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( 57 ) ABSTRACT 

Methods and devices for managing first - in first - out ( FIFO ) 
queues in graphics processing are described . A dispatcher 
thread can receive a value of a write done pointer indicating 
a next memory location following one or more memory 
locations to which data has been written by a write thread of 
a graphics processing unit ( GPU ) . The dispatcher thread can 
accordingly launch , based at least in part on the value of the 
write done pointer , multiple read threads on the GPU to read , 
in parallel and based on the write done pointer , the data from 
the FIFO queue . 
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FIFO QUEUE , MEMORY RESOURCE , AND 
TASK MANAGEMENT FOR GRAPHICS 

PROCESSING 

various graphics processing operations , such as operating 
shaders or other stages in the graphics pipeline . The driver 
typically allocates a large amount of memory sufficient for 
performing the operations . In some cases , however , an 
amount of memory that is used by a shader or other resource 
may not be known at the outset of processing , and launching 
of multiple shaders using the large amount of memory may 
be prohibitive or wasteful of available system resources . 

CLAIM OF PRIORITY UNDER 35 U.S.C. § 119 
[ 0001 ] The present application for patent is a continuation 
of application Ser . No. 16 / 001,608 , entitled “ FIFO QUEUE , 
MEMORY RESOURCE , AND TASK MANAGEMENT 
FOR GRAPHICS PROCESSING ” filed Jun . 6 , 2018 , which 
claims priority to Provisional Application No. 62 / 623,536 , 
entitled “ MEMORY RESOURCE MANAGEMENT FOR 
GRAPHICS PROCESSING ” filed Jan. 29 , 2018 , which are 
assigned to the assignee hereof and hereby expressly incor 
porated by reference herein for all purposes . 

SUMMARY 

BACKGROUND 

[ 0002 ] The present examples relate to a computer device , 
and more particularly , to managing memory for graphics 
processing on a computer device . 
[ 0003 ] Computer graphics systems , which can render 2D 
objects or objects from a 3D world ( real or imaginary ) onto 
a two - dimensional ( 2D ) display screen , are currently used in 
a wide variety of applications . For example , 3D computer 
graphics can be used for real - time interactive applications , 
such as video games , virtual reality , scientific research , etc. , 
as well as off - line applications , such as the creation of high 
resolution movies , graphic art , etc. Typically , the graphics 
system includes a graphics processing unit ( GPU ) . A GPU 
may be implemented as a co - processor component to a 
central processing unit ( CPU ) of the computer , and may be 
provided in the form of an add - in card ( e.g. , video card ) , 
co - processor , or as functionality that is integrated directly 
into the motherboard of the computer or into other devices , 
such as a gaming device . 
[ 0004 ] Typically , the GPU has a " logical graphics pipe 
line , ” which may accept as input some representation of a 
2D or 3D scene and output a bitmap that defines a 2D image 
for display . For example , the DirectX collection of applica 
tion programming interfaces by MICROSOFT CORPORA 
TION , including the DIRECT3D application programming 
interface ( API ) , is an example of APIs that have graphic 
pipeline models . Another example includes the Open Graph 
ics Library ( OPENGL ) API . The graphics pipeline typically 
includes a number of stages to convert a group of vertices , 
textures , buffers , and state information into an image frame 
on the screen . For instance , one of the stages of the graphics 
pipeline is a shader . A shader is a piece of code running on 
a specialized processing unit , also referred to as a shader unit 
or shader processor , usually executing multiple data threads 
at once , programmed to generate appropriate levels of color 
and / or special effects to fragments being rendered . In par 
ticular , for example , a vertex shader processes traits ( posi 
tion , texture coordinates , color , etc. ) of a vertex , and a pixel 
shader processes traits ( texture values , color , z - depth and 
alpha value ) of a pixel . GPUs now also execute compute 
shaders that can perform highly - parallelized general - pur 
pose computations that may or may not relate to graphics 
processing 
[ 0005 ] Memory resources can be allocated for GPUs ( e.g. , 
via driver or title executing on a central processing unit 
( CPU ) that manages the memory resources ) for performing 

[ 0006 ] The following presents a simplified summary of 
one or more examples in order to provide a basic under 
standing of such examples . This summary is not an exten 
sive overview of all contemplated examples , and is intended 
to neither identify key or critical elements of all examples 
nor delineate the scope of any or all examples . Its sole 
purpose is to present some concepts of one or more 
examples in a simplified form as a prelude to the more 
detailed description that is presented later . 
[ 0007 ] One example relates to a method for managing 
growable first - in first - out ( FIFO ) queues in graphics pro 
cessing . The method includes receiving , by a dispatcher 
thread , a value of a write done pointer indicating a next 
memory location following one or more memory locations 
to which data has been written by a write thread of a graphics 
processing unit ( GPU ) , and launching , by the dispatcher 
thread and based at least in part on the value of the write 
done pointer , multiple read threads on the GPU to read , in 
parallel and based on the write done pointer , the data from 
the FIFO queue . 
[ 0008 ] In other example , a device for managing FIFO 
queues in graphics processing is provided . The device 
includes a memory storing one or more parameters or 
instructions for managing FIFO queues in graphics process 
ing , and at least one processor coupled to the memory . The 
at least one processor is configured to receive , by a dis 
patcher thread , a value of a write done pointer indicating a 
next memory location following one or more memory 
locations to which data has been written by a write thread of 
a GPU , and launch , by the dispatcher thread and based at 
least in part on the value of the write done pointer , multiple 
read threads on the GPU to read , in parallel and based on the 
write done pointer , the data from the FIFO queue . 
[ 0009 ] In another example , a computer - readable medium , 
including code executable by a processor managing FIFO 
queues in graphics processing is provided . The code 
includes code for receiving , by a dispatcher thread , a value 
of a write done pointer indicating a next memory location 
following one or more memory locations to which data has 
been written by a write thread of a GPU , and launching , by 
the dispatcher thread and based at least in part on the value 
of the write done pointer , multiple read threads on the GPU 
to read , in parallel and based on the write done pointer , the 
data from the FIFO queue . 
[ 0010 ] Additional advantages and novel features relating 
to examples of the present invention will be set forth in part 
in the description that follows , and in part will become more 
apparent to those skilled in the art upon examination of the 
following or upon learning by practice thereof . 
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DESCRIPTION OF THE FIGURES thread ) . The FIFO queue may also include a read done 
pointer that is advanced once the memory is actually read . 
Once a thread detects the read done pointer as achieving a 
threshold memory location , such as the end of a page or 
beginning of a next page , for example , the thread detecting 
the condition can deallocate the page . In addition , for 
example , the FIFO queue may also have an associated write 
done pointer to indicate that all memory locations before the 
write done pointer have , indeed , been written to by the 
multiple threads writing data to the FIFO queue . In an 
example , this write done pointer can be used to determine 
when to execute the read threads to read the data from the 
FIFO queue . 

[ 0011 ] In the drawings : 
[ 0012 ] FIG . 1 is a schematic block diagram of an example 
architecture of a computer device including a graphics 
processing unit configured according to the described 
examples ; 
[ 0013 ] FIG . 2 is a schematic diagram of an example of a 
state of graphics memory of the computer device of FIG . 1 ; 
[ 0014 ] FIG . 3 is a schematic diagram of an example of 
applications executing on the computer device or one or 
more processors of FIG . 1 ; 
[ 0015 ] FIG . 4 is a flowchart of an example of a method of 
managing , writing , and reading growable memory resources 
according to the described examples ; 
[ 0016 ] FIG . 5 is a flowchart of an example of a method of 
writing to growable memory resources according to the 
described examples ; 
[ 0017 ] FIG . 6 is a flowchart of an example of a method of 
reading from growable memory resources according to the 
described examples 
[ 0018 ] FIG . 7 is a schematic diagram of an example of a 
hierarchy of components used to build a growable first - in 
first - out ( FIFO ) queue ; and 
[ 0019 ] FIG . 8 is a schematic diagram of an example of a 
hierarchy of components used to build a fixed - size FIFO 
queue . 

DETAILED DESCRIPTION 

[ 0020 ] The described solutions provide a graphical pro 
cessing unit ( GPU ) with a flexible , dynamic mechanism that 
provides managing memory resources , such as first - in first 
out ( FIFO ) queues , for use in graphics processing opera 
tions . In one example , the GPU can execute one or more 
compute shaders to manage the memory resources . For 
instance , a pool of memory resources can be initialized for 
use with multiple FIFO queues . An amount of the pool of 
memory resources , such as one or more pages of memory , 
can be initially allocated to a given FIFO queue . Multiple 
threads ( e.g. , executing in parallel on the GPU ) can write 
data to the FIFO queue . For example , the FIFO queues can 
be growable or non - growable . For growable FIFO queues , 
one or more of the threads can allocate additional memory 
resources from the pool to the FIFO queue at some point to 
ensure the FIFO queue has sufficient memory resources for 
writing . For example , the FIFO queue can include a write 
allocation pointer that can be advanced by a given thread 
beyond the memory location to which the thread is to write 
the data , so the next write thread can write at the memory 
location of the write allocation pointer ( and can advance the 
write allocation pointer for the next write thread ) . Once a 
thread detects the write allocation pointer as achieving a 
threshold memory location , such as the end of a page that is 
not the last page , the thread detecting the condition can 
allocate an additional page ( or pages ) of memory for the 

[ 0022 ] In another example , a dispatcher thread , which may 
execute on a different processor such as a central processing 
unit ( CPU ) or a different portion of the GPU , may manage 
writing to and / or reading from the threads ( and / or more 
complicated thread operations , as described herein ) . For 
example , the dispatcher thread may check the write done 
pointers for each FIFO to determine whether to dispatch 
read threads to read the FIFO data . In one example , this may 
be based on determining whether the write done pointer 
achieves a threshold ( e.g. , a threshold amount of data written 
that has not been read , which may be based on also evalu 
ating the read allocation pointer , or a separate read pointer 
or counter maintained by the dispatcher thread ) . In an 
example , the threshold may be based on a priority of the 
FIFO . In addition , in some examples , the dispatcher thread 
may be responsible for moving the read allocation pointer 
and / or write allocation pointer in one operation , rather than 
each thread incrementing the pointer . 
[ 0023 ] In any case , efficiencies in allocating and using 
memory for graphics operations are improved by the mecha 
nisms described herein . For example , providing the grow 
able FIFO queues can allow shaders to operate using an 
amount of memory just above what may be required for the 
shader at a given period of time . In addition , freeing the 
memory resources allows for conservative memory use for 
simultaneously operating other shaders or performing other 
graphics processing operations . Moreover , having the dis 
patcher thread monitor FIFO status and launch work , as in 
some examples described herein , can allow for work to be 
completed in small batches , thus keeping the amount of 
outstanding data in the pool relatively small . Additionally , 
this may improve cache behavior by the GPU , as data that 
is consumed is more likely to have been produced reason 
ably recently 
[ 0024 ] Referring to FIG . 1 , in one example , a computer 
device 10 includes a graphics processing unit ( GPU ) 12 
configured to implement the described features of managing 
memory resources for performing graphics operations . For 
example , GPU 12 is configured to allocate memory from a 
pool to multiple FIFO queues , write data , in parallel , to the 
FIFO queues , allocate additional memory from the pool 
during the write operation , read data , in parallel , from the 
FIFO queues , deallocate memory back to the pool once read , 
etc. , as described further herein . In addition , the CPU 34 
and / or GPU 12 can execute one or more compute shaders to 
provide managing of the growable or non - growable ( e.g. , 
ring buffer ) memory resources . As described herein , this 
may also be coupled driver and / or other software function 
ality at the CPU 34 ( e.g. , a dispatcher thread ) that can work 
in conjunction with the one or more compute shaders , as 
described herein . In this regard , GPU 12 and / or CPU 34 can 

FIFO queue . 
[ 0021 ] Similarly , multiple threads ( e.g. , executing in par 
allel on the GPU ) can read data from the FIFO queue , and / or 
can deallocate the read memory resources back to the pool . 
For example , the FIFO queue may include a read allocation 
pointer that can be advanced by a given thread beyond a 
memory location from which the data is read , so the next 
read thread can begin reading at the read allocation pointer 
( and can advance the read allocation pointer for the next read 
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include a FIFO queue manager 74 to facilitate initializing 
and managing FIFO queues , as described herein , etc. More 
over , an interface may be exposed , via software executing on 
the CPU 34 or GPU 12 , to allow for leveraging the functions 
for using and managing memory resources . 
[ 0025 ] For example , in one implementation , computer 
device 10 includes a CPU 34 , which may be one or more 
processors , or CPU processor core ( s ) 38 , that are specially 
configured or programmed to control operation of computer 
device 10 according to the described examples . For instance , 
a user may provide an input to computer device 10 to cause 
CPU 34 to execute one or more of software application ( s ) 
46 , GPU driver 48 , graphics application programming inter 
face ( API ) 52 , an optional CPU - side FIFO queue manager 
74 , as described in further detail herein , etc. Software 
application ( s ) 46 that execute on CPU 34 may include , for 
example , but are not limited to one or more of an operating 
system , a word processor application , an email application , 
a spread sheet application , a media player application , a 
video game application , a graphical user interface applica 
tion or another program . Additionally , the GPU driver 48 can 
be executed for controlling the operation of GPU 12. The 
user may provide input to computer device 10 via one or 
more input devices 51 such as a keyboard , a mouse , a 
microphone , a touch pad or another input device that is 
coupled to computer device 10 via an input / output bridge 49 , 
such as but not limited to a southbridge chipset or integrated 
circuit . 
[ 0026 ] The software applications 46 that execute on CPU 
34 may include one or more instructions that executable to 
cause CPU 34 to issue one or more graphics commands 36 
to cause the rendering of graphics data associated with an 
image 24 on display device 40. The image 24 may comprise , 
for example , one or more objects , and each object may 
comprise one or more primitives , as explained in more detail 
below . For instance , in some implementations , the software 
application 46 places graphics commands 36 in a buffer in 
the system memory 56 and the command processor 64 of the 
GPU 12 fetches them . In some examples , the software 
instructions may conform to a graphics API 52 , such as , but 
not limited to , a DirectX and / or Direct3D API , an Open 
Graphics Library ( OpenGL® ) API , an Open Graphics 
Library Embedded Systems ( OpenGL ES ) API , an X3D API , 
a RenderMan API , a WebGL API , a Vulkan API , a Metal 
API , a CUDA API or any other public or proprietary 
standard graphics API that may provide functionality to 
implement certain shaders , such as compute shaders , which 
allow for performing highly - parallelized general - purpose 
computations that may or may not relate to graphics pro 
cessing . In order to process the graphics re lering instruc 
tions , CPU 34 may issue one or more graphics commands 36 
to GPU 12 ( e.g. , through GPU driver 48 ) to cause GPU 12 
to perform some or all of the rendering of the graphics data . 
In some examples , the graphics data to be rendered may 
include a list of graphics primitives , e.g. , points , lines , 
triangles , quadrilaterals , triangle strips , etc. 
[ 0027 ] In another example , the software applications 46 
that execute on CPU 34 may include one or more ray tracing 
applications that can generate an image 24 from the per 
spective of a virtual camera shooting rays from a viewing 
points . For a given pixel in the image 24 , for example , the 
path of a ray that passes through the pixel from the viewing 
point can be traced until it intersects with an object in the 
environment . The surface of the object can have a color 

associated with it at the intersection point , as well as values 
that indicate albedo ( reflectivity ) , scattering , refraction , dif 
fusion or another material property . Such values can be 
interpolated in ray tracing , for example , between values of 
properties of vertices of the object . At the intersection point , 
depending on the surface of the object , the ray can be 
reflected or refracted within the environment , or it can 
generate diffuse rays , to simulate optical effects such as 
reflection , refraction / translucence , scattering , and disper 
sion . The angle of the surface at the intersection point can be 
determined by interpolating between norms of vertices of 
the object , or the angle of the surface at the intersection point 
can be estimated as the angle of a face plane of the object . 
A shadow ray can be generated , in the direction of a light 
source , to simulate optical effects such as shading from the 
light source ( blocking of light from the light source ) . Such 
newly generated rays ( secondary rays ) can be similarly 
traced in the environment , and can generate other rays 
( tertiary rays ) , and so on . Successive rays can be generated , 
for example , until a threshold number of stages is reached or 
threshold distance is traveled . Ultimately , the value of the 
given pixel in ray tracing can depend on the color of the 
surface of the object at the intersection point and results 
reported back from secondary rays , which may in turn 
depend on results reported back from tertiary rays , and so 
on , so as to simulate shadows , reflected light , refracted light , 
and other effects at the intersection point . Thus , in addition 
to the color of the surface at the intersected point , the value 
of the given pixel can depend on the incoming light and 
material properties of the object at the intersection point . 
[ 0028 ] Ray tracing , in this regard , can produce ray or pixel 
information , and can group the information by one or more 
detected properties , such as a determined texture or surface 
of the ray / pixel for processing . In this example , a size of 
memory to hold the information for each texture or surface 
is not known prior to the ray tracing . Thus , ray tracing can 
benefit by using the growable or non - growable rung - buffer 
style memory resources , as described herein , and / or a ring 
buffer , to store , read , and / or otherwise process the informa 
tion . 
[ 0029 ] Computer device 10 may also include a memory 
bridge 54 in communication with CPU 34 that facilitates the 
transfer of data going into and out of system memory 56 
and / or graphics memory 58. For example , memory bridge 
54 may receive memory read and write commands , and 
service such commands with respect to system memory 56 
and / or graphics memory 58 in order to provide memory 
services for the components in computer device 10. Memory 
bridge 54 is communicatively coupled to GPU 12 , CPU 34 , 
system memory 56 , hics memory 58 , and input / output 
bridge 49 via one or more buses 60. In an example , for 
example , memory bridge 54 may be a northbridge integrated 
circuit or chipset . 
[ 0030 ] System memory 56 may store program modules 
and / or instructions that are accessible for execution by CPU 
34 and / or data for use by the programs executing on CPU 34 . 
For example , system memory 56 may store the operating 
system application for booting computer device 10. Further , 
for example , system memory 56 may store a window 
manager application that is used by CPU 34 to present a 
graphical user interface ( GUI ) on display device 40. In 
addition , system memory 56 may store software applications 
46 and other information for use by and / or generated by 
other components of computer device 10. For example , 
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system memory 56 may act as a device memory for GPU 12 
( although , as illustrated , GPU 12 may generally have a 
direct connection to its own graphics memory 58 ) and may 
store data to be operated on by GPU 12 as well as data 
resulting from operations performed by GPU 12. For 
example , system memory 56 may store any combination of 
texture buffers , depth buffers , stencil buffers , vertex buffers , 
frame buffers , or the like . System memory 56 may include 
one or more volatile or non - volatile memories or storage 
devices , such as , for example , random access memory 
( RAM ) , static RAM ( SRAM ) , dynamic RAM ( DRAM ) , 
read - only memory ( ROM ) , erasable programmable ROM 
( EPROM ) , electrically erasable programmable ROM ( EE 
PROM ) , Flash memory , a magnetic data media or an optical 
storage media . 
[ 0031 ] Additionally , in an example , computer device 10 
may include or may be communicatively connected with a 
system disk 62 , such as a CD - ROM or other removable 
memory device . System disk 62 may include programs 
and / or instructions that computer device 10 can use , for 
example , to boot operating system in the event that booting 
operating system from system memory 56 fails . System disk 
62 may be communicatively coupled to the other compo 
nents of computer device 10 via input / output bridge 49 . 
[ 0032 ] As discussed above , GPU 12 may be configured to 
perform graphics operations to render one or more render 
targets 44 ( e.g. , based on graphics primitives , ray tracing , 
etc. ) to display device 40 to form image 24. For instance , 
when one of the software applications 46 executing on CPU 
34 requires graphics processing , CPU 34 may provide 
graphics commands and graphics data associated with image 
24 , along with graphics command 36 , to GPU 12 for 
rendering to display device 40. The graphics data may 
include , e.g. , drawing commands , state information , primi 
tive information , texture information , ray tracing informa 
tion , etc. GPU 12 may include atomic / interlocked operation 
hardware 63 for providing atomic / interlocked ( e.g. , sema phore ) operations , such as for incrementing or otherwise 
modifying one or more values stored in Graphics Memory 
58 , System Memory 56 , and / or other locations . GPU 12 may 
also include one or more processors , including a command 
processor 64 for receiving graphics command 36 and initi 
ating or controlling the subsequent graphics processing by at 
least one primitive processor 66 for assembling primitives , 
a plurality of graphics shader processor cores 68 for pro 
cessing vertex , surface , pixel , and other data for GPU 12 , 
one or more texture processors 67 for generating texture data 
for fragments or pixels , and one or more color and depth 
processors 69 for generating color data and depth data and 
merging the shading output . The shader processor core ( s ) 68 
can execute one or more application shader program ( s ) 73 to 
process the vertex , surface , pixel , and / or other data for the 
GPU 12 or to perform other graphics - related ( or non 
graphics - related ) processes . In an example , primitive pro 
cessor 66 may implement input assembler and rasterizer 
stages of a logical graphics pipeline , as is discussed below . 
GPU 12 may , in some instances , be built with a highly 
parallel structure that provide more efficient processing of 
complex graphic - related operations than CPU 34. For 
example , GPU 12 may include a plurality of processing 
elements that are configured to operate on multiple vertices 
or pixels in a parallel manner . The highly parallel nature of 
GPU 12 may , in some instances , allow GPU 12 to draw 
graphics image 24 , e.g. , GUIs and two - dimensional ( 2D ) 

and / or three - dimensional ( 3D ) graphics scenes , onto display 
device 40 more quickly than drawing the image 24 directly 
to display device 40 using CPU 34. Additionally , GPU 12 
may be configured to perform highly - parallelized general 
purpose operations for graphics or non - graphics purposes , 
such as executing a compute shader , as described . 
[ 0033 ] GPU 12 may , in some instances , be integrated into 
a motherboard of computer device 10. In other instances , 
GPU 12 may be present on a graphics card that is installed 
in a port in the motherboard of computer device 10 or may 
be otherwise incorporated within a peripheral device con 
figured to interoperate with computer device 10. GPU 12 
may include one or more processors , such as one or more 
microprocessors , application specific integrated circuits 
( ASICs ) , field programmable gate arrays ( FPGAs ) , digital 
signal processors ( DSPs ) , or other equivalent integrated or 
discrete logic circuitry . 
[ 0034 ] In an example , GPU 12 may be directly coupled to 
graphics memory 58. For example , graphics memory 58 
may store any combination of index buffers , vertex buffers , 
texture buffers , depth buffers , stencil buffers , render target 
buffers , frame buffers , state information , shader resources , 
constants buffers , coarse shading rate parameter ( SRP ) maps 
( e.g. , a 2D map of a viewable area at coarse resolution that 
can be used to look - up an SRP value based on a closest point 
in the map to the transformed vertex ) , unordered access view 
resources , graphics pipeline stream outputs , or the like . As 
such , GPU 12 may read data from and write data to graphics 
memory 58 without using bus 60. In other words , GPU 12 
may process data locally using storage local to the graphics 
card , instead of system memory 56. This allows GPU 12 to 
operate in a more efficient manner by eliminating the need 
of GPU 12 to read and write data via bus 60 , which may 
experience heavy bus traffic . In some instances , however , 
GPU 12 may not include a separate memory , but instead 
may utilize system memory 56 via bus 60. Graphics memory 
58 may include one or more volatile or non - volatile memo 
ries or storage devices , such as , e.g. , random access memory 
( RAM ) , static RAM ( SRAM ) , dynamic RAM ( DRAM ) , 
erasable programmable ROM ( EPROM ) , electrically eras 
able programmable ROM ( EEPROM ) , Flash memory , a 
magnetic data media or an optical storage media . Moreover , 
in an example , one or more compute shaders can be 
launched to manage growable memory resources in graphics 
memory 58 , as described herein . Graphics memory 58 may 
also include a memory pool 82 allocated by the FIFO queue 
manager 74 to provide memory to growable ( or non - grow 
able ) FIFO queues for application shader program ( s ) 73 
and / or shader processor core ( s ) 68. Graphics memory 58 
may also include FIFO queue descriptors 84 defining one or 
more FIFO queues in the memory pool 82 , which may 
include page addresses 212 from the memory pool 82 , 
per - page write done counters 224 , per - page read done coun 
ters 226 , various pointers 214 , etc. , as described further 
herein . Graphics memory 58 may also include shader 
resources 86 to otherwise facilitate operation of the various 
application shader programs 73 and / or shader processor 
cores 68 . 
[ 0035 ] CPU 34 and / or GPU 12 may store rendered image 
data , e.g. , render targets 44 , in a render target buffer of 
graphic memory 58. It should be noted that the render target 
buffer also may be an independent memory or may be 
allocated within system memory 56. GPU 12 may further 
include a resolver component 70 configured to retrieve the 
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data from a render target buffer of graphic memory 58 and 
convert multisample data into per - pixel color values to be 
sent to display device 40 to display image 24 represented by 
the rendered image data . In some examples , GPU 12 may 
include a digital - to - analog converter ( DAC ) that is config 
ured to convert the digital values retrieved from the resolved 
render target buffer into an analog signal consumable by 
display device 40. In other examples , GPU 12 may pass the 
digital values to display device 40 over a digital interface , 
such as a High - Definition Multi - media Interface ( HDMI 
interface ) or a DISPLAYPORT interface , for additional 
processing and conversion to analog . As such , in some 
examples , the combination of GPU 12 , graphics memory 58 , 
and resolver component 70 may be referred to as a graphics 
processing system 72 . 
[ 0036 ] Display device 40 may include a monitor , a tele 
vision , a projection device , a liquid crystal display ( LCD ) , a 
plasma display panel , a light emitting diode ( LED ) array , 
such as an organic LED ( OLED ) display , a cathode ray tube 
( CRT ) display , electronic paper , a surface - conduction elec 
tron - emitted display ( SED ) , a laser television display , a 
nanocrystal display or another type of display unit . Display 
device 40 may be integrated within computer device 10. For 
instance , display device 40 may be a screen of a mobile 
telephone . Alternatively , display device 40 may be a stand 
alone device coupled to computer device 10 via a wired or 
wireless communications link . For instance , display device 
40 may be a computer monitor or flat panel display con 
nected to a personal computer via a cable or wireless link . 
Additionally , in some configurations such as in a datacenter 
environment , Display device 40 may not be present at all , or 
may be connected remotely via a network connection and 
possibly another computer device . 
[ 0037 ] According to one example of the described fea 
tures , graphics API 52 and GPU driver 48 may configure 
GPU 12 to execute a logical graphics pipeline to perform 
various operations described herein . 
[ 0038 ] FIG . 2 illustrates an example of a state of graphics 
memory 58 , which can be initialized and / or managed by a 
FIFO queue manager 74 within the GPU 12 and / or CPU 34 , 
in accordance with aspects described herein . Graphics 
memory 58 , as initialized for the GPU 12 by CPU 34 and / or 
one or more applications , drivers , etc. executing thereon , 
may include a memory pool 82 of virtual memory addresses 
initialized for managing multiple FIFO queues , where the 
memory pool 82 may include virtual memory addresses that 
are at least partially allocated to physical memory in the 
graphics memory 58. For example , the memory pool 82 may 
include a list of memory pages , or pointers to the memory 
pages , e.g. , page 0 , page 1 , page 2 , page 3 , page 4 , page 5 , 
page 6 , page 7 , page M , that may be allocated in the 
memory pool 82. The memory pool 82 may include a free 
page list 204 of pages that can be allocated out of the 
memory pool 82 , which in the depicted example include 
page 0 , page 1 , and page 3 . 
[ 0039 ] Graphics memory 58 can also include multiple 
FIFO queues , including FIFO 1 210 ,. FIFO N 230. Each 
FIFO queue can have an associated list of page addresses 
212 , which can correspond to pages from the memory pool 
that are allocated to the FIFO queue ( and thus removed from 
the free page list 204 ) . For example , for FIFO 1 210 , the list 
of page addresses can include page 2 , page 4 , and page 7 , to 
which data can be written and / or read , as described herein . 
In addition , each FIFO queue may include multiple pointers 

214 , such as a write allocation pointer 216 to indicate a 
memory location for a next write operation , a write done 
pointer 218 to indicate a memory location where all writes 
preceding the write done pointer 218 have been completed , 
a read allocation pointer 220 to indicate a memory location 
for a next read operation , and / or a read done pointer 222 to 
indicate a memory location where all reads preceding the 
read done pointer 222 have been completed . The pointers 
214 can be used for various purposes , such as to determine 
when to allocate and / or deallocate memory to / from a given 
FIFO queue , when to perform a read operations of data 
written by write operations that have occurred , and / or the 
like , as described further herein . 
[ 0040 ] In an example , the pointers 216 , 218 , 220 , 222 may 
be 32 - bit integers or other values , and may be constructed to 
indicate multiple identifiers . For example , the pointers 216 , 
218 , 220 , 222 may be constructed to have a number of low 
order bits to indicate a memory location within a page ( e.g. , 
a number of bits equal to a page size divided by a memory 
unit size for the FIFO ) . For example , for pages that are 64 
kB and where the FIFO uses a 16 - byte memory unit size , the 
low order bits can include enough bits to indicate 4096 
( 2 ̂  12 ) memory locations ( e.g. , 12 bits ) . In addition , the 
pointers 216 , 218 , 220 , 222 may be constructed to have a 
number of high order bits that can indicate an identifier of 
the memory page , which may be an index into an array of 
memory page addresses 212 allocated for the FIFO queue . 
In an example , the pointers 216 , 218 , 220 , 222 may also 
have one or more wrapping bits to indicate when the 
lower - order bits ( page index and offset within the page ) have 
exceeded capacity . This may be useful , for example , where 
the memory size unit used by the FIFO is not a power of 2 
because the number of data items that fit into a memory page 
also is not a power of 2. Thus , the number of data items in 
a page multiplied by the number of pages is also likely not 
a power of 2 . 
[ 0041 ] In addition , for example , each FIFO may include a 
per - page write done counter 224 that can track ( e.g. , be 
incremented ) when a write operation is performed , to track 
a number of data items written to the page . In one example , 
there may be a write done counter 224 per page ( e.g. , or one 
for the current pages being written ) . In another example , as 
in non - growable FIFOs which may not use pages , the 
FIFO's data may be subdivided into segments , with one 
write done counter 224 per segment . In another example , a 
growable FIFO may be subdivided into segments which are 
smaller than , equal to , or larger than a page size , with one 
write done counter 224 per segment . In addition , for 
example , each FIFO may include a list of read done counters 
226 , where one read done counter can track ( e.g. , be 
incremented ) when a read operation is performed to track a 
number of data items read from a corresponding portion of 
the FIFO . In one example , there may be a read done counter 
226 per page ( e.g. , or one for the current pages being read ) , 
or for a segment of the FIFO that is smaller or larger than a 
page . The write done counters 224 and read done counters 
226 can be initialized with their respective FIFOs and can 
track writes / reads for a given page ( and / or multiple counters 
can be provided for multiple pages , in one example ) . When 
all data is written to , or read from a page or segment of a 
FIFO ( as can be determined by Write Done Pointer 218 or 
Read Done Pointer 222 ) , the associated counters 224 or 226 
can be reset to O. 
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[ 0042 ] FIG . 3 illustrates an example of application rou 
tines that can be executed by CPU 34 , and shader programs 
73 that can be implemented and / or executed by shader 
processor core ( s ) 68 and / or CPU 34 for writing and reading 
data to / from one or more FIFO queues ( e.g. , FIFO 1 210 . 
. FIFO N 230 ) . For example , application shader programs 

73 may include a data - production shader program 310 for 
writing data to the FIFO queues . For example , data - produc 
tion shader program 310 can be concurrently executed by 
multiple threads to write data to a given FIFO queue . In an 
example , data - production shader program 310 may receive 
data for writing to the FIFO queue based on data received 
from an application 46 ( e.g. , as rendering instructions , 
ray - tracing commands , related parameters , etc. ) . Data - pro 
duction shader program 310 can include one or more data 
production routine 312 for producing data to be written to 
the FIFO queue ( e.g. , data related to performing one or more 
graphics - related tasks , such as rendering instructions , 
instructions for defining corresponding primitives , vectors , 
shading rates , etc. , ray - tracing instructions , or non - graphics 
related processes ) , as received from the application 46 or 
otherwise interpreted from instructions received from the 
application 46 , and a FIFO queue push / enqueue routine 314 
for writing data to the FIFO queue . For example , FIFO 
queue push / enqueue routine 314 can write data to the FIFO 
queue 210 and update a write allocation pointer 216 , as 
described further herein ( e.g. , in action 406 of method 400 
of FIG . 4 , method 500 of FIG . 5 , etc. ) . FIFO queue push / 
enqueue routine 314 may also include a pool page - allocation 
routine 316 for allocating one or more additional pages of 
memory to the FIFO queue if needed ( e.g. , as described in 
action 408 of method 400 , and action 504 of method 500 ) , 
and / or a FIFO queue write - done update routine 318 to 
update a write done pointer 218 of the FIFO queue ( e.g. , as 
described in action 508 of method 500 ) . 
[ 0043 ] Application shader programs 73 may also include 
a data - consumption shader program 320 for reading data 
from the FIFO queues . For example , data - consumption 
shader program 320 can be concurrently executed by mul 
tiple threads to read data from one or more given FIFO 
queues . Data - consumption shader program 310 can include 
a FIFO queue pop / dequeue address generation routine 322 
for determining a memory location at which to read data 
from the FIFO queue . For example , FIFO queue pop / 
dequeue address generation routine 322 can determine the 
address / memory location based on a value of the read 
allocation pointer 220 as read and incremented by FIFO 
Queue Work - launching Program 330 , or as read and incre 
mented by data - consumption shader program 320 , 
described further herein ( e.g. , in action 412 of method 400 
in FIG . 4 , action 602 of method 600 in FIG . 6 , etc. ) . 
Data - consumption shader program 320 may also include a 
data - consumption routine 324 for reading the data at the 
memory location , and / or a FIFO queue data - free routine 326 
for freeing the memory location . For example , FIFO queue 
data - free routine 326 can free the memory location at least 
in part by moving a read done pointer 222 to or beyond the 
memory location , as described further herein ( e.g. , in action 
606 of method 600 ) . FIFO queue data - free routine 326 may 
include a pool page - free routine 328 for freeing a page of 
memory back to the memory pool 84 , as described further 
herein ( e.g. , in action 414 of method 400 , action 608 of 
method 600 , etc. ) . 

[ 0044 ] In addition , application shader programs 73 can 
include a FIFO queue work - launching program 330 for 
launching sets of multiple threads to execute the data 
consumption shader program 320 and / or the data - production 
shader program 310. In an example , FIFO queue work 
launching program 330 can operate using a single thread to 
dispatch the multiple threads of the data - consumption shader 
program 320 and / or data - production shader program 310. In 
this regard , in one example , FIFO queue work - launching 
program 330 may be executed on the CPU 34. In addition , 
for example , the FIFO queue work - launching program 330 
may include , or may be similar to , the dispatcher thread 
described herein . FIFO queue work - launching program 330 
can include a FIFO queue write - done monitor 332 for 
monitoring the write done pointer 218 of one or more FIFO 
queues to determine when to launch a set of threads to 
consume the data written to the FIFO ( s ) . For example , FIFO 
queue write - done monitor 332 can determine to start threads 
to read the data when the write done pointer 218 is detected 
to advance to a certain value ( e.g. , a value equal to or within 
a threshold of the number of threads in a set , a value equal 
to a number of items on a page of memory , etc. ) . FIFO queue 
work - launching program 330 can also include a FIFO queue 
multi - allocate - for - read routine 332 for determining / allocat 
ing the number of threads to launch to read data written to 
the FIFO queue ( e.g. , based on the write done pointer 218 
value ) , executing the set of threads to read the data , etc. , as 
described further herein . In an example , the FIFO queue 
multi - allocate - for - read routine 332 may update the Read 
Allocation Pointer 220 to indicate the number of items that 
may be consumed , and can pass a copy of the Read 
Allocation Pointer ( or a derivative of it ) to each instance of 
the data consumption shader program , to be used in the 
address generation routine 322 , to determine which data to 
consume . In an example , the work launching program 330 
can launch more than one consumer thread per data element 
or group of data elements to consume , or it can launch a 
group of threads per data element or group of data elements 
to consume , where the number of data elements may include 
a group , and the number of shader threads to launch , can be 
provided by application 46 , or calculated by some other 
mechanism . 
[ 0045 ] In addition , prior to executing threads to perform 
the data - production shader program 310 and / or data con 
sumption shader program 320 , application 46 can initiate , or 
cause initiation of , one or more FIFO queue initialization 
routines 336 for establishing the one or more FIFO queues , 
allocating corresponding memory from memory pool 82 , 
etc. , as described above and further herein ( e.g. , in actions 
402 , 404 of method 400 in FIG . 4 ) . 
( 0046 ] Referring to FIG . 4 , one example of a method 400 
for operating a GPU 12 to manage and utilize memory 
resources is illustrated . 
[ 0047 ] At 402 , method 400 includes initializing a memory 
pool of memory resources for multiple FIFO queues . In an 
example , GPU 12 or CPU 34 via FIFO queue manager 74 , 
can be configured to initialize the memory pool of memory 
resources ( e.g. , in graphics memory 58 ) for multiple FIFO 
queues . For example , the GPU 12 can initialize the memory 
pool as a collection of virtual memory addresses , where the 
addresses can each relate to a unit of memory , such as a 
page . For example , a page can be 64 kilobytes ( kB ) or 
substantially any span of memory addresses . In addition , in 
this example , the GPU 12 can manage initialization or 

as 
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allocation / deallocation of the collection of memory 
addresses , though a portion of the addresses may correspond 
to physical memory that is actually allocated in the graphics 
memory 58 , while another portion of the addresses may not 
correspond to allocated physical memory . In this example , 
the GPU 12 or CPU 34 , via a thread managing the memory 
space , can automatically allocate the non - allocated virtual 
addresses to physical memory when a threshold is achieved . 
For example , the threshold can correspond to a threshold 
number of unused - but - physically - allocated pages ( e.g. , a 
number that is less than a threshold ) , where an unused - but 
physically - allocated page can correspond to a page of 
memory that is allocated to the GPU 12 but does not have 
data ( or has only stale or otherwise expired data ) written to 
it . In an additional example , GPU 12 , via a thread managing 
the memory space , can automatically free unused pool pages 
from the memory pool 82 , if the list of unused - but - physi 
cally - allocated pages achieves a threshold indicating that the 
number of unused - but - physically - allocated pages has 
become too large ( e.g. , more than a different or the same 
threshold ) . 
[ 0048 ] In any case , GPU 12 can have a memory pool with 
at least some memory resources for allocation to a FIFO 
queue , as described herein , and GPU 12 or CPU 34 can 
manage the pool to allocate / deallocate physical resources 
when the respective thresholds are achieved . 
[ 0049 ] At 404 , method 400 includes allocating multiple 
pages of memory from the memory pool to a FIFO queue of 
the multiple FIFO queues . In an example , GPU 12 , via FIFO 
queue manager 74 , FIFO queue initialization routine 336 , 
etc. , can be configured to allocate the multiple pages of 
memory from the memory pool to a FIFO queue of the 
multiple FIFO queues ( e.g. , FIFO 1 210 , ... , FIFO N 230 ) . 
In one example , GPU 12 can perform the allocation based on 
initializing the FIFO queues before rendering an image . In 
addition , for example , GPU 12 can determine an initial 
allocation size based on one or more parameters configured 
for and / or provided to the GPU 12 ( e.g. , by CPU 34 ) or 
otherwise known to the GPU 12. For example , GPU 12 , in 
ray tracing , may initialize FIFO queues for each texture or 
surface , and may allocate multiple pages ( e.g. , one or two 
pages to start ) to each of the FIFO queues . This can help to 
avoid delay in allocating memory to the FIFO queue on a 
first instance of a write operation to the FIFO queue . 
[ 0050 ] In addition to allocating memory to the FIFO 
queue ( s ) , FIFO queue initialization routine 336 can perform 
additional initialization procedures , such as associating a 
function , program , shader object , pipeline state object , etc. 
with each FIFO queue , which can be invoked to consume 
data that has been added to the FIFO queue . For example , 
these can include data - production shader program 310 , 
data - consumption shader program 320 , etc. In addition , 
FIFO queue initialization routine 336 can associate a mini 
mum batch size , maximum batch size , batch size granularity , 
preferred batch size , etc. of data to be consumed , to each 
FIFO queue . Each thread reading the data ( e.g. , via data 
consumption shader program 320 ) can utilize the batch sizes 
when reading data from the FIFO queues . In another 
example , FIFO queue initialization routine 336 can associate 
a count of threads to be invoked to consume each batch of 
data acquired from the FIFO queue . In addition , in an 
example , FIFO queue initialization routine 336 can set one 
or more parameters for each FIFO queue , such as an 
associated priority for reading data from ( and / or writing data 

to ) the FIFO queue , whether the FIFO queue is growable or 
not , whether the FIFO queue can be automatically validated 
or not , etc. In addition , in one example , FIFO queue initial 
ization routine 336 can add an initial amount of data to one 
or more FIFO queues to indicate that the FIFO queue is in 
use and avoid deallocation of the FIFO queue or associated 
memory . 

[ 0051 ] At 406 , method 400 includes executing , via parallel 
execution of multiple write threads of a GPU , a write 
operation to write data to memory locations in the multiple 
pages of memory . In an example , GPU 12 can be configured 
to execute , via parallel execution of multiple write threads of 
the GPU 12 , the write operation to write data to memory 
locations in the multiple pages of memory . For example , 
GPU 12 can execute ( e.g. , via commands 36 sent by CPU 
34 , or via FIFO queue work - launching program 330 ) one or 
more compute shaders to perform the write operation to 
write data to the FIFO queue , as described herein . For 
example , the one or more compute shaders can execute a 
fixed set of threads , such as 64 threads executing in parallel , 
to perform one or more write operations . Each of the 
multiple threads can write some data into the FIFO queue , 
which may include each write thread performing a data 
production shader program ( e.g. , data - production shader 
program 310 defined above ) to produce data ( e.g. , via 
data - production routine 312 ) , push the data to the FIFO 
queue ( e.g. , via FIFO queue push / enqueue routine 314 ) , 
possibly allocate one or more additional memory pages to 
the FIFO queue ( e.g. , via pool page - allocation routine 316 ) , 
and / or update a write done pointer ( e.g. , via FIFO queue 
write - done update routine 318 ) , as described above . 
[ 0052 ] For example , to facilitate the write operation , each 
FIFO queue may include pointers to its corresponding pages 
in the memory pool ( e.g. , page addresses 212 ) , as well as a 
write allocation pointer ( e.g. , write allocation pointer 216 ) to 
track both which page in memory to write to , and the 
location within that page to write , and / or a write done 
pointer ( e.g. , write done pointer 218 ) to indicate a location 
where all previous data has been written in memory . As 
described further herein , the GPU 12 can accordingly deter 
mine a page to which to perform a write operation based on 
the pointer corresponding to the FIFO queue and / or the write 
allocation pointer 216. Thus , for example , the write alloca 
tion pointer can allow each thread to determine where to 
write its data , and each thread , upon determining the write 
allocation pointer , can advance the write allocation pointer 
to a next memory location for writing data . The acts of 
reading and advancing the write allocation pointer can be 
performed together atomically , e.g. , by Atomic / Interlocked 
Operation Hardware 63 , order to avoid race conditions 
that would otherwise occur with multi - threaded program 
ming . 

[ 0053 ] In addition , once the data is written , the thread can 
advance the write done pointer . In one example , this can be 
performed based on an array of write done counters , based 
at least in part on determining that all write operations of the 
write threads have completed . For example , the array of 
write done counters can include one page write counter per 
page or segment of the FIFO queue . The counters can be 
zero initialized with the FIFO at the time of initialization , 
and can be incremented after writes are performed to a page , 
and then initialized back to zero when the write done pointer 
advances beyond the page . In an example , the write done 
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pointer can be advanced using the conditions and calcula 
tions shown in 508 , as explained in detail below . 
[ 0054 ] Executing the write operation can also optionally 
include , at 408 , allocating additional pages of memory from 
the memory pool to the FIFO queue . In an example , GPU 12 , 
e.g. , via a compute shader or other thread performing FIFO 
queue write operations , can be configured to allocate the 
additional pages memory from the memory pool to the 
growable FIFO queue ( e.g. , by using functionality provided 
by the FIFO queue manager 74 ) . In one example , the GPU 
12 can allocate the additional pages of memory based on a 
location of the write allocation pointer . For example , where 
the write allocation pointer achieves a threshold , the GPU 12 
can allocate an additional page ( or pages of memory ) out of 
the memory pool ( e.g. , memory pool 82 ) , which can occur 
via the write thread that detects the write allocation pointer 
achieving the threshold . For example , this threshold for the 
write allocation pointer may correspond to a memory loca 
tion located in a page in or before a last memory page in the 
list of page addresses 212. For example , the threshold may 
be a last memory position in the second to last memory page 
in the list of page addresses 212 , a memory location at 
another position in the second to last page ( or last page ) , etc. , 
such that the memory can be allocated and assigned to the 
FIFO queue before other write threads attempt to allocate a 
memory position beyond the last page currently assigned to 
the FIFO , without those other threads having to wait for the 
allocation before writing to the additional memory 
resources . 

[ 0055 ] At 410 , method 400 can optionally include detect 
ing that the write operation achieves a threshold amount of 
memory . For example , the GPU 12 can be configured to 
detect that the write operation achieves the threshold amount 
of memory . In one example , this can include GPU 12 , or a 
write thread which is updating the write done pointer , or a 
dispatcher thread ( e.g. , a FIFO queue work - launching pro 
gram 330 ) that manages the writing and / or reading opera 
tions , detecting that the write operation achieves the thresh 
old amount of memory . This can be based on , for example , 
determining that the write done pointer for the FIFO 
achieves a threshold ( e.g. , as compared to the read allocation 
pointer or otherwise ) . In one example , threshold can be 
based on a priority indicated for the FIFO , such that higher 
priority FIFOs can have the threshold detected before lower 
priority FIFOs . For example , this threshold amount of 
memory can be set to ensure enough data is written to the 
FIFO to justify executing a read operation using multiple 
read threads of the GPU 12 , as described in further detail 
below ( e.g. , such that no threads , or only a maximum portion 
of threads , are not used during the read operation ) . 
[ 0056 ] In one example , the dispatcher thread can loop 
through the FIFO queues to determine whether to start 
reading from one or more of the FIFO queues ( e.g. , based on 
whether the write done pointer achieves the threshold ) . In 
another example , one or more of the write threads can notify 
the dispatcher thread that data is available for reading , which 
may be a notification sent from the write thread after it 
updates the write done pointer . In a specific example , the 
dispatcher thread can monitor , via one or more processors of 
the GPU 12 and / or CPU 34 , the write done pointers asso 
ciated with one or more FIFO queues , and in response to the 
presence of data that has been written but not consumed , the 
dispatcher thread can perform various operations . Such 
operations may include allocating some or all written data 

for consumption based on the parameters and conditions 
specified at FIFO queue initialization time . On the state of 
the write done pointer indicating how much data has been 
written to each FIFO queue , and based on the amount of data 
which has already been allocated for consumption ( e.g. , 
based on a read allocation pointer ) , the dispatcher thread can 
invoke execution of one or more threads of a shader program 
( e.g. , a data - consumption shader program 320 ) to be 
executed in a parallel manner on GPU 12 , as described 
below in action 412. In addition , the dispatcher thread may 
optionally provide information to the shader program such 
as an identifier for the FIFO queue that stores the data , the 
starting or base address of the data to be consumed , or an 
index from which the base address can be derived , in 
combination with the FIFO queue ID , the number of ele 
ments of data to be consum umed , and / or the like . 
[ 0057 ] In either case , at 412 , method 400 can include 
executing , via parallel execution of multiple read threads of 
a GPU , a read operation to read data from the memory 
locations in the multiple pages of memory . For example , the 
GPU 12 can be configured to execute , via parallel execution 
of multiple read threads of the GPU 12 , the read operation 
to read data from the memory locations in the multiple pages 
of memory . For example , GPU 12 can execute ( e.g. , via 
FIFO queue work - launching program 330 ) one or more 
compute shaders to perform the read operation to read data 
from the FIFO queue , as described herein . For example , the 
one or more compute shaders can execute a fixed set of 
threads , such as 64 threads executing in parallel , to perform 
the read operation . Each of the multiple threads can read 
some data from the FIFO queue . which may include each 
read thread performing a data - consumption shader program 
( e.g. , data - consumption shader program 320 defined above ) 
to pop data to be read from the FIFO queue ( e.g. , via FIFO 
queue pop / dequeue address - generation routine 322 ) , con 
sume the popped data ( e.g. , via data - consumption routine 
324 ) , and / or possibly free the data from the FIFO queue 
( e.g. , via FIFO queue data - free routine 326 ) including deal 
locating one or more pages of data from the FIFO queue 
( e.g. , via pool page - free routine 328 ) , as described above . 
[ 0058 ] For example , the GPU 12 can launch ( e.g. , via 
FIFO queue work - launching program 330 ) enough shaders 
to read the data written based on the write done pointer . For 
example , GPU 12 can determine the number of data ele 
ments to be consumed ( e.g. , as a number of bytes repre 
sented in a difference between the read allocation pointer 
and the write done pointer ) , and then can launch one or more 
read threads to consume each data element , and / or it can 
launch one or more threads ( such as a wave , or threadgroup , 
or portion of such ) that can cooperate to consume a batch of 
data elements ( such as a part or whole portion of a page filled 
with data ) . The size of the batch of data to be consumed , and 
the number of threads to launch to consume each batch of 
data , can be specified by Application 46 , or by some other 
mechanism . In another example , the dispatcher thread can 
launch threads to read the data until a read thread is unable 
to advance the read allocation pointer ( e.g. , once the read 
allocation pointer reaches the write done pointer ) . 
[ 0059 ] For example , to facilitate this operation , each FIFO 
queue may include pointers to its corresponding pages in the 
memory pool ( e.g. , page addresses 212 ) , as well as a read 
allocation pointer ( e.g. , read allocation pointer 220 ) to track 
where data has been assigned for reading in a given page of 
memory , and / or a read done pointer ( e.g. , read done pointer 
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222 ) to indicate a point before which all data has been fully 
read and consumed , and / or an array of counts of bytes or 
elements consumed on each page ( e.g. , Read Done Counters 
226 ) . As described further herein , the read allocation pointer 
can allow each thread to determine where to read its data , 
and each thread , upon determining the read allocation 
pointer , can advance the read allocation pointer to a next 
memory location for reading data ( e.g. , for use by another 
thread ) . The acts of reading and advancing the read alloca 
tion pointer can be performed together simultaneously 
( atomically ) , e.g. , by Atomic / Interlocked Operation Hard 
ware 63 , in order to avoid race conditions that would 
otherwise happen with multi - threaded execution . 
[ 0060 ] In addition , once the data is read , the thread may 
advance a read done pointer . In one example , this can be 
performed based on a read done tracker , which can include 
an array of counters 226 ( e.g. , one per page or per segment 
of the FIFO queue ) indicating how many bytes or data items 
have been consumed from each page or segment of the FIFO 
queue . For example , the read done tracker's counters can be 
zero initialized with the FIFO at the time of initialization , 
and can be incremented as reads are performed for a page , 
and then initialized back to zero when the read allocation 
pointer advances beyond the page . When the read done 
counter reaches a threshold that indicates that all data 
allocated for reading on a page has been fully read ( e.g. , and 
thus that the page has been entirely filled with data ) , which 
can be determined by comparing the read counter with the 
read allocation pointer , this can indicate that the read done 
pointer may be updated ( e.g. , by a read thread or the thread 
dispatcher ) based on the read done tracker . To determine the 
new read done pointer value , the thread may read the 
counters of the read done tracker , starting from the counter 
corresponding to the page associated with the previous value 
of the read done pointer , and ending with the first counter 
indicating that data on the corresponding page has not been 
fully written and / or consumed , and then updating the read 
done pointer to that location , similarly to the conditions and 
operations performed for updating the write done pointer 
which are shown in action 508 of method 500 in FIG . 5 . 
[ 0061 ] In one example , the invoked shader programs can 
perform operations such as retrieving data from a specified 
portion of the specified FIFO queue , where the specified 
portion can be indicated to the shader program by the 
dispatcher thread . The operations can also optionally include 
updating a counter indicating portions of the FIFO queue 
have been read ( e.g. , a read done counter 226 ) , freeing newly 
unused portions of the FIFO queue to be reused , or freed to 
a pool , as described in further detail below , performing 
calculations or memory requests based on data retrieved 
from the FIFO queue , performing write operations to append 
data to one or more other FIFO queues , updating a pointer 
( e.g. , a write allocation pointer and / or write done pointer ) 
indicating data has been appended to the one or more other 
FIFO queues and is ready for consumption , etc. In another 
example , if data was written to one or more FIFO queues , 
the data - consumption shader program 330 that wrote the 
data can also notify the dispatcher thread or threads that data 
has been written to one or more specific FIFO queues . 
[ 0062 ] Executing the read operation can also optionally 
include , at 412 , deallocating one or more pages of memory 
to the memory pool . In an example , GPU 12 , e.g. , via a 
compute shader or other thread of execution managing the 
read threads , can be configured to deallocate the one or more 

pages of memory from the memory pool ( e.g. , by using 
functionality provided by the FIFO queue manager 74 ) . In 
one example , the GPU 12 can deallocate the one or more 
pages of memory based on a location of the read done 
pointer . For example , where the read done pointer achieves 
a threshold , which may correspond to the end of a page , the 
GPU 12 can deallocate the page ( and optionally some 
number of preceding pages in memory ) , back to the memory 
pool ( e.g. , memory pool 82 , which can add the page or pages 
( e.g. , pointers thereto ) to free page list 204 ) . For example , 
this can occur via the read thread that detects the read done 
pointer achieving the threshold . For example , the threshold 
for the read allocation pointer may be a memory location in 
a second page or other subsequent page in the list of page 
addresses 212 , which can indicate that the first page or other 
prior pages , have been read . Freeing the memory back into 
the memory pool in this regard can allow for reuse of the 
memory for other FIFO queues such to conserve resources 
over previous memory management for executing graphics 
processes . In another example , the operation of freeing 
pages to the pool 82 can be based solely on the associated 
counter 226 in the read done tracker passing a threshold . For 
example , once all data on a page is consumed , the page may 
be freed to pool 82 immediately ( or otherwise based on 
detecting that all data on the page is consumed ) , even if data 
in preceding pages of the FIFO queue has not yet been 
consumed or freed . 
[ 0063 ] Referring to FIG . 5 , one example of a method 500 
for operating a GPU 12 to write data to memory resources 
is illustrated . For example , method 500 can be performed by 
each write thread in a group of multiple write threads 
executing in parallel , as described herein . In one example , 
hardware - specific optimizations can be performed , such as 
coalescing requests to the Atomic / Interlocked Operation 
Hardware 63 , arranging data structures to tune for device 
caching behavior / bus arrangement , etc. before performing 
operations described in method 500 . 
[ 0064 ] At 502 , method 500 includes obtaining and 
advancing a write allocation pointer . In an example , GPU 12 
can be configured to , e.g. , via a compute shader or other 
construct executing a write thread , FIFO queue push / en 
queue routine 314 , etc. , to obtain and advance a write 
allocation pointer . For example , the GPU 12 can initialize a 
group of threads to write data into the FIFO queues . Thus , 
the GPU 12 can provide the data for writing , and can 
initialize the group of threads via a FIFO queue work 
launching program 330 or command processor 64 that can 
manage writing and reading of data to / from the queues . For 
example , the given write thread can obtain the current write 
allocation pointer 216 and can advance the write allocation 
pointer 216. This may include performing an atomic opera 
tion to both obtain and advance the write allocation pointer 
216 ( such as by an instruction or request to Atomic Opera 
tion Hardware 63 ) . Thus , for example , once the operation to 
advance the write allocation pointer succeeds , the thread can 
determine the write allocation pointer to use in writing its 
data ( e.g. as the write allocation pointer 216 value before the 
increment or advance procedure succeeded ) . Moreover , as 
described , the write allocation pointer 216 can track memory 
locations as a function of a memory unit size for the FIFO 
queue , and thus the write allocation pointer 216 can be 
incremented by 1 ( e.g. , 1 memory unit size ) by a given write 
thread , and the address can be resolved by at least one of 
subdividing the write allocation pointer into portions repre 
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senting the memory page index , and offset within the page , 
looking up the memory page's address based on the index , 
and adding the offset multiplied by the memory unit size , 
etc. Once the write allocation pointer 216 is advanced , a next 
write thread can determine its write allocation pointer 
address and advance , and so on . This is so because advanc 
ing the pointer is “ atomic ” operation , and many threads or 
groups of threads can have an outstanding “ obtain and 
increment ” request outstanding at a time . Thus , while the 
GPU 12 itself processes these requests in order , the threads 
may not need to wait for other threads directly . Thus , no 
spinning or locking may be required . 
[ 0065 ] In addition , in an example , where a write thread 
advances the write allocation pointer 216 beyond a last 
allowable page ( e.g. , overflow ) , the write thread can perform 
an atomic subtract to set the write allocation pointer 216 to 
element zero of page zero . The other write threads that 
retrieve a write allocation pointer in the overflowed state 
( e.g. , after the write allocation pointer overflows but before 
the write allocation pointer is fixed up by the atomic 
subtraction ) , can perform a local subtract of their retrieved 
write allocation pointer 216 to offset from element zero of 
page zero . For example , if 1024 pages are allowed , and each 
page allows 512 elements , then both the atomic subtract 
operation and the local subtractions may subtract by a value 
of 1024 * 512 , or 524288. In another example , if it is desired 
to track how many times the write allocation pointer has 
wrapped , then after the write allocation pointer crosses a 
threshold that is a specified multiple N of the number of 
pages P times the number of elements E per page , then 
subtractions of N * P * E may be performed after the write 
allocation pointer crosses a threshold of N * P * E ; and the 
number of times wrapping ( modulo N ) can be calculated by 
dividing the write allocation pointer by P * E . 
[ 0066 ] In one example , the dispatcher thread can initiate 
an ordered write ( or push to the FIFO queue ) by both reading 
and advancing the write allocation pointer 216 , and then 
indicating , to each write thread , the original value of the 
write allocation pointer 216 and a thread identifier . Thus , 
each write thread can deduce its write allocation pointer 216 
for writing the data to the FIFO queue , as described above , 
as an offset from the indicated write allocation pointer based 
on the thread identifier . 
[ 0067 ] At 504 , the method 500 includes allocating another 
page of memory to the FIFO queue if the write allocation 
pointer , as advanced , achieves a threshold memory location . 
In an example , GPU 12 can be configured to , e.g. , via a 
compute shader or other construct executing a write thread 
that can utilize the FIFO queue manager 74 , pool page 
allocation routine 316 , etc. , allocate another page of memory 
to the FIFO queue if the write allocation pointer 216 , as 
advanced , achieves a threshold memory location . Thus , this 
operation can be performed by the write thread that detects 
the write allocation pointer 216 achieving the threshold to 
ensure the allocation occurs one time for the multiple write 
threads . In addition , the threshold can be set so allocation 
occurs before the memory is actually needed for writing , so 
threads do not have to wait for allocation before writing data 
( e.g. , a memory location in a second to last page in the list 
of memory page addresses 212 , a memory location within 
the last page that is before the end of the page , such as a 
center memory location , etc. ) . 
[ 0068 ] At 506 , the method 500 includes writing data to a 
memory location of the obtained write allocation pointer . In 

an example , GPU 12 can be configured to , e.g. , via a 
compute shader or other construct executing a write thread , 
write data to the memory location calculated from the 
obtained write allocation pointer . For example , for a non 
growable FIFO queue ( such as a ring buffer ) , the address 
may be calculated by adding a base address to a product of 
the write allocation pointer ( modulo the number of items 
allowed in the ring buffer ) , times the size in bytes of items 
written to the ring buffer . Or in another example , in a 
growable ring buffer , the address may be calculated by 
extracting a portion of the obtained write allocation pointer 
corresponding to a page index , and looking up a page 
address from that index , and adding that address to a 
remaining portion of the returned write allocation pointer . 
[ 0069 ] For example , the data to write can be produced by 
a data - production routine 312 , which may include data 
related to graphics processing ( e.g. , data or instructions 
related to rendering graphics , ray - tracing graphics , etc. ) . In 
this example , as each write thread has a separate value for 
the obtained write allocation pointer 216 , as described , any 
of the write threads can write data to the FIFO queue in 
parallel at the addresses calculated from their unique values 
obtained from write allocation pointer 216 . 
[ 0070 ] At 508 , the method 500 optionally includes 
advancing the write done pointer to a next memory location 
following the one or more memory locations where the data 
is written . In an example , GPU 12 can be configured to , e.g. , 
via a compute shader or other construct executing a write 
thread , FIFO queue write - done update routine 318 , etc. , 
advance the write done pointer 218 to the next memory 
location following the one or more memory locations where 
the data is written . In another example , one or more of the 
write threads , or a dispatcher thread , can advance the write 
done pointer by the number of write threads once the threads 
have completed , or can advance by a write done counter 224 
value . In yet another example , this may include the write 
thread ( e.g. , a detected last write thread or otherwise ) 
notifying the dispatcher thread that data has been written to 
the FIFO queue . In another example , the write thread can 
also increment a write done counter 224 , as described . 
[ 0071 ] In a specific example , advancing the write done 
pointer at action 508 may include , at 510 , incrementing the 
write done counter that corresponds to the page written . In 
an example , GPU 12 can be configured to , e.g. , via a 
compute shader or other construct executing a write thread , 
FIFO queue write - done update routine 318 , etc. , increment 
the write done counter 224 that corresponds to the page 
written . In this example , at 512 , it can be determined 
whether the write done counter indicates that all data has 
been fully written to the page . In an example , GPU 12 can 
be configured to , e.g. , via a compute shader or other con 
struct executing a write thread , FIFO queue write - done 
update routine 318 , etc. , whether the write done counter 
indicates all data has been fully written to the page . For 
example , this can include determining whether the write 
done counter is equal to a value representing a maximum 
number of items that can be written to the page . 
[ 0072 ] Where the write done counter indicates that all data 
has been fully written to the page , at 514 , a mutex or other 
synchronization primitive can be acquired . In an example , 
GPU 12 can be configured to , e.g. , via a compute shader or 
other construct executing a write thread , FIFO queue write 
done update routine 318 , etc. , acquire the mutex or other 
synchronization primitive such as a “ No - Spin Mutex ” 710 . 
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In an example , this can be accomplished using atomic / 
interlocked operation hardware 63 , as described . In this 
example , at 516 , all write done counters can be iterated 
through from the page of the current write done pointer , up 
to the page of the write allocation pointer until an incomplete 
page is reached . In an example , GPU 12 can be configured 
to , e.g. , via a compute shader or other construct executing a 
write thread , FIFO queue write - done update routine 318 , 
etc. , iterate through all write done counters 224 from the 
page of the current write done pointer 218 up to the page of 
the write allocation pointer 216 until the incomplete page is 
reached . For example , this can include determining an 
incomplete page as having a write done counter not equal to 
the number of items that can be written to a page . 
[ 0073 ] At 518 , where the write done counter of the incom 
plete page matches the write allocation pointer , the write 
done pointer can be updated to match the write allocation 
pointer , and can return at 520. In an example , GPU 12 can 
be configured to , e.g. , via a compute shader or other con 
struct executing a write thread , FIFO queue write - done 
update routine 318 , etc. , can , where it determines that the 
write done counter 224 matches the write allocation pointer 
216 , update the write done pointer 218 to match the write 
allocation pointer 216 . 
[ 0074 ] At 522 , where the write done counter of the incom 
plete page does not match the write allocation pointer ( i.e. , 
if one page has been newly completed , but another page has 
some space allocated for writes , which writes have not yet 
completed ) the write done pointer can be updated to point to 
the end of the newest completed page , and the code can 
return at 520. In an example , GPU 12 can be configured to , 
e.g. , via a compute shader or other construct executing a 
write thread , FIFO queue write - done update routine 318 , 
etc. , if the pages have been newly completed , update the 
write done pointer 218 to point to the end of the newest 
completed page of memory . 
[ 0075 ] Where the write done counter does not indicate that 
all data has been fully written to the page at action 512 , at 
524 , it can be determined whether the current write alloca 
tion pointer matches the corresponding location in the write 
done counter . In an example , GPU 12 can be configured to , 
e.g. , via a compute shader or other construct executing a 
write thread , FIFO queue write - done update routine 318 , 
etc. , determine whether the current write allocation pointer 
216 matches the corresponding location in the write done 
counter 224. If not , this can indicate that there is more 
writing to be performed , and the action 508 can return at 
520. Or if so , action 508 can proceed to 514 to acquire the 
mutex and begin iterating through counters , as described . 
[ 0076 ] Referring to FIG . 6 , one example of a method 600 
for operating a GPU 12 to read data from memory resources 
is illustrated . For example , method 600 can be performed by 
each read thread in a group of multiple read threads execut 
ing in parallel , as described herein . 
[ 0077 ] At 602 , method 600 includes obtaining and 
advancing a read allocation pointer . In an example , GPU 12 
can be configured to , e.g. , via a compute shader or other 
construct executing a read thread , FIFO queue pop / dequeuer 
address - generation routine 322 , etc. , obtain and advance the 
read allocation pointer . For example , the GPU 12 can 
initialize a group of threads to read data from the FIFO 
queues . In one example , the GPU 12 can determine to 
execute the group of threads based on the write done pointer 
218 , as described ( e.g. , via a FIFO queue work - launching 

program 330 that can manage threads that perform the 
writing and reading of data to / from the queues ) . For 
example , the given read thread can obtain the current read 
allocation pointer 220 and can advance the read allocation 
pointer 220. This may include performing an atomic opera 
tion to both obtain and advance the read allocation pointer 
220. Thus , for example , once the operation to advance the 
read allocation pointer succeeds , the thread can determine 
the read allocation pointer to use in reading its data ( e.g. as 
the read allocation pointer 220 value before the increment or 
advance procedure succeeded ) . Moreover , as described , the 
read allocation pointer 220 can track memory locations as a 
function of a memory unit size for the FIFO queue , and thus 
the read allocation pointer 220 can be incremented by 1 by 
a given read thread , and the address can be resolved by 
subdividing the read allocation pointer into portions repre 
senting the memory page index , and offset within the page , 
looking up the memory page's address based on the index , 
and adding the offset multiplied by the memory unit size . 
Once the read allocation pointer 220 is advanced , a next read 
thread can determine its read allocation pointer address and 
advance , and so on . 
[ 0078 ] In another example , at step 602 , FIFO queue work 
launching program 330 ( or other dispatcher thread ) can read 
a Write Done pointer ( via 332 ) and perform a multi - element 
allocation 334 to obtain and update read allocation pointer 
220 , then launch a set of shader threads and pass the old 
copy of the read allocation pointer to the shaders . 
[ 0079 ] In one example , modes of FIFO Queue processing 
can be provided for reading the data where reading of the 
data may occur simultaneously with writing of data from a 
different option of the same FIFO queue — or a mode may 
exist where reading and writing simultaneously is not 
allowed . 
[ 0080 ] At 604 , the method 600 includes reading data from 
the memory location of the obtained read allocation pointer . 
In an example , GPU 12 can be configured to , e.g. , via a 
compute shader or other construct executing a read thread , 
data consumption routine 324 , etc. , read data from the 
memory location of the obtained read allocation pointer . 
Thus , as each read thread has a separate value for the 
obtained read allocation pointer 220 , as described , any of the 
read threads can read data from the FIFO in parallel at their 
corresponding read allocation pointer 220 addresses . In 
another example , the read thread can also increment a read 
done counter 226 , as described . 
[ 0081 ] At 606 , the method 600 includes advancing the 
read done pointer to a next memory location following the 
one or more memory locations from which the data is read . 
In an example , GPU 12 can be configured to , e.g. , via a 
compute shader or other construct executing a read thread , 
FIFO queue data - free routine 326 , etc. , advance the read 
done pointer 222 to the next memory location following the 
one or more memory locations from which all data has been 
read by one or more read threads . In one example , a counter 
of completed reads per page is maintained ( e.g. , read done 
counters 226 ) , such that any time a read thread completes a 
read , it increments the appropriate counter ; when a thread 
determines that it has completed the last read on a page , it 
can update the read done pointer 222 to point to the 
beginning of the next page of memory , after verifying that 
data has also been read from any previous pages ( e.g. , by 
reading the read done pointer 222 and / or previous page read 
counters 226 ) . In another example , when a thread deter 
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mines that it has completed the last read that has been 
initiated , e.g. , because the outstanding read counter on a 
page matches the number of reads which have been initiated 
on the page , and the read done pointer points to that page , 
the read done pointer can be updated to point to the read 
allocation pointer . 
[ 0082 ] At 608 , the method 600 optionally includes deal 
locating a page of memory if the read done pointer , as 
advanced , achieves a threshold memory location . In an 
example , GPU 12 can be configured to , ( e.g. , via a compute 
shader or other construct executing a read thread that can 
utilize the routines of the FIFO queue manager 74 , such as 
pool page - free routine 328 , etc. ) deallocate a page of 
memory if the read done pointer 222 , as advanced , achieves 
a threshold memory location . Thus , this operation can be 
performed by the read thread that detects the read done 
pointer 222 achieving the threshold to ensure the dealloca 
tion occurs one time for the multiple read threads . In 
addition , the threshold can be set to ensure an entire page is 
read before it is freed back to the memory pool 82 , to prevent 
data corruption in reading the page . In addition , this can 
include marking the page for deallocation ( e.g. , where 
another thread , such as a dispatcher thread , can actually 
process the deallocation ) . 
[ 0083 ] In one example , the dispatcher thread can initiate 
an ordered read ( or pop from the FIFO queue ) by retrieving 
and advancing the read allocation pointer 220 , and then 
indicating , to each read thread , the initial value of the read 
allocation pointer 220 along with a thread identifier . Thus , 
each read thread can deduce its read allocation pointer 220 
for reading the data from the FIFO queue , as described 
herein , as an offset from the indicated read allocation pointer 
based on the thread identifier . In this example ( when ordered 
reads are used ) , a dispatcher thread can advance the read 
done pointer by the number of threads once the threads have 
completed , or the consumer threads can perform the update 
of the read done pointer as previously described . 
[ 0084 ] In one example , the dispatcher thread can initiate 
threads that perform both one or more ordered read opera 
tions and / or one or more ordered write operations , from one 
or more FIFO queues , by examining and advancing the 
associated read allocation pointers 220 and / or write alloca 
tion pointers 216 , and passing the original values as inputs 
to the shader threads . 
[ 0085 ] In another example , a number of items written per 
page can be tracked via write done counters 224 in the write 
threads , as can a number of items read per page via read 
done counters 226 in the read threads . These counters can be 
updated via atomic instructions . In this example , a dis 
patcher thread , or some other thread such as might be 
executing the consumption shader program 320 , can com 
pare the counter values to determine when the page has been 
fully written and read , and can use this information to 
determine when to deallocate the page . For example , when 
a thread updates a page's read done counter 226 , it can 
compare it to a threshold indicating that all data in the page 
has been read ( and therefore , by assumption , was also first 
written ) and therefore , the page can be freed by the thread , 
or be marked by the thread to be freed by some other thread 
at a later time . 
[ 0086 ] Additionally , other modes of FIFO Queue process 
ing can be provided ( in addition to , or in combination with 
the above ) where excessive read requests can be detected 
( e.g. , where the read threads attempt to access beyond the 

write done pointer ) and / or where excessive write requests 
can be detected ( e.g. , where the FIFO queue is full , but a 
thread attempts to push additional data into it ) . Additional 
modes can also be provided ( in addition to , or in combina 
tion with the above modes ) where FIFOs are growable or not 
growable . In this example , the application 46 or FIFO queue 
manager 74 or other software may select a mode or com 
bination of modes for a FIFO queue or collection of FIFO 
queues , in order to determine behavior of shaders and other 
threads or programs which will initialize , manage and / or use 
the growable FIFOs . 
[ 0087 ] FIGS . 7 and 8 illustrate a hierarchy of objects / 
classes used to build a non - growable FIFO queue , a memory 
pool , and a set of growable FIFO queues backed by an 
associated memory pool , as described above . For example , 
various components can be provided by the application 
shader programs 73 , FIFO queue manager 74 , shader pro 
cessor core ( s ) 68 and / or other hardware and / or software 
components of the GPU 12 , CPU 34 , etc. as building blocks 
for providing the growable FIFO queue 704 and / or related 
functionality described herein . Each growable FIFO queue 
704 can include growable FIFO queue descriptor 720 
describing a status , contents , etc. of , and / or to facilitate 
writing data to and / or reading memory from , each growable 
FIFO queue . In an example , the growable FIFO queue 
descriptors 720 may include a write / append manager 722 
having a write allocations pointer 726 , write done counters 
728 , write done pointer 730 , no - spin mutex 732 , etc. , as 
described . In addition , in an example , the growable FIFO 
queue descriptors 720 may include a read / consume manager 
724 having a read allocations pointer 740 , read done coun 
ters 742 , read done pointer 744 , no - spin mutex 732 , etc. , as 
described . In addition , in an example , the growable FIFO 
queue descriptors 720 may contain a list of pages 750 used 
by ( or assigned to ) the growable FIFO queue , where each 
page referenced ( by pointer , index , address , etc. ) by the list 
750 is associated with a memory pool 82 associated with the 
growable FIFO queue . 
[ 0088 ] For example , a Multi - threaded , Wrappable Vari 
able 706 can be provided . This can be a building block for 
the read allocation pointer 808 ( also referred to herein as the 
“ Read - Alloc Pointer ” ) of a fixed - size FIFO queue 802 
described in FIG . 8 , and write allocation pointer 806 ( also 
referred to herein as the “ Write - Alloc pointer ” ) for use by 
various read and write threads , as described above . The 
Multi - threaded , Wrappable Variable 706 can also be used as 
a building block of the Multi - Page Data Index 708 , which is 
described below . The Multi - threaded , Wrappable Variable 
706 can exist in memory , and many threads can increment 
it simultaneously , using atomic / interlocked operation hard 
ware 63. The Multi - threaded , Wrappable Variable 706 can 
have a certain number of bits B ( where B can be 32 , but 
could be other values ) . There can be a “ wrap point ” , or a 
“ maximum valid value ” M selected , such that O < M , and 
2 * M < = 2 ̂^ B ( 2 to the power of B ) . If a thread T ( e.g. , a read 
thread or a write thread ) increments the wrappable variable 
( e.g. , as part of advancing the corresponding read or write 
allocation pointer ) such that it crosses from < M to > = M , the 
thread T can be responsible for performing an atomic 
operation to subtract M from the variable . The code 
executed by all threads that read V ( without incrementing it ) 
may occasionally receive a value of V that is > = M , in which 
case those threads may subtract M from their obtained value , 
before using the results for various calculations . Addition 
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ally , the code executed by all threads that increment V may 
be designed in such that when some thread T causes V to 
cross the boundary from < M to > = M , these other threads 
may not be allowed to increment V to a value > = M * 2 , before 
the first thread adjusts the value to a value < M . For instance , 
where B is 32 , M may be 89473024 ( 5461 * 16384 , as may 
be the case where a Growable FIFO is capable of storing 
12 - byte data elements into up to 16384 unique 65536 - byte 
pages ) . 
[ 0089 ] In addition , a Multi - Page Data Index 708 can be 
provided , which can be a building block for the Read - Alloc 
Pointer 740 and a Write - Alloc Pointer 726 of the growable 
FIFO queue 704. These pointers ( which indicate both a page , 
and indices of memory locations in a page ) can be incre 
mented by multiple threads simultaneously , can be con 
verted from a simple numeric representation ( which can be 
easily modified by atomics ) , into a page index , and an offset 
within that page , etc. For this Growable FIFO implementa 
tion , the Multi - threaded Wrappable Variable 706 described 
above can be used . For example , M can be set to the 
maximum allowed valid 
value = NumberOfPages * NumberOfUnique AllowedIndices 
In?Page . For example , if “ V ” is the name of the index in 
memory , then : PageIndex = V / NumberOfUnique Allowed 
IndicesInAPage , and Index Within ThePage is = V % Num 
berOfUnique AllowedIndicesInAPage . If M is a power of 2 , 
then the division ( / ) and modulo ( % ) operations can simplify 
to binary math . If M is not a power of 2 , then these 
operations ( where division and modulo instructions may not 
be available on a GPU ) can be simplified to simpler multi 
plication and shift operations , using commonly known algo 
rithms . 
[ 0090 ] In another example , a No - Spin Mutex 710 can be 
provided . There may be situations where a given task is to 
be performed occasionally , and multiple threads may ( e.g. , 
based on their own calculations ) determine that the task is to 
be performed . Especially in shader environments where 
there are thousands of active threads , it can be desirable to 
have a mechanism which allows threads to complete a given 
task , but that no thread waits ( e.g. , spins ) while attempting 
to start the work . The GPU 12 can provide a No - Spin Mutex 
by using a single DWORD . The FIFO queue manager 74 , 
application shader programs 73 , such as data - production 
shader program 310 , data - consumption shader program 320 , 
etc. , can implement or otherwise leverage operations for the 
No - Spin mutex 710 , such as : “ Try To Acquire ” ( which can 
return a value representing “ acquired ” or “ some other thread 
owns ” ) , and “ Try To Release ” ( which can return a value 
representing “ released ” or “ try the task again ” ) . TryToAc 
quire can perform an InterlockedIncrement of the control 
integer , and can return " acquired ” if the previous value was 
0 , or " some other thread owns ” if the previous value is > 0 . 
Try To Release can perform an InterlockedExchange of the 
control integer , exchanging it with 0. If the previous number 
was equal to 1 , then the release succeeded , and the task is 
completed . If the previous number was greater than 1 , this 
can indicate that another thread requested that the task be 
re - tried while the current thread was performing the task . If 
this is the case , the thread can re - call TryToAcquire . If that 
fails , this can indicate another thread has acquired the 
mutex , and can complete the task , so the current thread is 
done . If the new call to Try To Acquire succeeds , then the 
thread can loop back to perform the task again , call Try 
ToRelease again , and repeat . In an example , write / append 
manager 722 can include one or more no - spin mutexes 732 

to provide such functionality for one or more of the pointers , 
( e.g. , write done pointer 730 ) , etc. Moreover , in an example , 
read / consume manager 724 can include one or more no - spin 
mutexes 746 to provide such functionality for updating one 
or more of the pointers , ( e.g. , read done pointer 744 ) , etc. 
[ 0091 ] In another example , a Simple Ordered - Start - Unor 
dered - Completion Work Tracker can be provided ( which is 
approximately used as a building block of the Nested Work 
Completion Tracker 712 ) . This simple work completion 
tracker can contain a single work allocation counter ( indi 
cating how many work items have been initiated ) , a single 
work completion counter ( indicating how many work items 
have been completed , though not in any particular order ) , a 
work done pointer ( indicating how many consecutive work 
items , starting at the first , have been completed , and there 
fore can be used to determine how many consecutive results 
of the work item tasks can be consumed , or how many 
consecutive inputs to the work items can be discarded , etc. ) , 
and a no spin mutex which controls access to the work done 
pointer 
[ 0092 ] If there are a certain number of tasks to perform , 
FIFO queue manager 74 , application shader programs 73 , 
such as data - production shader program 310 , data - consump 
tion shader program 320 , etc. , can provide or utilize a simple 
Work Completion Tracker to assign work and track how 
many items have been completed . 
[ 0093 ] When a thread , ( such as one or more write threads 
executing in action 404 of method 400 , one or more read 
threads executing in action 412 of method 400 , etc. ) allo 
cates a work item ( or multiple work items ) , the thread can 
perform an InterlockedAdd ( or InterlockedIncrement ) on the 
WorkStarted counter . When a thread completes a work item , 
it can perform an InterlockedAdd ( or InterlockedIncrement ) 
on the Work Completed counter . The thread can then deter 
mine whether it just completed the last initiated work item 
or not , as for which the thread can re - read the current value 
of the Work Started Counter and compare this value to the 
new value of the Work Completed Counter . If the thread 
determines that these values are the same , the thread can 
attempt to quire the No - Spin Mutex , and either the thread 
or a different thread that already owned the mutex can then 
re - read the Work Started Counter and Work Completed 
Counter , and if the two values are equal , set the Work Done 
Pointer equal to the Work Completed Counter . For example , 
write / append manager 722 and / or read / consume manager 
724 can be implemented at least partially as a Simple Work 
Completion Tracker . The concepts used to build the Simple 
Work Completion Tracker can be used to build a Nested 
Work Completion Tracker 712 . 
[ 0094 ] In another example , a Nested Work Completion 
Tracker 712 can be provided , which can facilitate separating 
a large batch of work into smaller batches ( e.g. , in executing 
multiple write threads in action 406 or multiple read threads 
in action 412 of method 400 , and / or in corresponding 
methods 500 , 600 ) , where each batch can include more than 
one work item . This Tracker may use a Multi - Threaded 
Wrappable Variable 706 , or Multi - Page Wrappable Data 
Pointer 708 to track allocated work , a per - batch count of 
how many work items have been completed , optionally a 
per - batch “ Done ” pointer , a global " done ” pointer , and a 
mutex or other synchronization primitive such as a No - Spin 
Mutex ( see above ) . In allocating new work items , a thread 
can ( e.g. , via FIFO queue manager 74 , application shader 
programs 73 , such as data - production shader program 310 , 
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data - consumption shader program 320 , etc. ) increment the 
Wrappable Data Pointer ( and performing the associated 
wrapping ) . The thread that allocates a work item can be 
responsible for determining which batch the work belongs to 
( or which “ page ” , see the Multi - Page Data Pointer described 
herein ) . Once a work item is complete , the thread can be 
responsible for incrementing the appropriate per - batch Work 
Completed Counter , then performing similar operations as 
with the Ordered - Start - Unordered - Complete tracker . After 
acquiring the global mutex : the thread can be update the 
per - batch “ done ” counter , the thread can also check whether 
the “ global done pointer ” indicates all work on the page that 
that global pointer is pointing to or not . If so , the thread can 
scan through all batches after that , until it finds a batch that 
is not completely done , and can update the global done 
pointer to point to the appropriate point in that batch . One 
thread can do this work , so no other threads have to spin 
waiting on it . In one example , write / append manager 722 
and / or read / consume manager 724 can be implemented at 
least partially as a Nested Work Completion Tracker . 
[ 0095 ] In another example , referring to FIG . 8 , a Fixed 
Size FIFO queue 802 , also referred to as a Basic Ring Buffer 
Implementation , can be provided by the FIFO queue man 
ager 74 , application shader programs 73 , such as data 
production shader program 310 , data - consumption shader 
program 320 , etc. Implementing a Ring Buffer in a highly 
multithreaded environment , such as shaders on a GPU , can 
be accomplished using examples described herein . Fixed 
Size FIFO queue 802 includes a descriptor as described 
herein , and can also have an associated data buffer ( su 
might be described by a base address and a size ) . In an 
example , the data buffer might be used to store a list of 
addresses ( such as pool free page list descriptor 804 , which 
can indicate free memory pages in the free page list 204 ) or 
other graphics - related or non - graphics - related data . To work 
with the described features , the Fixed - Size FIFO queue 802 
can be split into segments ( or batches or pages ) of substan 
tially equal size . As similarly described with respect to the 
growable FIFO queue 704 above , in an example , one or 
more of the following can be used to provide the Fixed - Size 
FIFO queue 802 : a Multi - Page Data Index 708 or Multi 
threaded Wrappable Variable 706 for allocating space for 
writes , a Nested Work Completion Tracker 712 for writes 
( e.g. , write / append manager 722 ) , a Multi - threaded Wrap 
pable Variable 706 for allocating already - written data for 
reads , a Nested Work Completion Tracker 708 for reads 
( e.g. , a read / consume manager 724 ) , and one or more 
associated memory buffer ( s ) ( which may or may not be 
located in the memory pool 82 ) of a specified size to hold the 
data , etc. Note that all data written to a specific non 
growable FIFO queue's associated buffer can be of the same 
fixed size , though other FIFO queues may be used to contain 
data elements of a different size . Or if a non - growable FIFO 
queue contains multiple associated buffers , each buffer can 
have its own fixed unique or non - unique element size . In one 
example , where Multi - threaded Wrappable Variables 706 
are used to provide the pointers , such as Write - Alloc pointer 
806 and Read - Alloc Pointer 808 , there can be a conversion 
step to convert between the Multi - threaded Wrappable Vari 
able Pointers , and the actual address in the Fixed - Size FIFO 
queue 802 by scaling the multi - page data pointer based on 
the fixed size of the data to read / write , and offsetting the 
result by a base address associated with a buffer associated 
with the fixed - size FIFO queue . 

[ 0096 ] There can be multiple steps to use a Fixed - Size 
FIFO queue 802 , as described above . To write data , for 
example , a thread writing the data ( e.g. , the multiple write 
threads executing in action 406 of method 400 and / or in 
method 500 ) can , via application shader programs 73 , such 
as data - production shader program 310 , data - consumption 
shader program 320 , etc. , increment the Write - Alloc Pointer 
806 , and retrieve the previous value of it , convert the 
pre - incremented Write - Alloc Pointer 806 to an address to 
write the data , taking note of which “ batch ” of data is being 
written , write the data , and wait for its data to be guaranteed 
to be fully written and visible to other threads , increment the 
Nested Work Completion Tracker's appropriate per - batch 
done counter ( e.g. , one or more write done counters 728 ) , 
and take appropriate steps based on that ( e.g. , updating the 
Write Done Pointer 730 using steps described above ) . To 
read data , for example , a thread reading the data ( e.g. , the 
multiple read threads executing in action 412 of method 400 
and / or in method 600 ) can , ( via FIFO queue manager 74 , 
application shader programs 73 , such as data - production 
shader program 310 , data - consumption shader program 320 , 
etc. ) , follow similar steps as used for writing data , except use 
the Read - Alloc Pointer 808 , and the read - time work comple 
tion tracker ( e.g. , one or more read done counters 742 ) , 
instead of the “ write ” variants . In an example , however , code 
can be designed to prevent the Fixed - Size FIFO queue 802 
from entirely filling up , to prevent the write pointer from 
wrapping around and entering the same batch as the read 
pointer . For example , if the Fixed - Size FIFO queue 802 of 
1 megabyte ( MB ) is divided into 16 batches of 64 kilobytes 
( KB ) each , the program ( such as FIFO queue manager 74 , 
application shader programs 73 , data - production shader 
program 310 , data - consumption shader program 320 , etc. ) , 
can guarantee there is at least 64 KB of space between the 
read and write pointers . Also , in some examples , the pro 
gram ( such as FIFO queue manager 74 , application shader 
programs 73 , data - production shader program 310 , data 
consumption shader program 320 , etc. ) , can prevent request 
ing ( or reading ) of data that has not been fully written , and 
( for example ) return an error code . 
[ 0097 ] In another example , a Basic Pool Implementation 
for Shaders can be provided by the FIFO queue manager 74 
or some other library of GPU - executable code . A Pool can 
refer to a memory allocation subdivided into equally - sized 
chunks , which can be allocated , used , and then later freed 
( e.g. , returned to the pool ) , such as memory pool 82 , as 
described above . Using building blocks described above , a 
Pool for highly multithreaded environments like shaders can 
be implemented , such as FIFO queue manager 74 imple 
menting , providing and utilizing memory pool 82. An 
example pool implementation can include : a memory allo 
cation ( e.g. , such as initializing the memory at action 402 of 
method 400 ) , which is subdivided into equal - sized chunks , 
a Fixed - Size FIFO queue 802 ( which holds or manages Free 
Page list 204 ) , whose associated data buffer is large enough 
to hold a reference or pointer to each chunk of the pool , plus 
some extra padding specific to the Fixed - Size FIFO queue 
802 rules discussed earlier . Various operations can be per 
formed on the memory pool 82 such as initializing the pool 
( e.g. , at action 402 of method 400 ) , allocating pages from the 
memory pool ( e.g. , at actions 404 or 408 of method 400 ) , 
and freeing pages back to the pool ( e.g. , action 414 of 
method 400 ) , etc. 
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[ 0098 ] In an example , initializing the free page list of the 
pool may be performed by “ pushing ” one entry into the 
Fixed - Size FIFO queue 802 per chunk of the pool , which 
entry may include a pointer or index to that chunk of the 
pool . 
[ 0099 ] In an example , allocating from the pool can be 
done by “ popping ” one entry from the Fixed - Size FIFO 
queue 802. The data “ popped ” can include an index or 
pointer to the chunk or page of the pool which can be used . 
[ 0100 ] In another example , once a thread is done using the 
chunk of the pool it allocated , it can “ free ” by “ pushing ” the 
address or index of the pool chunk into the Fixed - Size FIFO 
queue 802. The pool's associated Fixed - Size FIFO queue 
802 can be referred to as the Free Page List , or the Free 
Chunk list . In some implementations , one or more pages of 
the pool can be pre - allocated to hold the free - page list itself . 
[ 0101 ] In another example , as described , a Growable FIFO 
queue 704 can be provided , as described herein . A standard 
Fixed - Size FIFO queue 802 implementation , or fixed - size 
FIFO queue 802 ( described earlier ) is of fixed size . A 
Growable FIFO queue 704 can be similar in implementation 
to the Fixed - Size FIFO queue 802 mentioned earlier , except 
that the buffer for holding the Growable FIFO queue's data 
may not be a fixed size . For example , the Growable FIFO 
queue 704 can start at an initial size , and then automatically 
can grow to fit the data that is “ pushed ” or enqueued into it , 
and / or can shrink as data is “ popped ” or dequeued out of it . 
A Growable FIFO queue 704 can be associated with a 
memory pool 82 ( as described earlier ) , whose " chunks ” or 
" pages " can be a reasonably large size ( such as 64 KB ) . 
These chunks can be allocated by the Growable FIFO queue 
implementation , via a FIFO queue manager 74 , application 
shader programs 73 , such as data - production shader pro 
gram 310 , data - consumption shader program 320 , etc. , in 
order to expand the FIFO queue size . In an example , when 
the FIFO queue data is consumed , empty pages can be 
returned to the pool . The Growable FIFO queue 704 can also 
include a similar tracking structure as was described for the 
Fixed - Size FIFO queue 802 ( namely , the Write - Alloc 
Pointer 726 , the Read - Alloc Pointer 740 , the nested write 
completion tracker ( e.g. , write done counters 728 ) , and the 
nested read - completion tracker ( e.g. , read done counters 
742 ) ) , but it additionally can contain a list of pages 750 that 
are used in the Growable FIFO queue . The list of pages 750 
can be large enough to hold some maximum number of 
pages , such as the number of pages in the associated pool , 
if the FIFO queue grows to that maximum size . This page 
list can be the same size , or smaller or larger than the number 
of segments tracked in the Write Done Counters 728 and / or 
Read Done Counters 742 . 
[ 0102 ] With Growable FIFO queues , the pages used to 
store the data may not be contiguous , as is the case with a 
Fixed - Size FIFO queue 802. In this example , the process of 
converting from a Multi - Page Data Index into a data 
address , can be different than is done for a fixed - size FIFO 
queue . The address can be calculated using a formula similar 
to the following : Address = Page AddressList [ PageIndex ] + 
OffsetInPage * DataElementSize ( where PageIndex and Off 
setInPage are calculated using the formulas listed in Multi 
Page Data Index ) . Note , the Growable FIFO queue 704 can 
be subdivided into pages , for growing / shrinking purposes . It 
also can be subdivided into segments ( as with the Fixed - Size 
FIFO queue 802 implementation ) , for " work completion " 
tracking . The segments can be the same size as pages , or 

they can be larger or smaller . Smaller segments , for 
example , can allow the “ done ” pointer to be updated more 
frequently , though there may be additional processing asso 
ciated with updating the " done " pointer . 
[ 0103 ] Implementing the Growable FIFO queue 704 can 
include pre - allocating new pages before they are needed , as 
described above . A threshold of memory utilization can be 
established , such that the thread which allocates data beyond 
that threshold , can allocate a new page in the memory pool 
82 , and add the page's address into the page list . The 
threshold can be set to balance a desire that other threads do 
not spin waiting for the page allocation to be completed , 
with conserving memory space . In one example , when the 
Growable FIFO queue 704 is initialized , an appropriate 
number of pages can be pre - allocated . If ( for example ) the 
pre - allocation threshold is set at a distance D pages ahead , 
where 1 < D < = 2 , then 2 pages can be pre - allocated , for 
example . 
[ 0104 ] In another example , an optimization can be avail 
able to Growable FIFO queue 704 in that pages can be freed 
out of order . With a Fixed - Size FIFO queue 802 , there may 
be a per - segment read done counter , and there can be the 
global read done pointer , which is updated whenever the 
oldest per - segment read done pointer is updated . But with 
growable FIFO queues , in some cases , the global read done 
pointer may not be used . For example , if growable FIFO 
queue is initialized such that it has a maximum size of P 
bytes ( e.g. , P = 1 GB ) , any page allocated for writes may be 
freed before P additional bytes are allocated for writing by 
that FIFO . Removing the global read done pointer can allow 
a popping operation to become more efficient . In this situ 
ation , a page is freed when its associated read done counter 
reaches a threshold indicating that all data on the page has 
been fully consumed ( and therefore that the page was first 
fully filled with data ) . 
[ 0105 ] In another example , Error handling on Underflow 
can be provided . For example , when using Fixed - Size FIFO 
queue 802 or Growable FIFO queue 704 , underflow may 
occur where a thread requests more data than has been 
completely pushed . To handle such conditions , for example , 
a shader executing the multiple write threads ( e.g. , at action 
406 of method 400 and / or method 500 , using a data 
production shader program 310 , etc. ) or read threads ( e.g. , at 
action 412 of method 400 and / or method 600 , using a 
data - consumption shader program 320 , etc. ) can fire an 
interrupt , or send a message to a CPU 34 or other processor 
by some other mechanism , to notify it that the memory pool 
82 may be corrupted . In another example , a shader can 
assume that the threads pushing the data are active but 
delayed , which can result in the thread which is popping ( or 
reading ) the data to spin waiting for the push ( or write ) to be 
complete , before attempting to access the data at the 
returned address . In another example , FIFO queue manager 
74 , application shader programs 73 , such as data - production 
shader program 310 , data - consumption shader program 320 , 
etc. , can allow a mode where the FIFO is either in “ append ” 
mode or " consume ” mode , but not both simultaneously . In 
this example , if a “ pop ” command is received , to pop ( or 
read ) data which is not present , the thread can just patch the 
Read - Alloc Pointer to set it equal to the Write Done Pointer . 
In another example , a shader program can implement an 
error handler where the retrieved Read - Alloc Pointer value 
( and potentially other data such as a FIFO ID ) is pushed into 
a dedicated error - logging Fixed - Size FIFO queue 802 ( or the 

22 
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error log can be a growable FIFO queue ) . Another thread can 
go back and read that error logging FIFO queue and process 
the missed data once it is present , in an example . 
[ 0106 ] In another example , an Array of Growable FIFO 
queues 704 can be provided by the FIFO queue manager 74 , 
application shader programs 73 , such as data - production 
shader program 310 , data - consumption shader program 320 , 
etc. Having multiple Growable FIFO queue 704 that share a 
memory pool 82 can be useful , because queue sizes can be 
determined on the fly , based on the data that the shaders 
encounter . The memory pool 82 , for example , can be sized 
to fit the largest amount of data expected ( plus some 
padding , due to the Growable FIFO queue pre - allocation 
functionality ) , and the FIFO queues can resize themselves 
within the memory pool . The implementation of a Growable 
FIFO queue array can be similar to many instances of a 
single Growable FIFO queue , and there can be some opti 
mizations provided by the FIFO queue manager 74 ( e.g. , in 
allocating pages of memory to the multiple FIFO queues in 
action 404 of method 400 ) to make it efficient on a GPU 12 . 
Because the 32 or 64 ( or other number of ) threads in a shader 
can typically execute the same instructions simultaneously , 
the GPU 12 hardware typically implements optimizations 
for when the threads read and write data in close proximity 
to other threads . In order to optimize for the situation where 
different threads all want to push data , but to different FIFO 
queues , components of the FIFO descriptors can be stored as 
arrays ( e.g. , a struct of arrays ) , rather than having an array 
of FIFO descriptors ( e.g. , an array of structs ) . For instance 
if there are 128 FIFO queues , the 128 Write - Alloc Pointers 
726 ( or Write - Alloc Pointers 806 for fixed - size FIFO queue 
802 ) can be kept in a 512 - byte array , followed by the 128 
Read - Alloc Pointers 740 ( or Read - Alloc Pointers 808 for 
fixed - size FIFO queue 802 ) in another 512 - byte array , 
followed by the No - spin Mutexes 732 , 746 in another array , 
and the Done pointers 730 , 744 in another array . In an 
example , the array of FIFO queues may include both Grow 
able and Non - Growable types . In this example , the two can 
be distinguished , and the appropriate style of “ push ” and 
" pop " code to execute can be selected to respectively write 
and read data to the FIFO queues . 
[ 0107 ] In another example , the FIFO queue manager 74 or 
other collections of shader code , hardware , software , or 
firmware , can provide mechanisms for reporting status to 
other portions of the GPU 12 and / or CPU 34. For example , 
the FIFO queue manager 74 can provide a New Work 
Summarizer . For example , it may be desirable for a shader 
to alert another component or program of the GPU 12 and / or 
CPU 34 ( such as the FIFO queue write - done monitor of 
Work Launching Program 330 , or the command processor 
64 , or the application 46 ) when new data is appended to a 
FIFO queue ( whether growable or not ) . In this example , a bit 
array can be allocated for this purpose , with one bit per FIFO 
queue in the array . When the write done pointer 730 is 
updated for FIFO # F , the shader can atomically set the 
corresponding bit # F in the array , indicating that new work 
is available in that FIFO queue . When other component ( s ) or 
program ( s ) of the GPU 12 and / or CPU 34 ( such as a 
write - done monitor 332 ) acknowledge that the new work has 
been observed and / or processed , the other component ( s ) can 
clear ( or request clearing of ) the corresponding bit ( e.g. , 
and / or can check for new work one additional time , after it 
clears the bit , to avoid a race condition ) . In many cases , 
summarizing the presence of new work in a bit array can be 

desirable over just having the external code scan through the 
array of Write Done Pointers , because the bit array for a 
large collection of FIFOs ( such as 128 ) can typically be read 
and scanned in a few instructions , where scanning an array 
of Write Done Pointers may require hundreds of instructions 
and memory requests . 
[ 0108 ] In another example , a New Work Prioritizer can be 
provided . In some situations , it can be desirable to prioritize 
new incoming work . For instance , on GPUs , it can be more 
efficient to launch shaders that have 64 active threads , 
instead of launching 64 shaders that each have one thread . 
Thus , when searching through FIFO queues to determine 
which FIFO queue to launch shaders to consume data from , 

be desirable to try to prioritize FIFO queues that can 
launch work in larger batches , in one example , but other 
consideration for prioritization may be possible as well , such 
as parsing data in depth - first order , etc. It can be beneficial 
to have an extra level of sorting and prioritization between 
the New Work Summarizer and the Auto - Dispatcher ( de 
scribed below ) or Work Launching Program 330. A thread , 
either in a shader , or on the CPU , or on some other processor 
on the GPU , or a piece of dedicated hardware , etc. , can 
periodically ( or due to a message or interrupt from the 
shaders ) perform an ordered scan the Write Done Pointers 
730 that have been updated ( possibly according to the first 
level of New Work Summarizer booleans ) , and categorize 
the new work based on various criteria ( index of the FIFO 
queue , amount of work pushed - but - not - popped , etc. ) . The 
work can then be prioritized into buckets , with one bit per 
FIFO queue per bucket . A highest - priority bucket can have 
an N - bit array , indicating which FIFO queues have data that 
are high - priority . A next - highest priority bucket can have an 
N - bit array , indicating which FIFO queues have data in that 
bucket , etc. A thread that prioritizes work , therefore can 
check for new work from the New Work Summarizer bits , 
read the Write Done Pointer 730 , and see how much new 
work is available on this FIFO queue ; set the appropriate bit 
in the appropriate priority bucket , and potentially clear the 
corresponding bit in other priority buckets , clear the appro 
priate New Work Summarizer bit , check the Write Done 
Pointer 730 again ( to avoid race condition ) , and repeat the 
past few steps if it changed . 
[ 0109 ] In another example , a Basic Auto - Dispatcher can 
be provided ( e.g. , a dispatcher thread , such as Work Launch 
ing Program 330 as described above , which may be execut 
ing on CPU 34 , GPU 12 , etc. ) . When data is pushed into 
various FIFO queues , it may be desired to have a mechanism 
to know how much data was written , and be able to launch 
shader threads to consume the data . For example , the FIFO 
queue work - launching program 330 can wait for all data to 
be written to a FIFO queue , then check how much data was 
written via the Write Done Pointer , then launch a sufficient 
threads to read the data . In another example , the Auto 
Dispatcher ( e.g. , FIFO queue work - launching program 330 ) 
can manage a variable per FIFO queue to track how much 
data any consumer ( or read ) threads are launched are 
intended to consume ( such as Read Allocation Pointer 216 
or a copy of it ) . In this example , the Auto - Dispatcher can 
periodically check if Write Done Pointer 730 has been 
updated ( or use the output of the New Work Prioritizer , or 
use the results of the New Work Summarizer directly ) . 
Based on prioritization algorithms ( which may include 
tracking the fullness of various FIFO queues , a priority 
based on FIFO ID , or based on the high few bits of the FIFO 
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ID , some other factors , or a combination of the above ) , the 
Auto - Dispatcher can select a FIFO queue to be consumed 
from , select a Shader to be launched , determine the number 
of threads or thread groups to be launched , launch the 
Shader and corresponding threads / thread groups , update the 
data to be consumed variable . ( and perform wrapping , if 
necessary , according to the Arbitrarily - wrappable Index 
rules ) , and update the New Work Prioritizer or Summarizer 
state , if necessary . 
[ 0110 ] In an example , the Auto - Dispatcher can be single 
threaded , although it could be multi - threaded in order to hide 
latency of fetching the Write Done Pointers and other states . 
Dedicated hardware could be added to simplify or optimize 
some of the prioritization . In an example , Auto - Dispatcher 
can select a FIFO queue by using InterlockedCompareEx 
change operations . In an example , the Auto - Dispatcher can 
sit in an infinite loop , always checking for work ; or Termi 
nate once all shaders it has launched have terminated , and all 
relevant FIFO queues are drained . The basic Auto - Dis 
patcher can include some logic to dictate prioritization , 
access to Write Done Pointers 730 , and optionally a New 
Work Prioritizer and / or New Work Summarizer , a selection 
of which FIFO queues to monitor ( typically either all FIFOs 
in an array , or a range of FIFO queues ) , and / or an array of 
Shaders or which Pipeline State Objects to use when launch 
ing work , per FIFO queue . The shaders launched by the 
basic Auto - Dispatcher may expect it to pass in the FIFO ID 
to fetch from , as an input to the shader ( since it is conceiv 
able that a given shader might be used to digest work from 
more than one FIFO queue ) . 
[ 0111 ] In another example , an Ordered Push and Pop can 
be provided . For example , if the Basic Auto - dispatcher 
launches 1024 threads ( e.g. , executing a data - consumption 
shader program 320 ) to consume data from a FIFO queue , 

be no guarantee that the first of those threads will 
see the first piece of data , nor that the last thread will get the 
last piece of data . Indeed , if the Auto - Dispatcher immedi 
ately launches another 128 threads to consume more data , it 
is possible that some of those 128 threads could get data that 
is located earlier in the FIFO queue than some of the data 
retrieved by some of the 1024 threads ( e.g. , due to the push 
or pop algorithm , and / or due to the timing disturbances that 
can occur in a massively parallel environment ) . 
[ 0112 ] There can be are some shader programming algo 
rithms that require strict access to the data , or where the 
algorithm becomes more efficient if that strict access can be 
provided . For these situations , the Auto - Dispatcher can be 
modified , such that the Auto - Dispatcher performs the first 
step of “ begin push ” , e.g. , it performs the Atomic Add on the 
Read - Alloc Pointer 740. The Auto - Dispatcher can then pass 
the original Read - Alloc Pointer value as an input to the 
shaders , along with a ThreadID ( and FIFO ID ) , and the 
shaders , or related write threads ( e.g. , executing at action 
406 of method 400 or method 500 ) or read threads ( e.g. , 
executing at action 412 of method 400 or method 600 ) can 
accordingly generate their ordered index based at least in 
part on the provided Thread ID ( e.g. , Read - Alloc Pointer + 
Thread ID , or some variation ) . Depending on the implemen 
tation , it may be desirable to have either the Auto - Dis 
patcher , or the Launched Thread , perform the atomic “ wrap ” 
operation to the Read - Alloc Pointer 740. In an example , all 
( or multiple ) shader threads can perform local wrap opera 
tions , in case the dispatcher wraps beyond the end of the last 
allowed page / segment index of the FIFO queue . The shader 

threads can also perform Page Pre - allocation , and page 
address lookup , as described . Moving the initial Read - Alloc 
Pointer operation into the AutoDispatcher also may have a 
performance benefit , because having one thread perform a 
single “ add ” on behalf of multiple threads may be more 
efficient than having multiple shader threads each perform a 
single “ increment by 1 ” operation . This same style of 
Ordered operation can also be applied to Pushes as well , as 
described above . For instance , if a shader consumes data 
from FIFO queue A , then produces additional data to be 
pushed into FIFO queue B , both operations can be ordered . 
The Auto - Dispatcher gives the Read - Alloc Pointer 740 and 
Write - Alloc Pointer 726 as an input to the shader . 
[ 0113 ] In another example , Multiplication and Division of 
Work can be provided . An advanced Auto - Dispatcher , sup 
porting Ordered Push / Pop , can also be made to support 
multiplication and division of work . Per FIFO queue , for 
example , the Auto - Dispatcher can determine how many 
threads ( T ) should be used to consume a certain number ( N ) 
of items out of the FIFO queue . To handle N items , the 
Auto - Dispatcher can wait for at least N items to be available , 
then launch ( a / N ) * T threads ( e.g. , write threads at action 406 
in method 400 or method 500 and / or read threads at action 
412 in method 400 or method 600 ) to process that data , 
where “ a ” is the largest multiple of N less than or equal to 
the number of items actually available . The method of 
dispatching T threads can be specified by : x and .y size 
components are used to specify the number of threads 
( where .x * .y = T ) , and .z specifies the maximum number of 
groups of N items to handle in a single thread group . 
[ 0114 ] In another example , Page and Partial Dispatches 
can be provided by the Auto - Dispatcher . In some examples 
( e.g. , involving Sorting ) , it can be desirable for a thread 
group or thread groups to process all pushed elements on a 
given page , or a portion of a page . The Auto - Dispatcher can 
be made aware of this ( e.g. , by a “ use pages ” flag , per FIFO 
queue ) . The Auto - Dispatcher can launch N threads or thread 
groups per page to perform the sort . In some situations , only 
a partial page of data may be available , but it may be 
desirable to still launch shaders to perform the sort . In this 
example , the shaders can be designed to expect an extra 
input from the Auto - Dispatcher , ( e.g. , besides just the initial 
Read - Alloc Pointer ) , in the form of a post - added Read - Alloc 
Pointer . This can help to define the range of a number of 
items that the shader thread groups can sort or digest . Thread 
groups can determine whether they are part of the page of 
the Initial Read - Alloc Pointer , or whether they are in the 
page including the end Read - Alloc Pointer , or whether they 
are in a page which contains both , or neither . 
[ 0115 ] In another example , Multi - Push , Multi - Pop , and 
Task Graphs can be provided . For example : shader A reads 
from FIFO 0 , and writes data to both FIFO 1 and FIFO 2 , 
Shader B reads from FIFO 1 , and writes to FIFO 3 , Shader 
C reads from both FIFO 2 and FIFO 3 , combines their data , 
and outputs to some non - FIFO buffer . Shader C may expect 
that the first element it reads from FIFO 2 to correspond to 
the first element it reads in FIFO 3. In other words , for data 
fork / join behavior like this , strict ordering may be expected . 
For situations like this , the Auto - Dispatcher can be modified 
such that , instead of treating the list of FIFOs as to - do lists 
( e.g. , meaning , “ grab an element from this FIFO , and launch 
a shader thread to read it ” ) , the Auto - Dispatcher can first 
receive a list of tasks . In the above example , the tasks may 
be : “ for every 1 element to read from FIFO 0 , allocate 1 

there may 
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element in FIFO 1 , and 16 elements in FIFO 2 , and launch 
N threads of shader A to do that work , ” “ for every 1 element 
to read from FIFO 1 , allocate 1 element in FIFO 2 , and 
launch one shader B thread to do that work , " " for every 1 
element in FIFO 2 , and 16 elements in FIFO 3 , launch one 
thread group of Shader C to do that work . ” The Auto 
Dispatcher can launch Shader C when at least one element 
was present in FIFO 2 , and at least 16 elements were present 
in FIFO 2. Depending on the desired behavior of the task 
graph , the Auto - Dispatcher can use a variety of Ordered 
Push / Pop ( for cases where data needs to converge ) , or 
unordered ( especially for cases where a shader can add an 
unknown amount of data to a variety of FIFOs ) . The Work 
Prioritizer can be updated to handle prioritizing a task graph 
node ( with its plurality of inputs and / or outputs ) , instead of 
a queue , for example . 
[ 0116 ] In another example , Single - Write - Multi - Read , and 
Page Freeing can be provided . For example , there may be 
some situations where a single piece of data is written , but 
then multiple shaders may attempt to read the data before it 
is freed . In this example , it may be more efficient to leave the 
data in place , and only free it once all involved shaders have 
read it , rather than making multiple copies of the data for 
each shader reading the data to free . In this regard , the 
Auto - Dispatcher , in executing multiple read threads ( e.g. , at 
action 334 launching program 320 ) can track one separate 
“ Work Launched ” pointer per consumer ( e.g. , per thread of 
the multiple executed threads that desires to read the data ) . 
Each task graph node can include not only directions or 
related parameters for how much data to read from each 
FIFO , but also a memory location for the Auto - Dispatcher to 
write its current Work Launched pointer , per FIFO queue , 
that it reads . Similar functionality can be provided for 
multi - push situations . In addition , the data can be freed once 
all threads are done reading it . For example , if the two 
readers of the data are strictly ordered ( e.g. , the data is 
written by Shader A , then read by Shader B , and then , after 
Shader B is done , Shader C reads it also , meaning that 
Shader C does not read a portion of data before Shader B 
does ) , then Shader B can skip the " end_pop " code where the 
Read Done Pointer is moved , and Shader C can perform that 
work . If Shader B and Shader C can both consume a piece 
of data in arbitrary order , then it can be more desirable to 
implement an “ AddRef ” / “ Release ” -style mechanism . That 
is , for every element Shader A writes , it increments a counter 
( e.g. , stored per page ) by 2 ( e.g. , as there are 2 consumers ) . 
Additionally , Shader A increments the count by an extra 1 
when it first arrives on the page , and decrements it by 1 when 
it writes the final element on the page , ensuring that the page 
is not freed while it is still being written . Shaders B and C 
each decrement the counter by 1 when they consume the 
data . Or , Shader B and Shader C can skip any per - page 
reference counting , and the Auto - Dispatcher can queue a 
work item to be completed when all of Shader B and Shader 
C's threads are completed , which work item instructs the 
Auto - Dispatcher to free the pages ( or otherwise launch a 
shader to free the pages ) . This can be done by remembering 
the Read - Alloc Pointer that is to be reached by the time 
Shader B and C are done , along with the Read - Alloc Pointer 
that they started with . The cleanup shader ( or the Auto 
Dispatcher itself ) can then free any fully - consumed pages 
between the two Read - Alloc Pointers . 
[ 0117 ] In another example , the FIFO queue manager 74 
can virtualize the memory pool 82 in initializing the memory 

pool and / or allocating pages from the memory pool , as 
described in conjunction with actions 402 , 404 of method 
400. There may be some situations where the amount of pool 
space required for Growable FIFO queue - related work ( or 
any other work requiring the allocation of pool pages ) can 
increase or decrease over time . In some situations , the 
memory pool 82 may be nearly entirely in use , and in other 
situations , the memory in pool 82 may be nearly free , but 
other unrelated programs or pieces of the pool - using pro 
gram may wish to use the space in graphics memory 58 that 
the memory pool 82 is consuming . In some examples , the 
memory pool 82 can include a large ( > = 1 GB ) allocation . 
But it may be possible to virtualize the pool , such that it uses 
a larger ( > 4 GB ) virtual address allocation , but reserves the 
number of physical pages that it actually needs ( plus some 
buffering , for efficiency ) . 
[ 0118 ] In this example , the maximum number of pages 
used over a period of time can be tracked . This can be an 
“ interlocked max ” operation , with an interlockedExchange 
to reset the value . The memory pool 82 can include an 
additional Fixed - Size FIFO queue 802 , listing pages which 
are not currently physically backed by actual physical 
memory , which can mean that the GPU's page tables map 
given virtual address page as “ invalid . ” A separate compo 
nent ( e.g. , executing on a CPU 34 , or possibly the same 
processor running the Auto - Dispatcher ) monitors the 
memory pool 82. When the memory pool 82 achieves a 
threshold , the component can request additional physical 
pages to be mapped into the pool . This can be accomplished 
by popping an address off of the “ Unmapped Pages ” Fixed 
Size FIFO queue 802 , allocating physical memory for the 
page , and patching the page table to properly back the page 
with physical memory . The page is then added to the 
“ Unused Pages ” Fixed - Size FIFO queue 804 ( e.g. , instead of 
the Unmapped list 802 ) . If the memory pool 82 is consis 
tently using significantly fewer pages than are allocated to it , 
then it can offload some of its pages . This can be done by 
popping one or more page addresses off of the “ unused ” 
buffer , invalidating their page table entry , and adding the 
address to the “ unmapped ” Fixed - Size FIFO queue 802 . 
[ 0119 ] In another example , Automatic Pool Validation can 
be provided by the FIFO queue manager 74 on CPU and / or 
GPU , and / or by a Graphics API 52 or GPU driver 48 , etc. 
Some features that use multithreading or pool management 
may be easily corrupted in implementation , and corrupting 
something like the unused page list of the memory pool 82 
may result in dramatic corruption in many places . Likewise 
if the push / pop logic that writes to and reads from the 
memory pool 82 is not implemented or called properly , 
pages may be lost , double - freed , etc. , which may cause 
undesirable behavior . Thus , in an example , the Auto - Dis 
patcher can be put in a mode to automatically validate the 
various growable FIFO queue descriptors 720 , Pool Free 
Page List Descriptor 804 and data 204 , and other Tracking 
Data . This validation can be performed by halting the GPU 
after a certain shader is done , ( or after every use of a certain 
FIFO queue , or randomly , or every N Dispatches , etc. ) , then 
running a shader or CPU code which validates the buffers 
and tracking structures , etc. To track individual FIFO queues 
802 , 804 , and 720 , shaders can check to ensure that the 
Read - Alloc Pointer 740/808 , Write - Alloc Pointers 726/806 , 
Read Done Pointers 744 , and Write Done Pointers 730 are 
all valid — when there are no shaders running which are 
actively pushing or popping data , these can all have a value 
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between 0 and the maximum allowed value . Also , the Done 
Pointers should match the Alloc Pointers . 
[ 0120 ] Any pages listed in the Growable FIFO queue's 
page list 750 which are between the Write Done Pointer 730 
and the Read Done Pointer 744 , should be valid ( otherwise 
corruption has occurred ) . Any pages which are not in the 
valid portion of the lists of pages used 750 , may be invalid , 
and may appear in the free page list 204 ( or if a physically 
unbacked list 802 is present , they could appear in that list ) , 
otherwise corruption has occurred . To track pool corruption , 
a boolean array can be allocated , with one bit per pool page . 
Iterating through the pool's " unallocated " list , through the 
" unused ” list , and through each Growable FIFO queue , 
every time a given pool page is used , the boolean can be set 
to true using an interlocked operation . If the bit was already 
set when an operation says to set it , this can indicate that two 
things reference the same page , and corruption has occurred . 
Or , alternatively , if any page's bits are still zero when the 
scan is complete , this can indicate that a page has been lost , 
and corruption has occurred . The results of the validation 
can be written to a struct , and sent to a program 46 or queue 
manager 74 , or driver 48 or API 52 that can report the 
problem to the user or developer ( e.g. , via Interrupt , via 
debug spew , telemetry sent to a server in the Internet , or by 
some other mechanism ) . 
[ 0121 ] In another example , Out - of - Order Free on a Grow 
able FIFO queue can be provided . An example use case for 
Growable FIFO queues can involve data being allocated and 
written in order , and consumed in order . There may be other 
use cases where the Growable FIFO queue is allocated and 
written in order , but the data is consumed out of order . For 
instance , if references or indexes to the contents of the FIFO 
queue are stored elsewhere , shader threads ( e.g. , multiple 
read threads executing in action 412 of method 400 and / or 
method 600 ) can deference those pointers to consume data 
out of order . In these situations , instead of using alloc_pop 
( e.g. , where the Read - Alloc Pointer is moved after reading 
data e.g. action 602 ) and end_pop ( e.g. , where the Read 
Done Pointer is moved after reading data , e.g. action 606 ) , 
the alloc_pop may be unnecessary ( because pointers to the 
data are already known ) ; the data can accordingly be freed 
using an Add - Ref / Release model ( e.g. , alloc_push Add 
Ref's a reference count , and " end_pop ” increments a count 
of data consumed ) . When both counts are equal to the size 
of the page , the Auto - Dispatcher ( e.g. , FIFO queue work 
launching program 330 ) or a thread executing a data 
consumption shader program 320 ( or other mechanism ) can 
free the page , even if it is out of order . In this regard , a nested 
completion tracker ( e.g. , Write - Done Counters 728 ) may be 
used for pushing data , and / or a simple ordered - start - unor 
dered - completion tracker ( e.g. , the simple tracker upon 
which Work Completion Tracker 712 is derived ) may be 
used when consuming the data , because the consumption of 
the data may not require pages to be kept in any sort of order . 
An alternative approach may be to use a true Add - Ref / 
Release model , where a single “ reference count ” is incre 
mented on production , and decremented on consumption . 
The page is freed once the reference count reaches zero , and 
some other condition is reached that indicates that all data to 
be written to the page has been written . 
[ 0122 ] In yet another example , Indirect Auto - Dispatch can 
be provided . There may be situations where a shader or other 
source , fills a Growable FIFO queue or Fixed - Size FIFO 
queue 802 with counts of threads to be launched . The 

Auto - Dispatcher can be modified to check for work in this 
Fixed - Size FIFO queue 802 , and perform the “ pop ” of this 
data , in order to launch work that it references . In a normal 
Auto - Dispatch , the Auto - Dispatcher determines how many 
entries are in a Growable FIFO queue or Fixed - Size FIFO 
queue 802 , and launches threads to consume that data . But 
in this indirect approach , the Auto - Dispatcher fetches the 
contents of the Growable FIFO queue or Fixed - Size FIFO 
queue 802 , in order to launch future work . For the act of 
launching the indirect work , for example , the indirect buffer 
can be permanently associated with one shader or Pipeline 
State Object ( PSO ) that can be responsible for consuming 
the data ( e.g. , by executing multiple read treads in action 412 
of method 400 and / or method 600 ) , or the indirect ring / FIFO 
can contain both a " count ” and a pointer to a PSO or Shader 
( or the contents of the PSO , directly ) associated with each 
count in the ring . Additionally , the count of threads to launch 
can include either one dimension ( such as X or Z ) , or it could 
contain some combination of counts of two or three of the 
dimensions ( X / Y / Z ) . 
[ 0123 ] There also may be an optimization opportunity , 
which relates to how the Growable FIFO Implementation 
includes the Nested Work Completion Tracker . For example , 
if a combination of software and hardware can guarantee 
that there cannot be a span of more than N elements within 
the FIFO queue , of which shader threads have started a 
Begin_push without completing an end_push , then the 
memory required for the Nested Work Completion Tracker 
can be reduced to track completion of a small number ( Q ) of 
segments , where Q = ceiling ( ( N - 1 ) / NumElementsPerSeg 
ment ) +2 . By shrinking the number of work - completed coun 
ters , it may allow greater likelihood that in - use counters 
share cachelines , which can improve performance . A similar 
improvement can be done to the Basic Pop implementation . 
[ 0124 ] As used in this application , the terms “ component , ” 
“ system ” and the like are intended to include a computer 
related entity , such as but not limited to hardware , firmware , 
a combination of hardware and software , software , or soft 
ware in execution . For example , a component may be , but is 
not limited to being , a process running on a processor , a 
processor , an object , an executable , a thread of execution , a 
program , and / or a computer . By way of illustration , both an 
application running on a computing device and the comput 
ing device can be a component . One or more components 
can reside within a process and / or thread of execution and a 
component may be localized on one computer and / or dis 
tributed between two or more computers . In addition , these 
components can execute from various computer readable 
media having various data structures stored thereon . The 
components may communicate by way of local and / or 
remote processes such as in accordance with a signal having 
one or more data packets , such as data from one component 
interacting with another component in a local system , dis 
tributed system , and / or across a network such as the Internet 
with other systems by way of the signal . 
[ 0125 ] Furthermore , various examples are described 
herein in connection with a device ( e.g. , computer device 
10 ) , which can be a wired device or a wireless device . Such 
devices may include , but are not limited to , a gaming device 
or console , a laptop computer , a tablet computer , a personal 
digital assistant , a cellular telephone , a satellite phone , a 
cordless telephone , a Session Initiation Protocol ( SIP ) 
phone , a wireless local loop ( WLL ) station , a personal 
digital assistant ( PDA ) , a handheld device having wireless 
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connection capability , a computing device , or other process 
ing devices connected to a wireless modem . 
[ 0126 ] Moreover , the term “ or ” is intended to mean an 
inclusive “ or ” rather than an exclusive " or . ” That is , unless 
specified otherwise , or clear from the context , the phrase “ X 
employs A or B ” is intended to mean any of the natural 
inclusive permutations . That is , the phrase “ X employs A or 
B ” is satisfied by any of the following instances : X employs 
A ; X employs B ; or X employs both A and B. In addition , 
the articles “ a ” and “ an ” as used in this application and the 
appended claims should generally be construed to mean 
" one or more ” unless specified otherwise or clear from the 
context to be directed to a singular form . 
[ 0127 ] Various examples or features will be presented in 
terms of systems that may include a number of devices , 
components , modules , and the like . It is to be understood 
and appreciated that the various systems may include addi 
tional devices , components , modules , etc. and / or may not 
include all of the devices , components , modules etc. dis 
cussed in connection with the figures . A combination of 
these approaches may also be used . 
[ 0128 ] The various illustrative logics , logical blocks , and 
actions of methods described in connection with the embodi 
ments disclosed herein may be implemented or performed 
with a specially - programmed one of a general purpose 
processor , a digital signal processor ( DSP ) , an application 
specific integrated circuit ( ASIC ) , a field programmable gate 
array ( FPGA ) or other programmable logic device , discrete 
gate or transistor logic , discrete hardware components , or 
any combination thereof designed to perform the functions 
described herein . A general - purpose processor may be a 
microprocessor , but , in the alternative , the processor may be 
any conventional processor , controller , microcontroller , or 
state machine . A processor may also be implemented as a 
combination of computing devices , e.g. , a combination of a 
DSP and a microprocessor , a plurality of microprocessors , 
one or more microprocessors in conjunction with a DSP 
core , or any other such configuration . Additionally , at least 
one processor may comprise one or more components 

erable to rform one or more of the steps and / or actions 
described above . 
[ 0129 ] Further , the steps and / or actions of a method or 
algorithm described in connection with the examples dis 
closed herein may be embodied directly in hardware , in a 
software module executed by a processor , or in a combina 
tion of the two . A software module may reside in RAM 
memory , flash memory , ROM memory , EPROM memory , 
EEPROM memory , registers , a hard disk , a removable disk , 
a CD - ROM , or any other form of storage medium known in 
the art . An exemplary storage medium may be coupled to the 
processor , such that the processor can read information 
from , and write information to , the storage medium . In the 
alternative , the storage medium may be integral to the 
processor . Further , in some examples , the processor and the 
storage medium may reside in an ASIC . Additionally , the 
ASIC may reside in a computer device ( such as , but not 
limited to , a game console ) . In the alternative , the processor 
and the storage medium may reside as discrete components 
in a user terminal . Additionally , in some examples , the steps 
and / or actions of a method or algorithm may reside as one 
or any combination or set of codes and / or instructions on a 
machine readable medium and / or computer readable 
medium , which may be incorporated into a computer pro 
gram product . 

[ 0130 ] In one or more examples , the functions described 
may be implemented in hardware , software , firmware , or 
any combination thereof . If implemented in software , the 
functions may be stored or transmitted as one or more 
instructions or code on a computer - readable medium . Com 
puter - readable media includes both computer storage media 
and communication media including any medium that facili 
tates transfer of a computer program from one place to 
another . A storage medium may be any available media that 
can be accessed by a computer . By way of example , and not 
limitation , such computer - readable media can comprise 
RAM , ROM , EEPROM , CD - ROM or other optical disk 
storage , magnetic disk storage or other magnetic storage 
devices , or any other medium that can be used to carry or 
store desired program code in the form of instructions or 
data structures and that can be accessed by a computer . Also , 
any connection may be termed a computer - readable 
medium . Disk and disc , as used herein , includes compact 
disc ( CD ) , laser disc , optical disc , digital versatile disc 
( DVD ) , floppy disk and Blu - ray disc where disks usually 
reproduce data magnetically , while discs usually reproduce 
data optically with lasers . Combinations of the above should 
also be included within the scope of computer - readable 
media . 
[ 0131 ] While examples of the present disclosure have 
been described in connection with examples thereof , it will 
be understood by those skilled in the art that variations and 
modifications of the examples described above may be made 
without departing from the scope hereof . Other examples 
will be apparent to those skilled in the art from a consider 
ation of the specification or from a practice in accordance 
with examples disclosed herein . 
What is claimed is : 
1. A method for managing first - in first - out ( FIFO ) queues 

in graphics processing , comprising 
receiving , by a dispatcher thread , a value of a write done 

pointer indicating a next memory location following 
one or more memory locations to which data has been 
written by a write thread of a graphics processing unit 
( GPU ) ; and 

launching , by the dispatcher thread and based at least in 
part on the value of the write done pointer , multiple 
read threads on the GPU to read , in parallel and based 
on the write done pointer , the data from the FIFO 
queue . 

2. The method of claim 1 , wherein receiving the value of 
the write done pointer comprises receiving the value of the 
write done pointer from the write thread . 

3. The method of claim 1 , wherein receiving the value of 
the write done pointer comprises determining the value of 
the write done pointer based on advancing the write done 
pointer for the write thread . 

4. The method of claim 1 , further comprising determining 
a priority indicated for the FIFO queue and a threshold write 
done pointer value corresponding to the priority of the FIFO 
queue , wherein launching the multiple read threads is based 
at least in part on determining that the value of the write 
done pointer achieves the threshold write done pointer 
value . 
5. The method of claim 1 , wherein the multiple read 

threads corresponds to threads of a shader program . 
6. The method of claim 1 , further comprising advancing , 

by the dispatcher thread , a read done pointer for each of the 
multiple read threads following execution of each of the 
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multiple read threads , wherein the read done pointer indi 
cates to a next read memory location following a last read 
memory location from which the data is read by a corre 
sponding read thread . 

7. The method of claim 1 , wherein launching the multiple 
read threads comprises initiating an ordered read based on at 
least one of providing , to each read thread of the multiple 
read threads , a thread identifier and a same initial value of 
a read allocation pointer , or providing , to each read thread of 
the multiple read threads , a different initial value of the read 
allocation pointer corresponding to data to be read by a 
given read thread . 

8. The method of claim 1 , further comprising determining , 
based at least in part on the value of the write done pointer , 
a number of read threads to launch to read the data , wherein 
launching the multiple read threads is based at least in part 
on the determined number of read threads . 

9. The method of claim 1 , further comprising : 
launching , by the dispatcher thread , multiple write threads 

on the GPU to write , in parallel , the data to the FIFO 

multiple read threads based at least in part on determining 
that the value of the write done pointer achieves the thresh 
old write done pointer value . 

15. The device of claim 11 , wherein the multiple read 
threads corresponds to threads of a shader program . 

16. The device of claim 11 , wherein the at least one 
processor is further configured to advance , by the dispatcher 
thread , a read done pointer for each of the multiple read 
threads following execution of each of the multiple read 
threads , wherein the read done pointer indicates to a next 
read memory location following a last read memory location 
from which the data is read by a corresponding read thread . 

17. The device of claim 11 , wherein the at least one 
processor is configured to launch the multiple read threads 
by initiating an ordered read based on at least one of 
providing , to each read thread of the multiple read threads , 
a thread identifier and a same initial value of a read alloca 
tion pointer , or providing , to each read thread of the multiple 
read threads , a different initial value of the read allocation 
pointer corresponding to data to be read by a given read 
thread . 

18. The device of claim 11 , wherein the at least one 
processor is further configured to determine , based at least 
in part on the value of the write done pointer , a number of 
read threads to launch to read the data , wherein launching 
the multiple read threads is based at least in part on the 
determined number of read threads . 

19. The device of claim 11 , wherein the at least one 
processor is further configured to : 

launch , by the dispatcher thread , multiple write threads on 
the GPU to write , in parallel , the data to the FIFO 

queue ; and 

queue ; and 

advancing , by the dispatcher thread , the write done 
pointer for each of the multiple write threads following 
execution of each of the multiple write threads . 

10. The method of claim 9 , wherein launching the mul 
tiple write threads comprises initiating an ordered write 
based on at least one of providing , to each write thread of the 
multiple write threads , a thread identifier and a same initial 
value of a write allocation pointer , or providing , to each 
write thread of the multiple write threads , a different initial 
value of the write allocation pointer corresponding to data to 
be written by a given write thread . 

11. A device for managing first - in first - out ( FIFO ) queues 
in graphics processing , comprising 

a memory storing one or more parameters or instructions 
for managing FIFO queues in graphics processing ; and 

at least one processor coupled to the memory , wherein the 
at least one processor is configured to : 
receive , by a dispatcher thread , a value of a write done 

pointer indicating a next memory location following 
one or more memory locations to which data has 
been written by a write thread of a graphics process 
ing unit ( GPU ) ; and 

launch , by the dispatcher thread and based at least in 
part on the value of the write done pointer , multiple 
read threads on the GPU to read , in parallel and 
based on the write done pointer , the data from the 

advance , by the dispatcher thread , the write done pointer 
for each of the multiple write threads following execu 
tion of each of the multiple write threads . 

20. The device of claim 19 , wherein the at least one 
processor is configured to launch the multiple write threads 
by initiating an ordered write based on at least one of 
providing , to each write thread of the multiple write threads , 
a thread identifier and a same initial value of a write 
allocation pointer , or providing , to each write thread of the 
multiple write threads , a different initial value of the write 
allocation pointer corresponding to data to be written by a 
given write thread . 

21. A non - transitory computer - readable medium , includ 
ing code executable by a processor managing first - in first 
out ( FIFO ) queues in graphics processing , the code com 
prising code for : 

receiving , by a dispatcher thread , a value of a write done 
pointer indicating a next memory location following 
one or more memory locations to which data has been 
written by a write thread of a graphics processing unit 
( GPU ) ; and 

launching , by the dispatcher thread and based at least in 
part on the value of the write done pointer , multiple 
read threads on the GPU to read , in parallel and based 
on the write done pointer , the data from the FIFO 
queue . 

FIFO queue . 
12. The device of claim 11 , wherein the at least one 

processor is configured to receive the value of the write done 
pointer from the write thread . 

13. The device of claim 11 , wherein the at least one 
processor is configured to determine the value of the write 
done pointer based on advancing the write done pointer for 
the write thread . 

14. The device of claim 11 , wherein the at least one 
processor is further configured to determine a priority indi 
cated for the FIFO queue and a threshold write done pointer 
value corresponding to the priority of the FIFO queue , 
wherein the at least one processor is configured to launch the 


