
US 20200396260A1
IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0396260 A1

Nahas et al . (43) Pub . Date : Dec. 17 , 2020

Publication Classification (54) AUTOMATIC NETWORK APPLICATION
SECURITY POLICY EXPANSION

(71) Applicant : Zscaler , Inc. , San Jose , CA (US)

(72) Inventors : Peter Nahas , Watertown , MA (US) ;
Peter Smith , Acton , MA (US) ; Harry
Sverdlove , North Reading , MA (US) ;
John O'Neil , Watertown , MA (US) ;
Scott Laplante , Bedford , NH (US) ;
Andriy Kochura , North Andover , MA
(US)

(51) Int . Ci .
H04L 29/06 (2006.01)
G06K 9/62 (2006.01)
H04L 9/06 (2006.01)

(52) U.S. Cl .
CPC H04L 63/205 (2013.01) ; H04L 9/0643

(2013.01) ; GO6K 9/6215 (2013.01)
(57) ABSTRACT
A system validates the establishment and / or continuation of
a connection between two applications over a network . The
system uses network application security rules to allow or
disallow connections between the two applications . Those
rules include definitions of the source and destination appli
cations to which the rules apply . The system automatically
updates the application definitions over time to encompass
new versions of the applications covered by the security
rules , but without encompassing other applications . The
system is then capable of applying the updated rules both to
the original applications and to the updated versions of those
applications . This process enables the security rules to
maintain security over time in a way that is consistent with
the original intent of the rules even as applications on the
network evolve .

(21) Appl . No .: 16 / 898,831

(22) Filed : Jun . 11 , 2020

Related U.S. Application Data
(60) Provisional application No. 62 / 859,760 , filed on Jun .

11 , 2019 .

400

Start

402 Select application features

For each pair of application instances executing on host 404

Identify values of features of applications in pair 406

408

Values
match ?

No

Yes

Use TLSH to produce
similarity value based on
pair of application binaries

410

412
Similarity
value <

threshold ?
-No

Yes
414 Application pair is connected by a similarity relation

End loop over application pairs 416

End

100

03:00 :

1-29Xoy
112

Policies 118

Patent Application Publication

110

128

Calle

120

132

116

126

136

122

114

134 130

102b System

102a

Dec. 17 , 2020 Sheet 1 of 6

124a

106b

Policies
106a

104a

124b

104b

Policies PA.320XRX

RP.2 .

US 2020/0396260 A1

wwwwww

FIG . 1

Patent Application Publication Dec. 17 , 2020 Sheet 2 of 6 US 2020/0396260 A1

200a
Start

Local security agents (LSAs) report local application state and network
topology to policy management engine 202

Policy management engine receives and stores application state and
network topology 204

Policy management engine provides policy data to LSAs 206

TO FIG . 2B

FIG . 2A

Patent Application Publication Dec. 17 , 2020 Sheet 3 of 6 US 2020/0396260 A1

200b

88

FIG . 2B

Patent Application Publication Dec. 17 , 2020 Sheet 4 of 6 US 2020/0396260 A1

200c

4

* SS

3

FIG . 2C

Patent Application Publication Dec. 17 , 2020 Sheet 5 of 6 US 2020/0396260 A1

300

Host
302 Application

Features
304

306 Applications

312
308

Application Feature
Identification

Module TLSH Module

310 Application
Feature Values

314 Similarity
Values

316 Similarity Relation
Generator

318 Similarity
Relations

320
Similarity Graph

Generator

322 Similarity
Graph

FIG . 3

Patent Application Publication Dec. 17 , 2020 Sheet 6 of 6 US 2020/0396260 A1

400

Start

Select application features 402

For each pair of application instances executing on host - 404

Identify values of features of applications in pair 406

408

Values
match ?

No

Yes

Use TLSH to produce
similarity value based on
pair of application binaries

410

412
Similarity
value <

threshold ?
No

Yes

414 Application pair is connected by a similarity relation

End loop over application pairs 416

End

FIG . 4

US 2020/0396260 A1 Dec. 17 , 2020
1

AUTOMATIC NETWORK APPLICATION
SECURITY POLICY EXPANSION

CROSS - REFERENCE TO RELATED
APPLICATIONS

policy , in other words , may define the application too
narrowly , thereby resulting in false negatives when the
policy is applied . One negative consequence of this is that
the system may invalidate a connection involving the appli
cation even though the application has features which should
result in the connection being validated .

SUMMARY
[0001] This application claims priority to U.S. Provisional
Application No. 62 / 859,760 , filed Jun . 11 , 2019 , the contents
of which are incorporated by reference herein .
[0002] This application is related to the following patent
applications , both of which are incorporated by reference
herein :

[0003] App . Ser . No. 15 / 883,534 , filed on Jan. 30 , 2018 ,
entitled , “ Network Application Security Policy
Enforcement , ” now U.S. Pat . No. 10,154,067 , issued
on Dec. 11 , 2018 (hereinafter “ the Policy Enforcement
Patent ') ; and

[0004] U.S. patent application Ser . No. 15 / 899,453 ,
filed on Feb. 20 , 2018 entitled , “ Network Application
Security Policy Generation , ” now U.S. Pat . No. 10,439 ,
985 , issued on Oct. 8 , 2019 (hereinafter “ the Policy
Generation Patent ”) .

[0008] A system validates the establishment and / or con
tinuation of a connection between two applications over a
network . The system uses network application security rules
to allow or disallow connections between the two applica
tions . Those rules include definitions of the source and
destination applications to which the rules apply . The system
automatically updates the application definitions over time
to encompass new versions of the applications covered by
the security rules , but without encompassing other applica
tions . The system is then capable of applying the updated
rules both to the original applications and to the updated
versions of those applications . This process enables the
security rules to maintain security over time in a way that is
consistent with the original intent of the rules even as
applications on the network evolve .
[0009] Other features and advantages of various aspects
and embodiments of the present invention will become
apparent from the following description and from the
claims .

BACKGROUND

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG . 1 is a dataflow diagram of a system for
performing symmetrical validation of communications
between applications over a network according to one
embodiment of the present invention ;
[0011] FIGS . 2A - 2C are flowcharts of a method for per
forming the symmetrical validation of FIG . 1 according to
one embodiment of the present invention ;
[0012] FIG . 3 is a dataflow diagram of a system of
expanding the definition of an application according to one
embodiment of the present invention ; and
[0013] FIG . 4 is a flowchart of a method performed by the
system of FIG . 3 according to one embodiment of the
present invention .

[0005] Applications connected by network infrastructure
communicate with each other in order to share data and
perform business operations . The connection between a
source application and a destination application is estab
lished by the source application , which requests a connec
tion from its Internet Protocol (IP) address to the IP address
of the destination application , typically over a specific port .
Typically , existing host - based network security technolo
gies , such as personal firewalls , allow or restrict directional
access specifically at the egress or ingress point of the
communication on the host on which the communication is
occurring . For example , the firewall running on the host on
which the source application executes typically monitors the
outbound connection attempt to the destination IP address ,
while the firewall running on the host on which the desti
nation application executes typically monitors the inbound
connection attempt from the source IP address . Each such
security component operates in relative isolation from the
other , and generally only has visibility into the network
related information of the other side (e.g. , IP address , port ,
protocol) , and not into the identity of the application execut
ing on the other host .
[0006] The limited information available to each host in
such a communication restricts the types of decisions that
existing security technologies can make , and allows for the
hosts that are party to communications to be exploited , such
as by spoofing their legitimate IP addresses to make or
receive unauthorized communications .
[0007] The Policy Enforcement Patent describes a system
which validates the establishment and / or continuation of a
connection between two applications over a network . The
validation applies a set of policies which apply to applica
tions . Applying such policies to connections between a pair
of applications involves identifying the two applications and
determining whether one or more policies applies to the
identified applications . Applying the policies in this way
may , however , result in a policy not being applied to an
application because that application differs in some way
from the policy's definition of the application , even though
the application's features satisfy the intent of the policy . The

DETAILED DESCRIPTION

[0014] Embodiments of the present invention perform
symmetrical validation of communication between applica
tions (or services) over a network . Such validation enables
an imposter application to be detected and prevented from
communicating even if the imposter application communi
cates , or attempts to communicate , using the same name and
communication content as a permitted application . Embodi
ments of the present invention achieve this result by vali
dating applications using application fingerprints that can
distinguish permitted from prohibited applications based on
features other than mere application name and communica
tion content . Embodiments of the present invention may
define and apply such fingerprints flexibly , so that policies
may be enforced not only against exact copies of the
applications that were used to generate those policies , but
also against reasonable variants of such applications . Addi
tional details and embodiments of the present invention will
be described in more detail below .

US 2020/0396260 A1 Dec. 17 , 2020
2

[0015] The term “ application , ” as used herein , includes
both applications and services . Therefore , any reference
herein to an " application ” should be understood to refer to
an application or a service .
[0016] Referring to FIG . 1 , a dataflow diagram is shown of
a system 100 for performing symmetrical validation of
communication between applications over a network . Refer
ring to FIG . 2A , a flowchart is shown of a method 200a
performed by the policy management agent 110 according to
one embodiment of the present invention .
[0017] The system 100 includes a source system 102a and
a destination system 102b . A “ system , ” as that term is used
herein (e.g. , the source system 102a and / or destination
system 102b) , may be any device and / or software operating
environment that is addressable over an Internet Protocol
(IP) network . For example , each of the source system 102a
and the destination system 102b may be any type of physical
or virtual computing device , such as a server computer ,
virtual machine , desktop computer , laptop computer , tablet
computer , smartphone , or wearable computer . The source
system 102a and the destination system 102b may have the
same or different characteristics . For example , the source
system 102a may be a smartphone and the destination
system 102b may be a server computer . A system (such as
the source system 102a and / or destination system 102b) may
include one or more other systems , and / or be included
within another system . As merely one example , a system
may include a plurality of virtual machines , one of which
may include the source system 102a and / or destination
system 102b .
[0018] The source system 102a and destination system
102b are labeled as such in FIG . 1 merely to illustrate a use
case in which the source system 102a initiates communica
tion with the destination system 102b . In practice , the source
system 102a may initiate one communication with the
destination 102b and thereby act as the source for that
communication , and the destination system 102b may ini
tiate another communication with the source system 102a
and thereby act as the source for that communication . As
these examples illustrate , each of the source system 102a
and the destination system 102b may engage in multiple
communications with each other and with other systems ,
and may act as either the source or destination in those
communications . Furthermore , the system 100 may include
additional systems , all of which may perform any of the
functions disclosed herein in connection with the source
system 102a and the destination system 102b .
[0019] The source system 102a includes a source appli
cation 104a (which may , for example , be installed and
executing on the source system 102a) and the destination
system 102b includes a destination application 104b (which
may , for example , be installed and executing on the desti
nation system 102b) . Each of these applications 104a and
104b may be any kind of application , as that term is used
herein . The source application 104a and the destination
application 104b may have the same or different character
istics . For example , the source application 104a and desti
nation application 104b may both be the same type of
application or even be instances of the same application . As
another example , the source application 104a may be a
client application and the destination application 104b may
be a server application , or vice versa .
[0020] An embodiment will now be described for enforc
ing security policies on a communication that the source

system 102a attempts to initiate with the destination system
102b . In this embodiment , the source system 102a includes
a local security agent 106a and the destination system 102b
includes a local security agent 106b . More generally , a local
security agent may be contained within (e.g. , installed and
executing on) any system that executes one or more appli
cations to which the security techniques disclosed herein are
to be applied . A local security agent may , for example ,
execute within the same operating system on the same
system as the application (s) that the local security agent
monitors . Each such local security agent (e.g. , the local
security agents 106a and 106b) may include any combina
tion of hardware and / or software for performing the func
tions disclosed herein .
[0021] The system 100 also includes a policy management
engine 110. The policy management engine may include any
combination of hardware and / or software for performing the
functions disclosed herein . In the particular embodiment
illustrated in FIG . 1 , the policy management engine 110 is
contained within (e.g. , installed and executing on) a remote
system 112. The remote system 112 may be any device
and / or software application that is addressable over an IP
network . For example , the remote system 112 may be any
type of computing device , such as a server computer , virtual
machine , desktop computer , laptop computer , tablet com
puter , smartphone , or wearable computer . The remote sys
tem 112 and the source and destination systems 102a - b may
have the same or different characteristics . For example , the
source and destination systems 102a - b may be smartphones
and the remote system 112 may be a server computer .
[0022] Some or all of the local security agents 106a - b may
report the state of the local applications as well as the state
of the network on their system to the policy management
engine 110 (FIG . 2A , operation 202) . For example , in FIG .
1 , the local security agent 106a is on the same system as and
monitors the source application 104a . The local security
agent 106a may , therefore , obtain state information about
the source application 104a and report some or all of that
state information , and / or information derived therefrom , to
the policy management engine 110. Although in the example
of FIG . 1 only one source application 104a is shown on the
source system 102a , any number of source applications may
execute on the source system 102a , and the local security
agent 106a may obtain and report state information for some
or all of such source applications to the policy management
engine 110. The local security agent 106a may also report
information about the network configuration on source sys
tem 102a that will help the policy management engine 110
identify system 102a to other systems independent of the
applications that may be executing . The local security agent
106a may also report information about the system network
topology of the source system 102a , such as its IP addresses
and / or Address Resolution Protocol (ARP) cache . All such
reporting is represented by communication 114 in FIG . 1 .
Such communication 114 may be implemented in any of a
variety of ways , such as by the local security agent 106a
transmitting (e.g. , via IP and / or another network communi
cation protocol) one or more messages containing the
obtained application state and network configuration infor
mation to the policy management engine 110 .
[0023] Similarly , the local security agent 106b on the
destination system 102b may obtain and transmit state
information for the destination application 104b (and for any
other applications executing on the destination system 102b)

US 2020/0396260 A1 Dec. 17 , 2020
3

and for the network configuration information of destination
system 102b and transmit such information via communi
cation 116 to the policy management engine 110 in any of
the ways disclosed above in connection with the local
security agent 106? , the source system 102a , the source
application 104a , and the communication 114 .
[0024] The policy management engine 110 may receive
the transmitted state information 114 and 116 and store some
or all of it in any suitable form (FIG . 2A , operation 204) . As
described above , such state information may include both
application state information and network topology infor
mation (e.g. , addresses , listening ports , broadcast zones) .
The policy management engine 110 may , for example , store
such state information 114 and 116 in a log (e.g. , database)
of state information received from one or more local security
agents (e.g. , local security agents 106a - b) over time . Such a
log may include , for each unit of state information received ,
an identifier of the system (e.g. , source system 102a or
destination system 102b) from which the state information
was received . In this way , the policy management engine
110 may build and maintain a record of application state and
network configuration information from various systems
over time .
[0025] The policy management engine 110 may include or
otherwise have access to a set of policies 118 , which may be
stored in the remote system 112. In general , each of the
policies 118 specifies both a source application and a des
tination application , and indicates that the source application
is authorized (or not authorized) to communicate with the
destination application . A policy may specify , for the source
and / or destination application , any number of additional
attributes of the source and / or destination application , such
as any one or more of the following , in any combination :
user (s) who are executing the application (identified , e.g. , by
username , group membership , or other identifier) , system (s) ,
network subnet , and time (s) . A policy may identify its
associated source and / or destination application using an
application fingerprint , which may include or otherwise
specify one or more key - value pairs that define the appli
cation , such as its name and any other attribute (s) which may
be used to authenticate the validity and identity of an
application . An application fingerprint may , for example ,
include any one or more of the following key - value pairs in
any combination : file name , file path , file size , file type , file
version , cryptographic (e.g. , SHA - 256) hash of contents ,
and digital code signing certificates associated with the
application . A policy may include other information for its
associated source and / or destination application , such as the
IP address and port used by the application to communicate ,
whether or not such information is used to define the
application .
[0026] As described above , a policy may include an appli
cation fingerprint for a source application and an application
fingerprint for a destination application . As will be described
in more detail below , applying the policies 118 to a particu
lar communication between a particular source application
and a particular destination application involves determining
whether the source application matches the policy's source
application fingerprint and whether the destination applica
tion matches the policy's destination application fingerprint .
If , for example , the source application is identical to the
source application that was used to generate the source
application fingerprint in the policy , then , when an attempt
is made to apply the policy , embodiments of the present

invention will determine that the source application matches
the policy's source application fingerprint .
[0027] Consider , however , a situation in which a policy's
source application fingerprint was created based on the
features of a particular version of a source application , and
in which a new version of that source application is installed
on the same source system as the original version of the
source application . The new version of the source applica
tion may have some features which differ from those of the
original version of the source application . As a result , if the
policy's source application fingerprint is defined and / or
applied too rigidly , such as if it is applied to result in a match
only if the new version of the source application is identical
in all ways to the original version of the source application ,
then an attempt to apply the policy to the new version of the
source application will conclude that the new version of the
source application does not match the policy's source appli
cation fingerprint . This may be undesirable because , for
example , the new version of the source application may
retain some or all of the features of the original version of
the source application which made the policy applicable to
the source application .
[0028] There are many other ways in which a particular
instance of a source application may differ from the instance
of the source application that was the basis for the source
application's fingerprint in a particular policy . For example ,
a source application may be recompiled for execution on a
different platform than the instance of the source application
that was the basis for the source application's fingerprint in
a particular policy . In this case , it is desirable for the policy
to continue to be applicable to the new instance of the source
application , because from a security perspective that new
instance retains all of the features that caused the policy to
be applicable to the original instance of the source applica
tion . The considerations described above apply equally to
destination applications .
[0029] As these examples illustrate , it is desirable to
define and / or apply an application fingerprint flexibly
enough to enable that application fingerprint to be consid
ered to be match against a variety of instances of an
application , even if those instances are not identical to each
other . On the other hand , the application fingerprint should
not be defined and / or applied so flexibly that it allows
significantly different applications to be considered to be
matches for the application fingerprint , and thereby evade
the security protections afforded by the policy that contains
the application fingerprint .
[0030] Embodiments of the present invention address this
problem by generalizing the definition of application ” that
is implemented in an application fingerprint in a security
policy of the kind described herein , such as any of the
security policies 118. This generalization enables an appli
cation fingerprint , which was generated based on features of
a specific instance of an application , to encompass (e.g. ,
treated as matching) new versions of that application , but not
to encompass (e.g. , not treated as matching) other applica
tions . As will be described in more detail below , embodi
ments of the present invention achieve this beneficial result
using both static features of the application and a statistical
analysis of similarity , in order to determine whether a
previously unseen application should be allowed under
policies generated based on another application (or another
group of similar applications) . This capability advanta
geously provides the policies 118 with much greater adapt

US 2020/0396260 A1 Dec. 17 , 2020
4

ability and thereby enables security to be maintained even in
the face of the inevitable changes that will occur in a
network , its hosts , and its applications .
[0031] The policy management engine 110 provides , to
one or more systems in the system 100 (e.g. , the source
system 102a and destination system 102b) , policy data ,
obtained and / or derived from the policies , representing some
or all of the policies that are relevant to the system to which
the policy data is transmitted , which may include translating
applications into IP address / port combinations (FIG . 2A ,
operation 206) . For example , the policy management engine
110 may identify a subset of the policies 118 that are relevant
to the source system 102a and transmit a communication
120 representing the identified subset of policies to the
source system 102a . The source system 114a may receive
the communication 120 and store source system policy data
124a , representing the received policies , in the source sys
tem 102a . Similarly , the policy management engine 110 may
identify a subset of the policies 118 that are relevant to the
destination system 102b and transmit a communication 122
representing the identified subset of policies to the destina
tion system 102b . The destination system 114b may receive
the communication 122 and store destination system policy
data 124b , representing the received policies , in the desti
nation system 102b .
[0032] The policy management engine 110 may identify
the subset of the policies 118 that are relevant to a particular
system (e.g. , the source system 102a and / or the destination
system 102b) in any of a variety of ways . For example , the
policy management engine 110 may identify a policy as
relevant to a system if the policy refers to an IP address of
the system or an application that is installed and / or execut
ing on the system . When the policy management engine 110
determines whether a policy refers to a particular applica
tion , the policy management engine 110 may use the broader
definition of “ application ” used herein , and thereby deter
mine that a policy refers to a particular application that is
installed and / or executing on a system if that application or
an application that has a similarity relation to that applica
tion is installed and / or executing on the system . This func
tion may be performed using a “ similarity set ” for the
application of the kind described in more detail below .
[0033] The policy management engine 110 may extract the
policy data that is relevant to the systems 102a and 102b and
transmit the resulting policy data communications 120 and
122 in response to any of a variety of triggers . For example ,
the policy management engine 110 may extract and transmit
relevant policy data (in the form of instances of the com
munications 120 and 122) to the systems 102a and 102b :

[0034] periodically (e.g. , every second , every minute , or
at any scheduled times) ;

[0035] in response to a change in the master policy data
;

[0036] in response to a change in network topology ,
e.g. , an assignment of a network address to one of the
systems 102a - b or a change in an assignment of an
existing address ;

[0037] in response to a new application executing on
one of the systems 102a - b ;

[0038] in response to an existing application in the
system 100 changing or adding a port on which it is
listening for connections ;

[0039] in response to an unexpected condition on sys
tems 102a - b or other systems in the network .

[0040] The policy management engine 110 may only
transmit updated policy data to one of the systems 102a and
102b if the updates are relevant to that system . Regardless
of the trigger , in response to receiving the relevant policy
data 120 and 122 , the systems 102a and 102b may update
their local policy data 124a and 124b in accordance with the
received communications 120 and 122 , respectively .
Receiving and maintaining updated copies of relevant policy
data enables local systems , such as the systems 102a and
102b , to apply the policies that are relevant to them without
the need to communicate with a remote system or compo
nent , such as the remote system 112 or policy management
engine 110 .
[0041] Before describing the system 100 and methods
200a - c in more detail , it will be useful to note that the system
100 may operate in one of at least three security modes in
relation to any particular connection between two applica
tions (e.g. , the source application 104a and the destination
application 104b) :

[0042] (1) Optimistic : The connection between the two
applications is allowed unless and until the reconcili
ation engine 128 instructs the agents associated with
those applications to terminate the connection due to a
policy violation .

[0043] (2) Pessimistic : The connection between the two
applications is terminated after a specified amount of
time has passed if the reconciliation engine 128 does
not affirmatively instruct the agents associated with
those applications to keep the connection alive .

[0044] (3) Blocking : The connection between the two
applications is blocked unless and until the reconcili
ation engine 128 affirmatively instructs the agents
associated with those applications to allow the connec
tion .

[0045] Note that the system 100 may , but need not , operate
in the same security mode for all connections within the
system 100. The system 100 may , for example , operate in
optimistic security mode for some connections , operate in
pessimistic security mode for other connections , and operate
in blocking security mode for yet other connections . As yet
another example , the system 100 may switch from one mode
to another for any given connection or set of connections in
response to detected conditions , as will be described in more
detail below .
[004] Referring now to FIG . 2B , a flowchart is shown of
a method 2005 that is performed by the source local security
agent 106a in one embodiment of the present invention to
process an outgoing connection request . Note that although
the method 200b of FIG . 2B may be performed following
the method 200a performed by the policy management agent
110 in FIG . 2A , this is merely an example and not a
requirement of the present invention . Rather , the method
2006 of FIG . 2B (and the method 200c of FIG . 2C) may
operate independently of the method 200a of FIG . 2A .
[0047] Now consider an example in which the source
application 104a makes a network request to communicate
with the destination application 104b . Although this particu
lar example will be described in connection with this par
ticular request , the techniques disclosed herein may be
applied more generally to any request made by any appli
cation to communication with any other application .
[0048] The local security agent that is on the same system
as the requesting application , which in this example is the
local security agent 106? that is on the same system 102a as

US 2020/0396260 A1 Dec. 17 , 2020
5

the requesting application 104a , detects that the requesting
application 104a has made the communication request ,
intercepts the request , and blocks the request from proceed
ing further at least until the source local security agent 106a
has evaluated whether the request matches a local policy
(FIG . 2B , operation 208) . The local security agent 106a
identifies , based on the request , the application 104a that is
the source of the request (FIG . 2B , operation 210) . The local
security agent 106a evaluates the request against the locally
stored policies 124a in order to determine whether to allow
or deny the request based on any one or more of the
following , in any combination : the identity of the source
application 104a , the IP address and port of the destination
application 104b , some or all of the contents of the request ,
and the local policy data 124a (FIG . 2B , operation 212) .
[0049] The local security agent 106a determines , based on
its evaluation , whether one of the local policies 124a covers
the communication request (FIG . 2B , operation 214) . If one
of the local policies 124a does cover the request , then the
local security agent 106a determines whether the covering
policy allows or denies the request (FIG . 2B , operation 216) .
If the covering policy allows the request , then the local
security agent 106a determines whether the covering policy
is current (FIG . 2B , operation 218) . The local security agent
106a may determine whether the covering policy is current
in any of a variety of ways . For example , in certain embodi
ments , the policy management engine 110 may inform the
local security agent 106? that particular policies are current
or not current . The local security agent 106a may treat any
particular policy as current in response to being informed by
the policy management engine 110 that the policy is current ,
unless and until the policy management engine 110 subse
quently informs the local security agent 106? that the policy
is no longer current . As another example , the local security
agent 106? may convert the status of a policy from current
to not current after some predetermined amount of time has
passed from when the local security agent 106a previously
set the status of the policy to current .
[0050] If the covering policy is current , then the local
security agent 106a sets its security mode to optimistic mode
(FIG . 2B , operation 226) ; otherwise , the local security agent
106a sets its current security mode to pessimistic security
mode (FIG . 2B , operation 224) . If the covering policy allows
the request , then the local security agent 106? allows the
request (FIG . 2B , operation 232) , regardless of whether the
local policy is current .
[0051] If , in operation 232 of FIG . 2B , the local security
agent 106a decides to allow the communication request ,
then , in general , the local security agent 106? allows the
communication request to be transmitted the destination
application 104b . Such transmission may occur using tradi
tional techniques . In other words , the local security agent
106a may unblock the communication request and permit it
to be transmitted normally .
[0052] If , in operation 214 , the local security agent 106a
determines that none of the local policies 124a covers the
request , or , in operation 216 , the local security agent 106a
determines that the covering policy denies the request , then
the local security agent 106a determines whether its current
security mode is blocking security mode (FIG . 2B , operation
220) . Furthermore , note that the local policies 124a may
include a policy which specifically indicates the action to be
performed if none of the local policies 124a covers the
request . If the local policies 124a include such a policy , then

the local security agent 106a may perform the action speci
fied by that policy if the local security agent 106a determines
that none of the local policies 124a covers the request .
[0053] If the local security agent 106a's current security
mode is blocking security mode , then the local security
agent 106a transmits the request to the policy management
engine 110 and awaits a response from the policy manage
ment engine 110 (FIG . 2B , operation 222) . The policy
management engine 110 then evaluates the request against
the central policies 118 and sends a response to the local
security agent 106a indicating whether the request should be
allowed or denied , based on the central policies 118. The
local security agent 106a receives the response 120 from the
policy management engine 110 and determines whether the
response 120 indicates that the request should be allowed or
denied (FIG . 2B , operation 230) . If the response 120 from
the policy management engine 110 indicates that the request
130 should be allowed , then the local security agent 106a
allows the connection request (FIG . 2B , operation 232) ;
otherwise , the local security agent 106a denies the connec
tion request (FIG . 2B , operation 228) . The local security
agent 106a also denies the connection request (FIG . 2B ,
operation 228) if , in operation 220 , the local security agent
106a determines that its current security mode is not block
ing security mode .
[0054] Regardless of whether the local security agent 106a
allows or denies the request (FIG . 2B , operations 232 or
228) , the local security agent 106a notifies a reconciliation
engine 128 on the remote system 112 of the decision , such
as by transmitting a communication 126 to the reconciliation
engine 128 (FIG . 2B , operation 234) . The communication

include any of a variety of information , such as data
representing one or more of the following : the identity of the
source application 104a , the destination IP address and port ,
and the decision made by the local security agent 106a (e.g. ,
allow or deny) . The reconciliation engine 128 may receive
and store the communication 126 in any of the ways
disclosed herein in connection with the receipt and storage
of the communication 114 by the policy management engine
110 .

[0055] The local security agent 106a may or may not wait
to receive a response from the reconciliation engine 128
before proceeding , depending on the local security agent
106a's current security mode . More specifically , the local
security agent 106a determines whether it previously denied
the connection request 130 in operation 228 or allowed the
connection request 130 in operation 232 (FIG . 2B , operation
236) . If the connection request 130 was denied , not allowed ,
the local security agent does not take any further action .
[0056] If , instead , the connection request was allowed and
was accepted by the destination system 102b , then the local
security agent 106a determines whether it is currently oper
ating in pessimistic security mode (FIG . 2B , operation 238) .
If the local security agent 106a is currently operating in
pessimistic security mode , then the local security agent 106a
waits to receive a response from the reconciliation engine
128 (FIG . 2B , operation 240) . If the local security agent
106a does not receive a response within some predetermined
timeout period or receives a response indicating the con
nection does not reconcile with current policies (FIG . 2B ,
operation 244) , then the local security agent 106a terminates
the connection (FIG . 2B , operation 246) . If the local security
agent 106a receives a response that confirms the connection

126 may

US 2020/0396260 A1 Dec. 17 , 2020
6

reconciles with current policy , the local security agent 106a
leaves the connection active by not taking any action .
[0057] If the local security agent 106a is not currently
operating in pessimistic security mode (FIG . 2B , operation
238) , then , if the response received by the local security
agent 106a from the reconciliation engine 128 denies the
request , then the local security agent 106a terminates the
connection (FIG . 2B , operation 246) . If , in operation 242 ,
the reconciliation engine 128 allows the request , the local
security agent 106a leaves the connection active by not
taking any action .
[0058] Referring now to FIG . 2C , a flowchart is shown of
a method 200c that is performed by the destination local
security agent 106b in one embodiment of the present
invention to process the incoming connection request 130
from the source application 104a . Note that although the
method 200c of FIG . 2C is illustrated as being performed
after the method 200b performed by the source local security
agent 106a in FIG . 2A , this is merely an example and not a
requirement of the present invention . For example , the
method 200c of FIG . 2C may begin before the method 2006
of FIG . 2B has completed . As a particular example , the
method 200c of FIG . 2C may begin after the source local
security agent 106a transmits the connection request 130 to
the destination system 102b , and before the remainder of the
method 200b completes .
[0059] The destination local security agent 106b intercepts
the inbound connection request 130 transmitted by the
source local security agent 106a , and blocks the request
from proceeding further at least until the destination local
security agent 106b has evaluated whether the request 130
matches a local policy (FIG . 2C , operation 248) . The local
security agent 10ba identifies , based on the request , the
application 104b that is the destination of the request (FIG .
2C , operation 250) . The local security agent 106b evaluates
the request 130 against the locally stored policies 124b in
order to determine whether to allow or deny the request 130
based on any one or more of the following , in any combi
nation : the identity of the destination application 104b , the
IP address and port of the source application 104a , some or
all of the contents of the request 130 , and the local policy
data 124b (FIG . 2C , operation 252) .
[0060] The local security agent 106b determines , based on
its evaluation , whether one of the local policies 124b covers
the communication request 130 (FIG . 2C , operation 254) . If
one of the local policies 124b does cover the request , then
the local security agent 106b determines whether the cov
ering policy allows or denies the request (FIG . 2C , operation
256) . If the covering policy allows the request , then the local
security agent 106b determines whether the covering policy
is current (FIG . 2C , operation 258) . The local security agent
106b may determine whether the covering policy is current
in any of a variety of ways . For example , in certain embodi
ments , the policy management engine 110 may inform the
local security agent 106b that particular policies are current
or not current . The local security agent 106b may treat any
particular policy as current in response to being informed by
the policy management engine 110 that the policy is current ,
unless and until the policy management engine 110 subse
quently informs the local security agent 106b that the policy
is no longer current . As another example , the local security
agent 106b may convert the status of a policy from current
to not current after some predetermined amount of time has

passed from when the local security agent 106b previously
set the status of the policy to current .
[0061] If the covering policy is current , then the local
security agent 106b sets its security mode to optimistic mode
(FIG . 2C , operation 266) ; otherwise , the local security agent
106b sets its current security mode to pessimistic security
mode (FIG . 2C , operation 264) . If the covering policy allows
the request 130 , then the local security agent 106b allows the
request 130 (FIG . 2C , operation 272) , regardless of whether
the local policy is current .
[0062] If , in operation 272 of FIG . 2C , the local security
agent 106a decides to allow the communication request 130 ,
then , in general , the local security agent 106b allows the
communication request 130 to be provided to the destination
application . In other words , the local security agent 106b
may unblock the communication request 130 so that it may
be received by the destination application 104b .
[0063] If , in operation 254 , the local security agent 106
determines that none of the local policies 124b covers the
request 130 , or , in operation 256 , the local security agent
106b determines that the covering policy denies the request
130 , then the local security agent 106b determines whether
its current security mode is blocking security mode (FIG .
2C , operation 260) . If the local security agent 106b's current
security mode is blocking security mode , then the local
security agent 106b transmits the request 130 to the policy
management engine 110 and awaits a response from the
policy management engine 110 (FIG . 2C , operation 262) .
The policy management engine 110 then evaluates the
request 130 against the central policies 118 and sends a
response to the local security agent 106b indicating whether
the request should be allowed or denied , based on the central
policies 118. The local security agent 106b receives the
response 122 from the policy management engine 110 and
determines whether the response 122 indicates that the
request 130 should be allowed or denied (FIG . 2C , operation
270) . If the response 122 from the policy management
engine 110 indicates that the request 130 should be allowed ,
then the local security agent 106b allows the connection
request 130 (FIG . 2C , operation 272) ; otherwise , the local
security agent 106b denies the connection request 130 (FIG .
2C , operation 268) . The local security agent 106b also
denies the connection request 130 (FIG . 2C , operation 268)
if , in operation 260 , the local security agent 106b determines
that its current security mode is not blocking security mode .
[0064] Regardless of whether the local security agent 106
allows or denies the request 130 (FIG . 2B , operations 272 or
268) , the local security agent 106b notifies the reconciliation
engine 128 on the remote system 112 of the decision , such
as by transmitting a communication 132 to the reconciliation
engine 128 (FIG . 2C , operation 274) . The communication
132 may include any of a variety of information , such as data
representing one or more of the following : the identity of the
destination application 104b , the source IP address and port ,
and the decision made by the local security agent 106b (e.g. ,
allow or deny) . The reconciliation engine 128 may receive
and store the communication 132 in any of the ways
disclosed herein in connection with the receipt and storage
of the communication 114 by the policy management engine
110 .
[0065] The local security agent 106b may or may not wait
to receive a response from the reconciliation engine 128
before proceeding , depending on the local security agent
106b's current security mode . More specifically , the local

US 2020/0396260 A1 Dec. 17 , 2020
7

security agent 106b determines whether it previously denied
the connection request 130 in operation 268 or allowed the
connection request 130 in operation 272 (FIG . 2C , operation
276) . If the connection request 130 was denied , not allowed ,
the local security agent does not take any further action and
the destination application 104b does not receive the
request .
[0066] If , instead , the connection request was allowed and
was accepted by the destination application 1046 , then the
local security agent 106b determines whether it is currently
operating in pessimistic security mode (FIG . 2C , operation
278) . If the local security agent 106b is currently operating
in pessimistic security mode , then the local security agent
106b waits to receive a response from the reconciliation
engine 128 (FIG . 2C , operation 270) . If the local security
agent 106b does not receive a response within some prede
termined timeout period or receives a response indicating
the connection does not reconcile with current policies (FIG .
2C , operation 274) , then the local security agent 106b
terminates the connection (FIG . 2C , operation 266) . If the
local security agent 106b receives a response that confirms
the connection reconciles with current policy , the local
security agent 106b leaves the connection active by not
taking any action .
[0067] If the local security agent 106b is not currently
operating in pessimistic security mode (FIG . 2C , operation
278) , then , if the response 136 received by the local security
agent 106b from the reconciliation engine 128 denies the
request , then the local security agent 106b terminates the
connection (FIG . 2C , operation 286) . If , in operation 282 ,
the reconciliation engine 128 allows the request , the local
security agent 106b leaves the connection active by not
taking any action .
[0068] As described above , the source and destination
local security agents 106a - b notify the reconciliation engine
128 of their decisions regarding the connection request , in
operation 234 of FIG . 2B and operation 274 of FIG . 2C ,
respectively . The reconciliation engine 128 , in response to
receiving the communication 126 from the source local
security agent 106a and the communication 132 from the
destination local security agent 106b , collates the data from
the two communications 126 and 132 and determines , based
on the collated data , whether the collated data indicates that
the communication matches any of the policies 118. The
reconciliation engine 128 then notifies both the source local
security agent 106a and the destination local security agent
106b of its decision , via communications 134 and 136 ,
respectively . The ways in which the source and destination
local security agents 106a - b process the communications
134 and 136 are described above in connection with opera
tions 240/242 and 280/282 of FIGS . 2B and 2C , respec
tively .
[0069] The net effect of the method 200 shown in FIGS .
2A - 2C is that :

[0070] the source local security agent 106a makes an
informed decision about whether to allow or deny the
connection request based on the information available
to it at the time ;

[0071] if the connection is allowed , the destination local
security agent 106b makes an informed decision about
whether to allow or deny the request based on the
information available at the time ;

[0072] if both the source and destination local security
agents 106a - b allow the communication request , then

the reconciliation engine 128 attempts to confirm the
decisions of the source and destination local security
agents 106a and may either reaffirm those decisions or
override them .

[0073] A specific example of an application of the system
100 of FIG . 1 and the methods 200a - c of FIGS . 2A - 2C will
now be described . Assume that the source application 104a
is an application named " WebApp ” and that the source
system 102a has the IP address 192.168.1.1 . Further assume
that the destination application 1045 is an application named
“ Database ” and that the destination system 102b has the IP
address 192.168.1.2 , and that the “ Database ” is listening on
port 3306. Further assume that the policies 118 include a
policy which indicates that the “ Database ” application is
permitted to receive connections from “ WebApp ” source
applications .
[0074] The local security agent 106a reports to the policy
management engine that it is running application " WebApp "
and that its system has an IP address of 192.168.1.1 (com
munication 114) . The local security agent 106b reports to the
policy management engine 110 that the application “ Data
base ” is running and it is listening on IP address 192.168.1.2 ,
port 3306 (communication 116) . The policy management
engine 110 informs the source local security agent 106a that
application “ WebApp ” may communicate with 192.168.1.2
over port 3306 (communication 120) . The policy manage
ment engine 110 informs the destination local security agent
106b that application “ Database ” may receive communica
tion from 192.168.1.1 (communication 114) .
[0075] The " WebApp ” application initiates a connection
request to IP address 192.168.1.2 , port 3306. Because this
matches a local policy that was received from the policy
management engine 110 , the local security agent 106a uses
the techniques disclosed above to allow the connection
request 130 to be transmitted to the destination system 1025
and to inform the reconciliation engine that the application
named “ WebApp ” that is executing has initiated a connec
tion request from IP address 192.168.1.1 to IP address
192.168.1.2 , port 3306 .
[0076] On the destination system 102b , IP address 192 .
168.1.2 on port 3306 receives an inbound request from IP
address 192.168.1.1 . Because this matches a local policy
that was received from the policy management engine 110 ,
the destination local security agent 106b uses the techniques
disclosed above to receive the connection request 130 , to
allow the connection request 130 to be provided to the
“ Database ” application , and to informs the reconciliation
engine 128 that the application named “ Database ” that is
executing and listening on IP address 192.168.1.2 , port
3306 , has received a connection request from IP address
192.168.1.1 .
[0077] The reconciliation engine 128 collates the infor
mation it has received from the source and destination local
security agents 106a - b , using any of a variety of data in the
received information (e.g. , timestamp and / or packet header
information) . In this example , there are two pieces of
information : “ Web App ' requested an outbound connection
from 192.168.1.1 to 192.168.1.2:3306 ” and “ Database
listening on 192.168.1.2:3306 received an inbound connec
tion request from 192.168.1.1 ” . The result of this collation
is a conclusion by the reconciliation engine 128 that an
application named “ WebApp ” is attempting to make a
connection from 192.168.1.1 to an application named “ Data
base ” on 192.168.1.2 , port 3306. The reconciliation engine

US 2020/0396260 A1 Dec. 17 , 2020
8

or more

128 determines that this connection request matches the
policy which indicates that the “ Database ” application is
permitted to receive connections from “ WebApp ” applica
tions and , in response to this determination , sends a positive
confirmation back to the source local security agent 106a
and the destination local security agent 106b , indicating that
the requested connection satisfies the policies 118. In
response to receiving these confirmations , the source and
destination local security agents 106a - b take no further
action .
[0078] As described above , the source local security agent
106a may identify the application that is the source of a
communication request , such as described in connection
with operation 210 of FIG . 2B . Similarly , as described
above , the destination local security agent 106b may identify
the application that is the destination of a communication
request , such as described in connection with operation 250
of FIG . 2C . Such identification of an application may be
performed using any of a variety of features of the applica
tion , such as any one or more of the features disclosed
herein . Some of these features are more stable across dif
ferent versions of an application than others . Examples of
features that tend to be more reliable for identifying an
application accurately across different versions of the appli
cation are file name and file path .
[0079] Some application features are more specific , in that
they guarantee that two applications which share the key
value pair of the feature are identical . For example , two
applications with the same SHA - 256 hash value are almost
certainly identical to each other .
[0080] Some application features can be faked or lead to
incorrect conclusions about whether two applications are the
same as or sufficiently similar to each other for security
purposes . For example , sometimes significantly different
applications will share certain features in common . Con
versely , sometimes two applications that should be consid
ered to be the same for security purposes will have different
feature values . These circumstances may be the result of
coincidence or the result of a malicious attempt to deceive
the policies 118 into allowing a malicious application to
execute on the network .
[0081] Because there is no direct way to unambiguously
define “ similarity ” of application features , embodiments of
the present invention use a measure of similarity between
applications and then use the features of the applications to
check the correctness of that measure .
[0082] For example , certain embodiments of the present
invention use an algorithm referred to herein as TLSH to
measure the similarity between two or more applications .
TLSH is an instance of the “ locality - sensitive hashing ”
(LSH) algorithm that has been specialized for use in con
nection with applications stored in binary files . Implemen
tation details of LSH and TLSH are well - known to those
having ordinary skill in the art . Examples of other algo
rithms in the TLSH class , which may be used by embodi
ments of the present invention , include SSDEEP , Sdhash ,
Nilsimsa , Bbhash , and MVHASH - B .
[0083] By way of background , a hashing algorithm takes
a relatively large amount of information and turns it into a
smaller chunk of information , usually of a fixed length (in
bytes) . If the hashing algorithm is well designed , then if two
objects ' hash values are the same , then it is almost certain
that the two objects are the same . However , most functions
do not have a similarity property - in fact , they are designed

precisely so that two nearly identical objects will have
maximally dissimilar (e.g. , uncorrelated) hash values .
[0084] In contrast , an LSH algorithm (such as TLSH) is
designed so that objects that are similar to each other will
have approximately similar hash values . Usually , an LSH
hash is a combination of a large number usually hundreds

of not - very - good tests of similarity . For two
documents (one of which might be an edited version of the
other) , each test might be (for example) how many times a
particular phrase appeared . Individually , each of these simi
larity tests isn't very informative . However , the combination
of hundreds (or more) of slightly informative similarity tests
creates a powerful tool for measuring similarity (if the hash
algorithm is designed correctly) .
[0085] TLSH is an instance of a LSH algorithm , designed
to define how different two binary computer files are from
each other . A difference of O means that the two files are
effectively identical to each other (at the resolution of the
algorithm) . The values output by TLSH have no specific
maximum value , but if the output value is greater than 1000 ,
it is clear that the two binary files are completely different
from each other .
[0086] Embodiments of the present invention may use a
TLSH algorithm as a measure of similarity between two
applications (stored in binary files) . For example , embodi
ments of the present invention may provide two application
binary files as input to a TLSH algorithm , which may then
generate an output value based on those two application
binary files , where the output value represents a degree of
similarity between the two application binary files , as
described above . Embodiments of the present invention may
then determine , based on the TLSH output value , whether
the applications are sufficiently similar to be treated as the
“ same ” application for purposes of the systems and methods
disclosed herein .
[0087] Embodiments of the present invention may deter
mine whether two applications are the same based on the
TLSH output value in any of a variety of ways . The simplest
is to define a threshold similarity value : if the TLSH output
value that is less than or equal to the threshold similarity
value , then the two applications may be treated as the
" same " application by the systems and methods disclosed
herein . The threshold similarity value may differ depending
on the applications being compared . For example , some
applications may become more different between updates
than others . In other cases , different applications may share
source code , and so require a tighter measure of similarity .
[0088] Such a threshold value may be identified in any of
a variety of ways . For example , in some embodiments of the
present invention , the similarities between a large number of
application binaries are checked (e.g. , using TLSH as
described above) , where some of the applications have been
identified by humans as being the same as each other , and
where other applications have been identified by humans as
being different from each other . This results in two distri
butions of TLSH output values : (1) a distribution of output
values (similarities) for “ same ” applications ; and (2) a
distribution of output values (similarities) for “ different ”
applications . Then , a similarity value is chosen which
divides the “ same ” application similarities from the “ differ
ent ” application similarities as well as possible . This may be
achieved , for example , by choosing a value that minimizes
a loss function , using any of a variety of techniques that are
well - known to those having ordinary skill in the art .

US 2020/0396260 A1 Dec. 17 , 2020
9

[0089] In some cases , the behavior of a particular appli
cation is not solely determined by the application itself , but
is also determined significantly by code that the application
is running . This occurs , for example , in the case of an
application that is a runtime environment for Java , Python ,
and other interpreted or " just - in - time " (JIT) compiled lan
guages . In these cases , using the TLSH output value for the
interpreter or JIT compiler does not produce useful results ,
because such an output value would not reflect the features
of the code being executed by the interpreter or JIT compiler .
In such cases , embodiments of the present invention may
provide the code being executed by the application (e.g. ,
interpreter or JIT compiler) to the TLSH algorithm to
produce an output value for that code , rather than an output
value for the application . The resulting TLSH output value
may then be used in the process described above as the
output value of the application .
[0090] Referring to FIG . 3 , a dataflow diagram is shown of
a system 300 for determining whether applications execut
ing on a host are sufficiently similar to each other to be
considered to be the “ same ” as each other . Examples of such
a host are the source application 104a and the destination
application 104b in FIG . 1. Referring to FIG . 4 , a flowchart
is shown of a method 400 performed by the system 300 of
FIG . 3 according to one embodiment of the present inven
tion .

[0091] A set of application features 302 is selected (FIG .
4 , operation 402) . The application feature set 302 may , for
example , contain any one or more of the application features
disclosed herein .

[0092] A host 304 includes a plurality of applications 306
installed and / or executing on it . The term “ host , ” as used
herein , may refer , for example , to any computer , and may
include at least one processor and at least one memory .
Although only one host 304 is shown in FIG . 3 , the
techniques disclosed herein may be applied to any number
of hosts , each with its own applications executing on it . The
system 300 includes an application feature identification
module 308 , which identifies each pair of application
instances installed on the host 304 (FIG . 4 , operation 404) .
For each such pair , the application feature identification
module 308 identifies the values 310 of the features in the
feature set 302 for each application in the pair (FIG . 4 ,
operation 406) , and determines whether all of the feature
values for the two applications match each other (FIG . 4 ,
operation 408) . The method 400 also provides the binary
application files for the two applications in the pair to a
TLSH algorithm 312 (or other LSH algorithm) , which then
produces a similarity value 314 as output (FIG . 4 , operation
410) . A similarity relation generator 316 determines whether
the two algorithms ' feature values match each other , and
whether the TLSH similarity value is less than a threshold
similarity value (MAX DIFFERENCE) (FIG . 4 , operation
412) . If both of those conditions are satisfied , then the
similarity relation generator 316 generates a similarity rela
tion 318 connecting the two applications in the pair (FIG . 4 ,
operation 414) . Otherwise , the similarity relation generator
does not generate a similarity relation connecting the two
applications in the pair . The similarity relations 318 in FIG .
3 may represent similarity relations in any of a variety of
ways , such as by only containing similarity relations for
application pairs that are connected by similarity relations ,
or by storing a similarity relations for every application pair

but associating a value such as " true ” or “ false ” with each
such pair to indicate whether that pair is connected by a
similarity relation .
[0093] A similarity graph generator 316 creates a similar
ity graph 322 , in which each of the applications 306 installed
on the host 304 is represented by a node , and in which any
two applications which are connected by a similarity relation
are connected by an edge . The relations (edges) are sym
metric , in that if application A is connected by a similarity
relation to application B , then application B is connected by
a similarity relation to application A.
[0094] For each application instance A installed on the
host , the “ similarity set ” of application instance A , referred
to herein as S (A) , is the set consisting of every application
instance A ' installed on the host for which there is a set of
similarity relations that lead from application instance A to
application instance A ' . In other words , the similarity set is
the transitive closure on the similarity graph .
[0095] The method 400 may be repeated for a plurality of
hosts , such as for the source system 102a and the destination
system 102b in FIG . 1 , thereby creating a similarity graph
for each such host .
[0096] Once the similarity graphs have been generated for
one or more hosts , such graphs may be used by embodi
ments of the present invention to automatically expand the
set of the application instances that the policies 118 apply to .
For example , if a particular one of the policies 118 specifies
a particular application A (e.g. , a source application or a
destination application) , then the application fingerprint for
application A in that policy may be modified to specify not
only application A , but also all applications in the similarity
set for application A. This automatic expansion may be
performed , for example , for the source application finger
print in the policy , the destination application fingerprint in
the policy , or both . Furthermore , this automatic expansion
may be performed for some or all of the policies 118 .
[0097] Automatically expanding the policies 118 in this
way ensures that the policies 118 adapt to network and
application changes , while remaining secure .
[0098] Although in the embodiment of FIGS . 1 and
2A - 2B , the reconciliation engine 128 notifies both the
source local security agent 106a and the destination local
security agent 106b , via the communications 134 and 136 , of
the reconciliation engine 128's policy decision in relation to
the request 130 , alternatively the reconciliation engine 128
may only notify one of the local security agents 106a and
106b . For example , if the reconciliation engine 128 notifies
the source local security agent 106? that the request 130
violates one of the policies 118 either before or after the
request 130 has been transmitted to the destination applica
tion 104b on the destination system 102b , then the source
local security agent 106a may , in response to such a noti
fication , either not provide the request 130 to , or terminate
the connection if already established with , the destination
system 102b . As a result , it would not be necessary for the
reconciliation engine 128 to notify the destination local
security agent 106b of the policy violation in order to
prevent a connection from being established between the
source application 104a and the destination application
104b .
[0099] Similarly , if the reconciliation engine 128 notifies
the destination local security agent 106b that the request 130
violates one of the policies 118 , even after the source local
security agent 106a has transmitted the request 130 to the

US 2020/0396260 A1 Dec. 17 , 2020
10

destination system 102b , then the destination local security
agent 106b may , in response to such a notification , either
deny the request 130 and not provide the request 130 to the
destination application 104b , or terminate the connection if
it has already been allowed . As a result , it would not be
necessary for the reconciliation engine 128 to notify the
source local security agent 106a of the policy violation in
order to prevent a connection from being established
between the source application 104a and the destination
application 104b .
[0100] Furthermore , although both the source system 102a
and the destination system 102b in FIG . 1 have their own
local security agents 106a and 106b , respectively , this is
merely an example and does not constitute a limitation of the
present invention . Alternatively , for example , only one of the
two systems 102a and 1025 may have a local security agent .
As particular examples , the source system 102a may have its
local security agent 106a , while the destination system 102b
may omit the local security agent 106b . Conversely , the
destination system 102b may have its local security agent
106b , while the source system 102a may omit its local
security agent 106a . Although in these embodiments only
one of the two systems 102a and 102b , and the reconcilia
tion engine 128 , may validate the communication request
against the central policies 118 and one of the local policies
124a and 124b , such embodiments still provide the benefit
of some validation , even if less than in the full system 100
employing three - part validation shown in FIG . 1 .
[0101] Although the policy management engine 110 is
shown in FIG . 1 as being separate and remote from the
source system 102a and the destination system 102b , this is
merely an example and not a limitation of the present
invention . More generally , the policy management engine
110 may be implemented in any one or more of the follow
ing ways , in any combination :

[0102] as a single component , located remotely from
and network - accessible to , the source system 102a and
destination system 102b , as shown in FIG . 1 ;

[0103] as a plurality of components which are partially
or entirely redundant , located remotely from and net
work - accessible to , the source system 102a and desti
nation system 102b ;

[0104] as a single component located within one of the
source and destination systems 102a and 102b , respec
tively , and network - accessible to the other systems ; and

[0105] as a plurality of components which are partially
or entirely redundant and location within one or more
of the source and destination systems 102a and 102b ,
and optionally network - accessible to the other systems .

[0106] Similarly , although the reconciliation engine 128 is
shown in FIG . 1 as being separate and remote from the
source system 102a and the destination system 102b , this is
merely an example and not a limitation of the present
invention . More generally , the reconciliation engine 128
may be implemented in any of the ways described above in
connection with the policy management engine 110 .
[0107] Although the local security agents 106a and 106b
are shown in FIG . 1 as being contained solely within the
respective source and destination systems 102a and 102b ,
this is merely an example and not a limitation of the present
invention . Each of the local security agents 106a and 106b
may perform three functions : (1) gathering information
about applications executing on the same system (e.g. ,
applications 104a and 104b) and the listening ports against

which these applications may be bound ; (2) gathering infor
mation about the network addresses available on the same
system , and (3) enforcing the local policies 124a and 124b .
Any of the local security agents 106a and 106b in the
systems 102a and 102b may perform any , but not all of these
functions , in which case the function not performed locally
by the local security agent may be performed remotely by
another component not contained within the same system as
the local security agent . As one particular example , the local
security agent 106a in the source system 102a may perform
the functions of gathering information about applications
executing on the source system 102a (e.g. , source applica
tion 104a) and the network addresses available on the source
system , but not perform the function of executing local
policies 124a , which may be performed by another compo
nent (such as a firewall configured to perform the policy
enforcement functions disclosed herein) that is not in the
source system 102a . As yet another example , all of the
functions of gathering application and network address
information and policy enforcement may be performed
remotely from the system (e.g. , systems 102a and 102b) to
which those functions are applied .
[0108] The description herein refers to blocking or not
allowing network connections to be created , and to termi
nating existing network connections , in response to deter
mining that a policy would be or has been violated . Such
blocking / terminating may be applied to : (1) the specific
connection that would violate or has violated a policy ; (2) all
connections that originate from the same source as a con
nection that would violate or has violated a policy , and
which exist or have been requested at the time the policy
violation has been detected ; (3) all connections that originate
from the same source as a connection that would violate or
has violated a policy , including both connections that exist
or have been requested at the time the policy violation has
been detected , and connections requested in the future
(possibly until some time limit has been reached or some
other condition has been satisfied) ; and (4) throttling con
nections originating from the same source as the connection
that has been determined to violate the policy .
[0109] Although certain embodiments have been
described herein as being applied to a request to establish a
network connection (such as the request 130) , this is merely
an example and not a limitation of the present invention .
Alternatively or additionally , embodiments of the present
invention may apply the techniques disclosed herein to all
content (e.g. , every packet) communicated within an exist
ing connection , or to selected content (e.g. , periodically
sampled packets) within an existing connection .
[0110] One of the advantages of embodiments of the
present invention is that it may be used to protect against
policy violations without requiring alterations to the source
application 104a , the destination application 104b , or the
network traffic between them (e.g. , the communication
request 130) . This ability simplifies the installation , con
figuration , and maintenance of the system 100 greatly in
comparison to systems which require applications and / or
network traffic to be modified in order to detect policy
violations .
[0111] Another advantage of embodiments of the present
invention is that they have visibility into the network - related
information of both the source and destination sides of a
network communication , thereby enabling network security
policies to be validated based on such information from both

US 2020/0396260 A1 Dec. 17 , 2020
11

sides . This provides significant advantages over prior art
systems , which use only information from the source or the
destination , and which therefore lack , for example , infor
mation about the identity of the application executing on the
other side of the communication . Access to information
from both sides of network communications enables
embodiments of the present invention to identify and pre
vent violations of network security policies which cannot be
identified accurately using prior art techniques that rely
solely on information from one side of the communication .
[0112] One embodiment of the present invention is
directed to a computer - implemented method . The method
includes : (1) identifying a plurality of applications that have
a similarity relation to a reference application . The reference
application may , for example be any application stored on a
host , such as any of the applications disclosed herein as a
source application or a destination application .
[0113] The method may further include : (2) identifying a
network security policy , wherein the network security policy
specifies the reference application and another application ,
and indicates that the reference application is authorized to
communicate with the other application . Alternatively , the
network security policy may indicate that the reference
application is not authorized to communicate with the other
application .
[0114] The method may further include : (3) intercepting a
network connection request including a particular applica
tion , other than the reference application , in the set of
applications . The method further includes : (4) determining ,
based on the network security policy and the identified
plurality of applications , that the network security policy
applies to the particular application . The method further
includes : (5) determining whether the network security
policy covers the connection request .
[0115] The network security policy may , for example ,
specify the reference application as a source application , and
the network security policy may reference the other appli
cation as a destination application . As a result , the network
security policy may indicate that the source application is
authorized (or is not authorized) to communicate with the
destination application . The network connection request
may include an outgoing network connection request from
the particular application .
[0116] The network security policy may , for example ,
specify the reference application as a destination applica
tion , and the network security policy may reference the other
application as a source application . The network connection
request may include an incoming network connection
request to the particular application .
[0117] The method may further include , before (4) : (6)
modifying the network security policy to produce a modified
network security policy , wherein the modified network secu
rity policy specifies that the reference application and the
plurality of applications are authorized to communicate with
the other application . In this case , (4) may include deter
mining , based on the modified network security policy , that
the modified network security policy applies to the particular
application .
[0118] In the method , (1) may include : (1) (a) applying an
LSH algorithm (e.g. , a TLSH algorithm) to binary files for
a pair of applications to produce a similarity value ; (1) (b)
determining that the similarity value satisfies a similarity
criterion ; and (1) (c) including the pair of applications within

the plurality of applications in response to determining that
the similarity value satisfies the similarity criterion .
[0119] In the method , (1) may include , for each pair of
applications A and B in a superset of the plurality of
applications : (1) (a) applying an LSH algorithm (e.g. , a
TLSH algorithm) to binary files for the pair of applications
A and B to produce a similarity value for the pair of
applications A and B ; (1) (b) determining whether the
similarity value satisfies a similarity criterion ; (1) (c) if the
similarity value is determined to satisfy the similarity cri
terion , then including the pair of applications A and B in the
plurality of applications ; and (1) (d) if the similarity value is
not determined to satisfy the similarity criterion , then not
including the pair of applications A and B in the plurality of
applications .
[0120] The method may further include : (6) in response to
determining that the network security policy covers the
connection request , determining whether the network secu
rity policy allows the network connection request . The
method may further include : (7) in response to determining
that the network security policy allows the network connec
tion request . Alternatively , the method may further include :
(7) in response to determining that the network security
policy does not allow the network connection request ,
denying the network connection request .
[0121] It is to be understood that although the invention
has been described above in terms of particular embodi
ments , the foregoing embodiments are provided as illustra
tive only , and do not limit or define the scope of the
invention . Various other embodiments , including but not
limited to the following , are also within the scope of the
claims . For example , elements and components described
herein may be further divided into additional components or
joined together to form fewer components for performing
the same functions .
[0122] Any of the functions disclosed herein may be
implemented using means for performing those functions .
Such means include , but are not limited to , any of the
components disclosed herein , such as the computer - related
com onents described below .
[0123] The techniques described above may be imple
mented , for example , in hardware , one or more computer
programs tangibly stored on one or more computer - readable
media , firmware , or any combination thereof . The tech
niques described above may be implemented in one or more
computer programs executing on (or executable by) a pro
grammable computer including any combination of any
number of the following : a processor , a storage medium
readable and / or writable by the processor (including , for
example , volatile and non - volatile memory and / or storage
elements) , an input device , and an output device . Program
code may be applied to input entered using the input device
to perform the functions described and to generate output
using the output device .
[0124] Embodiments of the present invention include fea
tures which are only possible and / or feasible to implement
with the use of one or more computers , computer processors ,
and / or other elements of a computer system . Such features
are either impossible or impractical to implement mentally
and / or manually . For example , embodiments of the present
invention intercept and then may block network connection
requests . Such features are applicable only within the con
text of networked communications and cannot be performed
mentally and / or manually .

US 2020/0396260 A1 Dec. 17 , 2020
12

[0125] Any claims herein which affirmatively require a
computer , a processor , a memory , or similar computer
related elements , are intended to require such elements , and
should not be interpreted as if such elements are not present
in or required by such claims . Such claims are not intended ,
and should not be interpreted , to cover methods and / or
systems which lack the recited computer - related elements .
For example , any method claim herein which recites that the
claimed method is performed by a computer , a processor , a
memory , and / or similar computer - related element , is
intended to , and should only be interpreted to , encompass
methods which are performed by the recited computer
related element (s) . Such a method claim should not be
interpreted , for example , to encompass a method that is
performed mentally or by hand (e.g. , using pencil and
paper) . Similarly , any product claim herein which recites
that the claimed product includes a computer , a processor , a
memory , and / or similar computer - related element , is
intended to , and should only be interpreted to , encompass
products which include the recited computer - related element
(s) . Such a product claim should not be interpreted , for
example , to encompass a product that does not include the
recited computer - related element (s) .
[0126] Each computer program within the scope of the
claims below may be implemented in any programming
language , such as assembly language , machine language , a
high - level procedural programming language , or an object
oriented programming language . The programming lan
guage may , for example , be a compiled or interpreted
programming language .
[0127] Each such computer program may be implemented
in a computer program product tangibly embodied in a
machine - readable storage device for execution by a com
puter processor . Method steps of the invention may be
performed by one or more computer processors executing a
program tangibly embodied on a computer - readable medium
to perform functions of the invention by operating on input
and generating output . Suitable processors include , by way
of example , both general and special purpose microproces
sors . Generally , the processor receives (reads) instructions
and data from a memory (such as a read - only memory and / or
a random access memory) and writes (stores) instructions
and data to the memory . Storage devices suitable for tangi
bly embodying computer program instructions and data
include , for example , all forms of non - volatile memory , such
as semiconductor memory devices , including EPROM ,
EEPROM , and flash memory devices ; magnetic disks such
as internal hard disks and removable disks ; magneto - optical
disks ; and CD - ROMs . Any of the foregoing may be supple
mented by , or incorporated in , specially designed ASICS
(application - specific integrated circuits) or FPGAs (Field
Programmable Gate Arrays) . A computer can generally also
receive (read) programs and data from , and write (store)
programs and data to , a non - transitory computer - readable
storage medium such as an internal disk (not shown) or a
removable disk . These elements will also be found in a
conventional desktop or workstation computer as well as
other computers suitable for executing computer programs
implementing the methods described herein , which may be
used in conjunction with any digital print engine or marking
engine , display monitor , or other raster output device
capable of producing color or gray scale pixels on paper ,
film , display screen , or other output medium .

[0128] Any data disclosed herein may be implemented , for
example , in one or more data structures tangibly stored on
a non - transitory computer - readable medium . Embodiments
of the invention may store such data in such data structure (s)
and read such data from such data structure (s) .
What is claimed is :
1. A method performed by at least one computer processor

executing computer program instructions stored on at least
one non - transitory computer - readable medium , the method
comprising :

(1) identifying a plurality of applications that have a
similarity relation to a reference application ;

(2) identifying a network security policy , wherein the
network security policy specifies the reference appli
cation and another application , and indicates that the
reference application is authorized to communicate
with the other application ;

(3) intercepting a network connection request including a
particular application , other than the reference appli
cation , in the set of applications ;

(4) determining , based on the network security policy and
the identified plurality of applications , that the network
security policy applies to the particular application ; and

(5) determining whether the network security policy cov
ers the connection request .

2. The method of claim 1 , wherein the network security
policy specifies the reference application as a source appli
cation , wherein the network security policy references the
other application as a destination application , and wherein
the network connection request comprises an outgoing net
work connection request from the particular application .

3. The method of claim 1 , wherein the network security
policy specifies the reference application as a destination
application , wherein the network security policy references
the other application as a source application , and wherein the
network connection request comprises an incoming network
connection request to the particular application .

4. The method of claim 1 , further comprising , before (4) :
(6) modifying the network security policy to produce a

modified network security policy , wherein the modified
network security policy specifies that the reference
application and the plurality of applications are autho
rized to communicate with the other application , and

wherein (4) comprises determining , based on the modified
network security policy , that the modified network
security policy applies to the particular application .

5. The method of claim 1 , wherein (1) comprises :
(1) (a) applying an LSH algorithm to binary files for a pair

of applications to produce a similarity value ;
(1) (b) determining that the similarity value satisfies a

similarity criterion ; and
(1) (c) including the pair of applications within the

plurality of applications in response to determining that
the similarity value satisfies the similarity criterion .

6. The method of claim 5 , wherein the LSH algorithm
comprises a TLSH algorithm .

7. The method of claim 1 , wherein (1) comprises , for each
pair of applications A and B in a superset of the plurality of
applications :

(1) (a) applying an LSH algorithm to binary files for the
pair of applications A and B to produce a similarity
value for the pair of applications A and B ;

(1) (b) determining whether the similarity value satisfies
a similarity criterion ;

US 2020/0396260 A1 Dec. 17 , 2020
13

(1) (c) if the similarity value is determined to satisfy the
similarity criterion , then including the pair of applica
tions A and B in the plurality of applications ; and

(1) (d) if the similarity value is not determined to satisfy
the similarity criterion , then not including the pair of
applications A and B in the plurality of applications .

8. The method of claim 7 , wherein the LSH algorithm
comprises a TLSH algorithm .

9. The method of claim 1 , further comprising :
(6) in response to determining that the network security

policy covers the connection request , determining
whether the network security policy allows the network
connection request .

10. The method of claim 9 , further comprising :
(7) in response to determining that the network security

policy allows the network connection request , allowing
the network connection request .

11. A system comprising at least one non - transitory com
puter - readable medium storing computer program instruc
tions executable by at least one computer processor to
perform a method , the method comprising :

(1) identifying a plurality of applications that have a
similarity relation to a reference application ;

(2) identifying a network security policy , wherein the
network security policy specifies the reference appli
cation and another application , and indicates that the
reference application is authorized to communicate
with the other application ;

(3) intercepting a network connection request including a
particular application , other than the reference appli
cation , in the set of applications ;

(4) determining , based on the network security policy and
the identified plurality of applications , that the network
security policy applies to the particular application ; and

(5) determining whether the network security policy cov
ers the connection request .

12. The system of claim 11 , wherein the network security
policy specifies the reference application as a source appli
cation , wherein the network security policy references the
other application as a destination application , and wherein
the network connection request comprises an outgoing net
work connection request from the particular application .

13. The system of claim 11 , wherein the network security
policy specifies the reference application as a destination
application , wherein the network security policy references
the other application as a source application , and wherein the
network connection request comprises an incoming network
connection request to the particular application .

14. The system of claim 11 , wherein the method further
comprises , before (4) :

(6) modifying the network security policy to produce a
modified network security policy , wherein the modified
network security policy specifies that the reference
application and the plurality of applications are autho
rized to communicate with the other application , and

wherein (4) comprises determining , based on the modified
network security policy , that the modified network
security policy applies to the particular application .

15. The system of claim 11 , wherein (1) comprises :
(1) (a) applying an LSH algorithm to binary files for a pair

of applications to produce a similarity value ;
(1) (b) determining that the similarity value satisfies a

similarity criterion ; and
(1) (c) including the pair of applications within the

plurality of applications in response to determining that
the similarity value satisfies the similarity criterion .

16. The system of claim 15 , wherein the LSH algorithm
comprises a TLSH algorithm .

17. The system of claim 11 , wherein (1) comprises , for
each pair of applications A and B in a superset of the
plurality of applications :

(1) (a) applying an LSH algorithm to binary files for the
pair of applications A and B to produce a similarity
value for the pair of applications A and B ;

(1) (b) determining whether the similarity value satisfies
a similarity criterion ;

(1) (c) if the similarity value is determined to satisfy the
similarity criterion , then including the pair of applica
tions A and B in the plurality of applications ; and

(1) (d) if the similarity value is not determined to satisfy
the similarity criterion , then not including the pair of
applications A and B in the plurality of applications .

18. The system of claim 17 , wherein the LSH algorithm
comprises a TLSH algorithm .

19. The system of claim 11 , wherein the method further
comprises :

(6) in response to determining that the network security
policy covers the connection request , determining
whether the network security policy allows the network
connection request .

20. The system of claim 19 , wherein the method further
comprises :

(7) in response to determining that the network security
policy allows the network connection request , allowing
the network connection request .

