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(57) ABSTRACT

Systems and methods for tuning hyperparameters of a model
includes: receiving a multi-criteria tuning work request for
tuning hyperparameters of the model of the subscriber to the
remote tuning service, wherein the multi-criteria tuning
work request includes: a first objective function of the model
to be optimized by the remote tuning service; a second
objective function to be optimized by the remote tuning
service, the second objective function being distinct from
the first objective function; computing a joint tuning func-
tion based on a combination of the first objective function
and the second objective function; executing a tuning opera-
tion of the hyperparameters for the model based on a tuning
of the joint function; and identifying one or more proposed
hyperparameter values based on one or more hyperparam-
eter-based points along a convex Pareto optimal curve.
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SYSTEMS AND METHODS FOR
IMPLEMENTING AN INTELLIGENT
MACHINE LEARNING OPTIMIZATION
PLATFORM FOR MULTIPLE TUNING
CRITERIA

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/696,355, filed 26 Nov. 2019, which
is a continuation of U.S. Pat. No. 10,528,891, filed on 31 Jul.
2019, which claims the benefit of U.S. Provisional Appli-
cation No. 62/721,718, filed 23 Aug. 2018, which are
incorporated herein in their entireties by this reference.

TECHNICAL FIELD

[0002] The inventions relate generally to the computer
optimization and machine learning fields, and more specifi-
cally to a new and useful application program interface and
intelligent hyperparameter optimization in the computer
optimization and machine learning fields.

BACKGROUND

[0003] Modern machine learning capabilities are rapidly
changing and improving how some of the most complex and
data-intensive computing problems are solved. A perfor-
mance of a machine learning model is governed mainly in
the manner(s) in which the machine learning model is
trained using data samples as machine learning training
input and based on the hyperparameters of the machine
learning model set prior to the training of the model. As
referenced in passing the hyperparameters of the machine
learning models are parameters whose values are set prior to
the commencement of the machine learning process rather
than derived by the machine learning model during training.
Example include the number of trees in a random forest or
the number of hidden layers in a deep neural net. Adjusting
the values of the hyperparameters of a machine learning
model by any amount typically results in a large impact on
a performance of the machine learning model.

[0004] However, many existing machine learning models
are not implemented with optimal hyperparameters well-
suited for achieving the best predictive performances.
Rather, the many existing machine learning models are
implemented with default hyperparameters that have not
been optimized for a specific computing problem for which
the machine learning models are being used.

[0005] Additionally, any existing system that enables opti-
mization of hyperparameters of a machine learning model
typically includes an extremely complex interface that may
require significant coding capabilities and comprehension of
the underlying software and hardware components of the
system. Thus, making it difficult to efficiently and effectively
enable optimizations and subsequent improvements of the
machine learning models.

[0006] Thus, there is a need in the machine learning field
to create an improved optimization platform to test and
improve machine learning models (e.g., in-product machine
learning models) and an associated Application Program
Interface that enables developers to efficiently and effec-
tively interact with a robust system implementing the evalu-
ation framework. The embodiments of the present applica-
tion described herein provide technical solutions that
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address, at least, the need described above, as well as the
technical deficiencies of the state of the art described
throughout the present application.

BRIEF DESCRIPTION OF THE FIGURES

[0007] FIG. 1 illustrates a schematic representation of a
system in accordance with one or more embodiments of the
present application;

[0008] FIG. 2 illustrates a method for multi-criteria opti-
mization in accordance with one or more embodiments of
the present application;

[0009] FIG. 2A illustrates a variant method for multi-
criteria optimization in accordance with one or more
embodiments of the present application;

[0010] FIG. 3 illustrates a schematic representation of a
system for implementing an intelligent API in accordance
with one or more embodiments of the present application;
[0011] FIG. 4 illustrates schematic representation of a
mixed system and process flow for implementing an intel-
ligent optimization platform in accordance with one or more
embodiments of the present application;

[0012] FIG. 5 illustrates a schematic representation of
multi-criteria optimization of a scalarization having a con-
vex frontier in accordance with one or more embodiments of
the present application; and

[0013] FIG. 6 illustrates a schematic representation of
multi-criteria optimization of a scalarization having a non-
convex frontier in accordance with one or more embodi-
ments of the present application.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0014] The following description of the preferred embodi-
ments of the present application are not intended to limit the
inventions to these preferred embodiments, but rather to
enable any person skilled in the art to make and use these
inventions.

Overview

[0015] As discussed above, existing machine learning
models tend to lack in predictive performance as well as
speed in computation due to a lack of optimal hyperparam-
eters used in the machine learning models during training.
The lack of optimized hyperparameters well-suited to an
underlying computing problem or the like adversely affect
the computational capabilities of the machine learning
model, in that, the resulting predictions or solutions of the
model may not be accurate and the speed of computation of
the machine learning model may be slow because the
un-optimized or poorly optimized hyperparameters of the
model may result in an increased workload (e.g., increased
required computer processing, increased required data stor-
age, etc.) to the computing system implementing the model
and thereby resulting in many efficiencies therein.

[0016] Additionally, even in the circumstance that an
attempt is made to optimize some of the hyperparameters of
a machine learning model, the attempt to optimize the
hyperparameters may fail due to many common optimiza-
tion errors including: using inappropriate metrics and
assumptions to test hyperparameters of an associated
machine learning model or the like; overfitting a machine
learning model during training that often results in a poor fit
of the model to out of sample data or unseen data; using too
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few hyperparameters and failing to optimize all hyperpa-
rameters of a machine learning model; unskilled or improper
hand-tuning, which is a highly inefficient optimization strat-
egy at which humans are poor at performing high dimen-
sional, non-convex optimization; grid searching over a space
of possible hyperparameters which may grow the number of
times a machine learning model must be evaluated due to an
increase in dimensionality (i.e., increased hyperparameters);
random searching which uses no intelligence in the optimi-
zation method and may result in unnecessarily high vari-
ance.

[0017] Accordingly, unintelligent optimization attempts of
hyperparameters (or other model parameters) may result in
high computational costs (e.g., high computer processing
resources expenditures, etc.).

[0018] The embodiments of the present application, how-
ever, provide an intelligent optimization platform that func-
tions to optimize hyperparameters and/or parameters of any
type of model with significantly fewer evaluation thereby
saving computational resources while greatly improving an
overall performance of a model. In embodiments of the
present application, the intelligent optimization platform
includes an ensemble of parameter optimization models,
which may include a combination of several distinct
machine learning models and Bayesian optimization algo-
rithms that may work in selective combinations to expedi-
ently tune hyperparameters or various parameters of com-
plex external systems, simulations, and models.

[0019] Further, the embodiments of the present applica-
tion include an intuitive and simplified Application Pro-
gramming Interface (API) that enables users and/or devel-
opers to easily configure a work request, such as a
hyperparameter optimization work request. A hyperparam-
eter optimization work request as referred to herein gener-
ally relates to a request to optimize one or more hyperpa-
rameters of a model. The hyperparameter optimization work
request may include an identification of the hyperparameters
a user desires to optimize together with constraints or
parameters required for experimenting or performing opti-
mization trials using the system and/or methods described
herein. The optimization work request may generally be
generated using an API of the system 100, as described
below. In a preferred embodiment, the optimization work
request functions to trigger an operation of the intelligent
optimization platform performing computations using the
hyperparameters of the optimization work request. Addi-
tionally, in embodiments of the present application, using a
limited number of simplified API calls, it is possible to
integrate the sophisticated ensemble of Bayesian optimiza-
tion techniques of the intelligent optimization platform to
augment an existing machine learning pipeline.

[0020] Collaboratively, the intelligent optimization plat-
form preferably functions to improve the computational
capabilities of a machine learning model, such that the
machine learning model performs at high levels of accuracy
and further, computes predictions, suggestions, and other
outcomes faster (e.g., up to one hundred times faster or more
improvement in machine learning models, etc.) than un-
optimized or poorly optimized machine learning models or
other models. This, in turn, improves the functionality and
operational speed and efficiency of the underlying comput-
ing system executing the machine learning model or other
model.
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1. System for Implementing an Intelligent API

[0021] As shown in FIG. 1, a system 100 includes an
intelligent application program interface (API) 105, an intel-
ligent model optimization platform 110, a plurality of queue
working machines 120, a platform database 130, a shared
work queue 135, and an ensemble of optimization models
140.

[0022] The system 100 preferably implements an intelli-
gent model optimization platform no including an ensemble
of Bayesian optimization processes and machine learning
techniques that functions to automate an optimization of
features of a model, architecture of a model, and hyperpa-
rameters of a model using an ensemble of Bayesian opti-
mization techniques, as described in U.S. Patent Application
Ser. No. 15/977,168, which is incorporated herein in its
entirety by this reference.

[0023] The system 100 functions to implement an intelli-
gent Application Program Interface (API) 105, as described
in U.S. Patent Application No. 62/578,886, which is incor-
porated herein in its entirety by this reference, for interacting
and implementing complex optimization trials via the
remote intelligent optimization platform 110. The API 105
may be specifically designed to include a limited number of
API endpoints that reduce of complexity in creating an
optimization work request, implementing optimization trials
using the work request data, obtaining suggestions and/or
results of the optimization trials, and potentially implement-
ing an optimization feedback loop until a suitable optimi-
zation of an objective function of the work request is
achieved in a minimal amount of time. The optimization
work request, as referred to herein, generally relates to an
API request that includes one or more hyperparameters that
auser is seeking to optimize and one or more constraints that
the user desires for the optimization trials performed by the
intelligent optimization platform 110.

[0024] In a preferred embodiment, the API 105 comprises
a Representational State Transfer (ReST) API that relies
mainly on a stateless, client-server, cacheable communica-
tions protocol and in many cases, the Rest API uses the
HTTP protocol in connecting and interacting with software
applications over the web and cloud (distributed network
systems) services efficiently.

[0025] The API 105 may additionally be configured with
logic that enables the API 105 to intelligently parse optimi-
zation work request data and/or augment the optimization
work request data with metadata prior to passing the opti-
mization work request to the shared work queue 135 of the
intelligent optimization platform 110. As shown in FIG. 4, a
mixed system and process flow is provided that illustrates an
example interactions between the API 105 and one or more
components of the intelligent optimization platform 110.
[0026] The intelligent optimization platform 110 includes
the plurality of queue worker machines 120 (which may also
be referred to herein as optimization worker machines), the
platform data 130, the shared work queue 135 and the
ensemble of optimization models 140. The intelligent opti-
mization platform 110 generally functions to interact with
the API server implementing the API 105 to receive API
requests for implementing new optimization work requests
and returning responses or suggestions to the API 105. Using
the plurality of intelligent queue worker machines 120, the
intelligent optimization platform 110 functions to asynchro-
nously execute a plurality of optimization work requests in
real-time and in parallel. This asynchronous execution and
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parallel processes of the intelligent optimization system 110
provides speed in computing efficiencies in the exploration
and exploitation processes (generally, optimization) of fea-
tures, hyperparameters, models and system architectures.
[0027] As shown by way of example in FIG. 3, the system
enables a user to implement and/or interact with the API 105
in multiple ways including via an API client application
and/or via API web browser implemented over the web.
[0028] The intelligent optimization platform 110 may be
implemented using a combination of computing servers.
Preferably, the intelligent optimization platform is imple-
mented via a distributed networked computing system, such
as cloud computing systems, that allows the many processes
implemented by the intelligent optimization platform 110 to
be implemented in parallel and among disparate computers
thereby, in some embodiments, mitigating the possibility of
failure or bottlenecking in the optimization pipeline of the
intelligent optimization platform 110. Accordingly, the intel-
ligent optimization platform 110 may be implemented as a
remote web service accessible by multiple clients over the
Internet, the Web, or any suitable communication network
(e.g., a global area network, a wide area network, a local area
network, etc.) that may function to place disparate comput-
ing resources in operable connection and communication.
[0029] The plurality of intelligent queue worker machines
120 preferably relate to services operating on the intelligent
optimization platform 110 that executes code asynchro-
nously with respect to other services or queue working
machines of the platform 110. In some embodiments, each
of the plurality of intelligent queue worker machines 120
functions to selectively trigger one or more optimization
requests to one or more optimization engines of the
ensemble of optimization engines 140. And, once the work
on the optimization request is completed by the selected
optimization engine(s), the queue working machine returns
the responses or results to the platform database 130.
[0030] The plurality of intelligent queue worker machines
120 may be specifically configured with logic that enables
each of the machines 120 to make dynamic and intelligent
decisions in the selections of an ensemble component of the
plurality of ensemble of optimization models 140. That is,
each of the plurality of intelligent queue worker machines
may function to selectively choose one or more optimization
models of the ensemble 140 to execute one or more portions
of an optimization work request.

[0031] The ensemble of optimization models 140 prefer-
ably includes a plurality of disparate optimization models
that operate to optimize hyperparameters, features, models,
system architectures and the like using varying optimization
algorithms. In a preferred embodiment, the ensemble of
optimization models 140 define a core optimization engine
of the intelligent optimization platform no. The features and
the parameters of the core optimization engine comprising
the ensemble of optimization models 140 may also be
optimized continually by one or more of the intelligent
queue worker machines 120 (e.g., using Hyperopt, etc.).
[0032] The ensemble of optimization models 140 may
include any number of models including, for example: a
Low-Discrepancy sequence model, a Metric Optimization
Engine (MOE) model (and variants thereof; e.g., MOE with
one-hot encoding), a Tree-structured Parzen Estimators
(TPE) model and variants thereof, a Latin Hypercube model,
a Swarm model, and the like. Each of these models of the
example ensemble of optimization models may function to
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encode categorical parameters differently from other mem-
ber models of the ensemble and may include some interde-
pendencies that require combinations of the models to work
together. Each of these models may be individually select-
able or selectable in combination by or using the intelligent
worker queue machines 120.

[0033] In a preferred embodiment, the plurality of intel-
ligent queue working machines 120 may be implemented on
a separate computing server than the API 105. In this way,
long-running asynchronous processes do not adversely
affect (e.g., slow down) a performance of an API computing
server and mainly, a capacity of the API computing server to
service API requests.

[0034] Additionally, the plurality of intelligent queue
worker machines 120 include multiple, distinct intelligent
queue worker machines 120 that coordinate optimization
work request from the shared work queue 135 received via
the API 105 with the ensemble of optimization models 140.
[0035] A first example intelligent queue working machine
may function to implement Modelfit or Hyperopt that typi-
cally functions to tune one or more of the hyperparameters
of the optimization models of the ensemble concurrently
with the processing of the optimization work requests
received via the API 105. In one implementation, Modelfit
or Hyperopt may be used to tune hyperparameters of one of
the optimization models of the ensemble 140. After receiv-
ing a set of observations based on the suggestions for the set
of hyperparameters, the first queue worker machine may
implement Modelfit or Hyperopt to model fit the hyperpa-
rameters of the selected optimization models in order to
generate improved and new values for the set of hyperpa-
rameters via Nextpoints or the like. A queue worker imple-
menting Nextpoints may function to predict or suggest a
new set of suggestions that include new parameter values for
a given model. In some embodiments, the first queue worker
machine may function to optimize the hyperparameters of
the selected optimization models based on an evaluation a
set of observations returned by a user.

[0036] A second example intelligent queue working
machine may function to implement Nextpoints that typi-
cally functions to generate or suggest new, optimized values
for the hyperparameters of the optimization work request.
Accordingly, such intelligent queue working machine may
function to select one or more of the optimization models of
the ensemble 140, such as one or more machine learning
models, for generating the new, optimized hyperparameter
values.

[0037] A third example intelligent queue working machine
may function to implement an Importance algorithm that
typically functions to judge or determine an importance of
the hyperparameters submitted with the optimization work
request (e.g., hyperparameters of an external model). This
example intelligent queue worker machine may additionally
function to analyze and determine an importance of features,
hyperparameters, and architectures of the optimization mod-
els with respect to a given optimization work request;
meaning the identified importance hyperparameters, fea-
tures, or the like may have a significant impact on an account
of'a suggestion or generated hyperparameter values. Accord-
ingly, the intelligent queue worker machine of such example
may function to recognize different hyperparameters and/or
features of an optimization model as being important and
non-important based on the optimization work request data
(e.g., based on the hyperparameters to be optimized). Thus,
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the intelligent queue worker machine may function to assign
or attribute distinct importance values to the hyperparam-
eters and/or features of the optimization models so that these
hyperparameters and the like may be ranked and considered
with greater weight in a correlated process, such as re-tuning
via Hyperopt or the like.

[0038] It shall be noted that the plurality of intelligent
optimization worker machines 120 may not be limited to the
above-noted examples, but rather is an extensible group of
intelligent machines that may be modified to include addi-
tional and/or different intelligent worker machines.

[0039] The platform database 130 functions to collect and
stores any or all values generated by the system 100 includ-
ing values generated when executing an optimization work
request by the intelligent optimization platform no. Specifi-
cally, each of the plurality of intelligent queue worker
machines may function to store within the platform database
130 optimized hyperparameter values, optimized hyperpa-
rameter values of an optimization work request, suggestions,
surrogate models, partial information responses, and the
like. The API 105 may be operable communication with the
platform database 130 via a communication network and
may function to pull suggestions and/or response data via an
API call or request.

[0040] The machine learning models, optimization mod-
els, and/or the ensemble of machine learning models may
employ any suitable optimization algorithms and/or
machine learning including one or more of: supervised
learning (e.g., using logistic regression, using back propa-
gation neural networks, using random forests, decision trees,
etc.), unsupervised learning (e.g., using an Apriori algo-
rithm, using K-means clustering), semi-supervised learning,
reinforcement learning (e.g., using a Q-learning algorithm,
using temporal difference learning), and any other suitable
learning style. Each module of the plurality can implement
any one or more of: a regression algorithm (e.g., ordinary
least squares, logistic regression, stepwise regression, mul-
tivariate adaptive regression splines, locally estimated scat-
terplot smoothing, etc.), an instance-based method (e.g.,
k-nearest neighbor, learning vector quantization, self-orga-
nizing map, etc.), a regularization method (e.g., ridge regres-
sion, least absolute shrinkage and selection operator, elastic
net, etc.), a decision tree learning method (e.g., classification
and regression tree, iterative dichotomiser 3, C4.5, chi-
squared automatic interaction detection, decision stump,
random forest, multivariate adaptive regression splines, gra-
dient boosting machines, etc.), a Bayesian method (e.g.,
naive Bayes, averaged one-dependence estimators, Bayesian
belief network, etc.), a kernel method (e.g., a support vector
machine, a radial basis function, a linear discriminate analy-
sis, etc.), a clustering method (e.g., k-means clustering,
expectation maximization, etc.), an associated rule learning
algorithm (e.g., an Apriori algorithm, an Eclat algorithm,
etc.), an artificial neural network model (e.g., a Perceptron
method, a back-propagation method, a Hopfield network
method, a self-organizing map method, a learning vector
quantization method, etc.), a deep learning algorithm (e.g.,
a restricted Boltzmann machine, a deep belief network
method, a convolution network method, a stacked auto-
encoder method, etc.), a dimensionality reduction method
(e.g., principal component analysis, partial lest squares
regression, Sammon mapping, multidimensional scaling,
projection pursuit, etc.), an ensemble method (e.g., boosting,
boostrapped aggregation, AdaBoost, stacked generalization,
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gradient boosting machine method, random forest method,
etc.), and any suitable form of machine learning algorithm.
Each processing portion of the system 100 can additionally
or alternatively leverage: a probabilistic module, heuristic
module, deterministic module, or any other suitable module
leveraging any other suitable computation method, machine
learning method or combination thereof. However, any
suitable machine learning approach can otherwise be incor-
porated in the system 100. Further, any suitable model (e.g.,
machine learning, non-machine learning, etc.) can be used in
implementing the intelligent optimization platform 110 and/
or other components of the system 100.

[0041] The system 100 may additionally include a surro-
gate model generator (implemented via one or more of the
optimization models 140) that may be implemented by the
intelligent optimization platform no. Specifically, when an
API request is received by the system 100 that requests a
status or suggestions of a partially completed (or incom-
plete) optimization work request, the intelligent optimiza-
tion platform no may function to identify candidate data
points and other data (including suggested hyperparameter
values and optimized hyperparameters values) generated by
each of the plurality of intelligent queue worker machines
120 for responding to the partially completed optimization
work request and further, may trigger one or more of the
optimization models of the ensemble of optimization models
to generate a surrogate (or proxy) model that can be used to
test the uncertainty and/or the likelihood that a candidate
data point would perform well in an external model. In one
example, the system 100 may function to obtain hyperpa-
rameter values of a most recent job of a first intelligent
queue worker machine implementing Hyperopt and cause
one of the optimization models 140, such as MOE, to
generate the surrogate model using the hyperparameter
values to test how well the candidate hyperparameter value
data points may perform.

[0042] The system Dm may also implement a ranking
system 155 that functions to rank multiple suggestions for a
given optimization work request (or across multiple optimi-
zation work requests for a given user) such that the sugges-
tions having hyperparameter values most likely to perform
the best can be passed or pulled via the API 105. The ranking
system 155 may be implemented in any suitable manner
including by the one or more optimization algorithms of the
ensemble 140 that generated the suggestions. For instance,
if MOE is used to generate a plurality of suggestions for
responding to an optimization work request, the system 100
may function to use MOE to implement the ranking system
155.

[0043] It shall be noted that the sub-systems and compo-
nents of the system 100 may be connected or placed in
operable communication using any suitable network and any
suitable manner. For instance, the components of the system
100 may be connected directly or indirectly over a network.
The network may include any public (e.g., the Internet) or
private network (e.g., intranet), a virtual private network, a
wireless local area network, a local area network, a wide
area network, a wireless wide area network, a global area
network, a cellular network, any combination of the afore-
mentioned and the like.

2. Method for Multiple Criteria Optimization Using an
Intelligent Optimization Platform
2.1 Convex Frontier

[0044] As shown in FIG. 2, a method 200 for multi-criteria
optimization by implementing an intelligent optimization
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platform includes receiving an optimization work request
S210, configuring a scalarized function for multiple objec-
tive functions of a machine learning model S220, optimizing
the scalarized function S230, identifying Pareto optimal
solutions for the scalarized function of the machine learning
model S240, and tuning and/or implementing the machine
learning model S250.

[0045] The method 200 generally functions to enable a
generation of Pareto optimal solution sets for optimizing
competing performance objective functions of a machine
learning model. For instance, it may be an objective or desire
to improve, at a same time, one or more of an accuracy, an
error rate, validation loss, sparsity, an efficiency (speed of
prediction or inference), and/or the like for a given machine
learning model. However, in many instances, if one perfor-
mance objective, such as accuracy is improved, a second
objective, such as predictive efficiency or speed, may be
diminished or degraded for the machine learning model.
Thus, in such instances, there may be significant tradeoffs in
performance of disparate objectives when they are opti-
mized independently.

[0046] Accordingly, in one or more embodiments, the
method 200 may function to recognize competing perfor-
mance objectives of a machine learning model in which an
apparent inverse or divergent optimization relationship may
exist between two distinct and/or competing performance
objectives of the machine learning model. The method 200
may function to overcome this divergent optimization sce-
nario by implementing one or more techniques that enables
a joint optimization of competing performance objectives of
a machine learning model that further enables a determina-
tion of hyperparameter values that optimizes both of the
competing objective functions and consequently, the subject
machine learning model along both of the competing per-
formance objectives, as described in more detail below.
[0047] Additionally, the method 200 may configure an
intelligent optimization platform, in response to input values
provided via an intelligent Application Program Interface
(API), such that the intelligent optimization platform gen-
erates multiple Pareto optimal suggestions for hyperparam-
eter values of competing objective functions of a scalarized
function. In the context of the present application, a Pareto
optimal solution for a given scalarized function and/or
convex combination for a machine learning model generally
relates to a solution that is not strictly more optimal than
another Pareto optimal solution. That is, the Pareto optimal
solutions identified along the Pareto-efficient frontier define
a set of solutions where a first and second competing
objective may be improved without sacrificing either objec-
tive.

[0048] S210, which includes receiving an optimization
work request, functions to receive an optimization work
request comprising a multi-criteria optimization work
request via an intelligent API. The multi-criteria optimiza-
tion work request may be referred to herein as a multi-
criteria tuning work request. Preferably, a multi-criteria
optimization work request relates to an optimization request
made to the intelligent optimization platform that requires
the optimization of two or more criterion and/or two or more
objective functions (or metrics) of a single machine learning
model rather than an optimization of one objective function
of a single model. The intelligent API may be implemented
as a client application on a client device, such as a web
browser, or any suitable interface accessible to a remote user
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system. Within the intelligent API, the remote user may be
able to create or define the multi-criteria optimization work
request (or experiment) by providing one or more details of
the objective functions or performance objectives that a user
desires to optimize, hyperparameters and/or other features of
machine learning model along with constraints (e.g., opti-
mization budgets, bounds, etc.) for performing the optimi-
zation trials by the intelligent optimization platform.
[0049] Accordingly, in some embodiments, a multi-crite-
ria optimization work request may include an identification
of at least a first metric (e.g., predictive accuracy) of a
machine learning model and a second metric (e.g., predictive
efficiency/speed) of the machine learning model that a user
desires to optimize. In such embodiments, each of the first
metric and the second metric may be represented as a
two-dimensional objective function, e.g., f1(x, y) and f2(x,
y), respectively. In one example, the variables x and y of
each of the objective functions f1 and f2 represent prospec-
tive objective function values, which may both take values
in a range in the continuous interval of 0 to 1 (i.e., [0, 1]),
and “x” and “y” may represent possible hyperparameter
values that may operate to optimize fl and 12, respectively.
It shall be noted that, while in a preferred embodiment, the
method 200 functions to implement two-dimensional objec-
tive functions, any value of multi-dimensional objective
functions including, but not limited to, three-dimensional
objective functions (e.g., X, y, z) may be implemented.
[0050] Optionally, S215, which includes preprocessing a
multi-criteria optimization work request, functions to per-
form a preliminary evaluation of the two or more objective
functions of the multi-criteria optimization work request to
determine whether the two or more objective functions for
a given machine learning model compete or diverge in
performance when provided a random sample of objective
function values for each of the two or more objective
functions. In some embodiments, the random values for each
of the two or more objective functions may be generated
using a low-discrepancy optimization source that may func-
tion to populate and/or compute random possible values for
each of the functions.

[0051] Accordingly, S215 may function to validate
whether the objective functions identified within an optimi-
zation work request compete. That is, in some embodiments,
S215 may function to validate the divergence or competition
between distinct objective functions of a given model based
on similarities or differences in the outputs of the distinct
objective functions based on similar or same input. The
input into the objective functions may be selected from
possible hyperparameter values for each of the distinct
objectives. In one or more embodiments, if S215 determines
that two or more of the objective functions compete, S215
may function to trigger a signal for switching or selecting an
optimization mode of an intelligent optimization platform
that performs an optimization of the contending objective
functions, as described herein.

[0052] S220, which includes computing a new joint objec-
tive function based on the two or more competing objective
functions, preferably functions to generate a scalarized func-
tion based on the two or more competing objective functions
identified in the multi-criteria optimization work request. As
referred to herein, a scalarization of the two or more
competing objective functions preferably relates to a cre-
ation of a single, joint objective function that combines the
two or more competing objective functions of a given model
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in a manner that enables a joint and/or simultaneous opti-
mization of each of the two or more competing objective
functions using a single equation.

[0053] Referring again to the example above, the two
example competing objective functions, fl1(x, y) and f2(x,
y), maybe scalarized into a single, joint objective function
represented as g (X, y)=X*{1(x, y)+({-A)*{2(x, y), where the
new, joint objective function that is optimized may be g (x,
y). Effectively, the scalarization combines at least two two-
dimensional competing objective functions into a single,
combined convex combination having two dimensions. The
convex combination preferably defines an interplay between
the two or more competing objective functions. Specifically,
the interplay between the two or more competing objective
functions revealed by the convex combination function may
include a Pareto optimal solution along a frontier curve of
points (i.e., possible solutions to the scalarized function)
having generally a convex shape. Accordingly, the scalar-
ized function g may sometimes be referred to herein as a
convex combination of f1 and f2. Still with respect to such
example, a weighting or a tuning factor represented by
lambda () may be constrained as follows: 0<X<1, in some
embodiments. The lambda value X may function to set a
hyperplane and/or direction of optimization. The lambda
values may generally enable a sweeping search for Pareto
optimal values or define regions of search. Accordingly,
lambda may function as a weighting value that may enable
greater or lesser optimization emphasis of either fl or 2
when its value is increased or decreased. For example, in the
scalarized function, g (x, y)=A*fl1(x, y)+({-M)*f2(x, y), a
larger lambda value law indicate a greater emphasis on the
objective function fl and a lesser emphasis on second
objective function f2. Conversely, a smaller lambda value
may indicate a lesser emphasis on fl and a greater emphasis
on f2. Accordingly, during an optimization and/or a tuning
of the scalarized function as described in more detail in
S230, the method 200 may function to adjust values for X
together with providing values for “x” and “y”.

[0054] Once a scalarized function is defined for the two or
more competing objective functions of a machine learning
model, S220 may function to provide the scalarized function
as optimization input into the one or more optimization
sources of the intelligent optimization platform. That is, in
one or more embodiments, the intelligent optimization plat-
form may function to optimize the objective functions of the
scalarization g (X, y). For instance, S220 may function to
perform and/or execute tuning operations that operate to
identify potential hyperparameter values (i.e., “x” and “y”)
for a given scalarized function, as described in U.S. Pat.
Nos. 10,217,061 and 10,282,237, which are both incorpo-
rated herein in their entireties by this reference.

[0055] S230, which includes optimizing the scalarized
function, functions to configure the optimization settings of
the intelligent optimization platform to enable optimization
of the scalarized function for optimizing a given machine
learning model. In some embodiments, a basic configuration
of the intelligent optimization platform includes settings for
optimization of a single objective function that may typi-
cally be a two-dimensional objective function. However, in
the circumstances in which a multi-criteria optimization
work request is received or detected (e.g., S215), S230 may
function to switch or convert an optimization mode of the
intelligent optimization platform from a first optimization
mode (e.g., for optimizing a single objective function) to a
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second optimization mode for optimizing a generated sca-
larization function based on a multi-criteria optimization
work request and/or based on a received optimization mode
selecting or switching signal (as provided by S215).
[0056] S230 may additionally or alternatively include
S231, which includes implementing a first optimization
phase of the objective functions of the scalarized function of
a machine learning model, functions to provide one or more
parameters of the scalarized function as input into a first
optimization source of the intelligent optimization platform.
For instance, S231 may function to provide a minimum and
maximum value for each of the two objective functions that
define the scalarized function. In this first optimization
phase, S231 preferably functions to explore a number of
possible values for the objective functions of the scalarized
function bounded between an upper and lower bound
defined in the multi-criteria optimization work request. That
is, S231 may function to (randomly) populate a field of
potential values for each of the objective functions of the
scalarized function according to one or more predetermined
evaluation or testing constraints.

[0057] Accordingly, S231 may function to allocate a first
portion (e.g., 20% of optimization budget) of an optimiza-
tion budget (as further defined in the multi-criteria optimi-
zation work request) to a low-discrepancy optimization
source or the like of the intelligent optimization platform. In
turn, the low-discrepancy optimization source may function
to generate random values for the objective functions (e.g.,
values of x and y for g (x, y)) of the scalarized function that,
in some embodiments, may be represented along a two-
dimensional plane (f1-12), as shown by example, in FIG. 5.
A random distribution of values for the objective functions
of the scalarized function may, therefore, be identified in
S231.

[0058] S230 may additionally or alternatively include
S233, which includes implementing a second optimization
phase of the objective functions of the scalarized function,
functions to provide the scalarized function (as defined in
S220) as input into a second optimization source of the
intelligent optimization platform. In this second optimiza-
tion phase, S233 may function to optimize values of the
objective functions of the scalarized function by incremen-
tally adjusting the scalarized function by changing a lambda
value. That is, in one example, S233 may function to
incrementally adjust values of lambda, X, in a sweeping
fashion (or any suitable manner) between the constraints cfo
and 1 to generate Pareto optimal solutions sets along a
Pareto-efficient frontier that may be illustrated as a convex
frontier. In such example, as a lambda value of the scalarized
function is incrementally adjusted or changed, S230 may
function to use the second optimization source to identify
and/or generate optimal hyperparameter values for the sca-
larized function at each given lambda setting and/or value.
In this example, S230 may function to test each of the
random objective function values generated by the low-
discrepancy optimization source or the like within a space or
region defined by a selected lambda value.

[0059] In this second optimization phase, S233 may first
function to allocate a second portion (e.g., 60% of optimi-
zation budget) of an optimization budget to the second
optimization source of the intelligent optimization. Prefer-
ably, S233 allocates a larger portion of the optimization
budget to the second optimization phase relative to the first
optimization phase (and a third optimization described fur-



US 2020/0302342 Al

ther below). In some embodiments, a technical advantage of
allocating a larger optimization (or testing) budget to the
second optimization phase enables a well-developed Pareto-
efficient frontier that represents a number of objective func-
tion values for the scalarized function that jointly optimizes
each of the two competing objective functions. Accordingly,
depending on a desired performance of a machine learning
model, a selection of an ordered pair of objective function
values along the Pareto-efficient frontier for the scalarized
function should yield an optimal performance of each of the
two competing objective functions of the machine learning
model.

[0060] As shown in FIG. 5, S233 may function to identify
a frontier (e.g., a Pareto optimal frontier) by dividing the
lambda value of the scalarized function into equal parts (e.g.,
six equal parts or the like), in one or more embodiments, and
sweeping the lambda values between each of the resulting
sections of the Pareto optimal frontier. For example, if a
range of lambda is between 0 and 1, [0,1], S233 may
function to partition the values of lambda into four equal
sections (e.g., 0-0.25, 0.26-0.50, 0.51-0.75, and 0.76-1).
Specifically, in some embodiments, once the range of
lambda values of the scalarized function is divided into
equal parts, S233 may function to incrementally adjust the
lambda value of the scalarized function within each section
or sub-range and use the second optimization source to
generate or identify objective function values for the sca-
larized function within each distinct subsection. Accord-
ingly, after each incremental adjustment of the lambda value
of the scalarized function within a divided lambda segment,
the adjusted scalarized function may be provided as input
into the second optimization source for generating or iden-
tifying objective function values (i.e., new ordered pairs of
x and y values for g (X, y)) or new points for the scalarized
function. It shall be noted that while S233 may preferably
function to subdivide the total range of lambda values into
equal parts, S233 may alternatively divide the total range of
lambda values in any suitable manner, including unequally,
randomly, or other predetermined manner. For instance, in
some embodiments, failure regions for a given scalarized
function may be known. In such instance, less or no opti-
mization resources may be allocated to such failure regions
by diminishing a lambda-determined search region or by
eliminating the region from an optimization search all
together. That is, S233 may function to exclude one or more
values for lambda in which it may be known or in which
there is a probability that corresponding hyperparameter
values associated with a region of search set by the one or
more lambda values may fail to optimize the scalarized
function.

[0061] In this second optimization phase, which may also
be referred to herein as the lambda sweeping phase, S233
functions to define a frontier of Pareto optimal values for the
scalarization function by sweeping (e.g., incrementally
adjusting a lambda value from in a range of Oto 1 or 1 to 0
or the like). Preferably, each point on the frontier includes an
ordered pair of the objective functions achievable by the
machine learning model. It shall be noted that the Pareto-
optimal solutions may not necessarily be unique, as there
can be multiple input combinations of objective function
values x and y that achieve a desired accuracy of 0.8 and
efficiency of 0.2, for example. In some embodiments, the
resultant Pareto optimal frontier may typically define a
convex arc with a plurality of Pareto optimal values defining
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the frontier and also, surrounding lower and upper sections
of the frontier and with some Pareto optimal values falling
on or around the frontier arc.

[0062] S230 may additionally or alternatively include
S235, which includes implementing a third optimization
phase of the objective functions of the scalarized function,
functions to provide the scalarized function as input into the
second optimization source of the intelligent optimization
platform. In this third optimization phase, S235 may func-
tion to optimize objective function values of the scalarized
function by using extreme values for lambda (e.g., 0 or near
0 values and 1 or near 1 values). That is, S235 may function
to select and/or adjust the lambda values of the scalarized
function to lambda values near or at an upper bound of
lambda (e.g., 1) and lambda values near or at a lower bound
of lambda (e.g., 0). In this way, S235 may function to
populate the two edges of the Pareto optimal frontier with
optimized objective function values for the scalarized func-
tion. Accordingly, the best possible Pareto optimal solutions
that best optimizes each of the respective two or more
competing objective functions may be represented along the
frontier.

[0063] S240, which includes identifying Pareto optimal
solutions for the objective functions of the scalarized func-
tion, functions to construct a graphical representation based
on a plurality of pairings of objective function values (e.g.,
X, y values for g (%, y)) generated for the scalarized function.
The graphical representation preferably includes a distribu-
tion of points defined by the plurality of pairings of objective
function values for the scalarized function. Additionally, or
alternatively, the graphical representation of the generated
objective function values for the scalarized function prefer-
ably has two dimensions in which a first axis may represent
values for a first objective function (e.g., fl (accuracy)) and
a second axis may represent values for a second objective
function (e.g., f2 (sparsity)) for a given machine learning
model.

[0064] Within the graphical representation or the like,
S240 may, additionally or alternatively, function to identify
dominating points within the distribution of points or objec-
tive function values that would outperform suboptimal
points. S240 may function to identify dominating points in
any suitable manner including, but not limited to, identifying
clusters and/or areas along the frontier curve having a high
density of points. S240 may function to use the identified
dominating points to define a frontier curve along which the
Pareto optimal solutions for the scalarized function may be
found. In one or more embodiments, depending on an input
of'a lambda (or desired relative importance of the competing
objective functions of the convex combination), S240 may
function to identify or select objective function values along
the frontier curve and return the hyperparameter values that
achieve the Pareto optimal objective function values, as
suggestions via the intelligent API.

[0065] S250, which includes tuning a machine learning
model, functions to use the generated or suggested identified
hyperparameter values (derived from a selected Pareto opti-
mal objective function values) for the scalarized function to
tune and/or otherwise, adjust the machine learning model. In
this regard, in one or more embodiments, the identified
hyperparameter values for the scalarized function may func-
tion to dually optimize both of the competing objective
functions of the given machine learning model. That is,
Pareto optimal hyperparameter values may function to



US 2020/0302342 Al

improve a performance of a first objective function while
also improving and/or without sacrificing a performance of
a second, competing objective function of the machine
learning model.

2.2 Non-Convex Frontier (Epsilon Constraint Method)

[0066] In some circumstances, it may be determined that
a best fit curve or a frontier curve of the Pareto optimal
values for a given scalarization function may not be convex.
In these circumstances, implementing an optimization for
the Pareto optimal values of a scalarized function by forcing
a convex frontier curve onto the objective function values
may result in a misidentification of a number of Pareto
optimal values for the scalarized function. Accordingly, in a
variant of the method 200, S220 may function to configure
the intelligent optimization platform into a new optimization
mode (e.g., a third mode, epsilon constraint optimization
mode) that enables the optimization of a conditionally
constrained joint function in which a best fit curve of the
Pareto optimal values may not be a convex curve.

[0067] Optionally, as a result of one or more measures or
preliminary evaluations of two or more objective functions
of an optimization work request, S215 may function to
generate a signal indicating that two or more of the objective
functions of a given machine learning model compete or
diverge, when independently optimized (or potentially
jointly optimized), and further, indicate an approximation of
a type of Pareto optimal curve for a prospective scalarized
function of a combination of the two or more competing
objective functions or a conditionally constrained joint
(combination) function of the two or more competing objec-
tive functions. Accordingly, in the circumstances that S215
may approximate a non-convex frontier curve for the pro-
spective joint function, S215 may trigger the epsilon con-
straint optimization mode of the intelligent optimization
platform.

[0068] Inavariant of 220, S220 may function to configure
and/or compute a new conditionally constrained joint func-
tion for optimizing the two or more competing objective
functions of multi-criteria optimization work request. Pref-
erably, the new conditionally constrained joint function
enables the intelligent optimization platform to optimize a
first of the two competing objectives of a single machine
learning model subject to a second of the two competing
objective functions. S220 may additionally or alternatively
function to configure a conditionally constrained joint func-
tion in which the second of the two competing objectives is
made subject to the first of the two competing objective
functions.

[0069] As an example, in some embodiments, S220 may
function to formulate a conditionally constrained joint func-
tion of at least two of the two or more competing objective
functions of a multi-criteria optimization work request as
follows:

Maximize f1(x,y)

Subject to: f2(x,y)>=el,e2,e3, ... eN

[0070] In this example, the method 200 may function to
optimize the objective function fl subject to one or more
epsilon constraints derived from the objective function f2.
[0071] Inavariant of S231, S231 may function to populate
or generate, via a low-discrepancy optimization source or
the like, a random distribution of values for the objective
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functions of the conditionally constrained joint function. In
some embodiments, the low discrepancy distribution of
objective function values of the conditionally constrained
joint function may be generated in S231 and reverted back
to processes in S230 in a further optimization mode deci-
sioning or optimization mode selection step. Based on an
approximate best fit curve of the objective function values of
the conditionally constrained joint function produced by the
low discrepancy optimization source, S230 may function to
switch a mode of the intelligent optimization source from a
single criteria optimization or a basic multi-criteria optimi-
zation mode to a multi-criteria optimization/epsilon con-
straint mode.

[0072] In this variant as shown by way of example in FIG.
2A, S230 may additionally or alternatively include S237,
which includes deriving epsilon constraint values based on
segmenting values of the second objective function. In one
embodiment, S237 may function to identify epsilon con-
straint values by selecting segments or regions along an axis
defined by the second objective function (e.g., £2). In one
implementation, S230 may function to identify epsilon
constraint values by dividing a range of the second objective
function (e.g., f2) into plurality of different epsilon con-
straint levels (e.g., multiple epsilon values, e1-e6 . . . ). In
performing the segmentation of the second objective func-
tion, a maximum and a minimum value of the second
objective function may typically be required such that the
epsilon constrain levels exist between the maximum and
minimum values of the second objective function. In some
embodiments, S237 may consider the observed maximum
value and the minimum value of the second objective
function of the values generated by the low discrepancy
optimization source as the maximum and the minimum
values of the second objective function. Additionally, or
alternatively, in some embodiments, the maximum and
minimum values of the second objective function may be
provided along with the multi-criteria optimization work
request.

[0073] In a second implementation, S237 may function to
identify epsilon constraint values or levels based on the
second objective function based on predetermined and/or
known failure regions for the second objective function. In
this regard, S237 may function to set one or more of the
epsilon constrain values solely based on the identified region
in which the second objective function cannot be optimized
along with the first objective function. That is, these failure
regions include regions in which one or more of the second
objective function or the first objective function is degraded
when the other of the two competing objective functions is
optimized.

[0074] Further with respect to this variant, S230 may
additionally or alternatively include S239, which functions
to progressively set epsilon constraint values for optimizing
the first objective function. In one embodiment, S239 func-
tions to use the epsilon constraint values, preferably derived
from the second objective function, to progressively set
exploration and/or optimization regions for the first objec-
tive function, as shown by way of example in FIG. 6.
[0075] In use, S239 may function to set a first epsilon
constraint value (e.g., €1) and provide the first epsilon
constraint value and the conditionally constrained joint
function as optimization input into the second optimization
source of the intelligent optimization platform. By setting
the first epsilon constraint value, S239 effectively defines or
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sets a failure region that causes the second optimization
source to optimize the objective functions of the condition-
ally constrained joint function in a region other than the
failure region. Specifically, in some embodiments, the sec-
ond optimization source may function to optimize for values
of the objective functions above the first epsilon constraint
value. Accordingly, in such embodiments, any points below
the first epsilon constraint value may be dropped by the
second optimization source as non-compliant or otherwise,
non-optimal or failing values.

[0076] It shall be noted that while setting an epsilon
constraint typically functions to set a failure region below
the identified or the selected epsilon constraint value, in one
or more different embodiments, an epsilon constraint value
may be selected or set that set a region above or laterally (to
the left or right) of the selected epsilon constraint value to
failure.

[0077] Accordingly, S239 may function to progressively
set the epsilon constraint values (e.g., €1 and onward) until
the non-convex frontier curve and the plurality cf optimized
values for the objective functions of the conditionally con-
strained joint function surrounding the non-convex frontier
curve are discovered. That is, S239 may function to discover
the dominant points of the non-convex curve associated with
the optimized conditionally constrained joint function.
[0078] S240, which includes identifying Pareto optimal
solutions for the hyperparameters of the conditionally con-
strained joint function, functions to construct a graphical
representation based on a plurality of pairings of objective
function values generated for the conditionally constrained
joint function.

[0079] S250, which includes tuning a machine learning
model, functions to use the identified or suggested hyper-
parameter values (derived from a selected pairing of objec-
tive function values) for the conditionally constrained joint
function to tune and/or otherwise, adjust the machine learn-
ing model.

[0080] One or more instances of the method and/or pro-
cesses described herein can be performed asynchronously
(e.g., sequentially), concurrently (e.g., in parallel), or in any
other suitable order and/or using one or more instances of
the systems, elements, and/or entities described herein.
[0081] The system and methods of the preferred embodi-
ment and variations thereof can be embodied and/or imple-
mented at least in part as a machine configured to receive a
computer-readable medium storing computer-readable
instructions. The instructions are preferably executed by
computer-executable components preferably integrated with
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the system and one or more portions of the processors and/or
the controllers. The computer-readable medium can be
stored on any suitable computer-readable media such as
RAMs, ROMs, flash memory, EEPROMs, optical devices
(CD or DVD), hard drives, floppy drives, or any suitable
device. The computer-executable component is preferably a
general or application specific processor, but any suitable
dedicated hardware or hardware/firmware combination
device can alternatively or additionally execute the instruc-
tions.
[0082] Although omitted for conciseness, the preferred
embodiments include every combination and permutation of
the implementations of the systems and methods described
herein.
[0083] As a person skilled in the art will recognize from
the previous detailed description and from the figures and
claims, modifications and changes can be made to the
preferred embodiments of the invention without departing
from the scope of this invention defined in the following
claims.

What is claimed is:

1. A system or a method for tuning hyperparameters of a
model, the system comprising:

a remote tuning service for tuning hyperparameters of a

model, wherein the remote tuning service is hosted on

a distributed network of computers that:

processes a multi-criteria tuning work request that
includes at least:

(1) a first objective function of the model to be opti-
mized by the remote tuning service;

(ii) a second objective function to be optimized by the
remote tuning service, the second objective function
being distinct from the first objective function;

computes a joint tuning function based on a combina-
tion of the first objective function of the model and
the second objective function of the model;

executes a tuning operation of the hyperparameters for
the model based on a tuning of the joint function; and

simultaneously optimizes the first objective function of
the model and the second objective function of the
model during the tuning operation;

identifies a set of proposed hyperparameter values that
simultaneously optimizes both of the first objective
function of the model and the second objective
function of the model based on a hyperparameter-
based point along an efficiency frontier.
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