
US 20210342675A1
MONT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0342675 A1

Kotler et al . (43) Pub . Date : Nov. 4 , 2021

(54) ORDERING COMPUTATIONS OF A
MACHINE LEARNING NETWORK IN A
MACHINE LEARNING ACCELERATOR FOR
EFFICIENT MEMORY USAGE

(71) Applicant : SiMa Technologies , Inc. , San Jose , CA
(US)

(72) Inventors : Reed Kotler , San Jose , CA (US) ;
Nishit Shah , Sunnyvale , CA (US)

(52) U.S. Cl .
CPC GO6N 37063 (2013.01) ; GO6N 3/08

(2013.01) ; G06N 3/04 (2013.01)
(57) ABSTRACT
A compiler efficiently manages memory usage in the
machine learning accelerator by intelligently ordering com
putations of a machine learning network . The compiler
identifies a set of partial networks of the machine learning
network representing portions of the machine learning net
work across multiple layers on which an output or set of
outputs are dependent . Because any given output may
depend on only a limited subset of intermediate outputs from
the prior layers , each partial network may include only a
small fraction of the intermediate outputs from each layer .
Instead of implementing the MLN by computing one layer
at a time , the compiler schedules instructions to sequentially
implement partial networks . As each layer of a partial
network is completed , the intermediate outputs can be
released from memory . The described technique enables
intermediate outputs to be directly streamed between pro
cessing elements of the machine learning accelerator with
out requiring large transfers to and from external memory .

(21) Appl . No .: 16 / 866,513

(22) Filed : May 4 , 2020

Publication Classification

(51) Int . Ci .
GO6N 37063
GO6N 3/04
GO6N 3/08

(2006.01)
(2006.01)
(2006.01)

input

102A

-102B

100 Machine Learning Network
- Architecture (layers , nodes ,
interconnections , operators
applied at des)
- Parameters (values of
weights , biases , parameters for
operators)

-1020

-102D
Il

output

120 ML Compiler
- Instruction set
- Known execution duration of
instructions
- Known MLA topology
Determines static schedule

150 Computer Program
- Instructions implement MLN
on MLA
- Allocation of computations to
Tiles
- Groups of Tile instructions
execute according to static
schedule

180
input

1
3 : 82A

170 Machine Learning
Accelerator (MLA)
Mesh (es) of Tiles + on - chip

memory
- Tiles execute instructions
- Data transfer paths between
Tiles , and between Tiles and
memory

3820

182B

?
output

Patent Application Publication Nov. 4 , 2021 Sheet 1 of 11 US 2021/0342675 A1

input

102A

m - 102B

100 Machine Learning Network
- Architecture (layers , nodes ,
interconnections , operators
applied at nodes)
- Parameters (values of
weights , biases , parameters for
operators)

-102C

-102D

?
output

120 ML Compiler
- Instruction set
- Known execution duration of
instructions
- Known MLA topology
Determines static schedule

A

Y

150 Computer Program
- Instructions implement MLN
on MLA
- Allocation of computations to
Tiles
- Groups of Tile instructions
execute according to static
schedule

180
input

1

182B

170 Machine Learning
Accelerator (MLA)
- Mesh (es) of Tiles + on - chip
memory
- Tiles execute instructions
Data transfer paths between

Tiles , and between Tiles and
memory

1820

182D

output

FIG . 1A

HA

152A

154X

deterministic phase 152B

154Y

deterministic phase 1520

Patent Application Publication

CO

c1

c2

c3

|

1

1 1

1

T1D
155a

155c

1551

155e VIHR 1559 VIZ
a

?

CZA
155b

1550

1551

155h

1

155j

?

Nov. 4 , 2021 Sheet 2 of 11

}

T2D
VZ

155k

155m
VIA

VA

C

1551 VILLA

T3D WIR

155 VL1550 155p VIR W VI
VIZA VIZ 155 VII 1558 VIEW

C

55n

}

I

US 2021/0342675 A1

}

C4

c5

FIG . 1B

MLA 270

Patent Application Publication

Mosaic 272N

Mosaic 272B

L3 memory (off - chip) 290

Mosaic 272A Mesh of Tiles 280

THI
L2 memory 274

HH

Mosaic interconnect 279

Nov. 4 , 2021 Sheet 3 of 11

Interface 278

Micro controller 277

T

?? ?

?

US 2021/0342675 A1

FIG . 2A

M

ww
mon

w

M

M

1

1

Tile 280

Data transfer instructions

1 1 1

Patent Application Publication

Adj Tiles

Adj Tiles

In MUX 281

L1 memory 282

Out deMUX 283

L2 memory

L2 memory

Compute pipeline 285

I 1

Matrix multiply 286

Operator (s)
287

| 1 1 1 1

Nov. 4 , 2021 Sheet 4 of 11

Compute instructions

1

1

www .

www .

US 2021/0342675 A1

FIG . 2B

Layer A 302

Layer A 302

A

a11 a 12 a21 a 22

A
1

a11 a 12 a21 a 22

a11

a12

a21

a22

Patent Application Publication

[11
11 w12

W = W11 w12

Layer B 304

w21 w22

w11 w21 w22

Layer B 304

011 b11 b12 621 622

B =

611 b12 b21 22

011

612

621

b22

FIG . 3A

FIG . 3B

Nov. 4 , 2021 Sheet 5 of 11

a11 / a12 released from memory

1

a11

a12

a11

a12

a21

a22

a21

a22

1 1 1

1

611

612

1

621

622

312

1

314

1

316

US 2021/0342675 A1

1

318

Time

FIG . 3C

1
4
1

Layer A

5

2 3 4 5

6

Patent Application Publication

? Layer B

FIG . 4A

Nov. 4 , 2021 Sheet 6 of 11

Layer A

1

2

5

6

3 €

Layer B

3

US 2021/0342675 A1

FIG . 4B

510

512

514

516

518

520

522

524

A3

A2

A1

A2

A1

42

A3

A4

A3

A4

A3

A4

A1

A2

A3

A4

Patent Application Publication

B1

B2

B2

B3

B4

B1

B4

81

84

81

82

82

83

B3

34

C4

C1

C2

Partial Network for C1 502

Partial Network for C2 504

Partial Network for C3 506

Partial Network for C4 508

Nov. 4 , 2021 Sheet 7 of 11

A1

A2

A3

A4

B1

B2

B3

B4

IX IXI VA
MLN 500

US 2021/0342675 A1

C1

C2

C3

C4

FIG . 5

Sparsely Connected Layers 602

Patent Application Publication

Densely Connected Layers 604

Layer A

1

2

3

4

5

6

M

Layer B

2

3

4

N

.

Nov. 4 , 2021 Sheet 8 of 11

Sparsely Connected Layers 606

US 2021/0342675 A1

FIG . 6

Patent Application Publication Nov. 4 , 2021 Sheet 9 of 11 US 2021/0342675 A1

Receive Description of an MLN
702

Determine Independently Computable Partial
Networks for Computing Outputs of a Layer of the

MLN
704

Allocate Computations to Tiles
706

Generate Instructions for Implementing MLN
708

Schedule Instructions by Ordering Implementation
of Subnetworks for Efficient Memory Usage

710

Output Computer Program to Storage Medium
712

FIG . 7

Patent Application Publication Nov. 4 , 2021 Sheet 10 of 11 US 2021/0342675 A1

800
Machine learning

network

830
Model optimizer

832
Pruning

831
Quantization

833
Compression

835 Optimized
graph

820
Compiler

822
Static scheduling

826
Graph optimization

824
PPA optimization /

constraints

828
Partitioning

850
Computer program

870
Machine learning

accelerator

836
Software simulator

838
Hardware emulator

FIG . 8

SoC

910 Application processors

912 Computer vision processors

Patent Application Publication

Debug 942

940 Camera inputs

914 Safety

916 Security

Configuration 944

930
Network on chip

|

946 External DRAM

920 Memory

Network 950

970 MLA

948 Chip - to - chip

Nov. 4 , 2021 Sheet 11 of 11

922 VO modules

FIG . 9

US 2021/0342675 A1

US 2021/0342675 A1 Nov. 4 , 2021
1

ORDERING COMPUTATIONS OF A
MACHINE LEARNING NETWORK IN A

MACHINE LEARNING ACCELERATOR FOR
EFFICIENT MEMORY USAGE

BACKGROUND

1. Technical Field

[0001] This disclosure relates , in general , to the imple
mentation of machine learning networks on hardware .

2. Description of Related Art

[0006] FIG . 1A is a block diagram of a system with a
machine learning accelerator (MLA) and corresponding
compiler , according to the invention .
[0007] FIG . 1B illustrates partitioning a computer pro
gram into deterministic and non - deterministic phases .
[0008] FIG . 2A is a block diagram of a hardware system ,
including an MLA .
[0009] FIG . 2B is a block diagram of a Tile within an
MLA .
[0010] FIG . 3A - 3C illustrate a first example of a technique
for ordering computations in implementing a machine learn
ing network .
[0011] FIG . 4A - 4B illustrate a second example of a tech
nique for ordering computations in implementing a machine
learning network .
[0012] FIG . 5 illustrates third example of a technique for
ordering computations in implementing a machine learning
network .
[0013] FIG . 6 illustrates fourth example of a technique for
ordering computations in implementing a machine learning
network .
[0014] FIG . 7 is a flowchart illustrating an embodiment of
a process for ordering computations of a machine learning
network for efficient memory usage .
[0015] FIG . 8 is a block diagram of a software develop
ment environment , including an ML compiler .
[0016] FIG . 9 is a block diagram of an integrated circuit
product that includes an MLA .

a

a

a

[0002] Machine learning is one of the most powerful
recent trends in technology . In machine learning , a model is
developed to perform a certain task . The model , which will
be referred to as a machine learning network , is trained and
deployed in order to carry out that task . For example , a
model may be developed to recognize the presence of
objects within images captured by a set of cameras . Once the
model is deployed , images captured by the cameras are input
to the machine learning network , which then outputs
whether (or to what confidence level) objects are present
within the images .
[0003] Machine learning networks typically require the
handling of a large volume of data and the execution of a
large number of computations . As a result , they are com
monly implemented in compute facilities with access to
significant resources , such as in the cloud or on server
clusters . However , the sources of input to machine learning
networks may be located remotely from these compute
facilities . For example , cameras and other types of sensors
may be located on the edge of the network . Example
applications for edge devices include automotive and other
forms of transportation including autonomous transporta
tion , agricultural , industrial , robotics , drones , surveillance
and security , smart environments including smart cities ,
medical , and personalized health . Example tasks include
computer vision , image analysis , image understanding ,
speech recognition , audio analysis , audio understanding ,
natural language processing , classification and pattern rec
ognition tasks . For edge devices , it may be desirable to
perform certain tasks in real - time . In addition to memory
and other programmable processors , an edge device may
also include sensors , such as cameras (both still image and
video cameras) , microphones , temperature sensors , pressure
sensors and other types of sensors . The sensors may capture
samples that are used as inputs to a computing pipeline
within the edge device . Thus , one common paradigm is for
the input sources to be web - based so that they can continu
ously send their captured data to the cloud - based compute
facility , which then executes the machine learning network
and returns the result .
[0004] However , there can be many advantages if the
machine learning network and computing elements on
which it executes was instead embedded on edge devices ,
such as combined with the camera system .

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0017] The figures and the following description relate to
preferred embodiments by way of illustration only . It should
be noted that from the following discussion , alternative
embodiments of the structures and methods disclosed herein
will be readily recognized as viable alternatives that may be
employed without departing from the principles of what is
claimed .
[0018] A machine learning network comprises a sequence
of layers that each receive a data set from the previous layer ,
apply some function to the data , and output a data set to a
subsequent layer . The outputs of each layer may involve
millions or billions of data points , making memory man
agement a challenging task , particularly when implementing
the machine learning network on a semiconductor die with
limited memory capacity and reduced power consumption .
For speed , power and memory efficiency , it is beneficial to
minimize the amount of temporary data that needs to be
stored at any given time and to reduce the number of data
transfers , particularly data transfers to more remote memo
ries . This can be achieved in a machine learning accelerator
(MLA) in which instructions implementing the computa
tions are intelligently ordered to limit memory usage and
data transfers .
[0019] Example embodiments of a general MLA system
and corresponding compiler that operates to implement an
MLN in a manner that achieves limited memory usage by
intelligent ordering of the computations are described below
with respect to FIGS . 1-2 . The general MLA system is one
example of such an architecture that can benefit from the
techniques described herein . In alternative embodiments , the
techniques described herein for ordering the computations of
an MLN can be applied in MLA systems having different
architectures and operational structures .

a

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Embodiments of the disclosure have other advan
tages and features which will be more readily apparent from
the following detailed description and the appended claims ,
when taken in conjunction with the examples in the accom
panying drawings , in which :

US 2021/0342675 A1 Nov. 4 , 2021
2

a

[0020] FIG . 1A is a block diagram of one example of a
system with a machine learning accelerator (MLA) 170 and
corresponding compiler 120 , according to the invention . The
compiler 120 receives a description of a machine learning
network 100 and generates a computer program 150 that
implements the machine learning network using MLA 170 .
The computer program 150 includes instructions that are
executed by processing elements (Tiles) in the MLA accord
ing to a schedule determined by the compiler . For conve
nience , these will be referred to as statically scheduled
instructions . The instructions executed by the Tiles (Tile
instructions) are statically scheduled because the compiler
can determine which instructions are executed by which
Tiles at what times , as will be explained in greater detail
below . For example , for the statically scheduled instructions ,
there are no conditions , branching or data dependencies that
can be resolved only at run - time , and which would affect the
timing and order of the execution of the instructions . Note
that the static schedule determined by the compiler may or
may not be included as part of the instructions and computer
program . In some embodiments , the computer program may
expressly include the schedule , specifying that instruction A
is executed at cycle X , instruction B is executed at cycle
X + 4 , instruction C is executed at cycle X + 12 , etc. In
alternate embodiments , the computer program may specify
only that instruction A is executed , followed by instruction
B , and then instruction C , but without any scheduling
information . Even though the static schedule is not expressly
specified , these instructions will still execute according to
the schedule determined by the compiler because the com
piler knows how long it takes to execute each instruction . As
a result of the static scheduling , the MLA and instruction set
for the MLA may be simplified , with the complexity off
loaded to the compiler . A simpler MLA can result in lower
cost , lower power consumption and higher performance , all
of which are desirable for implementation in edge devices .
[0021] In more detail , the MLN 100 may be described by
an architecture and parameters . A depiction of an MLN is
shown to the right of box 100 in FIG . 1A . Most MLNs
include multiple layers 102 , each with one or more nodes
which are represented by circles in FIG . 1A . The lines
between nodes in FIG . 1A represent interconnections
between the nodes (and layers) . Each node calculates a
weighted sum of the values received from its connected
nodes , possibly also applying a bias . Examples are matrix
multiplication and convolution . Each node may also apply
certain functionality (operators) , such as nonlinear functions
(e.g. , tanh function) , softmax operator , etc. A typical node
may compute an output :

y = F (EwX ; + b) (1)

where x , are the inputs received from other nodes i , w , are
weights , b is a bias and FC) is a nonlinear operator . The
MLN architecture includes the number of nodes (and layers)
and their interconnectivity , and the operators applied at
nodes . The operators may be described in a parameterized
form . The MLN parameters include the weights , biases , and
parameters for the operators .
[0022] MLNs may vary in size , depending on the desired
task . Small MLNs may have 5-10 or fewer layers , medium
size MLNs may have 30-50 layers , and large MLNs may
have 100 or more layers . Examples of inputs include text ,
images and video . Some of the layers may be fully inter
connected (i.e. , every node in one layer provides input to

every node in the next layer) or very densely interconnected ,
and others may be more locally or sparsely interconnected
(e.g. , to implement convolutions) . Each weighted intercon
nect represents a scalar multiplication . The total number of
scalar multiplications required to implement an MLN may
be on the order of millions , billions , tens of billions or even
more . These may be carried out by matrix multiplications .
[0023] The MLA 170 includes a plurality of Tiles 180 and
an on - chip memory system implemented on a semiconduc
tor die . The Tiles are organized into one or more meshes of
interconnected Tiles . A depiction of a Tile mesh is shown to
the right of box 170 in FIG . 1A . In each mesh , the Tiles 180
are organized in a regular pattern and the interconnections
within each mesh provide data transfer paths between Tiles
in the mesh . The Tiles execute computations according to
instructions received by the Tiles and using data stored in the
on - chip memory system . These instructions may be for
computations and / or for data transfer . Computations include
multiply (including matrix multiply) , add , and operators
(e.g. , nonlinear functions , lookup table , min / max , pooling) .
These are computations that implement the MLN . In the
example of FIG . 1A , the computations performed by layers
102A - D are allocated to groups 182A - D of Tiles as indi
cated . The allocation is not required to be 1 : 1 . For example ,
multiple layers could be allocated to a single Tile or vice
versa . Not every computation required to implement an
MLN need be executed by a Tile ; some computation may be
executed outside the MLA (e.g. , floating point operations , if
the Tiles only do integer arithmetic) . Tiles typically will at
least perform matrix multiplication .
[0024] The compiler 120 receives a description of the
MLN 100 and generates a computer program 150 that
implements the MLN using the MLA 170. The computer
program 150 receives an input sample for the MLN and
executes the operations of the MLN to produce the output
for the MLN . The computer program 150 includes instruc
tions to be executed by the Tiles for implementing compu
tations in the MLN and may also include instructions to be
executed by other elements , such as a controller outside the
Tiles .

[0025] The compiler 120 determines the allocation of
computations to Tiles and the order of the computations in
part to reduce data transfers . For example , the Tiles typically
have limited local memory . If the compiler 120 can schedule
the computations so that the number of intermediate values
at any point in time is low enough to be stored entirely or
predominately within local memory , then data transfers to
memories outside the Tiles may be avoided or significantly
reduced . Furthermore , even if the compiler schedules data
transfers to external memories outside the Tiles , the com
piler 120 can still determine the order of computations in a
way that reduces the amount of data being stored , thereby
making efficient use of available memory resources . For
example , in FIG . 1A , if the number of nodes in the layers
182 is large , then computing all of the outputs for a layer at
once may result in too many values to store in local memory .
The entire layer's output may have to be transferred to an
external memory instead . To avoid this , the compiler may
schedule the calculations so that the outputs are computed as
they are needed by the next layer . When those outputs are
consumed by the next layer , they need no longer be stored .
The total number of outputs required at any point in time
may be drastically reduced and stored entirely or at least

US 2021/0342675 A1 Nov. 4 , 2021
3

?

a

partially in local memory , eliminating or reducing the need
for data transfers to external memory .
[0026] As shown in FIG . 1B , the compiler partitions the
Tile instructions into one or more deterministic phases
152A , B , C which typically utilize multiple Tiles . The
instructions in a deterministic phase 152 may be statically
scheduled by the compiler . For example , a deterministic
phase 152 may include a series of computations required to
implement a portion of the MLN , where the time required
for each computation and associated data transfers is known .
As a result , the compiler may statically schedule the Tile
instructions within that deterministic phase relative to the
other Tile instructions in the phase . The resulting computer
program produced by the compiler then implements an
allocation of instructions to Tiles and a schedule for execut
ing the instructions as determined by the compiler , although
these may not be expressly contained within the computer
program . In the example of FIG . 1A , the computations
performed by layers 102A - D are allocated to groups
182A - D of Tiles as indicated . In addition , all of the Tile
instructions (including both for computation and for data
transfer) are executed in a single deterministic phase .
[0027] The computer program may also include non
deterministic phases 154X , Y. For example , non - determinis
tic phases 154 may include data fetch or instruction fetch
from off - chip memory where the time required to execute
the operation varies too much to allow reliable synchroni
zation with other operations . Other examples include com
putations that occur off - chip , and conditions , branching and
other programmatic constructs that depend on values not
known until run - time . The breaks in the rectangles for the
non - deterministic phases 154 indicate that the timing is not
deterministic , whereas the deterministic phases 152 are
represented by rectangles without breaks . In FIG . 1B , the
deterministic and non - deterministic phases are shown as
alternating . This is not required . For example , deterministic
and non - deterministic phases may execute concurrently .
[0028] FIG . 1B also shows more detail of deterministic
phase 152B , which shows the static schedule computed by
the compiler for executing Tile instructions in this phase .
The phase 152B begins at some time when all of the Tiles
are synchronized , which for convenience is marked as cycle
c0 in FIG . 1B . The Tiles may have circuitry that synchro
nizes the Tiles . For example , each Tile may monitor when it
is ready to begin execution of a deterministic phase 152B
and then actual execution begins when all Tiles signal that
they are ready . Alternatively , an external controller may
synchronize the Tiles and start the deterministic phase 152B
when all Tiles are ready .
[0029] In this example , the instructions are executed by
three Tiles , as denoted by T1 , T2 and T3 . Each Tile has two
pipelines : a “ D ” pipeline for executing data transfer instruc
tions and a “ C ” pipeline for executing compute instructions .
The row labeled T1 D shows instructions executed by the
Tile 1 D (data transfer) pipeline , and the row labeled T1 C
shows instructions executed by the Tile 1 C (compute)
pipeline . For this example , assume that all the data transfer
instructions are instructions that load new data into that Tile
for consumption by the compute pipeline . The white regions
of each row denote the execution of instructions and the
hashed regions indicate that the pipeline is idling or execut
ing a NO - OP (no operation) .
[0030] For Tile 1 , instruction 155a transfers data into Tile
1 and instruction 155b then performs a computation that

consumes that data . Instruction 155b is dependent on
instruction 155a . Here , the T1 C pipeline is not required to
continuously poll the T1 D pipeline at run - time for when the
data is available , and run - time message passing between the
pipelines is not required to indicate that the data is available .
Rather , because the duration (i.e. , time required to execute)
of instruction 155a is known , the compiler knows when the
data will be available (for convenience , marked as cycle cl
in the figure) and can construct a static schedule in which
instruction 155b starts execution then . The duration of
instruction 155b is also known , so the compiler knows that
compute instruction 155d may start after instruction 1556. In
this case , the compiler determines a static schedule in which
instruction 155d starts at cycle c3 . Compute instruction 155d
depends on data brought into the Tile by instruction 155c .
The duration of instruction 155c is known , so the compiler
knows that in the static schedule , instruction 155c must start
at cycle c2 or earlier . This pattern is repeated for pairs of data
transfer instructions and compute instructions 155e - f , 155g
h , 155i - j .
[0031] For Tile 2 , compute instruction 1551 depends on
data from data transfer instruction 155k . However , instruc
tion 155k does not start immediately at cycle c0 . Rather , it
has a delayed start at cycle c4 . This may be because the data
transfer path required by instruction 155k is occupied by
some other data transfer instruction and is not available until
cycle c4 . The start time of instruction 155k in the static
schedule is not determined by run - time arbitration or con
tention mechanisms for the shared data transfer path . Rather ,
the compiler knows that the data transfer path is occupied
since the compiler knows the start times and durations of all
the instructions , so the compiler simply creates a static
schedule in which instruction 155k does not start until cycle
c4 when the compiler knows the data transfer path will be
available . Similarly , data transfer instruction 155m has a
delayed start time . Perhaps the T2 D pipeline is being used
to transfer out the results of computation 1551 and does not
become available until cycle c5 .
[0032] For Tile 3 , computation 155n starts immediately at
cycle c0 . Perhaps the required data was loaded into Tile 3
during some prior phase . Data transfer instructions 1550 and
155p load data for compute instruction 1559. They are
separated in time , perhaps because different pieces of data
were not available or the data transfer paths were not
available until those times . As a final example , data transfer
instruction 155r loads data for compute instruction 155s . In
the static schedule , the compiler places instruction 155r well
in advance of when the data is required , but this may be
because that is when the data transfer path is available or
perhaps the data was transferred out of the sourcing Tile in
order to make room in that Tile .
(0033] Execution of the instructions according to the static
schedule at run - time may be implemented in different ways .
In one approach , the computer program includes an express
schedule for the execution of the instructions . Continuing
the example of FIG . 1B , the computer program may specify
that instruction 155a executes at cycle co , instruction 155b
at cycle cl , instruction 155c at cycle c2 , etc. Alternatively ,
the compiler may fill each instruction stream with NO - OPs
to achieve the correct timing . A NO - OP (no operation) is an
instruction that occupies a certain number of cycles without
other activity . For example , the compiler knows that instruc
tion 155a will end at cycle cl and instruction 155b is
supposed to begin at cycle cl . It may fill the space between

.

a a

a

US 2021/0342675 A1 Nov. 4 , 2021
4

a

a

a

a

cycles c0 and cl with NO - OPs for the T1 C pipeline . The T1
C pipeline then just continuously executes instructions from
its queue , and the NO - OPs ensure that instruction 155b is
executed according to the compiler’s static schedule . In yet
another approach , the static schedule may be implemented
by hardware . The T1 C pipeline may just stall on the
execution of instruction 155b until the data from instruction
155a is ready . The compiler knows that data will be ready at
cycle cl and , therefore , instruction 155b will execute start
ing at cycle cl even though the Tiles are unaware of the
static schedule . Regardless of the implementation , for con
venience , all of these situations will be described using the
phrase " static schedule . ” Thus , a statement that the compiler
statically schedules the instructions is intended to include all
of the above implementations and is not meant to imply that
the computer program expressly includes a scheduled time
for each instruction .
[0034] In order to statically schedule the instructions in a
deterministic phase , the compiler typically will know the
duration of each instruction (i.e. , how long each instruction
takes to execute) , the capabilities of each Tile (which Tiles
can execute which instructions) , the topology of data trans
fer paths to and from Tiles (including between Tiles , and
between Tiles and on - chip memory) , and the computations
required and their dependencies (i.e. , the MLN description) .
With this information , the compiler can schedule uncondi
tional start times for the Tile instructions . Here , uncondi
tional refers to run - time conditions . The execution order of
statically scheduled instructions will not change as a result
of run - time conditions , branching or dependence on input
values . As a result , compute instructions may be scheduled
for start times when all of the required data for the compu
tation is known to be available and the compute pipeline is
also known to be available . The need for run - time determi
nation of whether data has arrived and whether the compute
pipeline is available may be avoided . Analogously , data
transfer instructions may be scheduled for start times when
the data transfer path is known to be available . The need for
circuitry to handle arbitrations , or to check for or resolve
contentions and collisions on shared data transfer paths at
run - time may be avoided . The need for routing tables and
other circuitry to determine routing at run - time may also be
avoided .
[0035] The approach based on static scheduling described
above is not restricted to the examples described above . For
example , different network topologies of Tiles may be used .
Other Tile meshes may also be statically scheduled , so long
as the time required to execute computations and to transfer
data between Tiles is deterministic and may be determined
at compile time . Additional examples are described in U.S.
application Ser . No. 16 / 840,216 , “ Machine Learning Net
work Implemented by Statically Scheduled Instructions ,
with Compiler , ” which is incorporated by reference herein in
its entirety
[0036] Other aspects include components , devices , sys
tems , improvements , methods , processes , applications , com
puter readable mediums , and other technologies related to
any of the above .
[0037] FIG . 2A is a block diagram of a hardware system
including an MLA 270. The MLA 270 includes all the
components shown in FIG . 2A , except the off - chip L3
memory 290. The MLA components are implemented on a
single die as part of a single chip . The MLA 270 includes
one or more mosaics 272A - N . In this example , all of the

mosaics are the same . Each mosaic 272 includes a mesh of
Tiles 280 , an on - chip memory system and a controller 277 .
In FIG . 2A , the on - chip memory system is a multi - level
memory system , which includes a level 1 (L1) memory
distributed among the Tiles (see FIG . 2B) and a level 2 (L2)
memory 274 shared by the Tiles . If there are multiple
mosaics 272 , the MLA 270 may include a dedicated inter
connect 279 for connecting the different mosaics . Each
mosaic also includes an interface 278 to the interconnect
279 .
[0038] FIG . 2B is a block diagram of a Tile 280 within the a
MLA . In this example , all the Tiles are the same . Each Tile
280 includes an L1 memory 282. Each Tile 280 also includes
a data transfer pipeline that executes instructions for trans
ferring data to and from the Ll memory 282. Here , the Tiles
280 are arranged in a rectangular array as shown in FIG . 2A ,
with each Tile connected to its adjacent neighbors . Interior
Tiles are connected to four adjacent Tiles . Edge Tiles are
connected to adjacent Tiles and also to L2 memory 274. In
FIG . 2B , the L1 memory 282 may receive data from any of
its adjacent Tiles and / or from L2 memory if it is an edge
Tile . Similarly , it may transfer data to any of its adjacent
Tiles and / or to L2 memory if it is an edge Tile . The data
transfer operations are controlled by data transfer instruc
tions received and executed by the Tiles .
[0039] Each Tile 280 also includes a compute pipeline 285
for executing computations using data stored in the L1
memory 282. The L1 memory acts as software - configurable
registers for the compute pipeline 285. The compute pipeline
285 includes matrix multiplication circuitry 286 , such as a
systolic array , and circuitry for implementing different types
of operators 287. The computations are controlled by com
pute instructions received and executed by the Tiles .
[0040] In this particular example , all of the data transfer
instructions and compute instructions executed by the Tiles
are statically scheduled . These instructions include data
transfer between L1 memories in different Tiles , and data
transfer between L1 memory and L2 memory . Data transfer
instructions may specify one hop at a time (e.g. , transfer data
to the east neighbor Tile) or may specify destination and path
through intermediate Tiles (e.g. , transfer data to Tile (5,5)
using path east - east - north - north - east) . The instructions also
include matrix multiplies performed by the Tiles and opera
tors applied by the Tiles . These operations do not require
very many different instructions to implement , so the overall
instruction set may be fairly small , for example not more
than 20 instructions , or not more than 50 instructions .
[0041] The L3 memory 290 is off - chip . In this example ,
the L1 and L2 memories are implemented as on - chip SRAM
and the L3 memory is implemented as DRAM (flash
memory and SSD drives are other alternatives) . Because the
L1 and L2 memories are implemented as SRAM , the data
transfers between L1 memories or between L1 and L2
memories have deterministic timing , so these data transfer
instructions can be statically scheduled by the compiler .
However , data transfer from off - chip DRAM is more unpre
dictable in timing . As a result , these instructions are non
deterministic in nature and they are executed by the micro
controller 277. Therefore , they are executed in one of the
non - deterministic phases and they are not statically sched
uled .
[0042] In one approach , the instructions in the computer
program and the data required for computation (e.g. , input ,
weights , biases , parameters for operators) are initially

a

US 2021/0342675 A1 Nov. 4 , 2021
5

loaded into L3 memory 280. From time to time , instructions
and associated data are transferred from L3 memory into
L1 / L2 memory during a non - deterministic phase since the
timing of data transfers from DRAM is not deterministic .
Once these instructions and data are loaded into L1 / L2
memory , the computer program enters a corresponding
deterministic phase in which the Tiles execute the loaded
instructions according to a static schedule . The non - deter
ministic and deterministic phases may occur concurrently .
For example , data may be continuously streamed into the
L1 / L2 memory during the non - deterministic phase , with the
corresponding statically scheduled instructions from the
deterministic phase consuming that data . In one approach ,
the Tiles execute only statically scheduled instructions , and
all non - statically scheduled instructions are executed by
processing elements outside the Tile mesh , for example , the
microcontroller 277 .
[0043] SRAM has predictable timing so implementing the
L1 and L2 memories as SRAM allows the compiler to
statically schedule data transfers from those memories into
the Tiles for computation . However , there is a limit to the
amount of SRAM that may be implemented on a die . In
order to increase the effective size of SRAM , a virtual
SRAM approach may be used . In one approach , the compute
instructions that consume certain data are not fetched into
the Tiles until after the corresponding data have been
transferred from DRAM (L3 memory) to SRAM (L1 / L2
memory) . This guarantees that the compute instructions will
not be executed by the Tiles before the data is available . All
data effectively will appear as if it is transferred to the Tiles
from SRAM for computation , even if all of the data would
not fit into the available SRAM .
[0044] L2 memory may also be used to temporarily store
interim values that are too voluminous to store in L1
memory . For example , a layer K of the MLN may produce
a large amount of data at its output , to be used as input to the
next layer K + 1 . The layer K output may be stored in L2
memory and then retrieved from L2 memory as needed for
the next layer's computations . This may be implemented
using a ping pong buffer approach when multiple input
samples are processed as a pipeline . The L2 memory is
divided into two regions A and B. When a first input sample
is processed , the layer K output is stored in region A of the
L2 memory . The computations for layer K + 1 retrieve the
stored values from region A. At the same time , the second
input sample is processed and the layer K output is stored in
region B of the L2 memory . The two regions then alternate ,
with the Tiles implementing layer K storing to one region
while the Tiles implementing layer K + 1 read from the other
region . The synchronization is implemented by the static
scheduling . The compiler knows when regions AB will be
ready and the instructions to implement layer K + 1 will
execute after that time . No synchronization primitives are
needed .
[0045] Efficient operation of the MLN can be achieved by
avoiding or reducing data transfers to and from L2 memory
where possible and instead transferring some or all data
between layers by directly streaming between the L1 memo
ries . This is desirable because transfers between L1 memo
ries are generally less time consuming and create less
congestion than transfers to and from L2 or L3 memory .
Furthermore , power consumption can be reduced by trans
ferring data directly between source and destination L1
memories and avoiding intermediate writes to L2 or L3

memory because it reduces the overall number of read and
write operations . However , L1 memory typically has limited
capacity that is generally insufficient to handle the full set of
intermediate outputs of a given layer of the MLN . To resolve
this problem , the computations of the MLN may be intelli
gently ordered so that as incremental data is produced by
each layer , it can be immediately used by a subsequent layer
without waiting for all of the computations of the layer to be
completed . Once an intermediate output has been processed
by all computations of the subsequent layer that depend on
it , that intermediate output can be released from memory ,
thus freeing up space for other computations . By intelli
gently ordering the computations , the MLN can be imple
mented using limited memory resources at any given time ,
which for at least some portions of the MLN , may avoid or
minimize the number of transfers and / or the amount of data
in each transfer to and from L2 or L3 memory .
[0046] FIGS . 3-7 provide specific examples of techniques
for reducing memory usage and data transfer by intelligently
ordering computations of an MLN . In FIG . 3A , an example
MLN is illustrated in which a first layer 302 produces a 2x2
activation matrix A (i.e. , outputs) and a second layer 304
combines the activation matrix A with a 2x2 set of weights
W to generate a 2x2 output matrix B. That is , A is the output
of layer 302 and input to layer 304 , W are the weights of
layer 304 , and B is the output of layer 304 (ignoring any
operators that may be applied) . In a conventional implemen
tation , the full 2x2 matrix A is first computed by layer 302
and four elements (a11 , a12 , a21 , a22) are stored in memory .
To implement layer 304 , the matrix A and weights W are
loaded from memory and combined to generate the output
matrix B. While this approach is feasible for the extremely
simplified example of FIG . 3A involving only 2x2 matrices ,
a practical application of an MLN can involve matrices
millions or billions of times larger and could not be practi
cally implemented without relying on large data transfers to
and from L2 and L3 memory .
[0047] FIG . 3B illustrates the MLN of FIG . 3A in more
specific detail to illustrate the dependencies between the
layers 302 , 304. In this example , layer 304 implements a 2x2
matrix multiplication of the activation matrix A and the
weights matrix W that consists of four dot products . When
applying this function , each element of the output matrix B
is dependent on only a subset of the elements of the
activation matrix A and a subset of the weights W. Specifi
cally , the element b11 is dependent only on all , a12 , w11 ,
and w21 ; the element b12 is dependent only on all , a12 ,
w12 , w22 ; the element b21 is dependent only on a21 , a22 ,
wil , and 21 ; and the element b22 is dependent only on a21 ,
a22 , w12 , and w22 . Based on these dependencies , b11 and
b12 can be computed after all and al2 are available
independently of whether or not a21 or a22 are available .
Similarly , b21 and 522 can be computed immediately after
a21 and a22 are available independently of whether or not
all or a12 are available . Thus , the MLN may be viewed as
being composed of different partial networks that each
independently compute one or more outputs based on only
a subset of intermediate outputs of the MLN . Furthermore ,
the intermediate outputs associated with each of the partial
networks need not be stored in memory at the same time if
the partial networks are computed sequentially .
[0048] FIG . 3C illustrates a technique for ordering the
computations of the MLN in a manner that takes advantage
of the independent partial networks identified in FIG . 3B and

a

2

US 2021/0342675 A1 Nov. 4 , 2021
6

a

reduces the overall memory usage relative to FIG . 3A . In a
first time period 312 , elements all and al2 are computed .
These elements may be computed in parallel or serially in
either order during the first time period . During a second
time period 314 , elements b1l and b12 are computed .
Depending on the implementation , b11 and b12 may be
computed in parallel or serially in either order . Once bli and
b12 are computed , all and a12 are no longer needed and can
be released from memory . Then , a21 and a22 are computed
in a third time period 316 (in parallel or serially in either
order) , and b21 and b22 are computed in a fourth time period
318 (in parallel or serially in either order) . In alternative
implementations , the order of processing the partial net
works for b11 , b12 and b21 , b22 could be reversed . For
example , the computations in time periods 316 and 318 may
instead occur first , followed by the computations in time
periods 312 and 314. In either case , only two elements of the
activation matrix A from layer 302 are stored in memory at
any given time . Thus , the technique cuts the memory usage
in half relative to the technique of FIG . 3A .
[0049] Depending on the architecture of the MLN , it may
be also be efficient to release weights from memory once
they are no longer needed (e.g. , in MLNs where the weights
are not constant and subsequent data samples do not nec
essarily use the same weights) . For example , if the compu
tation in time period 318 does not depend on weights w11 ,
w21 , these weights could also be released from memory
after time period 314 .
[0050] When implemented in an MLA , the computations
of FIG . 3C may be allocated to Tiles in various ways . In one
example implementation , computations for different layers
are generally allocated to different Tiles or groups of Tiles .
Thus , for example , a first Tile or group of Tiles performs the
computations of layer 302 to generate the matrix A and a
second Tile or group of Tiles performs the computations of
layer 304 to generate the matrix B. Here , for example , a first
Tile may compute all and al2 during time period 312 and
store it to its L1 memory . In the time period 314 , the first Tile
may directly stream the elements all , a12 from its Li
memory to an Ll memory of a second Tile (without passing
through L2 or L3 memory) that computes b11 , b12 . The first
Tile may then compute a21 and a22 , overwriting all and a12
(which are no longer needed) in its L1 memory . The first Tile
may then stream a21 and a22 to the L1 memory of the
second Tile , which computes b21 , b22 . In other example
implementations , the elements a21 , a22 do not necessarily
overwrite ali , al2 but may be instead be stored to a different
location in L1 memory , while the memory locations occu
pied by all , a12 may be overwritten by different data
elements from some other layer , data associated with a
different input data sample , data associated with a different
MLN , or data for some other purpose . In other example
implementations , computations of a single layer may be
divided between multiple Tiles . For example , the computa
tion of all may be performed by one Tile and the compu
tation of a12 may be performed by a different Tile . In other
cases , multiple layers may be implemented by a single Tile
or set of Tiles . For example , all of the computations of FIG .
3C could be performed serially by a single Tile .
[0051] The example of FIGS . 3A - 3C is an extremely
simplified example for illustrative purposes . In practice , the
activation matrix A , weights matrix W , and output matrix X
could each include millions or billions of elements . At these
scales , the L1 memory capacity may be insufficient to store

the entire activation matrix A at one time , and thus the
technique of FIG . 3A could not practically be implemented
without relying on transfers to and from L2 or L3 memory .
Furthermore , although the example of FIGS . 3A - 3C reduces
the memory usage by half , a real MLN may include layers
with much sparser dependencies . For example , if a given
output is dependent on only 1 % or less of the set of prior
intermediate outputs , the memory usage at any given time
can be similarly reduced . The technique in FIG . 3C thus may
enable the memory usage to be significantly limited and
enable an MLA to implement at least some portions of the
transfers between layers of the MLN by streaming directly
between L1 memories of Tiles without relying on transfers
to and from L2 or L3 memory .
[0052] FIGS . 4A - 4B illustrates another example of a
machine learning network and a technique for reducing
memory usage by intelligently ordering the computations of
an MLN . In this example , layer A of the MLN produces M
intermediate outputs A1 , Am and layer B produces N
outputs B1 , ... , Bn . In FIG . 4A , the MLN is computed using
a conventional technique in which the results of layer A are
first computed , and the results of layer B are then computed
after the entire set of intermediate output A1 , ... , Am is
produced . As described above , implementing this technique
requires storage of M intermediate outputs , which can be in
the millions or billions for a typical MLN and too large to
implement without offloading data to L2 or L3 memory .
[0053] FIG . 4B illustrates a technique in which the com
putations are intelligently ordered to reduce the memory
usage . Here , partial networks are identified for each output
1 , ... , n of layer B , where each partial network includes
only the intermediate results on which an output is depen
dent . Thus , for example , a first partial network for output B1
may include the portions of the MLN that produces output
B1 and intermediate outputs A1 , A2 , and A3 ; a second
partial network for output B2 may include the portions of the
MLN that produce output B2 and intermediate outputs A2 ,
A3 , and A4 ; and so on . In this example , the partial networks
have overlapping intermediate outputs . For example , inter
mediate output A4 is part of the partial networks for pro
ducing B2 , B3 , and B4 . The structure of the MLN in FIGS .
4A - 4B is representative of a convolution function that is
common in MLNs .
[0054] Each partial network may be executed indepen
dently . However , because some of the partial networks
overlap , it is most efficient to order them in a manner that
groups partial networks with overlapping intermediate out
puts together in time , so that these intermediate outputs can
be generated and quickly released from memory when no
longer needed . Particularly , the MLN may be efficiently
computed by first computing intermediate outputs A1 , A2 ,
and A3 followed by B1 during a first time frame . After the
first time frame , Al is no longer needed . In a second time
frame , A4 is computed followed by B2 (A2 and A3 were
already computed in the prior time frame) . Here , A4 could
directly overwrite A1 in memory in one implementation , or
A4 could be stored to a different unoccupied memory
location , and the memory location of A1 could be freed up
for some other data . This process can repeat for the entire
MLN . At each time period , only three intermediate outputs
from layer A are necessarily stored in memory at any given
time no matter how large the MLN . The set of intermediate
outputs can be stored using a circular buffer , for example . As
a benefit of this ordering , the relatively small number of

a

US 2021/0342675 A1 Nov. 4 , 2021
7

4

intermediate outputs from Layer A can be directly streamed
between L1 memories and large transfers of data between
the Tiles and L2 or L3 memory can be avoided .
[0055] In other examples , the ordering of partial networks
may be determined based on which partial networks utilize
overlapping weights . For example , a group of partial net
works that apply the same weights may be ordered consecu
tively such that the weights can be released from memory
once they are no longer needed .
[0056] While the example of FIGS . 3A - 3C and 4A - 4B
include only two layers , the same principles can be applied
to an MLN with any number of layers . In a general process ,
a set of partial networks can be identified by starting at an
output of the MLN and tracing the dependencies backwards
through the layers of the MLN to the inputs . In other words ,
a reverse flow analysis is performed from the output through
the intermediate outputs of each layer on which the output
is dependent . This reverse flow analysis results in a set of
partial ordering constraints for the computations within each
partial network .
[0057] FIG . 5 illustrates an example embodiment of a
reverse flow analysis technique for determining a set of
partial ordering constraints for computations of an MLN
500. The MLN 500 is illustrated as having three layers A , B ,
and C but the described techniques can be applied to MLNs
with any number of layers . In FIG . 5 , partial networks 502 ,
504 , 506 , 508 can be determined for each of the outputs of
layer C that each represent their respective sets of depen
dencies . The partial networks 502 , 504 , 506 , 508 each in turn
are inclusive of partial networks for computing the interme
diate outputs of layer B (e.g. , partial networks 510 , 512,514 ,
516 , 5108 , 520 , 522 , 524) . If the MLN 500 has more than 3
layers , additional nested partial networks can be identified
for each output and intermediate output .
[0058] The partial networks can overlap . For example , the
computations in 512 and 514 which form parts of partial
networks 502 , 504 respectively are identical . Thus , these
computations do not necessarily need to be performed twice
and the same result can be used in both partial networks 502 ,
504 .
[0059] The partial networks 502-508 can be processed
independently of each other to arrive at their respective
outputs . Similarly , nested partial networks for computing
intermediate outputs can be performed independently of
each other (e.g. , the computations in 510 and 512) . The
partial networks may be ordered in an optimized way based
on various factors . For example , by identifying partial
networks with overlapping intermediate outputs (as in the
example of FIG . 4B) , the partial networks can be ordered to
minimize the time that the intermediate outputs are stored in
memory . For example , in FIG . 5 , the computations may be
ordered as A1 , A2 , B1 , B2 , C1 , A3 , A4 , B3 , C2 , B4 , C3 , C4 .
In this technique , A1 and A2 may be removed from memory
once B1 and B2 are computed . A3 and A4 may be removed
from memory after B3 and B4 are computed . Furthermore ,
B2 may be removed from memory after C2 is computed , B3
may be removed from memory after C3 is computed , and B1
and B4 may be removed from memory after C4 is computed .
[0060] In other embodiments , the partial networks do not
necessarily traverse all the way from the inputs to the
outputs . For example , a set of partial networks may be
limited to different portions of the MLN between the first
layer and some intermediate layer , and another set of partial
networks may be limited to the portions of the MLN

between the intermediate layer and the last layer . The partial
networks above the intermediate layer may be ordered
according to optimization criteria for processing during a
first time period , and the partial networks below the inter
mediate layer may be ordered for processing during a second
time period .
[0061] The above described technique is possible when
layers of an MLN are relatively sparsely connected such that
a given output or intermediate output is not dependent on a
very large number of intermediate outputs from the previous
layer . However , in some MLNs , layers may be much more
densely connected . In the example of FIG . 6 , an MLN
includes a pair of layers A and B that have very high
interdependencies because some or all of the computations
of layer B are dependent on a large number of computations
of layer A. In this example , partial networks that span the
layers all the way from the output to the input will each
include a very large number of intermediate outputs between
layer A and layer B. In this case , instead of determining
partial networks that span the full range of layers , the
compiler 120 may instead split the MLN into groups of
layers to isolate the densely connected layers from the
sparsely connected layers . For example , in FIG . 6 , the layers
are divided into a first group of sparsely connected layers
602 , a pair of densely connected layers 604 , and a second
group of sparsely connected layers 606. The above described
techniques can be applied separately to the group of sparsely
connected layers 602 and the group of sparsely connected
layers 606 to identify and order processing of partial net
works contained within each group 602 , 606. Thus , within
each group 602 , 606 , the computations can be ordered in a
manner that minimizes memory usage and enables interme
diate outputs to be directly streamed between L1 memories
of Tiles . The group 604 of densely connected layers may be
separately implemented in a different manner . For example ,
once the sparsely connected layers 402 are processed using
the techniques described above , the computations of layers
A and B may be performed utilizing data transfers through
L2 and / or L3 memories . In an embodiment , this may be
implemented using the ping pong buffering scheme
described above . Then once the layer B outputs are avail
able , the group of sparsely connected layers 606 may be
implemented similarly to the sparsely connected layer 602 .
[0062] FIG . 7 is a flowchart illustrating an example
embodiment of a process for intelligently ordering compu
tations of an MLN in a manner that limits memory usage . A
compiler 120 receives 702 a description of an MLN . The
compiler determines 704 a set of partial networks from the
MLN that are independently computable . The partial net
works may span multiple layers and each include portions of
the layers representing the computations and intermediate
outputs on which a particular output of a layer is dependent .
Different partial networks may include (but do not neces
sarily include) overlapping computations and intermediate
results . Generally , different partial networks have at least
one non - overlapping dependency on intermediate results .
For example , the compiler 120 may determine for a first
output of a layer of the MLN , a first partial network
comprising portions of one or more prior layers that produce
a first set of intermediate outputs on which the first com
putation is dependent ; may determine for a second output of
the layer of the MLN , a second partial network comprising

2

a

US 2021/0342675 A1 Nov. 4 , 2021
8

a

portions of one or more prior layers that produce a second
set of intermediate outputs on which the second output is
dependent ; and so on .
[0063] The compiler 120 allocates 706 the computations
of the MLN to Tiles . In an example implementation , differ
ent layers of the MLN may be assigned to different Tiles or
groups of Tiles . Alternatively , two or more layers may be
assigned for implementation in whole or in part by a single
Tile or group of Tiles .
[0064] The compiler 120 generates 708 Tile instructions
for implementing the MLN . The Tile instructions may
include computation instructions for performing the com
putations of the MLN and may include data transfer instruc
tions for performing transfers of data used by the compu
tation instructions .
[0065] The compiler 120 schedules 710 the instructions by
ordering implementation of the partial networks in a manner
that provides efficient usage of memory . For each layer in the
partial network , the compiler may schedule instructions for
obtaining a first set of intermediate outputs of a prior layer
from memory and performing a first computation on the first
set of intermediate outputs to generate a first output of a
layer . This process may repeat for other output of the layer ,
and then may proceed similarly for remaining layer of the
partial network . Once a partial network is completed , the
compiler 120 may then proceed similarly with the next
partial network . Additionally , once an intermediate output of
a partial network is no longer needed (i.e. , when all com
putations dependent on the intermediate have been per
formed) an instruction for overwriting that intermediate
output may be scheduled . The overwriting instruction may
be part of the implementation of the next partial network .
For example , an intermediate output from a particular layer
of one partial network may be overwritten by an interme
diate output from the particular layer for the next partial
network . Alternatively , the overwriting instruction may
involve some other data that is part of a different layer , a
different MLN , a different data sample , or some other data
value . However , at any given time , only a limited subset of
intermediate values associated with a given layer are stored
(for at least some of the layers) , and these values may be
streamed directly between L1 memories of Tiles without
being transferred to or from L2 or L3 memory .
[0066] The compiler 120 then outputs 712 the computer
program for implementation on the MLA . For example , the
compiler may write the computer program to a non - volatile
memory device from which the computer program can be
loaded by a controller associated with the MLA at run - time .
[0067] FIG . 8 is a block diagram of a software develop
ment environment including an ML compiler 820. In this
example , the software development environment also
includes a model optimizer 830. The model optimizer 830
receives a description of the MLN 800 and produces an
optimized graph 835 of the MLN . It may apply optimiza
tions such as quantization 831 , pruning 832 and / or com
pression 833. Quantization 831 reduces the resolution of
calculated values . For example , floating point values may be
quantized to a certain number of bits and then integer math
used instead of floating point math . This reduces the com
plexity and power consumed by the Tiles . Pruning 832
removes parts of the MLN that do not contribute signifi
cantly to the overall results . For example , if certain weights
are zero or close to zero , those weighted interconnects may

be pruned . Finally , because MLNs contain a large amount of
data , compression may be used successfully to reduce data
transfer bandwidths .
[0068] The resulting optimized description 835 of the
MLN may be expressed as a graph , in which the nodes of the
graph represent nodes in the MLN and the edges of the graph
represent the weighted interconnects . The compiler 820
receives the optimized graph 835 and produces the resulting
computer program 850. The compiler 820 may perform
operations including static scheduling 822 , PPA (power
performance area) optimizations 824 , graph optimizations
826 and / or partitioning 828. Static scheduling 822 of the
appropriate instructions was described above .
[0069] PPA optimization 824 includes different optimiza
tions of the computer program 850. For example , the allo
cation of MLN computations to Tiles may be optimized to
reduce power consumption , to increase performance (such
as reducing latency or increasing throughput) and / or to
reduce area (e.g. , number of Tiles used) .
[0070] For a given graph representation of an MLN , the
number of computations required to execute the MLN is
fixed . As a result , in one approach , the compiler may
optimize to increase the utilization of compute resources in
the Tiles — to keep the compute pipelines as busy as possible .
However , for a Tile to execute a computation , the data for
that computation must be available . This means that any
prior computations must be completed and that those results
must be transferred to the Tile doing the next computation .
Thus , rather than focusing on computations , the compiler
may optimize with respect to data transfer to reduce the wait
times of computations . It may also allocate computations to
Tiles in order to reduce data transfers between Tiles in the
same mesh , to reduce data transfers from outside the MLA
and / or to reduce data transfers that cross the boundary of the
mesh (e.g. , reducing data transfers between L1 and L2
memory and trying to keep all data in L1 memory) .
[0071] The compiler 820 may also optimize 824 the
computer program 850 , subject to constraints on power ,
performance , area and / or any of the quantities described
above . Graph optimization 826 includes analysis of the
graph representing the MLN to prune , merge or quantize
links , parameters , values , and layers to achieve better per
formance . Partitioning 828 concerns mapping the computa
tions in the MLN to an implementation on the MLA . This
includes determining which computations are allocated to
which Tiles and how data flows through the mesh of Tiles
during computation . If there are multiple mosaics , it also
includes determining which computations are allocated to
which mosaics .
[0072] The resulting computer program 850 may be
loaded into memory for execution on a machine learning
accelerator 870. For example , one possible application is
object detection . In this case , the inputs are images captured
by a video camera . The MLN 800 has been trained to
identify certain objects in the video images . The computer
program 850 implementing the MLN is loaded onto memory
that is accessible by the MLA 870 , which is implemented as
a chip inside the camera . This way , images captured by the
video camera may be immediately analyzed by the computer
program 850 running on the MLA 870 .
[0073] In addition to the MLA 870 , the computer program
850 or parts of it may be run on a software simulator 836
and / or hardware emulator 838 (including FPGAs configured
as MLAs) . These may be used for product development ,

US 2021/0342675 A1 Nov. 4 , 2021
9

a

debugging and / or prototyping . For some purposes , a full
simulation or emulation is not necessary . For example , to
check that there are no collisions or conflicts between
statically scheduled instructions , only the flow of data may
be simulated or emulated . It is not necessary to compute
actual values .
[0074] Components of the software development environ
ment of FIG . 8 including the model optimizer 830 , compiler
820 , computer program 850 , and software simulator 836
may each be implemented as instructions stored to a non
transitory computer - readable storage medium . The instruc
tions may be executed by one or more processors to perform
the functions attributed to the components as described
herein .
[0075] FIG . 9 is a block diagram of an integrated circuit
that includes an MLA 970. In other words , other components
may be included on the same die as the MLA . This example
includes the following additional blocks : application pro
cessor 910 (e.g. , general purpose CPU running applications) ,
computer vision processor 912 (or other types of applica
tion - specific processors) , safety 914 , security 916 , additional
SRAM (memory) 920 and input / output circuitry 922. It also
includes a network 930 for communication between the
different components . This type of semiconductor chip may
be referred to as a system - on - chip (SOC) .
[0076] The connections to the external world include
camera inputs 940 for the computer vision processors , ports
for debug 942 and configuration 944 , a connection 946 to
external memory (e.g. , DRAM) , chip - to - chip connections
948 , and network connections 950 (e.g. , Ethernet and PCIe) .
[0077] The SoC of FIG . 9 may be combined with other
components to perform various tasks in edge devices .
Example applications for edge devices include automotive
and other forms of transportation including autonomous
transportation , agricultural , industrial , robotics , drones , sur
veillance and security , smart environments including smart
cities , medical and personalized health . Example tasks
include computer vision , image analysis , image understand
ing , speech recognition , audio analysis , audio understand
ing , natural language processing , classification and pattern
recognition tasks . For edge devices , it may be desirable to
perform certain tasks in real - time .
[0078] In addition to memory and other programmable
processors , an edge device may also include sensors , such as
cameras (both still image and video cameras) , microphones ,
temperature sensors , pressure sensors and other types of
sensors . The sensors may capture samples that are used as
inputs to a computing pipeline within the edge device . For
example , image samples may be input to the computer
vision processors 912 , which perform initial operations such
as edge detection and enhancement , contrast enhancement ,
motion detection , and optical flow . Raw and / or processed
images may be then input to the MLA 970 for analysis by the
machine learning network . The MLA may also receive other
inputs , such as metadata from other sources and data from
other sensors . The application processors 910 may also
perform various functions in the overall pipeline and may
also serve as a master controller that coordinates operation
of the MLA and the other programmable processors in the
pipeline .
[0079] Edge devices may be portable with less power
available for computations compared to , for example , cloud
based server farms . It may also be desirable for the com
puting pipeline within the edge device to perform tasks

without utilizing cloud - based or other remote compute
resources . In some implementations , the MLA implements
computations in the machine learning network at a perfor
mance of at least 50 TOPs (50 trillion operations per second)
at a power consumption of not more than 5 watts . The
performance may be increased by increasing the number of
Tiles in the mesh or the number of Tile meshes on the die .
[0080] Although the detailed description contains many
specifics , these should not be construed as limiting the scope
of the invention but merely as illustrating different
examples . It should be appreciated that the scope of the
disclosure includes other embodiments not discussed in
detail above . Various other modifications , changes and
variations which will be apparent to those skilled in the art
may be made in the arrangement , operation and details of the
method and apparatus disclosed herein without departing
from the spirit and scope as defined in the appended claims .
Therefore , the scope of the invention should be determined
by the appended claims and their legal equivalents .
What is claimed is :
1. A method for generating a computer program to imple

ment a machine learning network on a machine learning
accelerator (MLA) , the MLA comprising one or more
meshes of interconnected processing elements implemented
on a semiconductor die , the method comprising :

receiving a description of the machine learning network ,
the machine learning network comprising a plurality of
interconnected layers ;

determining for each of a plurality of outputs of a layer of
the machine learning network , respective correspond
ing partial networks that each include a respective set
of intermediate outputs from prior layers on which
computation of the output is dependent ;

allocating computations of the machine learning network
to the processing elements ;

generating a set of instructions that implement the
machine learning network on the processing elements ;

scheduling an order of execution of the instructions to
implement the respective partial networks , where the
scheduling comprises :
scheduling computation of at least a first output of a

first partial network based on first intermediate out
puts of the first partial network ;

scheduling , following computation of the first output ,
removal of at least one of the first intermediate
outputs of the first partial network from memory ; and

scheduling , following computation of the first output ,
computation of second intermediate outputs of the
second partial network ; and

outputting the computer program .
2. The method of claim 1 , wherein scheduling the execu

tion of the instructions comprises :
determining the order based on an overlap between the

intermediate outputs of the respective partial networks .
3. The method of claim 1 , wherein scheduling the execu

tion of the instructions comprises :
overwriting at least one of the first intermediate outputs

with at least one of the second intermediate outputs of
the second partial network .

4. The method of claim 1 , further comprising :
identifying a non - overlapping intermediate output in the

first partial network that is absent from the second
partial network ; and

US 2021/0342675 A1 Nov. 4 , 2021
10

scheduling the execution of the instructions such that at
least one of the second intermediate outputs of the
second partial network overwrites the non - overlapping
intermediate output in the memory .

5. The method of claim 1 , wherein at least one of the first
intermediate outputs of the first partial network overlaps
with at least one of the second intermediate outputs of the
second partial network .

6. The method of claim 1 , where scheduling execution the
instructions comprises :

determining a subset of the partial networks that have
overlapping intermediate outputs ; and

scheduling to implement the subset of partial networks
having the overlapping intermediate outputs consecu
tively .

7. The method of claim 1 , further comprising :
identifying a pair of densely connected layers ;
identifying a group of sparsely connected layers ;
deriving the partial networks as being contained with the

group of sparsely connected layers .
8. The method of claim 7 , wherein scheduling execution

of the instructions comprises :
scheduling computations by first set of processing units to
implement a first layer of the pair of densely connected
layers to generate a set of intermediate outputs ;

scheduling transfer of the set of intermediate outputs to
L2 memory outside the processing units ;

scheduling transfer of the set of intermediate outputs from
L2 memory to a second set of processing units ; and

scheduling computations by the second set of processing
units to implement a second layer of the pair of densely
connected layers .

9. The method of claim 1 , wherein scheduling the execu
tion of the instructions comprises :

determining one or more deterministic phases ; and
statically scheduling the instructions to sequentially

implement the partial networks during the one or more
deterministic phases .

10. The method of claim 9 , wherein statically scheduling
the instructions includes :

statically scheduling computation instructions of the pro
cessing elements ; and

statically scheduling data transfer instruction to move data
into and output of Ll memories of the processing
elements .

11. The method of claim 1 , wherein scheduling the
execution of the instructions comprises determining the
order to minimize a total number of data transfers .

12. The method of claim 1 , wherein scheduling the
execution of the instructions comprises determining the
order to minimize a number of data transfers to L2 memory
external to the processing elements .

13. The method of claim 1 , wherein allocating the com
putations of the machine learning network to the processing
elements comprises allocating computations of a consecu
tive layers of the machine learning network to physically
adjacent groups of processing elements .

14. The method of claim 1 , wherein scheduling the
execution of the instructions comprises :

scheduling computation of the first intermediate outputs
on a first set of one or more processing elements and
storing the first intermediate outputs to one or more L1
memories of the first set of one or more processing
elements ;

scheduling a transfer of the first intermediate outputs from
the one or more L1 memories of the first set of one or
more processing elements directly to one or more L1
memory of a second set of one or more processing
elements ; and

scheduling computation of the first output from the first
intermediate outputs on the second set of one or more
processing elements .

15. The method of claim 14 , wherein scheduling the
execution of the instructions further comprises :

scheduling computation of the second intermediate out
puts on the first set of one or more processing elements
and storing the second intermediate outputs in L1
memory of the first set of one or more processing
elements ;

scheduling a transfer of the second intermediate outputs
from the one or more L1 memories of the first set of one
or more processing elements directly to the one or more
L1 memory of the second set of one or more processing
elements ; and

scheduling computation of a second output of the second
partial network on the second set of one or more
processing elements .

16. The method of claim 1 , wherein scheduling the
execution of the instructions further comprises :

scheduling computation of the first intermediate outputs
on a first processing element and storing the first
intermediate outputs to a first memory location of an L1
memory of the first processing element ; and

scheduling computation of the first output from the first
intermediate outputs on the first processing element .

17. The method of claim 16 , wherein scheduling the
execution of the instruction further comprises :

scheduling computation of the second intermediate out
puts on the first processing element and storing the
second intermediate outputs to the first memory loca
tion of the L1 memory of the first processing element ;
and

scheduling computation of a second output from the
second intermediate outputs on the first processing
element .

18. The method of claim 1 , wherein determining the
respective corresponding partial networks comprises :

performing a reverse flow analysis from the output
through each layer of intermediate outputs on which the
output is dependent to identify a set of partial ordering
constraints for computations within the partial network .

19. A method for generating a computer program to
implement a machine learning network on a machine learn
ing accelerator (MLA) , the MLA comprising one or more
meshes of interconnected processing elements implemented
on a semiconductor die , the method comprising :

receiving a description of the machine learning network ,
the machine learning network comprising a plurality of
interconnected layers ;

determining for each of a plurality of outputs of a layer of
the machine learning network , respective correspond
ing partial networks that each compute one of the
outputs and a set of intermediate outputs from prior
layers on which the output is dependent ;

determining an order to implement the respective partial
networks based on an overlap between the partial
networks ;

a

US 2021/0342675 A1 Nov. 4 , 2021
11

including integrated L1 memory , the processing ele
ments configured to execute instructions of a computer
program to implement the machine learning network by
sequentially implementing a set of partial networks
corresponding to respective outputs of a layer of the
machine learning network , each of the partial networks
including computations for producing the output of the
layer and a set of intermediate outputs from one or
more prior layer on which the output is dependent , the
instructions when executed causing the processing ele
ments to :

allocating computations of the machine learning network
to the processing elements ;

generating a set of instructions that implement the
machine learning network on the processing elements ;

scheduling execution of the instructions to implement the
respective partial networks according to the determined
order ; and

outputting the computer program .
20. The method of claim 19 , where determining the order

comprises :
determining a subset of the partial networks that have

overlapping intermediate outputs ; and
determining the order to implement the partial networks

having the overlapping intermediate outputs consecu
tively .

21. The method of claim 19 , wherein scheduling the
execution of the instructions comprises :

computing intermediate outputs of a layer of a partial
network on a first set of processing elements ;

transferring the intermediate outputs directly to an L1
memory of a second set of processing elements ; and

computing an output corresponding to the partial network
on the second set of processing elements .

22. A system comprising a machine learning accelerator
(MLA) implemented on a semiconductor die , the MLA
comprising :

an on - chip memory system configured to store data used
in computations for implementing a machine learning
network ; and

a mesh of interconnected processing elements coupled to
the on - chip memory system , the processing elements

for a first partial network of the machine learning
network , obtaining a first set of intermediate outputs
from a memory and perform a first computation on
the first set of intermediate outputs of the first partial
network to generate the first output ; and

following completion of the first computation , comput
ing , for a second partial network of the machine
learning network , at least one of the second set of
intermediate outputs of the second partial network
and removing at least one of the first set of interme
diate outputs from the memory .

23. The system of claim 22 , wherein the instructions
further cause the mesh of interconnected processing ele
ments to implement partial networks of the machine learning
network according to an order in which partial networks
having overlapping intermediate outputs are implemented
consecutively .

* *

