
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3
82

2
76

9
A

1
EP003822769A1

(11) EP 3 822 769 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
19.05.2021 Bulletin 2021/20

(21) Application number: 20199535.4

(22) Date of filing: 01.10.2020

(51) Int Cl.:
G06F 8/34 (2018.01) G06F 9/451 (2018.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 15.11.2019 CN 201911118938

(71) Applicant: Delta Electronics, Inc.
Taoyuan County 33341 (TW)

(72) Inventors:
• CHANG, Yung-Liang

33341 Taoyuan City (TW)
• CHENG, Mao-Hua

33341 Taoyuan City (TW)
• LIU, Kuei-Fu

33341 Taoyuan City (TW)

(74) Representative: 2K Patentanwälte Blasberg
Kewitz & Reichel
Partnerschaft mbB
Schumannstrasse 27
60325 Frankfurt am Main (DE)

(54) METHOD FOR EDITING CONTINUAL VERTICAL LINE OF VISUAL PROGRAMMING
LANGUAGE

(57) A method for editing continual vertical line of vis-
ual programming language includes following steps: en-
tering an editing mode; selecting a source node (41) as
a current node from a serial-parallel graphic (1) where
the source node (41) is an endpoint of one of a plurality
of normal blocks (2) in the graphic; calculating and dis-
playing one or more candidate nodes (42) around current
node; connecting the current node to any one of the can-
didate nodes (42) for converting the connected candidate
node (42) into a connected node (43); setting the con-
nected node (43) as the current node for continually cal-
culating, displaying, and connecting to one or more can-
didate nodes (42) before exiting the editing mode; gen-
erating a continual vertical line (3) according to the source
node (41) and the one or more connected nodes (43)
when exiting the editing mode; and, modifying the seri-
al-parallel relationship among the plurality of normal
blocks (2) in the graphic (1) and updating the graphic (1)
according to the continual vertical line (3).

EP 3 822 769 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND OF THE INVENTION

1. Technical field

[0001] The present invention relates to an editing
method of visual programming language, especially to a
method for editing continual vertical line of visual pro-
gramming language.

2. Description of Prior Art

[0002] Generally, user may edit the logic connection
relationship (such as serial or parallel relationship)
among virtual industrial control equipment by visual pro-
gramming language editor. Therefore, user can easily
determine the combination of various industrial control
equipment for automatic operation and set up desired
system architecture.
[0003] The current visual programming language edi-
tor, such as ladder diagram editor, mainly assigns a user
command to an operation for editing. User is allowed to
add only one vertical line at one time when user wants
to changes the connection relationship among the vari-
ous device blocks (also referred to as normal block, and
corresponding to various virtual equipment). Namely, us-
er needs to send plurality of commands successively
when he/she needs to construct a plurality of vertical
lines. This is really troublesome.
[0004] In the operation of current editor of visual pro-
gramming language, after all of the required normal
blocks are added to the graph, user cannot construct a
continual vertical line across multiple nodes by using only
one operation to fast adjust the connection relationship
of multiple normal blocks. Due to above limitation, it is
hard for user to construct a complicated graph with lots
of normal blocks and complex connection relationship.

SUMMARY OF THE INVENTION

[0005] One of objects of the present invention is to pro-
vide a method for editing continual vertical line of visual
programming language to allow user to construct a con-
tinual vertical line across multiple nodes by using only
one operation, thus fast adjust the connection relation-
ship of multiple normal blocks and update the graph.
[0006] Accordingly, the present invention provides a
method for editing continual vertical line of visual pro-
gramming language and applied to an editor. The method
comprise: entering an editing mode; obtaining a source
node on the serial-parallel graph comprising a plurality
of normal blocks and the source node being an endpoint
of one of the normal blocks; calculating and displaying
at least one candidate node around the current node
wherein the at least one candidate node is an endpoint
of at least one of the normal blocks around the current
node; connecting the current node to one of the at least

one candidate nodes; converting the connected candi-
date node into a connected node; determining whether
the editor exits the editing mode; setting the connected
node as the current node and continually calculating, dis-
playing and connecting one or more candidate node be-
fore exiting the editing mode; generating a continuous
vertical line connecting the source node and at least one
of the connected nodes when exiting the editing mode;
and modifying a serial-parallel relationship of the normal
blocks based on the continuous vertical line and updating
the serial-parallel graph.
[0007] By above editing method of the present inven-
tion, user only needs one-time operation to directly gen-
erate a continuous vertical line in graph, thus fast modify
the connection relationship among normal blocks by us-
ing the continuous vertical line and update the graph at
the same time. User may use the editor of visual pro-
gramming language more efficiently.

BRIEF DESCRIPTION OF DRAWINGS

[0008]

Fig. 1A shows the first construction operation for the
continual vertical line according to the first embodi-
ment of the present invention.
Fig. 1B shows the second construction operation for
the continual vertical line according to the first em-
bodiment of the present invention.
Fig. 1C shows the third construction operation for
the continual vertical line according to the first em-
bodiment of the present invention.
Fig. 2 shows the editing flowchart according to the
first embodiment of the present invention.
Fig. 3A shows the first construction operation for the
continual vertical line according to the second em-
bodiment of the present invention.
Fig. 3B shows the second construction operation for
the continual vertical line according to the second
embodiment of the present invention.
Fig. 3C shows the third construction operation for
the continual vertical line according to the second
embodiment of the present invention.
Fig. 3D shows the fourth construction operation for
the continual vertical line according to the second
embodiment of the present invention.
Fig. 3E shows the fifth construction operation for the
continual vertical line according to the second em-
bodiment of the present invention.
Fig. 3F shows the sixth construction operation for
the continual vertical line according to the second
embodiment of the present invention.
Fig. 3G shows the seventh construction operation
for the continual vertical line according to the second
embodiment of the present invention.
Fig. 4 is the schematic view showing the retreating
of the vertical line according to the first embodiment
of the present invention.

1 2

EP 3 822 769 A1

3

5

10

15

20

25

30

35

40

45

50

55

Fig. 5A is the first part of the editing flowchart ac-
cording to the second embodiment of the present
invention.
Fig. 5B is the second part of the editing flowchart
according to the second embodiment of the present
invention.
Fig. 5C is the third part of the editing flowchart ac-
cording to the second embodiment of the present
invention.
Fig. 6A shows the first construction operation for the
continual vertical line according to the third embod-
iment of the present invention.
Fig. 6B shows the second construction operation for
the continual vertical line according to the third em-
bodiment of the present invention.
Fig. 6C shows the third construction operation for
the continual vertical line according to the third em-
bodiment of the present invention.
Fig. 6D shows the fourth construction operation for
the continual vertical line according to the third em-
bodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0009] Reference will now be made to the drawing fig-
ures to describe the present disclosure in detail. It will be
understood that the drawing figures and exemplified ex-
ample of present disclosure are not limited to the details
thereof.
[0010] The present invention provides a method for ed-
iting continual vertical line of visual programming lan-
guage (hereinafter briefed as editing method), and the
editing method is applied to editor of all kinds of visual
programming languages and the editor is run on a com-
puter.
[0011] Refer now to Figs. 1A, 1B, and 1C, which re-
spectively show the first construction operation, the sec-
ond construction operation and the third construction op-
eration of the first embodiment of the present invention.
[0012] As shown in Fig. 1A, after user operates com-
puter and runs the visual programming language editor
on the computer, user can operate the editor and add
one or more normal block 2 into the editor with the editing
tools (not shown) of the editor, and construct a serial-
parallel graphic (hereafter briefed as graph 1) with the
normal blocks 2.
[0013] More specifically, after multiple normal blocks
2 are added to the editor, user may construct a continue
block 21 with serially-connected blocks and construct a
branch block 22 with the parallel-connected continue
blocks 21.
[0014] As shown in Fig. 1B, according to one aspect
of the present invention, user may operate human ma-
chine interface such as mouse, keyboard or touch pad
of the computer to operate the editor to connect the mul-
tiple nodes 23 in graph 1, where each of the nodes 23 is
corresponding to an endpoint of each normal block 2. It
should be noted that, according to the present invention,

user may complete the connection of the multiple nodes
23 in graph 1 by one operation (for example user just
operates the mouse, keyboard or touch pad of the com-
puter for one time).
[0015] As shown in Fig. 1C, after user completes the
connection of the multiple nodes 23 in graph 1 by one
operation, the editor may generate a continual vertical
line 3 according to the multiple connected nodes 23 and
modify the seral-parallel relationship of the multiple nor-
mal blocks 2 in the graph 1 based on the continual vertical
line 3. The editor further updates the graph 1 and displays
the updated graph 1.
[0016] In the present invention, user only needs one
operation to construct a continuous vertical line 3 across
multiple nodes 23 to complete the work, where prior art
editor needs successive and multiple commands.
[0017] More particularly, as shown in Fig. 1C, after the
continuous vertical line 3 is generated by the editor ac-
cording to user operation, the editor may re-organize the
graph 1. Therefore the normal blocks 2 on the left side
of the continuous vertical line 3 are re-organized as a
new branch block 22, the normal blocks 2 on the right
side of the continuous vertical line 3 are also re-organized
as a new branch block 22, and the editor parallel connects
the two new branch blocks 22. Finally, the graph 1 is
updated according to the new seral-parallel relationship
of the updated normal blocks 2.
[0018] As shown in Figs. 1B and 1C, the continuous
vertical line 3 comprises multiple vertical line segments.
However, in the present invention, user only needs one
operation to directly generate the continuous vertical line
3 instead of sending successive commands (multiple op-
erations), thus greatly enhance the convenience of the
editor.
[0019] It should be noted that even the present inven-
tion is exemplified with ladder diagram editor in Figs. 1A
to 1C, however, the scope of the present invention is not
limited by this specific example.
[0020] Fig. 2 shows the editing flowchart according to
the first embodiment of the present invention. Fig. 2 dis-
closes the specific editing steps of the editing method of
the present invention. After the visual programming lan-
guage editor executes the steps shown in Fig. 2, the ed-
itor may modify the serial-parallel relationship of the nor-
mal blocks 2 of the graph 1 similar to the examples shown
in Figs. 1A to 1C and updates the graph 1 as well as re-
displays the updated graph 1.
[0021] At first, the editor receives external operation
from user (such as the first external operation) to enter
the editing mode (step S10). In this embodiment, the user
may operate the editor to add normal blocks 2 of desired
number and desired types in graph 1 and then operate
the editor to enter the editing mode to generate the con-
tinuous vertical line and to modify the serial-parallel re-
lationship of the normal blocks 2 of the graph 1 according
to the continuous vertical line 3 as well as to update the
graph 1.
[0022] After the editor enters the editing mode, the user

3 4

EP 3 822 769 A1

4

5

10

15

20

25

30

35

40

45

50

55

may operate the computer (for example operating the
mouse, the keyboard or the touch pad) to select a source
node (or referred to as start node) from the graph, where
the source node is the endpoint of any normal block 2 in
the graph 1 (S12). After the step S12, the editor sets the
user-selected source node as the current node and gen-
erates the continuous vertical line 3 from the current
node. In this embodiment, the current node is the current
position of the cursor (such as mouse pointer) hovering
in the screen of the editor, where the cursor is controlled
by mouse, keyboard or touch pad.
[0023] It should be noted that the editor may add the
current position of the source node to a queue (not
shown) after the source node is confirmed, thus the po-
sition of the source node of the continuous vertical line
3 can be recorded, which will be detailed later.
[0024] After step S12, the editor may calculate one or
more effective candidate node around the current node
and mark the candidate node on the graph 1 with specific
symbol (step S14). In this embodiment, the candidate
node is the end point of one or more normal block 2
around the current node. More particularly, the effective
candidate node in this embodiment is the node that will
not cause short circuit of any normal block when user
generates a connection line connecting the current node
and the effective candidate node.
[0025] For example, if ten nodes are around the current
node and there are three nodes causing short circuit of
any normal block 2 after they are connected with the cur-
rent node, the editor will mark the seven nodes, which
will not cause short circuit of any normal block, on the
graph as the candidate nodes.
[0026] It should be noted that the editor may monitor
the operation of user (such as monitor the current location
of the cursor), then calculates and displays one or more
candidate nodes around the current node only when the
cursor moves from the current node and the moving dis-
tance of the cursor is larger than a threshold value, thus
prevent the erroneous click (operation) of user.
[0027] Besides, when the editor monitors user opera-
tion, the editor further determines the moving direction
of the cursor moving from the current node. In this em-
bodiment, the editor only calculates and displays one or
more candidate nodes above the current node when the
moving direction is upward, and only calculates and dis-
plays one or more candidate nodes below the current
node when the moving direction is downward. Therefore,
the editor can prevent from displaying excessive candi-
date nodes, which will confuse the user.
[0028] After the step S 14, the editor already displays
one or more effective candidate nodes, which is connect-
able, on the graph 1 and the editor may receive again
the external operation of user (such as the second ex-
ternal operation) to connect the current node to one of
the displayed candidate nodes (step S16).
[0029] For example, if the computer equipment cur-
rently operated by user is computer mouse, then the user
may drag the mouse to move the cursor to the source

node (namely the current node), press the left button of
the computer mouse, and drag the cursor to the location
of any one candidate node from the source node, thus
connect the source node (namely the current node) to
the candidate node.
[0030] For another example, if the computer equip-
ment currently operated by user is keyboard, then the
user may move the cursor to the location of the current
node by arrow key and then press special function key
(or shortcut key) to lock the source node. Afterward, the
user may move the cursor to the location of any one can-
didate node from the source node by operating the arrow
key, thus connect the source node to the candidate node.
[0031] However, the above description is only for ex-
plaining the embodiments of the present invention and
is not limitation for the scope of the present invention.
[0032] After user connects the current node to any of
the candidate nodes by operating the mouse, keyboard
or touch pad, the editor converts the connected candidate
node to connected node (step S16).
[0033] It should be noted that the editor adds the loca-
tion of the connected node to the queue when any can-
didate node is converted to connected node. Therefore,
the location of the nodes passed by the continuous ver-
tical line 3 and/or the location of the end node can be
recorded.
[0034] In one embodiment, the editor uses dashed line
to display one or more effective candidate node and uses
solid line to display the connected node. In another em-
bodiment, the editor uses a first color (such as green) to
display one or more effective candidate node and uses
a second color (such as blue) to display the connected
node. By above display manner to distinguish between
effective candidate node and the connected node, user
can easily generate the continuous vertical line 3 by using
the editor.
[0035] It should be noted that the editor may selectively
generate and display a pre-connection line (such as the
pre-connection line 5 shown in Figs. 3C and 3D) con-
necting the current node and the connected node in step
S20 such that the user may easily visualize the construc-
tion of the continuous vertical line 3.
[0036] During the construction of the continuous verti-
cal line, the editor continually determines whether it re-
ceives external operation (such as the third external op-
eration) of user command to exit the editing mode (step
S22). The editor sets the last connected node as the cur-
rent mode before receiving the third external operation
and then repeats the execution of steps S14 to S20 to
continually perform the construction of the continuous
vertical line 3.
[0037] In one embodiment, user may operate mouse
to perform the construction of the continuous vertical line
3. In this embodiment, the first external operation keeps
pressing the button of the computer mouse (namely, the
editor enters the editing mode when user keeps pressing
mouse button); the second external operation drags the
mouse pointer by moving the mouse with mouse button

5 6

EP 3 822 769 A1

5

5

10

15

20

25

30

35

40

45

50

55

being kept pressing (namely, the user drags the mouse
to connect two nodes); the third external operation re-
leases mouse button (namely, the editor exits editing
mode when user release mouse button).
[0038] In another embodiment, the user operates the
keyboard to perform the construction of the continuous
vertical line 3. In this embodiment, the first external op-
eration presses a special function key or shortcut key
(namely, the editor enters the editing mode when user
presses the special function key); the second external
operation presses arrow keys (namely, the user moves
cursor with arrow key to connect two nodes); the third
external operation presses again the special function key
(namely, the editor exits editing mode when user presses
again the special function key).
[0039] The above examples are used for demonstrat-
ing the present invention and are not limitation of the
present invention. For example, the editor may enter ed-
iting mode when user keeps pressing a specific key (such
as ALT key), and exits the editing mode when the specific
key is released. For another example, the editor may
enter editing mode when user presses a specific button
of mouse (such as left button), and exit the editing mode
when the specific button is pressed again.
[0040] In other embodiment, the user may also operate
the touch screen or touch pad of computer to perform
the construction of the continuous vertical line 3. In this
embodiment, the first external operation, the second ex-
ternal operation, and the third external operation may
have similar operations with the previous examples, and
the detailed description is omitted here for brevity.
[0041] In step S22, if the editor receives the third ex-
ternal operation to exit the editing mode, the editor gen-
erates the continuous vertical line 3 connecting the
source node and all of the connected nodes in real time
(step S24), modifies the serial-parallel relationship of the
normal blocks 2 on the graph 1 at the same time, and
then updates and displays the graph 1 (step S26).
[0042] It should be noted that in steps S24 to S26, the
editor mainly obtains the source node and one or more
connected node stored in the queue, and generates the
continuous vertical line 3 based on those nodes. Besides,
the editor further modifies the serial-parallel relationship
of the normal blocks 2 based on the nodes stored in the
queue and then updates the graph 1, which will be de-
scribed in more detail later.
[0043] Refer also to Figs. 3A to 3G, which show the
first construction operation to the seven construction op-
eration for the continuous vertical line according to the
second embodiment. In the embodiment shown in Figs.
3A to 3G, user uses single operation of mouse to gener-
ate a continuous vertical line, but this is not limitation of
the present invention.
[0044] First as shown in Fig. 3A, user may operate the
editing tool (not shown) of the editor to add a plurality of
normal blocks 2 of desired number and type into the
graph 1. In the embodiment shown in Fig. 3A, initially the
graph 1 includes a first continue group (serial group) hav-

ing normal blocks B0, B1, B2 and B3; a second continue
group (serial group) having normal blocks B4, B5, B6 and
B7; a third continue group (serial group) having normal
blocks B8, B9, B10 and B11; and a fourth continue group
(serial group) having normal blocks B12, B13, B14 and
B15. Besides, the first continue group, the second con-
tinue group, the third continue group and the fourth con-
tinue group are parallel connected to each other.
[0045] As shown in Fig. 3A, each normal block 2 has
endpoints LO-L11 at the serial junction. In the present
invention, user may select the source node of the con-
tinuous vertical line 3 from the endpoints L0∼L11, and
the editor calculates one or more candidate node satis-
fying certain condition from the endpoints L0∼L11. In oth-
er word, the editing method of the present invention can
prevent the circuit error caused by user erroneously set-
ting the continuous vertical line 3 on the normal block 2.
[0046] Afterward, as shown in Fig. 3B, user may oper-
ate mouse to control cursor in the screen to place the
pointer at any endpoint, and then press mouse button
(such as left button) to convert this endpoint to the source
node 41. In this embodiment, user selects the endpoint
L0 as the source node 41 and the editor stores the end-
point L0 in the queue Q.
[0047] After user selects a source node 41 the user
keeps pressing mouse button to drag the pointer such
that the pointer moves downward and the moving dis-
tance is larger than a threshold. At this time, the editor
is triggered to calculate one or more effective candidate
nodes 42 below the source node 41 and to display the
one or more effective candidate nodes 42.
[0048] In one embodiment, the editor uses solid line to
display the source node 41 and uses dashed line to dis-
play the candidate nodes 42. In another embodiment,
the editor uses different colors to display the source node
41 and the candidate nodes 42 such that user may quickly
distinguish between the two kinds of nodes.
[0049] Afterward, as shown in Fig. 3C, user keeps
dragging the pointer to move the cursor to one candidate
node 42 (such as the endpoint L4 shown in Fig. 3C), then
the editor adds the candidate node 42 (namely the end-
point L4) in queue Q and converts the candidate node
42 to connected node 43. When the pointer is further
moved downward and the moving distance is larger than
the threshold, the editor is triggered to calculate and dis-
play one or more effective candidate node 42 below the
connected node 43.
[0050] In one embodiment, the editor displays the con-
nected node 43 with solid line. In another embodiment,
the editor uses different colors to display the candidate
node 42 and the connected node 43, for example green
for the candidate node 42 and blue for the connected
node 43. In still another embodiment, the editor uses the
same color or shape to display the candidate node 42
and the connected node 43.
[0051] Afterward, as shown in Fig. 3D, the user may
keep dragging the pointer to successively connect a plu-
rality of candidate nodes 42 to convert those candidate

7 8

EP 3 822 769 A1

6

5

10

15

20

25

30

35

40

45

50

55

nodes 42 into connected nodes.
[0052] Furthermore, as shown in Figs. 3C and 3D,
when user drags the pointer to connect two nodes, the
editor displays a pre-connection line 5 for the two nodes
on the graph 1 such that the user can quickly visualize
the current connection status.
[0053] In the embodiment shown in Fig. 3D, user drags
the pointer from the endpoint L0 and then passes the
endpoint L4, the endpoint L6 and the endpoint L11.
Therefore, the editor will set the endpoint L0 as the source
node and then sequentially convert the endpoint L4, the
endpoint L6 and the endpoint L11 into connected nodes
43. The editor also adds the endpoint L0, the endpoint
L4, the endpoint L6 and the endpoint L11 into queue Q.
When user releases mouse button to exit the editor from
the editing mode, the editor may generate the continuous
vertical line 3 based on the record of the endpoints in the
queue Q.
[0054] As shown in Fig. 3E, when user releases mouse
button, the editor determines that user ends the editing
task (namely exit editing mode), then the editor fetches
the first two endpoints of the queue Q, namely, the end-
points L0 and L4 and removes the first endpoint of the
queue Q, namely the endpoint L0.
[0055] Afterward, the editor constructs a first cut line
31 based on the endpoints L0 and L4, sets one or more
normal block 2 on the left side of the start point (namely
the endpoint L0) of the first cut line31 as the first left group
and sets one or more normal block 2 on the right side of
the starting point of the first cut line 31 as the first right
group. The editor further sets one or more normal block
2 on the left side of the end point (namely the endpoint
L4) of the first cut line 31 as the second left group and
sets one or more normal block 2 on the right side of the
start point of the first cut line 31 as the second right group.
Furthermore, the editor parallel connects the first left
group with the second left group, parallel connects the
first right group with the second right group, and finally
serial connects the two parallel connection results
through the first cut line 31.
[0056] As mentioned above, the editor removes the
first endpoint (namely the endpoint L0) in the queue Q,
therefore, only the endpoint L4, the endpoint L6 and the
endpoint L11 remain in the queue Q after the first cut line
31 is constructed.
[0057] Afterward, as shown in Fig. 3F, the editor fetch-
es again the first two endpoints (namely the endpoints
L4 and L6) in the queue Q and removes the first endpoint
(namely the endpoint L4) in the queue Q.
[0058] Afterward, the editor constructs a second cut
line 32 based on the endpoints L4 and L6 and then up-
dates the serial-parallel relationship of the normal blocks
2 with similar process mentioned above. As mentioned
above, the editor removes the first endpoint (namely the
endpoint L4) in the queue Q, therefore, only the endpoint
L6 and the endpoint L11 remain in the queue Q after the
second cut line 32 is constructed.
[0059] As shown in Fig. 3G, the editor fetches again

the first two endpoints (namely the endpoints L6 and L11)
in the queue Q and removes the first endpoint (namely
the endpoint L6) in the queue Q after constructing the
second cut line 32.
[0060] Afterward, the editor constructs a third cut line
33 based on the endpoints L6 and L11 and then updates
the serial-parallel relationship of the normal blocks 2 with
similar process mentioned above.
[0061] As mentioned above, the editor will remove the
first endpoint in the queue Q (namely the endpoint L6)
after constructing the third cut line 33. Therefore, only
one endpoint L11 remains in the queue Q after construct-
ing the third cut line 33. Because one endpoint cannot
constitute a cut line, the editor will end the construction
of the cut line and set the last endpoint L11 in the queue
Q as the end node of the continuous vertical line 3. In
this way, the editor may generate the continuous vertical
line 3 by the first cut line 31, the second cut line 32 and
the third cut line 33.
[0062] By the present invention, user may use single
operation (such as the operation from pressing left button
of mouse to releasing left button of mouse) in editing
mode to generate a continuous vertical line 3 passing
(connecting) a plurality of nodes, which is very conven-
ient for user.
[0063] Fig. 4 is the schematic view showing the retreat-
ing of the vertical line. During the construction of the con-
tinuous vertical line 3 (namely the editor is still in the
editing mode), the user may control the pointer backward
at his disposal (namely moving the pointer toward the
source node 41). When the editor determines that the
pointer is moved toward the source node 41 and already
leaves the connected node 43, the editor converts the
connected node 43 into candidate node 42 as shown in
Fig. 4 and then displays the converted candidate node
42 with other candidate node 42 on the graph 1.
[0064] As mentioned above, when a candidate node
42 is converted into a connected node, the editor will
store the connected node (such as the endpoint L11) into
queue Q. When user moves back the pointer to convert
the connected node 43 into candidate node 42, the editor
will remove the candidate node 42 (such as the endpoint
L11) from the queue Q to render more flexibility to user
for drawing.
[0065] Figs. 5A to 5C respectively show the first flow-
chart, the second flowchart and the third flowchart of the
editing method. Hereinafter the detailed steps for the ed-
iting method will be described with also reference to Figs.
3A to 3G.
[0066] At first the editor receives a first external oper-
ation of user to enter the editing mode (step S30). In one
embodiment, the user keeps pressing the button of
mouse to execute the first external operation. In another
embodiment, the user presses a special function key of
the keyboard to execute the first external operation.
[0067] In the editing mode, according to user opera-
tion, the editor selects the endpoint of any normal block
2 on the graph 1 as the source node 41 (step S32). In

9 10

EP 3 822 769 A1

7

5

10

15

20

25

30

35

40

45

50

55

one embodiment, the editor may set the endpoint corre-
sponding to the current location of the computer cursor
(such as mouse pointer) as source node 41, but this is
not limitation for the present invention.
[0068] After ensuring the source node 41, the editor
clears the record of all nodes in queue Q (step S34).
Afterward, the editor receives a second external opera-
tion of user to move the cursor from the source node 41
and calculates the moving distance of the cursor (step
S36). In one embodiment, user drags the mouse to ex-
ecute the second external operation. In another embod-
iment, user presses arrow key of the keyboard to execute
the second external operation.
[0069] After step S36, the editor further determines
whether the moving distance is larger than a preset
threshold (step S38). The editor performs no further ac-
tion if the moving distance is not larger than the preset
threshold and the editor repeats above step before exit-
ing the editing mode. The editor adds the source node
41 into queue Q (step S40) if the moving distance is larger
than the preset threshold. More particularly, in step S40,
the editor adds the number of the endpoint on which the
source node hovers into the queue Q from back end of
the queue Q and then sets the source node 41 as the
current node for the cursor.
[0070] In this embodiment, the editor determines the
moving direction of the cursor from the source node
based on the second external operation of user, namely,
determines whether the moving direction of the cursor is
upward or downward (step S42). If the cursor, controlled
by user, is moved downward with respect to the current
node and the moving distance is larger than the preset
threshold, the editor only calculates and displays one or
more effective candidate node 42 below the current node
(step S44). On the contrary, if the cursor is moved upward
with respect to the current node and the moving distance
is larger than the preset threshold, the editor only calcu-
lates and displays one or more effective candidate node
42 above the current node (step S46).
[0071] As mentioned above, the effective candidate
node 42 in this present invention is the endpoint that the
editor finds no short circuit for any normal block when
the current node is connected to this endpoint.
[0072] The editor keeps determining whether it re-
ceives a third external operation sent by user to exit the
editing mode (step S48). In one embodiment, user re-
leases mouse button to execute the third external oper-
ation. In another embodiment, user presses again the
special function key of computer keyboard to execute the
third external operation. If the editor does not receive the
third external operation, the editor performs the steps
shown in Fig. 5B. If the editor receives the third external
operation, the editor performs the steps shown in Fig. 5C
to exit the editing mode.
[0073] As shown in Fig. 5B, the editor determines
whether user moves the cursor by performing the second
external operation and user hovers the cursor at any can-
didate node 42 (step S50). If user moves the cursor and

the cursor hovers at any candidate node 42, the editor
adds the candidate node 42 into queue Q to convert the
candidate node 42 into connected node (step S52). On
the contrary, if the cursor does not hover on any candi-
date node 42, the editor does not perform any further
action.
[0074] More particularly, in step S52, if the cursor is
moved and hovers at any candidate node 42 by user
operation, the editor stores the number of the endpoint
corresponding to the location of the candidate node 42
into the queue Q from the back end of the queue Q such
that the candidate node 42 is recorded as connected
node 43.
[0075] Besides, the editor further determines whether
the cursor is controlled by user to move backward and
leave any connected node 43 (step S54). When the editor
determines that the cursor is moved backward (namely
moving toward the source node 41) and leave a connect-
ed node 43, the editor converts the connected node 43
into the candidate node 42 and removes the candidate
node 42 from the queue Q from the back end of the queue
Q (step S56).
[0076] More particularly, in step S56, the editor re-
moves the number of the endpoint corresponding to the
location of the candidate node 42 from the queue Q.
[0077] Before exiting the editing mode, the editor re-
turns to step S42 to continually calculate and display cur-
rently available candidate node 42, convert the candidate
node 42 passed by the cursor into connected node 43
and convert (resume) the connected node 43 (not passed
by the cursor) back to the candidate node 42.
[0078] As shown in Fig. 5C, if the editor exits the editing
mode based on the third external operation of user, then
the editor first fetches the queue Q and determines
whether the number of nodes stored in the queue Q is
larger than one (step S58). In the present invention, if
the number of nodes stored in the queue Q is larger than
one (namely at least two nodes), then the editor may
construct the cut lines 31-33 as shown in Figs. 3E to 3G
based on these two nodes. If the number of nodes stored
in the queue Q is not larger than one (namely only one
node or no node), the editor ends the construction of the
continuous vertical line.
[0079] In step S58, if the number of nodes stored in
the queue Q is larger than one, the editor fetches the first
two nodes in the queue Q and removes the record of the
first node in the queue Q (step S60). More particularly,
the editor uses the "peek" command to check the first
two nodes in the queue Q from the front end of the queue
Q, and uses the two nodes as the start point and endpoint
for the cut line. The editor uses the "pop" command to
remove the first node in the queue Q from the front end
of the queue Q to set the endpoint of the current cut line
as the start point of the next cut line, or as the end node
of the continuous vertical line.
[0080] After step S60, the editor constructs a first cut
line based on the fetched two nodes, sets one or more
normal block 2 on the left side of the start point of the cut

11 12

EP 3 822 769 A1

8

5

10

15

20

25

30

35

40

45

50

55

line as the first left group and sets one or more normal
block 2 on the right side of the start point of the cut line
as the first right group. The editor further sets one or more
normal block 2 on the left side of the endpoint of the cut
line as the second left group, and sets one or more normal
block 2 on the right side of the endpoint of the cut line as
the second right group (step S62). In other word, based
on the start point and the endpoint of the cut line, the
editor separates the continue blocks of the graph 1 into
left group and right group in step S62.
[0081] After step S62, the editor further parallel con-
nects the first left group and the second left group to
generate the first branch (parallel) group (step S64), and
parallel connects the first right group and the second right
group to generate the second branch (parallel) group
(step S66).
[0082] More particularly, in step S64, the editor parallel
connects the first left group and the second left group to
generate the new branch group based on the common
start point (the leftmost part of the graph 1) and the cut
line. In step S66, the editor parallel connects the first right
group and the second right group to generate the new
branch group based on the common endpoint (the right-
most part of the graph 1) and the cut line.
[0083] After step S66, the editor further serial connects
the first branch group with the second branch group to
form new continue (serial) group (step S68).
[0084] Afterward, the editor is back to step S58 to de-
termine whether the number of the node remaining in the
queue Q is larger than one after the above-mentioned
cut line is generated. The editor re-executes steps S60
to S68 to generate the next cut line if the number of the
nodes remaining in the queue Q is larger than one. The
editor modifies the serial-parallel relationship of the nor-
mal blocks in the graph 1 based on the one or more new
branch (parallel) group, and the editor then updates and
displays the graph 1 (step S70).
[0085] The above example is exemplified with pointer
of computer mouse. However, the editing method of the
present invention can also be implemented by computer
keyboard.
[0086] Refer also to Figs. 6A to 6D, which show the
first construction operation to the fourth construction op-
eration for the continuous vertical line according to the
third embodiment.
[0087] As shown in Fig. 6A, after entering the editing
mode, user may operate the arrow key of keyboard to
move cursor of the editor and select one of the endpoints
as the source node 61. After user selects the source node
61, the editor may display, after calculation, one or more
effective candidate nodes 62 around the source node 61,
where the source node 61 and the candidate nodes 62
may be represented with different colors or different
shapes.
[0088] Afterward, as shown in Figs. 6B and 6C, user
may use arrow key of keyboard to move the cursor from
the source node 61 to any candidate node 62. The editor
converts the candidate node 62 on which the cursor hov-

ers into connected node 63 and generates a pre-connec-
tion line 7 between the two nodes 61 and 63. When one
candidate node 62 is converted into connected node 63,
the editor further calculates and displays one or more
effective candidate node 62 around the connected node
63.
[0089] Finally, as shown in Fig. 6D, when user sends
command through keyboard to control the editor exit the
editing mode, the editor generates the continuous vertical
line 8 based on the source node 61 and one or more
connected node 63, and modifies the serial-parallel re-
lationship of the normal blocks in the graph 1 based on
the continuous vertical line 8. The editor updates and
displays the graph 1.
[0090] By above editing method of the present inven-
tion, user only needs one-time operation by mouse, key-
board or touch pad to directly generate a continuous ver-
tical line in graph, thus fast modify the relationship among
normal blocks. User may use the editor of visual pro-
gramming language more efficiently.

Claims

1. A method for editing continual vertical line of visual
programming language, the method applied to an
editor operated on a computer, the editor providing
a serial-parallel graph (1) comprising a plurality of
normal blocks (2), the method comprising:

a) receiving a first external operation to enter an
editing mode;
b) obtaining a source node (41) on the serial-
parallel graph (1) when entering the editing
mode, and setting the source node (41) as a
current node, wherein the source node (41) is
an endpoint (L0∼L11) of one of the normal
blocks (2);
c) displaying at least one candidate node (42)
around the current node, wherein the at least
one candidate node (42) is an endpoint (L0∼L11)
of at least one of the normal blocks (2) around
the current node;
d) receiving a second external operation to con-
nect the current node to one of the at least one
candidate nodes (42);
e) converting the connected candidate node
(42) into a connected node (43);
f) determining whether a third external operation
for exiting the editing mode is received;
g) setting the connected node (43) as the current
node and repeating the step c) to the step f) be-
fore exiting the editing mode;
h) generating a continuous vertical line (3) con-
necting the source node (41) and at least one
of the connected nodes (43) when exiting the
editing mode; and
i) modifying a serial-parallel relationship of the

13 14

EP 3 822 769 A1

9

5

10

15

20

25

30

35

40

45

50

55

normal blocks based on the continuous vertical
line (3) and updating the serial-parallel graph (1).

2. The method in claim 1, wherein the first external op-
eration is performed by continuously pressing a but-
ton of a mouse of the computer, the second external
operation is performed by moving the mouse for
dragging a pointer, the third external operation is per-
formed by releasing the button of the mouse.

3. The method in claim 1, wherein the first external op-
eration is performed by pressing a special function
key of a keyboard of the computer, the second ex-
ternal operation is performed by pressing an arrow
key of the keyboard, and third external operation is
performed by pressing again the special function key
of the keyboard.

4. The method in claim 1, wherein in the step h), the
continuous vertical line (3) is generated based on
the source node (41) stored in a queue (Q) of the
editor and the connected candidate nodes (42)
stored in the queue (Q), wherein in the step i), the
serial-parallel relationship of the normal blocks is
modified based on the source node (41) stored in
the queue (Q) of the editor and the connected can-
didate nodes (42) stored in the queue (Q).

5. The method in claim 4, wherein the step i) comprises
following sub-steps:

i1) determining whether a number of the nodes
stored in the queue (Q) is larger than one;
i2) fetching first two nodes in the queue (Q) and
then removing a first node in the queue (Q) when
the number of the nodes stored in the queue (Q)
is larger than one;
i3) after the sub-step i2), generating a cut line
(31, 32, 33) based on the two fetched nodes,
setting one or more normal block (2) on a left
side of a start point of the cut line (31, 32, 33)
as a first left group, setting one or more normal
block (2) on a right side of the start point of the
cut line (31, 32, 33) as a first right group, setting
one or more normal block (2) on a left side of an
endpoint of the cut line (31, 32, 33) as a second
left group, setting one or more normal block (2)
on a right side of the endpoint of the cut line (31,
32, 33) as a second right group;
i4) after the sub-step i3), parallel connecting the
first left group and the second left group to form
a first branch group;
i5) after the sub-step i3), parallel connecting the
first right group and the second right group to
form a second branch group;
i6) serially connecting the first branch group and
the second branch group to form a new continue
group;

i7) after the sub-step i6), repeating the sub-steps
i1) to i6); and
i8) modifying the serial-parallel relationship of
the normal blocks based on one or more new
continue group and updating the serial-parallel
graph (1) if the number of the nodes stored in
the queue (Q) is not larger than one.

6. The method in claim 5, wherein the sub-step i2) the
first two nodes in the queue (Q) are fetched with peek
command to obtain the first two nodes as the start
point and the endpoint of the cut line (31, 32, 33),
the first node in the queue (Q)is removed with pop
command.

7. The method in claim 1, further comprising a step b1)
after the step b): adding the source node (41) to a
queue (Q) of the editor;
wherein in the step e), the connected candidate node
(42) is added to the queue (Q) of the editor to convert
the connected candidate node (42) into the connect-
ed node (43).

8. The method in claim 7, further comprising a step b0)
before the step b1): clearing the queue (Q).

9. The method in claim 7, further comprising following
steps after the step b):

b21) calculating a moving distance from the cur-
rent node;
b22) determining whether the moving distance
is larger than a threshold; and
b23) performing the step c) when the moving
distance is larger than the threshold.

10. The method in claim 7, further comprising a step b3)
after the step b): determining a moving direction de-
parting from the source node;
wherein at least one of the candidate nodes (42)
above the current node is displayed when the moving
direction is upward;
wherein at least one of the candidate nodes (42) be-
low the current node is displayed when the moving
direction is downward.

11. The method in claim 1, wherein the candidate node
(42) is an effective candidate node not causing short
circuit of one or more normal block (2) in the serial-
parallel graph (1).

12. The method in claim 1, wherein the candidate node
(42) is displayed with dashed line, and the connected
node (43) is displayed with solid line.

13. The method in claim 1, wherein the candidate node
(42) is displayed with a first color, and the connected
node (43) is displayed with a second color.

15 16

EP 3 822 769 A1

10

5

10

15

20

25

30

35

40

45

50

55

14. The method in claim 7, wherein in the step e), the
candidate node (42) is added to the queue (Q) from
a back end of the queue (Q) when the editor receives
the second external operation and a cursor hovers
on any candidate node (42).

15. The method in claim 7, further comprising following
steps after the step e):

e1) determining whether the cursor is moved
back and leaves the connected node (43); and
e2) resuming the connected node (43) to the
candidate node (42) and removing the candi-
date node (42) from the back end of the queue
(Q) when the cursor is moved back and leaves
the connected node (43).

17 18

EP 3 822 769 A1

11

EP 3 822 769 A1

12

EP 3 822 769 A1

13

EP 3 822 769 A1

14

EP 3 822 769 A1

15

EP 3 822 769 A1

16

EP 3 822 769 A1

17

EP 3 822 769 A1

18

EP 3 822 769 A1

19

EP 3 822 769 A1

20

EP 3 822 769 A1

21

EP 3 822 769 A1

22

EP 3 822 769 A1

23

5

10

15

20

25

30

35

40

45

50

55

EP 3 822 769 A1

24

5

10

15

20

25

30

35

40

45

50

55

EP 3 822 769 A1

25

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

