
US 20200090298A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0090298 A1

GOULD et al . (43) Pub . Date : Mar. 19 , 2020

Publication Classification (54) FIFO QUEUE , MEMORY RESOURCE , AND
TASK MANAGEMENT FOR GRAPHICS
PROCESSING

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

(51) Int . Ci .
G06T 1/20
G06F 9/50
G06F 9/48

(52) U.S. CI .
CPC

(2006.01)
(2006.01)
(2006.01)

(72) Inventors : Jason M. GOULD , Woodinville , WA
(US) ; Ivan Nevraev , Redmond , WA
(US)

G06T 1/20 (2013.01) ; GO6F 9/4881
(2013.01) ; G06F 9/5016 (2013.01)

(21) Appl . No .: 16 / 694,447

(22) Filed : Nov. 25 , 2019

Related U.S. Application Data
(63) Continuation of application No. 16 / 001,608 , filed on

Jun . 6 , 2018 .
(60) Provisional application No. 62 / 623,536 , filed on Jan.

29 , 2018 .

(57) ABSTRACT

Methods and devices for managing first - in first - out (FIFO)
queues in graphics processing are described . A dispatcher
thread can receive a value of a write done pointer indicating
a next memory location following one or more memory
locations to which data has been written by a write thread of
a graphics processing unit (GPU) . The dispatcher thread can
accordingly launch , based at least in part on the value of the
write done pointer , multiple read threads on the GPU to read ,
in parallel and based on the write done pointer , the data from
the FIFO queue .

Application 46 FIFO Queue Initialization
Routine 336

Application Shader Programs 73

Data - Consumption Shader Program 320
(many - threaded) Data - Production

Shader Program 310
(many - threaded) 1

— Data - Production
Routine 312

FIFO Queue Pop !
Dequeue
Address
generation
Routine 322

- FIFO Queue
Push / Enqueue

routine 314
FIFO Queue

! Data - Free Routine
326 -

-

-

Data
Consumption
Routine 324 II Pool Page

Allocation
Routine 316

Pool Page - Free
Routine 328

11

-

FIFO Queue
Write - Done

Update Routine i
318

FIFO Queue Work - launching Program 330
(single - threaded)

FIFO Queue
Write - Done
Monitor 332

FIFO Queue
Multi - Allocate
for - Read routine |

334 1

Patent Application Publication Mar. 19 , 2020 Sheet 1 of 8 US 2020/0090298 A1

10 Graphics Processing System 72 1
1

CPU 34 GPU 12

CPU Processor
Core (s) 38

Atomic /
Interlocked
Operation

Hardware 63

Command
Processor
Core (s) 64 Display

Device 40
Image 24 1

Application (s) 46
1 Shader Processor Core (s)

68
GPU Driver 48

36
1 60 Graphics API 52 Primitive

Processor 66

60 FIFO Queue
Manager 74 Texture

Processor 67
1

Memory
Bridge 54 1

1

Application
Shader

Programs
73 1

-

Color and
Depth

Processors
69

FIFO
Queue

I Manager 74 Resolver 70
System Memory 56 60 60 60

60 Graphics Memory 58

System Disk
62

FIFO Queue
Descriptors 84

I / O Bridge 49 Memory Pool
82

O Shader
Resources 86

Input Devices 51 Render Target
44

.

FIG . 1

Patent Application Publication Mar. 19 , 2020 Sheet 2 of 8 US 2020/0090298 A1

Graphics Memory 58

FIFO 1 210 Memory Pool
82

Page Addresses 212

Write Done Counters
224 Free Page

List 204
Read Done Counters

226
Page 0

Pointers 214
Page 1 Write Allocation

Pointer 216
Page 2

Page 3
Write Done
Pointer 218

Page 4 Read Allocation
Pointer 220 Page 5

Page 6 Read Done
Pointer 222

Page 7

FIFO N 230 Page M

FIG . 2

Patent Application Publication Mar. 19 , 2020 Sheet 3 of 8 US 2020/0090298 A1

Application 46 FIFO Queue Initialization
Routine 336

Application Shader Programs 73

Data - Consumption Shader Program 320
(many - threaded) Data - Production

Shader Program 310
(many - threaded)

Data - Production
Routine 312

FIFO Queue Pop /
Dequeue
Address
generation
Routine 322

1 FIFO Queue
Push / Enqueue
routine 314

FIFO Queue
| Data - Free Routine

326 Data
Consumption
Routine 324 Pool Page

Allocation
Routine 316

Pool Page - Free
Routine 328

T
—

-

-

FIFO Queue
Write - Done

Update Routine i
318 1

FIFO Queue Work - launching Program 330
(single - threaded)

-

FIFO Queue
Write - Done
Monitor 332

FIFO Queue
Multi - Allocate
for - Read routine i

334 -

FIG . 3

Patent Application Publication Mar. 19 , 2020 Sheet 4 of 8 US 2020/0090298 A1

400

402

Initialize a memory pool of memory resources for
multiple FIFO queues

404

Allocate multiple pages of memory from the
memory pool to a FIFO queue of the multiple

FIFO queues
406

Execute , via parallel execution of multiple write
threads of a GPU , a write operation to write data
to memory locations in the multiple pages of

memory 408

Allocate additional pages of memory from
the memory pool to the FIFO queue

410

Detect that the write operation achieves a
threshold amount of memory written

412

Execute , via parallel execution of multiple read
threads of a GPU , a read operation to read data
from the memory locations in the multiple pages

of memory 414

Deallocate one or more pages of memory
to the memory pool

FIG . 4

Patent Application Publication Mar. 19 , 2020 Sheet 5 of 8 US 2020/0090298 A1

500 502

Obtain and advance a write allocation pointer

504

Allocate another page of memory to FIFO queue
if write allocation pointer , as advanced , achieves

a threshold memory location
506

Write data to memory location of the obtained
write allocation pointer

508

Advance write done pointer to a next memory location following the one or more
memory locations where the data is written

510
Increment the Write Done Counter that

corresponds to the page written

524 512

NO Write Done Counter
indicate all data has been fully

written to the page ?

Current Write
Allocation Pointer match the
corresponding location in the

Write Done Counter ?
YES NO
522

YES
514

Acquire a mutex or
other synchronization

primitive

Otherwise , if pages have been
newly completed , update the Write
Done Pointer to point to the end of

the newest completed page
518

520
www . 516

Return

Iterate through all Write
Done Counters from the
page of the current Write
Done Pointer , up to the

page of the Write
Allocation Pointer until
an incomplete page is

reached

Where Write Done
Counter of incomplete
page matches the
Write Allocation

Pointer , update Write
Done Pointer to match
Write Allocation Pointer

FIG . 5

Patent Application Publication Mar. 19 , 2020 Sheet 6 of 8 US 2020/0090298 A1

600

602

Obtain and advance a read allocation pointer

604

Read data from the memory location of the
obtained read pointer

606

Advance read done pointer to a next memory
location following the one or more memory

locations from which the data is read

608
11

Deallocate a page of memory if read done
pointer , as advanced , achieves a threshold

memory location

FIG . 6

Patent Application Publication Mar. 19 , 2020 Sheet 7 of 8 US 2020/0090298 A1

Multi - Threaded
Wrappable
Variable 706

Multi - Page
Data Index

708

No
Spin Mutex

710

Work
Completion
Tracker 712

Growable
FIFO Queue

704

Memory
Pool 82

Pool Memory Page 0

Pool Memory Page 1

Pool Memory Page N

List of Pages Used 750

Write
Allocation
Pointer 726

Write Done
Counters

728
Write Done
Pointer 730

No - Spin
Mutex 732

Write / Append Manager 722

Read Read Done Read
Allocation Counters Done
Pointer 740 742 Pointer
No - Spin 744

Mutex 746
Read / Consume Manager 724

Growable FIFO Queue Descriptors 720

FIG . 7

Patent Application Publication Mar. 19 , 2020 Sheet 8 of 8 US 2020/0090298 A1

Multi - Threaded
Wrappable
Variable 706

Multi - Page
Data Index

708

No
Spin Mutex

710

Work
Completion
Tracker 712

Fixed - size
FIFO Queue

802

Memory
Pool 82

Pool Memory Page 0

Write
Allocation

Pointer 806
Pool Memory Page 1 Write Done

Counters
728

Write Done
Pointer 730

No - Spin
Mutex 732

Write / Append Manager 722 Pool Memory Page N

Read Read Done Read
Allocation Counters Done

Pointer 808 742 Pointer
No - Spin 744

Mutex 746
Read / Consume Manager 724

Pool Free Page List Descriptor 804

Free Page List 204

FIG . 8

US 2020/0090298 A1 Mar. 19 , 2020
1

FIFO QUEUE , MEMORY RESOURCE , AND
TASK MANAGEMENT FOR GRAPHICS

PROCESSING

various graphics processing operations , such as operating
shaders or other stages in the graphics pipeline . The driver
typically allocates a large amount of memory sufficient for
performing the operations . In some cases , however , an
amount of memory that is used by a shader or other resource
may not be known at the outset of processing , and launching
of multiple shaders using the large amount of memory may
be prohibitive or wasteful of available system resources .

CLAIM OF PRIORITY UNDER 35 U.S.C. § 119
[0001] The present application for patent is a continuation
of application Ser . No. 16 / 001,608 , entitled “ FIFO QUEUE ,
MEMORY RESOURCE , AND TASK MANAGEMENT
FOR GRAPHICS PROCESSING ” filed Jun . 6 , 2018 , which
claims priority to Provisional Application No. 62 / 623,536 ,
entitled “ MEMORY RESOURCE MANAGEMENT FOR
GRAPHICS PROCESSING ” filed Jan. 29 , 2018 , which are
assigned to the assignee hereof and hereby expressly incor
porated by reference herein for all purposes .

SUMMARY

BACKGROUND

[0002] The present examples relate to a computer device ,
and more particularly , to managing memory for graphics
processing on a computer device .
[0003] Computer graphics systems , which can render 2D
objects or objects from a 3D world (real or imaginary) onto
a two - dimensional (2D) display screen , are currently used in
a wide variety of applications . For example , 3D computer
graphics can be used for real - time interactive applications ,
such as video games , virtual reality , scientific research , etc. ,
as well as off - line applications , such as the creation of high
resolution movies , graphic art , etc. Typically , the graphics
system includes a graphics processing unit (GPU) . A GPU
may be implemented as a co - processor component to a
central processing unit (CPU) of the computer , and may be
provided in the form of an add - in card (e.g. , video card) ,
co - processor , or as functionality that is integrated directly
into the motherboard of the computer or into other devices ,
such as a gaming device .
[0004] Typically , the GPU has a " logical graphics pipe
line , ” which may accept as input some representation of a
2D or 3D scene and output a bitmap that defines a 2D image
for display . For example , the DirectX collection of applica
tion programming interfaces by MICROSOFT CORPORA
TION , including the DIRECT3D application programming
interface (API) , is an example of APIs that have graphic
pipeline models . Another example includes the Open Graph
ics Library (OPENGL) API . The graphics pipeline typically
includes a number of stages to convert a group of vertices ,
textures , buffers , and state information into an image frame
on the screen . For instance , one of the stages of the graphics
pipeline is a shader . A shader is a piece of code running on
a specialized processing unit , also referred to as a shader unit
or shader processor , usually executing multiple data threads
at once , programmed to generate appropriate levels of color
and / or special effects to fragments being rendered . In par
ticular , for example , a vertex shader processes traits (posi
tion , texture coordinates , color , etc.) of a vertex , and a pixel
shader processes traits (texture values , color , z - depth and
alpha value) of a pixel . GPUs now also execute compute
shaders that can perform highly - parallelized general - pur
pose computations that may or may not relate to graphics
processing
[0005] Memory resources can be allocated for GPUs (e.g. ,
via driver or title executing on a central processing unit
(CPU) that manages the memory resources) for performing

[0006] The following presents a simplified summary of
one or more examples in order to provide a basic under
standing of such examples . This summary is not an exten
sive overview of all contemplated examples , and is intended
to neither identify key or critical elements of all examples
nor delineate the scope of any or all examples . Its sole
purpose is to present some concepts of one or more
examples in a simplified form as a prelude to the more
detailed description that is presented later .
[0007] One example relates to a method for managing
growable first - in first - out (FIFO) queues in graphics pro
cessing . The method includes receiving , by a dispatcher
thread , a value of a write done pointer indicating a next
memory location following one or more memory locations
to which data has been written by a write thread of a graphics
processing unit (GPU) , and launching , by the dispatcher
thread and based at least in part on the value of the write
done pointer , multiple read threads on the GPU to read , in
parallel and based on the write done pointer , the data from
the FIFO queue .
[0008] In other example , a device for managing FIFO
queues in graphics processing is provided . The device
includes a memory storing one or more parameters or
instructions for managing FIFO queues in graphics process
ing , and at least one processor coupled to the memory . The
at least one processor is configured to receive , by a dis
patcher thread , a value of a write done pointer indicating a
next memory location following one or more memory
locations to which data has been written by a write thread of
a GPU , and launch , by the dispatcher thread and based at
least in part on the value of the write done pointer , multiple
read threads on the GPU to read , in parallel and based on the
write done pointer , the data from the FIFO queue .
[0009] In another example , a computer - readable medium ,
including code executable by a processor managing FIFO
queues in graphics processing is provided . The code
includes code for receiving , by a dispatcher thread , a value
of a write done pointer indicating a next memory location
following one or more memory locations to which data has
been written by a write thread of a GPU , and launching , by
the dispatcher thread and based at least in part on the value
of the write done pointer , multiple read threads on the GPU
to read , in parallel and based on the write done pointer , the
data from the FIFO queue .
[0010] Additional advantages and novel features relating
to examples of the present invention will be set forth in part
in the description that follows , and in part will become more
apparent to those skilled in the art upon examination of the
following or upon learning by practice thereof .

US 2020/0090298 A1 Mar. 19 , 2020
2

DESCRIPTION OF THE FIGURES thread) . The FIFO queue may also include a read done
pointer that is advanced once the memory is actually read .
Once a thread detects the read done pointer as achieving a
threshold memory location , such as the end of a page or
beginning of a next page , for example , the thread detecting
the condition can deallocate the page . In addition , for
example , the FIFO queue may also have an associated write
done pointer to indicate that all memory locations before the
write done pointer have , indeed , been written to by the
multiple threads writing data to the FIFO queue . In an
example , this write done pointer can be used to determine
when to execute the read threads to read the data from the
FIFO queue .

[0011] In the drawings :
[0012] FIG . 1 is a schematic block diagram of an example
architecture of a computer device including a graphics
processing unit configured according to the described
examples ;
[0013] FIG . 2 is a schematic diagram of an example of a
state of graphics memory of the computer device of FIG . 1 ;
[0014] FIG . 3 is a schematic diagram of an example of
applications executing on the computer device or one or
more processors of FIG . 1 ;
[0015] FIG . 4 is a flowchart of an example of a method of
managing , writing , and reading growable memory resources
according to the described examples ;
[0016] FIG . 5 is a flowchart of an example of a method of
writing to growable memory resources according to the
described examples ;
[0017] FIG . 6 is a flowchart of an example of a method of
reading from growable memory resources according to the
described examples
[0018] FIG . 7 is a schematic diagram of an example of a
hierarchy of components used to build a growable first - in
first - out (FIFO) queue ; and
[0019] FIG . 8 is a schematic diagram of an example of a
hierarchy of components used to build a fixed - size FIFO
queue .

DETAILED DESCRIPTION

[0020] The described solutions provide a graphical pro
cessing unit (GPU) with a flexible , dynamic mechanism that
provides managing memory resources , such as first - in first
out (FIFO) queues , for use in graphics processing opera
tions . In one example , the GPU can execute one or more
compute shaders to manage the memory resources . For
instance , a pool of memory resources can be initialized for
use with multiple FIFO queues . An amount of the pool of
memory resources , such as one or more pages of memory ,
can be initially allocated to a given FIFO queue . Multiple
threads (e.g. , executing in parallel on the GPU) can write
data to the FIFO queue . For example , the FIFO queues can
be growable or non - growable . For growable FIFO queues ,
one or more of the threads can allocate additional memory
resources from the pool to the FIFO queue at some point to
ensure the FIFO queue has sufficient memory resources for
writing . For example , the FIFO queue can include a write
allocation pointer that can be advanced by a given thread
beyond the memory location to which the thread is to write
the data , so the next write thread can write at the memory
location of the write allocation pointer (and can advance the
write allocation pointer for the next write thread) . Once a
thread detects the write allocation pointer as achieving a
threshold memory location , such as the end of a page that is
not the last page , the thread detecting the condition can
allocate an additional page (or pages) of memory for the

[0022] In another example , a dispatcher thread , which may
execute on a different processor such as a central processing
unit (CPU) or a different portion of the GPU , may manage
writing to and / or reading from the threads (and / or more
complicated thread operations , as described herein) . For
example , the dispatcher thread may check the write done
pointers for each FIFO to determine whether to dispatch
read threads to read the FIFO data . In one example , this may
be based on determining whether the write done pointer
achieves a threshold (e.g. , a threshold amount of data written
that has not been read , which may be based on also evalu
ating the read allocation pointer , or a separate read pointer
or counter maintained by the dispatcher thread) . In an
example , the threshold may be based on a priority of the
FIFO . In addition , in some examples , the dispatcher thread
may be responsible for moving the read allocation pointer
and / or write allocation pointer in one operation , rather than
each thread incrementing the pointer .
[0023] In any case , efficiencies in allocating and using
memory for graphics operations are improved by the mecha
nisms described herein . For example , providing the grow
able FIFO queues can allow shaders to operate using an
amount of memory just above what may be required for the
shader at a given period of time . In addition , freeing the
memory resources allows for conservative memory use for
simultaneously operating other shaders or performing other
graphics processing operations . Moreover , having the dis
patcher thread monitor FIFO status and launch work , as in
some examples described herein , can allow for work to be
completed in small batches , thus keeping the amount of
outstanding data in the pool relatively small . Additionally ,
this may improve cache behavior by the GPU , as data that
is consumed is more likely to have been produced reason
ably recently
[0024] Referring to FIG . 1 , in one example , a computer
device 10 includes a graphics processing unit (GPU) 12
configured to implement the described features of managing
memory resources for performing graphics operations . For
example , GPU 12 is configured to allocate memory from a
pool to multiple FIFO queues , write data , in parallel , to the
FIFO queues , allocate additional memory from the pool
during the write operation , read data , in parallel , from the
FIFO queues , deallocate memory back to the pool once read ,
etc. , as described further herein . In addition , the CPU 34
and / or GPU 12 can execute one or more compute shaders to
provide managing of the growable or non - growable (e.g. ,
ring buffer) memory resources . As described herein , this
may also be coupled driver and / or other software function
ality at the CPU 34 (e.g. , a dispatcher thread) that can work
in conjunction with the one or more compute shaders , as
described herein . In this regard , GPU 12 and / or CPU 34 can

FIFO queue .
[0021] Similarly , multiple threads (e.g. , executing in par
allel on the GPU) can read data from the FIFO queue , and / or
can deallocate the read memory resources back to the pool .
For example , the FIFO queue may include a read allocation
pointer that can be advanced by a given thread beyond a
memory location from which the data is read , so the next
read thread can begin reading at the read allocation pointer
(and can advance the read allocation pointer for the next read

US 2020/0090298 A1 Mar. 19 , 2020
3

include a FIFO queue manager 74 to facilitate initializing
and managing FIFO queues , as described herein , etc. More
over , an interface may be exposed , via software executing on
the CPU 34 or GPU 12 , to allow for leveraging the functions
for using and managing memory resources .
[0025] For example , in one implementation , computer
device 10 includes a CPU 34 , which may be one or more
processors , or CPU processor core (s) 38 , that are specially
configured or programmed to control operation of computer
device 10 according to the described examples . For instance ,
a user may provide an input to computer device 10 to cause
CPU 34 to execute one or more of software application (s)
46 , GPU driver 48 , graphics application programming inter
face (API) 52 , an optional CPU - side FIFO queue manager
74 , as described in further detail herein , etc. Software
application (s) 46 that execute on CPU 34 may include , for
example , but are not limited to one or more of an operating
system , a word processor application , an email application ,
a spread sheet application , a media player application , a
video game application , a graphical user interface applica
tion or another program . Additionally , the GPU driver 48 can
be executed for controlling the operation of GPU 12. The
user may provide input to computer device 10 via one or
more input devices 51 such as a keyboard , a mouse , a
microphone , a touch pad or another input device that is
coupled to computer device 10 via an input / output bridge 49 ,
such as but not limited to a southbridge chipset or integrated
circuit .
[0026] The software applications 46 that execute on CPU
34 may include one or more instructions that executable to
cause CPU 34 to issue one or more graphics commands 36
to cause the rendering of graphics data associated with an
image 24 on display device 40. The image 24 may comprise ,
for example , one or more objects , and each object may
comprise one or more primitives , as explained in more detail
below . For instance , in some implementations , the software
application 46 places graphics commands 36 in a buffer in
the system memory 56 and the command processor 64 of the
GPU 12 fetches them . In some examples , the software
instructions may conform to a graphics API 52 , such as , but
not limited to , a DirectX and / or Direct3D API , an Open
Graphics Library (OpenGL®) API , an Open Graphics
Library Embedded Systems (OpenGL ES) API , an X3D API ,
a RenderMan API , a WebGL API , a Vulkan API , a Metal
API , a CUDA API or any other public or proprietary
standard graphics API that may provide functionality to
implement certain shaders , such as compute shaders , which
allow for performing highly - parallelized general - purpose
computations that may or may not relate to graphics pro
cessing . In order to process the graphics re lering instruc
tions , CPU 34 may issue one or more graphics commands 36
to GPU 12 (e.g. , through GPU driver 48) to cause GPU 12
to perform some or all of the rendering of the graphics data .
In some examples , the graphics data to be rendered may
include a list of graphics primitives , e.g. , points , lines ,
triangles , quadrilaterals , triangle strips , etc.
[0027] In another example , the software applications 46
that execute on CPU 34 may include one or more ray tracing
applications that can generate an image 24 from the per
spective of a virtual camera shooting rays from a viewing
points . For a given pixel in the image 24 , for example , the
path of a ray that passes through the pixel from the viewing
point can be traced until it intersects with an object in the
environment . The surface of the object can have a color

associated with it at the intersection point , as well as values
that indicate albedo (reflectivity) , scattering , refraction , dif
fusion or another material property . Such values can be
interpolated in ray tracing , for example , between values of
properties of vertices of the object . At the intersection point ,
depending on the surface of the object , the ray can be
reflected or refracted within the environment , or it can
generate diffuse rays , to simulate optical effects such as
reflection , refraction / translucence , scattering , and disper
sion . The angle of the surface at the intersection point can be
determined by interpolating between norms of vertices of
the object , or the angle of the surface at the intersection point
can be estimated as the angle of a face plane of the object .
A shadow ray can be generated , in the direction of a light
source , to simulate optical effects such as shading from the
light source (blocking of light from the light source) . Such
newly generated rays (secondary rays) can be similarly
traced in the environment , and can generate other rays
(tertiary rays) , and so on . Successive rays can be generated ,
for example , until a threshold number of stages is reached or
threshold distance is traveled . Ultimately , the value of the
given pixel in ray tracing can depend on the color of the
surface of the object at the intersection point and results
reported back from secondary rays , which may in turn
depend on results reported back from tertiary rays , and so
on , so as to simulate shadows , reflected light , refracted light ,
and other effects at the intersection point . Thus , in addition
to the color of the surface at the intersected point , the value
of the given pixel can depend on the incoming light and
material properties of the object at the intersection point .
[0028] Ray tracing , in this regard , can produce ray or pixel
information , and can group the information by one or more
detected properties , such as a determined texture or surface
of the ray / pixel for processing . In this example , a size of
memory to hold the information for each texture or surface
is not known prior to the ray tracing . Thus , ray tracing can
benefit by using the growable or non - growable rung - buffer
style memory resources , as described herein , and / or a ring
buffer , to store , read , and / or otherwise process the informa
tion .
[0029] Computer device 10 may also include a memory
bridge 54 in communication with CPU 34 that facilitates the
transfer of data going into and out of system memory 56
and / or graphics memory 58. For example , memory bridge
54 may receive memory read and write commands , and
service such commands with respect to system memory 56
and / or graphics memory 58 in order to provide memory
services for the components in computer device 10. Memory
bridge 54 is communicatively coupled to GPU 12 , CPU 34 ,
system memory 56 , hics memory 58 , and input / output
bridge 49 via one or more buses 60. In an example , for
example , memory bridge 54 may be a northbridge integrated
circuit or chipset .
[0030] System memory 56 may store program modules
and / or instructions that are accessible for execution by CPU
34 and / or data for use by the programs executing on CPU 34 .
For example , system memory 56 may store the operating
system application for booting computer device 10. Further ,
for example , system memory 56 may store a window
manager application that is used by CPU 34 to present a
graphical user interface (GUI) on display device 40. In
addition , system memory 56 may store software applications
46 and other information for use by and / or generated by
other components of computer device 10. For example ,

US 2020/0090298 A1 Mar. 19 , 2020
4

system memory 56 may act as a device memory for GPU 12
(although , as illustrated , GPU 12 may generally have a
direct connection to its own graphics memory 58) and may
store data to be operated on by GPU 12 as well as data
resulting from operations performed by GPU 12. For
example , system memory 56 may store any combination of
texture buffers , depth buffers , stencil buffers , vertex buffers ,
frame buffers , or the like . System memory 56 may include
one or more volatile or non - volatile memories or storage
devices , such as , for example , random access memory
(RAM) , static RAM (SRAM) , dynamic RAM (DRAM) ,
read - only memory (ROM) , erasable programmable ROM
(EPROM) , electrically erasable programmable ROM (EE
PROM) , Flash memory , a magnetic data media or an optical
storage media .
[0031] Additionally , in an example , computer device 10
may include or may be communicatively connected with a
system disk 62 , such as a CD - ROM or other removable
memory device . System disk 62 may include programs
and / or instructions that computer device 10 can use , for
example , to boot operating system in the event that booting
operating system from system memory 56 fails . System disk
62 may be communicatively coupled to the other compo
nents of computer device 10 via input / output bridge 49 .
[0032] As discussed above , GPU 12 may be configured to
perform graphics operations to render one or more render
targets 44 (e.g. , based on graphics primitives , ray tracing ,
etc.) to display device 40 to form image 24. For instance ,
when one of the software applications 46 executing on CPU
34 requires graphics processing , CPU 34 may provide
graphics commands and graphics data associated with image
24 , along with graphics command 36 , to GPU 12 for
rendering to display device 40. The graphics data may
include , e.g. , drawing commands , state information , primi
tive information , texture information , ray tracing informa
tion , etc. GPU 12 may include atomic / interlocked operation
hardware 63 for providing atomic / interlocked (e.g. , sema phore) operations , such as for incrementing or otherwise
modifying one or more values stored in Graphics Memory
58 , System Memory 56 , and / or other locations . GPU 12 may
also include one or more processors , including a command
processor 64 for receiving graphics command 36 and initi
ating or controlling the subsequent graphics processing by at
least one primitive processor 66 for assembling primitives ,
a plurality of graphics shader processor cores 68 for pro
cessing vertex , surface , pixel , and other data for GPU 12 ,
one or more texture processors 67 for generating texture data
for fragments or pixels , and one or more color and depth
processors 69 for generating color data and depth data and
merging the shading output . The shader processor core (s) 68
can execute one or more application shader program (s) 73 to
process the vertex , surface , pixel , and / or other data for the
GPU 12 or to perform other graphics - related (or non
graphics - related) processes . In an example , primitive pro
cessor 66 may implement input assembler and rasterizer
stages of a logical graphics pipeline , as is discussed below .
GPU 12 may , in some instances , be built with a highly
parallel structure that provide more efficient processing of
complex graphic - related operations than CPU 34. For
example , GPU 12 may include a plurality of processing
elements that are configured to operate on multiple vertices
or pixels in a parallel manner . The highly parallel nature of
GPU 12 may , in some instances , allow GPU 12 to draw
graphics image 24 , e.g. , GUIs and two - dimensional (2D)

and / or three - dimensional (3D) graphics scenes , onto display
device 40 more quickly than drawing the image 24 directly
to display device 40 using CPU 34. Additionally , GPU 12
may be configured to perform highly - parallelized general
purpose operations for graphics or non - graphics purposes ,
such as executing a compute shader , as described .
[0033] GPU 12 may , in some instances , be integrated into
a motherboard of computer device 10. In other instances ,
GPU 12 may be present on a graphics card that is installed
in a port in the motherboard of computer device 10 or may
be otherwise incorporated within a peripheral device con
figured to interoperate with computer device 10. GPU 12
may include one or more processors , such as one or more
microprocessors , application specific integrated circuits
(ASICs) , field programmable gate arrays (FPGAs) , digital
signal processors (DSPs) , or other equivalent integrated or
discrete logic circuitry .
[0034] In an example , GPU 12 may be directly coupled to
graphics memory 58. For example , graphics memory 58
may store any combination of index buffers , vertex buffers ,
texture buffers , depth buffers , stencil buffers , render target
buffers , frame buffers , state information , shader resources ,
constants buffers , coarse shading rate parameter (SRP) maps
(e.g. , a 2D map of a viewable area at coarse resolution that
can be used to look - up an SRP value based on a closest point
in the map to the transformed vertex) , unordered access view
resources , graphics pipeline stream outputs , or the like . As
such , GPU 12 may read data from and write data to graphics
memory 58 without using bus 60. In other words , GPU 12
may process data locally using storage local to the graphics
card , instead of system memory 56. This allows GPU 12 to
operate in a more efficient manner by eliminating the need
of GPU 12 to read and write data via bus 60 , which may
experience heavy bus traffic . In some instances , however ,
GPU 12 may not include a separate memory , but instead
may utilize system memory 56 via bus 60. Graphics memory
58 may include one or more volatile or non - volatile memo
ries or storage devices , such as , e.g. , random access memory
(RAM) , static RAM (SRAM) , dynamic RAM (DRAM) ,
erasable programmable ROM (EPROM) , electrically eras
able programmable ROM (EEPROM) , Flash memory , a
magnetic data media or an optical storage media . Moreover ,
in an example , one or more compute shaders can be
launched to manage growable memory resources in graphics
memory 58 , as described herein . Graphics memory 58 may
also include a memory pool 82 allocated by the FIFO queue
manager 74 to provide memory to growable (or non - grow
able) FIFO queues for application shader program (s) 73
and / or shader processor core (s) 68. Graphics memory 58
may also include FIFO queue descriptors 84 defining one or
more FIFO queues in the memory pool 82 , which may
include page addresses 212 from the memory pool 82 ,
per - page write done counters 224 , per - page read done coun
ters 226 , various pointers 214 , etc. , as described further
herein . Graphics memory 58 may also include shader
resources 86 to otherwise facilitate operation of the various
application shader programs 73 and / or shader processor
cores 68 .
[0035] CPU 34 and / or GPU 12 may store rendered image
data , e.g. , render targets 44 , in a render target buffer of
graphic memory 58. It should be noted that the render target
buffer also may be an independent memory or may be
allocated within system memory 56. GPU 12 may further
include a resolver component 70 configured to retrieve the

US 2020/0090298 A1 Mar. 19 , 2020
5

data from a render target buffer of graphic memory 58 and
convert multisample data into per - pixel color values to be
sent to display device 40 to display image 24 represented by
the rendered image data . In some examples , GPU 12 may
include a digital - to - analog converter (DAC) that is config
ured to convert the digital values retrieved from the resolved
render target buffer into an analog signal consumable by
display device 40. In other examples , GPU 12 may pass the
digital values to display device 40 over a digital interface ,
such as a High - Definition Multi - media Interface (HDMI
interface) or a DISPLAYPORT interface , for additional
processing and conversion to analog . As such , in some
examples , the combination of GPU 12 , graphics memory 58 ,
and resolver component 70 may be referred to as a graphics
processing system 72 .
[0036] Display device 40 may include a monitor , a tele
vision , a projection device , a liquid crystal display (LCD) , a
plasma display panel , a light emitting diode (LED) array ,
such as an organic LED (OLED) display , a cathode ray tube
(CRT) display , electronic paper , a surface - conduction elec
tron - emitted display (SED) , a laser television display , a
nanocrystal display or another type of display unit . Display
device 40 may be integrated within computer device 10. For
instance , display device 40 may be a screen of a mobile
telephone . Alternatively , display device 40 may be a stand
alone device coupled to computer device 10 via a wired or
wireless communications link . For instance , display device
40 may be a computer monitor or flat panel display con
nected to a personal computer via a cable or wireless link .
Additionally , in some configurations such as in a datacenter
environment , Display device 40 may not be present at all , or
may be connected remotely via a network connection and
possibly another computer device .
[0037] According to one example of the described fea
tures , graphics API 52 and GPU driver 48 may configure
GPU 12 to execute a logical graphics pipeline to perform
various operations described herein .
[0038] FIG . 2 illustrates an example of a state of graphics
memory 58 , which can be initialized and / or managed by a
FIFO queue manager 74 within the GPU 12 and / or CPU 34 ,
in accordance with aspects described herein . Graphics
memory 58 , as initialized for the GPU 12 by CPU 34 and / or
one or more applications , drivers , etc. executing thereon ,
may include a memory pool 82 of virtual memory addresses
initialized for managing multiple FIFO queues , where the
memory pool 82 may include virtual memory addresses that
are at least partially allocated to physical memory in the
graphics memory 58. For example , the memory pool 82 may
include a list of memory pages , or pointers to the memory
pages , e.g. , page 0 , page 1 , page 2 , page 3 , page 4 , page 5 ,
page 6 , page 7 , page M , that may be allocated in the
memory pool 82. The memory pool 82 may include a free
page list 204 of pages that can be allocated out of the
memory pool 82 , which in the depicted example include
page 0 , page 1 , and page 3 .
[0039] Graphics memory 58 can also include multiple
FIFO queues , including FIFO 1 210 ,. FIFO N 230. Each
FIFO queue can have an associated list of page addresses
212 , which can correspond to pages from the memory pool
that are allocated to the FIFO queue (and thus removed from
the free page list 204) . For example , for FIFO 1 210 , the list
of page addresses can include page 2 , page 4 , and page 7 , to
which data can be written and / or read , as described herein .
In addition , each FIFO queue may include multiple pointers

214 , such as a write allocation pointer 216 to indicate a
memory location for a next write operation , a write done
pointer 218 to indicate a memory location where all writes
preceding the write done pointer 218 have been completed ,
a read allocation pointer 220 to indicate a memory location
for a next read operation , and / or a read done pointer 222 to
indicate a memory location where all reads preceding the
read done pointer 222 have been completed . The pointers
214 can be used for various purposes , such as to determine
when to allocate and / or deallocate memory to / from a given
FIFO queue , when to perform a read operations of data
written by write operations that have occurred , and / or the
like , as described further herein .
[0040] In an example , the pointers 216 , 218 , 220 , 222 may
be 32 - bit integers or other values , and may be constructed to
indicate multiple identifiers . For example , the pointers 216 ,
218 , 220 , 222 may be constructed to have a number of low
order bits to indicate a memory location within a page (e.g. ,
a number of bits equal to a page size divided by a memory
unit size for the FIFO) . For example , for pages that are 64
kB and where the FIFO uses a 16 - byte memory unit size , the
low order bits can include enough bits to indicate 4096
(2 ̂ 12) memory locations (e.g. , 12 bits) . In addition , the
pointers 216 , 218 , 220 , 222 may be constructed to have a
number of high order bits that can indicate an identifier of
the memory page , which may be an index into an array of
memory page addresses 212 allocated for the FIFO queue .
In an example , the pointers 216 , 218 , 220 , 222 may also
have one or more wrapping bits to indicate when the
lower - order bits (page index and offset within the page) have
exceeded capacity . This may be useful , for example , where
the memory size unit used by the FIFO is not a power of 2
because the number of data items that fit into a memory page
also is not a power of 2. Thus , the number of data items in
a page multiplied by the number of pages is also likely not
a power of 2 .
[0041] In addition , for example , each FIFO may include a
per - page write done counter 224 that can track (e.g. , be
incremented) when a write operation is performed , to track
a number of data items written to the page . In one example ,
there may be a write done counter 224 per page (e.g. , or one
for the current pages being written) . In another example , as
in non - growable FIFOs which may not use pages , the
FIFO's data may be subdivided into segments , with one
write done counter 224 per segment . In another example , a
growable FIFO may be subdivided into segments which are
smaller than , equal to , or larger than a page size , with one
write done counter 224 per segment . In addition , for
example , each FIFO may include a list of read done counters
226 , where one read done counter can track (e.g. , be
incremented) when a read operation is performed to track a
number of data items read from a corresponding portion of
the FIFO . In one example , there may be a read done counter
226 per page (e.g. , or one for the current pages being read) ,
or for a segment of the FIFO that is smaller or larger than a
page . The write done counters 224 and read done counters
226 can be initialized with their respective FIFOs and can
track writes / reads for a given page (and / or multiple counters
can be provided for multiple pages , in one example) . When
all data is written to , or read from a page or segment of a
FIFO (as can be determined by Write Done Pointer 218 or
Read Done Pointer 222) , the associated counters 224 or 226
can be reset to O.

US 2020/0090298 A1 Mar. 19 , 2020
6

[0042] FIG . 3 illustrates an example of application rou
tines that can be executed by CPU 34 , and shader programs
73 that can be implemented and / or executed by shader
processor core (s) 68 and / or CPU 34 for writing and reading
data to / from one or more FIFO queues (e.g. , FIFO 1 210 .
. FIFO N 230) . For example , application shader programs

73 may include a data - production shader program 310 for
writing data to the FIFO queues . For example , data - produc
tion shader program 310 can be concurrently executed by
multiple threads to write data to a given FIFO queue . In an
example , data - production shader program 310 may receive
data for writing to the FIFO queue based on data received
from an application 46 (e.g. , as rendering instructions ,
ray - tracing commands , related parameters , etc.) . Data - pro
duction shader program 310 can include one or more data
production routine 312 for producing data to be written to
the FIFO queue (e.g. , data related to performing one or more
graphics - related tasks , such as rendering instructions ,
instructions for defining corresponding primitives , vectors ,
shading rates , etc. , ray - tracing instructions , or non - graphics
related processes) , as received from the application 46 or
otherwise interpreted from instructions received from the
application 46 , and a FIFO queue push / enqueue routine 314
for writing data to the FIFO queue . For example , FIFO
queue push / enqueue routine 314 can write data to the FIFO
queue 210 and update a write allocation pointer 216 , as
described further herein (e.g. , in action 406 of method 400
of FIG . 4 , method 500 of FIG . 5 , etc.) . FIFO queue push /
enqueue routine 314 may also include a pool page - allocation
routine 316 for allocating one or more additional pages of
memory to the FIFO queue if needed (e.g. , as described in
action 408 of method 400 , and action 504 of method 500) ,
and / or a FIFO queue write - done update routine 318 to
update a write done pointer 218 of the FIFO queue (e.g. , as
described in action 508 of method 500) .
[0043] Application shader programs 73 may also include
a data - consumption shader program 320 for reading data
from the FIFO queues . For example , data - consumption
shader program 320 can be concurrently executed by mul
tiple threads to read data from one or more given FIFO
queues . Data - consumption shader program 310 can include
a FIFO queue pop / dequeue address generation routine 322
for determining a memory location at which to read data
from the FIFO queue . For example , FIFO queue pop /
dequeue address generation routine 322 can determine the
address / memory location based on a value of the read
allocation pointer 220 as read and incremented by FIFO
Queue Work - launching Program 330 , or as read and incre
mented by data - consumption shader program 320 ,
described further herein (e.g. , in action 412 of method 400
in FIG . 4 , action 602 of method 600 in FIG . 6 , etc.) .
Data - consumption shader program 320 may also include a
data - consumption routine 324 for reading the data at the
memory location , and / or a FIFO queue data - free routine 326
for freeing the memory location . For example , FIFO queue
data - free routine 326 can free the memory location at least
in part by moving a read done pointer 222 to or beyond the
memory location , as described further herein (e.g. , in action
606 of method 600) . FIFO queue data - free routine 326 may
include a pool page - free routine 328 for freeing a page of
memory back to the memory pool 84 , as described further
herein (e.g. , in action 414 of method 400 , action 608 of
method 600 , etc.) .

[0044] In addition , application shader programs 73 can
include a FIFO queue work - launching program 330 for
launching sets of multiple threads to execute the data
consumption shader program 320 and / or the data - production
shader program 310. In an example , FIFO queue work
launching program 330 can operate using a single thread to
dispatch the multiple threads of the data - consumption shader
program 320 and / or data - production shader program 310. In
this regard , in one example , FIFO queue work - launching
program 330 may be executed on the CPU 34. In addition ,
for example , the FIFO queue work - launching program 330
may include , or may be similar to , the dispatcher thread
described herein . FIFO queue work - launching program 330
can include a FIFO queue write - done monitor 332 for
monitoring the write done pointer 218 of one or more FIFO
queues to determine when to launch a set of threads to
consume the data written to the FIFO (s) . For example , FIFO
queue write - done monitor 332 can determine to start threads
to read the data when the write done pointer 218 is detected
to advance to a certain value (e.g. , a value equal to or within
a threshold of the number of threads in a set , a value equal
to a number of items on a page of memory , etc.) . FIFO queue
work - launching program 330 can also include a FIFO queue
multi - allocate - for - read routine 332 for determining / allocat
ing the number of threads to launch to read data written to
the FIFO queue (e.g. , based on the write done pointer 218
value) , executing the set of threads to read the data , etc. , as
described further herein . In an example , the FIFO queue
multi - allocate - for - read routine 332 may update the Read
Allocation Pointer 220 to indicate the number of items that
may be consumed , and can pass a copy of the Read
Allocation Pointer (or a derivative of it) to each instance of
the data consumption shader program , to be used in the
address generation routine 322 , to determine which data to
consume . In an example , the work launching program 330
can launch more than one consumer thread per data element
or group of data elements to consume , or it can launch a
group of threads per data element or group of data elements
to consume , where the number of data elements may include
a group , and the number of shader threads to launch , can be
provided by application 46 , or calculated by some other
mechanism .
[0045] In addition , prior to executing threads to perform
the data - production shader program 310 and / or data con
sumption shader program 320 , application 46 can initiate , or
cause initiation of , one or more FIFO queue initialization
routines 336 for establishing the one or more FIFO queues ,
allocating corresponding memory from memory pool 82 ,
etc. , as described above and further herein (e.g. , in actions
402 , 404 of method 400 in FIG . 4) .
(0046] Referring to FIG . 4 , one example of a method 400
for operating a GPU 12 to manage and utilize memory
resources is illustrated .
[0047] At 402 , method 400 includes initializing a memory
pool of memory resources for multiple FIFO queues . In an
example , GPU 12 or CPU 34 via FIFO queue manager 74 ,
can be configured to initialize the memory pool of memory
resources (e.g. , in graphics memory 58) for multiple FIFO
queues . For example , the GPU 12 can initialize the memory
pool as a collection of virtual memory addresses , where the
addresses can each relate to a unit of memory , such as a
page . For example , a page can be 64 kilobytes (kB) or
substantially any span of memory addresses . In addition , in
this example , the GPU 12 can manage initialization or

as

US 2020/0090298 A1 Mar. 19 , 2020
7

allocation / deallocation of the collection of memory
addresses , though a portion of the addresses may correspond
to physical memory that is actually allocated in the graphics
memory 58 , while another portion of the addresses may not
correspond to allocated physical memory . In this example ,
the GPU 12 or CPU 34 , via a thread managing the memory
space , can automatically allocate the non - allocated virtual
addresses to physical memory when a threshold is achieved .
For example , the threshold can correspond to a threshold
number of unused - but - physically - allocated pages (e.g. , a
number that is less than a threshold) , where an unused - but
physically - allocated page can correspond to a page of
memory that is allocated to the GPU 12 but does not have
data (or has only stale or otherwise expired data) written to
it . In an additional example , GPU 12 , via a thread managing
the memory space , can automatically free unused pool pages
from the memory pool 82 , if the list of unused - but - physi
cally - allocated pages achieves a threshold indicating that the
number of unused - but - physically - allocated pages has
become too large (e.g. , more than a different or the same
threshold) .
[0048] In any case , GPU 12 can have a memory pool with
at least some memory resources for allocation to a FIFO
queue , as described herein , and GPU 12 or CPU 34 can
manage the pool to allocate / deallocate physical resources
when the respective thresholds are achieved .
[0049] At 404 , method 400 includes allocating multiple
pages of memory from the memory pool to a FIFO queue of
the multiple FIFO queues . In an example , GPU 12 , via FIFO
queue manager 74 , FIFO queue initialization routine 336 ,
etc. , can be configured to allocate the multiple pages of
memory from the memory pool to a FIFO queue of the
multiple FIFO queues (e.g. , FIFO 1 210 , ... , FIFO N 230) .
In one example , GPU 12 can perform the allocation based on
initializing the FIFO queues before rendering an image . In
addition , for example , GPU 12 can determine an initial
allocation size based on one or more parameters configured
for and / or provided to the GPU 12 (e.g. , by CPU 34) or
otherwise known to the GPU 12. For example , GPU 12 , in
ray tracing , may initialize FIFO queues for each texture or
surface , and may allocate multiple pages (e.g. , one or two
pages to start) to each of the FIFO queues . This can help to
avoid delay in allocating memory to the FIFO queue on a
first instance of a write operation to the FIFO queue .
[0050] In addition to allocating memory to the FIFO
queue (s) , FIFO queue initialization routine 336 can perform
additional initialization procedures , such as associating a
function , program , shader object , pipeline state object , etc.
with each FIFO queue , which can be invoked to consume
data that has been added to the FIFO queue . For example ,
these can include data - production shader program 310 ,
data - consumption shader program 320 , etc. In addition ,
FIFO queue initialization routine 336 can associate a mini
mum batch size , maximum batch size , batch size granularity ,
preferred batch size , etc. of data to be consumed , to each
FIFO queue . Each thread reading the data (e.g. , via data
consumption shader program 320) can utilize the batch sizes
when reading data from the FIFO queues . In another
example , FIFO queue initialization routine 336 can associate
a count of threads to be invoked to consume each batch of
data acquired from the FIFO queue . In addition , in an
example , FIFO queue initialization routine 336 can set one
or more parameters for each FIFO queue , such as an
associated priority for reading data from (and / or writing data

to) the FIFO queue , whether the FIFO queue is growable or
not , whether the FIFO queue can be automatically validated
or not , etc. In addition , in one example , FIFO queue initial
ization routine 336 can add an initial amount of data to one
or more FIFO queues to indicate that the FIFO queue is in
use and avoid deallocation of the FIFO queue or associated
memory .

[0051] At 406 , method 400 includes executing , via parallel
execution of multiple write threads of a GPU , a write
operation to write data to memory locations in the multiple
pages of memory . In an example , GPU 12 can be configured
to execute , via parallel execution of multiple write threads of
the GPU 12 , the write operation to write data to memory
locations in the multiple pages of memory . For example ,
GPU 12 can execute (e.g. , via commands 36 sent by CPU
34 , or via FIFO queue work - launching program 330) one or
more compute shaders to perform the write operation to
write data to the FIFO queue , as described herein . For
example , the one or more compute shaders can execute a
fixed set of threads , such as 64 threads executing in parallel ,
to perform one or more write operations . Each of the
multiple threads can write some data into the FIFO queue ,
which may include each write thread performing a data
production shader program (e.g. , data - production shader
program 310 defined above) to produce data (e.g. , via
data - production routine 312) , push the data to the FIFO
queue (e.g. , via FIFO queue push / enqueue routine 314) ,
possibly allocate one or more additional memory pages to
the FIFO queue (e.g. , via pool page - allocation routine 316) ,
and / or update a write done pointer (e.g. , via FIFO queue
write - done update routine 318) , as described above .
[0052] For example , to facilitate the write operation , each
FIFO queue may include pointers to its corresponding pages
in the memory pool (e.g. , page addresses 212) , as well as a
write allocation pointer (e.g. , write allocation pointer 216) to
track both which page in memory to write to , and the
location within that page to write , and / or a write done
pointer (e.g. , write done pointer 218) to indicate a location
where all previous data has been written in memory . As
described further herein , the GPU 12 can accordingly deter
mine a page to which to perform a write operation based on
the pointer corresponding to the FIFO queue and / or the write
allocation pointer 216. Thus , for example , the write alloca
tion pointer can allow each thread to determine where to
write its data , and each thread , upon determining the write
allocation pointer , can advance the write allocation pointer
to a next memory location for writing data . The acts of
reading and advancing the write allocation pointer can be
performed together atomically , e.g. , by Atomic / Interlocked
Operation Hardware 63 , order to avoid race conditions
that would otherwise occur with multi - threaded program
ming .

[0053] In addition , once the data is written , the thread can
advance the write done pointer . In one example , this can be
performed based on an array of write done counters , based
at least in part on determining that all write operations of the
write threads have completed . For example , the array of
write done counters can include one page write counter per
page or segment of the FIFO queue . The counters can be
zero initialized with the FIFO at the time of initialization ,
and can be incremented after writes are performed to a page ,
and then initialized back to zero when the write done pointer
advances beyond the page . In an example , the write done

US 2020/0090298 A1 Mar. 19 , 2020
8

of

pointer can be advanced using the conditions and calcula
tions shown in 508 , as explained in detail below .
[0054] Executing the write operation can also optionally
include , at 408 , allocating additional pages of memory from
the memory pool to the FIFO queue . In an example , GPU 12 ,
e.g. , via a compute shader or other thread performing FIFO
queue write operations , can be configured to allocate the
additional pages memory from the memory pool to the
growable FIFO queue (e.g. , by using functionality provided
by the FIFO queue manager 74) . In one example , the GPU
12 can allocate the additional pages of memory based on a
location of the write allocation pointer . For example , where
the write allocation pointer achieves a threshold , the GPU 12
can allocate an additional page (or pages of memory) out of
the memory pool (e.g. , memory pool 82) , which can occur
via the write thread that detects the write allocation pointer
achieving the threshold . For example , this threshold for the
write allocation pointer may correspond to a memory loca
tion located in a page in or before a last memory page in the
list of page addresses 212. For example , the threshold may
be a last memory position in the second to last memory page
in the list of page addresses 212 , a memory location at
another position in the second to last page (or last page) , etc. ,
such that the memory can be allocated and assigned to the
FIFO queue before other write threads attempt to allocate a
memory position beyond the last page currently assigned to
the FIFO , without those other threads having to wait for the
allocation before writing to the additional memory
resources .

[0055] At 410 , method 400 can optionally include detect
ing that the write operation achieves a threshold amount of
memory . For example , the GPU 12 can be configured to
detect that the write operation achieves the threshold amount
of memory . In one example , this can include GPU 12 , or a
write thread which is updating the write done pointer , or a
dispatcher thread (e.g. , a FIFO queue work - launching pro
gram 330) that manages the writing and / or reading opera
tions , detecting that the write operation achieves the thresh
old amount of memory . This can be based on , for example ,
determining that the write done pointer for the FIFO
achieves a threshold (e.g. , as compared to the read allocation
pointer or otherwise) . In one example , threshold can be
based on a priority indicated for the FIFO , such that higher
priority FIFOs can have the threshold detected before lower
priority FIFOs . For example , this threshold amount of
memory can be set to ensure enough data is written to the
FIFO to justify executing a read operation using multiple
read threads of the GPU 12 , as described in further detail
below (e.g. , such that no threads , or only a maximum portion
of threads , are not used during the read operation) .
[0056] In one example , the dispatcher thread can loop
through the FIFO queues to determine whether to start
reading from one or more of the FIFO queues (e.g. , based on
whether the write done pointer achieves the threshold) . In
another example , one or more of the write threads can notify
the dispatcher thread that data is available for reading , which
may be a notification sent from the write thread after it
updates the write done pointer . In a specific example , the
dispatcher thread can monitor , via one or more processors of
the GPU 12 and / or CPU 34 , the write done pointers asso
ciated with one or more FIFO queues , and in response to the
presence of data that has been written but not consumed , the
dispatcher thread can perform various operations . Such
operations may include allocating some or all written data

for consumption based on the parameters and conditions
specified at FIFO queue initialization time . On the state of
the write done pointer indicating how much data has been
written to each FIFO queue , and based on the amount of data
which has already been allocated for consumption (e.g. ,
based on a read allocation pointer) , the dispatcher thread can
invoke execution of one or more threads of a shader program
(e.g. , a data - consumption shader program 320) to be
executed in a parallel manner on GPU 12 , as described
below in action 412. In addition , the dispatcher thread may
optionally provide information to the shader program such
as an identifier for the FIFO queue that stores the data , the
starting or base address of the data to be consumed , or an
index from which the base address can be derived , in
combination with the FIFO queue ID , the number of ele
ments of data to be consum umed , and / or the like .
[0057] In either case , at 412 , method 400 can include
executing , via parallel execution of multiple read threads of
a GPU , a read operation to read data from the memory
locations in the multiple pages of memory . For example , the
GPU 12 can be configured to execute , via parallel execution
of multiple read threads of the GPU 12 , the read operation
to read data from the memory locations in the multiple pages
of memory . For example , GPU 12 can execute (e.g. , via
FIFO queue work - launching program 330) one or more
compute shaders to perform the read operation to read data
from the FIFO queue , as described herein . For example , the
one or more compute shaders can execute a fixed set of
threads , such as 64 threads executing in parallel , to perform
the read operation . Each of the multiple threads can read
some data from the FIFO queue . which may include each
read thread performing a data - consumption shader program
(e.g. , data - consumption shader program 320 defined above)
to pop data to be read from the FIFO queue (e.g. , via FIFO
queue pop / dequeue address - generation routine 322) , con
sume the popped data (e.g. , via data - consumption routine
324) , and / or possibly free the data from the FIFO queue
(e.g. , via FIFO queue data - free routine 326) including deal
locating one or more pages of data from the FIFO queue
(e.g. , via pool page - free routine 328) , as described above .
[0058] For example , the GPU 12 can launch (e.g. , via
FIFO queue work - launching program 330) enough shaders
to read the data written based on the write done pointer . For
example , GPU 12 can determine the number of data ele
ments to be consumed (e.g. , as a number of bytes repre
sented in a difference between the read allocation pointer
and the write done pointer) , and then can launch one or more
read threads to consume each data element , and / or it can
launch one or more threads (such as a wave , or threadgroup ,
or portion of such) that can cooperate to consume a batch of
data elements (such as a part or whole portion of a page filled
with data) . The size of the batch of data to be consumed , and
the number of threads to launch to consume each batch of
data , can be specified by Application 46 , or by some other
mechanism . In another example , the dispatcher thread can
launch threads to read the data until a read thread is unable
to advance the read allocation pointer (e.g. , once the read
allocation pointer reaches the write done pointer) .
[0059] For example , to facilitate this operation , each FIFO
queue may include pointers to its corresponding pages in the
memory pool (e.g. , page addresses 212) , as well as a read
allocation pointer (e.g. , read allocation pointer 220) to track
where data has been assigned for reading in a given page of
memory , and / or a read done pointer (e.g. , read done pointer

US 2020/0090298 A1 Mar. 19 , 2020
9

222) to indicate a point before which all data has been fully
read and consumed , and / or an array of counts of bytes or
elements consumed on each page (e.g. , Read Done Counters
226) . As described further herein , the read allocation pointer
can allow each thread to determine where to read its data ,
and each thread , upon determining the read allocation
pointer , can advance the read allocation pointer to a next
memory location for reading data (e.g. , for use by another
thread) . The acts of reading and advancing the read alloca
tion pointer can be performed together simultaneously
(atomically) , e.g. , by Atomic / Interlocked Operation Hard
ware 63 , in order to avoid race conditions that would
otherwise happen with multi - threaded execution .
[0060] In addition , once the data is read , the thread may
advance a read done pointer . In one example , this can be
performed based on a read done tracker , which can include
an array of counters 226 (e.g. , one per page or per segment
of the FIFO queue) indicating how many bytes or data items
have been consumed from each page or segment of the FIFO
queue . For example , the read done tracker's counters can be
zero initialized with the FIFO at the time of initialization ,
and can be incremented as reads are performed for a page ,
and then initialized back to zero when the read allocation
pointer advances beyond the page . When the read done
counter reaches a threshold that indicates that all data
allocated for reading on a page has been fully read (e.g. , and
thus that the page has been entirely filled with data) , which
can be determined by comparing the read counter with the
read allocation pointer , this can indicate that the read done
pointer may be updated (e.g. , by a read thread or the thread
dispatcher) based on the read done tracker . To determine the
new read done pointer value , the thread may read the
counters of the read done tracker , starting from the counter
corresponding to the page associated with the previous value
of the read done pointer , and ending with the first counter
indicating that data on the corresponding page has not been
fully written and / or consumed , and then updating the read
done pointer to that location , similarly to the conditions and
operations performed for updating the write done pointer
which are shown in action 508 of method 500 in FIG . 5 .
[0061] In one example , the invoked shader programs can
perform operations such as retrieving data from a specified
portion of the specified FIFO queue , where the specified
portion can be indicated to the shader program by the
dispatcher thread . The operations can also optionally include
updating a counter indicating portions of the FIFO queue
have been read (e.g. , a read done counter 226) , freeing newly
unused portions of the FIFO queue to be reused , or freed to
a pool , as described in further detail below , performing
calculations or memory requests based on data retrieved
from the FIFO queue , performing write operations to append
data to one or more other FIFO queues , updating a pointer
(e.g. , a write allocation pointer and / or write done pointer)
indicating data has been appended to the one or more other
FIFO queues and is ready for consumption , etc. In another
example , if data was written to one or more FIFO queues ,
the data - consumption shader program 330 that wrote the
data can also notify the dispatcher thread or threads that data
has been written to one or more specific FIFO queues .
[0062] Executing the read operation can also optionally
include , at 412 , deallocating one or more pages of memory
to the memory pool . In an example , GPU 12 , e.g. , via a
compute shader or other thread of execution managing the
read threads , can be configured to deallocate the one or more

pages of memory from the memory pool (e.g. , by using
functionality provided by the FIFO queue manager 74) . In
one example , the GPU 12 can deallocate the one or more
pages of memory based on a location of the read done
pointer . For example , where the read done pointer achieves
a threshold , which may correspond to the end of a page , the
GPU 12 can deallocate the page (and optionally some
number of preceding pages in memory) , back to the memory
pool (e.g. , memory pool 82 , which can add the page or pages
(e.g. , pointers thereto) to free page list 204) . For example ,
this can occur via the read thread that detects the read done
pointer achieving the threshold . For example , the threshold
for the read allocation pointer may be a memory location in
a second page or other subsequent page in the list of page
addresses 212 , which can indicate that the first page or other
prior pages , have been read . Freeing the memory back into
the memory pool in this regard can allow for reuse of the
memory for other FIFO queues such to conserve resources
over previous memory management for executing graphics
processes . In another example , the operation of freeing
pages to the pool 82 can be based solely on the associated
counter 226 in the read done tracker passing a threshold . For
example , once all data on a page is consumed , the page may
be freed to pool 82 immediately (or otherwise based on
detecting that all data on the page is consumed) , even if data
in preceding pages of the FIFO queue has not yet been
consumed or freed .
[0063] Referring to FIG . 5 , one example of a method 500
for operating a GPU 12 to write data to memory resources
is illustrated . For example , method 500 can be performed by
each write thread in a group of multiple write threads
executing in parallel , as described herein . In one example ,
hardware - specific optimizations can be performed , such as
coalescing requests to the Atomic / Interlocked Operation
Hardware 63 , arranging data structures to tune for device
caching behavior / bus arrangement , etc. before performing
operations described in method 500 .
[0064] At 502 , method 500 includes obtaining and
advancing a write allocation pointer . In an example , GPU 12
can be configured to , e.g. , via a compute shader or other
construct executing a write thread , FIFO queue push / en
queue routine 314 , etc. , to obtain and advance a write
allocation pointer . For example , the GPU 12 can initialize a
group of threads to write data into the FIFO queues . Thus ,
the GPU 12 can provide the data for writing , and can
initialize the group of threads via a FIFO queue work
launching program 330 or command processor 64 that can
manage writing and reading of data to / from the queues . For
example , the given write thread can obtain the current write
allocation pointer 216 and can advance the write allocation
pointer 216. This may include performing an atomic opera
tion to both obtain and advance the write allocation pointer
216 (such as by an instruction or request to Atomic Opera
tion Hardware 63) . Thus , for example , once the operation to
advance the write allocation pointer succeeds , the thread can
determine the write allocation pointer to use in writing its
data (e.g. as the write allocation pointer 216 value before the
increment or advance procedure succeeded) . Moreover , as
described , the write allocation pointer 216 can track memory
locations as a function of a memory unit size for the FIFO
queue , and thus the write allocation pointer 216 can be
incremented by 1 (e.g. , 1 memory unit size) by a given write
thread , and the address can be resolved by at least one of
subdividing the write allocation pointer into portions repre

US 2020/0090298 A1 Mar. 19 , 2020
10

senting the memory page index , and offset within the page ,
looking up the memory page's address based on the index ,
and adding the offset multiplied by the memory unit size ,
etc. Once the write allocation pointer 216 is advanced , a next
write thread can determine its write allocation pointer
address and advance , and so on . This is so because advanc
ing the pointer is “ atomic ” operation , and many threads or
groups of threads can have an outstanding “ obtain and
increment ” request outstanding at a time . Thus , while the
GPU 12 itself processes these requests in order , the threads
may not need to wait for other threads directly . Thus , no
spinning or locking may be required .
[0065] In addition , in an example , where a write thread
advances the write allocation pointer 216 beyond a last
allowable page (e.g. , overflow) , the write thread can perform
an atomic subtract to set the write allocation pointer 216 to
element zero of page zero . The other write threads that
retrieve a write allocation pointer in the overflowed state
(e.g. , after the write allocation pointer overflows but before
the write allocation pointer is fixed up by the atomic
subtraction) , can perform a local subtract of their retrieved
write allocation pointer 216 to offset from element zero of
page zero . For example , if 1024 pages are allowed , and each
page allows 512 elements , then both the atomic subtract
operation and the local subtractions may subtract by a value
of 1024 * 512 , or 524288. In another example , if it is desired
to track how many times the write allocation pointer has
wrapped , then after the write allocation pointer crosses a
threshold that is a specified multiple N of the number of
pages P times the number of elements E per page , then
subtractions of N * P * E may be performed after the write
allocation pointer crosses a threshold of N * P * E ; and the
number of times wrapping (modulo N) can be calculated by
dividing the write allocation pointer by P * E .
[0066] In one example , the dispatcher thread can initiate
an ordered write (or push to the FIFO queue) by both reading
and advancing the write allocation pointer 216 , and then
indicating , to each write thread , the original value of the
write allocation pointer 216 and a thread identifier . Thus ,
each write thread can deduce its write allocation pointer 216
for writing the data to the FIFO queue , as described above ,
as an offset from the indicated write allocation pointer based
on the thread identifier .
[0067] At 504 , the method 500 includes allocating another
page of memory to the FIFO queue if the write allocation
pointer , as advanced , achieves a threshold memory location .
In an example , GPU 12 can be configured to , e.g. , via a
compute shader or other construct executing a write thread
that can utilize the FIFO queue manager 74 , pool page
allocation routine 316 , etc. , allocate another page of memory
to the FIFO queue if the write allocation pointer 216 , as
advanced , achieves a threshold memory location . Thus , this
operation can be performed by the write thread that detects
the write allocation pointer 216 achieving the threshold to
ensure the allocation occurs one time for the multiple write
threads . In addition , the threshold can be set so allocation
occurs before the memory is actually needed for writing , so
threads do not have to wait for allocation before writing data
(e.g. , a memory location in a second to last page in the list
of memory page addresses 212 , a memory location within
the last page that is before the end of the page , such as a
center memory location , etc.) .
[0068] At 506 , the method 500 includes writing data to a
memory location of the obtained write allocation pointer . In

an example , GPU 12 can be configured to , e.g. , via a
compute shader or other construct executing a write thread ,
write data to the memory location calculated from the
obtained write allocation pointer . For example , for a non
growable FIFO queue (such as a ring buffer) , the address
may be calculated by adding a base address to a product of
the write allocation pointer (modulo the number of items
allowed in the ring buffer) , times the size in bytes of items
written to the ring buffer . Or in another example , in a
growable ring buffer , the address may be calculated by
extracting a portion of the obtained write allocation pointer
corresponding to a page index , and looking up a page
address from that index , and adding that address to a
remaining portion of the returned write allocation pointer .
[0069] For example , the data to write can be produced by
a data - production routine 312 , which may include data
related to graphics processing (e.g. , data or instructions
related to rendering graphics , ray - tracing graphics , etc.) . In
this example , as each write thread has a separate value for
the obtained write allocation pointer 216 , as described , any
of the write threads can write data to the FIFO queue in
parallel at the addresses calculated from their unique values
obtained from write allocation pointer 216 .
[0070] At 508 , the method 500 optionally includes
advancing the write done pointer to a next memory location
following the one or more memory locations where the data
is written . In an example , GPU 12 can be configured to , e.g. ,
via a compute shader or other construct executing a write
thread , FIFO queue write - done update routine 318 , etc. ,
advance the write done pointer 218 to the next memory
location following the one or more memory locations where
the data is written . In another example , one or more of the
write threads , or a dispatcher thread , can advance the write
done pointer by the number of write threads once the threads
have completed , or can advance by a write done counter 224
value . In yet another example , this may include the write
thread (e.g. , a detected last write thread or otherwise)
notifying the dispatcher thread that data has been written to
the FIFO queue . In another example , the write thread can
also increment a write done counter 224 , as described .
[0071] In a specific example , advancing the write done
pointer at action 508 may include , at 510 , incrementing the
write done counter that corresponds to the page written . In
an example , GPU 12 can be configured to , e.g. , via a
compute shader or other construct executing a write thread ,
FIFO queue write - done update routine 318 , etc. , increment
the write done counter 224 that corresponds to the page
written . In this example , at 512 , it can be determined
whether the write done counter indicates that all data has
been fully written to the page . In an example , GPU 12 can
be configured to , e.g. , via a compute shader or other con
struct executing a write thread , FIFO queue write - done
update routine 318 , etc. , whether the write done counter
indicates all data has been fully written to the page . For
example , this can include determining whether the write
done counter is equal to a value representing a maximum
number of items that can be written to the page .
[0072] Where the write done counter indicates that all data
has been fully written to the page , at 514 , a mutex or other
synchronization primitive can be acquired . In an example ,
GPU 12 can be configured to , e.g. , via a compute shader or
other construct executing a write thread , FIFO queue write
done update routine 318 , etc. , acquire the mutex or other
synchronization primitive such as a “ No - Spin Mutex ” 710 .

US 2020/0090298 A1 Mar. 19 , 2020
11

In an example , this can be accomplished using atomic /
interlocked operation hardware 63 , as described . In this
example , at 516 , all write done counters can be iterated
through from the page of the current write done pointer , up
to the page of the write allocation pointer until an incomplete
page is reached . In an example , GPU 12 can be configured
to , e.g. , via a compute shader or other construct executing a
write thread , FIFO queue write - done update routine 318 ,
etc. , iterate through all write done counters 224 from the
page of the current write done pointer 218 up to the page of
the write allocation pointer 216 until the incomplete page is
reached . For example , this can include determining an
incomplete page as having a write done counter not equal to
the number of items that can be written to a page .
[0073] At 518 , where the write done counter of the incom
plete page matches the write allocation pointer , the write
done pointer can be updated to match the write allocation
pointer , and can return at 520. In an example , GPU 12 can
be configured to , e.g. , via a compute shader or other con
struct executing a write thread , FIFO queue write - done
update routine 318 , etc. , can , where it determines that the
write done counter 224 matches the write allocation pointer
216 , update the write done pointer 218 to match the write
allocation pointer 216 .
[0074] At 522 , where the write done counter of the incom
plete page does not match the write allocation pointer (i.e. ,
if one page has been newly completed , but another page has
some space allocated for writes , which writes have not yet
completed) the write done pointer can be updated to point to
the end of the newest completed page , and the code can
return at 520. In an example , GPU 12 can be configured to ,
e.g. , via a compute shader or other construct executing a
write thread , FIFO queue write - done update routine 318 ,
etc. , if the pages have been newly completed , update the
write done pointer 218 to point to the end of the newest
completed page of memory .
[0075] Where the write done counter does not indicate that
all data has been fully written to the page at action 512 , at
524 , it can be determined whether the current write alloca
tion pointer matches the corresponding location in the write
done counter . In an example , GPU 12 can be configured to ,
e.g. , via a compute shader or other construct executing a
write thread , FIFO queue write - done update routine 318 ,
etc. , determine whether the current write allocation pointer
216 matches the corresponding location in the write done
counter 224. If not , this can indicate that there is more
writing to be performed , and the action 508 can return at
520. Or if so , action 508 can proceed to 514 to acquire the
mutex and begin iterating through counters , as described .
[0076] Referring to FIG . 6 , one example of a method 600
for operating a GPU 12 to read data from memory resources
is illustrated . For example , method 600 can be performed by
each read thread in a group of multiple read threads execut
ing in parallel , as described herein .
[0077] At 602 , method 600 includes obtaining and
advancing a read allocation pointer . In an example , GPU 12
can be configured to , e.g. , via a compute shader or other
construct executing a read thread , FIFO queue pop / dequeuer
address - generation routine 322 , etc. , obtain and advance the
read allocation pointer . For example , the GPU 12 can
initialize a group of threads to read data from the FIFO
queues . In one example , the GPU 12 can determine to
execute the group of threads based on the write done pointer
218 , as described (e.g. , via a FIFO queue work - launching

program 330 that can manage threads that perform the
writing and reading of data to / from the queues) . For
example , the given read thread can obtain the current read
allocation pointer 220 and can advance the read allocation
pointer 220. This may include performing an atomic opera
tion to both obtain and advance the read allocation pointer
220. Thus , for example , once the operation to advance the
read allocation pointer succeeds , the thread can determine
the read allocation pointer to use in reading its data (e.g. as
the read allocation pointer 220 value before the increment or
advance procedure succeeded) . Moreover , as described , the
read allocation pointer 220 can track memory locations as a
function of a memory unit size for the FIFO queue , and thus
the read allocation pointer 220 can be incremented by 1 by
a given read thread , and the address can be resolved by
subdividing the read allocation pointer into portions repre
senting the memory page index , and offset within the page ,
looking up the memory page's address based on the index ,
and adding the offset multiplied by the memory unit size .
Once the read allocation pointer 220 is advanced , a next read
thread can determine its read allocation pointer address and
advance , and so on .
[0078] In another example , at step 602 , FIFO queue work
launching program 330 (or other dispatcher thread) can read
a Write Done pointer (via 332) and perform a multi - element
allocation 334 to obtain and update read allocation pointer
220 , then launch a set of shader threads and pass the old
copy of the read allocation pointer to the shaders .
[0079] In one example , modes of FIFO Queue processing
can be provided for reading the data where reading of the
data may occur simultaneously with writing of data from a
different option of the same FIFO queue — or a mode may
exist where reading and writing simultaneously is not
allowed .
[0080] At 604 , the method 600 includes reading data from
the memory location of the obtained read allocation pointer .
In an example , GPU 12 can be configured to , e.g. , via a
compute shader or other construct executing a read thread ,
data consumption routine 324 , etc. , read data from the
memory location of the obtained read allocation pointer .
Thus , as each read thread has a separate value for the
obtained read allocation pointer 220 , as described , any of the
read threads can read data from the FIFO in parallel at their
corresponding read allocation pointer 220 addresses . In
another example , the read thread can also increment a read
done counter 226 , as described .
[0081] At 606 , the method 600 includes advancing the
read done pointer to a next memory location following the
one or more memory locations from which the data is read .
In an example , GPU 12 can be configured to , e.g. , via a
compute shader or other construct executing a read thread ,
FIFO queue data - free routine 326 , etc. , advance the read
done pointer 222 to the next memory location following the
one or more memory locations from which all data has been
read by one or more read threads . In one example , a counter
of completed reads per page is maintained (e.g. , read done
counters 226) , such that any time a read thread completes a
read , it increments the appropriate counter ; when a thread
determines that it has completed the last read on a page , it
can update the read done pointer 222 to point to the
beginning of the next page of memory , after verifying that
data has also been read from any previous pages (e.g. , by
reading the read done pointer 222 and / or previous page read
counters 226) . In another example , when a thread deter

US 2020/0090298 A1 Mar. 19 , 2020
12

mines that it has completed the last read that has been
initiated , e.g. , because the outstanding read counter on a
page matches the number of reads which have been initiated
on the page , and the read done pointer points to that page ,
the read done pointer can be updated to point to the read
allocation pointer .
[0082] At 608 , the method 600 optionally includes deal
locating a page of memory if the read done pointer , as
advanced , achieves a threshold memory location . In an
example , GPU 12 can be configured to , (e.g. , via a compute
shader or other construct executing a read thread that can
utilize the routines of the FIFO queue manager 74 , such as
pool page - free routine 328 , etc.) deallocate a page of
memory if the read done pointer 222 , as advanced , achieves
a threshold memory location . Thus , this operation can be
performed by the read thread that detects the read done
pointer 222 achieving the threshold to ensure the dealloca
tion occurs one time for the multiple read threads . In
addition , the threshold can be set to ensure an entire page is
read before it is freed back to the memory pool 82 , to prevent
data corruption in reading the page . In addition , this can
include marking the page for deallocation (e.g. , where
another thread , such as a dispatcher thread , can actually
process the deallocation) .
[0083] In one example , the dispatcher thread can initiate
an ordered read (or pop from the FIFO queue) by retrieving
and advancing the read allocation pointer 220 , and then
indicating , to each read thread , the initial value of the read
allocation pointer 220 along with a thread identifier . Thus ,
each read thread can deduce its read allocation pointer 220
for reading the data from the FIFO queue , as described
herein , as an offset from the indicated read allocation pointer
based on the thread identifier . In this example (when ordered
reads are used) , a dispatcher thread can advance the read
done pointer by the number of threads once the threads have
completed , or the consumer threads can perform the update
of the read done pointer as previously described .
[0084] In one example , the dispatcher thread can initiate
threads that perform both one or more ordered read opera
tions and / or one or more ordered write operations , from one
or more FIFO queues , by examining and advancing the
associated read allocation pointers 220 and / or write alloca
tion pointers 216 , and passing the original values as inputs
to the shader threads .
[0085] In another example , a number of items written per
page can be tracked via write done counters 224 in the write
threads , as can a number of items read per page via read
done counters 226 in the read threads . These counters can be
updated via atomic instructions . In this example , a dis
patcher thread , or some other thread such as might be
executing the consumption shader program 320 , can com
pare the counter values to determine when the page has been
fully written and read , and can use this information to
determine when to deallocate the page . For example , when
a thread updates a page's read done counter 226 , it can
compare it to a threshold indicating that all data in the page
has been read (and therefore , by assumption , was also first
written) and therefore , the page can be freed by the thread ,
or be marked by the thread to be freed by some other thread
at a later time .
[0086] Additionally , other modes of FIFO Queue process
ing can be provided (in addition to , or in combination with
the above) where excessive read requests can be detected
(e.g. , where the read threads attempt to access beyond the

write done pointer) and / or where excessive write requests
can be detected (e.g. , where the FIFO queue is full , but a
thread attempts to push additional data into it) . Additional
modes can also be provided (in addition to , or in combina
tion with the above modes) where FIFOs are growable or not
growable . In this example , the application 46 or FIFO queue
manager 74 or other software may select a mode or com
bination of modes for a FIFO queue or collection of FIFO
queues , in order to determine behavior of shaders and other
threads or programs which will initialize , manage and / or use
the growable FIFOs .
[0087] FIGS . 7 and 8 illustrate a hierarchy of objects /
classes used to build a non - growable FIFO queue , a memory
pool , and a set of growable FIFO queues backed by an
associated memory pool , as described above . For example ,
various components can be provided by the application
shader programs 73 , FIFO queue manager 74 , shader pro
cessor core (s) 68 and / or other hardware and / or software
components of the GPU 12 , CPU 34 , etc. as building blocks
for providing the growable FIFO queue 704 and / or related
functionality described herein . Each growable FIFO queue
704 can include growable FIFO queue descriptor 720
describing a status , contents , etc. of , and / or to facilitate
writing data to and / or reading memory from , each growable
FIFO queue . In an example , the growable FIFO queue
descriptors 720 may include a write / append manager 722
having a write allocations pointer 726 , write done counters
728 , write done pointer 730 , no - spin mutex 732 , etc. , as
described . In addition , in an example , the growable FIFO
queue descriptors 720 may include a read / consume manager
724 having a read allocations pointer 740 , read done coun
ters 742 , read done pointer 744 , no - spin mutex 732 , etc. , as
described . In addition , in an example , the growable FIFO
queue descriptors 720 may contain a list of pages 750 used
by (or assigned to) the growable FIFO queue , where each
page referenced (by pointer , index , address , etc.) by the list
750 is associated with a memory pool 82 associated with the
growable FIFO queue .
[0088] For example , a Multi - threaded , Wrappable Vari
able 706 can be provided . This can be a building block for
the read allocation pointer 808 (also referred to herein as the
“ Read - Alloc Pointer ”) of a fixed - size FIFO queue 802
described in FIG . 8 , and write allocation pointer 806 (also
referred to herein as the “ Write - Alloc pointer ”) for use by
various read and write threads , as described above . The
Multi - threaded , Wrappable Variable 706 can also be used as
a building block of the Multi - Page Data Index 708 , which is
described below . The Multi - threaded , Wrappable Variable
706 can exist in memory , and many threads can increment
it simultaneously , using atomic / interlocked operation hard
ware 63. The Multi - threaded , Wrappable Variable 706 can
have a certain number of bits B (where B can be 32 , but
could be other values) . There can be a “ wrap point ” , or a
“ maximum valid value ” M selected , such that O < M , and
2 * M < = 2 ̂^ B (2 to the power of B) . If a thread T (e.g. , a read
thread or a write thread) increments the wrappable variable
(e.g. , as part of advancing the corresponding read or write
allocation pointer) such that it crosses from < M to > = M , the
thread T can be responsible for performing an atomic
operation to subtract M from the variable . The code
executed by all threads that read V (without incrementing it)
may occasionally receive a value of V that is > = M , in which
case those threads may subtract M from their obtained value ,
before using the results for various calculations . Addition

US 2020/0090298 A1 Mar. 19 , 2020
13

ally , the code executed by all threads that increment V may
be designed in such that when some thread T causes V to
cross the boundary from < M to > = M , these other threads
may not be allowed to increment V to a value > = M * 2 , before
the first thread adjusts the value to a value < M . For instance ,
where B is 32 , M may be 89473024 (5461 * 16384 , as may
be the case where a Growable FIFO is capable of storing
12 - byte data elements into up to 16384 unique 65536 - byte
pages) .
[0089] In addition , a Multi - Page Data Index 708 can be
provided , which can be a building block for the Read - Alloc
Pointer 740 and a Write - Alloc Pointer 726 of the growable
FIFO queue 704. These pointers (which indicate both a page ,
and indices of memory locations in a page) can be incre
mented by multiple threads simultaneously , can be con
verted from a simple numeric representation (which can be
easily modified by atomics) , into a page index , and an offset
within that page , etc. For this Growable FIFO implementa
tion , the Multi - threaded Wrappable Variable 706 described
above can be used . For example , M can be set to the
maximum allowed valid
value = NumberOfPages * NumberOfUnique AllowedIndices
In?Page . For example , if “ V ” is the name of the index in
memory , then : PageIndex = V / NumberOfUnique Allowed
IndicesInAPage , and Index Within ThePage is = V % Num
berOfUnique AllowedIndicesInAPage . If M is a power of 2 ,
then the division (/) and modulo (%) operations can simplify
to binary math . If M is not a power of 2 , then these
operations (where division and modulo instructions may not
be available on a GPU) can be simplified to simpler multi
plication and shift operations , using commonly known algo
rithms .
[0090] In another example , a No - Spin Mutex 710 can be
provided . There may be situations where a given task is to
be performed occasionally , and multiple threads may (e.g. ,
based on their own calculations) determine that the task is to
be performed . Especially in shader environments where
there are thousands of active threads , it can be desirable to
have a mechanism which allows threads to complete a given
task , but that no thread waits (e.g. , spins) while attempting
to start the work . The GPU 12 can provide a No - Spin Mutex
by using a single DWORD . The FIFO queue manager 74 ,
application shader programs 73 , such as data - production
shader program 310 , data - consumption shader program 320 ,
etc. , can implement or otherwise leverage operations for the
No - Spin mutex 710 , such as : “ Try To Acquire ” (which can
return a value representing “ acquired ” or “ some other thread
owns ”) , and “ Try To Release ” (which can return a value
representing “ released ” or “ try the task again ”) . TryToAc
quire can perform an InterlockedIncrement of the control
integer , and can return " acquired ” if the previous value was
0 , or " some other thread owns ” if the previous value is > 0 .
Try To Release can perform an InterlockedExchange of the
control integer , exchanging it with 0. If the previous number
was equal to 1 , then the release succeeded , and the task is
completed . If the previous number was greater than 1 , this
can indicate that another thread requested that the task be
re - tried while the current thread was performing the task . If
this is the case , the thread can re - call TryToAcquire . If that
fails , this can indicate another thread has acquired the
mutex , and can complete the task , so the current thread is
done . If the new call to Try To Acquire succeeds , then the
thread can loop back to perform the task again , call Try
ToRelease again , and repeat . In an example , write / append
manager 722 can include one or more no - spin mutexes 732

to provide such functionality for one or more of the pointers ,
(e.g. , write done pointer 730) , etc. Moreover , in an example ,
read / consume manager 724 can include one or more no - spin
mutexes 746 to provide such functionality for updating one
or more of the pointers , (e.g. , read done pointer 744) , etc.
[0091] In another example , a Simple Ordered - Start - Unor
dered - Completion Work Tracker can be provided (which is
approximately used as a building block of the Nested Work
Completion Tracker 712) . This simple work completion
tracker can contain a single work allocation counter (indi
cating how many work items have been initiated) , a single
work completion counter (indicating how many work items
have been completed , though not in any particular order) , a
work done pointer (indicating how many consecutive work
items , starting at the first , have been completed , and there
fore can be used to determine how many consecutive results
of the work item tasks can be consumed , or how many
consecutive inputs to the work items can be discarded , etc.) ,
and a no spin mutex which controls access to the work done
pointer
[0092] If there are a certain number of tasks to perform ,
FIFO queue manager 74 , application shader programs 73 ,
such as data - production shader program 310 , data - consump
tion shader program 320 , etc. , can provide or utilize a simple
Work Completion Tracker to assign work and track how
many items have been completed .
[0093] When a thread , (such as one or more write threads
executing in action 404 of method 400 , one or more read
threads executing in action 412 of method 400 , etc.) allo
cates a work item (or multiple work items) , the thread can
perform an InterlockedAdd (or InterlockedIncrement) on the
WorkStarted counter . When a thread completes a work item ,
it can perform an InterlockedAdd (or InterlockedIncrement)
on the Work Completed counter . The thread can then deter
mine whether it just completed the last initiated work item
or not , as for which the thread can re - read the current value
of the Work Started Counter and compare this value to the
new value of the Work Completed Counter . If the thread
determines that these values are the same , the thread can
attempt to quire the No - Spin Mutex , and either the thread
or a different thread that already owned the mutex can then
re - read the Work Started Counter and Work Completed
Counter , and if the two values are equal , set the Work Done
Pointer equal to the Work Completed Counter . For example ,
write / append manager 722 and / or read / consume manager
724 can be implemented at least partially as a Simple Work
Completion Tracker . The concepts used to build the Simple
Work Completion Tracker can be used to build a Nested
Work Completion Tracker 712 .
[0094] In another example , a Nested Work Completion
Tracker 712 can be provided , which can facilitate separating
a large batch of work into smaller batches (e.g. , in executing
multiple write threads in action 406 or multiple read threads
in action 412 of method 400 , and / or in corresponding
methods 500 , 600) , where each batch can include more than
one work item . This Tracker may use a Multi - Threaded
Wrappable Variable 706 , or Multi - Page Wrappable Data
Pointer 708 to track allocated work , a per - batch count of
how many work items have been completed , optionally a
per - batch “ Done ” pointer , a global " done ” pointer , and a
mutex or other synchronization primitive such as a No - Spin
Mutex (see above) . In allocating new work items , a thread
can (e.g. , via FIFO queue manager 74 , application shader
programs 73 , such as data - production shader program 310 ,

US 2020/0090298 A1 Mar. 19 , 2020
14

as

data - consumption shader program 320 , etc.) increment the
Wrappable Data Pointer (and performing the associated
wrapping) . The thread that allocates a work item can be
responsible for determining which batch the work belongs to
(or which “ page ” , see the Multi - Page Data Pointer described
herein) . Once a work item is complete , the thread can be
responsible for incrementing the appropriate per - batch Work
Completed Counter , then performing similar operations as
with the Ordered - Start - Unordered - Complete tracker . After
acquiring the global mutex : the thread can be update the
per - batch “ done ” counter , the thread can also check whether
the “ global done pointer ” indicates all work on the page that
that global pointer is pointing to or not . If so , the thread can
scan through all batches after that , until it finds a batch that
is not completely done , and can update the global done
pointer to point to the appropriate point in that batch . One
thread can do this work , so no other threads have to spin
waiting on it . In one example , write / append manager 722
and / or read / consume manager 724 can be implemented at
least partially as a Nested Work Completion Tracker .
[0095] In another example , referring to FIG . 8 , a Fixed
Size FIFO queue 802 , also referred to as a Basic Ring Buffer
Implementation , can be provided by the FIFO queue man
ager 74 , application shader programs 73 , such as data
production shader program 310 , data - consumption shader
program 320 , etc. Implementing a Ring Buffer in a highly
multithreaded environment , such as shaders on a GPU , can
be accomplished using examples described herein . Fixed
Size FIFO queue 802 includes a descriptor as described
herein , and can also have an associated data buffer (su
might be described by a base address and a size) . In an
example , the data buffer might be used to store a list of
addresses (such as pool free page list descriptor 804 , which
can indicate free memory pages in the free page list 204) or
other graphics - related or non - graphics - related data . To work
with the described features , the Fixed - Size FIFO queue 802
can be split into segments (or batches or pages) of substan
tially equal size . As similarly described with respect to the
growable FIFO queue 704 above , in an example , one or
more of the following can be used to provide the Fixed - Size
FIFO queue 802 : a Multi - Page Data Index 708 or Multi
threaded Wrappable Variable 706 for allocating space for
writes , a Nested Work Completion Tracker 712 for writes
(e.g. , write / append manager 722) , a Multi - threaded Wrap
pable Variable 706 for allocating already - written data for
reads , a Nested Work Completion Tracker 708 for reads
(e.g. , a read / consume manager 724) , and one or more
associated memory buffer (s) (which may or may not be
located in the memory pool 82) of a specified size to hold the
data , etc. Note that all data written to a specific non
growable FIFO queue's associated buffer can be of the same
fixed size , though other FIFO queues may be used to contain
data elements of a different size . Or if a non - growable FIFO
queue contains multiple associated buffers , each buffer can
have its own fixed unique or non - unique element size . In one
example , where Multi - threaded Wrappable Variables 706
are used to provide the pointers , such as Write - Alloc pointer
806 and Read - Alloc Pointer 808 , there can be a conversion
step to convert between the Multi - threaded Wrappable Vari
able Pointers , and the actual address in the Fixed - Size FIFO
queue 802 by scaling the multi - page data pointer based on
the fixed size of the data to read / write , and offsetting the
result by a base address associated with a buffer associated
with the fixed - size FIFO queue .

[0096] There can be multiple steps to use a Fixed - Size
FIFO queue 802 , as described above . To write data , for
example , a thread writing the data (e.g. , the multiple write
threads executing in action 406 of method 400 and / or in
method 500) can , via application shader programs 73 , such
as data - production shader program 310 , data - consumption
shader program 320 , etc. , increment the Write - Alloc Pointer
806 , and retrieve the previous value of it , convert the
pre - incremented Write - Alloc Pointer 806 to an address to
write the data , taking note of which “ batch ” of data is being
written , write the data , and wait for its data to be guaranteed
to be fully written and visible to other threads , increment the
Nested Work Completion Tracker's appropriate per - batch
done counter (e.g. , one or more write done counters 728) ,
and take appropriate steps based on that (e.g. , updating the
Write Done Pointer 730 using steps described above) . To
read data , for example , a thread reading the data (e.g. , the
multiple read threads executing in action 412 of method 400
and / or in method 600) can , (via FIFO queue manager 74 ,
application shader programs 73 , such as data - production
shader program 310 , data - consumption shader program 320 ,
etc.) , follow similar steps as used for writing data , except use
the Read - Alloc Pointer 808 , and the read - time work comple
tion tracker (e.g. , one or more read done counters 742) ,
instead of the “ write ” variants . In an example , however , code
can be designed to prevent the Fixed - Size FIFO queue 802
from entirely filling up , to prevent the write pointer from
wrapping around and entering the same batch as the read
pointer . For example , if the Fixed - Size FIFO queue 802 of
1 megabyte (MB) is divided into 16 batches of 64 kilobytes
(KB) each , the program (such as FIFO queue manager 74 ,
application shader programs 73 , data - production shader
program 310 , data - consumption shader program 320 , etc.) ,
can guarantee there is at least 64 KB of space between the
read and write pointers . Also , in some examples , the pro
gram (such as FIFO queue manager 74 , application shader
programs 73 , data - production shader program 310 , data
consumption shader program 320 , etc.) , can prevent request
ing (or reading) of data that has not been fully written , and
(for example) return an error code .
[0097] In another example , a Basic Pool Implementation
for Shaders can be provided by the FIFO queue manager 74
or some other library of GPU - executable code . A Pool can
refer to a memory allocation subdivided into equally - sized
chunks , which can be allocated , used , and then later freed
(e.g. , returned to the pool) , such as memory pool 82 , as
described above . Using building blocks described above , a
Pool for highly multithreaded environments like shaders can
be implemented , such as FIFO queue manager 74 imple
menting , providing and utilizing memory pool 82. An
example pool implementation can include : a memory allo
cation (e.g. , such as initializing the memory at action 402 of
method 400) , which is subdivided into equal - sized chunks ,
a Fixed - Size FIFO queue 802 (which holds or manages Free
Page list 204) , whose associated data buffer is large enough
to hold a reference or pointer to each chunk of the pool , plus
some extra padding specific to the Fixed - Size FIFO queue
802 rules discussed earlier . Various operations can be per
formed on the memory pool 82 such as initializing the pool
(e.g. , at action 402 of method 400) , allocating pages from the
memory pool (e.g. , at actions 404 or 408 of method 400) ,
and freeing pages back to the pool (e.g. , action 414 of
method 400) , etc.

US 2020/0090298 A1 Mar. 19 , 2020
15

[0098] In an example , initializing the free page list of the
pool may be performed by “ pushing ” one entry into the
Fixed - Size FIFO queue 802 per chunk of the pool , which
entry may include a pointer or index to that chunk of the
pool .
[0099] In an example , allocating from the pool can be
done by “ popping ” one entry from the Fixed - Size FIFO
queue 802. The data “ popped ” can include an index or
pointer to the chunk or page of the pool which can be used .
[0100] In another example , once a thread is done using the
chunk of the pool it allocated , it can “ free ” by “ pushing ” the
address or index of the pool chunk into the Fixed - Size FIFO
queue 802. The pool's associated Fixed - Size FIFO queue
802 can be referred to as the Free Page List , or the Free
Chunk list . In some implementations , one or more pages of
the pool can be pre - allocated to hold the free - page list itself .
[0101] In another example , as described , a Growable FIFO
queue 704 can be provided , as described herein . A standard
Fixed - Size FIFO queue 802 implementation , or fixed - size
FIFO queue 802 (described earlier) is of fixed size . A
Growable FIFO queue 704 can be similar in implementation
to the Fixed - Size FIFO queue 802 mentioned earlier , except
that the buffer for holding the Growable FIFO queue's data
may not be a fixed size . For example , the Growable FIFO
queue 704 can start at an initial size , and then automatically
can grow to fit the data that is “ pushed ” or enqueued into it ,
and / or can shrink as data is “ popped ” or dequeued out of it .
A Growable FIFO queue 704 can be associated with a
memory pool 82 (as described earlier) , whose " chunks ” or
" pages " can be a reasonably large size (such as 64 KB) .
These chunks can be allocated by the Growable FIFO queue
implementation , via a FIFO queue manager 74 , application
shader programs 73 , such as data - production shader pro
gram 310 , data - consumption shader program 320 , etc. , in
order to expand the FIFO queue size . In an example , when
the FIFO queue data is consumed , empty pages can be
returned to the pool . The Growable FIFO queue 704 can also
include a similar tracking structure as was described for the
Fixed - Size FIFO queue 802 (namely , the Write - Alloc
Pointer 726 , the Read - Alloc Pointer 740 , the nested write
completion tracker (e.g. , write done counters 728) , and the
nested read - completion tracker (e.g. , read done counters
742)) , but it additionally can contain a list of pages 750 that
are used in the Growable FIFO queue . The list of pages 750
can be large enough to hold some maximum number of
pages , such as the number of pages in the associated pool ,
if the FIFO queue grows to that maximum size . This page
list can be the same size , or smaller or larger than the number
of segments tracked in the Write Done Counters 728 and / or
Read Done Counters 742 .
[0102] With Growable FIFO queues , the pages used to
store the data may not be contiguous , as is the case with a
Fixed - Size FIFO queue 802. In this example , the process of
converting from a Multi - Page Data Index into a data
address , can be different than is done for a fixed - size FIFO
queue . The address can be calculated using a formula similar
to the following : Address = Page AddressList [PageIndex] +
OffsetInPage * DataElementSize (where PageIndex and Off
setInPage are calculated using the formulas listed in Multi
Page Data Index) . Note , the Growable FIFO queue 704 can
be subdivided into pages , for growing / shrinking purposes . It
also can be subdivided into segments (as with the Fixed - Size
FIFO queue 802 implementation) , for " work completion "
tracking . The segments can be the same size as pages , or

they can be larger or smaller . Smaller segments , for
example , can allow the “ done ” pointer to be updated more
frequently , though there may be additional processing asso
ciated with updating the " done " pointer .
[0103] Implementing the Growable FIFO queue 704 can
include pre - allocating new pages before they are needed , as
described above . A threshold of memory utilization can be
established , such that the thread which allocates data beyond
that threshold , can allocate a new page in the memory pool
82 , and add the page's address into the page list . The
threshold can be set to balance a desire that other threads do
not spin waiting for the page allocation to be completed ,
with conserving memory space . In one example , when the
Growable FIFO queue 704 is initialized , an appropriate
number of pages can be pre - allocated . If (for example) the
pre - allocation threshold is set at a distance D pages ahead ,
where 1 < D < = 2 , then 2 pages can be pre - allocated , for
example .
[0104] In another example , an optimization can be avail
able to Growable FIFO queue 704 in that pages can be freed
out of order . With a Fixed - Size FIFO queue 802 , there may
be a per - segment read done counter , and there can be the
global read done pointer , which is updated whenever the
oldest per - segment read done pointer is updated . But with
growable FIFO queues , in some cases , the global read done
pointer may not be used . For example , if growable FIFO
queue is initialized such that it has a maximum size of P
bytes (e.g. , P = 1 GB) , any page allocated for writes may be
freed before P additional bytes are allocated for writing by
that FIFO . Removing the global read done pointer can allow
a popping operation to become more efficient . In this situ
ation , a page is freed when its associated read done counter
reaches a threshold indicating that all data on the page has
been fully consumed (and therefore that the page was first
fully filled with data) .
[0105] In another example , Error handling on Underflow
can be provided . For example , when using Fixed - Size FIFO
queue 802 or Growable FIFO queue 704 , underflow may
occur where a thread requests more data than has been
completely pushed . To handle such conditions , for example ,
a shader executing the multiple write threads (e.g. , at action
406 of method 400 and / or method 500 , using a data
production shader program 310 , etc.) or read threads (e.g. , at
action 412 of method 400 and / or method 600 , using a
data - consumption shader program 320 , etc.) can fire an
interrupt , or send a message to a CPU 34 or other processor
by some other mechanism , to notify it that the memory pool
82 may be corrupted . In another example , a shader can
assume that the threads pushing the data are active but
delayed , which can result in the thread which is popping (or
reading) the data to spin waiting for the push (or write) to be
complete , before attempting to access the data at the
returned address . In another example , FIFO queue manager
74 , application shader programs 73 , such as data - production
shader program 310 , data - consumption shader program 320 ,
etc. , can allow a mode where the FIFO is either in “ append ”
mode or " consume ” mode , but not both simultaneously . In
this example , if a “ pop ” command is received , to pop (or
read) data which is not present , the thread can just patch the
Read - Alloc Pointer to set it equal to the Write Done Pointer .
In another example , a shader program can implement an
error handler where the retrieved Read - Alloc Pointer value
(and potentially other data such as a FIFO ID) is pushed into
a dedicated error - logging Fixed - Size FIFO queue 802 (or the

22

US 2020/0090298 A1 Mar. 19 , 2020
16

it may

error log can be a growable FIFO queue) . Another thread can
go back and read that error logging FIFO queue and process
the missed data once it is present , in an example .
[0106] In another example , an Array of Growable FIFO
queues 704 can be provided by the FIFO queue manager 74 ,
application shader programs 73 , such as data - production
shader program 310 , data - consumption shader program 320 ,
etc. Having multiple Growable FIFO queue 704 that share a
memory pool 82 can be useful , because queue sizes can be
determined on the fly , based on the data that the shaders
encounter . The memory pool 82 , for example , can be sized
to fit the largest amount of data expected (plus some
padding , due to the Growable FIFO queue pre - allocation
functionality) , and the FIFO queues can resize themselves
within the memory pool . The implementation of a Growable
FIFO queue array can be similar to many instances of a
single Growable FIFO queue , and there can be some opti
mizations provided by the FIFO queue manager 74 (e.g. , in
allocating pages of memory to the multiple FIFO queues in
action 404 of method 400) to make it efficient on a GPU 12 .
Because the 32 or 64 (or other number of) threads in a shader
can typically execute the same instructions simultaneously ,
the GPU 12 hardware typically implements optimizations
for when the threads read and write data in close proximity
to other threads . In order to optimize for the situation where
different threads all want to push data , but to different FIFO
queues , components of the FIFO descriptors can be stored as
arrays (e.g. , a struct of arrays) , rather than having an array
of FIFO descriptors (e.g. , an array of structs) . For instance
if there are 128 FIFO queues , the 128 Write - Alloc Pointers
726 (or Write - Alloc Pointers 806 for fixed - size FIFO queue
802) can be kept in a 512 - byte array , followed by the 128
Read - Alloc Pointers 740 (or Read - Alloc Pointers 808 for
fixed - size FIFO queue 802) in another 512 - byte array ,
followed by the No - spin Mutexes 732 , 746 in another array ,
and the Done pointers 730 , 744 in another array . In an
example , the array of FIFO queues may include both Grow
able and Non - Growable types . In this example , the two can
be distinguished , and the appropriate style of “ push ” and
" pop " code to execute can be selected to respectively write
and read data to the FIFO queues .
[0107] In another example , the FIFO queue manager 74 or
other collections of shader code , hardware , software , or
firmware , can provide mechanisms for reporting status to
other portions of the GPU 12 and / or CPU 34. For example ,
the FIFO queue manager 74 can provide a New Work
Summarizer . For example , it may be desirable for a shader
to alert another component or program of the GPU 12 and / or
CPU 34 (such as the FIFO queue write - done monitor of
Work Launching Program 330 , or the command processor
64 , or the application 46) when new data is appended to a
FIFO queue (whether growable or not) . In this example , a bit
array can be allocated for this purpose , with one bit per FIFO
queue in the array . When the write done pointer 730 is
updated for FIFO # F , the shader can atomically set the
corresponding bit # F in the array , indicating that new work
is available in that FIFO queue . When other component (s) or
program (s) of the GPU 12 and / or CPU 34 (such as a
write - done monitor 332) acknowledge that the new work has
been observed and / or processed , the other component (s) can
clear (or request clearing of) the corresponding bit (e.g. ,
and / or can check for new work one additional time , after it
clears the bit , to avoid a race condition) . In many cases ,
summarizing the presence of new work in a bit array can be

desirable over just having the external code scan through the
array of Write Done Pointers , because the bit array for a
large collection of FIFOs (such as 128) can typically be read
and scanned in a few instructions , where scanning an array
of Write Done Pointers may require hundreds of instructions
and memory requests .
[0108] In another example , a New Work Prioritizer can be
provided . In some situations , it can be desirable to prioritize
new incoming work . For instance , on GPUs , it can be more
efficient to launch shaders that have 64 active threads ,
instead of launching 64 shaders that each have one thread .
Thus , when searching through FIFO queues to determine
which FIFO queue to launch shaders to consume data from ,

be desirable to try to prioritize FIFO queues that can
launch work in larger batches , in one example , but other
consideration for prioritization may be possible as well , such
as parsing data in depth - first order , etc. It can be beneficial
to have an extra level of sorting and prioritization between
the New Work Summarizer and the Auto - Dispatcher (de
scribed below) or Work Launching Program 330. A thread ,
either in a shader , or on the CPU , or on some other processor
on the GPU , or a piece of dedicated hardware , etc. , can
periodically (or due to a message or interrupt from the
shaders) perform an ordered scan the Write Done Pointers
730 that have been updated (possibly according to the first
level of New Work Summarizer booleans) , and categorize
the new work based on various criteria (index of the FIFO
queue , amount of work pushed - but - not - popped , etc.) . The
work can then be prioritized into buckets , with one bit per
FIFO queue per bucket . A highest - priority bucket can have
an N - bit array , indicating which FIFO queues have data that
are high - priority . A next - highest priority bucket can have an
N - bit array , indicating which FIFO queues have data in that
bucket , etc. A thread that prioritizes work , therefore can
check for new work from the New Work Summarizer bits ,
read the Write Done Pointer 730 , and see how much new
work is available on this FIFO queue ; set the appropriate bit
in the appropriate priority bucket , and potentially clear the
corresponding bit in other priority buckets , clear the appro
priate New Work Summarizer bit , check the Write Done
Pointer 730 again (to avoid race condition) , and repeat the
past few steps if it changed .
[0109] In another example , a Basic Auto - Dispatcher can
be provided (e.g. , a dispatcher thread , such as Work Launch
ing Program 330 as described above , which may be execut
ing on CPU 34 , GPU 12 , etc.) . When data is pushed into
various FIFO queues , it may be desired to have a mechanism
to know how much data was written , and be able to launch
shader threads to consume the data . For example , the FIFO
queue work - launching program 330 can wait for all data to
be written to a FIFO queue , then check how much data was
written via the Write Done Pointer , then launch a sufficient
threads to read the data . In another example , the Auto
Dispatcher (e.g. , FIFO queue work - launching program 330)
can manage a variable per FIFO queue to track how much
data any consumer (or read) threads are launched are
intended to consume (such as Read Allocation Pointer 216
or a copy of it) . In this example , the Auto - Dispatcher can
periodically check if Write Done Pointer 730 has been
updated (or use the output of the New Work Prioritizer , or
use the results of the New Work Summarizer directly) .
Based on prioritization algorithms (which may include
tracking the fullness of various FIFO queues , a priority
based on FIFO ID , or based on the high few bits of the FIFO

US 2020/0090298 A1 Mar. 19 , 2020
17

ID , some other factors , or a combination of the above) , the
Auto - Dispatcher can select a FIFO queue to be consumed
from , select a Shader to be launched , determine the number
of threads or thread groups to be launched , launch the
Shader and corresponding threads / thread groups , update the
data to be consumed variable . (and perform wrapping , if
necessary , according to the Arbitrarily - wrappable Index
rules) , and update the New Work Prioritizer or Summarizer
state , if necessary .
[0110] In an example , the Auto - Dispatcher can be single
threaded , although it could be multi - threaded in order to hide
latency of fetching the Write Done Pointers and other states .
Dedicated hardware could be added to simplify or optimize
some of the prioritization . In an example , Auto - Dispatcher
can select a FIFO queue by using InterlockedCompareEx
change operations . In an example , the Auto - Dispatcher can
sit in an infinite loop , always checking for work ; or Termi
nate once all shaders it has launched have terminated , and all
relevant FIFO queues are drained . The basic Auto - Dis
patcher can include some logic to dictate prioritization ,
access to Write Done Pointers 730 , and optionally a New
Work Prioritizer and / or New Work Summarizer , a selection
of which FIFO queues to monitor (typically either all FIFOs
in an array , or a range of FIFO queues) , and / or an array of
Shaders or which Pipeline State Objects to use when launch
ing work , per FIFO queue . The shaders launched by the
basic Auto - Dispatcher may expect it to pass in the FIFO ID
to fetch from , as an input to the shader (since it is conceiv
able that a given shader might be used to digest work from
more than one FIFO queue) .
[0111] In another example , an Ordered Push and Pop can
be provided . For example , if the Basic Auto - dispatcher
launches 1024 threads (e.g. , executing a data - consumption
shader program 320) to consume data from a FIFO queue ,

be no guarantee that the first of those threads will
see the first piece of data , nor that the last thread will get the
last piece of data . Indeed , if the Auto - Dispatcher immedi
ately launches another 128 threads to consume more data , it
is possible that some of those 128 threads could get data that
is located earlier in the FIFO queue than some of the data
retrieved by some of the 1024 threads (e.g. , due to the push
or pop algorithm , and / or due to the timing disturbances that
can occur in a massively parallel environment) .
[0112] There can be are some shader programming algo
rithms that require strict access to the data , or where the
algorithm becomes more efficient if that strict access can be
provided . For these situations , the Auto - Dispatcher can be
modified , such that the Auto - Dispatcher performs the first
step of “ begin push ” , e.g. , it performs the Atomic Add on the
Read - Alloc Pointer 740. The Auto - Dispatcher can then pass
the original Read - Alloc Pointer value as an input to the
shaders , along with a ThreadID (and FIFO ID) , and the
shaders , or related write threads (e.g. , executing at action
406 of method 400 or method 500) or read threads (e.g. ,
executing at action 412 of method 400 or method 600) can
accordingly generate their ordered index based at least in
part on the provided Thread ID (e.g. , Read - Alloc Pointer +
Thread ID , or some variation) . Depending on the implemen
tation , it may be desirable to have either the Auto - Dis
patcher , or the Launched Thread , perform the atomic “ wrap ”
operation to the Read - Alloc Pointer 740. In an example , all
(or multiple) shader threads can perform local wrap opera
tions , in case the dispatcher wraps beyond the end of the last
allowed page / segment index of the FIFO queue . The shader

threads can also perform Page Pre - allocation , and page
address lookup , as described . Moving the initial Read - Alloc
Pointer operation into the AutoDispatcher also may have a
performance benefit , because having one thread perform a
single “ add ” on behalf of multiple threads may be more
efficient than having multiple shader threads each perform a
single “ increment by 1 ” operation . This same style of
Ordered operation can also be applied to Pushes as well , as
described above . For instance , if a shader consumes data
from FIFO queue A , then produces additional data to be
pushed into FIFO queue B , both operations can be ordered .
The Auto - Dispatcher gives the Read - Alloc Pointer 740 and
Write - Alloc Pointer 726 as an input to the shader .
[0113] In another example , Multiplication and Division of
Work can be provided . An advanced Auto - Dispatcher , sup
porting Ordered Push / Pop , can also be made to support
multiplication and division of work . Per FIFO queue , for
example , the Auto - Dispatcher can determine how many
threads (T) should be used to consume a certain number (N)
of items out of the FIFO queue . To handle N items , the
Auto - Dispatcher can wait for at least N items to be available ,
then launch (a / N) * T threads (e.g. , write threads at action 406
in method 400 or method 500 and / or read threads at action
412 in method 400 or method 600) to process that data ,
where “ a ” is the largest multiple of N less than or equal to
the number of items actually available . The method of
dispatching T threads can be specified by : x and .y size
components are used to specify the number of threads
(where .x * .y = T) , and .z specifies the maximum number of
groups of N items to handle in a single thread group .
[0114] In another example , Page and Partial Dispatches
can be provided by the Auto - Dispatcher . In some examples
(e.g. , involving Sorting) , it can be desirable for a thread
group or thread groups to process all pushed elements on a
given page , or a portion of a page . The Auto - Dispatcher can
be made aware of this (e.g. , by a “ use pages ” flag , per FIFO
queue) . The Auto - Dispatcher can launch N threads or thread
groups per page to perform the sort . In some situations , only
a partial page of data may be available , but it may be
desirable to still launch shaders to perform the sort . In this
example , the shaders can be designed to expect an extra
input from the Auto - Dispatcher , (e.g. , besides just the initial
Read - Alloc Pointer) , in the form of a post - added Read - Alloc
Pointer . This can help to define the range of a number of
items that the shader thread groups can sort or digest . Thread
groups can determine whether they are part of the page of
the Initial Read - Alloc Pointer , or whether they are in the
page including the end Read - Alloc Pointer , or whether they
are in a page which contains both , or neither .
[0115] In another example , Multi - Push , Multi - Pop , and
Task Graphs can be provided . For example : shader A reads
from FIFO 0 , and writes data to both FIFO 1 and FIFO 2 ,
Shader B reads from FIFO 1 , and writes to FIFO 3 , Shader
C reads from both FIFO 2 and FIFO 3 , combines their data ,
and outputs to some non - FIFO buffer . Shader C may expect
that the first element it reads from FIFO 2 to correspond to
the first element it reads in FIFO 3. In other words , for data
fork / join behavior like this , strict ordering may be expected .
For situations like this , the Auto - Dispatcher can be modified
such that , instead of treating the list of FIFOs as to - do lists
(e.g. , meaning , “ grab an element from this FIFO , and launch
a shader thread to read it ”) , the Auto - Dispatcher can first
receive a list of tasks . In the above example , the tasks may
be : “ for every 1 element to read from FIFO 0 , allocate 1

there may

US 2020/0090298 A1 Mar. 19 , 2020
18

a

element in FIFO 1 , and 16 elements in FIFO 2 , and launch
N threads of shader A to do that work , ” “ for every 1 element
to read from FIFO 1 , allocate 1 element in FIFO 2 , and
launch one shader B thread to do that work , " " for every 1
element in FIFO 2 , and 16 elements in FIFO 3 , launch one
thread group of Shader C to do that work . ” The Auto
Dispatcher can launch Shader C when at least one element
was present in FIFO 2 , and at least 16 elements were present
in FIFO 2. Depending on the desired behavior of the task
graph , the Auto - Dispatcher can use a variety of Ordered
Push / Pop (for cases where data needs to converge) , or
unordered (especially for cases where a shader can add an
unknown amount of data to a variety of FIFOs) . The Work
Prioritizer can be updated to handle prioritizing a task graph
node (with its plurality of inputs and / or outputs) , instead of
a queue , for example .
[0116] In another example , Single - Write - Multi - Read , and
Page Freeing can be provided . For example , there may be
some situations where a single piece of data is written , but
then multiple shaders may attempt to read the data before it
is freed . In this example , it may be more efficient to leave the
data in place , and only free it once all involved shaders have
read it , rather than making multiple copies of the data for
each shader reading the data to free . In this regard , the
Auto - Dispatcher , in executing multiple read threads (e.g. , at
action 334 launching program 320) can track one separate
“ Work Launched ” pointer per consumer (e.g. , per thread of
the multiple executed threads that desires to read the data) .
Each task graph node can include not only directions or
related parameters for how much data to read from each
FIFO , but also a memory location for the Auto - Dispatcher to
write its current Work Launched pointer , per FIFO queue ,
that it reads . Similar functionality can be provided for
multi - push situations . In addition , the data can be freed once
all threads are done reading it . For example , if the two
readers of the data are strictly ordered (e.g. , the data is
written by Shader A , then read by Shader B , and then , after
Shader B is done , Shader C reads it also , meaning that
Shader C does not read a portion of data before Shader B
does) , then Shader B can skip the " end_pop " code where the
Read Done Pointer is moved , and Shader C can perform that
work . If Shader B and Shader C can both consume a piece
of data in arbitrary order , then it can be more desirable to
implement an “ AddRef ” / “ Release ” -style mechanism . That
is , for every element Shader A writes , it increments a counter
(e.g. , stored per page) by 2 (e.g. , as there are 2 consumers) .
Additionally , Shader A increments the count by an extra 1
when it first arrives on the page , and decrements it by 1 when
it writes the final element on the page , ensuring that the page
is not freed while it is still being written . Shaders B and C
each decrement the counter by 1 when they consume the
data . Or , Shader B and Shader C can skip any per - page
reference counting , and the Auto - Dispatcher can queue a
work item to be completed when all of Shader B and Shader
C's threads are completed , which work item instructs the
Auto - Dispatcher to free the pages (or otherwise launch a
shader to free the pages) . This can be done by remembering
the Read - Alloc Pointer that is to be reached by the time
Shader B and C are done , along with the Read - Alloc Pointer
that they started with . The cleanup shader (or the Auto
Dispatcher itself) can then free any fully - consumed pages
between the two Read - Alloc Pointers .
[0117] In another example , the FIFO queue manager 74
can virtualize the memory pool 82 in initializing the memory

pool and / or allocating pages from the memory pool , as
described in conjunction with actions 402 , 404 of method
400. There may be some situations where the amount of pool
space required for Growable FIFO queue - related work (or
any other work requiring the allocation of pool pages) can
increase or decrease over time . In some situations , the
memory pool 82 may be nearly entirely in use , and in other
situations , the memory in pool 82 may be nearly free , but
other unrelated programs or pieces of the pool - using pro
gram may wish to use the space in graphics memory 58 that
the memory pool 82 is consuming . In some examples , the
memory pool 82 can include a large (> = 1 GB) allocation .
But it may be possible to virtualize the pool , such that it uses
a larger (> 4 GB) virtual address allocation , but reserves the
number of physical pages that it actually needs (plus some
buffering , for efficiency) .
[0118] In this example , the maximum number of pages
used over a period of time can be tracked . This can be an
“ interlocked max ” operation , with an interlockedExchange
to reset the value . The memory pool 82 can include an
additional Fixed - Size FIFO queue 802 , listing pages which
are not currently physically backed by actual physical
memory , which can mean that the GPU's page tables map
given virtual address page as “ invalid . ” A separate compo
nent (e.g. , executing on a CPU 34 , or possibly the same
processor running the Auto - Dispatcher) monitors the
memory pool 82. When the memory pool 82 achieves a
threshold , the component can request additional physical
pages to be mapped into the pool . This can be accomplished
by popping an address off of the “ Unmapped Pages ” Fixed
Size FIFO queue 802 , allocating physical memory for the
page , and patching the page table to properly back the page
with physical memory . The page is then added to the
“ Unused Pages ” Fixed - Size FIFO queue 804 (e.g. , instead of
the Unmapped list 802) . If the memory pool 82 is consis
tently using significantly fewer pages than are allocated to it ,
then it can offload some of its pages . This can be done by
popping one or more page addresses off of the “ unused ”
buffer , invalidating their page table entry , and adding the
address to the “ unmapped ” Fixed - Size FIFO queue 802 .
[0119] In another example , Automatic Pool Validation can
be provided by the FIFO queue manager 74 on CPU and / or
GPU , and / or by a Graphics API 52 or GPU driver 48 , etc.
Some features that use multithreading or pool management
may be easily corrupted in implementation , and corrupting
something like the unused page list of the memory pool 82
may result in dramatic corruption in many places . Likewise
if the push / pop logic that writes to and reads from the
memory pool 82 is not implemented or called properly ,
pages may be lost , double - freed , etc. , which may cause
undesirable behavior . Thus , in an example , the Auto - Dis
patcher can be put in a mode to automatically validate the
various growable FIFO queue descriptors 720 , Pool Free
Page List Descriptor 804 and data 204 , and other Tracking
Data . This validation can be performed by halting the GPU
after a certain shader is done , (or after every use of a certain
FIFO queue , or randomly , or every N Dispatches , etc.) , then
running a shader or CPU code which validates the buffers
and tracking structures , etc. To track individual FIFO queues
802 , 804 , and 720 , shaders can check to ensure that the
Read - Alloc Pointer 740/808 , Write - Alloc Pointers 726/806 ,
Read Done Pointers 744 , and Write Done Pointers 730 are
all valid — when there are no shaders running which are
actively pushing or popping data , these can all have a value

US 2020/0090298 A1 Mar. 19 , 2020
19

between 0 and the maximum allowed value . Also , the Done
Pointers should match the Alloc Pointers .
[0120] Any pages listed in the Growable FIFO queue's
page list 750 which are between the Write Done Pointer 730
and the Read Done Pointer 744 , should be valid (otherwise
corruption has occurred) . Any pages which are not in the
valid portion of the lists of pages used 750 , may be invalid ,
and may appear in the free page list 204 (or if a physically
unbacked list 802 is present , they could appear in that list) ,
otherwise corruption has occurred . To track pool corruption ,
a boolean array can be allocated , with one bit per pool page .
Iterating through the pool's " unallocated " list , through the
" unused ” list , and through each Growable FIFO queue ,
every time a given pool page is used , the boolean can be set
to true using an interlocked operation . If the bit was already
set when an operation says to set it , this can indicate that two
things reference the same page , and corruption has occurred .
Or , alternatively , if any page's bits are still zero when the
scan is complete , this can indicate that a page has been lost ,
and corruption has occurred . The results of the validation
can be written to a struct , and sent to a program 46 or queue
manager 74 , or driver 48 or API 52 that can report the
problem to the user or developer (e.g. , via Interrupt , via
debug spew , telemetry sent to a server in the Internet , or by
some other mechanism) .
[0121] In another example , Out - of - Order Free on a Grow
able FIFO queue can be provided . An example use case for
Growable FIFO queues can involve data being allocated and
written in order , and consumed in order . There may be other
use cases where the Growable FIFO queue is allocated and
written in order , but the data is consumed out of order . For
instance , if references or indexes to the contents of the FIFO
queue are stored elsewhere , shader threads (e.g. , multiple
read threads executing in action 412 of method 400 and / or
method 600) can deference those pointers to consume data
out of order . In these situations , instead of using alloc_pop
(e.g. , where the Read - Alloc Pointer is moved after reading
data e.g. action 602) and end_pop (e.g. , where the Read
Done Pointer is moved after reading data , e.g. action 606) ,
the alloc_pop may be unnecessary (because pointers to the
data are already known) ; the data can accordingly be freed
using an Add - Ref / Release model (e.g. , alloc_push Add
Ref's a reference count , and " end_pop ” increments a count
of data consumed) . When both counts are equal to the size
of the page , the Auto - Dispatcher (e.g. , FIFO queue work
launching program 330) or a thread executing a data
consumption shader program 320 (or other mechanism) can
free the page , even if it is out of order . In this regard , a nested
completion tracker (e.g. , Write - Done Counters 728) may be
used for pushing data , and / or a simple ordered - start - unor
dered - completion tracker (e.g. , the simple tracker upon
which Work Completion Tracker 712 is derived) may be
used when consuming the data , because the consumption of
the data may not require pages to be kept in any sort of order .
An alternative approach may be to use a true Add - Ref /
Release model , where a single “ reference count ” is incre
mented on production , and decremented on consumption .
The page is freed once the reference count reaches zero , and
some other condition is reached that indicates that all data to
be written to the page has been written .
[0122] In yet another example , Indirect Auto - Dispatch can
be provided . There may be situations where a shader or other
source , fills a Growable FIFO queue or Fixed - Size FIFO
queue 802 with counts of threads to be launched . The

Auto - Dispatcher can be modified to check for work in this
Fixed - Size FIFO queue 802 , and perform the “ pop ” of this
data , in order to launch work that it references . In a normal
Auto - Dispatch , the Auto - Dispatcher determines how many
entries are in a Growable FIFO queue or Fixed - Size FIFO
queue 802 , and launches threads to consume that data . But
in this indirect approach , the Auto - Dispatcher fetches the
contents of the Growable FIFO queue or Fixed - Size FIFO
queue 802 , in order to launch future work . For the act of
launching the indirect work , for example , the indirect buffer
can be permanently associated with one shader or Pipeline
State Object (PSO) that can be responsible for consuming
the data (e.g. , by executing multiple read treads in action 412
of method 400 and / or method 600) , or the indirect ring / FIFO
can contain both a " count ” and a pointer to a PSO or Shader
(or the contents of the PSO , directly) associated with each
count in the ring . Additionally , the count of threads to launch
can include either one dimension (such as X or Z) , or it could
contain some combination of counts of two or three of the
dimensions (X / Y / Z) .
[0123] There also may be an optimization opportunity ,
which relates to how the Growable FIFO Implementation
includes the Nested Work Completion Tracker . For example ,
if a combination of software and hardware can guarantee
that there cannot be a span of more than N elements within
the FIFO queue , of which shader threads have started a
Begin_push without completing an end_push , then the
memory required for the Nested Work Completion Tracker
can be reduced to track completion of a small number (Q) of
segments , where Q = ceiling ((N - 1) / NumElementsPerSeg
ment) +2 . By shrinking the number of work - completed coun
ters , it may allow greater likelihood that in - use counters
share cachelines , which can improve performance . A similar
improvement can be done to the Basic Pop implementation .
[0124] As used in this application , the terms “ component , ”
“ system ” and the like are intended to include a computer
related entity , such as but not limited to hardware , firmware ,
a combination of hardware and software , software , or soft
ware in execution . For example , a component may be , but is
not limited to being , a process running on a processor , a
processor , an object , an executable , a thread of execution , a
program , and / or a computer . By way of illustration , both an
application running on a computing device and the comput
ing device can be a component . One or more components
can reside within a process and / or thread of execution and a
component may be localized on one computer and / or dis
tributed between two or more computers . In addition , these
components can execute from various computer readable
media having various data structures stored thereon . The
components may communicate by way of local and / or
remote processes such as in accordance with a signal having
one or more data packets , such as data from one component
interacting with another component in a local system , dis
tributed system , and / or across a network such as the Internet
with other systems by way of the signal .
[0125] Furthermore , various examples are described
herein in connection with a device (e.g. , computer device
10) , which can be a wired device or a wireless device . Such
devices may include , but are not limited to , a gaming device
or console , a laptop computer , a tablet computer , a personal
digital assistant , a cellular telephone , a satellite phone , a
cordless telephone , a Session Initiation Protocol (SIP)
phone , a wireless local loop (WLL) station , a personal
digital assistant (PDA) , a handheld device having wireless

US 2020/0090298 A1 Mar. 19 , 2020
20

connection capability , a computing device , or other process
ing devices connected to a wireless modem .
[0126] Moreover , the term “ or ” is intended to mean an
inclusive “ or ” rather than an exclusive " or . ” That is , unless
specified otherwise , or clear from the context , the phrase “ X
employs A or B ” is intended to mean any of the natural
inclusive permutations . That is , the phrase “ X employs A or
B ” is satisfied by any of the following instances : X employs
A ; X employs B ; or X employs both A and B. In addition ,
the articles “ a ” and “ an ” as used in this application and the
appended claims should generally be construed to mean
" one or more ” unless specified otherwise or clear from the
context to be directed to a singular form .
[0127] Various examples or features will be presented in
terms of systems that may include a number of devices ,
components , modules , and the like . It is to be understood
and appreciated that the various systems may include addi
tional devices , components , modules , etc. and / or may not
include all of the devices , components , modules etc. dis
cussed in connection with the figures . A combination of
these approaches may also be used .
[0128] The various illustrative logics , logical blocks , and
actions of methods described in connection with the embodi
ments disclosed herein may be implemented or performed
with a specially - programmed one of a general purpose
processor , a digital signal processor (DSP) , an application
specific integrated circuit (ASIC) , a field programmable gate
array (FPGA) or other programmable logic device , discrete
gate or transistor logic , discrete hardware components , or
any combination thereof designed to perform the functions
described herein . A general - purpose processor may be a
microprocessor , but , in the alternative , the processor may be
any conventional processor , controller , microcontroller , or
state machine . A processor may also be implemented as a
combination of computing devices , e.g. , a combination of a
DSP and a microprocessor , a plurality of microprocessors ,
one or more microprocessors in conjunction with a DSP
core , or any other such configuration . Additionally , at least
one processor may comprise one or more components

erable to rform one or more of the steps and / or actions
described above .
[0129] Further , the steps and / or actions of a method or
algorithm described in connection with the examples dis
closed herein may be embodied directly in hardware , in a
software module executed by a processor , or in a combina
tion of the two . A software module may reside in RAM
memory , flash memory , ROM memory , EPROM memory ,
EEPROM memory , registers , a hard disk , a removable disk ,
a CD - ROM , or any other form of storage medium known in
the art . An exemplary storage medium may be coupled to the
processor , such that the processor can read information
from , and write information to , the storage medium . In the
alternative , the storage medium may be integral to the
processor . Further , in some examples , the processor and the
storage medium may reside in an ASIC . Additionally , the
ASIC may reside in a computer device (such as , but not
limited to , a game console) . In the alternative , the processor
and the storage medium may reside as discrete components
in a user terminal . Additionally , in some examples , the steps
and / or actions of a method or algorithm may reside as one
or any combination or set of codes and / or instructions on a
machine readable medium and / or computer readable
medium , which may be incorporated into a computer pro
gram product .

[0130] In one or more examples , the functions described
may be implemented in hardware , software , firmware , or
any combination thereof . If implemented in software , the
functions may be stored or transmitted as one or more
instructions or code on a computer - readable medium . Com
puter - readable media includes both computer storage media
and communication media including any medium that facili
tates transfer of a computer program from one place to
another . A storage medium may be any available media that
can be accessed by a computer . By way of example , and not
limitation , such computer - readable media can comprise
RAM , ROM , EEPROM , CD - ROM or other optical disk
storage , magnetic disk storage or other magnetic storage
devices , or any other medium that can be used to carry or
store desired program code in the form of instructions or
data structures and that can be accessed by a computer . Also ,
any connection may be termed a computer - readable
medium . Disk and disc , as used herein , includes compact
disc (CD) , laser disc , optical disc , digital versatile disc
(DVD) , floppy disk and Blu - ray disc where disks usually
reproduce data magnetically , while discs usually reproduce
data optically with lasers . Combinations of the above should
also be included within the scope of computer - readable
media .
[0131] While examples of the present disclosure have
been described in connection with examples thereof , it will
be understood by those skilled in the art that variations and
modifications of the examples described above may be made
without departing from the scope hereof . Other examples
will be apparent to those skilled in the art from a consider
ation of the specification or from a practice in accordance
with examples disclosed herein .
What is claimed is :
1. A method for managing first - in first - out (FIFO) queues

in graphics processing , comprising
receiving , by a dispatcher thread , a value of a write done

pointer indicating a next memory location following
one or more memory locations to which data has been
written by a write thread of a graphics processing unit
(GPU) ; and

launching , by the dispatcher thread and based at least in
part on the value of the write done pointer , multiple
read threads on the GPU to read , in parallel and based
on the write done pointer , the data from the FIFO
queue .

2. The method of claim 1 , wherein receiving the value of
the write done pointer comprises receiving the value of the
write done pointer from the write thread .

3. The method of claim 1 , wherein receiving the value of
the write done pointer comprises determining the value of
the write done pointer based on advancing the write done
pointer for the write thread .

4. The method of claim 1 , further comprising determining
a priority indicated for the FIFO queue and a threshold write
done pointer value corresponding to the priority of the FIFO
queue , wherein launching the multiple read threads is based
at least in part on determining that the value of the write
done pointer achieves the threshold write done pointer
value .
5. The method of claim 1 , wherein the multiple read

threads corresponds to threads of a shader program .
6. The method of claim 1 , further comprising advancing ,

by the dispatcher thread , a read done pointer for each of the
multiple read threads following execution of each of the

US 2020/0090298 A1 Mar. 19 , 2020
21

multiple read threads , wherein the read done pointer indi
cates to a next read memory location following a last read
memory location from which the data is read by a corre
sponding read thread .

7. The method of claim 1 , wherein launching the multiple
read threads comprises initiating an ordered read based on at
least one of providing , to each read thread of the multiple
read threads , a thread identifier and a same initial value of
a read allocation pointer , or providing , to each read thread of
the multiple read threads , a different initial value of the read
allocation pointer corresponding to data to be read by a
given read thread .

8. The method of claim 1 , further comprising determining ,
based at least in part on the value of the write done pointer ,
a number of read threads to launch to read the data , wherein
launching the multiple read threads is based at least in part
on the determined number of read threads .

9. The method of claim 1 , further comprising :
launching , by the dispatcher thread , multiple write threads

on the GPU to write , in parallel , the data to the FIFO

multiple read threads based at least in part on determining
that the value of the write done pointer achieves the thresh
old write done pointer value .

15. The device of claim 11 , wherein the multiple read
threads corresponds to threads of a shader program .

16. The device of claim 11 , wherein the at least one
processor is further configured to advance , by the dispatcher
thread , a read done pointer for each of the multiple read
threads following execution of each of the multiple read
threads , wherein the read done pointer indicates to a next
read memory location following a last read memory location
from which the data is read by a corresponding read thread .

17. The device of claim 11 , wherein the at least one
processor is configured to launch the multiple read threads
by initiating an ordered read based on at least one of
providing , to each read thread of the multiple read threads ,
a thread identifier and a same initial value of a read alloca
tion pointer , or providing , to each read thread of the multiple
read threads , a different initial value of the read allocation
pointer corresponding to data to be read by a given read
thread .

18. The device of claim 11 , wherein the at least one
processor is further configured to determine , based at least
in part on the value of the write done pointer , a number of
read threads to launch to read the data , wherein launching
the multiple read threads is based at least in part on the
determined number of read threads .

19. The device of claim 11 , wherein the at least one
processor is further configured to :

launch , by the dispatcher thread , multiple write threads on
the GPU to write , in parallel , the data to the FIFO

queue ; and

queue ; and

advancing , by the dispatcher thread , the write done
pointer for each of the multiple write threads following
execution of each of the multiple write threads .

10. The method of claim 9 , wherein launching the mul
tiple write threads comprises initiating an ordered write
based on at least one of providing , to each write thread of the
multiple write threads , a thread identifier and a same initial
value of a write allocation pointer , or providing , to each
write thread of the multiple write threads , a different initial
value of the write allocation pointer corresponding to data to
be written by a given write thread .

11. A device for managing first - in first - out (FIFO) queues
in graphics processing , comprising

a memory storing one or more parameters or instructions
for managing FIFO queues in graphics processing ; and

at least one processor coupled to the memory , wherein the
at least one processor is configured to :
receive , by a dispatcher thread , a value of a write done

pointer indicating a next memory location following
one or more memory locations to which data has
been written by a write thread of a graphics process
ing unit (GPU) ; and

launch , by the dispatcher thread and based at least in
part on the value of the write done pointer , multiple
read threads on the GPU to read , in parallel and
based on the write done pointer , the data from the

advance , by the dispatcher thread , the write done pointer
for each of the multiple write threads following execu
tion of each of the multiple write threads .

20. The device of claim 19 , wherein the at least one
processor is configured to launch the multiple write threads
by initiating an ordered write based on at least one of
providing , to each write thread of the multiple write threads ,
a thread identifier and a same initial value of a write
allocation pointer , or providing , to each write thread of the
multiple write threads , a different initial value of the write
allocation pointer corresponding to data to be written by a
given write thread .

21. A non - transitory computer - readable medium , includ
ing code executable by a processor managing first - in first
out (FIFO) queues in graphics processing , the code com
prising code for :

receiving , by a dispatcher thread , a value of a write done
pointer indicating a next memory location following
one or more memory locations to which data has been
written by a write thread of a graphics processing unit
(GPU) ; and

launching , by the dispatcher thread and based at least in
part on the value of the write done pointer , multiple
read threads on the GPU to read , in parallel and based
on the write done pointer , the data from the FIFO
queue .

FIFO queue .
12. The device of claim 11 , wherein the at least one

processor is configured to receive the value of the write done
pointer from the write thread .

13. The device of claim 11 , wherein the at least one
processor is configured to determine the value of the write
done pointer based on advancing the write done pointer for
the write thread .

14. The device of claim 11 , wherein the at least one
processor is further configured to determine a priority indi
cated for the FIFO queue and a threshold write done pointer
value corresponding to the priority of the FIFO queue ,
wherein the at least one processor is configured to launch the

