manually labeled medical
images.

5. The method of claim 1, further comprising:

displaying the generated segmentation data via a web

application,

wherein validating the segmentation algorithm based on

the generated segmentation data comprises reviewing,
by a user, the generated segmentation data via the web
application.

6. The method of claim 5, wherein reviewing the gener-
ated segmentation data comprises approving, by the user, the
generated segmentation data via the web application.

7. The method of claim 6, further comprising adding the
approved generated segmentation data to the database of
medical image anatomical features.

8. The method of claim 7, further comprising training the
segmentation algorithm using the database of medical image
anatomical features.
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9. The method of claim 5, wherein reviewing the gener-
ated segmentation data comprises modifying, by the user,
the generated segmentation data via the web application.

10. The method of claim 9, wherein modifying the gen-
erated segmentation data comprises annotating, by the user,
the generated segmentation data.

11. The method of claim 9, further comprising generating,
by the server, new segmentation data based on the modified
generated segmentation data.

12. The method of claim 1, wherein generating to 3D
model of the one or more patient specific anatomical fea-
tures using the generated segmentation data comprises gen-
erating, by the server, a 3D surface mesh model defining a
surface of the one or more patient specific anatomical
features using the generated segmentation data.

13. The method of claim 12, further comprising:

displaying the 3D surface mesh model via a web appli-

cation,

wherein validating the segmentation algorithm based on

the generated segmentation data comprises reviewing,
by a user, the 3D surface mesh model via the web
application.

14. The method of claim 13, wherein reviewing the 3D
surface mesh model comprises approving, by the user, the
3D surface mesh model via the web application, the method
further comprising 3D printing the approved 3D surface
mesh model as a 3D physical model.

15. The method of claim 14, further comprising perform-
ing, by a user, quality control to confirm that the 3D physical
model matches dimensional accuracy of the medical images.

16. The method of claim 1, further comprising:

generating, via the server, a set of standard anatomical

models based on existing segmentation data from dif-
ferent datasets corresponding to various medical
images stored in the database of medical image ana-
tomical features,

wherein using the anatomical feature identification algo-

rithm to generate the segmentation data comprises
referencing, by the anatomical feature identification
algorithm, the set of standard anatomical models stored
in the database.

17. The method of claim 16, wherein generating the set of
standard anatomical models comprises aligning the existing
segmentation data stored in the database and comparing one
or more values of the aligned existing segmentation data.

18. The method of claim 16, further comprising:

adding the generated segmentation data to the database of

medical image anatomical features; and

updating the set of standard anatomical models based on

the generated segmentation data added to the database.

19. The method of claim 1, further comprising storing, by
the server, a virtual record of steps taken by the server to
generate the segmentation data to ensure quality control.

20. The method of claim 1, wherein validating the seg-
mentation algorithm based on the generated segmentation
data comprises comparing, by the server, the generated
segmentation data against the database of medical image
anatomical features to provide a score indicative of the
likelihood that the one or more patient specific anatomical
features were classified correctly.
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