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(57) ABSTRACT

Disclosed is a technique for providing one or more virtual
machines or one or more software containers provided by
cloud services to manage a horticultural operation. The
techniques include transmitting, from the image dispatcher
service, the image data to a first computing instance that
executes a first subprocess of an image processing pipeline.
Using the first subprocess of the image processing pipeline,
partially processed image data is generated from the image
data. The partially processed image data resulting from the
first subprocess is then transmitted from the first computing
instance to a second computing instance that executes a
second subprocess of the image processing pipeline. There-
after, a fully image processed image associated with the
image data is produced via at least the second subprocess of
the image processing pipeline.
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PIPELINED PROCESSING OF PLANT
IMAGES FOR MONITORING
HORTICULTURAL GROW OPERATIONS

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/650,872, filed Mar. 30, 2018, and
entitled “Pipelined Processing of Plant Images for Monitor-
ing Horticultural Grow Operations,” which is hereby incor-
porated by reference in its entirety.

BACKGROUND

[0002] Modern industrial horticultural operations include
not merely the planting, cultivation, and harvesting of
plants, but performing those operations with multiple plants,
conditions, greenhouses, grow operations, and people, all in
different geographic locations. Accordingly, collecting and
marshaling of this information towards a coherent and
effective horticultural operation is difficult. Generally, a
master grower regularly collects information about a horti-
cultural operation, identifies problems, identifies solutions
for those problems and applies them for remediation. This
monitoring and remediation cycle may be called a horticul-
tural feedback loop.

[0003] Specifically, because the environments surround-
ing different respective grow operations vary widely, and
much information is spread over different locations, a col-
lection of information for a horticultural operation is diffi-
cult. Furthermore, information collected is generally of low
fidelity, of dubious provenance, untimely, incomplete, and
does not lend itself for determining a course of remedial
action, let alone coordinate an operation-wide response.
Even where information is collected in a centralized loca-
tion, the information is not in a state to perform automated
hi-fidelity, and therefore accurate, diagnosis and remedia-
tion.

[0004] The techniques discussed herein allows for the
collection of hi-fidelity, reliable, timely, and complete infor-
mation, which in turn is used for automated diagnosis and
remediation, thereby providing the ability to implement an
effective horticultural operational feedback loop.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The detailed description is described with refer-
ence to the accompanying figures, in which the leftmost
digit(s) of a reference number identifies the figure in which
the reference number first appears. The use of the same
reference numbers in different figures indicates similar or
identical items.

[0006] FIG. 1 is a top-level context diagram for object
recognition horticultural based feedback analysis.

[0007] FIG. 2 is an example architecture for pipelined
processing of plant images.

[0008] FIG. 3 illustrates an example scheduling diagram
for pipelined processing of plant images.

[0009] FIG. 4 illustrates another example scheduling dia-
gram for pipelined processing of plant images.

[0010] FIG. 5A illustrates an example architecture for
pipelined processing of plant images including one or more
queues.
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[0011] FIG. 5B illustrates an example architecture for
pipelined processing of plant images including one or more
queues and a subprocess load monitor.

[0012] FIG. 6 illustrates an example image captured by an
image capture device for use in horticultural feedback
analysis.

[0013] FIG. 7 is a block diagram of an exemplary hard-
ware, software and communications environment for object
recognition based horticultural feedback analysis.

[0014] FIG. 8 is an exemplary plant state vector for object
recognition based horticultural feedback analysis.

[0015] FIG. 9 is an exemplary flow chart of object recog-
nition based horticultural feedback analysis.

[0016] FIG. 10 is an exemplary flow chart of identification
processing for object recognition based horticultural feed-
back analysis.

[0017] FIG. 11 is an exemplary flow chart of static analy-
sis via object recognition based horticultural feedback analy-
sis.

[0018] FIG. 12 is an exemplary flow chart of sequential
analysis via object recognition based horticultural feedback
analysis.

[0019] FIG. 13 is an exemplary flow chart for monitoring
grow operations using an image processing pipeline via one
or more virtual machines or one or more software containers
provided by cloud services.

DETAILED DESCRIPTION

[0020] A horticultural feedback loop is the regular and
periodic monitoring of a horticultural operation to collect
information about the operation, and to identify problems in
the operation, solutions to those problems, and to perform
remediation. A horticultural operation may include planting,
cultivation, and harvesting of plants. Accordingly, informa-
tion to be collected in a horticultural feedback loop will
include manual spot checks on plants, which is a labor-
intensive process. Additionally, there are a large number of
variables including factors that may vary across location
(e.g., people, climate, mechanical problems, etc.) that pro-
vide contextual information around plant measurements.
Thus, environmental variables and other non-plant variables
must be considered when collecting information.

[0021] An Object Recognition Based Horticultural Feed-
back Analysis (ORB-HFA) system is used to automate the
spot-checking process and to reduce variations in data
resulting from multiple factors. In various embodiments, an
image capture device such as digital video camera, a still
image digital camera, and/or via an unmanned aerial vehicle
(UAV), may be used to take still images of plants or
discretely defined group of plants periodically to regularly
monitor the plants. The images may be collected, central-
ized, and then analyzed using computer object-recognition
techniques and computer image analysis techniques to pro-
vide a critical mass of information for accurate automated
diagnosis and recommendations for remediation.

[0022] The ORB-HFA system may facilitate providing
remediation recommendations that may be dispatched to
workers operating in various locations. Because the indi-
vidual plants and their respective environments are being
constantly monitored, the ORB-HFA system enables real-
time or near real-time response and monitoring. For
example, a remediation recommendation may be dispatched
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on one day, and a follow-up operation to determine the
efficacy of the remediation recommendation may be per-
formed later that same day.

[0023] The ORB-HFA system may also facilitate collect-
ing data across an entire horticultural operation in a com-
prehensive manner. More specifically, because the data
collection process is automated and can be implemented on
a large-scale, the state of individual plants may be monitored
at all times. For example, a plant may be compared to the
growth performance of past similar plants, or to the growth
performance of other plants in the same horticultural opera-
tion. Thus, the ORB-HFA system can aggregate a critical
mass of data to provide historical information that will allow
a master grower to incorporate past experience in determin-
ing potential remediation courses of action. Some analysis
may make use of machine learning/big data techniques. The
results of this analysis may then be fed back into the
ORB-HFA system to improve future diagnosis and reme-
diation recommendations.

[0024] The ORB-HFA system also permits the application
of computer object-recognition and computer image analy-
sis techniques to provide a detailed analysis of each plant.
For instance, each branch, leaf (or needle), root, and topol-
ogy of a plant may be analyzed. Furthermore, the computer
image analysis techniques can include color analysis to
detect changes in color, such as the premature browning of
leaves. Moreover, because each plant is being monitored,
sequential analysis, or the comparison of images over time,
may be applied to capture changes of the same plant over
time. The techniques described herein may be implemented
in a number of ways. Example implementations are pro-
vided below with reference to the following figures.

Example Architecture

[0025] FIG. 1 provides an exemplary context diagram 100
illustrating an ORB-HFA feedback loop that implements an
image processing pipeline. A horticultural operation may
cover one or more locations, such as a greenhouse 102. A
greenhouse 102 may have one or more grow operations 104
each with one or more plants 110. The plants 110 can
comprise a single type of plant or multiple types of plants.
In various embodiments, a single grow operation 104 may
include multiple plants in different locations/greenhouses
102. Specifically, a grow operation 104 is a logical group of
plants 110 that are similarly situated such that the cultivation
of each plant in the group is substantially similar.

[0026] One or more image capture devices 106 are located
at each grow operation 104 to capture images of plants 110
or discretely defined groupings of plants and information
related to each plant 110 for the horticultural feedback loop.
In some embodiments, each individual plant may have a
single dedicated image capture device 106. The image
capture device 106 may be a digital video camera or may be
a still image camera configured to capture images periodi-
cally and/or on demand. The image capture device may also
comprise a UAV configured to capture images periodically
and/or on demand. Generally, an image capture device 106
may take visible light spectra pictures but may also extend
to non-visible spectra such as infrared and ultraviolet. The
image capture device 106 may have an onboard application
programming interface (API) enabling programmatic con-
trol. Alternatively, the image capture device 106 may be
networked thereby enabling remote control. The image
capture device 106 may be controlled via an image caption
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function. The image capture function may be a part of the
image capture device and/or a part of a luminaire feedback
device 108. In another implementation, the image capture
function may be hosted on a computing device.

[0027] The luminaire feedback device 108 provides light
on a plant 110 and may be configured to change spectrum
and intensity of the light on the plant 110 based on feedback
from the visual observer devices 106 and/or other sensors. In
some embodiments, the luminaire feedback device 108 may
incorporate the image capture device. Furthermore, the
luminaire feedback device 108 may operate in a network
environment. Accordingly, the luminaire feedback device
108 may use internal logic to capture images with the image
capture device and adjust the light spectrum and/or intensity
based on an analysis. In some embodiments, the luminaire
feedback device 108 may be configured to adjust light
spectrum and/or intensity according to a remediation course
of action, which can include one or more tasks to address an
identified problem.

[0028] In various embodiments, the luminaire feedback
device 108 and/or the image capture device 106 may trans-
mit images and other information to a central computing
device 126 for providing image analysis services 128. The
computing device 126 can comprise an image processing
server, depending upon embodiments. Optionally, an inter-
mediate server 114 may be used to store and/or queue the
captured images and other information. The intermediate
server 114 may in turn subsequently forward the captured
images to the image analysis services 128. The intermediate
servers 114 may also directly send the captured images to the
image analysis services 128 if the image analysis services
128 and the intermediate servers 114 are on the same
network. Additionally, or alternatively, the intermediate
servers 114 may route the captured images to the image
analysis services 128 via the Internet and/or the cloud 120.
In other embodiments, the image analysis services 128 may
be hosted in a virtual machine on the cloud 120. In some
cases, the intermediate server 114 may be an on-premise or
an off-premise server.

[0029] The cloud 120 may also be utilized to provide the
services associated with an intermediate server 114 and/or a
central computing device 126. The intermediate server 114
and/or the central computing device 126 may either be a
physical dedicated server or may be a virtual machine. In the
latter case, the cloud 120 may represent a plurality of
disaggregated servers which provide virtual application
server 124 functionality and virtual storage/database 118
functionality. The disaggregated servers may be physical
computer servers, which may have a processor, a memory,
an I/O interface and/or a network interface. The features and
variations of the processor, the memory, the /O interface
and the network interface are substantially similar to those
described for the host of the image capture function (e.g., a
luminaire feedback device 108), the intermediate servers
114, and/or the computing device 126. Differences may be
where the disaggregated servers are optimized for through-
put and/or for disaggregation.

[0030] Cloud services may be made accessible via an
integrated cloud infrastructure. The cloud infrastructure not
only provides access to cloud infra services 122 but also to
billing services and other monetization services. The cloud
infrastructure may provide additional service abstractions
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such as Platform as a Service (PaaS), Infrastructure as a
Service (IaaS), and/or Software as a Service (SaaS), depend-
ing upon embodiments.

[0031] The image analysis services 128 may comprise an
image retriever 130, a memory buffer 132, an image pre-
processor 134, a classifier 136, an analysis module 138, and
a data store 140. The image retriever 130 is configured to
receive captured images from the image capture device 106,
the luminaire feedback device 108, the horticultural man-
agement device 112, the intermediate servers 114, and/or
other data sources of the grow operation 104. The image
retriever 130 may place one or more images in the memory
buffer 132 where additional image processing services (e.g.,
image preprocessing, classification, analysis, etc.) may be
applied.

[0032] The captured images in the memory buffer 132
may be provided to an image dispatcher service 142. The
image dispatcher service 142 may be implemented by one or
more applications that are executing on physical computers,
one or more virtual machines, or software containers pro-
vided by cloud services 120. The image dispatcher service
142 is configured to control the order in which images
included in buffer 204 are processed by an image processing
pipeline that may be hosted on the central computing device
126. In various embodiments, image dispatcher service 142
may be configured to track the order of the subprocesses
included in the image processing pipeline.

[0033] A subprocess load monitor 144 is configured to
monitor one or more image queues 146 for a subprocess
included in the image processing pipeline. In the event that
one or more image queues 146 for a subprocess becomes
full, the subprocess load monitor 144 may request that one
or more additional virtual machines or containers be instan-
tiated to help alleviate the bottleneck.

[0034] The captured image in the memory buffer 132 may
also be persisted and aggregated in the data store 140. The
data store 140 can comprise a data management layer that
includes software utilities for facilitating the acquisition,
processing, storing, reporting, and analysis of data from
multiple data sources such as the luminaire feedback device
108, the image capture device 106, intermediate servers 114,
horticultural management devices 112, and/or so forth. In
various embodiments, the data store 140 can interface with
an API for providing data access.

[0035] The image analysis services 128 can provide image
analysis as well as problem identification and potential
courses of action for remediation. Upon identifying at least
one course of action for remediation, the image analysis
services 128 may interact directly with a horticultural man-
agement device 112 or other components or devices used in
the grow operation 104 via the luminaire feedback devices
108, intermediate servers 114, and/or other interfaces to the
grow operation 104.

[0036] Inanother example, the image analysis service 128
may transmit to the horticultural management device 112,
information related to problem identification. In various
embodiments, the image analysis service 128 can request
additional information from the horticultural management
device 112. If multiple horticultural management devices
112 are used, the image analysis service 128 can request
additional information from a selected horticultural man-
agement device of a plurality of horticultural management
devices based on one or more conditions, such as the
real-time location of the horticultural management device
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112 and/or the registered operator or user (i.e., the worker
116) of the horticultural management device 112. In this
regard, one or more workers 116 can be associated with a
horticultural management device 112.

[0037] Additionally, or alternatively, one or more courses
of action for remediation may be provided to a horticultural
management device 112 that is operated by a worker 116
responsible for at least one grow operation 104 and/or a
worker who is to perform the actual tasks comprising a
course of action for remediation. In one embodiment, all or
a portion of the course of action for remediation may be
displayed in a horticultural management device 112 for view
and interaction by the worker 116.

[0038] The horticultural management device 112 may be
any networked computer, including mobile tablets over
Wi-Fi and/or mobile tablets over a cellular network and/or
laptops. The horticultural management device 112 may
connect to the cloud 120, directly to the image analysis
services 128, or directly to the grow operation 104, via
intermediate servers 114, luminaire feedback devices 108,
and/or other interfaces to the grow operation 104. Accord-
ingly, the ORB-HFA system enables the collection of com-
plete and comprehensive information collection, potentially
to the point of one dedicated image capture device per plant,
the offloading of image analysis services 128 to a central
point (i.e., the computing device 126) for analysis and
determining a course of action for remediation as needed,
and the distribution of the course of action for remediation
either directly with a grow operation, or to workers 116
responsible for the grow operation. In this way, the ORB-
HFA system enables an improved horticultural feedback
loop.

[0039] FIG. 2 shows an example architecture for a virtu-
alized pipelined processing of plant images. The architecture
for virtualization of the central computing device 126 may
include a buffer 204, an image dispatcher service 142, and
an image processing pipeline 206. In one example, buffer
204 is one possible implementation of the memory buffer of
FIG. 1. Furthermore, the image processing pipeline 206 is
one possible implementation of one or more of the compo-
nents of the image analysis service of FIG. 1. For example,
subprocess 208(1) may correspond to the operations per-
formed by the image preprocessor, subprocess 208(2) may
correspond to the operations performed by the classifier,
subprocess 208(3) may correspond to the operations per-
formed by the identifier, and subprocess 208(N) may cor-
respond to the analyzer. Although FIG. 2 illustrates N
processes any number of subprocesses may be included in
the image processing pipeline 206. For example, each of the
image preprocessing algorithms and/or each of the identifier
algorithms may further be implemented by way of a respec-
tive subprocess. In one example, each of the subprocesses
208(1)-208(N) included in the image processing pipeline
206 represents at least one virtual machine and/or software
container.

[0040] In one aspect, the image processing pipeline 206
uses parallel tasks (e.g., subprocesses 208(1)-208(N) to
process a sequence of images 202(1)-202(N) captured by
one or more image capture devices 106(1)-106(N). The
image capture devices 106(1)-106(N) illustrated in FIG. 2
may represent a plurality of image capture devices 106
located at a single grow operation, a plurality of image
capture devices dispersed across several grow operations of
a single greenhouse, and/or a plurality of image capture
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devices located at disparate greenhouses and/or grow opera-
tions. Each of the subprocesses 208(1)-208(N) may imple-
ment a stage of the pipeline that allows the stages of the
image processing pipeline 206 to execute concurrently, even
though the images 202(1)-202(N) are processed in a par-
ticular order. The partially processed image is passed from
one subprocess to another. The output (e.g., processed image
210) of the image processing pipeline 206 may occur in the
same order as that of the input.

[0041] In operation, the image dispatcher service 142 is
configured to control the order in which images included in
buffer 204 are processed by the image processing pipeline
206. That is, in some examples, the images are not neces-
sarily processed by the image processing pipeline 206 in the
order the images are received in buffer 204. Rather, the
images may be processed according to a priority scheme.
For example, in some implementations, each image received
from an image capture device 106 may include metadata that
incorporates a date/time stamp indicating a date/time that the
image was captured. Accordingly, image dispatcher service
142, in one example, may dispatch images from the buffer
204 to the image processing pipeline 206 based at least on
the date/time stamp (e.g., oldest images sent first, newest
images sent first, daytime images sent first, or images for a
particular date/time range, etc.).

[0042] In another example, image dispatcher service 142
may be configured to dispatch images to the image process-
ing pipeline 206 based on the location from which the image
was taken (e.g., process images retrieved from a particular
grow operation first). In yet another example, the image
dispatcher service 142 may receive input from one or more
of the subprocesses 208(1)-208(N) to determine which
image to dispatch next. For example, analysis of an image
might reveal an issue with a plant. The image dispatcher
service 142 may communicate with a knowledge database to
determine whether the issue is a time-sensitive issue. In this
case, the image dispatcher service 142 may be configured to
prioritize the dispatching of images of the same plant,
similar plant, or plants in the same grow operation to the
image processing pipeline 206.

[0043] Insome implementations, image dispatcher service
142 may be configured to track the order of the subprocesses
included in the image processing pipeline 206. For example,
image dispatcher service 142 may maintain a state of which
images have been dispatched to the image processing pipe-
line 206 and where they are in the pipeline. The state can be
maintained in a state table. The state table can include a field
for an image identification for an image or a partially
processed image, the subprocess that was completed, failed,
or in progress, the timestamp indicating when each subpro-
cess started and finished, and/or so forth. The image dis-
patcher service 142 may wait for notifications from a virtual
machine corresponding to a subprocess that the subprocess
is complete before dispatching the image to the next sub-
process, which may correspond to a second virtual machine.
In various embodiments, the image dispatcher service 142
can query a virtual machine for status information if the
virtual machine does not transmit notifications to the image
dispatcher service 142 within a predetermined period of time
after the subprocess starts.

[0044] The image dispatcher service 142 may also deter-
mine if the subprocess failed. After a predetermined number
of failures, the failed images can be transmitted to an
administrative portal (not shown) for review. In some cases,
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certain images, such as obscured images, low-light images,
and/or low-quality images may be discarded and removed
from the image processing pipeline 206. In such cases, the
discarded images are not dispatched to the subsequent
subprocesses and no further processing is performed. Upon
processing the images 202(1)-202(N) through all of the
subprocesses 208(1)-208(N), the image processing pipeline
206 produces a processed image 210. The processed image
210 can be stored in a data store and/or archived.

[0045] FIG. 3 illustrates an example scheduling diagram
for pipelined processing of plant images. For example, the
top row shows that subprocess 1 begins its subprocessing of
image 1 at time period 1. Subsequently, during time period
2, subprocess 2 begins its subprocessing of image 1, while
subprocess 1 begins the concurrent subprocessing of image
2. Accordingly, if subprocess 1 represents the image pre-
processor and the subprocess 2 represents the classifier, the
image processing pipeline allows the image preprocessing of
image 2 (e.g., by subprocess 1) to occur simultaneously with
the image classification of image 1 (e.g., by subprocess 2).
[0046] Each of the illustrated subprocesses of FIG. 3 may
be implemented by way of a respective virtual machine or
software container. Thus, if enough virtual machines have
been allocated to allow the pipeline’s tasks to run in parallel,
FIG. 3 shows that the expected execution time for three
images in a pipeline with N subprocesses is approximately
N+2 time periods. In contrast, sequential processing may
take approximately 3xN because each of the N subprocesses
must be processed one after another.

[0047] The average performance of the image processing
pipeline improves as more images are processed. The reason
for this, as FIG. 3 illustrates, is that some virtual machines
are idle as the pipeline fills during startup and drains during
shutdown. With a large number of images, the startup and
shutdown time becomes relatively insignificant. The average
time per image would approach one time period.

[0048] The illustrated example of FIG. 3 assumes that
each subprocess takes the same amount of time to perform
its respective processing. However, in some embodiments,
this may not be always the case. For example, FIG. 4
illustrates a scheduling diagram where the subprocess 2
takes twice as long to complete as the other subprocesses. As
shown in FIG. 4, when one of the subprocesses takes twice
as long, some of the virtual machines may periodically be
idle. Therefore, the speed of a pipeline is approximately
equal to the speed of its slowest stage.

[0049] FIG. 5A illustrates an example architecture for
pipelined processing of plant images including one or more
queues 502, 504, and 506. The image dispatcher service 142
receives images from the buffer 204. Each subprocess of the
image processing pipeline of FIG. 5A reads from a dedicated
input and writes to a particular output. For example, the
image dispatcher service 142 transmits the images to sub-
process 1 208(1), which in turn writes to queue 502. Sub-
sequently, the subprocess 2 208(2) reads from queue 502 and
writes to queue 504. This process continues under the
processed image 210 is generated.

[0050] All the subprocesses of the image processing pipe-
line can execute at the same time because concurrent queues
buffer any shared inputs and outputs. Thus, if there are four
available virtual machines, the subprocesses 208(1)-208(N)
can run in parallel. As long as there is room in its output
queue, a subprocess of the pipeline can add the partially
processed image it produces to its output queue. If the output
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queue is full, the subprocessing of the next image waits until
space becomes available. Using buffers such as queues 502,
504, and 506 that hold more than one partially processed
image at a time compensates for the variability in the time
it takes to subprocess each image. Additionally, or alterna-
tively, the next image may skip a subprocess and return to
the skipped subprocess when space becomes available. In
this way, the subprocesses of the image processing pipeline
may not be executed in a particular order or sequence.

[0051] FIG. 5B illustrates an example architecture for
pipelined processing of plant images including one or more
queues 502, 504, and 506 and a subprocess load monitor
144. As discussed above, some subprocesses included in the
image processing pipeline 206 may take longer than other
subprocesses. Thus, in some scenarios, one or more of the
queues may become full, slowing down the entire pipeline.
The subprocess load monitor 144 is configured to monitor
one or more of the queues 502, 504, and 506. If a queue
becomes too full (e.g., the number of images contained in
the queue is greater than a threshold number or the process-
ing time is greater than a time period threshold), then the
subprocess load monitor 144 may request that one or more
additional virtual machines or containers be instantiated to
help alleviate the bottleneck. For example, the subprocess
load monitor 144 may monitor the queue 502 and in
response to determining that the queue 502 is too full, may
instantiate a new virtual machine corresponding to subpro-
cess 2' 208(2)' to perform the same operations as subprocess
2 208(2). Thus, in some implementations, the image pro-
cessing pipeline of FIG. 5B may be configured to perform
the same subprocess, but on different images concurrently.
Additionally, or alternatively, the image processing pipeline
of FIG. 5B may be configured to perform the same subpro-
cess, but on different portions of the same images concur-
rently.

[0052] In various embodiments, the image processing
pipeline may be configured to implement branched subpro-
cesses 208(1)-208(N). In this regard, one or more operations
of one subprocess may depend on the outcome of one or
more operations of another subprocess. For example, pre-
processing of an image may reveal that the image was
obtained under certain lighting conditions (e.g., low-light,
normal-light, high-light, etc.). Thus, subsequent subpro-
cesses 208(1)-208(N) may be instantiated that are specific to
the determined lighting condition. That is, a set of subpro-
cesses specific for low-lighting conditions may be instanti-
ated in response to subprocess 1 208(1) determining that an
image is a low-light image. In another example, a subpro-
cess may be instantiated to perform an operation dependent
on the outcome of the previous subprocess. For example,
analysis of an image may reveal an anomaly on one or more
leaves of a plant, whereas a subprocess is instantiated to
determine the nature of the anomaly.

[0053] FIG. 6 illustrates an example image 602 captured
by an image capture device for use in horticultural feedback
analysis. As mentioned above, image capture devices are
configured to capture one or more images of plants or
groupings of plants included in a grow operation. In one
example, each image 602 includes a single (e.g., no more
than one) plant. In other examples, each image 602 may
include more than one plant. In various embodiments,
however, each image 602 can depict a target, or an item of
interest such as a person, a machine, an object, and the like.
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[0054] As mentioned above, the processing of the images
by image analysis services, image processing server, and/or
image processing pipeline may include classifying the plant
as a certain plant type, and/or identifying the plant as the
same plant that was previously identified. In some imple-
mentations, each plant included in the grow operation may
be affixed with an identifier 604. Thus, an image 602 can
depict one or more identifiers 604 that are affixed to the
plants. The identifier 604 may include one or more visual
matrix codes, such as QR codes, Aztec Codes, Maxi Codes,
or other visually-readable identifiers such as a barcode that
provides the type of plant and/or a unique identifier of this
particular plant. In some examples, the visual matrix codes
may be analyzed after the image 602 has been uploaded to
the image processing server. In other examples, the image
capture device may include a reader (e.g., barcode reader
and/or QR code reader) to read the identifier 604. Thus, in
this example, the image capture device may be configured to
append the plant identification into metadata associated with
each image 602.

[0055] In yet other examples, the identifier 604 may
include a radio-frequency identification (RFID) and/or near-
field communication (NFC) tag. Thus, the image capture
device may include an RFID reader and/or NFC reader to
detect the identifier 604 and append corresponding plant
identification data into the captured image.

[0056] The image 602 may represent one image obtained
by an image capture device. In some implementations,
hundreds, if not thousands of images may be obtained and
uploaded to the image processing server. Thus, in some
examples, the image processing server may be configured to
perform image selection to reduce the number of images
stored. For example, after processing a number of images
received from a certain grow operation, the image process-
ing server may determine that nothing abnormal appears in
any of the images (i.e., no issues, no anomalies, etc.). Thus,
rather than storing all images received from the grow
operation, the image processing server may store a subset
(one or more) of the images received as representative of all
images obtained from that grow operation.

Example Computing Device Components

[0057] FIG. 7 is a block diagram showing various com-
ponents of illustrative computing devices 700 for providing
the ORB-HFA and related techniques such as image analysis
services. The computing devices 700 can comprise an image
processing server, an intermediate server, a central comput-
ing device, and/or so forth. It is noted that the computing
devices 700 as described herein can operate with more or
fewer of the components shown herein. Additionally, the
computing devices 700 as shown herein or portions thereof
can serve as a representation of one or more of the com-
puting devices of the present system.

[0058] The computing devices 700 may include a com-
munication interface 702, one or more processors 704,
hardware 706, and memory 710. The communication inter-
face 702 may include wireless and/or wired communication
components that enable the computing devices 700 to trans-
mit data to and receive data from other networked devices.
In at least one example, the one or more processor(s) 704
may be a central processing unit(s) (CPU), graphics pro-
cessing unit(s) (GPU), both a CPU and GPU or any other
sort of processing unit(s). Each of the one or more processor
(s) 704 may have numerous arithmetic logic units (ALUs)
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that perform arithmetic and logical operations as well as one
or more control units (CUs) that extract instructions and
stored content from processor cache memory, and then
executes these instructions by calling on the ALUs, as
necessary during program execution.

[0059] The one or more processor(s) 704 may also be
responsible for executing all computer applications stored in
the memory, which can be associated with common types of
volatile (RAM) and/or non-volatile (ROM) memory. The
hardware 706 may include additional user interface, data
communication, or data storage hardware. For example, the
user interfaces may include a data output device (e.g., visual
display, audio speakers), and one or more data input devices.
The data input devices may include but are not limited to,
combinations of one or more of keypads, keyboards, mouse
devices, touch screens that accept gestures, microphones,
voice or speech recognition devices, and any other suitable
devices. Additionally, the data input devices may include an
image capture function 708. In some embodiments, the
image capture function 708 can be a part of a luminaire
feedback device.

[0060] The memory 710 may be implemented using com-
puter-readable media, such as computer storage media.
Computer-readable media includes, at least, two types of
computer-readable media, namely computer storage media
and communications media. Computer storage media
includes volatile and nonvolatile, removable and non-re-
movable media implemented in any method or technology
for storage of information such as computer-readable
instructions, data structures, program modules, or other data.
Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD), high-
definition multimedia/data storage disks, or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
non-transmission medium that can be used to store infor-
mation for access by a computing device. In contrast,
communication media may embody computer-readable
instructions, data structures, program modules, or other data
in a modulated data signal, such as a carrier wave, or other
transmission mechanisms. The memory 710 may also
include a firewall. In some embodiments, the firewall may
be implemented as hardware 706 in the computing devices
700.

[0061] The processors 704 and the memory 710 of the
computing devices 700 may implement an operating system
712. The operating system 712 may include components that
enable the computing devices 700 to receive and transmit
data via various interfaces (e.g., user controls, a communi-
cation interface, and/or memory input/output devices), as
well as process data using the processors 704 to generate
output. The operating system 712 may include a presentation
component that presents the output (e.g., display the data on
an electronic display, store the data in memory, transmit the
data to another electronic device, etc.). Additionally, the
operating system 712 may include other components that
perform various additional functions generally associated
with an operating system.

[0062] The processors 704 and the memory 710 of the
computing devices 700 may also implement an image
retriever 130, a memory buffer 132, an image preprocessor
134, which may further include one or more image prepro-
cessing algorithms 714(1)-714(N), a classifier 136, an analy-
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sis module 138, an identifier 718 which may further include
one or more identifier algorithms 720(1)-720(N), and an
image flow controller 724.

[0063] The image retriever 130 manages the receiving of
images from image capture functions 708. The throughput of
images and supplementary data may differ. Accordingly, the
image retriever 130, may manage the timing, speed, and a
party (e.g., image dispatcher service, computing devices,
image capture functions, image capture devices, etc.) con-
trolling the data transfer. For example, the image retriever
130 may act as a simple data store, which receives and stores
images upon receipt as pushed by an image capture function
708. Alternatively, the image retriever 130 may affirmatively
pull images for image capture functions.

[0064] One example of a pull scenario is where one or
more computing devices 700 are first joining the network.
The image capture function 708 may be implemented in
another computing device or a luminaire feedback device.
When this happens, one or more image capture functions
708 could potentially overload the computing devices 700
by sending a large number of images. To prevent overload,
the image retriever 130 may negotiate a controlled transfer
with the one or more image capture functions 708.

[0065] When the image retriever 130 receives an image, it
may store the received image in the memory buffer 132. The
memory buffer 132 is dedicated memory, generally part of
the memory 710, where a retrieved image may reside to be
processed. Common memory buffers 132 are contiguous
dedicated RAM, where the data comprising an image may
be accessed directly rather than via a series of central
processing unit commands. Generally, such a configuration
is via a GPU.

[0066] Once an image is in the buffer 132, the image may
be subjected to one or more image processing and analysis
operations. The image preprocessor 134 performs any trans-
formations to an image enable analysis to increase the
likelihood of successful analysis. Example operations to
enable analysis are to decompress and/or decrypt incoming
images via the respective decompression and/or decryption
algorithms 714(1)-714(N). Example operations to increase
the likelihood of successful analysis to apply one or more
transformations and/or content analysis algorithms 714(1)-
714(N) are Gaussian blur and Red-Green-Blue (RGB) con-
tent analysis.

[0067] Generally, an analysis is performed later in the
image workflow of the computing devices 700. Where
possible, algorithms 714(1)-714(N) attempt to take partial
images, corrupt images, or otherwise substandard images
and apply corrections sufficient to support analysis. How-
ever, the image preprocessor 134 may also contain logic to
remove images with insufficient information or low-quality
images from the workflow. In this way, data collected during
subsequent analysis will not contain data from corrupt or
misleading images. This cleaning logic may be part of the
image preprocessor 134 or alternatively may be in a separate
image cleaning software component.

[0068] Once preprocessing is complete, the classifier 136
is configured to identify which portions of an image repre-
sent the plant to be analyzed as opposed to portions of the
image representing items other than the plant to be analyzed.
The classifier 136 identifies discrete objects within the
received image and classifies those objects by size and
image values, either separately or in combination. Example
image values include inertia ratio, contour area, and Red-
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Green-Blue components. Based on those values, the objects
are ranked and sorted. Items above a predetermined thresh-
old or the highest N objects are selected as portions of the
received image representing the plant.

[0069] After classification, the identifier 718 is configured
to identify the plant in the received image and to identify
artifacts in the plant. The identifier 718 may compare the
image data of the plant in the received image to that of other
images. To perform these comparisons, the identifier 718
may create a plant state vector comprised of values and
value sets generated by one or more algorithms 720(1)-720
(N) of the identifier 718. Such a constructed vector corre-
sponds to the state of a plant in an image and is compared
against other plant state vectors to perform general com-
parisons as well as sequential analysis.

[0070] The identifier 718 contains several identification
algorithms 720(1)-720(N). Some algorithms 720(1)-720(N)
work directly on a single image. Other algorithms 720(1)-
720(N) may process a series of images classified together
into a category, collect information in common, and apply to
subsequent images. Example categories may be images of
the same plant or groupings of plants over time, images of
the same genus and species of plant, and images of plants
given the same care, and/or so forth.

[0071] One example of the latter case is where the iden-
tifier 718 collects color histogram data over a plurality of
images of the same category and generates an average
histogram comprised of the averages or weighted averages
of each distribution variable comprising the histogram.
Accordingly, when an image is received belonging to the
same category, the identifier 718 may use the average
histogram to identify the plant and artifacts in the plant. The
average histogram is then recalculated using the histogram
of the incoming image. In this way, the average histogram
becomes an adaptive histogram with improving perfor-
mance. In some embodiments, the logic to perform analysis
using data from a plurality of images, or performing com-
putationally intense logic, may be separated from the iden-
tifier 718 into another software component such as an edge
cleaner software component.

[0072] The analysis module 138 takes the transformed
image, and potentially any generated additional information,
such as a plant state vector, and maps portions of the image
to indicia corresponding to a feature of a plant. These indicia
are called an artifact. Because the classifier 136 identified
objects comprising portions of a plant, those portions may be
subjected to analysis of visual information. Because the
identifier 718 may have generated branch information about
plant branches, leaf structure, and root structure, branch
analysis may identify not only artifacts but artifacts indicat-
ing issues in the plant.

[0073] If at least one artifact corresponds to an issue with
a plant, the analysis module 138 may also retrieve corre-
sponding recommended courses of action to remediate the
issue. Such information may be subsequently sent to the
grow operation, intermediate server, luminaire feedback
device, image capture device, and/or other entry points into
the grow operation.

[0074] The computing devices 700 may have access to a
data store. The computing devices 700 may store raw
images, transformed images, generated plant state vectors,
and other related information for archival and/or reporting
after processing is complete. The data store may be config-
ured as a relational database, an object-oriented database, a
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NoSQL database, and/or a columnar database, or any con-
figuration to support scalable persistence.

[0075] Reporting may be performed by a querying soft-
ware component (not shown). Because each image is asso-
ciated with a plant, date/time stamp, plant state vector, and
potentially identified issues, images may be queried by any
or all of these data values.

[0076] As described above, the ORB-HFA provides infra-
structure capable of collecting images and other information
on a per plant basis, applying sophisticated image analysis,
applying sophisticated horticultural analysis to diagnose
problems and recommend a remedial course of action, all
while distributing the relevant information to workers and or
devices in the grow operation.

[0077] The image flow controller 724 is configured to
manage the capture of images and receive images from an
image capture device (if not integrated with the image
capture function 708). Additionally, the image flow control-
ler 742 can locally manage received images, and potentially
transmit the received images from the image capture func-
tion 708 over a network. The image flow controller 724 may
store a configuration setting of how many images an image
capture device is to capture, the resolution the image is to be
captured, the format the image is to be stored, and any other
processing to be performed on the image. The image flow
controller 724 may store a captured and/or received image in
the memory buffer 132 and designate the file name of the
received image. The image flow controller 724 may operate
with other applications that may perform additional image
processing, such as compression and/or encryption.

[0078] The image flow controller 724 may also manage
the transmission of received images. Specifically, it may
transmit an image to a known network location via the
network interface 702. The known network locations may
include an intermediate server, the Internet, the cloud, and/or
so forth.

[0079] Upon transmission, the image flow controller 724
may enlist in notifications to determine that the transmission
was successful. The image flow controller 724 may also
transmit notifications to other device subscribing to its
notifications indicating the status of the transmission.
[0080] In some implementations, the computing devices
700 may include a physical computer server (e.g., on-site or
off-site server). However, in other examples, image process-
ing server 218 may be implemented by way of one or more
virtual machines or software containers provided by cloud
services 220. As used herein, virtual machines may include
virtual engines (VEs) and virtual private servers (VPS). A
software container refers to an isolated virtual user-space
instance that may behave like a real server. For example,
forms of software containers may include Docker® contain-
ers developed by Docker, Inc., Drawbridge® containers
developed by the Microsoft Corporation, LXD® containers
developed by Canonical Ltd., and/or so forth.

[0081] Virtualization, in the form of virtual machines or in
the form of containers, allows multiple applications to run
on the same physical machine in a fully isolated and portable
way. With virtualization, each application runs as if it is the
only application using the server and operating system’s
resources, without interfering with any of the other appli-
cations running on the server.

[0082] A virtual machine may utilize a hypervisor, which
creates and manages virtual machines on a physical
machine. The virtual machines may provide an abstraction
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of the physical machine that includes a basic input/output
system (BIOS), network adapters, disk, and CPU. Every
virtual machine running on a physical server runs a separate
instance of the operating system. In fact, virtual machines
deployed to a server can run different versions of the
operating system or even different operating systems. A
hypervisor creates and runs different virtual machines.

[0083] Virtual machines may solve several server man-
agement issues facing enterprises, where machines are more
fully utilized. Spinning up a new virtual machine is fast
relative to bringing a new physical server online, so provi-
sioning is simpler. If there is a hardware failure on a server,
it can be addressed by simply moving the virtual machine to
another physical machine. Virtual machines also provide
hardware isolation, which brings with it a high level of
security.

[0084] Because utilization is increased, and provisioning
times are reduced, operational teams are more efficient when
using virtual machines. The ability to run multiple operating
systems means that second, parallel servers do not need
building when upgrading.

[0085] With containers, the operating system, not the
physical hardware, is virtualized. Applications are run in
containers as microservices that provide the entire runtime
image, including libraries and any other dependencies.
Instead of using a separate hypervisor to provide virtualiza-
tion, containers may rely on the functionality of the under-
lying operating system kernel to restrict an application to
certain features and file systems. In containers, applications
share the kernel but have separate user spaces.

[0086] The separation of user spaces allows an application
to be deployed along with any third-party libraries on which
it needs to run. It also isolates an application’s use of
resources from other processes outside of the container.
While containers can include multiple related applications,
they are commonly used to provide fine-grained levels of
functionality and support of services or even a microser-
vices-based architecture of application deployment.

[0087] FIG. 8 shows a diagram of an exemplary plant state
vector 802. The plant state vector 802 is a data representa-
tion that captures the state of a plant as interpreted from an
image. During image preprocessing, classification, and iden-
tification, image information is extracted via various image
operations. The image information not only can be persisted
in a plant state vector such that the information need not be
recalculated, but also that information can act as a proxy for
the plant during comparison operations. By comparing at
least a portion of the plant state vector, the image analysis
service may determine whether plants represented in differ-
ent images should be analyzed together. The plant state
vector 802 comprises the contour area 804, inertia ratio 806,
color histogram 808, Hu count 810, leaf count 812, and leaf
configuration 814 as calculated during preprocessing, clas-
sification, and identification.

[0088] The contour area 804 is a value from performing
contour tracing, a technique used in feature recognition.
Specifically, a tessellation is overlaid over an image, and a
threshold color difference, and/or a border pixel width, are
specified to be interpreted as the border between features in
an image. The contour area 804 is performed during clas-
sification when the image is analyzed to identify plant and
non-plant features, as well as during identification, where
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artifacts of the plant are identified. Upon performing a
contour trace, the contour area is the area of the image
known to represent the plant.

[0089] The inertia ratio 806 is a value from performing
shape factor analysis, a technique used in determining how
much a shape in an image deviates from an expected shape.
For example, a portion of a plant may be identified as an
artifact. When the artifact deviates from an expected shape,
the deviation may be an indication of an issue with the plant.
The inertia ratio 806 is a value calculated to indicate the
degree of deviation. Specifically, it provides a measure of the
long-ness of a shape with respect to the degree of symmetry.
For example, it can indicate how oval, a circular shape is.
[0090] A color histogram 808 is a pixel count organized
into a histogram, where the histograms variables represent
different colors. The colors may simply be red-green-blue or
may be of a greater spectrum of colors. In one embodiment,
the contour area 804, inertia ratio 806, and the color histo-
gram 808 may be used to determine the likeliness that a
portion of an image is to be considered representing a plant.
For example, the following calculation may be used to rank
image portions as likely representing a plant:

Rank Value=(contour areaxinertia ratio)x[green/(red+
blue)]

[0091] For the plant state vector, the contour arca 804,
inertia ratio 806, and the color histogram 808 may be stored
on a per image portion basis, or alternatively may be
aggregated into a single contour area, inertia ratio, and color
histogram for all the portions of the image deemed to
represent a plant.

[0092] The Hu count 810 is a count of Hu moments which
are a form of image moments in image processing. An image
moment is a measure of pixel intensity. In the alternative, the
actual moment calculations, rather than just the count, may
be stored and image moment calculations need not be Hu
moments.

[0093] The leaf count 812 is a value of the count of leaves
(or needles) in the portions of an image deemed to be a plant.
The leaf configuration 814 is a representation of the position
and orientation of the leaves (or needles) in space. Image
analysis can identify the configuration of an arbitrary branch
structure. Accordingly, a plant state vector may alternatively
include vein structure of leaves, branches of the plant, and
the root structure of a plant. In general, branching for leaves,
needles, branches, and roots may be stored as a tree structure
where edges store lengths and nodes store the identity and
orientation of edges corresponding to branches in space.
[0094] In one example, image A and image B may have
similar metadata pertaining to a plant from the same green-
house. In this case, a query may be applied to an image
database and both images may be retrieved, and the plants
in image A and image B may be understood to be similarly
situated so that they should be analyzed together. In this
regard, the plants in image A and image B may be expected
to have similar degrees of health because they are similarly
situated.

[0095] The plant state vector 802, either alone, or in
conjunction with image metadata, can find comparable
plants to a finer degree of resolution. If the plant state vector
802 includes a branch analysis of a plant in an image or
includes a color histogram of the portions of the image
relating to a plant, similarly situated plants can be retrieved
in a query, even if they are located in different greenhouses
or grown in different times. In this way, a plant suffering
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from rot in a first greenhouse may be retrieved along with
another suffering from rot in a second greenhouse, grown at
a different time. As with the previous example, a grower may
take action to determine if there were similar causes. In
some cases, data related to the plant state vector 802 can be
stored in a database, which may also contain suggestions for
causes of an identified issue. Thus, analysis by the grower
may be aided by the database or automated.

[0096] There are many potential values that may be used
for the plant state vector 802. Generally, the values chosen
are to be mathematically transformational and translational
invariant. Exemplary types of mathematical transformations
are scaling, skewing rotation, reflection over a point and
reflection over an axis. Additionally, a mathematical trans-
lation may consider a movement of an object in a particular
direction through space. Specifically, even if a plant is
moved, or rotated in the time between different images, the
plant should be identifiable as the same plant.

Example Processes

[0097] FIGS. 9 through 12 present illustrative processes
900-1200 for providing object recognition horticultural
based feedback analysis. The processes 900-1200 are illus-
trated as a collection of blocks in a logical flow chart, which
represents a sequence of operations that can be implemented
in hardware, software, or a combination thereof. In the
context of software, the blocks represent computer-execut-
able instructions that, when executed by one or more pro-
cessors, perform the recited operations. Generally, com-
puter-executable instructions may include routines,
programs, objects, components, data structures, and the like
that perform particular functions or implement particular
abstract data types. The order in which the operations are
described is not intended to be construed as a limitation, and
any number of the described blocks can be combined in any
order and/or in parallel to implement the process. For
discussion purposes, the processes 900-1200 is described
with reference to FIGS. 1 through 8.

[0098] FIG. 9 is a flow chart 900 of the generalized
workflow for the ORB-HFA. At block 902, an image
retriever 130 receives an image from an image capture
function or an image capture device. Because of the rela-
tively large amount of bandwidth used by image and/or
video data, the image retriever 130 may perform a negoti-
ated bandwidth transfer of images. For instance, the image
retriever 130 may query an image capture function for the
size of its image memory cache. In response, the image
retriever 130 may calculate the sum total image memory
cache of all image capture functions attempting to upload
images. The image retriever 130 may then automatically
schedule uploads based on available bandwidth. Addition-
ally, or alternatively, the image retriever 130 may prioritize
uploads or schedule uploads based at least on user input. In
this way, image transfer may be performed during times with
otherwise minimal network traffic and not interfere with
another network use.

[0099] At block 904, the image retriever 130 stores at least
one image for processing in a memory buffer. Once buffered,
the image is preprocessed. At block 906, the image prepro-
cessor 134 can decompress and/or decrypt the buffered
image into its native format. In some cases, the native format
of the buffered image may not be usable by preprocessing
algorithms, identifier algorithms, and/or other algorithms. In
this case, the image preprocessor 134 may convert the
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buffered image from its native format to the applicable file
format or a predetermined file format (e.g., Joint Photo-
graphic Experts Group (JPEG), Tagged Image File Format
(TIFF), Graphics Interchange Format (GIF), Windows bit-
map (BMP), Portable Network Graphics (PNG), etc.).

[0100] At block 908, the image preprocessor 134 may
apply one or more preprocessing algorithms. Preprocessing
algorithms may be directed to filtering and/or enhancing,
which increases contrast, pixel intensity, and other attributes
to optimize image recognition. Preprocessing algorithms
may also be directed to eliminating noise. In general,
preprocessing algorithms are directed to an image process-
ing operation that will aid subsequent classification and
identification image processing. Exemplary image process-
ing algorithms may include the pre-calculation and genera-
tion of a red-green-blue histogram or other histograms with
pixel color counts as a variable. Additionally, or alterna-
tively, the histogram may be a hue-luminance-saturation
histogram of colors. The generated color histogram may be
stored in a plant state vector. In some cases, the color
histogram pre-calculation may be used with an adaptive
histogram aggregating information from a plurality of
images.

[0101] Other exemplary image processing algorithms may
include a count of mathematical morphological operations.
Mathematical morphology is an application of mathematics
to image processing to determine the shape and spatial
attributes such as size, convexity, connectivity, and geodesic
distance. These attributes may be manipulated using mor-
phological operations such as erosion, dilation, opening, and
closing. For example, an algorithm may count the number of
morphological opens and closes to help determine sub-
shapes in an image. Other exemplary image processing
algorithms may apply a transform to the image to make the
image clearer or otherwise easier to discern features during
classification and identification. One example algorithm
applies a Gaussian function on a per pixel basis in an image.
In this way, pixels with high contrast with respect to
neighboring pixels are attenuated to lower contrast base on
the Gaussian function.

[0102] Other exemplary image processing algorithms may
apply filters to the image which, while removing informa-
tion, increase contrast to better discern features during
classification and identification. One example algorithm is
Otsu segmentation. Specifically, Otsu segmentation is the
setting of one or more filters using a color attribute such as
hue, luminance or saturation, or alternatively red-green-blue
value, to segment an image into zones, each zone having its
own color in high contrast with respect to neighboring
segments. Otsu segmentation generally transforms an image
into grayscale zones. The resulting image may then be used
as a filter or stencil with respect to the original image.
[0103] At decision block 910, the image preprocessor 134
may determine whether the buffered image comprises suf-
ficient information for an ORB-HFA application. For
example, the image preprocessor 134 may determine that the
memory buffer does not comprise sufficient information for
analysis if the memory buffer comprises a partial file or a
corrupt file. In various embodiments, corrupted files may be
preprocessed by applying pre-processing algorithms to
repair the files. If a buffered image does not comprise
sufficient information (“no” response from the decision
block 910), the buffered image is discarded as indicated in
block 912. Similarly, in some cases, preprocessing may
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result in a buffered image that comprises insufficient infor-
mation. For example, the generated color histogram indi-
cates that the image is mostly dark, suggesting an obstructed
camera. By way of another example, during Otsu segmen-
tation, it may appear that the image does not contain enough
segments indicating an image where sub-shapes could not be
determined. To avoid the introduction of erroneous or cor-
rupted images into classification and identification, the
image preprocessor 134 may discard images as indicated in
block 912.

[0104] If a buffered image comprises sufficient informa-
tion (“yes” response from the decision block 910), the
buffered image is classified. Classification is the identifying
of plant versus non-plant portions of the image. At block
916, the classifier 136 identifies discrete objects within the
buffered image. The image preprocessor algorithms may
generate a list of objects in the image by applying a
segmentation algorithm such as Otsu segmentation. Accord-
ingly, different portions of the image may be identified as
discrete objects or contiguous sets of pixels corresponding to
an item whose image was captured in the buffered image. If
segmentation is not completed by the image preprocessor
134, then the classifier 136 may generate the discrete object
list.

[0105] At block 918, the classifier 136 may classify the
discrete objects into plant and non-plant objects. Upon
obtaining a discrete object list for the buffered image, the
objects may be sorted by size, from the largest to the
smallest. A predetermined threshold may be specified for the
maximum size and the minimum size. In this way, only the
image objects of a certain size within the predetermined
threshold may be processed to reduce the processing load.

[0106] A rank value is calculated for the N largest objects.
The rank value generally relates to an indication that a
discrete object’s shape and color corresponds to an expected
plant feature. After calculation of the rank values, the top X
values, X being a predetermined threshold, will be deemed
to be representing a plant in the image. In this way, only
discrete objects deemed to represent the plant are differen-
tiated from discrete objects deemed not to represent the plant
in the buffered image.

[0107] After classification, the portions of the buffered
image deemed to represent a target, or an item of interest in
the image is processed by the identifier software component
and identifier algorithms to identify the identity of the target
in the image. While the target may be any item captured in
the image, a person, a machine, and the like, generally the
target will be a plant. The degree of identification may
simply be to identify the genus and species of the plant in the
buffered image. However, this information may also be in
metadata already. The identification may also be of a par-
ticular plant e.g. the ninth red rose shrub out of a lot of
twelve. Because information is stored on a per plant basis,
some identification algorithms may determine that an object
is the same plant as in another image, but just moved or
rotated.

[0108] At block 920, artifacts comprising the plant in the
buffered image are identified by the identifier 718. More
specifically, the identifier 718 may apply one or several
algorithms to segment the portions of the buffered image
deemed to represent a plant as opposed to the entire buffered
image. The portions may then be segmented, for example
using Otsu segmentation. Where segments and attributes of
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the segments such as morphological attributes and color
match a plant, a positive identification of the plant may be
achieved.

[0109] Because the plant may comprise a plurality of
discrete objects, not only can the plant be identified, but
discrete objects comprising the plant may also be identified.
These discrete objects, such as petals and leaves, comprise
artifacts of the plant. Prior to segmentation, the identifier
software component may apply additional preprocessing
specific to the discrete objects deemed to represent a plant.
Some of this preprocessing makes use of adaptive and
iterative techniques.

[0110] At block 924, the analysis module 138 may identify
issues associated with the identified plant if the artifacts of
the plant deviate from an expectation. At block 926, iden-
tified issues may be stored in a data store. Additionally, the
original buffered image, metadata of the image, a plant state
vector, data generated during preprocessing and other pro-
cessing, and identified issues may be stored together in the
data store. Upon processing the image to identify a plant, the
plant’s artifacts, and/or potential issues with the plant,
processing may continue by queuing another image as
indicated in block 914.

[0111] Notwithstanding FIG. 9, image processing is not
necessarily linear. In some cases, image processing may
involve the aggregation, or the statistical combining of
information from multiple images to create a baseline or
basis to compare images and artifacts in images. Such a
creation of a baseline, where the baseline may change as
new images are processed is called adaptive processing.
[0112] FIG. 10 is a flow chart 1000 of an example of
adaptive processing. Specifically, a color histogram is gen-
erated that captures statistically aggregated information over
multiple images, and the adapting histogram is used during
identification to refine artifacts of plants in an image. This
process may be referred to as edge cleaning. Edge cleaning
may be performed by the identifier software component or
may be performed by a separate software component.
[0113] At block 1002, a baseline histogram is initialized.
The variables of the histogram may be set to zero or a prior
histogram may be used. The baseline histogram may be
adapted by adding information from additional images dur-
ing processing. At block 1004, an image is retrieved, buft-
ered, and preprocessed. During preprocessing, histogram
information, such as red-green-blue histogram information
and/or hue-luminance-saturation information is extracted
from the buffered image.

[0114] At block 1006, the extracted histogram information
is incorporated into the baseline histogram. The extracted
histogram information may be added to the baseline histo-
gram on a per variable basis. Additionally, or alternatively,
the added histogram information may be weighted. In this
way, the baseline histogram adapts into a statistical aggre-
gated of multiple images to conduct updates or normaliza-
tion. The baseline histogram may be calculated over a large
number of images. When the histogram is deemed to have a
critical mass of information, individual images may be
processed. The histogram can be continuously updated and/
or normalized. At block 1008, a list of contour vectors is
created. At block 1010, the contour vectors are averaged for
each plant in the image.

[0115] At block 1012, the contour information and/or the
baseline histogram, after the baseline histogram is deemed
to have sufficient information, is used to perform edge
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cleaning, or preprocessing steps to enhance artifacts of the
plant in the buffered image. At this point, the buffered image
is ready for identification by the identification software
component. The identification software component may
calculate the ranking value of artifacts.

[0116] After identification of a plant and artifact of the
plant, the plant is analyzed. The analysis may be static,
specific to a single image, or sequential, an analysis of
multiple images over time. Many times, image information
extracted or generated from an image is aggregated with
other static analysis information from other images which
subsequently are collectively subjected to sequential analy-
sis.

[0117] FIG. 11 is a flow chart 1100 of a framework for
static analysis. Static analysis is the analysis with a single
image as its subject. At block 1102, the image analysis
service receives an image depicting a plant, a discretely
defined group of plants, and/or an artifact of the plant that
has been identified. Because the analysis involves a single
image, some analyses may supplement information. At
decision block 1104, the image analysis service determines
whether measurement type includes image information only
or image information and outside information. Examples of
outside information include metadata, administrative inter-
vention, information within the plant state vector, and/or a
pre-calculated histogram. If the measurement uses only
information in the image, then the measurement is per-
formed as indicated in block 1106. Otherwise, the measure-
ment, including the outside information as well as informa-
tion in the image is performed as indicated in block 1108.
[0118] At decision block 1110, the measurement is ana-
lyzed using various analysis method. In the illustrated
embodiment, the analysis includes leaf articulation, plant
branch analysis, and root analysis. At block 1112, the image
analysis service performs a measurement based on leaf
articulation analysis. Leaf articulation analysis is the study
of the orientation of artifacts identified as leaves of a plant.
Generally, leaves are expected to turn towards the source of
light. Where leaves fail to do so, or not enough leaves do so,
an issue of the plant may be identified.

[0119] At block 1114, the image analysis service performs
a measurement based on plant branch analysis. Plant branch
analysis is the generation of a computer representation of the
size and orientation of the branches of a plant. A similar
analysis may be made of roots at block 1116 or even the
veins on a leaf. General branch analysis is also known as
component modeling. Leaf articulation at block 1112, plant
branch analysis at block 1114 and root analysis at block 1116
may be performed at the same time or in a sequential
manner.

[0120] Leaf articulation, plant branch, and root analysis
measurements may be simply made and analyzed in isola-
tion. At block 1118, the image analysis service analyzes the
identified plant and an identified artifact of the plant based
on a performed measurement. At block 1120, the image
analysis service identifies a potential issue in the plant, based
at least on the selected analysis. The identified issue may be
stored in a data store for subsequent reporting. Additionally,
or alternatively, the results of the static analysis may be
compared to subsequent analyses of the plant as part of a
sequential analysis.

[0121] A sequential analysis differs from a static analysis
in that sequential analysis makes use of multiple images
over time. FIG. 12 is a flow chart 1200 of a framework for
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sequential analysis. At block 1202, the image analysis
service receives a first image depicting a plant, a discretely
defined group of plants, and/or at least one plant artifact. The
image can be time stamped when received at the image
analysis service. At block 1204, the image analysis service
receives a second image comprising the plant and at least
one plant artifact with a second time stamp.

[0122] At block 1206, the two images are compared, and
differences are identified. It is noted, however, that sequen-
tial analysis is not limited to two images. Additional images
may be used. The images themselves may be compared as
well as any metadata associated with the images and any
pre-calculated or pre-generated information on the images
including the plant state vector. For example, if a branch
representation was generated as part of branch analysis for
either of the images, a comparison of the images may
include a comparison of the respective branch analyses. In
this regard, information on the image may be generated from
the metadata and/or pre-calculated or pre-generated infor-
mation, and that information may be compared. For
example, the color information in the plant state vector may
be used to generate values for both the first image and the
second image, and the color information may be compared.
Because the images include information of artifacts com-
prising the respective plants, the comparison between the
two images may be made of the plant as a whole and on a
per artifact basis.

[0123] At block 1208, identified differences between the
two images are analyzed. For instance, continuity analysis
may be performed, which is the identification of particular
causes for a change. In another example, validation analysis
may be performed to confirm that the plants compared are
indeed the same plant. In this way, comparing the two
images is validated. One embodiment of validation analysis
is to perform a 2+1 analysis. For the plant in the first image
and the plant in the second image, a vector is generated for
each plant image. Because the images are generally captured
via the same image capture device, a measurement of the
Euclidean distance between the plants may be calculated.
Where the distance is over a predetermined threshold, a
determination of whether the plant was simply moved and/or
rotated may be made, thereby confirming that the plant
identified in the image and second image is the same plant,
and may, therefore, be compared.

[0124] At block 1210, issues may be identified based at
least on the analysis. Where changes in values, such as
motion, are above a predetermined threshold, continuity
analysis, or the identification of causes of the change may be
brought to bear. Data store may contain a database of image
artifacts corresponding to likely diagnoses as well as poten-
tial remediation courses of action. At block 1212, the
database may be searched for a diagnosis and/or remediation
course of action. In various embodiments, the data store may
comprise a solutions table from which a remediation course
of action may be selected based at least one the diagnosis.
[0125] In various embodiments, trends across an entire
grow operation may be detected using a plurality of images.
Accordingly, in addition to comparing images of the same
plant, comparisons may be made of similarly situated plants.
For example, other plants of the same species in the same
grow operation, may be searched for indications of any
identified issues in a single plant.

[0126] FIG. 13 shows a flow chart 1300 of a framework
for monitoring grow operations using an image processing
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pipeline, which can comprise one or more virtual machines
or one or more software containers provided by cloud
services. At block 1302, the image dispatcher service
receives an image comprising an unprocessed and/or a
partially processed image data. The image depicts a plant
and/or an artifact of the plant in a horticultural operation. At
block 1304, the image processing pipeline transmits the
image data to a first computing instance that executes a first
subprocess of an image processing pipeline. The computing
instance can be provided by a computing device, a virtual
machine, and/or a software container. In various embodi-
ments, the image data can be transmitted to one or more
computing instances that provide subprocesses of the image
processing pipeline such that one or more subprocesses can
run in parallel. The image data may be sorted and/or
received in a specific order, for example, in an order of
priority.

[0127] The first subprocess of the image processing pipe-
line can generate partially processed image data from the
image data. At block 1306, the partially processed image
data is returned to a first output queue provided by the first
computing instance for further processing. At decision block
1308, a subprocess load monitor determines whether the
output queue is full. If the output queue is full (“yes”
response from the decision block 1308), the subprocess load
monitor can instantiate an additional computing instance
executing a duplicate of a second subprocess of the image
processing pipeline to process a portion of the partially
processed image data, as indicated in block 1312. Addition-
ally, or alternatively, the subprocess load monitor can instan-
tiate an additional computing instance executing a duplicate
of a second subprocess of the image processing pipeline to
process unprocessed and/or partially processed image data
associated with a second image received at the image
dispatcher service. If the output queue is not full (“no”
response from the decision block 1308), the subprocess load
monitor determines whether the processing time at the
virtual machine or container for the subprocess exceeds a
predetermined time period threshold, as indicated in deci-
sion block 1310. If the processing time exceeds the prede-
termined time period threshold (“yes” response from the
decision block 1310), the subprocess load monitor can
instantiate an additional computing instance executing a
duplicate of a second subprocess of the image processing
pipeline to process a portion of the partially processed image
data, as indicated in block 1312. Additionally, or alterna-
tively, the subprocess load monitor can instantiate an addi-
tional computing instance executing a duplicate of a second
subprocess of the image processing pipeline to process
unprocessed and/or partially processed image data associ-
ated with a second image received at the image dispatcher
service.

[0128] If the processing time is less than the predeter-
mined threshold (“no” response from the decision block
1310), the image processing pipeline transmits the partially
processed image data to a second computing instance that
executes the second subprocess, as indicated in block 1314.
In various embodiments, the image processing pipeline
passes the partially processed image to a selected computing
instance that executes a subprocess to perform one or more
operations that may be dependent on the outcome of one or
more operations of the previous subprocess executed by the
previous computing instance. At block 1316, the image
processing pipeline produces a fully processed image upon
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completion of the subprocesses. The fully processed image
can be transmitted to a horticultural management device
and/or other components of the horticultural operation in
order to monitor the plant and/or the artifact of the plant of
the horticultural operation.

CONCLUSION

[0129] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.
What is claimed is:
1. A computer-implemented method, comprising:
receiving, at an image dispatcher service, an image com-
prising image data;
transmitting, from the image dispatcher service, the image
data to a first computing instance that executes a first
subprocess of an image processing pipeline;
generating, via the first subprocess of the image process-
ing pipeline, partially processed image data from the
image data;
transmitting, from the first computing instance, the par-
tially processed image data resulting from the first
subprocess to a second computing instance that
executes a second subprocess of the image processing
pipeline; and
producing, via at least the second subprocess of the image
processing pipeline, a fully image processed image
associated with the image data.
2. The computer-implemented method of claim 1, further
comprising:
returning the partially processed image data resulting
from the first subprocess executed by the first comput-
ing instance to a first output queue that is provided by
the first computing instance.
3. The computer-implemented method of claim 2, further
comprising:
determining whether the first output queue is full; and
instantiating an additional computing instance that
executes a duplicate of the second subprocess to pro-
cess a portion of the partially processed image data
upon determining that the first output queue is full.
4. The computer-implemented method of claim 2, further
comprising:
determining whether a processing time of the second
subprocess exceeds a predetermined time period
threshold; and
instantiating an additional computing instance that
executes a duplicate of the second subprocess to pro-
cess a portion of the partially processed image data
upon determining that the processing time exceeds the
predetermined time period threshold.
5. The computer-implemented method of claim 2, further
comprising:
transmitting the partially processed image data from the
first output queue to the second subprocess that is
hosted on the second computing instance; and
returning a new partially processed image data resulting
from the second subprocess to a second output queue
that is provided by the second computing instance.
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6. The computer-implemented method of claim 1, further
comprising:

transmitting the image data to the first subprocess hosted

on the first computing instance based at least on a
priority scheme as determined by the image dispatcher
service.

7. The computer-implemented method of claim 1,
wherein the first computing instance or the second comput-
ing instance is provided by a computing device, a virtual
machine, or a software container.

8. A system, comprising:

one or more non-transitory storage mediums configured to

provide stored computer-readable instructions, the one
or more non-transitory storage mediums coupled to one
or more processors, the one or more processors con-
figured to execute the computer-readable instructions to
cause the one or more processors to:

receive, at an image dispatcher service, an image com-

prising image data; transmit, from the image dispatcher
service, the image data to a first computing instance
that executes a first subprocess of an image processing
pipeline;

generate, via the first subprocess of the image processing

pipeline, partially processed image data from the image
data;

transmit, from the first computing instance, the partially

processed image data resulting from the first subpro-
cess to a second computing instance that executes a
second subprocess of the image processing pipeline;
and

produce, via at least the second subprocess of the image

processing pipeline, a fully image processed image
associated with the image data.

9. The system of claim 8, wherein the one or more
processors are further configured to:

return the partially processed image data resulting from

the first subprocess executed by the first computing
instance to a first output queue that is provided by the
first computing instance.

10. The system of claim 9, wherein the one or more
processors are further configured to:

receive, at the image dispatcher service, a new image

comprising new image data;
transmit, from the image dispatcher service, the new
image data to the first computing instance that executes
the first subprocess of the image processing pipeline;

generate, via the first subprocess of the image processing
pipeline, new partially processed image data from the
new image data;

determine whether the first output queue is full; and

instantiate an additional computing instance that executes

a duplicate of the second subprocess to process the new
partially processed image data upon determining that
the first output queue is full.

11. The system of claim 9, wherein the one or more
processors are further configured to:

receive, at the image dispatcher service, a new image

comprising new image data;
transmit, from the image dispatcher service, the new
image data to the first computing instance that executes
the first subprocess of the image processing pipeline;

generate, via the first subprocess of the image processing
pipeline, new partially processed image data from the
new image data;
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determine whether a processing time of the second sub-
process exceeds a predetermined time period threshold;
and

instantiate an additional computing instance that executes

a duplicate of the second subprocess to process the new
partially processed image data upon determining that
the processing time exceeds the predetermined time
period threshold.

12. The system of claim 9, wherein the one or more
processors are further configured to:

transmit the partially processed image data from the first

output queue to the second subprocess that is hosted on
the second computing instance; and

return a new partially processed image data resulting from

the second subprocess to a second output queue that is
provided by the second computing instance.

13. The system of claim 8, wherein the one or more
processors are further configured to:

transmit the image data to the first subprocess hosted on

the first computing instance based at least on a priority
scheme as determined by the image dispatcher service.

14. The system of claim 8, wherein one or more opera-
tions of the second subprocess is dependent on one or more
operations of the first subprocess.

15. One or more non-transitory computer-readable media
storing computer-executable instructions that upon execu-
tion cause one or more processors to perform acts compris-
ing:

receiving, at an image dispatcher service, an image com-

prising image data;
transmitting, from the image dispatcher service, the image
data to a first computing instance that executes a first
subprocess of an image processing pipeline;

generating, via the first subprocess of the image process-
ing pipeline, partially processed image data from the
image data;

transmitting, from the first computing instance, the par-

tially processed image data resulting from the first
subprocess to a second computing instance that
executes a second subprocess of the image processing
pipeline; and

producing, via at least the second subprocess of the image

processing pipeline, a fully image processed image
associated with the image data.

16. The one or more non-transitory computer-readable
media of claim 15, wherein the acts further comprise:

returning the partially processed image data resulting

from the first subprocess executed by the first comput-
ing instance to a first output queue that is provided by
the first computing instance.

17. The one or more non-transitory computer-readable
media of claim 16, wherein the acts further comprise:

determining whether the first output queue is full; and

instantiating an additional computing instance that
executes a duplicate of the second subprocess to pro-
cess a portion of the partially processed image data
upon determining that the first output queue is full.

18. The one or more non-transitory computer-readable
media of claim 16, wherein the acts further comprise:

determining whether a processing time of the second

subprocess exceeds a predetermined time period
threshold; and

instantiating an additional computing instance that

executes a duplicate of the second subprocess to pro-
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cess a portion of the partially processed image data
upon determining that the processing time exceeds the
predetermined time period threshold.

19. The one or more non-transitory computer-readable
media of claim 16, wherein the acts further comprise:

transmitting the partially processed image data from the

first output queue to a third computing instance that
executes a third subprocess of the image processing
pipeline;

generating, via the third subprocess of the image process-

ing pipeline, a new partially processed image data from
the image data; and

returning the new partially processed image data resulting

from the third subprocess executed by the third com-
puting instance to a third output queue that is provided
by the third computing instance.

20. The one or more non-transitory computer-readable
media of claim 19, wherein the first computing instance or
the second computing instance is provided by a computing
device, a virtual machine, or a software container.

#* #* #* #* #*



