US 20180307710A1

a2y Patent Application Publication o) Pub. No.: US 2018/0307710 A1

a9y United States

Dai et al. 43) Pub. Date: Oct. 25, 2018
(54) SYSTEM FOR AUTOMATED DATA (52) US. CL
ENGINEERING FOR LARGE SCALE CPC ... GOGF 17/30297 (2013.01); GOGF 15/18
MACHINE LEARNING (2013.01); GOGF 17/30578 (2013.01)
(57) ABSTRACT

(71) Applicant: Petuum Inc., Pittsburgh, PA (US)

(72) Inventors: Wei Dai, Pittsburgh, PA (US); Weiren
Yu, Pittsburgh, PA (US); Eric Xing,
Pittsburgh, PA (US)

(21) Appl. No.: 15/959,560
(22) Filed: Apr. 23, 2018

Related U.S. Application Data

(60) Provisional application No. 62/489,974, filed on Apr.
25, 2017, provisional application No. 62/660,131,
filed on Apr. 19, 2018.

Publication Classification

(51) Int. CL
GOGF 17/30 (2006.01)
GOGF 15/18 (2006.01)

Accordingly, a data engineering system for machine learn-
ing at scale is disclosed. In one embodiment, the data
engineering system includes an ingest processing module
having a schema update submodule and a feature statistics
update submodule, wherein the schema update submodule is
configured to discover new features and add them to a
schema, and wherein the feature statistics update submodule
collects statistics for each feature to be used in an online
transformation, a record store to store data from a data
source, and a transformation module, to receive a low
dimensional data instance from the record store and to
receive the schema and feature statistics from the ingest
processing module, and to transform the low dimensional
data instance into a high dimensional representation. One
embodiment provides a method for data engineering for
machine learning at scale, the method including calling a
built-in feature transformation or defining a new transfor-
mation, specifying a data source and compressing and
storing the data, providing ingest-time processing by auto-
matically analyzing necessary statistics for features, and
then generating a schema for a dataset for subsequent data
engineering. Other embodiments are disclosed herein.

500

CALL A BUILT-IN FEATURE TRANSFORMATION USING A
TRANSFORMATION INTERFACE, OR DEFINE TRANSFORMATION USING ~ 510
THE TRANSFORMATION PROGRAMMING {INTERFACE -

¥

.

' SPECIFY A DATA SOURCE AND COMPRESS AND STORE THE DATAINA |_
RECORD STORE MODULE s

520

¥

PROVIDE INGEST-TIME PROCESSING BY AUTOMATICALLY ANALYZING
NECESSARY STATISTICS FOR FEATURES, AND THEN GENERATE A
SCHEMA FOR A DATASET FOR SUBSEQUENT DATA ENGINEERING

~

~_530

e e e

THE FEATURE TRANSFORM CONNECTING TO UPSTREAM TRAINING

TO GENERATE NEW FEATURES

| MODELS WiTH THE MODELS MODULE, AND USE THE TRAINED MODELS \ 540

SELECTIVELY CACHING FEATURES FOR BETTER EFFICIENCY

i
IR AU

™. 550

,

PROVIDING A TRAINING DATA SOURCE INCLUDING ONLINE
TRANSFORM BENEFITS T 560



Patent Application Publication  Oct. 25,2018 Sheet 1 of 5 US 2018/0307710 A1

COMPUTING DEVICE 100
PROCESSING UNIT(S) 110
j
| MEMORY 120
. RECORD STORE = COMPRESS/STORE |
 TRANSFORMATION = |
{ LIBRARY 15 i MODELs 145 | | P
| B 148 s
INGEST PROCESSING 130
;  INCREMENTAL | - Srats 134
§  UPpaTE132 | FEATURESTATS §
f UPDATE SCHEMA |
INFERENCE 136 oA 138
TRAINING SYSTEM | ’/ CLEENT NODES %
DATA SOURCE 17 180 190
J ~ ;J
N

FIG. 1



Patent Application Publication  Oct. 25,2018 Sheet 2 of 5 US 2018/0307710 A1

200 -
“\‘b
0 00 *
b o
- U ingest-time Processing !
MR o H H Yoy 3
i3 ingremental | Fealwe | ! {j?ims’i 'i”m%f{:srm
L1 Update, ] SIS SO N, : Fe DL 80U
N 3 » alm o 2 g 3 e
; ;MM vmmsrsosormooorod : Trangiaragtion
Y it 4 ttorfans o
P {pduds ’ § Training
TR £ I S Z A Systern
;% inferenned # Programasng

MMl an e e e S e N e e e o o o o ra ] indarfacs

N

Recard
Hiore {13}

A e A

Trained
Model

. ,,-

AL e e e e e e et e T el o o el T e b o e e M o e e M R e e e e M e e e

{13}

3
H
¥
3 Models vnon
§
3

FIG. 2



Patent Application Publication

Horesl Execiiion
iStatg sipction)

Oct. 25,2018 Sheet 3 of 5 US 2018/0307710 A1

Ciaching g
Fesnaform g

Caching
Tegmstoem 4

R

Foatur

Transieendt
T Trarpsionmd
¥
Transfpond LS

o
VR

FIG. 3



Patent Application Publication  Oct. 25,2018 Sheet 4 of 5 US 2018/0307710 A1

400 -

‘j%

" PREPARATION TIME 410 READBACKQ_ ..................
ORIGINAL | TENSOR FLOW | »« AAAAAAAAAA . _TRAINING
FEaTURES 412 % 416 Looiskag T > SysTEM 430

TRAINED MODEL

414

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i PREPARATION TiME 450 ! | ONLINE TRANSFORM 460

ORIGINAL L . TRAINING
FEATURES 452 :’,‘ SYSTEMX 497 A T ™ SYSTEM 470

TRAINED MODEL |/
454

FIG. 4



Patent Application Publication  Oct. 25,2018 Sheet 5 of 5 US 2018/0307710 A1

CALL A BUILT-IN FEATURE TRANSFORMATION USING A
TRANSFORMATION INTERFACE, OR DEFINE TRANSFORMATION USING \ 510
THE TRANSFORMATION PROGRAMMING INTERFACE :

7

\

SPECIFY A DATA SOURCE AND COMPRESS AND STORE THE DATA IN A 520
RECORD STORE MODULE L

¥

7 Y

PROVIDE INGEST-TIME PROCESSING BY AUTOMATICALLY ANALYZING
NECESSARY STATISTICS FOR FEATURES, AND THEN GENERATE A /~ /530
SCHEMA FOR A DATASET FOR SUBSEQUENT DATA ENGINEERING

THE FEATURE TRANSFORM CONNECTING TO UPSTREAM TRAINING
MODELS WITH THE MODELS MODULE, AND USE THE TRAINED MODELS £ B 540
TO GENERATE NEW FEATURES :

SELECTIVELY CACHING FEATURES FOR BETTER EFFICIENCY 550
S Yo \
: PROVIDING A TRAINING DATA SOURCE INCLUDING ONLINE
TRANSFORM BENEFITS . 560



US 2018/0307710 Al

SYSTEM FOR AUTOMATED DATA
ENGINEERING FOR LARGE SCALE
MACHINE LEARNING

RELATED PRIOR APPLICATIONS

[0001] This application claims priority to Provisional
Application Ser. No. 62/489,974 entitled “System for Auto-
mated Data Engineering for Large Scale Machine Learning”
filed on Apr.25, 2017 and Provisional Application Ser. No.
62/660,131 entitled “System for Automated Data Engineer-
ing for Large Scale Machine Learning” filed on Apr. 19,
2018, the contents of which are incorporated herein by
reference in their entirety.

FIELD OF INVENTION

[0002] The present invention generally relates to feature
engineering for data-center machine learning systems, and
more particularly, a distributed data engineering system that
provides a standardized interface for online data transfor-
mation.

BACKGROUND

[0003] Machine learning (ML) is becoming an increas-
ingly popular application in the cloud and in data-centers.
Machine Learning systems depend on data engineering,
which is the practice of transforming a small set of raw
measurements to a large number of features, to substantially
increase the accuracy of their results. As used herein, a
feature means an individual measurable property of a phe-
nomenon being observed. The features are usually repre-
sented by a vector, where each element value is a feature.
However, as machine learning systems scale and grow in
both data size (number of records) and model size (number
of dimensions), existing systems that support data engineer-
ing have not been able to keep up with it; they either fail to
run or do so very slowly. Sometimes, implementation spe-
cific code can be written to “glue” together several machine
learning software tools, resulting in a special-purpose
machine learning system that indeed supports large-scale
data engineering, but is time-consuming to create, brittle to
maintain, and difficult to reproduce by other practitioners. It
is therefore desirable to have a data engineering system that
is distributed for scale and speed, and provides a standard-
ized interface for data transformation.

[0004] A standardized interface data engineering interface
not only makes transformations independent of whichever
programming language is used to write machine learning
algorithms, but also integrates with upstream machine learn-
ing training systems to derive new transformations (such as
feature outputs from deep learning models), as well as
downstream machine learning training systems that will
ingest the features as training inputs. This modularity allows
practitioners to build scalable machine learning systems in a
reproducible manner, and eliminates the need for implemen-
tation specific glue code to join machine learning tools
together.

SUMMARY

[0005] Accordingly, a data engineering system for
machine learning at scale is disclosed. In one embodiment,
the data engineering system includes an ingest processing
module having a schema update submodule and a feature
statistics update submodule, wherein the schema update

Oct. 25, 2018

submodule is configured to discover new features and add
them to a schema, and wherein the feature statistics update
submodule collects statistics for each feature to be used in an
online transformation, a record store to store data from a
data source, and a transformation module, to receive a low
dimensional data instance from the record store and to
receive the schema and feature statistics from the ingest
processing module, and to transform the low dimensional
data instance into a high dimensional representation.
[0006] Another example embodiment provides a method
for data engineering for machine learning at scale, the
method including calling a built-in feature transformation or
defining a new transformation, specifying a data source and
compressing and storing the data, providing ingest-time
processing by automatically analyzing necessary statistics
for features, and then generating a schema for a dataset for
subsequent data engineering. Other embodiments are dis-
closed herein.

[0007] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Furthermore, the
claimed subject matter is not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present disclosure, in accordance with one or
more various embodiments, is described in detail with
reference to the following figures. The drawings are pro-
vided for purposes of illustration only and merely depict
exemplary embodiments of the disclosure. These drawings
are provided to facilitate the reader’s understanding of the
disclosure and should not be considered limiting of the
breadth, scope, or applicability of the disclosure. It should be
noted that for clarity and ease of illustration these drawings
are not necessarily made to scale.

[0009] FIG. 1 illustrates one embodiment system for auto-
mated data engineering for large scale machine learning.
[0010] FIG. 2 presents an exemplary data engineering
system for machine learning at scale according to the
embodiment of the invention.

[0011] FIG. 3 illustrates one embodiment of a transforma-
tion caching strategy.

[0012] FIG. 4 presents a workflow demonstrating a trans-
formation comparison between a traditional system and one
embodiment system.

[0013] FIG. 5 illustrates a flowchart of a method for data
engineering.

DETAILED DESCRIPTION
[0014] The following description is presented to enable a

person of ordinary skill in the art to make and use the
invention. Descriptions of specific devices, techniques, and
applications are provided only as examples. Various modi-
fications to the examples described herein will be clear to
those of ordinary skill in the art, and the general principles
defined herein may be applied to other examples and appli-
cations without departing from the spirit and scope of the
invention. Thus, embodiments of the present invention are



US 2018/0307710 Al

not intended to be limited to the examples described herein
and shown, but is to be accorded the scope consistent with
the claims.

[0015] The word “exemplary” is used herein to mean
“serving as an example or illustration.” Any aspect or design
described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects or
designs.

[0016] Reference will now be made in detail to aspects of
the subject technology, examples of which are illustrated in
the accompanying drawings, wherein like reference numer-
als refer to like elements throughout.

[0017] The specific order or hierarchy of steps in the
processes disclosed herein is an example of exemplary
approaches. Based upon design preferences, it is understood
that the specific order or hierarchy of steps in the processes
may be rearranged while remaining within the scope of the
present disclosure. The accompanying method claims pres-
ent elements of the various steps in a sample order, and are
not meant to be limited to the specific order or hierarchy
presented

[0018] Generally, disclosed herein is a scalable data engi-
neering system which can be distributed for scale and speed
and which may provide built-in transformations that are
independent of programming language used to write
machine learning algorithms. Some embodiments include a
standardized interface for transforming feature representa-
tions and some integrate with upstream machine learning
training systems to derive new transformations such and
with downstream machine learning training systems that
will ingest the provided features as training inputs.

[0019] A typical data engineering example includes a data
expansion from low dimensional measurements to high
dimensional representations. This expansion step often
introduces a disconnect in the tool chains for practitioners of
large-scale machine learning. While some data processing
systems and machine learning training systems have partial
support for the needs of data engineering, these systems
typically do not support the ultra-high dimensional feature
expansion or large datasets.

[0020] Machine learning practitioners often have to build
customized systems to perform data engineering at scale, or
write implementation specific code that strings multiple
systems together, taking advantage of their respective
strengths. A hand-crafted approach is non-automatic and
time-consuming, difficult to maintain, not necessarily repro-
ducible or transferable to different machine learning tools,
and is not necessarily guaranteed to perform well. A prolif-
eration of hand-crafted systems also makes it challenging for
machine learning practitioners to consistently reproduce
each other’s results.

[0021] In this way, a modular machine learning system
that provides from data collection through evaluation and
serving, and which can be quickly specialized to different
large-scale machine learning problems by swapping out
training systems and yet be set up in a consistent and
reproducible manner. We now turn to the embodiment
system as illustrated in FIG. 1.

[0022] FIG. 1 illustrates one embodiment system 100 for
automated data engineering for large scale machine learn-
ing. System 100 includes one or more processing units 110,
and a memory 120 having various modules and data stored
therein. The present example, also includes an ingest pro-
cessing module 130, with a feature statistics submodule 134

Oct. 25, 2018

and a schema submodule 138, along with and incremental
updater 132 for feature statistics and an update scheme
inference 136 to update schema 138, as will be explained
below in more detail.

[0023] Illustrated system 100 further includes an interface
module 142, a record store 144, a compress/store module
146, a library 150, models 145, and a transformation mod-
ule. In some embodiments once a transformation is trained
it may be cached in the library 150 for a future use without
having to recalculate the transformation.

[0024] In one embodiment, system 100 is a data engineer-
ing system for machine learning at scale, including an ingest
processing module 130 having a schema update submodule
136 and a feature statistics update submodule 134, wherein
the schema update submodule 136 is configured to discover
new features and add them to a schema 138, and wherein the
feature statistics update submodule 134 collects statistics for
each feature to be used in an online transformation 148. In
some embodiments, feature statistics 134 may be collected
while data is being added to the ingesting processing mod-
ule, while in some embodiments feature statistics may be
collected asynchronously in the background prior to trans-
formation.

[0025] The present embodiment further includes a record
store 144 to store data from a data source, and a transfor-
mation module 148 to receive a low dimensional data
instance from the record store 144 and to receive the schema
and feature statistics from the ingest processing module 130
and to transform the low dimensional data instance into a
high dimensional representation.

[0026] In some embodiments, system 100 may be config-
ured to receive feature outputs from deep learning modules
from an upstream machine and to derive new transforma-
tions from the deep learning modules. Additionally, system
100 may provide features to a downstream system that will
ingest the features as training inputs.

[0027] FIG. 2 presents an overview of a system 200 for
machine learning at scale according to the exemplary data
engineering system 100 in FIG. 1. With reference to the
figure, the record store module stores data instances as a
sequence of records ranked according to the ingest order.
Typically, a logically grouped record sequence constitutes a
dataset. In the illustrated system 200, each dataset has a
schema that defines the fields of each row. In some embodi-
ments, the system 200 may be optimized for a range query,
where the range is defined over the row ordering, according
to data access pattern of many scalable machine learning
algorithms.

[0028] The record store module may store schemas of the
features. In this embodiment, the schema is designed to
efficiently represent high dimensional data and support
succinct specification of an arbitrary set of features used in
complex transformations. Even if users might not be able to
explicitly specify all the high dimensional features, even at
high dimension (e.g., post-transformation schema), the
schema is easy to examine by the users to facilitate further
data engineering. The present embodiment uses the schema
to describe features at each stage of the transformation
pipeline, including the original dataset and the final trans-
formed output.

[0029] The above benefits are enabled by the design of
feature family, family index and feature name. In the present
example, a feature family is a group of logically related
features, such as features representing one-hot vector or



US 2018/0307710 Al

neural nets features. In some embodiments, all features
belong to one feature family. The feature family is used to
serve two purposes including a feature family allows users
to select groups of features by selecting feature families, and
a feature family provides semantics at the group level, which
in some cases allows us to elide storing the details of
individual features and represent high dimensional schema
much more efficiently.

[0030] To scale feature schemas to a high dimension, a
dense and sparse feature family may be used. A dense
feature family can store the meta data for each feature
explicitly, similar to the table schema in most databases.
This allows users to individually specify the meta data of
these features (e.g., data type, storage type), and access these
features by a user-assigned name string. Storing meta data
for each feature can incur significant overhead at a high
dimension.

[0031] To scale in dimensionality, a group of features like
the output of a one-hot transformation and Cartesian product
often share the same meta data. Furthermore, these are
features generated from transformations without user-as-
signed field names. Thus, a sparse feature family represen-
tation is used to store these meta data at the feature family
level instead of at the feature level. In practice, most of the
dimensions generated from transformation can be repre-
sented by sparse feature family.

[0032] For a high dimensional dataset, for example, mil-
lions of dimensions, it is not generally practical or useful to
manually assign individual names to each field of a table.
However, it is sufficient to know which value a field in the
one-hot vector corresponds to, without instantiating a name
for that field. On the other hand, most of the fields in the raw
low dimensional data can come with manually assigned field
names. To support the flexibility for high dimensional fea-
tures and rich feature semantics, a dual feature specification
system may be used. In one non-limiting example, all
features can be referred to based on its index in the family,
and a feature can optionally have a human-readable name by
which the feature can be referenced.

[0033] The ingest-time processing module, corresponding
to ingest processing 130, comprises a schema update and
feature states update. The present embodiment has a schema
that is designed to be extensible and schema update is
configured to discover new features from the incoming data
and added to schema at ingest time. In the present example,
newly added features are assumed to have value 0 on
previously ingested data and do not incur any rewrite.
[0034] With reference to the example embodiment 200 in
FIG. 2, if the schema is explicitly defined, the user may
optionally declare the size and feature names of each feature
family and bypass schema construction at ingest-time. The
present embodiment collects statistics for each feature to
facilitate online transformation. Statistics collection can
occur at ingest time or, like building indexes in database DB
systems, asynchronously in the background before the trans-
formation takes place. By construction, the feature statistics
can be computed incrementally with the arrival of each new
data instance, and are usually fast to compute. In the present
example, the model module 145 is responsible for connect-
ing to upstream training system and using their trained
models for feature transformation.

[0035] In this example embodiment, the online transfor-
mation module 148 may use a master-worker architecture.
The master maintains the feature schema, feature statistics,

Oct. 25, 2018

and other meta-data necessary for workers to access data.
During an on-line transformation 148, the master also per-
forms schema resolution to generate the output schema. The
master, however, does not perform transformation on the
data, which is done in parallel by client nodes 190 through
a client library 150. In the present example, workers may be
stateless while the master is stateful, which can be made
fault tolerance through consensus protocols like Raft and
Paxos, however, other embodiments are no so limited.
[0036] We now describe how an embodiment online trans-
formation works. Transformation may be a function f that
takes as input a single (including transformed) data instance
rED restricted to a subset of dimensions, input feature
statistics S(D), and other parameters 0(D) such as model
parameters, and returns a fixed-sized vector. The present
embodiment allows arbitrary function f. f is stateless, and
may not modify the state of the data table, feature statistics,
or the model parameters.

[0037] Transformations may also be chained in a sequence
of transformations. This chaining may allow users to create
high dimensional feature sets through complex operations
composed by common transformations. For example, the
present embodiment allows transformations 148 to take an
arbitrary set of features as input, which could come from
multiple transformations. In general, transformations can
form an acyclic transformation graph, where transformation
A depends on B if the input features of A intersect with the
output of B.

[0038] With reference to FIG. 2, a schema 138 resolution
can perform transformations 148 on the schema 138 follow-
ing the topologically ordered transformation graph. This
helps ensure that each transformation 148 has a well-defined
input and output. The schema resolution also produces the
physical layout of the features that are sent to the client
nodes 190 to perform the transformation 148. The illustrated
embodiment 200 aims to support general transformations,
and there is limited materialization optimization opportunity
due to the black box approach to transformation function.
When the workers perform transformation, the present
embodiment simply materializes transformation according
to the order used in schema resolution.

[0039] Continuing the description of how an embodiment
online transformation works, a session may be a transient
context defined by transformation parameters and the data
table it operates on. A session therefore may define the
output from the queried tables. A session exists if at least one
client node 190 is connected to the session. New client nodes
190 can join an existing session, and all workers in the same
session will receive the same view of the dataset, but may
request different range of data. Once a session is created, any
dataset modification (ingest, delete, etc.) is not visible to the
workers in the session.

[0040] The present embodiment allows dynamic member-
ship in a session since the distributed training systems it
intends to work with could itself suffer fault or scale
elastically. An existing worker can drop out of a session, and
a new worker can join throughout the session. The mem-
bership of a session is maintained by the master, and the
master removes a session when all its member workers have
disconnected.

[0041] The transformation interface 142 is the interface to
perform transformation using built-in transformation or user
defined transformation. It takes in the following argument:
1) input feature selector, 2) transformation parameters and 3)



US 2018/0307710 Al

optional output feature family. In the present embodiment,
outputs from a transformation belong to the output feature
family. However, this is by way of example and other
embodiments may not be so limited. If the user wants to use
the output transformation as an input for another transfor-
mation 148, the user needs to specify the output feature
family in order to refer to the output features in another
transformation.

[0042] In the online transform block in FIG. 2, the trans-
formation programming interface is the interface to imple-
ment new transformations. For example, to implement new
transformations, a developer may call functions to transform
a schema and to generate a transform.

[0043] At ahigh level, the transformations form a directed
acyclic graph through their dependencies. A transform
schema function may take as inputs a resulting feature
schema from a preceding transformation in the dependency
graph and; and the input features defined in the transforma-
tion configuration. In the present embodiment, a transform
schema function is expected to add a new feature family of
an arbitrary size and data type. A generate transform func-
tion specifies the actual transformation computation. The
function takes as input a data instance with fields that
conform to the input schema given to a transform schema
function, as well as the transformation parameters and input
feature specifiers.

[0044] In order to reduce redundant computation, the
present embodiment exploits the caching optimization
opportunities with a transformation caching module provid-
ing for 1) the same transformations could be loaded many
times, with different combinations of transformations each
time, 2) repeated access to the same transformation results.
Depending on input data, the computation cost and output
feature size would vary greatly. The present embodiment
implements a cost function that favors caching certain
intermediate results that are expensive to compute but
generate relatively small outputs and cheap to store on disk.
[0045] FIG. 3 illustrates an embodiment with transforma-
tion caching. In this example, the first time a transformation
is executed under normal execution, the transformation is
computed. In the computation, feature statistics are collected
to evaluate if an output should be cached for later us. The
next time a transformation is executed, the system 100 will
instruct client nodes 190 to cache out the output of trans-
formation 148 selected by a cache manager. The data is then
written to disk in an asynchronous manner to minimize
impact on transformation time.

[0046] In some embodiments, batching may be employed
at the data level and transformation level, as shown in the
middle example of FIG. 3. After caching, if the same
transformation is encountered, the data can then be read
asynchronously in batches. During transformation, the
cached data is directly used as output values without com-
putation, as shown in the far-right example.

[0047] By way of example, a straightforward implemen-
tation of online transformation would incur computation of
the feature transformation each time the data is requested. In
many database applications this re-computation of a query is
unavoidable, because the underlying data could change
frequently and so do the queries. Data engineering, however,
has certain characteristics that offer opportunities for opti-
mization. First, data engineering is a highly iterative pro-
cess, in which features transformations are incrementally
added, trained, and evaluated.

Oct. 25, 2018

[0048] Therefore, the same transformations could be
loaded many times, with different combinations of transfor-
mations each time. Second, many machine learning algo-
rithms need to take multiple passes over the dataset for the
algorithm to reach a good model estimate (i.e., convergence
of an algorithm), thus leading to repeated access of the same
transformation 148 results.

[0049] Furthermore, feature transformations can vary
greatly in computation cost and output feature size, which
can also depend on the input data. For example, a cartesian
product is generally not computation intensive but produces
outputs much larger than the input size. In contrast, neural
network transformation, especially for a deeper, more com-
plex architecture, involves much more operations to gener-
ate a small set output features. These variations in transfor-
mation, together with the repeated computation, opens up
the opportunity to cache certain intermediary output features
to avoid re-computation and speed up the transformation
148.

[0050] Intuitively, transformations that are expensive to
compute but generate relatively small outputs and thus
cheap to store on disk and read back, would be good
candidates for caching. Since the outputs of a transformation
in SystemX 457 are always grouped under a single feature
family, it is natural to support caching operating at the level
of feature family. This allows us to selectively cache trans-
formations at the semantic level that is also compatible with
the system architecture of SystemX 457 and system 100 and
200.

[0051] FIG. 4 illustrates a transformation workflow com-
parison 400 between a baseline system and one embodiment
illustrated as systemX 457. As shown in the illustration,
workflow may be divided into two phases including prepa-
ration time 410 and 450, and load time, 425 and 465,
respectively. The baseline approach uses a system that
produces the trained models (e.g., TensorFlow 416 in this
case) to materialize features 412 onto disk 418.

[0052] On the other hand, systemX 457 is illustrated
performing a transformation on-the-fly with a trained model
145 by directly connecting to a downstream training system,
thus avoiding a bottleneck in disk 418 input and output. This
workflow does not presume a specific training system and
can work with different downstream training systems such
as Spark, Scikit-learn, etc., and others suitable training
systems as understood by those skilled in the art.

[0053] FIG. 5 illustrates a flowchart of an embodiment
method 500 for data engineering. In block 510, the method
calls a built-in feature transformation using a transformation
interface 142, or define transformation using the transfor-
mation programming interface 142. Then, method 500
specifies a data source and compress and store the data in a
record store module, as shown in block 520.

[0054] Method 500 provides ingest-time processing by
automatically analyzing necessary statistics for features, and
then generate a schema for a dataset for subsequent data
engineering as shown in block 530. In some embodiments,
method 500 may include the feature transform connecting to
upstream training models with the Models module 145, and
use the trained models to generate new features as shown in
block 540. Additionally, method 500 may include selectively
caching features for better efficiency, for example, with the
cache and library system of FIGS. 1 and 2. In some
embodiments, method 500 may further include providing a
training data source including online transform benefits.



US 2018/0307710 Al

While the FIG. 5 flowchart shows one embodiment method,
other system embodiments disclosed herein, when actively
being used may similarly provide methods of data engineer-
ing.

[0055] While various embodiments of the invention have
been described above, they have been presented by way of
example only, and not by way of limitation. Likewise, the
various diagrams may depict an example architectural or
other configuration for the disclosure, which is done to aid
in understanding the features and functionality that can be
included in the disclosure. The disclosure is not restricted to
the illustrated example architectures or configurations, but
can be implemented using a variety of alternative architec-
tures and configurations.

[0056] Additionally, although the disclosure is described
above in terms of various exemplary embodiments and
implementations, the various features and functionality
described in one or more of the individual embodiments are
not limited in their applicability to the particular embodi-
ment with which they are described. They instead can be
applied alone or in some combination, to one or more of the
other embodiments of the disclosure, whether or not such
embodiments are described, and if such features are pre-
sented as being a part of a described embodiment. Thus, the
breadth and scope of the present disclosure should not be
limited by any of the above-described exemplary embodi-
ments.

[0057] In this document, the terms “module” and “engine”
as used herein, refers to software, firmware, hardware, and
any combination of these elements for performing the asso-
ciated functions described herein. Additionally, for purpose
of discussion, the various modules are described as discrete
modules; however, as would be apparent to one of ordinary
skill in the art, two or more modules may be combined to
form a single module that performs the associated functions
according embodiments of the invention.

[0058] In this document, the terms “computer program
product”, “computer-readable medium”, and the like, may
be used generally to refer to media such as, memory storage
devices, or storage unit. These, and other forms of computer-
readable media, may be involved in storing one or more
instructions for use by processor to cause the processor to
perform specified operations. Such instructions, generally
referred to as “computer program code” (which may be
grouped in the form of computer programs or other group-
ings), when executed, enable the computing system.
[0059] It will be appreciated that, for clarity purposes, the
above description has described embodiments of the inven-
tion with reference to different functional units and proces-
sors. However, it will be apparent that any suitable distri-
bution of functionality between different functional units,
processors or domains may be used without detracting from
the invention. For example, functionality illustrated to be
performed by separate processors or controllers may be
performed by the same processor or controller. Hence,
references to specific functional units are only to be refer-
ences to suitable means for providing the described func-
tionality, rather than indicative of a strict logical or physical
structure or organization.

[0060] Terms and phrases used in this document, and
variations thereof, unless otherwise expressly stated, should
be construed as open ended as opposed to limiting. As
examples of the foregoing: the term “including” should be
read as meaning “including, without limitation” or the like;

Oct. 25, 2018

the term “example” is used to provide exemplary instances
of the item in discussion, not an exhaustive or limiting list
thereof; and adjectives such as “conventional,” “traditional,”
“normal,” “standard,” “known”, and terms of similar mean-
ing, should not be construed as limiting the item described
to a given time period, or to an item available as of a given
time. But instead these terms should be read to encompass
conventional, traditional, normal, or standard technologies
that may be available, known now, or at any time in the
future.

[0061] Likewise, a group of items linked with the con-
junction “and” should not be read as requiring that each and
every one of those items be present in the grouping, but
rather should be read as “and/or” unless expressly stated
otherwise. Similarly, a group of items linked with the
conjunction “or” should not be read as requiring mutual
exclusivity among that group, but rather should also be read
as “and/or” unless expressly stated otherwise.

[0062] Furthermore, although items, elements or compo-
nents of the disclosure may be described or claimed in the
singular, the plural is contemplated to be within the scope
thereof unless limitation to the singular is explicitly stated.
The presence of broadening words and phrases such as “one
or more,” “at least,” “but not limited to”, or other like
phrases in some instances shall not be read to mean that the
narrower case is intended or required in instances where
such broadening phrases may be absent.

[0063] Additionally, memory or other storage, as well as
communication components, may be employed in embodi-
ments of the invention. It will be appreciated that, for clarity
purposes, the above description has described embodiments
of the invention with reference to different functional units
and processors. However, it will be apparent that any
suitable distribution of functionality between different func-
tional units, processing logic elements or domains may be
used without detracting from the invention. For example,
functionality illustrated to be performed by separate pro-
cessing logic elements or controllers may be performed by
the same processing logic element or controller. Hence,
references to specific functional units are only to be seen as
references to suitable means for providing the described
functionality, rather than indicative of a strict logical or
physical structure or organization.

[0064] Furthermore, although individually listed, a plural-
ity of means, elements or method steps may be implemented
by, for example, a single unit or processing logic element.
Additionally, although individual features may be included
in different claims, these may possibly be advantageously
combined. The inclusion in different claims does not imply
that a combination of features is not feasible and/or advan-
tageous. Also, the inclusion of a feature in one category of
claims does not imply a limitation to this category, but rather
the feature may be equally applicable to other claim catego-
ries, as appropriate.

1. A data engineering system for machine learning at
scale, comprising:

an ingest processing module having a schema update
submodule and a feature statistics update submodule,
wherein the schema update submodule is configured to
discover new features and add them to a schema, and
wherein the feature statistics update submodule collects
statistics for each feature to be used in an online
transformation;



US 2018/0307710 Al

a record store to store data from a data source; and

a transformation module, to receive a low dimensional
data instance from the record store and to receive the
schema and feature statistics from the ingest processing
module, and to transform the low dimensional data
instance into a high dimensional representation.

2. The system of claim 1, further comprising a library to
cache transformations for future use without having to
recalculate the transformation.

3. The system of claim 2, wherein when there are multiple
transformations the library can cache at least one of inter-
mediate results or the final transformation.

4. The system of claim 1, wherein feature statistics are
collected while data is being added to the ingesting process-
ing module.

5. The system of claim 1, wherein feature statistics are
collected asynchronously in the background prior to trans-
formation.

6. The system of claim 1, wherein the system is config-
ured to receive feature outputs from deep learning modules
from an upstream machine and to derive new transforma-
tions from the deep learning modules.

7. The system of claim 1, wherein the system can provide
features to a downstream system that will ingest the features
as training inputs.

8. The system of claim 1, wherein the system stores data
as rows in tables and the data is ordered by the ingest order,
and wherein each table has a schema that defines the fields
of each row.

9. The system of claim 1, further comprising a plurality of
at least one of the ingest processing module, the record store,
and the transformation module, wherein the plurality is
distributed on multiple computers.

10. A method for data engineering for machine learning at
scale, the method comprising:

calling a built-in feature transformation or defining a new

transformation;

specifying a data source and compressing and storing the

data;

Oct. 25, 2018

providing ingest-time processing by automatically ana-
lyzing necessary statistics for features, and then gen-
erating a schema for a dataset for subsequent data
engineering.

11. The method of claim 10, further comprising the
feature transformation connecting to models trained by
upstream training systems, and using the trained models to
generate new features.

12. The method of claim 11, further comprising selec-
tively caching features for better efficiency in a subsequent
transformation.

13. The method of claim 10, wherein once a transforma-
tion has been executed, caching it in a library for a future use
without having to recalculate the transformation.

14. The method of claim 10, wherein feature statistics are
collected while data is being added to the ingesting process-
ing module.

15. The method of claim 10, wherein feature statistics are
collected asynchronously in the background prior to trans-
formation.

16. The method of claim 10, further comprising receiving
feature outputs from trained deep learning models and
deriving new transformations from the deep learning mod-
ules.

17. The method of claim 10, further comprising providing
features to a downstream system that will ingest the features
as training inputs.

18. The method of claim 10, further comprising storing
data as rows in tables, and ordering the data by the ingest
order, and wherein each table has a schema that defines the
fields of each row.

19. The method of claim 10, further comprising:

providing an interface for a user to implement a custom

transformation; and

caching the custom transformation in a library for a future

use.



