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57 ABSTRACT

This disclosure describes a method to verify the design of an
article of manufacture that includes a software program
executing on a workstation that executes the following steps:
providing the shape of a first component and providing the
shape of a second component; providing a boundary dis-
tance constraint; constructing a shape spectrum of the exte-
rior boundary surface of closest approach associated with
the shape of the first component, the shape of the second
component, and the boundary distance constraint; verifying
that the arrangement of the shape of the first component and
the shape of the second component satisfy the boundary
distance constraint; evaluating a subderivative of the shape
spectrum of the exterior boundary surface of closest
approach associated with the shape of the first component,
the shape of the second component; where verifying that the
boundary distance constraint is satisfied between the shape
of the first component and the shape of the second compo-
nent and when satisfied, the design of the article of manu-
facture can be verified.
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VERIFYING THE DESIGN OF AN ARTICLE
OF MANUFACTURE CONTAINING THE
ARRANGEMENT OF SHAPES SUBJECT TO
BOUNDARY DISTANCE CONSTRAINTS
AMONG THOSE SHAPES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefits of the earlier
filed U.S. Provisional Application Ser. No. 61/231,825, filed
6 Aug. 2009, which is incorporated by reference for all
purposes into this specification.

[0002] Additionally, this application claims the benefits of
the earlier filed U.S. Provisional Application Ser. No.
61/246,648, filed 29 Sep. 2009, which is incorporated by
reference for all purposes into this specification.

[0003] Further, this application claims the benefits of the
earlier filed U.S. Provisional Application Ser. No. 61/248,
234, filed 2 Oct. 2009, which is incorporated by reference
for all purposes into this specification.

[0004] Additionally, this application is a continuation of
U.S. application Ser. No. 12/844,585, filed 27 Jul. 2010, now
U.S. Pat. No. 8,521,486, issued on 27 Aug. 2013, which is
incorporated by reference for all purposes into this specifi-
cation.

[0005] Additionally, this application is a continuation of
U.S. application Ser. No. 12/870,692, filed 27 Aug. 2010,
now U.S. Pat. No. 8,498,843, issued on 30 Jul. 2013, which
is incorporated by reference for all purposes into this speci-
fication.

[0006] Additionally, this application is a continuation of
U.S. application Ser. No. 13/866,677, filed 19 Apr. 2013,
which is incorporated by reference for all purposes into this
specification.

[0007] Additionally, this application is a continuation of
U.S. application Ser. No. 13/908,586, filed 3 Jun. 2013,
which is incorporated by reference for all purposes into this
specification.

[0008] Additionally, this application is a continuation of
U.S. application Ser. No. 14/969,968, filed 15 Dec. 2015,
which is incorporated by reference for all purposes into this
specification.

TECHNICAL FIELD

[0009] This disclosure relates to determining if boundary
distance constraints are satisfied. More specifically, this
disclosure relates to determining if arrangements of shapes
satisfy exact or approximate analytical function representa-
tions of boundary distance constraints among those shapes.

BACKGROUND ART

[0010] The process of checking an arrangement of shapes
to determine if it satisfies one or more boundary distance
(BD) constraints between those shapes has many valuable
commercial applications. For brevity we will refer to this
process as boundary distance constraint verification
(BDCV). Applications of BDCV include, for example, their
use in methods to search for arrangements of shapes that
exactly or approximately satisfy one or more BD constraints
and, their use in checking the results of methods that attempt
to generate arrangements of shapes that exactly or approxi-
mately satisty one or more BD constraints to verify that the
BD constraints have been exactly or approximately satisfied.
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[0011] Instances of the BDCV problem include, for
example, veritying that two- or three-dimensional compo-
nents on or in a manufactured product do not overlap and all
components are contained within the product’s boundaries.
Examples include verifying the BD constraints between: the
components inside the body of a car; the components inside
the case of a printer; the rooms in a building; the components
on a circuit board or; the components on VLSI chip. Other
instances include verifying that an arrangement of one or
more products or product components in or on a piece of
material from which they are to be extracted have sufficient
space between them to allow for the kerf of the cutting tool.
Examples include verifying the BD constraints between the
components of a pair of pants on a bolt of fabric or the
components of a ship on a sheet of steel. Other instances in
the area of packing and shipping include verifying that an
arrangement of packages inside a shipping container satisfy
the requirement that no packages occupy the same space and
all packages fit inside the container. Some of these instances
can further be extended into 4-dimensional problems where,
for example, time constraints, or time dependent motion
requirements are present.

SUMMARY OF INVENTION

[0012] This disclosure describes a method and product to
verify the design of an article of manufacture that further
comprises two or more components of the article and that
uses a software program executing on a workstation that
should satisfy the analytical representation of the boundary
distance constraint between the shapes of two components
during the verification of the design of the article of manu-
facture. This embodiment includes providing a software
program executing on a workstation, the workstation
includes a processor, memory, and storage, the software
program executes the following steps: providing the shape
of a first component and providing the shape of a second
component; providing a boundary distance constraint, the
boundary distance constraint specifies the desired geometric
relationship to be verified between the shape of the first
component and the shape of the second component; con-
structing a shape spectrum of the exterior boundary surface
of closest approach associated with the shape of the first
component, the shape of the second component, and the
boundary distance constraint, where the shape spectrum is
an analytical representation of the boundary surface of
closest approach and forms the analytical foundation for
verifying the boundary distance constraint; verifying that the
arrangement of the shape of the first component and the
shape of the second component satisfy the boundary dis-
tance constraint; evaluating a subderivative of the shape
spectrum of the exterior boundary surface of closest
approach associated with the shape of the first component,
the shape of the second component, and the boundary
distance constraint, where the subderivative is used in the
evaluation of the boundary distance constraint and where the
exterior boundary surface of closest approach is the shape
that forms the geometric foundation for the step of evalu-
ating the boundary distance constraint; where verifying that
the boundary distance constraint is satisfied between the
shape of the first component and the shape of the second
component and when satisfied, the design of the article of
manufacture can be verified.

[0013] The above embodiment of the invention may
include one or more of these additional embodiments that
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may be combined in any and all combinations with the
above embodiment. One embodiment of the invention
describes where the boundary distance constraint is that the
two components do not overlap. One embodiment of the
invention describes where the boundary distance constraint
is that the two components overlap by a fixed distance. One
embodiment of the invention describes where the boundary
distance constraint is that the two components abut. One
embodiment of the invention describes where the boundary
distance constraint is that the two components are no closer
than a fixed distance.

BRIEF DESCRIPTION OF DRAWINGS

[0014] The drawings accompanying and forming part of
this specification are included to depict certain aspects of the
disclosure. A clearer impression of the disclosure, and of the
components and operation of systems provided with the
disclosure, will become more readily apparent by referring
to the exemplary, and therefore non-limiting, embodiments
illustrated in the drawings, where identical reference numer-
als designate the same components. Note that the features
illustrated in the drawings are not necessarily drawn to scale.
The following is a brief description of the accompanying
drawings:

[0015] FIG.1A-1H illustrate various two and three dimen-
sional superellipsoids.

[0016] FIG. 2 illustrates the basic concepts of a shape
spectrum on a two-dimensional shape.

[0017] FIG. 3 illustrates the construction of the uncon-
strained exterior boundary surface of closest approach
between two parallel planar half spaces.

[0018] FIG. 4 illustrates the determination of one of the
planar half spaces that makes up the unconstrained exterior
boundary surface of closest approach formed by two two-
dimensional convex shapes.

[0019] FIG.5A-5D illustrate the construction of the shape
and a discrete representation of its shape spectrum for the
unconstrained exterior boundary surface of closest approach
formed by a square and an equilateral triangle.

[0020] FIG. 6 illustrates the relationship of the various
elements of one approach used to construct a shape function
from a shape spectrum for a two-dimensional shape.
[0021] FIG.7A-7B illustrate the geometric construction of
the exterior boundary surface of closest approach between
two axis aligned rectangles.

[0022] FIG. 8A-8B illustrate the geometric construction of
the interior boundary surface of closest approach between
two axis aligned rectangles.

[0023] FIG. 9A-9B illustrate a method for determining an
analytical shape function for the unconstrained exterior
boundary surface of closest approach between a square and
a circle using geometric construction and analytical union.
[0024] FIG. 10 illustrates a typical networked computer
environment in which the invention would operate.

[0025] FIG. 11A-11B illustrate two embodiments of a
method for determining if arrangement of two shapes satisfy
an exact or approximate analytical function representation of
a boundary distance constraint between those shapes.
[0026] FIG. 12 illustrates the location of two circuit blocks
and the discrete representation of their shape spectrums.
[0027] FIG. 13 illustrates two components to be cut from
a sheet of material.

Oct. 3,2019

DISCLOSURE OF EMBODIMENTS

[0028] The disclosed embodiments should describe
aspects of the disclosure in sufficient detail to enable a
person of ordinary skill in the art to practice the invention.
Other embodiments may be utilized, and changes may be
made without departing from the disclosure. The following
detailed description is not to be taken in a limiting sense, and
the present invention is defined only by the included claims.
[0029] Specific implementations shown and described are
only examples and should not be construed as the only way
to implement or partition the present disclosure into func-
tional elements unless specified otherwise in this disclosure.
a person of ordinary skill in the art will recognize, however,
that an embodiment may be able to be practiced without one
or more of the specific details, or with other apparatus,
systems, assemblies, methods, components, materials, parts,
and/or the like. In other instances, well-known structures,
components, systems, materials, or operations are not spe-
cifically shown or described in detail to avoid obscuring
aspects of embodiments of the invention. While the inven-
tion may be illustrated by using a particular embodiment,
this is not and does not limit the invention to any particular
embodiment and a person of ordinary skill in the art will
recognize that additional embodiments are readily under-
standable and are a part of this invention.

[0030] Inthe following description, elements, circuits, and
functions may be shown in block diagram form in order not
to obscure the present disclosure in unnecessary detail. And
block definitions and partitioning of logic between various
blocks are exemplary of a specific implementation. It will be
readily apparent to a person of ordinary skill in the art that
the present disclosure may be practiced by numerous other
partitioning solutions. A person of ordinary skill in the art
would understand that information and signals may be
represented using any of a variety of technologies and
techniques. For example, data, instructions, commands,
information, signals, bits, symbols, and chips that may be
referenced throughout the description may be represented by
voltages, currents, electromagnetic waves, magnetic fields
or particles, optical fields or particles, or any combination
thereof. Some drawings may illustrate signals as a single
signal for clarity of presentation and description. It will be
understood by a person of ordinary skill in the art that the
signal may represent a bus of signals, where the bus may
have a variety of bit widths and the present disclosure may
be implemented on any number of data signals including a
single data signal.

[0031] The illustrative functional units include logical
blocks, modules, and circuits described in the embodiments
disclosed in this disclosure to more particularly emphasize
their implementation independence. The functional units
may be implemented or performed with a general purpose
processor, a special purpose processor, a Digital Signal
Processor (DSP), an Application Specific Integrated Circuit
(ASIC), a Field Programmable Gate Array (FPGA) or other
programmable logic device, discrete gate or transistor logic,
discrete hardware components, or any combination thereof
designed to perform the functions described in this disclo-
sure. A general-purpose processor may be a microprocessor,
any conventional processor, controller, microcontroller, or
state machine. A general-purpose processor may be consid-
ered a special purpose processor while the general-purpose
processor is configured to fetch and execute instructions
(e.g., software code) stored on a computer-readable medium
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such as any type of memory, storage, and/or storage devices.
A processor may also be implemented as a combination of
computing devices, such as a combination of a DSP and a
microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any
other such configuration.

[0032] In addition, the illustrative functional units
described above may include software or programs such as
computer readable instructions that may be described in
terms of a process that may be depicted as a flowchart, a flow
diagram, a structure diagram, or a block diagram. The
process may describe operational acts as a sequential pro-
cess, many acts can be performed in another sequence, in
parallel, or substantially concurrently. Further, the order of
the acts may be rearranged. In addition, the software may
comprise one or more objects, agents, threads, lines of code,
subroutines, separate software applications, two or more
lines of code or other suitable software structures operating
in one or more software applications or on one or more
processors. The software may be distributed over several
code segments, modules, among different programs, and
across several memory devices. Similarly, operational data
may be identified and illustrated in this disclosure within
modules and may be embodied in any suitable form and
organized within any suitable data structure. The operational
data may be collected as a single data set or may be
distributed over different locations including over different
storage devices.

[0033] Elements described in this disclosure may include
multiple instances of the same element. These elements may
be generically indicated by a numerical designator (e.g. 110)
and specifically indicated by the numerical indicator fol-
lowed by an alphabetic designator (e.g., 110A) or a numeric
indicator preceded by a “dash” (e.g., 110-1). For ease of
following the description, for the most part, element number
indicators begin with the number of the drawing on which
the elements are introduced or most discussed. For example,
where feasible elements in FIG. 1 are designated with a
format of 1xx, where 1 indicates FIG. 1 and xx designates
the unique element.

[0034] It should be understood that any reference to an
element in this disclosure using a designation such as “first,”
“second,” and so forth does not limit the quantity or order of
those elements, unless such limitation is explicitly stated.
Rather, these designations may be used in this disclosure as
a convenient method of distinguishing between two or more
elements or instances of an element. A reference to a first and
second element does not mean that only two elements may
be employed or that the first element must precede the
second element. In addition, unless stated otherwise, a set of
elements may comprise one or more elements.

[0035] Reference throughout this specification to “one
embodiment”, “an embodiment” or similar language means
that a particular feature, structure, or characteristic described
in the embodiment is included in at least one embodiment of
the present invention. Appearances of the phrases “one
embodiment”, “an embodiment” and similar language
throughout this specification may, but do not necessarily, all
refer to the same embodiment.

[0036] In the following detailed description, reference is
made to the illustrations, which form a part of the present
disclosure, and in which is shown, by way of illustration,
specific embodiments in which the present disclosure may
be practiced. These embodiments are described in sufficient
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detail to enable a person of ordinary skill in the art to
practice the present disclosure. However, other embodi-
ments may be utilized, and structural, logical, and electrical
changes may be made without departing from the true scope
of the present disclosure. The illustrations in this disclosure
are not meant to be actual views of any particular device or
system but are merely idealized representations employed to
describe embodiments of the present disclosure. And the
illustrations presented are not necessarily drawn to scale.
And, elements common between drawings may retain the
same or have similar numerical designations.

[0037] It will also be appreciated that one or more of the
elements depicted in the drawings/figures can also be imple-
mented in a more separated or integrated manner, or even
removed or rendered as inoperable in certain cases, as is
useful in accordance with a particular application. Addition-
ally, any signal arrows in the drawings/figures should be
considered only as exemplary, and not limiting, unless
otherwise specifically noted. The scope of the present dis-
closure should be determined by the following claims and
their legal equivalents.

[0038] As used herein, the terms “comprises,” “compris-
ing,” “includes,” “including,” “has,” “having,” or any other
variation thereof, are intended to cover a non-exclusive
inclusion. For example, a process, product, article, or appa-
ratus that comprises a list of elements is not necessarily
limited only those elements but may include other elements
not expressly listed or inherent to such process, product,
article, or apparatus. Furthermore, the term “or” as used
herein is generally intended to mean “and/or” unless other-
wise indicated. For example, a condition A or B is satisfied
by any one of the following: A is true (or present) and B is
false (or not present), A is false (or not present) and B is true
(or present), and both A and B are true (or present). As used
herein, a term preceded by “a” or “an” (and “the” when
antecedent basis is “a” or “an”) includes both singular and
plural of such term, unless clearly indicated otherwise (i.e.,
that the reference “a” or “an” clearly indicates only the

2 <

a” or
singular or only the plural). Also, as used in the description
herein, the meaning of “in” includes “in” and “on” unless the
context clearly dictates otherwise.

[0039] To aid any Patent Office and any readers of any
patent issued on this disclosure in interpreting the included
claims, the Applicant(s) wish to note that they do not intend
any of the appended claims or claim elements to invoke 35
U.S.C. 112(f) unless the words “means for” or “step for” are
explicitly used in the particular claim.

DEFINITIONS

[0040] For the purposes of this disclosure we define the
following terms:

[0041] Analytical function—A function that is treatable by
or using the methods of algebra and calculus.

[0042] Axis-aligned orthotopes—A set, O, of n-dimen-
sional orthotopes is axis-aligned if each of the underlying
Cartesian coordinate system axis is parallel to one of the
faces of every orthotope in O.

[0043] Axis-aligned orthotopic boundary distance con-
straint—A boundary distance constraint applied between
two n-dimensional shapes that produces a boundary surface
of closest approach between those shapes that is an n-di-
mensional axis-aligned orthotope.
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[0044] Boundary distance constraint—A  constraint
between two n-dimensional objects that limits the distance
between the surfaces, or boundaries, of the two objects.
[0045] Closed shape—A shape for which all paths starting
from a point on one side of its surface and ending on that
same point on the other side of its surface must pierce the
surface of the shape.

[0046] Convex constraint—A constraint on an optimiza-
tion problem where the set of points satistying the constraint
form a convex set.

[0047] Convex set—A set of points where all the points on
a line segment connecting any two points in the set are also
in the set.

[0048] Convex shape—A shape for which the straight-line
segment connecting any two points on the surface of the
shape must remain in the interior of the shape or on its
surface.

[0049] Fixed-orientation shape—A shape which is not
allowed to rotate.

[0050] Function—A function takes a set of one or more
input values and produces an output value.

[0051] N-sphere—An n-dimensional generalization of a
sphere where, for example, a circle is a 2-sphere and an
ordinary, or 3-dimensional, sphere is a 3-sphere.

[0052] N-spheric boundary distance constraint—A bound-
ary distance constraint which when applied between two
n-dimensional shapes leads to a boundary surface of closest
approach between those two shapes that is an n-sphere.
[0053] Normal vector—A vector, v, is normal to a surface,
S, if it is perpendicular to all vectors lying in the plane
tangent to the surface at the point of intersection between v
and S.

[0054] Orthogonal—Intersecting or lying at right angles.
[0055] Orthotope—An n-dimensional, convex, faceted,
closed shape where intersecting facets, or faces, are mutu-
ally orthogonal. In layman’s terms an orthotope is an n-di-
mensional generalization of a rectangle.

[0056] Orthotopic boundary distance constraint—A
boundary distance constraint which when applied between
two n-dimensional shapes leads to a boundary surface of
closest approach between those two shapes that is an n-di-
mensional orthotope.

[0057] Polytope—An n-dimensional, convex, faceted,
closed shape. In layman’s terms an polytope is an n-dimen-
sional generalization of a polygon.

[0058] Subderivative—A generalization of the notion of a
derivative for use on non-smooth curves. For smooth curves
there is a single tangent line associated with each point on
the curve. The slope of this line is the derivative at that point
on the curve. For non-smooth curves there can be a set of
tangent lines associated with each point on the curve. The
slope of each line in the set is a subderivative.

[0059] Superellipsoid—The set of n-dimensional objects
that can be analytically represented by an equation of the
form:

M

< i 1%
Z‘P? =1

[0060] Two-dimensional examples, illustrated in FIG. 1A
through FIG. 1F, include circles, ellipses, squares, and
rectangles, as well as “squares with rounded corners” and
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“rectangles with rounded corners”. Three-dimensional
examples include spheres, ellipsoids, as well as cubes and
boxes, illustrated in FIG. 1G and FIG. 1H, as well as “cubes
with rounded corners” and “boxes with rounded corners”.

Theoretical Motivation

[0061] To determine if arrangements of shapes satisfy
exact or approximate analytical function representations of
boundary distance constraints among those shapes, we will
develop methods to generate analytic representation of BD
constraints, or their approximations, between a pair of
shapes. These methods will be based on the use of the
boundary surface of closest approach (BSCA) between the
pair of shapes and, when necessary, the use of analytical
composition techniques.

[0062] For the remainder of this disclosure when a specific
coordinate system is required to illustrate a concept we will
assume, for the sake of brevity and clarity and without loss
of generality, that the Cartesian coordinate system will be
used unless stated otherwise. One skilled in the art will
immediately see that the concepts could be demonstrated
using alternate coordinate systems. Further, for the sake of
clarity and brevity, this disclosure makes use of indexed
notation in the representation of sums, unions, intersections,
list, sets, etc. It will be assumed that the indexed entities,
such as lists or sets, will contain no elements when the upper
bound for an index is less than the lower bound for the index.
For example, {x;, X,, . . . X,,}=0 when n<1 and where @
represents the empty set. Similarly, an indexed mathematical
operation will contain no terms when the upper bound for an
index is less than the lower bound for the index. For
example, 2,_ "X, =X, +X,+ . . . X,,=0 when n<1. Finally, for the
sake of brevity and clarity, this disclosure will make exten-
sive use of vector notation to represent n-dimensional quan-
tities such as, for example, n-dimensional Cartesian coordi-
nates. These n-dimensional quantities will be represented as
column vectors or, equivalently, transposed row vectors. As
an example, the 3-dimensional Cartesian coordinate where
x=1, y=2, and z=3 would be represented as either the column
vector

or the transposed row vector X =[1, 2, 3]~

Analytic Representation of BD Constraints

[0063] There are two types of BSCA that exist between a
pair of shapes, the exterior boundary surface of closest
approach (EBSCA) and the interior boundary surface of
closest approach (IBSCA). We can further divide these two
types into unconstrained BSCAs, UEBSCA and UIBSCA,
and constrained BSCAs, CEBSCA and CIBSCA. Roughly
speaking, the UEBSCA, UIBSCA, CEBSCA, and CIBSCA
between two shapes, S; and S,, can be thought of as follows:
the UEBSCA is the shape whose surface is traced out by the
origin of S, as its exterior surface is “slid” along the exterior
surface of S,; the UIBSCA is the shape whose surface is
traced out by the origin of S, as its exterior surface is “slid”
along the interior surface of S,; the CEBSCA is the shape
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whose surface is traced out by the origin of S, as its exterior
surface is “slid” along the exterior surface of a shape whose
exterior surface is derived from the exterior surface of S, and
any additional boundary distance constraints between S, and
S,, and the CIBSCA is the shape whose surface is traced out
by the origin of S, as its exterior surface is “slid” along the
interior surface of a shape whose interior surface is derived
from the interior surface of S, and any additional boundary
distance constraints between S, and S,. As will become clear
shortly, one way to determine the CEBSCA, UIBSCA or
CIBSCA between two shapes is to transform these problems
into one or more UEBSCA problems. As a consequence, we
will first concentrate on developing methods for determining
UEBSCA.

Shapes

[0064] Before we can determine a BSCA between two
shapes, we first need to define what we mean by a shape. We
also need to determine how to represent a shape, and how we
can combine two or more of these shapes to form a new
shape.

[0065] Definition 1: An n-dimensional shape, S, consists
of an equivalence relation and a point. The point is referred
to as the origin of S, or Origin(S), and defines the position
of' S in the n-dimensional space. Based on the geometry of
S and Origin(S) the equivalence relation subdivides the
n-dimensional space into three disjoint sets referred to as the
interior, exterior, and boundary sets. The exterior set, Exte-
rior(S), consists of all points that are exterior to the shape.
Those points not in Exterior(S), Exterior(S), are further
subdivided into the boundary set, Boundary(S), and interior
set, Interior(S). Boundary(S) contains all points in
Exterior(S) that are immediately adjacent to a point in
Exterior(S) and Interior(S) contains all points in Exterior(S)
that are not in Boundary(S).

[0066] For brevity and convenience we will refer to the
equivalence relation imposed by a shape S as Subdivision(S)
and define it as the set containing the sets Interior(S),
Exterior(S), and Boundary(S), or more precisely:

Subdivision(S)={Interior(S), Exterior(S), Boundary
Sh @

[0067] As will become apparent shortly, a useful subset of
shapes is the set of convex shapes.
[0068] Definition 2: A convex shape S is a shape where all
points on a line segment joining any pair of points in
Boundary(S) must be in Boundary(S)UInterior(S).
[0069] Based on Definition 1 we can define the union and
intersection operations on shapes.
[0070] Definition 3: The union between shapes A and B,
AUB, produces a new shape, C. The origin of C is selected
to be any finite point, possibly, but not necessarily, related to
the origins of A and B. The Subdivision(C) is selected such
that
Interior(C)=Interior(4)UInterior(B) Exterior(C)=Ex-

terior(A)NExterior(B) Boundary(C)=(Boundary

(A)NInterior(B))\J (Boundary(B)NInterior(A))

&)

[0071] Definition 4: The intersection between two shapes
A and B, ANB, produces a new shape, C. The origin of C is
selected to be any finite point, possibly, but not necessarily,
related to the origins of A and B. The Subdivision(C) is
selected such that

Oct. 3,2019

Interior(C)=Interior(4)NInterior(B) Exterior(C)=Ex-
terior(4)UExterior(B) Boundary(C)=(Boundary
(4)NExterior(B))U(Boundary(B)NExterior(4)) 4

[0072] Based on Definitions 1 through 4, a large class of
shapes can be defined as a union of convex shapes. We will
refer to this as the class of all shapes of engineering interest,
or for brevity, all shapes. Further, the intersection of any
number of convex shapes is its self a convex shape. This
implies that all shapes, S, can be represented as

S:Ui:Ln (mj:Lm,,Si,j) 3)

where S, are convex shapes. As such, any convex shape can
be represented as the intersection of a possibly infinite
number of “planar half spaces”.

[0073] Definition 5: In general, a planar half space (PHS)
associated with a shape S is a shape H where Origin(H)
=Origin(S) and the Subdivision(H) is selected such that:
Boundary(H) consists of all points on a plane dividing the
space in half, where this plane is tangent to the surface of S

at a point P in Boundary(S); Interior(H) consists of the half
space on the side of Boundary(H) that contains those points

in Interior(S) that are immediately adjacent to P ; Exterior
(H) consists of the half space on the side of Boundary(H)
that contains those points in Exterior(S) that are immediately

adjacent to P . More specifically, a planar half space (PHS)
associated with a convex shape S is a shape H where
Origin(H)=Origin(S) and the Subdivision(H) is selected
such that: Boundary(H) consists of all points on a plane
dividing the space in half, where this plane is tangent to
Boundary(S); Interior(S)Clnterior(H) and Interior(H) also
contains all points on the boundary of S except for the
tangent points.

Shape Spectrums

[0074] We can represent a convex shape in terms of a set
of PHSs. This set of PHSs can be represented using the
origin of the shape along with the shape’s shape spectrum.
[0075] Definition 6: The tangent planar half space spec-
trum, or for brevity, shape spectrum, of a shape is a function
which represents some or all of the form of the shape relative
to its origin. A shape spectrum is a function that relates a
direction to a distance. The direction represents the direction
of a vector passing through the origin of the shape. The
magnitude of the distance returned by a shape function for
a given direction is the magnitude of the distance, measured
along the vector, between the origin and the boundary plane
of'a PHS, H, to which the vector is normal. The sign of the
distance returned by a shape function for a given direction
is negative when the origin of the shape is contained in
Exterior(H) and positive when the origin of the shape is
contained in Interior(H). We will refer to the distance
returned by a shape function for a given direction as the
normal distance for that direction.

[0076] To determine a shape spectrum from its underlying
shape we define the transformation

T (5-80) ©)
which takes a shape S, in the shape domain, and transforms

it to a shape spectrum, & (), in the tangent PHS domain

where 5:[61, ... 0,_,]% defines the direction of a vector
through the origin of the n-dimensional shape S. For the sake
of clarity and brevity and without loss of generality we will
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assume that @ is defined in terms of hyperspherical coordi-
nates and all angles are measured in degrees. Note that when

n=2, 0 reduces to a scalar, 0, whose value is 0,, the value

of the single element of 8 =[0,]%.

[0077] To illustrate the basic concepts, consider the two-
dimensional example in FIG. 2 where we show the boundary
of a convex shape S with a vector v passing through
Origin(S) pointing in direction 0. Vector v is normal to the
boundary plane, Boundary(H), of the PHS, H, that is tangent

to Boundary(S) at point P. The normal distance between
Origin(S) and the boundary plane B along v is & (0) where
S (0) is always positive since Origin(S) E Interior(H) for all
values of 0.

[0078] As a simple example of a shape spectrum for a
two-dimensional shape, consider a circle of radius one with
its origin at the center of the circle. This shape would have
the following shape spectrum: & (6)=1. As a simple three-
dimensional example, consider the shape defined by a
sphere of radius one with it origin at the center of the sphere.
This shape would have the following shape spectrum:

)

In these examples, for ease of understanding, we assumed
that the origin of the shapes was in the shapes interior set,
specifically, in the center of the set. This is not required. In
fact, the origin may be anywhere. As a consequence, if the
origin is in the exterior set of the shape, one or more of the
values of its shape spectrum will be negative.

[0079] We define the inverse transformation

T T %), origin(s)—s ™
where T ! is a transformation that takes a shape spectrum

§ (é ), in the tangent PHS domain, and a point of origin and
transforms them into a shape S, in the shape domain when

§ (0) represents a convex shape.

[0080] Additionally, we define the following parameter-
ized version of the transformation whose use will become
clear shortly:

T (5, =S (046 ®

[0081] For shapes of finite volume, the distance between
the origin of the shape and every tangent PHS must be finite.
Conversely, for shapes with infinite volume the distance
between the origin and a PHS tangent to the infinite portion
of the boundary is infinite. Further, every point on a smooth
section of the boundary of the shape is associated with
exactly one tangent PHS and we assume that the infinite
portion of a shapes boundary is smooth. Conversely, non-
smooth shapes have points on the finite boundary which are
associated with multiple tangent PHSs, specifically, the
“focal” points of a “corner” in the finite boundary.

[0082] We now define the notions of dominant and non-
dominant PHSs, infinite and finite dominant PHSs, as well
as various characterizations of shape spectrums.

[0083] Definition 7: For a convex shape, a dominant PHS
is a PHS that is tangent to the boundary of the shape and is
necessary in order to define at least one point on the
boundary of the shape. Conversely, a non-dominant PHS is
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any tangent PHS that is not necessary to define any point on
the boundary of the shape. Further, dominant PHSs can be
classified as finite or infinite. A finite dominant PHS is a PHS
that is a finite distance from the origin of the shape.
Conversely an infinite dominant PHS is a PHS that is an
infinite distance from the origin of the shape.

[0084] Definition 8: For a convex shape with a finite
number dimensions, a shape spectrum can be characterized
as continuous, discrete or mixed. If a shape spectrum has
only dominant PHSs then the spectrum can be characterized
as continuous. If the shape spectrum consists of a finite
number of finite dominant PHSs then the spectrum can be
characterized as discrete. Finally, if the shape spectrum has
an infinite number of finite dominant PHSs as well as one or
more non-dominate PHSs, then the spectrum can be char-
acterized as mixed.

[0085] Definitions 7 and 8 give us a compact approach for
representing a convex shape when the shape’s finite bound-
ary is composed of a finite number of facets. In particular,
since there are a finite number of facets on a convex
polytope and each of the facets of a convex polytope
corresponds to a dominant PHS, convex polytopes have
discrete spectrums. Since the infinite PHSs, if any, and the
distance to the non-dominant PHSs can be determined from
the finite dominant PHSs we need only keep track of the
position of the finite dominant PHSs. These finite dominant
PHSs make up the discrete representation of its shape
spectrum. For brevity we will refer to this discrete repre-
sentation as a DR shape spectrum.

[0086] As a two-dimensional example, consider a fixed-
orientation Cartesian coordinate system axis-aligned square
of height one and width one with its origin at the center of
the square. A DR shape spectrum would be:

05 6=0° ()]
0.5 8=90°
0.5 =180°
0.5 6=270°

SO =

As a three-dimensional example, consider a fixed-orienta-
tion Cartesian coordinate system axis-aligned cube with
width, height and depth equal to one and an origin located
at its center. A DR shape spectrum would be:

0.5 6, =0°6, =0° (10)
0.5 6 =90° 6, =0°
0.5 6 =180°, 6, = 0°
0.5 6 =270°, 6, = 0°
0.5 6 =0° 8, =90°
0.5 6 =0°, 6 = 270°

S@) =

Assuming a spherical coordinate system in which 0, repre-
sents the angle of rotation about the Z axis measured from
the positive X axis, and 0, represents the angle of inclination
measured from the XY plane.

[0087] Since, in a hyperspherical coordinate system, each
direction can be represented by an infinite number of values

for the vector of angles, 9 , it will be assumed, for ease of
understanding and without loss of generality, that all angles
will be represented in their canonical form and all math-
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ematical operations on these angles that produce an angle
vector will produce them in canonical form. In the two
dimensional case this would mean, for example, that all
angles, 0, are restricted to the range 0°<8<360°, and that, for
example, 310°+180° would result in a value of 130° instead
of 490°.

Boundary Surface Shapes

[0088] We will now look at how to determine the UEB-
SCA between two fixed orientation convex shapes. To do
this we first need to clearly define the UEBSCA between two
fixed orientation shapes.

[0089] Definition 9: The unconstrained exterior boundary
surface of closest approach (UEBSCA) between two fixed
orientation shapes A and B, AOB, is a new shape, C, where
Origin(C)=Origin(A) and Subdivision(C) is selected such
that:

[0090] Interior(C) contains all points defined by the loca-
tion of Origin(B) for all positionings of B, while maintaining
the position of A and the orientations of both A and B, such
that Interior(A)NInterior(B)=0, where J represents the
empty set. That is, the set of locations of the origin of B as
B is moved around in a fixed orientation such that the
interiors of A and B overlap.

[0091] Exterior(C) contains all points defined by the loca-
tion of Origin(B) for all positionings of B, while maintaining
the position of A and the orientations of both A and B, such
that Boundary(A)NBoundary(B)=0 and Interior(A)NInte-
rior(B)=@. That is, the set of locations of the origin of B as
B is moved around in a fixed orientation such that A and B
do not “touch” and their interiors do not overlap.

[0092] Boundary(C) contains all points defined by the
location of Origin(B) for all positionings of B, while main-
taining the position of A and the orientations of both A and
B, such that Boundary(A)NBoundary(B)= and Interior(A)
Ninterior(B)=@. That is, the set of locations of the origin of
B as B is moved around in a fixed orientation such that A and
B “touch” and their interiors do not overlap.

From Definition 9 it can also be observed that the UEBSCA
operation is not commutative, that is, in general

AOB=BOA 1)

[0093] Now let us consider the interaction between two
shapes, A and B, that are PHSs. The shape spectrum of a
PHS is a continuous spectrum with exactly one dominant
PHS a finite distance from its origin. Further, the conditions
for which the UEBSCA between these shapes, AOB, is
“well defined” are when the two PHSs are parallel and
facing in opposite directions. Under these conditions a shape
C, produced by C=AOB, is itself a PHS. The normal
distance from the origin of C to its defining plane is the sum
of the distances between the origin of each shape, A and B,
and their corresponding defining plane, as illustrated in FIG.
3 for the two-dimensional case.

[0094] For those cases where the defining planes of A and
B are not parallel, or are parallel but face in the same
direction, the resulting shape, C=AOB, has an empty exte-
rior set. That is, B would have to be placed an infinite
distance from A to avoid overlapping. This circumstance is
represented by a shape spectrum for C where all values of
the spectrum are infinite.

[0095] Going one step further and considering any two
convex shapes, A and B, as illustrated by the 2-dimensional
example in FIG. 4, C=AOB is also a convex shape. Further,
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at any tangent point, P , of A and B the tangent PHSs of A
and B associated with this point, PHS(A, p ) and PHS(B,

p ), must be parallel and face in opposite directions. The
boundary point defined by the position of the origin of B,

Origin(B), when B is tangent to A at P , is one of the points
in the boundary set of C and must lie on a plane parallel to

PHS(A, F) and PHS(B, p ). Since A, B, and C are convex,
this plane does not intersect the interior of C and therefore
defines a tangent PHS of C, PHS(C, Origin(B)). The normal

distance, € (é ) , of PHS(C, Origin(B)) from Origin(C) is the
sum of the normal distance from the Origin(A) to PHS(A,
p ), d‘l(é ), and the normal distance from the Origin(B) to
PHS(B, P ), B (0 +180 ). Finally, PHS(C, Origin(B)) faces
in the same direction as PHS(A, p ). Note that for notational

convenience we use 180 to mean a constant vector all of
whose elements equal 180.

[0096] From the reasoning outlined above the shape spec-
trum of C=A®B can be determined as

C(0)-T uop)-T w7 . 180 (12
and the shape C=AOB can be determined as

c=408=T (T 1)+ T (5, 180 ), Origin(4)) (13)
[0097] We will now look at the behavior of C=AGB when

both A and B are convex polytopes. First, C is its self a
convex polytope. Since convex polytopes have discrete
shape spectrums, the finite dominant PHSs of C can be
determined directly from the finite dominant PHSs of both
A and B. In general, for n-dimensional polytopes, the finite
dominant PHSs of C are determined by the interaction of the
n-1, n-2, . . . 0 dimensional features of shapes A and B.
These features are, in turn, determined through the interac-
tion of the finite dominant PHSs. For two dimensional
polytopes (polygons) these features include one dimensional
edges and zero dimensional points, or corners, where each
edge is defined by the “plane” of a dominant PHS, and each
corner is defined by the intersection of two dominant PHS
“planes”. Further, if A has m finite dominant PHSs (one
corresponding to each of A’s facets), and B has n finite
dominant PHSs then C has as few a zero finite dominant
PHSs and at most m+n finite dominant PHSs. The finite
dominant PHSs of C are determined from the interaction of
an edge of A and an edge of B, or an edge of A and a corner
of B, or an edge of B and a corner of A.

[0098] For the two-dimensional case, one approach to
determining the dominant PHSs of shape C is as follows:
[0099] Procedure 1: Represent the DR shape spectrums of
A, B, and C as “circular” lists. These lists are organized in
increasing order of angle between 0°<6<360°, of PHS angle
and corresponding PHS normal distance from the origin of
the shape. Next, rotate each element of list B by 180°. This
can be accomplished by adding 180° to each elements angle
and then map any angle greater than or equal to 360° to its
equivalent angle between 0°<8<360°. For each element in
list A see if there is an element in list B with the same angle,
. If there is, mark the element in B, then add a PHS element
to list C whose normal distance is the sum of the normal
distances of the corresponding elements of list A and B and
whose angle is . If there is no element in list B with the
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angle ¢, then we will need to generate the PHS of B
associated with ¢ using the dominant PHS information in
list B. To do this, we first need to determine if the missing
PHS is finite non-dominant or infinite dominant. If it is
infinite dominant, then any new element for list C would
also be infinite dominant and would not need to be included
in list C. If it is finite non-dominant, then any new element
would be finite dominant and would need to be added to list
C. To determine which case we are working with, we find the
two elements of list B that would be the predecessor and
successor elements of the element from list A if it were in list
B. We then check to see if these two elements have an angle
between them that is less than 180°. If so, then the missing
PHS is finite non-dominant and we need to generate a new
element in list C for the angle ¢. Using linear algebra and
trigonometry we can determine B ((p+180°), the normal
distance from the origin of B to the plane parallel to the PHS
from A that intersects the planes of the two adjacent ele-
ments from B. With this distance, we can now generate the
new element in C as outlined above. After all elements of list
A have been processed, we need to process any of the
elements of list B that have not been marked. For each of
these elements from list B, we need to generate the missing
PHS information in list A and, if necessary, generate new
elements in list C as outlined above.

[0100] As an example, consider the case illustrated in FIG.
5. In this case, we are interested in determining the dominant
PHSs for the UEBSCA between a square and an equilateral
triangle as it is moved around the square. FIG. 5A illustrates
the square, its DR shape spectrum and circular list repre-
sentation of that DR shape spectrum. FIG. 5B illustrates the
equilateral triangle, its DR shape spectrum and the circular
list representation of that DR shape spectrum. FIG. 5C
illustrates the triangle, its DR shape spectrum and its circular
list representation, after its DR shape spectrum has been
rotated 180°. From the DR shape spectrums of FIG. 5A and
FIG. 5C, we can see that the dominant PHS’s of the
UEBSCA will be at 0°, 90°, 180°, 210°, 270°, and 330°.
FIG. 5D illustrates the shape of the UEBSCA, its DR shape
spectrum, and circular list representation.

[0101] We will now look at the most general case for
determining the UEBSCA between two shapes, A and B. In
particular, we are interested in how to determine AOB when
A can be either convex or non-convex and B can be either
convex or non-convex. To do this we will need to first look
at the behavior of UEBSCA when it is applied between the
unions of shapes. Recall that non-convex shapes can be
represented as the union of a possible infinite number of
convex shapes. Because of this either, or both, of A and B
can be converted into a union of convex shapes. However,
in order for this conversion to be useful we will need to look
at the behavior of UEBSCA when it is applied between the
unions of shapes.

[0102]
Interior((4,U4,)OB)=Interior((4,OB)U(4,OB)) (14)

From Definitions 3 and 9 we have that

and by extension

Interior((U o, ,4;,)OB)=Interior(U._, ,(4,08)) 13)
However, in general
Interior(AO(B | UB,))=Interior(AOB )U(AOB,)) (16)
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This is due to the fact that B, and B, may not share a
common origin. However, if B, and B, share a common
origin, Origin(B,)=Origin(B,), then

Interior(AO(B UB,))=Interior((AOB)U(AOB,)) a7
and by extension

Interior(AOU,_, ,,B))=Interior(U_, ,(40B))) (18)

Substituting A=U,_, _ A, into Equation (18) we have

=12
Interior((Uy ,4,)O(Umy B0 =Interior(U (U
n(4;0B))) (19)
Based on Equation (15) and Equation (19) we have

Interior(U -, A) O, ,B))=Interior(U,_ (U
n(4;08))) (20)

or, more concisely,

tnterior (| ) Ao, Bi) = Interior (U‘_:Lm 4;0 Bj)] o35}

J=Lm

when Origin(U,_, ,,B,)=Origin(B,)= . . . =Origin(B,,).
[0103] With this result and the fact that non-convex shapes
can be represented as the union of a possible infinite number
of convex shapes we have the necessary tools to determine
the UEBSCA between two shapes, A and B, regardless of
their convexity.

[0104] Procedure 2: Decompose A into a set of convex
shapes, {A,, ... A,}, such that A=U,_, LA,  Decompose B
into a set of convex shapes, {B,, ... B, }, where Origin(B, )=
. . . =Origin(B,,)=Origin(B) and B=U,_, ,,B,. From these
two sets of shapes the UEBSCA between A and B can be
determined as

AGB:U;:M(A‘OB/) 22)
=1

m

[0105] For completeness, it should also be noted that in
general O is not distributive over M. That is, in general

tnterior (7)., Ao, Bi]) # Interior (ﬂ o, A0 Bj)] 23)

J=Lm

One notable and important specific case where O is dis-
tributive over N is for the case where all A, and B, are axis
aligned orthotopes such that all B, share a common origin.
[0106] We will now look at how to determine the UIBSCA
between two fixed orientation shapes. To do this, we first
need to clearly define the UIBSCA between two fixed
orientation shapes, as well as the inversion operation on a
shape.

[0107] Definition 10: The unconstrained interior boundary
surface of closest approach (UIBSCA) between two fixed
orientation shapes A and B, A@B, is a new shape, C, where
Origin(C)=Origin(A) and Subdivision(C) is selected such
that:

[0108] Interior(C) contains all points defined by the loca-
tion of Origin(B) for all positionings of B, while maintaining
the position of A and the orientations of both A and B, such
that Interior(B)NExterior(A)=0 and Boundary(A)NBound-



US 2019/0303510 Al

ary(B)=0. That is, the set of locations of the origin of B as
B is moved around in a fixed orientation such that A and B
don’t “touch” and the interior of B does not overlap the
exterior of A.

[0109] Exterior(C) contains all points defined by the loca-
tion of Origin(B) for all positionings of B, while maintaining
the position of A and the orientations of both A and B, such
that Interior(B)NExterior(A)=. That is, the set of locations
of'the origin of B as B is moved around in a fixed orientation
such that the interior of B overlaps the exterior of A.
[0110] Boundary(C) contains all points defined by the
location of Origin(B) for all positionings of B, while main-
taining the position of A and the orientations of both A and
B, such that Boundary(A)NBoundary(B)=0 and Interior(B)
NExterior(A)=0. That is, the set of locations of the origin of
B as B is moved around in a fixed orientation such that A and
B “touch” and the interior of B does not overlap the exterior
of A.

From Definition 10 it can also be observed that the UIBSCA
operation is not commutative, that is, in general

A®B=BOA 4
[0111] Definition 11: The inversion of a shape A, A,

produces a new shape, C, where Origin(C)=Origin(A) and
Subdivision(C) is selected such that

Interior(C)y=Exterior(d) Exterior(C)=Interior(4)
Boundary(Cy=Boundary(4) (25)

[0112] Using this in combination with the Definitions 9
and 10 we have that

4@B=A0B (26)

From this we see that A@B can be solved using all the
machinery developed to solve AOB.

Analytical Shape Functions

[0113] Now that we have a way to determine the shape of
UEBSCA or UIBSCA between a pair of shapes, we need an
analytical representation for these boundary shapes.

[0114] Definition 12: The analytical shape function or, for

brevity, shape function, S()? , 0 ), for a shape S is a mapping

which can be used to determine if a point X is in the
Interior(S), Exterior(S), or Boundary(S) when Origin(S)=

0.
[0115] One approach to this mapping is to define

S()? , 5) for a shape S such that:

Interior(S)={ X 10s S()? ’ 5)<1} @7
Boundary(S)={ )? [ §(§ ’ 5 ) =1} (28)
Exterior(S)={ )? [ S()? ' 0 )>1} 29)
[0116] As an example, consider the two-dimensional

shape which is a circle of radius one with its origin,

o}

Oct. 3,2019

located at the center of the circle. An analytical shape
function defined on the Cartesian coordinate system that
represents this shape and satisfies Equations (27), (28), and
(29) is

30
N ——— o

X2 02

[0117] One skilled in the art will immediately see that
there are many equally valid alternate mappings that can
define a shape function, as for example the mapping

nerionsy~{ X1S(X, 0)-1 6

Boundary(S)={ )? [ S(i ’ 0 ) =1} (32)

Exterior(s)—{ X l0s s(X,0) <1} (33)
or

nerionsy~{ X1S(X, 0) <o) (4

Boundary(S)={ )? [ S()? ’ 5 ) =0} (35)

Exterior(S)={ )? [ S(X ' 5 ) >0} (36)
[0118] For the remainder of this disclosure when a specific

mapping is required to illustrate a concept we will assume,
for the sake of brevity and clarity and without loss of
generality, that the shape functions are defined by the
mapping of Equations (27), (28), and (29) unless stated
otherwise. One skilled in the art will immediately see that
these concepts could be demonstrated with many other
alternate mappings or, where applicable, combinations of
alternate mappings.

Analytical Composition of Shapes

[0119] Since UEBSCAs and UIBSCAs can be composed
of multiple shapes using intersections, unions and inver-
sions, we also need analytical methods for composing ana-
Iytical shape functions using analytical intersections, inver-
sions and unions. We will refer to the process of constructing
analytical shape functions using analytical intersections and/
or analytical unions as analytical composition.

[0120]
analytical shape functions, {S ( )?, 51 )) Sn()?, 5n )
for the set of shapes {S,, . .. S, }, Intersect (S ,( X, 51), ..

.S ( X, 5n )), is a function that can be used to determine if
a point is in Interior(Ui:LnSl.), Exterior(Ui:l,nSl.), or Bound-
ary(U,_, ,,S,) when Origin(Sl)za PR Origin(Sn)za .

[0121] One function that captures the spirit of Definition

13 that can perform an approximate analytical intersection
for a set of shape functions is

Definition 13: An analytical intersection for a set of

Intersect (SI(Y, 0, ), Sn(f, 5m)) ~ @D

; v 7L - 7 \Um
lim ($:(X,01) " +... +8,(X, 0n) ")

Uy, Upmoo
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The characteristics that cause this to be an approximation

stem from the fact that for any point, X, on the boundary of
more than one shape of the intersection, we would expect
that point to be on the boundary of the shape formed by the
intersection, however, from Equation (37) we see that

X will be mapped to a point in the exterior of the intersec-
tion. However, in practice, for large finite values of {U, . .
. U}, the resulting sets will be sufficiently close to the
desired sets for engineering purposes.

[0122] Definition 14: An analytical inversion of an ana-

Iytical shape function, §()?, 0 ), for the shape S is a func-

tion, Invert ()? ), that can be used to determine if a point is
in the Interior(S), Exterior(S), or Boundary(S) when Origin

(8)=0 .
[0123] One function that satisfies Definition 14 is
o 1 38)
I S(X,0)) =
nvert (§(X, 0)) S

[0124]
analytical shape functions, {Sl()?, 51 ) Sn()?, 5n )
for the set of shapes {S,, . .. S,}, Union (Sl()?, 01). ...

S n()? , 5n ), 1s a function that can be used to determine if a
point is in Interior(U,_, ,S)), Exterior(U,_, ,S,), or Boundary

(U, ,S;) when Origin(S,)=0 |, . . . Origin(S,)=0 .
[0125] Using DeMorgan’s law and assuming Definitions
13 and 14 are satisfied using Equations (37) and (38), one
function that captures the spirit of Definition 15 and can
perform an approximate analytical union for a set of shape
functions is

Definition 15: An analytical union of a set of

Union (81X, 0}, .. §,(X. 0)) = (39)
Invert (Intersect (Invert (SI(Y, 51)), ... Invert (Sn(f, 6n)))) ~

1

lim glg =t t glg I3
Ry, Rp—eo Sl(Xa 01) 1 Sn(X, On) "

Again we note the approximate nature of Equation (39) and
observe that, in practice, for large finite values of {R, . . .
LR} the resulting sets will be sufficiently close to the desired
sets for engineering purposes.

[0126] There are shape functions whose form makes its
associated exponent, in Equations (37) or (39), unnecessary.
For example, if the shape function

40
si| 212 )= g s -onr s - s 0

X2 02

were one of the shapes to be intersected in Equation (37) or
the union in Equation (38), the behavior of exponent Q
would make the associated exponent in Equations (37) or
(39), unnecessary and the exponent could either be elimi-
nated or set to a constant. Conversely, if the shape function
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41
Sl([XI },[01 D=|Xl—01|2+|3€2—022 @

were one of the shapes to be intersected in Equation (37) or
the union in Equation (38), its associated exponent in
Equations (37) or (39), would be required. We will refer to
shapes, such as the one in Equation (40), as self-composing
shapes. From this we can see that shapes produced by an
analytic union or analytic intersection are themselves self-
composing.

Constructing Analytical Shape Functions

[0127] Since shapes can be composed of set of convex
shapes, we now need methods for constructing analytical
shape functions for convex shapes.

[0128] One method for constructing analytical shape func-
tions for convex shapes relies on the fact that convex shapes
are composed of the intersection of a possibly infinite
number of PHSs. Further, the finite dominant PHSs of a
shape’s shape spectrum identify the minimum set of PHSs
that will need to be intersected to form the shape. From this
we can see that an analytical shape function of a convex
shape can be composed from the analytical shape functions
of its finite dominant PHSs.

[0129] One approach to determining an analytical shape
function of a PHS that satisfies Equations (27), (28), and
(29) is through the use of affine functions. In particular, for

the PHS, PHS1, associated with direction 6 of an n-dimen-
sional convex shape, S, with origin 0 we can construct a
function Py ()? ’ 5), which is affine in X , such that
P@()?' 5) =1 for all )? on the boundary of PHS1 and
P i ()? ' 5) >1 for all )? exterior to PHS1. To do this we need

to determine a vector of n coeflicients, Kz, and a scalar

’?9‘ which satisfy

P§(X' 0): K§ X+ K§:1V)?EBoundary

(PHS1) (42)
P@(X' 0) = K@ X + K§>1V )?EExlerior
(PHS1) (43)

Using basic linear algebra and trigonometry it is possible to
determine any number of K; and K4 that satisfy Equation
(42) and (43).

[0130] For example, in the 2-dimensional case it is not
hard to show that

K

. cosf 44
o

sinf

. 45
KQ:_KQ[ZH—S(O)H @)

satisfy Equations (42) and (43) when & (8) is the normal
distance from
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to the plane of PHSI of S.

[0131] However, while P §(X ’ 0) will correctly identify
the boundary and exterior sets, it will not correctly identify

the interior set since it maps all points, X , in the interior of
PHSI to values in the range —co< P P (X ' 0) <1 instead of the

desired range 0= p §(X ' 0) <1. One way to rectify this is to
define the analytical shape function for PHS1 to be

IPQ()?' 5) =max{0, P@ ()?' 5) 1 (46))

[0132] Using Equations (37) and (46), we can construct an
analytical shape function for a convex shape, S, with a
discrete shape spectrum having q finite dominant PHS’s

with directions 8, ... 8 as

@7

[0133] Equation (47) can produce a shape function which
maps more than one point in the interior of the shape to a
value of zero due to the use of the max function in Equation
(46). In some applications it may be desirable for the shape
function to have only a single point in the interior of a shape
which maps to a value of zero. One way to produce a shape
function with a unique minimum point, possibly zero, for a
convex shape, S, having finite volume, is to first determine
a point in the interior of the shape. One such point, the
analytical center, can be readily determined using convex
optimization methods. We can then compute the vector of
coeflicients and scalar in Equations (42) and (43) such that
the shape function for each PHS of S passes through this
point with a value greater than or equal to zero. If the shape
function of each PHS of S passes through this point with a
value of zero, then the corresponding shape function of S
will have a unique minimum at this point whose value is
Zero.

[0134] A more compact representation exists for any n-di-
mensional convex shape, S, that has symmetric pairs of
finite dominate PHSs. A symmetric pair of finite dominant
PHSs for a shape S exists when there is a finite dominant

PHS, call it PHSI1, for some direction 6 and another finite

dominant PHS, call it PHS2, for direction 6 + 180. Under
these circumstances we can construct a single affine func-

tion, Q§ (X ’ 0), which can be used to capture the interior,
boundary, and exterior sets of PHS1UPHS2. In particular,

we can determine a vector of n coefficients, K3 and a scalar
K, that satisfy

05(X,0) = K5 "X + K51V X CBoundary(PHS1) (48)
05(X,0) = K3 "X + K31V X CExterior(PHS1) (49)
05(%.0) =K "% + K5 =1V X €Boundary(PHS2) (50)
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05(%,0) = K3 ™% + K <_1¥ ¥ CExterior(PHS2) (51)
-1<05(%.0) =K5 "X + K <1V X c(lterior(PHS1)
Ninterior(PHS2)) (52)

The analytical representation of the intersection of PHSI1
and PHS2 can then be compactly represented as

@;(%.0) = 05(%.0) | (53)

For example, in the 2-dimensional case it is not hard to show
that

. 2 cosf (54)
K= Serm00+ 3(0)[ sind }
P S0+ 180°) - S6) (55)
2777 6, |7 SO+ 180° + S(6)
where

4

is the origin of S, and by extension the origins of both PHS1
and PHS2; 0 is the direction of the normal vector from

0]
[02 }
to the plane of PHS1 of S; & (0) is the normal distance from
o1
[02 }

to the plane of PHS1 of S; and § (6+180°) is the normal
distance from

o)

to the plane of PHS2 of S.

[0135] One way to use Equations (46) and (53) to con-
struct an analytical representation for a convex shape, S,
with a discrete shape spectrum having r finite dominant
PHSs is as

P (56)

where p and q are integers;



US 2019/0303510 Al

[ST ]

at least q PHS’s, with directions ¢, . . . &, have corre-
sponding symmetric PHSs with directions ¢ ,+180, ... é +
180 ; the remaining p=r-2 q finite dominant PHS’s have
directions 4, ... 4.

[0136] For a convex shape, S, with a continuous shape
spectrum the summation in Equation (56) can be converted
to an integration. As an example of this, consider the
two-dimensional case where the shape spectrum, § (8), is
symmetric. One way to determine this shape function is as

S([il } [Zi D - zliff.i( foglsocog([j: ] [Zi Dzdg] : 57

180°| _r[ xy Z
limf Kg[ + K, a0 =
Z-oo| Joo X
2cos(8) N z
SO +S@+180%) "

180° 2sin(8)
fm = f SOTSTIER | as
Lo 0 —2cos(B)o; — 2sin(B)o, +
S0+ 180°) - S(0)
S(0) + SO+ 180°)

[0137] We will now consider a more direct approach to
constructing analytical shape functions for convex shapes.
In this approach, an analytical shape function is generated
directly from a shape spectrum without the use of PHSs. We
will illustrate this approach using the two-dimensional case.
Specifically, it can be shown that for a two-dimensional
shape S with origin

and shape spectrum § (8)=7 (8), the boundary of S can be
determined as

Boundary(S)=Uge_g<360-L(0, 5) (58)

where 1(0, 0) is the set of points defined by the line
segment between the points

_ 0, —
= [al( 01)}andB

(0, 02)

[ b1, 01) }
02(0, 02)

where a, (0, 0,), a,(0, 0,), b,(0, 0,), and b,(0, 0,) are defined
by the following subdifferential equations:

5S(0) (59)
}+ol

ay(8, oy) = S(B)cos(d) — sin(@)max{ 0

ay(0, 0,) = S(O)sin(9) + cos(@)max{ 6?;0)} +0; 60)
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-continued
b1 (6, 01) = S(B)cos(6) — sin(@)min{ 6?;0)} +o0; 61
by (0, 0,) = S(0)sin(9) + cos(@)min{ 6?;0)} +0;y 62)

where

58(6)
60

is the set of subderivatives of §(0) at 0. Further, as
illustrated in FIG. 6, for each point

in Boundary(S) there are two associated angles. The first, 0,
has already been defined according to Equation (58). The
second, @, is defined as the angle formed between a vector
from & to P and a vector parallel to the X-axis originating
at 0 . The relationship between 6 and ¢ satisfies the follow-
ing subdifferential inequality:

TN 58(6) (63)

mm{ 50 } max{ 50 }

rtan| —— " |<p<f+tantf — 2 2
S S(0)

For a shape S with a continuous shape spectrum, Origin(S)
Elnterior(S), and for which Boundary(S) contains no
straight line segments, the set of subderivatives,

58(6)
860

associated with each 0 contains a single element

sSO) {33(0)} (64
50 ~\ 90
and thus
[ a8(6) ] (65)
a1 00
0 = ¢ — tan —S(O)
a; (8, o1) = by(8, o1) = S(B)cos(8) — sin(@)aj(:) +o0; 66)
ay (0, 02) = by(6, 02) = S(O)sin(0) + cos(@)ajée) +0, ®7

In this case, as illustrated in FIG. 6, an analytical shape
function for S, satisfying Equations (27) though (29), can be
constructed as:
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51X G

s$(X,0 —
T

Vb —o) + (2~ 02)?
Vipr—o)?+(p2 -0

_ [ (x1 =017 + (%2 —02)*
(pr—o01)* +(p2—02)?

where

0 satisfies Equation (65) when

Xz—oz)
H

(p:tan’l(
X1 —01

and, based on Equations (66) and (67), p,=a,(6, o,) and
P>=a,(6, 0,).

Analytical Representations of BD Constraints

[0138] We will now consider an approach to generating
analytical representations for a wide variety of BD con-
straints. To begin with, simple BD constraints between the
exterior surfaces of two shapes, S, and S,, can be con-
structed with the use of UEBSCA, or EB=S,0S,, while
simple BD constraints between the exterior surface of one
shape and the interior surface of another can be constructed
with the use of UIBSCA, or IB=S,®8S,. Further, we can
break these two categories into at least three sub types:
non-overlap, abutment and overlap constraints between the
boundary surfaces of S, and S,. One way we can generate an
analytical representation for a BD constraint that can be used
to determine if the exterior surfaces of S, and S, abut,
Boundary(S,)NBoundary(S,)=0 and Interior(S,)NInterior
(S,)=, is by generating a shape function for EB, EB (%,
Origin(S,)), and checking to see if Origin(S,) is in Boundary
(EB) using the equality constraint

EB (0rigin(s,), Origin(s,))=1 (69)

or an equivalent such as EB (Origin(S,)-Origin(S,), G 0)=1,
where 0 is a vector where all components are zero. In a
similar fashion, one way we can determine that the non-
overlap constraint Exterior(S;)NExterior(S,)=0 between S,
and S, is satisfied, is by checking to see if Origin(S,) is in
Exterior(EB) using

EB ((0rigin(s,), Origin(S))>1

70)

or an equivalent. Likewise, one way we can determine that
the overlap constraint Interior(S, )N Interior (S,)=0 between
S, and S, is satisfied is by checking to see if Origin(S,) is in
Interior (EB) using

EB (0rigin(s,), Origin(s,))<1 (71)

or an equivalent.
[0139] Extending these ideas to containment constraints
between S, and S, we have

13
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IB (0rigin(s,), Origin(s,))-1 (72)
IB (0rigin(s,), Origin(s,))>1 (73)
1B (0rigin(s,), Origin(S,)<1 (74)

where Equations (72) verify abutment between the interior
surface of S, and the exterior surface of S,, Boundary(S,)
NBoundary(S,)== and Interior(S,)ClInterior(S,;); Equations
(73) verity the overlap constraint Exterior(S,)NInterior(S,)
#0 between S, and S,; and Equations (74) verify the
containment constraint Exterior(S,) < Interior(S,) between
S, in S,.

Distance Spectrums

[0140] To broaden the range of BD constraints that can be
checked we need to be able to determine EBSCA and
IBSCA which account for nonzero distance constraints
between surfaces. That is, we need to be able to determine
CEBSCA and CIBSCA. One way to do this is through the
use of distance spectrums.
[0141] Definition 17: A distance spectrum, D(d), is a
function whose values represent the adjustments to be made
in the distance values of a shape’s shape spectrum. Associ-
ated with a shape spectrum and a distance spectrum are two
operations, € and ©, where & “adds” a distance spectrum
to a shape spectrum, and © “subtracts” a distance spectrum
from a shape spectrum. Further, one or more values of
direction & can have a value of () which is undefined. We
will refer to distance spectrums with no undefined values as
explicit distance spectrums and those with one or more
undefined values as implicit distance spectrums. For a shape
spectrum @ and a distance spectrum p(6), the shape spec-
trums §(@) PD@) and §(@) SD@) can be determined as fol-
lows:
[0142] For all @ which have defined values for D@),
S@) PD(E) =8@) 4+D(@) , and $(@) OD@)=5@) -D(@),
[0143] If, for a given a, (@) D(a) is undefined and $@® is
associated with a dominant PHS then $(® ¢ D(a) =5 , and
S OD@) =@ .
[0144] If, for a given &, D@) is undefined and $@ is
associated with a non-dominant PHS then the values of $(®
DDo(@), and $@ SD@) are selected such that the PHS
associated with §,(& is also non-dominant.
[0145] One way to determine CEBSCA of two shapes, S,
and S,, with additional distance constraints captured as
distance spectrums, 7,(d) and 1,(8), would be as follows
EB=T (T (s)) ®@D:(8), Origin(s)0 T -

T (5,@D:(8), Origin(S,)) s

when both operands of the © operation are convex shapes.
From this we can determine the shape spectrum, €3(8), of EB
as

%(5):51(§]@D1(§)+ 52(§+m) D, (9 + 180} (76)

When 1,(8) and p,(d) are both explicit distance spectrums
Equation (76) reduces to

EB®) = S10) + D1 + S0+ 180) + D, (0 + 180) an

= 810) + S,(8 + 180) + D3(B)

where D3(8) =D,(8) +,(8 + 180).
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More generally, for the case where one or both of shapes S,
and S, are non-convex we can represent the non-convex
shape as the union of a set of convex shapes. Specifically,
when both of shapes S, and S, are non-convex we assume
thatS,=U,_, .S, ,and S,=U,_, S, ;, where S, |,...S, , and
Ss.15 - - - S, are all convex shapes and Origin(S,)=Origin
(S,,)=...=0rigin(8S, ). Applying Equations (21) and (75)
we can incorporate distance spectrums D.,(6), . . . Di.(5) and
D,.(8), . . . D,,a(8) into the determination of the CEBSCA of
S, and S, as

EB_U [T*(T(sl,aewl,;(é), Origin($1,)) © )
izLm| THT (S, ) @ Da, (@), Origin(Sy ))

when both operands of each © operation are convex shapes.
[0146] From this, it can be seen that complex BD con-
straints between the exterior surfaces of two shapes can be
constructed, in a form similar to one of Equations (69)
through (71), with the use of UEBSCA in combination with
one or more distance spectrums.

[0147] We will now look at one way to use distance
spectrums in combination with UIBSCA to form CIBSCA.
Specifically, given two shapes, S,=U,_, S, and S,=U_,
»S,,, and two sets of distance spectrums, D..(6), . . .
Dim(8) and Dy4(8), . . . Dya(6) Where S, |, ... S, and S, |,
... S, are all convex shapes and Origin(S,)=Origin(S, , )=
... =Origin(S, ,), we would like to determine the CIBSCA
between the interior surface of S, and the exterior surface of
S,. To do this we will again rely on Equation (26) to
transform an IBSCA problem into an EBSCA problem. To
do this we begin by applying 2:4(6), . . . Dw(8) to S;=U,_,
’"Sl,i

51U T 1T (51,00 200)., Origin(s, ) (79)

then we invert S,' and decompose the resulting shape into a
union of convex shapes

S_f:SfUlquSs,k (80)

Using this new set of convex shapes, S; |, . .
form the CIBSCA of S, and S, as

. S5, we can

B=5, (5 5, = Uk:m (S50 OT 1T (52,)) @ D, ;0), Origin(s, ))) 8D

J=Ln

[0148] From this, complex BD constraints between the
interior surface of one shape and the exterior surface of
another can be constructed, in a form similar to one of
Equations (72) through (74), with the use of IBSCA in
combination with one or more distance spectrums.

Parameterized and Trivial Spectrums

[0149] To this point, for the sake of simplicity and clarity,
we have focused on “simple spectrums”. That is, shape
spectrums and distance spectrums where NO additional
parameters are used in the determination of the value
returned by the function representing the shape spectrum or
distance spectrum for a given direction. We can significantly
increase the range of BD constraints that can be represented
through the use of shape and distance spectrums with
additional parameters, or “parameterized spectrums”. That
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is, spectrums where additional parameters are used in the
determination of the value returned by the function for a
given direction. The expanded range of constraints includes,
for example, constraints that can also control the size,
orientation, or geometry of a shape.

[0150] We will refer to any shape or distance spectrum that
produces values that are independent of the direction of
interest as a “trivial” spectrum. Example of trivial shape
spectrums include the simple shape spectrum of the unit
circle with its origin located at the center of the circle:
$ (0)=1, and the parameterized shape spectrum of a sphere
of'radius r whose origin is located at the center of the sphere:

Axis Aligned Orthotopes

[0151] The above development can be significantly sim-
plified for the case where we want to generate an EBSCA or
IBSCA for a pair of n-dimensional axis-aligned (AA) ortho-
topes, whose origins are at the center of their respective
shapes, subject to AA orthotopic boundary distance con-
straints. To do this we take advantage of the following two
observations: first, the EBSCA and IBSCA of a pair of AA
orthotopes subject to AA orthotopic boundary distance con-
straints are themselves n-dimensional AA orthotopes; sec-
ond, the shape of an n-dimensional AA orthotope can be
analytically represented using an n-dimensional superellip-
soid.

[0152] For the sake of clarity and brevity and without loss
of generality, we will assume that for an n-dimensional AA
orthotope, A, there is an n-dimensional vector, 4D =[ad, . .
. ad,]%, which contains the dimensions of A as measured
along each of the coordinate axes between parallel pairs of
faces. One skilled in the art will recognize that the dimen-
sions of all AA orthotopes can be reduced to this form.
Taking advantage of the first observation, we see that given
two AA orthotopes, A and B, with origins 40 and B0 respec-
tively, the dimensions of their UEBSCA, EB, are:

EBD =AD 4+ BD (82)

as illustrated in FIG. 7A for the two-dimensional case.
[0153] Based on the second observation, consider the case
of'an n-dimensional AA orthotope, C, centered at the origin
of the Cartesian coordinates system with dimensions
tD =[edy, . . . cd,]¥. The boundary of C can be analytically
represented, using an n-dimensional superellipsoid, as

83

. - i |4
lmm[le—d ]=1

If we now offset C a distance 95 =[od, . . od, ], its boundary
can be analytically represented as

x; —od;
cd;

- (84)
=1
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[0154] Combining Equations (82) and (84) with 05 =40,
the boundary of the orthotope EB can be analytically rep-
resented as

X; — ao; Z;] (85)

L SR

or, in terms of a shape function for EB,

86)

Xi —0; Zi
EB(X, 0) = hrzrnlm[2| e ]

[0155] Again, for the sake of clarity and brevity and
without loss of generality, we will assume that for a pair of
n-dimensional AA orthotopes, A and B, there is a pair of
n-dimensional vectors 48U and 4BL where 4BU contains the
separation distances to be maintained between the “upper
faces™ of A and the adjacent faces of B and 4BL contains the
separation distances to be maintained between the “lower
faces” of A and the adjacent faces of B. We define an upper
face of A to be a face which intersects a vector, v, extending
from 40 parallel to one of the axes such that v points in the
direction of increasing values along that axis, as illustrated
in FIG. 7B for vectors v, and v,. We define a lower face of
A to be a face that is not an upper face. One skilled in the
art will recognize that all AA orthotopic boundary distance
constraints between AA orthotopes can be reduced to this
form. We can generalize the analytical representation of the
UEBSCA developed above to include upper and lower
separation distances between A and B. This can be done by
observing that the separation distances in effect adjust the
origin and dimensions of A. That is, the origin of A is now
effectively

__. ABU-ABL
A0+f

and the dimensions of A are now effectively 40 +4BL + 28U ,
as illustrated in FIG. 7B for the two-dimensional case. The
resulting analytical representation of the CEBSCA, EB,
which accounts for separation distances between A and B is

( abu; — abl;] Zi
ao; +

(87)
n X — .
‘ i 3
1 § v S R )
zl,...“zr,im[ ad; + abu, + abl, + bd; ]
i=1

or, in terms of a shape function for EB,

abu; — abl; \|% (88)
o a X — (0; + 3 ]
EB(X. 0)= 5 02 Z % o + b + abl, + b,
i=1
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[0156] In a similar manner, given two AA orthotopes, A
and B, with origins 40 and B0 respectively, the dimensions
of their UIBSCA, 1B, are:

TBD=AD _BD (89)

as illustrated in FIG. 8A for the two-dimensional case.
[0157] Combining Equations (84) and (89) with 05=340 ,
the boundary of the orthotope 1B can be analytically repre-
sented as

Xx; —ao; \Zi ©0)
hrzr,im[z |2ad bd; ] =
or, in terms of a shape function for IB,
- = . - Xi—0; %4 b
IB(X,0)= zl,..l.“znnm[; |2 ad; — bd; ]

[0158] Again, we can generalize the analytical represen-
tation of the IBSCA developed above to include upper and
lower separation distances between A and B by observing
that the separation distances in effect adjust the origin and
dimensions of A. That is, the origin of A is now effectively

__. ABL-ABU
A0+f

and its dimensions are now effectively 4D —ABL —2BU, as
illustrated in FIG. 8B for the two-dimensional case. The
resulting analytical representation of the CIBSCA, IB,
which accounts for separation distances between A and B is

abl; — abu;) Zi

. 92)
lim zw -1
2.0 oo ad; — abu; — abl; — bd; -
=

or, in terms of a shape function for IB,

( abl; — abu;) Zi
0 + ————

93)
o | i 2
IB(X. 0) = zl,..l.“znnm[z % ad — abu —abl, — bk ]
i=1

[0159] Note that, as we would expect, Equations (86),
(88), (91), and (93) are in the form of Equation (56) with g=n
and p=0.

Direct Application of Analytical Composition

[0160] In cases where BSCAs can be deduced through
inspection or simple geometric constructions and an ana-
Iytical shape functions for the shapes involved are known,
then analytical composition can be directly applied to con-
struct an analytical shape function for the required BSCA.
That is, we can apply analytical intersections, inversions and
unions directly to the shape functions to construct an ana-
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Iytical shape function for the required BSCA. As an example
of this approach consider the case illustrated in FIG. 9. In
this case, as illustrated in FIG. 9A, we are interested in
constructing the UEBSCA, EB, between a square, shape A,
and a circle, shape B, where the square is two units wide by
two units tall with its origin at its center and the circle has
radius one with its origin at its center. From FIG. 9B we can
see that EB=AGB can be determined as the union of six
shapes: two overlapping rectangles, R1 and R2, and four
circles, C1, C2, C3, and C4. The shape functions for the four
circles can be represented as

- = 94

<D1(X,o)=<t1([x1 },[01}]=(x1—01—1)2+(xz—02+1)2 o9
X2 02

. 95

cz(x,o):m([xl }’[01}]:(;“—01+1)2+(x2—02+1)2 93)
X2 02

. 96

C3(X,0):c3([x1 }’[01}]:(;“—01+1)2+(x2—02—1)2 (96)
X 07

. 97

C4(X,0):C4([xl },[01}]=(x1—01—1)2+(xz—02—1)2 on
X 07

and, using superellipses, the two rectangles can be repre-
sented as

RI(X. 5) :[Rl([il }’ [01 D  tim (|x1 ;ol |Z+ s —Ozlz) 98)

02 Zoeo

- = X1 o1 . Xy —0y\2 99)
RZ(X,O):[RZ([ } [02 }]:2152(|x1—01|z+|%| )

Using an analytical union, we can construct an analytical
shape function for EB=AOB as

EB(X, 0) = lim

R—oo

[m(Y, o) " +C2X, 0" +C3(X. 0) " + ]‘ (100)
-1

(X, 0) " +R1(X, 0] +R2(X, 0] "

Methods

[0161] FIG. 10 illustrates the use of the present invention
in a typical networked environment. The claimed invention
is a software program that runs on one or more workstations
10 that may be in a networked environment. The various
workstations 10 couple to a network 12 where they may
communicate with each other. Additionally, the networked
environment may include a shared storage device 14 and a
network server 16. And, the networked environment may
couple to the Internet 18. In addition to being able to operate
on one or more workstations 10, the invention may use the
resources of the shared storage device 14 and the network
server 16. The invention may also use resources available
through the Internet 18. One embodiment of the invention
uses a LINUX based standalone workstation 10 and uses the
FORTRAN programming language. One skilled in the arts
will appreciate the invention can be implemented using
other programming languages and that it may be hosted on
other operating systems.
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[0162] FIG. 11 A illustrates a first embodiment of a method
for determining if an arrangement of two shapes satisfies an
exact or approximate analytical function representation of a
boundary distance constraint between those shapes. This
embodiment includes constructing 110 a function which is
an exact or approximate analytical representation of the
constraint between two shapes using one or more of the
following: (1) one or more external boundary surface of
closest approach where at least one of the external boundary
surfaces of closest approach is not an n-sphere and each
external boundary surface of closest approach is formed
from two shapes and, optionally, additional boundary dis-
tance constraints between the shapes and is determined
using the addition of two or three functions where one of the
three functions represents the first shape and another func-
tion represents the second shape and, optionally, a third
function represents the additional boundary distance con-
straints between the shapes; (2) one or more analytical
compositions or; (3) one or more superellipsoid shape
function approximations for the interior or exterior boundary
surface of closest approach between a pair of axis aligned
orthotopes with axis-aligned orthotopic boundary distance
constraints. Further, this embodiment includes evaluating
120 the function constructed in 110 to determine if the
constraint between the two shapes is exactly or approxi-
mately satisfied.

[0163] FIG. 11B illustrates a second embodiment of a
method for determining if an arrangement of two shapes
satisfies an exact or approximate analytical function repre-
sentation of a boundary distance constraint between those
shapes. This embodiment includes constructing 210 a func-
tion which is an exact or approximate analytical represen-
tation of the constraint between two shapes using one or
more of the following: (1) one or more external boundary
surface of closest approach where at least one of the external
boundary surfaces of closest approach is not an n-sphere and
each external boundary surface of closest approach is
formed from two shapes and, optionally, additional bound-
ary distance constraints between the shapes and is deter-
mined using the addition of two or three functions where one
of the three functions represents the first shape and another
function represents the second shape and, optionally, a third
function represents the additional boundary distance con-
straints between the shapes; (2) one or more analytical
compositions or; (3) one or more superellipsoid shape
function approximations for the interior or exterior boundary
surface of closest approach between a pair of axis aligned
orthotopes with axis-aligned orthotopic boundary distance
constraints. In addition, this embodiment includes assigning
215 values to variables and/or parameters of the function
constructed in 210. Further, this embodiment includes evalu-
ating 220 the function constructed in 210 using the assign-
ments of 215 to determine if the constraint between the two
shapes is exactly or approximately satisfied.

EXAMPLES

[0164] To illustrate the use of these methods we will,
without loss of generality, consider three examples. The first
two will demonstrate their use on shapes represented using
DR shape spectrums and the second will demonstrate their
use on shapes represented using shape spectrums.

Example 1

[0165] This example will illustrate the use of the method
outlined in the flow chart of FIG. 11A. This example
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illustrates one application of this method in the manufacture
of VLSI circuits and is based on the illustration in FIG. 12.
In this example, as shown in FIG. 12, we have two circuit
blocks, labeled C1 and C2, along with their DR shape
spectrums and origins. We want to check to see that the
circuit blocks satisfy a non-overlap boundary distance con-
straint that requires a minimum spacing of one tenth (0.1) of
a unit between the adjacent sides of the circuit blocks. From
FIG. 12 we have that:

[0166] C1 is two units wide and one unit tall with its origin
initially located at

and a DR shape spectrum:

1.0 8=0° (101)
0.5 6=90°
Cl® =
1.0 6=180°
0.5 9=270°
[0167] C2 is one unit wide and one unit tall with its origin

initially located at
3.0
[os]

and a DR shape spectrum:

0.5 6=0° (102)
C20) = 0.5 6=90°
@=Y0s5 6=180°
0.5 6=270°

[0168] From the geometry of each circuit block and the

minimum spacing requirement, one set of implicit distance
spectrums that captures the minimum spacing requirements
between the circuit blocks is

0.05 6=0° (103)
Der(0) = Den(0 0.05 6=90°
c1(0) = Dc2(0) = 005 0= 180°

0.05 6=270°

[0169] Based on the flow chart of FIG. 11A, step 110 can
generate an approximate analytical function representation
of the boundary distance constraint between C1 and C2 as
follows: We begin by applying the distance spectrums to the
shape spectrums for C1 and C2 as:

C1,0-C1e®D ., ©) (104)
C2,0)-C208D ~©) (10%)
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We can then determine the DR shape spectrum for the
EBSCA for C1 and C2, accounting for distance spectrums
D (1(6) and D ,(0), as:

1.6 6=0° (106)
1.1 6=90°
1.6 6=180°
1.1 8=270°

EBO) =Clp@) +C2p(6) =

We can then generate affine functions for the DR shape
spectrum of Equation (106). Since the spectrum is symmet-
ric, we only need to generate two affine functions whose
coeflicients are:

Koo =

- 2 [COS(OO)} 2 [1} (107)
3200

= EB(0°+ 180°) + EB(0°) | sin(0°) | 32

_r[40 0° + 180°) — EB(0° 2
K :—ng E8(0° + 180%) - EB(0°) — =40

40|" EBO°+180°)+&B(0°) 3.2

- 2 cos(90°)] 2 [0 (108)

% = EBO0° + 180°) +82§(90°)[ sin(90°) } - 7[ 1 }

o T [40], BBOC 4180 -8B 2

9007 =~Ror| 4| ¥ EBEOD° + 180°) + EBODY) T 22

We can then generate shape functions for these affine
functions as

x] [4.0 _le” X ol 2(x —4.0) (109)
QO{L}’L.OD_ L Y R Bl

x| [4.0 _r [x 2y —4.0) (110)
ng"([y}, [4.0}]: Kggo y + Koge :‘ 55

followed by an analytical intersection to form the shape
function

S([ig J [jg J)- (a1
e e e

; U 23.0 —4.0)
v 32

Z 12(4.5-4.0) Z]
+‘ 22
[0170] Based on Equation (111), and using a value of

7=3000 we can generate an analytical approximation of the
non-overlap constraint function between C1 and C2 as

Z—oo

3000 (112)
>1

‘2(3.0 -4.0)

3000 12(4.5 —4.0)
3.2 ‘

2.2

[0171] In step 120 evaluate Equation (112) to determine
that the boundary distance constraint between C1 and C2 is
not satisfied.
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Example 2

[0172] In this example, we will again look at the problem
outlined in Example 1. In this case however we will take
advantage of the fact that shapes C1 and C2 are axis aligned
rectangles subject to orthotopic boundary distance con-
straints. As such, we can use superellipsoid shape function
approximations to generate an analytical approximation
function for the BD constraint.

[0173] From FIG. 12 we can see that the dimension
vectors associated with shapes C1, and C2 are
C1D —[2,1)7 (113)
T2 117 (114)

Additionally, we know that the upper and lower separation
distance vectors between C1 and C2 are

ciczi=[0.1,0.1]7 (115)
CiczL=[0.1, 0.1]7 (116)
[0174] With this information and using Equation (88) we

can generate the shape function for the EBSCA between C1
and C2 as

EB(B:S } [Zg D = 117

0.1-0.1y7 0.1-0.1\7
30— (4.0 + ] 45- (4.0 + ]
lim |2 2 +p 2 -
Z5oo 2+0.1+01+1 2401+01+1
; (|23.0—4.0|Z | 4.5—4.0|Z)
s 32 22

[0175] Based on Equation (117) and using a value of
7=3000 we can generate an analytical approximation of the
non-overlap constraint function between C1 and C2 as

3000 (118)
>1

‘2(3.0 -4.0)

35000 12(45-4.0)
32 ‘

2.2

which is identical to Equation (112) generated in Example 1.

Example 3

[0176] This example will illustrate the use of the method
outlined in the flow chart of FIG. 11B. This example
illustrates one application of this method in the manufacture
of plate steel parts for one or two ships. In this example, as
Illustrated in FIG. 13, we would like to check to see that the
components for a pair of bulk head doors, BD1 and BD2,
which are to be cut from a sheet of steel, are positioned such
that they satisty a non-overlap boundary distance constraint
that accounts for the kerf of the cutting tool that will be used
to cut the components from the sheet. The shape of BD1 and
BD2 are cubic superellipses with height, width, and orien-
tationh , w,, 0, and h,, w,, 0, respectively. The width of the
kerf of the cutting tool is d.

[0177] One skilled in the art can show that the shape
spectrum for a two-dimensional superellipsoid having origin
[0, 0,] T semidiameters r_and r,, and exponent n, as defined
by the equation
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n |y—o,|*
+ y

Ty

|X—0X

rX
has the following shape spectrum:

n L, L (119)
SE®) = (|rysin@)|#T + |rycos@)i-1) "

From this we see that the parameterized shape spectrums for
BD1 and BD2 are

2 (120)

Wi

)
)

[0178] To account for the minimum distance, d, between
BD1 and BD2 we define the following explicit distance
spectrums for BD1 and BD2

wy 3 M
BDIO, 6)) = |751n(0—01)| +|reos@-61)

2 (121)

Wi

wy . 3 |
BD2G, 6,) = |751n(0—02)| +‘7005(0—02)

d (122)
Dgp1(0) = Dppa(0) = 3

[0179] To generate an analytical function representation of
the non-overlap boundary distance constraint between BD1
and BD2 step 210 can use Equations (120), (121), and (122)
to determine the parameterized shape spectrum for the
EBSCA of shapes BD1 and BD2 with separation distance d
as

EBO, 01, 65, d) = BDL, 61) + Dapy () + BD2(O + 180°, 6;) + (123)
D@+ 180°)

=BD1, )+ BDLO, 6,)+d

2

3\3

3
+

2

3\3

3
]+d

= (|ﬂsin(0—0 )|% + h—lcos(O—O )
Uz ! 2 !

(|ﬂsin(0—0 )g| + ‘h—zcos(O—O )
2 2 2 2

Based on Equations (65) through (68), one way to compute
the value of a shape function,
X2 X1

0

y2
23
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for the shape spectrum of Equation (123) is as follows:

Procedure 3:

[0180]

y2 _yl)
X2 — X1
dEB(O, 01, 0,, d)
a6
EB(0, 01, 6, &)

1. Compute ¢ = tan’l(

]for@

AEBO, 01, 05, d)
a6

AEBO, 01, 05, d)

%0 +)1

2. Solve 8 = ¢ — tan’l[

3. Compute x, = EB(G, 61, 62, d)cos(6) — sin(6) +x1

4. Compute y, = EB(G, 6y, 6, d)sin(6) + cos(6)

X2 X1 > >
(X2 —x1)* +(y2 = y1)

5. Compute EB|| y2 |, | 31
(p =202 + (yp — y1)*

021 10

From this we can define the analytical representation of the
non-overlap constraint between BD1 and BD2 as

(124)

Note that due to the form of the differential equation in step
2 of Procedure 3 it may be necessary to solve it using a
numerical method such as, for example, a half interval
search, where the initial interval is 0°=0<360°.

[0181] Step 215 assigns valuestoh,, w;, 0,,h,, w,, 0, and
d.

[0182] Step 220 evaluates Equation (124) using the
assignments of step 215 to determine if the non-overlap
boundary distance constraint between BD1 and BD2 is
satisfied.

[0183] While the present disclosure has been described in
this disclosure regarding certain illustrated and described
embodiments, those of ordinary skill in the art will recognize
and appreciate that the present disclosure is not so limited.
Rather, many additions, deletions, and modifications to the
illustrated and described embodiments may be made without
departing from the true scope of the invention, its spirit, or
its essential characteristics as claimed along with their legal
equivalents. In addition, features from one embodiment may
be combined with features of another embodiment while still
being encompassed within the scope of the invention as
contemplated by the inventor. The described embodiments
are to be considered only as illustrative and not restrictive.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
scope. Disclosing the present invention is exemplary only,
with the true scope of the present invention being deter-
mined by the included claims.

1. A method to verify the design of an article of manu-
facture that further comprises two or more components of
the article and that uses a software program executing on a
workstation that should satisfy the analytical representation
of the boundary distance constraint between the shapes of
two components during the verification of the design of the
article of manufacture, comprising:

19
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providing a software program executing on a workstation,
the workstation includes a processor, memory, and
storage, the software program executes the following
steps:

providing the shape of a first component and providing

the shape of a second component;
providing a boundary distance constraint, the boundary
distance constraint specifies the desired geometric rela-
tionship to be verified between the shape of the first
component and the shape of the second component;

constructing a shape spectrum of the exterior boundary
surface of closest approach associated with the shape of
the first component, the shape of the second compo-
nent, and the boundary distance constraint, where the
shape spectrum is an analytical representation of the
boundary surface of closest approach and forms the
analytical foundation for verifying the boundary dis-
tance constraint;

verifying that the arrangement of the shape of the first

component and the shape of the second component
satisfy the boundary distance constraint;

evaluating a subderivative of the shape spectrum of the

exterior boundary surface of closest approach associ-
ated with the shape of the first component, the shape of
the second component, and the boundary distance
constraint, where the subderivative is used in the evalu-
ation of the boundary distance constraint and where the
exterior boundary surface of closest approach is the
shape that forms the geometric foundation for the step
of evaluating the boundary distance constraint;

where verifying that the boundary distance constraint is

satisfied between the shape of the first component and
the shape of the second component and when satisfied,
the design of the article of manufacture can be verified.

2. The claim of claim 1 where the boundary distance
constraint is that the two components do not overlap.

3. The claim of claim 1 where the boundary distance
constraint is that the two components overlap by a fixed
distance.

4. The claim of claim 1 where the boundary distance
constraint is that the two components abut.

5. The claim of claim 1 where the boundary distance
constraint is that the two components are no closer than a
fixed distance.

6. A non-transitory program storage device readable by a
computing device that tangibly embodies a program of
instructions executable by the computing device to perform
a method to verify the design of an article of manufacture
that further comprises two or more components of the article
and that uses a software program executing on a workstation
that should satisfy the analytical representation of the
boundary distance constraint between the shapes of two
components during the verification of the design of the
article of manufacture, comprising:

providing a software program executing on a workstation,

the workstation includes a processor, memory, and
storage, the software program executes the following
steps:

providing the shape of a first component and providing

the shape of a second component;

providing a boundary distance constraint, the boundary

distance constraint specifies the desired geometric rela-
tionship to be verified between the shape of the first
component and the shape of the second component;
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constructing a shape spectrum of the exterior boundary
surface of closest approach associated with the shape of
the first component, the shape of the second compo-
nent, and the boundary distance constraint, where the
shape spectrum is an analytical representation of the
boundary surface of closest approach and forms the
analytical foundation for verifying the boundary dis-
tance constraint;

verifying that the arrangement of the shape of the first

component and the shape of the second component
satisfy the boundary distance constraint;

evaluating a subderivative of the shape spectrum of the

exterior boundary surface of closest approach associ-
ated with the shape of the first component, the shape of
the second component, and the boundary distance
constraint, where the subderivative is used in the evalu-
ation of the boundary distance constraint and where the
exterior boundary surface of closest approach is the
shape that forms the geometric foundation for the step
of evaluating the boundary distance constraint;

where verifying that the boundary distance constraint is

satisfied between the shape of the first component and
the shape of the second component and when satisfied,
the design of the article of manufacture can be verified.

7. The claim of claim 6 where the boundary distance
constraint is that the two components do not overlap.

8. The claim of claim 6 where the boundary distance
constraint is that the two components overlap by a fixed
distance.

9. The claim of claim 6 where the boundary distance
constraint is that the two components abut.

10. The claim of claim 6 where the boundary distance
constraint is that the two components are no closer than a
fixed distance.

11. A product made by the method to verify the design of
an article of manufacture that further comprises two or more
components of the article and that uses a software program
executing on a workstation that should satisfy the analytical
representation of the boundary distance constraint between
the shapes of two components during the verification of the
design of the article of manufacture, comprising:

providing a software program executing on a workstation,

the workstation includes a processor, memory, and
storage, the software program executes the following
steps:
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providing the shape of a first component and providing
the shape of a second component;

providing a boundary distance constraint, the boundary
distance constraint specifies the desired geometric rela-
tionship to be verified between the shape of the first
component and the shape of the second component;

constructing a shape spectrum of the exterior boundary
surface of closest approach associated with the shape of
the first component, the shape of the second compo-
nent, and the boundary distance constraint, where the
shape spectrum is an analytical representation of the
boundary surface of closest approach and forms the
analytical foundation for verifying the boundary dis-
tance constraint;

verifying that the arrangement of the shape of the first
component and the shape of the second component
satisfy the boundary distance constraint;

evaluating a subderivative of the shape spectrum of the
exterior boundary surface of closest approach associ-
ated with the shape of the first component, the shape of
the second component, and the boundary distance
constraint, where the subderivative is used in the evalu-
ation of the boundary distance constraint and where the
exterior boundary surface of closest approach is the
shape that forms the geometric foundation for the step
of evaluating the boundary distance constraint;

where verifying that the boundary distance constraint is
satisfied between the shape of the first component and
the shape of the second component and when satisfied,
the design of the article of manufacture can be verified.

12. The claim of claim 11 where the boundary distance
constraint is that the two components do not overlap.

13. The claim of claim 11 where the boundary distance
constraint is that the two components overlap by a fixed
distance.

14. The claim of claim 11 where the boundary distance
constraint is that the two components abut.

15. The claim of claim 11 where the boundary distance
constraint is that the two components are no closer than a
fixed distance.



