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ORDERING COMPUTATIONS OF A 
MACHINE LEARNING NETWORK IN A 

MACHINE LEARNING ACCELERATOR FOR 
EFFICIENT MEMORY USAGE 

BACKGROUND 

1. Technical Field 

[ 0001 ] This disclosure relates , in general , to the imple 
mentation of machine learning networks on hardware . 

2. Description of Related Art 

[ 0006 ] FIG . 1A is a block diagram of a system with a 
machine learning accelerator ( MLA ) and corresponding 
compiler , according to the invention . 
[ 0007 ] FIG . 1B illustrates partitioning a computer pro 
gram into deterministic and non - deterministic phases . 
[ 0008 ] FIG . 2A is a block diagram of a hardware system , 
including an MLA . 
[ 0009 ] FIG . 2B is a block diagram of a Tile within an 
MLA . 
[ 0010 ] FIG . 3A - 3C illustrate a first example of a technique 
for ordering computations in implementing a machine learn 
ing network . 
[ 0011 ] FIG . 4A - 4B illustrate a second example of a tech 
nique for ordering computations in implementing a machine 
learning network . 
[ 0012 ] FIG . 5 illustrates third example of a technique for 
ordering computations in implementing a machine learning 
network . 
[ 0013 ] FIG . 6 illustrates fourth example of a technique for 
ordering computations in implementing a machine learning 
network . 
[ 0014 ] FIG . 7 is a flowchart illustrating an embodiment of 
a process for ordering computations of a machine learning 
network for efficient memory usage . 
[ 0015 ] FIG . 8 is a block diagram of a software develop 
ment environment , including an ML compiler . 
[ 0016 ] FIG . 9 is a block diagram of an integrated circuit 
product that includes an MLA . 

a 

a 

a 

[ 0002 ] Machine learning is one of the most powerful 
recent trends in technology . In machine learning , a model is 
developed to perform a certain task . The model , which will 
be referred to as a machine learning network , is trained and 
deployed in order to carry out that task . For example , a 
model may be developed to recognize the presence of 
objects within images captured by a set of cameras . Once the 
model is deployed , images captured by the cameras are input 
to the machine learning network , which then outputs 
whether ( or to what confidence level ) objects are present 
within the images . 
[ 0003 ] Machine learning networks typically require the 
handling of a large volume of data and the execution of a 
large number of computations . As a result , they are com 
monly implemented in compute facilities with access to 
significant resources , such as in the cloud or on server 
clusters . However , the sources of input to machine learning 
networks may be located remotely from these compute 
facilities . For example , cameras and other types of sensors 
may be located on the edge of the network . Example 
applications for edge devices include automotive and other 
forms of transportation including autonomous transporta 
tion , agricultural , industrial , robotics , drones , surveillance 
and security , smart environments including smart cities , 
medical , and personalized health . Example tasks include 
computer vision , image analysis , image understanding , 
speech recognition , audio analysis , audio understanding , 
natural language processing , classification and pattern rec 
ognition tasks . For edge devices , it may be desirable to 
perform certain tasks in real - time . In addition to memory 
and other programmable processors , an edge device may 
also include sensors , such as cameras ( both still image and 
video cameras ) , microphones , temperature sensors , pressure 
sensors and other types of sensors . The sensors may capture 
samples that are used as inputs to a computing pipeline 
within the edge device . Thus , one common paradigm is for 
the input sources to be web - based so that they can continu 
ously send their captured data to the cloud - based compute 
facility , which then executes the machine learning network 
and returns the result . 
[ 0004 ] However , there can be many advantages if the 
machine learning network and computing elements on 
which it executes was instead embedded on edge devices , 
such as combined with the camera system . 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

[ 0017 ] The figures and the following description relate to 
preferred embodiments by way of illustration only . It should 
be noted that from the following discussion , alternative 
embodiments of the structures and methods disclosed herein 
will be readily recognized as viable alternatives that may be 
employed without departing from the principles of what is 
claimed . 
[ 0018 ] A machine learning network comprises a sequence 
of layers that each receive a data set from the previous layer , 
apply some function to the data , and output a data set to a 
subsequent layer . The outputs of each layer may involve 
millions or billions of data points , making memory man 
agement a challenging task , particularly when implementing 
the machine learning network on a semiconductor die with 
limited memory capacity and reduced power consumption . 
For speed , power and memory efficiency , it is beneficial to 
minimize the amount of temporary data that needs to be 
stored at any given time and to reduce the number of data 
transfers , particularly data transfers to more remote memo 
ries . This can be achieved in a machine learning accelerator 
( MLA ) in which instructions implementing the computa 
tions are intelligently ordered to limit memory usage and 
data transfers . 
[ 0019 ] Example embodiments of a general MLA system 
and corresponding compiler that operates to implement an 
MLN in a manner that achieves limited memory usage by 
intelligent ordering of the computations are described below 
with respect to FIGS . 1-2 . The general MLA system is one 
example of such an architecture that can benefit from the 
techniques described herein . In alternative embodiments , the 
techniques described herein for ordering the computations of 
an MLN can be applied in MLA systems having different 
architectures and operational structures . 

a 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] Embodiments of the disclosure have other advan 
tages and features which will be more readily apparent from 
the following detailed description and the appended claims , 
when taken in conjunction with the examples in the accom 
panying drawings , in which : 
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[ 0020 ] FIG . 1A is a block diagram of one example of a 
system with a machine learning accelerator ( MLA ) 170 and 
corresponding compiler 120 , according to the invention . The 
compiler 120 receives a description of a machine learning 
network 100 and generates a computer program 150 that 
implements the machine learning network using MLA 170 . 
The computer program 150 includes instructions that are 
executed by processing elements ( Tiles ) in the MLA accord 
ing to a schedule determined by the compiler . For conve 
nience , these will be referred to as statically scheduled 
instructions . The instructions executed by the Tiles ( Tile 
instructions ) are statically scheduled because the compiler 
can determine which instructions are executed by which 
Tiles at what times , as will be explained in greater detail 
below . For example , for the statically scheduled instructions , 
there are no conditions , branching or data dependencies that 
can be resolved only at run - time , and which would affect the 
timing and order of the execution of the instructions . Note 
that the static schedule determined by the compiler may or 
may not be included as part of the instructions and computer 
program . In some embodiments , the computer program may 
expressly include the schedule , specifying that instruction A 
is executed at cycle X , instruction B is executed at cycle 
X + 4 , instruction C is executed at cycle X + 12 , etc. In 
alternate embodiments , the computer program may specify 
only that instruction A is executed , followed by instruction 
B , and then instruction C , but without any scheduling 
information . Even though the static schedule is not expressly 
specified , these instructions will still execute according to 
the schedule determined by the compiler because the com 
piler knows how long it takes to execute each instruction . As 
a result of the static scheduling , the MLA and instruction set 
for the MLA may be simplified , with the complexity off 
loaded to the compiler . A simpler MLA can result in lower 
cost , lower power consumption and higher performance , all 
of which are desirable for implementation in edge devices . 
[ 0021 ] In more detail , the MLN 100 may be described by 
an architecture and parameters . A depiction of an MLN is 
shown to the right of box 100 in FIG . 1A . Most MLNs 
include multiple layers 102 , each with one or more nodes 
which are represented by circles in FIG . 1A . The lines 
between nodes in FIG . 1A represent interconnections 
between the nodes ( and layers ) . Each node calculates a 
weighted sum of the values received from its connected 
nodes , possibly also applying a bias . Examples are matrix 
multiplication and convolution . Each node may also apply 
certain functionality ( operators ) , such as nonlinear functions 
( e.g. , tanh function ) , softmax operator , etc. A typical node 
may compute an output : 

y = F ( EwX ; + b ) ( 1 ) 

where x , are the inputs received from other nodes i , w , are 
weights , b is a bias and FC ) is a nonlinear operator . The 
MLN architecture includes the number of nodes ( and layers ) 
and their interconnectivity , and the operators applied at 
nodes . The operators may be described in a parameterized 
form . The MLN parameters include the weights , biases , and 
parameters for the operators . 
[ 0022 ] MLNs may vary in size , depending on the desired 
task . Small MLNs may have 5-10 or fewer layers , medium 
size MLNs may have 30-50 layers , and large MLNs may 
have 100 or more layers . Examples of inputs include text , 
images and video . Some of the layers may be fully inter 
connected ( i.e. , every node in one layer provides input to 

every node in the next layer ) or very densely interconnected , 
and others may be more locally or sparsely interconnected 
( e.g. , to implement convolutions ) . Each weighted intercon 
nect represents a scalar multiplication . The total number of 
scalar multiplications required to implement an MLN may 
be on the order of millions , billions , tens of billions or even 
more . These may be carried out by matrix multiplications . 
[ 0023 ] The MLA 170 includes a plurality of Tiles 180 and 
an on - chip memory system implemented on a semiconduc 
tor die . The Tiles are organized into one or more meshes of 
interconnected Tiles . A depiction of a Tile mesh is shown to 
the right of box 170 in FIG . 1A . In each mesh , the Tiles 180 
are organized in a regular pattern and the interconnections 
within each mesh provide data transfer paths between Tiles 
in the mesh . The Tiles execute computations according to 
instructions received by the Tiles and using data stored in the 
on - chip memory system . These instructions may be for 
computations and / or for data transfer . Computations include 
multiply ( including matrix multiply ) , add , and operators 
( e.g. , nonlinear functions , lookup table , min / max , pooling ) . 
These are computations that implement the MLN . In the 
example of FIG . 1A , the computations performed by layers 
102A - D are allocated to groups 182A - D of Tiles as indi 
cated . The allocation is not required to be 1 : 1 . For example , 
multiple layers could be allocated to a single Tile or vice 
versa . Not every computation required to implement an 
MLN need be executed by a Tile ; some computation may be 
executed outside the MLA ( e.g. , floating point operations , if 
the Tiles only do integer arithmetic ) . Tiles typically will at 
least perform matrix multiplication . 
[ 0024 ] The compiler 120 receives a description of the 
MLN 100 and generates a computer program 150 that 
implements the MLN using the MLA 170. The computer 
program 150 receives an input sample for the MLN and 
executes the operations of the MLN to produce the output 
for the MLN . The computer program 150 includes instruc 
tions to be executed by the Tiles for implementing compu 
tations in the MLN and may also include instructions to be 
executed by other elements , such as a controller outside the 
Tiles . 

[ 0025 ] The compiler 120 determines the allocation of 
computations to Tiles and the order of the computations in 
part to reduce data transfers . For example , the Tiles typically 
have limited local memory . If the compiler 120 can schedule 
the computations so that the number of intermediate values 
at any point in time is low enough to be stored entirely or 
predominately within local memory , then data transfers to 
memories outside the Tiles may be avoided or significantly 
reduced . Furthermore , even if the compiler schedules data 
transfers to external memories outside the Tiles , the com 
piler 120 can still determine the order of computations in a 
way that reduces the amount of data being stored , thereby 
making efficient use of available memory resources . For 
example , in FIG . 1A , if the number of nodes in the layers 
182 is large , then computing all of the outputs for a layer at 
once may result in too many values to store in local memory . 
The entire layer's output may have to be transferred to an 
external memory instead . To avoid this , the compiler may 
schedule the calculations so that the outputs are computed as 
they are needed by the next layer . When those outputs are 
consumed by the next layer , they need no longer be stored . 
The total number of outputs required at any point in time 
may be drastically reduced and stored entirely or at least 
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partially in local memory , eliminating or reducing the need 
for data transfers to external memory . 
[ 0026 ] As shown in FIG . 1B , the compiler partitions the 
Tile instructions into one or more deterministic phases 
152A , B , C which typically utilize multiple Tiles . The 
instructions in a deterministic phase 152 may be statically 
scheduled by the compiler . For example , a deterministic 
phase 152 may include a series of computations required to 
implement a portion of the MLN , where the time required 
for each computation and associated data transfers is known . 
As a result , the compiler may statically schedule the Tile 
instructions within that deterministic phase relative to the 
other Tile instructions in the phase . The resulting computer 
program produced by the compiler then implements an 
allocation of instructions to Tiles and a schedule for execut 
ing the instructions as determined by the compiler , although 
these may not be expressly contained within the computer 
program . In the example of FIG . 1A , the computations 
performed by layers 102A - D are allocated to groups 
182A - D of Tiles as indicated . In addition , all of the Tile 
instructions ( including both for computation and for data 
transfer ) are executed in a single deterministic phase . 
[ 0027 ] The computer program may also include non 
deterministic phases 154X , Y. For example , non - determinis 
tic phases 154 may include data fetch or instruction fetch 
from off - chip memory where the time required to execute 
the operation varies too much to allow reliable synchroni 
zation with other operations . Other examples include com 
putations that occur off - chip , and conditions , branching and 
other programmatic constructs that depend on values not 
known until run - time . The breaks in the rectangles for the 
non - deterministic phases 154 indicate that the timing is not 
deterministic , whereas the deterministic phases 152 are 
represented by rectangles without breaks . In FIG . 1B , the 
deterministic and non - deterministic phases are shown as 
alternating . This is not required . For example , deterministic 
and non - deterministic phases may execute concurrently . 
[ 0028 ] FIG . 1B also shows more detail of deterministic 
phase 152B , which shows the static schedule computed by 
the compiler for executing Tile instructions in this phase . 
The phase 152B begins at some time when all of the Tiles 
are synchronized , which for convenience is marked as cycle 
c0 in FIG . 1B . The Tiles may have circuitry that synchro 
nizes the Tiles . For example , each Tile may monitor when it 
is ready to begin execution of a deterministic phase 152B 
and then actual execution begins when all Tiles signal that 
they are ready . Alternatively , an external controller may 
synchronize the Tiles and start the deterministic phase 152B 
when all Tiles are ready . 
[ 0029 ] In this example , the instructions are executed by 
three Tiles , as denoted by T1 , T2 and T3 . Each Tile has two 
pipelines : a “ D ” pipeline for executing data transfer instruc 
tions and a “ C ” pipeline for executing compute instructions . 
The row labeled T1 D shows instructions executed by the 
Tile 1 D ( data transfer ) pipeline , and the row labeled T1 C 
shows instructions executed by the Tile 1 C ( compute ) 
pipeline . For this example , assume that all the data transfer 
instructions are instructions that load new data into that Tile 
for consumption by the compute pipeline . The white regions 
of each row denote the execution of instructions and the 
hashed regions indicate that the pipeline is idling or execut 
ing a NO - OP ( no operation ) . 
[ 0030 ] For Tile 1 , instruction 155a transfers data into Tile 
1 and instruction 155b then performs a computation that 

consumes that data . Instruction 155b is dependent on 
instruction 155a . Here , the T1 C pipeline is not required to 
continuously poll the T1 D pipeline at run - time for when the 
data is available , and run - time message passing between the 
pipelines is not required to indicate that the data is available . 
Rather , because the duration ( i.e. , time required to execute ) 
of instruction 155a is known , the compiler knows when the 
data will be available ( for convenience , marked as cycle cl 
in the figure ) and can construct a static schedule in which 
instruction 155b starts execution then . The duration of 
instruction 155b is also known , so the compiler knows that 
compute instruction 155d may start after instruction 1556. In 
this case , the compiler determines a static schedule in which 
instruction 155d starts at cycle c3 . Compute instruction 155d 
depends on data brought into the Tile by instruction 155c . 
The duration of instruction 155c is known , so the compiler 
knows that in the static schedule , instruction 155c must start 
at cycle c2 or earlier . This pattern is repeated for pairs of data 
transfer instructions and compute instructions 155e - f , 155g 
h , 155i - j . 
[ 0031 ] For Tile 2 , compute instruction 1551 depends on 
data from data transfer instruction 155k . However , instruc 
tion 155k does not start immediately at cycle c0 . Rather , it 
has a delayed start at cycle c4 . This may be because the data 
transfer path required by instruction 155k is occupied by 
some other data transfer instruction and is not available until 
cycle c4 . The start time of instruction 155k in the static 
schedule is not determined by run - time arbitration or con 
tention mechanisms for the shared data transfer path . Rather , 
the compiler knows that the data transfer path is occupied 
since the compiler knows the start times and durations of all 
the instructions , so the compiler simply creates a static 
schedule in which instruction 155k does not start until cycle 
c4 when the compiler knows the data transfer path will be 
available . Similarly , data transfer instruction 155m has a 
delayed start time . Perhaps the T2 D pipeline is being used 
to transfer out the results of computation 1551 and does not 
become available until cycle c5 . 
[ 0032 ] For Tile 3 , computation 155n starts immediately at 
cycle c0 . Perhaps the required data was loaded into Tile 3 
during some prior phase . Data transfer instructions 1550 and 
155p load data for compute instruction 1559. They are 
separated in time , perhaps because different pieces of data 
were not available or the data transfer paths were not 
available until those times . As a final example , data transfer 
instruction 155r loads data for compute instruction 155s . In 
the static schedule , the compiler places instruction 155r well 
in advance of when the data is required , but this may be 
because that is when the data transfer path is available or 
perhaps the data was transferred out of the sourcing Tile in 
order to make room in that Tile . 
( 0033 ] Execution of the instructions according to the static 
schedule at run - time may be implemented in different ways . 
In one approach , the computer program includes an express 
schedule for the execution of the instructions . Continuing 
the example of FIG . 1B , the computer program may specify 
that instruction 155a executes at cycle co , instruction 155b 
at cycle cl , instruction 155c at cycle c2 , etc. Alternatively , 
the compiler may fill each instruction stream with NO - OPs 
to achieve the correct timing . A NO - OP ( no operation ) is an 
instruction that occupies a certain number of cycles without 
other activity . For example , the compiler knows that instruc 
tion 155a will end at cycle cl and instruction 155b is 
supposed to begin at cycle cl . It may fill the space between 
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cycles c0 and cl with NO - OPs for the T1 C pipeline . The T1 
C pipeline then just continuously executes instructions from 
its queue , and the NO - OPs ensure that instruction 155b is 
executed according to the compiler’s static schedule . In yet 
another approach , the static schedule may be implemented 
by hardware . The T1 C pipeline may just stall on the 
execution of instruction 155b until the data from instruction 
155a is ready . The compiler knows that data will be ready at 
cycle cl and , therefore , instruction 155b will execute start 
ing at cycle cl even though the Tiles are unaware of the 
static schedule . Regardless of the implementation , for con 
venience , all of these situations will be described using the 
phrase " static schedule . ” Thus , a statement that the compiler 
statically schedules the instructions is intended to include all 
of the above implementations and is not meant to imply that 
the computer program expressly includes a scheduled time 
for each instruction . 
[ 0034 ] In order to statically schedule the instructions in a 
deterministic phase , the compiler typically will know the 
duration of each instruction ( i.e. , how long each instruction 
takes to execute ) , the capabilities of each Tile ( which Tiles 
can execute which instructions ) , the topology of data trans 
fer paths to and from Tiles ( including between Tiles , and 
between Tiles and on - chip memory ) , and the computations 
required and their dependencies ( i.e. , the MLN description ) . 
With this information , the compiler can schedule uncondi 
tional start times for the Tile instructions . Here , uncondi 
tional refers to run - time conditions . The execution order of 
statically scheduled instructions will not change as a result 
of run - time conditions , branching or dependence on input 
values . As a result , compute instructions may be scheduled 
for start times when all of the required data for the compu 
tation is known to be available and the compute pipeline is 
also known to be available . The need for run - time determi 
nation of whether data has arrived and whether the compute 
pipeline is available may be avoided . Analogously , data 
transfer instructions may be scheduled for start times when 
the data transfer path is known to be available . The need for 
circuitry to handle arbitrations , or to check for or resolve 
contentions and collisions on shared data transfer paths at 
run - time may be avoided . The need for routing tables and 
other circuitry to determine routing at run - time may also be 
avoided . 
[ 0035 ] The approach based on static scheduling described 
above is not restricted to the examples described above . For 
example , different network topologies of Tiles may be used . 
Other Tile meshes may also be statically scheduled , so long 
as the time required to execute computations and to transfer 
data between Tiles is deterministic and may be determined 
at compile time . Additional examples are described in U.S. 
application Ser . No. 16 / 840,216 , “ Machine Learning Net 
work Implemented by Statically Scheduled Instructions , 
with Compiler , ” which is incorporated by reference herein in 
its entirety 
[ 0036 ] Other aspects include components , devices , sys 
tems , improvements , methods , processes , applications , com 
puter readable mediums , and other technologies related to 
any of the above . 
[ 0037 ] FIG . 2A is a block diagram of a hardware system 
including an MLA 270. The MLA 270 includes all the 
components shown in FIG . 2A , except the off - chip L3 
memory 290. The MLA components are implemented on a 
single die as part of a single chip . The MLA 270 includes 
one or more mosaics 272A - N . In this example , all of the 

mosaics are the same . Each mosaic 272 includes a mesh of 
Tiles 280 , an on - chip memory system and a controller 277 . 
In FIG . 2A , the on - chip memory system is a multi - level 
memory system , which includes a level 1 ( L1 ) memory 
distributed among the Tiles ( see FIG . 2B ) and a level 2 ( L2 ) 
memory 274 shared by the Tiles . If there are multiple 
mosaics 272 , the MLA 270 may include a dedicated inter 
connect 279 for connecting the different mosaics . Each 
mosaic also includes an interface 278 to the interconnect 
279 . 
[ 0038 ] FIG . 2B is a block diagram of a Tile 280 within the a 
MLA . In this example , all the Tiles are the same . Each Tile 
280 includes an L1 memory 282. Each Tile 280 also includes 
a data transfer pipeline that executes instructions for trans 
ferring data to and from the Ll memory 282. Here , the Tiles 
280 are arranged in a rectangular array as shown in FIG . 2A , 
with each Tile connected to its adjacent neighbors . Interior 
Tiles are connected to four adjacent Tiles . Edge Tiles are 
connected to adjacent Tiles and also to L2 memory 274. In 
FIG . 2B , the L1 memory 282 may receive data from any of 
its adjacent Tiles and / or from L2 memory if it is an edge 
Tile . Similarly , it may transfer data to any of its adjacent 
Tiles and / or to L2 memory if it is an edge Tile . The data 
transfer operations are controlled by data transfer instruc 
tions received and executed by the Tiles . 
[ 0039 ] Each Tile 280 also includes a compute pipeline 285 
for executing computations using data stored in the L1 
memory 282. The L1 memory acts as software - configurable 
registers for the compute pipeline 285. The compute pipeline 
285 includes matrix multiplication circuitry 286 , such as a 
systolic array , and circuitry for implementing different types 
of operators 287. The computations are controlled by com 
pute instructions received and executed by the Tiles . 
[ 0040 ] In this particular example , all of the data transfer 
instructions and compute instructions executed by the Tiles 
are statically scheduled . These instructions include data 
transfer between L1 memories in different Tiles , and data 
transfer between L1 memory and L2 memory . Data transfer 
instructions may specify one hop at a time ( e.g. , transfer data 
to the east neighbor Tile ) or may specify destination and path 
through intermediate Tiles ( e.g. , transfer data to Tile ( 5,5 ) 
using path east - east - north - north - east ) . The instructions also 
include matrix multiplies performed by the Tiles and opera 
tors applied by the Tiles . These operations do not require 
very many different instructions to implement , so the overall 
instruction set may be fairly small , for example not more 
than 20 instructions , or not more than 50 instructions . 
[ 0041 ] The L3 memory 290 is off - chip . In this example , 
the L1 and L2 memories are implemented as on - chip SRAM 
and the L3 memory is implemented as DRAM ( flash 
memory and SSD drives are other alternatives ) . Because the 
L1 and L2 memories are implemented as SRAM , the data 
transfers between L1 memories or between L1 and L2 
memories have deterministic timing , so these data transfer 
instructions can be statically scheduled by the compiler . 
However , data transfer from off - chip DRAM is more unpre 
dictable in timing . As a result , these instructions are non 
deterministic in nature and they are executed by the micro 
controller 277. Therefore , they are executed in one of the 
non - deterministic phases and they are not statically sched 
uled . 
[ 0042 ] In one approach , the instructions in the computer 
program and the data required for computation ( e.g. , input , 
weights , biases , parameters for operators ) are initially 
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loaded into L3 memory 280. From time to time , instructions 
and associated data are transferred from L3 memory into 
L1 / L2 memory during a non - deterministic phase since the 
timing of data transfers from DRAM is not deterministic . 
Once these instructions and data are loaded into L1 / L2 
memory , the computer program enters a corresponding 
deterministic phase in which the Tiles execute the loaded 
instructions according to a static schedule . The non - deter 
ministic and deterministic phases may occur concurrently . 
For example , data may be continuously streamed into the 
L1 / L2 memory during the non - deterministic phase , with the 
corresponding statically scheduled instructions from the 
deterministic phase consuming that data . In one approach , 
the Tiles execute only statically scheduled instructions , and 
all non - statically scheduled instructions are executed by 
processing elements outside the Tile mesh , for example , the 
microcontroller 277 . 
[ 0043 ] SRAM has predictable timing so implementing the 
L1 and L2 memories as SRAM allows the compiler to 
statically schedule data transfers from those memories into 
the Tiles for computation . However , there is a limit to the 
amount of SRAM that may be implemented on a die . In 
order to increase the effective size of SRAM , a virtual 
SRAM approach may be used . In one approach , the compute 
instructions that consume certain data are not fetched into 
the Tiles until after the corresponding data have been 
transferred from DRAM ( L3 memory ) to SRAM ( L1 / L2 
memory ) . This guarantees that the compute instructions will 
not be executed by the Tiles before the data is available . All 
data effectively will appear as if it is transferred to the Tiles 
from SRAM for computation , even if all of the data would 
not fit into the available SRAM . 
[ 0044 ] L2 memory may also be used to temporarily store 
interim values that are too voluminous to store in L1 
memory . For example , a layer K of the MLN may produce 
a large amount of data at its output , to be used as input to the 
next layer K + 1 . The layer K output may be stored in L2 
memory and then retrieved from L2 memory as needed for 
the next layer's computations . This may be implemented 
using a ping pong buffer approach when multiple input 
samples are processed as a pipeline . The L2 memory is 
divided into two regions A and B. When a first input sample 
is processed , the layer K output is stored in region A of the 
L2 memory . The computations for layer K + 1 retrieve the 
stored values from region A. At the same time , the second 
input sample is processed and the layer K output is stored in 
region B of the L2 memory . The two regions then alternate , 
with the Tiles implementing layer K storing to one region 
while the Tiles implementing layer K + 1 read from the other 
region . The synchronization is implemented by the static 
scheduling . The compiler knows when regions AB will be 
ready and the instructions to implement layer K + 1 will 
execute after that time . No synchronization primitives are 
needed . 
[ 0045 ] Efficient operation of the MLN can be achieved by 
avoiding or reducing data transfers to and from L2 memory 
where possible and instead transferring some or all data 
between layers by directly streaming between the L1 memo 
ries . This is desirable because transfers between L1 memo 
ries are generally less time consuming and create less 
congestion than transfers to and from L2 or L3 memory . 
Furthermore , power consumption can be reduced by trans 
ferring data directly between source and destination L1 
memories and avoiding intermediate writes to L2 or L3 

memory because it reduces the overall number of read and 
write operations . However , L1 memory typically has limited 
capacity that is generally insufficient to handle the full set of 
intermediate outputs of a given layer of the MLN . To resolve 
this problem , the computations of the MLN may be intelli 
gently ordered so that as incremental data is produced by 
each layer , it can be immediately used by a subsequent layer 
without waiting for all of the computations of the layer to be 
completed . Once an intermediate output has been processed 
by all computations of the subsequent layer that depend on 
it , that intermediate output can be released from memory , 
thus freeing up space for other computations . By intelli 
gently ordering the computations , the MLN can be imple 
mented using limited memory resources at any given time , 
which for at least some portions of the MLN , may avoid or 
minimize the number of transfers and / or the amount of data 
in each transfer to and from L2 or L3 memory . 
[ 0046 ] FIGS . 3-7 provide specific examples of techniques 
for reducing memory usage and data transfer by intelligently 
ordering computations of an MLN . In FIG . 3A , an example 
MLN is illustrated in which a first layer 302 produces a 2x2 
activation matrix A ( i.e. , outputs ) and a second layer 304 
combines the activation matrix A with a 2x2 set of weights 
W to generate a 2x2 output matrix B. That is , A is the output 
of layer 302 and input to layer 304 , W are the weights of 
layer 304 , and B is the output of layer 304 ( ignoring any 
operators that may be applied ) . In a conventional implemen 
tation , the full 2x2 matrix A is first computed by layer 302 
and four elements ( a11 , a12 , a21 , a22 ) are stored in memory . 
To implement layer 304 , the matrix A and weights W are 
loaded from memory and combined to generate the output 
matrix B. While this approach is feasible for the extremely 
simplified example of FIG . 3A involving only 2x2 matrices , 
a practical application of an MLN can involve matrices 
millions or billions of times larger and could not be practi 
cally implemented without relying on large data transfers to 
and from L2 and L3 memory . 
[ 0047 ] FIG . 3B illustrates the MLN of FIG . 3A in more 
specific detail to illustrate the dependencies between the 
layers 302 , 304. In this example , layer 304 implements a 2x2 
matrix multiplication of the activation matrix A and the 
weights matrix W that consists of four dot products . When 
applying this function , each element of the output matrix B 
is dependent on only a subset of the elements of the 
activation matrix A and a subset of the weights W. Specifi 
cally , the element b11 is dependent only on all , a12 , w11 , 
and w21 ; the element b12 is dependent only on all , a12 , 
w12 , w22 ; the element b21 is dependent only on a21 , a22 , 
wil , and 21 ; and the element b22 is dependent only on a21 , 
a22 , w12 , and w22 . Based on these dependencies , b11 and 
b12 can be computed after all and al2 are available 
independently of whether or not a21 or a22 are available . 
Similarly , b21 and 522 can be computed immediately after 
a21 and a22 are available independently of whether or not 
all or a12 are available . Thus , the MLN may be viewed as 
being composed of different partial networks that each 
independently compute one or more outputs based on only 
a subset of intermediate outputs of the MLN . Furthermore , 
the intermediate outputs associated with each of the partial 
networks need not be stored in memory at the same time if 
the partial networks are computed sequentially . 
[ 0048 ] FIG . 3C illustrates a technique for ordering the 
computations of the MLN in a manner that takes advantage 
of the independent partial networks identified in FIG . 3B and 
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reduces the overall memory usage relative to FIG . 3A . In a 
first time period 312 , elements all and al2 are computed . 
These elements may be computed in parallel or serially in 
either order during the first time period . During a second 
time period 314 , elements b1l and b12 are computed . 
Depending on the implementation , b11 and b12 may be 
computed in parallel or serially in either order . Once bli and 
b12 are computed , all and a12 are no longer needed and can 
be released from memory . Then , a21 and a22 are computed 
in a third time period 316 ( in parallel or serially in either 
order ) , and b21 and b22 are computed in a fourth time period 
318 ( in parallel or serially in either order ) . In alternative 
implementations , the order of processing the partial net 
works for b11 , b12 and b21 , b22 could be reversed . For 
example , the computations in time periods 316 and 318 may 
instead occur first , followed by the computations in time 
periods 312 and 314. In either case , only two elements of the 
activation matrix A from layer 302 are stored in memory at 
any given time . Thus , the technique cuts the memory usage 
in half relative to the technique of FIG . 3A . 
[ 0049 ] Depending on the architecture of the MLN , it may 
be also be efficient to release weights from memory once 
they are no longer needed ( e.g. , in MLNs where the weights 
are not constant and subsequent data samples do not nec 
essarily use the same weights ) . For example , if the compu 
tation in time period 318 does not depend on weights w11 , 
w21 , these weights could also be released from memory 
after time period 314 . 
[ 0050 ] When implemented in an MLA , the computations 
of FIG . 3C may be allocated to Tiles in various ways . In one 
example implementation , computations for different layers 
are generally allocated to different Tiles or groups of Tiles . 
Thus , for example , a first Tile or group of Tiles performs the 
computations of layer 302 to generate the matrix A and a 
second Tile or group of Tiles performs the computations of 
layer 304 to generate the matrix B. Here , for example , a first 
Tile may compute all and al2 during time period 312 and 
store it to its L1 memory . In the time period 314 , the first Tile 
may directly stream the elements all , a12 from its Li 
memory to an Ll memory of a second Tile ( without passing 
through L2 or L3 memory ) that computes b11 , b12 . The first 
Tile may then compute a21 and a22 , overwriting all and a12 
( which are no longer needed ) in its L1 memory . The first Tile 
may then stream a21 and a22 to the L1 memory of the 
second Tile , which computes b21 , b22 . In other example 
implementations , the elements a21 , a22 do not necessarily 
overwrite ali , al2 but may be instead be stored to a different 
location in L1 memory , while the memory locations occu 
pied by all , a12 may be overwritten by different data 
elements from some other layer , data associated with a 
different input data sample , data associated with a different 
MLN , or data for some other purpose . In other example 
implementations , computations of a single layer may be 
divided between multiple Tiles . For example , the computa 
tion of all may be performed by one Tile and the compu 
tation of a12 may be performed by a different Tile . In other 
cases , multiple layers may be implemented by a single Tile 
or set of Tiles . For example , all of the computations of FIG . 
3C could be performed serially by a single Tile . 
[ 0051 ] The example of FIGS . 3A - 3C is an extremely 
simplified example for illustrative purposes . In practice , the 
activation matrix A , weights matrix W , and output matrix X 
could each include millions or billions of elements . At these 
scales , the L1 memory capacity may be insufficient to store 

the entire activation matrix A at one time , and thus the 
technique of FIG . 3A could not practically be implemented 
without relying on transfers to and from L2 or L3 memory . 
Furthermore , although the example of FIGS . 3A - 3C reduces 
the memory usage by half , a real MLN may include layers 
with much sparser dependencies . For example , if a given 
output is dependent on only 1 % or less of the set of prior 
intermediate outputs , the memory usage at any given time 
can be similarly reduced . The technique in FIG . 3C thus may 
enable the memory usage to be significantly limited and 
enable an MLA to implement at least some portions of the 
transfers between layers of the MLN by streaming directly 
between L1 memories of Tiles without relying on transfers 
to and from L2 or L3 memory . 
[ 0052 ] FIGS . 4A - 4B illustrates another example of a 
machine learning network and a technique for reducing 
memory usage by intelligently ordering the computations of 
an MLN . In this example , layer A of the MLN produces M 
intermediate outputs A1 , Am and layer B produces N 
outputs B1 , ... , Bn . In FIG . 4A , the MLN is computed using 
a conventional technique in which the results of layer A are 
first computed , and the results of layer B are then computed 
after the entire set of intermediate output A1 , ... , Am is 
produced . As described above , implementing this technique 
requires storage of M intermediate outputs , which can be in 
the millions or billions for a typical MLN and too large to 
implement without offloading data to L2 or L3 memory . 
[ 0053 ] FIG . 4B illustrates a technique in which the com 
putations are intelligently ordered to reduce the memory 
usage . Here , partial networks are identified for each output 
1 , ... , n of layer B , where each partial network includes 
only the intermediate results on which an output is depen 
dent . Thus , for example , a first partial network for output B1 
may include the portions of the MLN that produces output 
B1 and intermediate outputs A1 , A2 , and A3 ; a second 
partial network for output B2 may include the portions of the 
MLN that produce output B2 and intermediate outputs A2 , 
A3 , and A4 ; and so on . In this example , the partial networks 
have overlapping intermediate outputs . For example , inter 
mediate output A4 is part of the partial networks for pro 
ducing B2 , B3 , and B4 . The structure of the MLN in FIGS . 
4A - 4B is representative of a convolution function that is 
common in MLNs . 
[ 0054 ] Each partial network may be executed indepen 
dently . However , because some of the partial networks 
overlap , it is most efficient to order them in a manner that 
groups partial networks with overlapping intermediate out 
puts together in time , so that these intermediate outputs can 
be generated and quickly released from memory when no 
longer needed . Particularly , the MLN may be efficiently 
computed by first computing intermediate outputs A1 , A2 , 
and A3 followed by B1 during a first time frame . After the 
first time frame , Al is no longer needed . In a second time 
frame , A4 is computed followed by B2 ( A2 and A3 were 
already computed in the prior time frame ) . Here , A4 could 
directly overwrite A1 in memory in one implementation , or 
A4 could be stored to a different unoccupied memory 
location , and the memory location of A1 could be freed up 
for some other data . This process can repeat for the entire 
MLN . At each time period , only three intermediate outputs 
from layer A are necessarily stored in memory at any given 
time no matter how large the MLN . The set of intermediate 
outputs can be stored using a circular buffer , for example . As 
a benefit of this ordering , the relatively small number of 
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intermediate outputs from Layer A can be directly streamed 
between L1 memories and large transfers of data between 
the Tiles and L2 or L3 memory can be avoided . 
[ 0055 ] In other examples , the ordering of partial networks 
may be determined based on which partial networks utilize 
overlapping weights . For example , a group of partial net 
works that apply the same weights may be ordered consecu 
tively such that the weights can be released from memory 
once they are no longer needed . 
[ 0056 ] While the example of FIGS . 3A - 3C and 4A - 4B 
include only two layers , the same principles can be applied 
to an MLN with any number of layers . In a general process , 
a set of partial networks can be identified by starting at an 
output of the MLN and tracing the dependencies backwards 
through the layers of the MLN to the inputs . In other words , 
a reverse flow analysis is performed from the output through 
the intermediate outputs of each layer on which the output 
is dependent . This reverse flow analysis results in a set of 
partial ordering constraints for the computations within each 
partial network . 
[ 0057 ] FIG . 5 illustrates an example embodiment of a 
reverse flow analysis technique for determining a set of 
partial ordering constraints for computations of an MLN 
500. The MLN 500 is illustrated as having three layers A , B , 
and C but the described techniques can be applied to MLNs 
with any number of layers . In FIG . 5 , partial networks 502 , 
504 , 506 , 508 can be determined for each of the outputs of 
layer C that each represent their respective sets of depen 
dencies . The partial networks 502 , 504 , 506 , 508 each in turn 
are inclusive of partial networks for computing the interme 
diate outputs of layer B ( e.g. , partial networks 510 , 512,514 , 
516 , 5108 , 520 , 522 , 524 ) . If the MLN 500 has more than 3 
layers , additional nested partial networks can be identified 
for each output and intermediate output . 
[ 0058 ] The partial networks can overlap . For example , the 
computations in 512 and 514 which form parts of partial 
networks 502 , 504 respectively are identical . Thus , these 
computations do not necessarily need to be performed twice 
and the same result can be used in both partial networks 502 , 
504 . 
[ 0059 ] The partial networks 502-508 can be processed 
independently of each other to arrive at their respective 
outputs . Similarly , nested partial networks for computing 
intermediate outputs can be performed independently of 
each other ( e.g. , the computations in 510 and 512 ) . The 
partial networks may be ordered in an optimized way based 
on various factors . For example , by identifying partial 
networks with overlapping intermediate outputs ( as in the 
example of FIG . 4B ) , the partial networks can be ordered to 
minimize the time that the intermediate outputs are stored in 
memory . For example , in FIG . 5 , the computations may be 
ordered as A1 , A2 , B1 , B2 , C1 , A3 , A4 , B3 , C2 , B4 , C3 , C4 . 
In this technique , A1 and A2 may be removed from memory 
once B1 and B2 are computed . A3 and A4 may be removed 
from memory after B3 and B4 are computed . Furthermore , 
B2 may be removed from memory after C2 is computed , B3 
may be removed from memory after C3 is computed , and B1 
and B4 may be removed from memory after C4 is computed . 
[ 0060 ] In other embodiments , the partial networks do not 
necessarily traverse all the way from the inputs to the 
outputs . For example , a set of partial networks may be 
limited to different portions of the MLN between the first 
layer and some intermediate layer , and another set of partial 
networks may be limited to the portions of the MLN 

between the intermediate layer and the last layer . The partial 
networks above the intermediate layer may be ordered 
according to optimization criteria for processing during a 
first time period , and the partial networks below the inter 
mediate layer may be ordered for processing during a second 
time period . 
[ 0061 ] The above described technique is possible when 
layers of an MLN are relatively sparsely connected such that 
a given output or intermediate output is not dependent on a 
very large number of intermediate outputs from the previous 
layer . However , in some MLNs , layers may be much more 
densely connected . In the example of FIG . 6 , an MLN 
includes a pair of layers A and B that have very high 
interdependencies because some or all of the computations 
of layer B are dependent on a large number of computations 
of layer A. In this example , partial networks that span the 
layers all the way from the output to the input will each 
include a very large number of intermediate outputs between 
layer A and layer B. In this case , instead of determining 
partial networks that span the full range of layers , the 
compiler 120 may instead split the MLN into groups of 
layers to isolate the densely connected layers from the 
sparsely connected layers . For example , in FIG . 6 , the layers 
are divided into a first group of sparsely connected layers 
602 , a pair of densely connected layers 604 , and a second 
group of sparsely connected layers 606. The above described 
techniques can be applied separately to the group of sparsely 
connected layers 602 and the group of sparsely connected 
layers 606 to identify and order processing of partial net 
works contained within each group 602 , 606. Thus , within 
each group 602 , 606 , the computations can be ordered in a 
manner that minimizes memory usage and enables interme 
diate outputs to be directly streamed between L1 memories 
of Tiles . The group 604 of densely connected layers may be 
separately implemented in a different manner . For example , 
once the sparsely connected layers 402 are processed using 
the techniques described above , the computations of layers 
A and B may be performed utilizing data transfers through 
L2 and / or L3 memories . In an embodiment , this may be 
implemented using the ping pong buffering scheme 
described above . Then once the layer B outputs are avail 
able , the group of sparsely connected layers 606 may be 
implemented similarly to the sparsely connected layer 602 . 
[ 0062 ] FIG . 7 is a flowchart illustrating an example 
embodiment of a process for intelligently ordering compu 
tations of an MLN in a manner that limits memory usage . A 
compiler 120 receives 702 a description of an MLN . The 
compiler determines 704 a set of partial networks from the 
MLN that are independently computable . The partial net 
works may span multiple layers and each include portions of 
the layers representing the computations and intermediate 
outputs on which a particular output of a layer is dependent . 
Different partial networks may include ( but do not neces 
sarily include ) overlapping computations and intermediate 
results . Generally , different partial networks have at least 
one non - overlapping dependency on intermediate results . 
For example , the compiler 120 may determine for a first 
output of a layer of the MLN , a first partial network 
comprising portions of one or more prior layers that produce 
a first set of intermediate outputs on which the first com 
putation is dependent ; may determine for a second output of 
the layer of the MLN , a second partial network comprising 
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portions of one or more prior layers that produce a second 
set of intermediate outputs on which the second output is 
dependent ; and so on . 
[ 0063 ] The compiler 120 allocates 706 the computations 
of the MLN to Tiles . In an example implementation , differ 
ent layers of the MLN may be assigned to different Tiles or 
groups of Tiles . Alternatively , two or more layers may be 
assigned for implementation in whole or in part by a single 
Tile or group of Tiles . 
[ 0064 ] The compiler 120 generates 708 Tile instructions 
for implementing the MLN . The Tile instructions may 
include computation instructions for performing the com 
putations of the MLN and may include data transfer instruc 
tions for performing transfers of data used by the compu 
tation instructions . 
[ 0065 ] The compiler 120 schedules 710 the instructions by 
ordering implementation of the partial networks in a manner 
that provides efficient usage of memory . For each layer in the 
partial network , the compiler may schedule instructions for 
obtaining a first set of intermediate outputs of a prior layer 
from memory and performing a first computation on the first 
set of intermediate outputs to generate a first output of a 
layer . This process may repeat for other output of the layer , 
and then may proceed similarly for remaining layer of the 
partial network . Once a partial network is completed , the 
compiler 120 may then proceed similarly with the next 
partial network . Additionally , once an intermediate output of 
a partial network is no longer needed ( i.e. , when all com 
putations dependent on the intermediate have been per 
formed ) an instruction for overwriting that intermediate 
output may be scheduled . The overwriting instruction may 
be part of the implementation of the next partial network . 
For example , an intermediate output from a particular layer 
of one partial network may be overwritten by an interme 
diate output from the particular layer for the next partial 
network . Alternatively , the overwriting instruction may 
involve some other data that is part of a different layer , a 
different MLN , a different data sample , or some other data 
value . However , at any given time , only a limited subset of 
intermediate values associated with a given layer are stored 
( for at least some of the layers ) , and these values may be 
streamed directly between L1 memories of Tiles without 
being transferred to or from L2 or L3 memory . 
[ 0066 ] The compiler 120 then outputs 712 the computer 
program for implementation on the MLA . For example , the 
compiler may write the computer program to a non - volatile 
memory device from which the computer program can be 
loaded by a controller associated with the MLA at run - time . 
[ 0067 ] FIG . 8 is a block diagram of a software develop 
ment environment including an ML compiler 820. In this 
example , the software development environment also 
includes a model optimizer 830. The model optimizer 830 
receives a description of the MLN 800 and produces an 
optimized graph 835 of the MLN . It may apply optimiza 
tions such as quantization 831 , pruning 832 and / or com 
pression 833. Quantization 831 reduces the resolution of 
calculated values . For example , floating point values may be 
quantized to a certain number of bits and then integer math 
used instead of floating point math . This reduces the com 
plexity and power consumed by the Tiles . Pruning 832 
removes parts of the MLN that do not contribute signifi 
cantly to the overall results . For example , if certain weights 
are zero or close to zero , those weighted interconnects may 

be pruned . Finally , because MLNs contain a large amount of 
data , compression may be used successfully to reduce data 
transfer bandwidths . 
[ 0068 ] The resulting optimized description 835 of the 
MLN may be expressed as a graph , in which the nodes of the 
graph represent nodes in the MLN and the edges of the graph 
represent the weighted interconnects . The compiler 820 
receives the optimized graph 835 and produces the resulting 
computer program 850. The compiler 820 may perform 
operations including static scheduling 822 , PPA ( power 
performance area ) optimizations 824 , graph optimizations 
826 and / or partitioning 828. Static scheduling 822 of the 
appropriate instructions was described above . 
[ 0069 ] PPA optimization 824 includes different optimiza 
tions of the computer program 850. For example , the allo 
cation of MLN computations to Tiles may be optimized to 
reduce power consumption , to increase performance ( such 
as reducing latency or increasing throughput ) and / or to 
reduce area ( e.g. , number of Tiles used ) . 
[ 0070 ] For a given graph representation of an MLN , the 
number of computations required to execute the MLN is 
fixed . As a result , in one approach , the compiler may 
optimize to increase the utilization of compute resources in 
the Tiles — to keep the compute pipelines as busy as possible . 
However , for a Tile to execute a computation , the data for 
that computation must be available . This means that any 
prior computations must be completed and that those results 
must be transferred to the Tile doing the next computation . 
Thus , rather than focusing on computations , the compiler 
may optimize with respect to data transfer to reduce the wait 
times of computations . It may also allocate computations to 
Tiles in order to reduce data transfers between Tiles in the 
same mesh , to reduce data transfers from outside the MLA 
and / or to reduce data transfers that cross the boundary of the 
mesh ( e.g. , reducing data transfers between L1 and L2 
memory and trying to keep all data in L1 memory ) . 
[ 0071 ] The compiler 820 may also optimize 824 the 
computer program 850 , subject to constraints on power , 
performance , area and / or any of the quantities described 
above . Graph optimization 826 includes analysis of the 
graph representing the MLN to prune , merge or quantize 
links , parameters , values , and layers to achieve better per 
formance . Partitioning 828 concerns mapping the computa 
tions in the MLN to an implementation on the MLA . This 
includes determining which computations are allocated to 
which Tiles and how data flows through the mesh of Tiles 
during computation . If there are multiple mosaics , it also 
includes determining which computations are allocated to 
which mosaics . 
[ 0072 ] The resulting computer program 850 may be 
loaded into memory for execution on a machine learning 
accelerator 870. For example , one possible application is 
object detection . In this case , the inputs are images captured 
by a video camera . The MLN 800 has been trained to 
identify certain objects in the video images . The computer 
program 850 implementing the MLN is loaded onto memory 
that is accessible by the MLA 870 , which is implemented as 
a chip inside the camera . This way , images captured by the 
video camera may be immediately analyzed by the computer 
program 850 running on the MLA 870 . 
[ 0073 ] In addition to the MLA 870 , the computer program 
850 or parts of it may be run on a software simulator 836 
and / or hardware emulator 838 ( including FPGAs configured 
as MLAs ) . These may be used for product development , 
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debugging and / or prototyping . For some purposes , a full 
simulation or emulation is not necessary . For example , to 
check that there are no collisions or conflicts between 
statically scheduled instructions , only the flow of data may 
be simulated or emulated . It is not necessary to compute 
actual values . 
[ 0074 ] Components of the software development environ 
ment of FIG . 8 including the model optimizer 830 , compiler 
820 , computer program 850 , and software simulator 836 
may each be implemented as instructions stored to a non 
transitory computer - readable storage medium . The instruc 
tions may be executed by one or more processors to perform 
the functions attributed to the components as described 
herein . 
[ 0075 ] FIG . 9 is a block diagram of an integrated circuit 
that includes an MLA 970. In other words , other components 
may be included on the same die as the MLA . This example 
includes the following additional blocks : application pro 
cessor 910 ( e.g. , general purpose CPU running applications ) , 
computer vision processor 912 ( or other types of applica 
tion - specific processors ) , safety 914 , security 916 , additional 
SRAM ( memory ) 920 and input / output circuitry 922. It also 
includes a network 930 for communication between the 
different components . This type of semiconductor chip may 
be referred to as a system - on - chip ( SOC ) . 
[ 0076 ] The connections to the external world include 
camera inputs 940 for the computer vision processors , ports 
for debug 942 and configuration 944 , a connection 946 to 
external memory ( e.g. , DRAM ) , chip - to - chip connections 
948 , and network connections 950 ( e.g. , Ethernet and PCIe ) . 
[ 0077 ] The SoC of FIG . 9 may be combined with other 
components to perform various tasks in edge devices . 
Example applications for edge devices include automotive 
and other forms of transportation including autonomous 
transportation , agricultural , industrial , robotics , drones , sur 
veillance and security , smart environments including smart 
cities , medical and personalized health . Example tasks 
include computer vision , image analysis , image understand 
ing , speech recognition , audio analysis , audio understand 
ing , natural language processing , classification and pattern 
recognition tasks . For edge devices , it may be desirable to 
perform certain tasks in real - time . 
[ 0078 ] In addition to memory and other programmable 
processors , an edge device may also include sensors , such as 
cameras ( both still image and video cameras ) , microphones , 
temperature sensors , pressure sensors and other types of 
sensors . The sensors may capture samples that are used as 
inputs to a computing pipeline within the edge device . For 
example , image samples may be input to the computer 
vision processors 912 , which perform initial operations such 
as edge detection and enhancement , contrast enhancement , 
motion detection , and optical flow . Raw and / or processed 
images may be then input to the MLA 970 for analysis by the 
machine learning network . The MLA may also receive other 
inputs , such as metadata from other sources and data from 
other sensors . The application processors 910 may also 
perform various functions in the overall pipeline and may 
also serve as a master controller that coordinates operation 
of the MLA and the other programmable processors in the 
pipeline . 
[ 0079 ] Edge devices may be portable with less power 
available for computations compared to , for example , cloud 
based server farms . It may also be desirable for the com 
puting pipeline within the edge device to perform tasks 

without utilizing cloud - based or other remote compute 
resources . In some implementations , the MLA implements 
computations in the machine learning network at a perfor 
mance of at least 50 TOPs ( 50 trillion operations per second ) 
at a power consumption of not more than 5 watts . The 
performance may be increased by increasing the number of 
Tiles in the mesh or the number of Tile meshes on the die . 
[ 0080 ] Although the detailed description contains many 
specifics , these should not be construed as limiting the scope 
of the invention but merely as illustrating different 
examples . It should be appreciated that the scope of the 
disclosure includes other embodiments not discussed in 
detail above . Various other modifications , changes and 
variations which will be apparent to those skilled in the art 
may be made in the arrangement , operation and details of the 
method and apparatus disclosed herein without departing 
from the spirit and scope as defined in the appended claims . 
Therefore , the scope of the invention should be determined 
by the appended claims and their legal equivalents . 
What is claimed is : 
1. A method for generating a computer program to imple 

ment a machine learning network on a machine learning 
accelerator ( MLA ) , the MLA comprising one or more 
meshes of interconnected processing elements implemented 
on a semiconductor die , the method comprising : 

receiving a description of the machine learning network , 
the machine learning network comprising a plurality of 
interconnected layers ; 

determining for each of a plurality of outputs of a layer of 
the machine learning network , respective correspond 
ing partial networks that each include a respective set 
of intermediate outputs from prior layers on which 
computation of the output is dependent ; 

allocating computations of the machine learning network 
to the processing elements ; 

generating a set of instructions that implement the 
machine learning network on the processing elements ; 

scheduling an order of execution of the instructions to 
implement the respective partial networks , where the 
scheduling comprises : 
scheduling computation of at least a first output of a 

first partial network based on first intermediate out 
puts of the first partial network ; 

scheduling , following computation of the first output , 
removal of at least one of the first intermediate 
outputs of the first partial network from memory ; and 

scheduling , following computation of the first output , 
computation of second intermediate outputs of the 
second partial network ; and 

outputting the computer program . 
2. The method of claim 1 , wherein scheduling the execu 

tion of the instructions comprises : 
determining the order based on an overlap between the 

intermediate outputs of the respective partial networks . 
3. The method of claim 1 , wherein scheduling the execu 

tion of the instructions comprises : 
overwriting at least one of the first intermediate outputs 

with at least one of the second intermediate outputs of 
the second partial network . 

4. The method of claim 1 , further comprising : 
identifying a non - overlapping intermediate output in the 

first partial network that is absent from the second 
partial network ; and 
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scheduling the execution of the instructions such that at 
least one of the second intermediate outputs of the 
second partial network overwrites the non - overlapping 
intermediate output in the memory . 

5. The method of claim 1 , wherein at least one of the first 
intermediate outputs of the first partial network overlaps 
with at least one of the second intermediate outputs of the 
second partial network . 

6. The method of claim 1 , where scheduling execution the 
instructions comprises : 

determining a subset of the partial networks that have 
overlapping intermediate outputs ; and 

scheduling to implement the subset of partial networks 
having the overlapping intermediate outputs consecu 
tively . 

7. The method of claim 1 , further comprising : 
identifying a pair of densely connected layers ; 
identifying a group of sparsely connected layers ; 
deriving the partial networks as being contained with the 

group of sparsely connected layers . 
8. The method of claim 7 , wherein scheduling execution 

of the instructions comprises : 
scheduling computations by first set of processing units to 
implement a first layer of the pair of densely connected 
layers to generate a set of intermediate outputs ; 

scheduling transfer of the set of intermediate outputs to 
L2 memory outside the processing units ; 

scheduling transfer of the set of intermediate outputs from 
L2 memory to a second set of processing units ; and 

scheduling computations by the second set of processing 
units to implement a second layer of the pair of densely 
connected layers . 

9. The method of claim 1 , wherein scheduling the execu 
tion of the instructions comprises : 

determining one or more deterministic phases ; and 
statically scheduling the instructions to sequentially 

implement the partial networks during the one or more 
deterministic phases . 

10. The method of claim 9 , wherein statically scheduling 
the instructions includes : 

statically scheduling computation instructions of the pro 
cessing elements ; and 

statically scheduling data transfer instruction to move data 
into and output of Ll memories of the processing 
elements . 

11. The method of claim 1 , wherein scheduling the 
execution of the instructions comprises determining the 
order to minimize a total number of data transfers . 

12. The method of claim 1 , wherein scheduling the 
execution of the instructions comprises determining the 
order to minimize a number of data transfers to L2 memory 
external to the processing elements . 

13. The method of claim 1 , wherein allocating the com 
putations of the machine learning network to the processing 
elements comprises allocating computations of a consecu 
tive layers of the machine learning network to physically 
adjacent groups of processing elements . 

14. The method of claim 1 , wherein scheduling the 
execution of the instructions comprises : 

scheduling computation of the first intermediate outputs 
on a first set of one or more processing elements and 
storing the first intermediate outputs to one or more L1 
memories of the first set of one or more processing 
elements ; 

scheduling a transfer of the first intermediate outputs from 
the one or more L1 memories of the first set of one or 
more processing elements directly to one or more L1 
memory of a second set of one or more processing 
elements ; and 

scheduling computation of the first output from the first 
intermediate outputs on the second set of one or more 
processing elements . 

15. The method of claim 14 , wherein scheduling the 
execution of the instructions further comprises : 

scheduling computation of the second intermediate out 
puts on the first set of one or more processing elements 
and storing the second intermediate outputs in L1 
memory of the first set of one or more processing 
elements ; 

scheduling a transfer of the second intermediate outputs 
from the one or more L1 memories of the first set of one 
or more processing elements directly to the one or more 
L1 memory of the second set of one or more processing 
elements ; and 

scheduling computation of a second output of the second 
partial network on the second set of one or more 
processing elements . 

16. The method of claim 1 , wherein scheduling the 
execution of the instructions further comprises : 

scheduling computation of the first intermediate outputs 
on a first processing element and storing the first 
intermediate outputs to a first memory location of an L1 
memory of the first processing element ; and 

scheduling computation of the first output from the first 
intermediate outputs on the first processing element . 

17. The method of claim 16 , wherein scheduling the 
execution of the instruction further comprises : 

scheduling computation of the second intermediate out 
puts on the first processing element and storing the 
second intermediate outputs to the first memory loca 
tion of the L1 memory of the first processing element ; 
and 

scheduling computation of a second output from the 
second intermediate outputs on the first processing 
element . 

18. The method of claim 1 , wherein determining the 
respective corresponding partial networks comprises : 

performing a reverse flow analysis from the output 
through each layer of intermediate outputs on which the 
output is dependent to identify a set of partial ordering 
constraints for computations within the partial network . 

19. A method for generating a computer program to 
implement a machine learning network on a machine learn 
ing accelerator ( MLA ) , the MLA comprising one or more 
meshes of interconnected processing elements implemented 
on a semiconductor die , the method comprising : 

receiving a description of the machine learning network , 
the machine learning network comprising a plurality of 
interconnected layers ; 

determining for each of a plurality of outputs of a layer of 
the machine learning network , respective correspond 
ing partial networks that each compute one of the 
outputs and a set of intermediate outputs from prior 
layers on which the output is dependent ; 

determining an order to implement the respective partial 
networks based on an overlap between the partial 
networks ; 

a 
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including integrated L1 memory , the processing ele 
ments configured to execute instructions of a computer 
program to implement the machine learning network by 
sequentially implementing a set of partial networks 
corresponding to respective outputs of a layer of the 
machine learning network , each of the partial networks 
including computations for producing the output of the 
layer and a set of intermediate outputs from one or 
more prior layer on which the output is dependent , the 
instructions when executed causing the processing ele 
ments to : 

allocating computations of the machine learning network 
to the processing elements ; 

generating a set of instructions that implement the 
machine learning network on the processing elements ; 

scheduling execution of the instructions to implement the 
respective partial networks according to the determined 
order ; and 

outputting the computer program . 
20. The method of claim 19 , where determining the order 

comprises : 
determining a subset of the partial networks that have 

overlapping intermediate outputs ; and 
determining the order to implement the partial networks 

having the overlapping intermediate outputs consecu 
tively . 

21. The method of claim 19 , wherein scheduling the 
execution of the instructions comprises : 

computing intermediate outputs of a layer of a partial 
network on a first set of processing elements ; 

transferring the intermediate outputs directly to an L1 
memory of a second set of processing elements ; and 

computing an output corresponding to the partial network 
on the second set of processing elements . 

22. A system comprising a machine learning accelerator 
( MLA ) implemented on a semiconductor die , the MLA 
comprising : 

an on - chip memory system configured to store data used 
in computations for implementing a machine learning 
network ; and 

a mesh of interconnected processing elements coupled to 
the on - chip memory system , the processing elements 

for a first partial network of the machine learning 
network , obtaining a first set of intermediate outputs 
from a memory and perform a first computation on 
the first set of intermediate outputs of the first partial 
network to generate the first output ; and 

following completion of the first computation , comput 
ing , for a second partial network of the machine 
learning network , at least one of the second set of 
intermediate outputs of the second partial network 
and removing at least one of the first set of interme 
diate outputs from the memory . 

23. The system of claim 22 , wherein the instructions 
further cause the mesh of interconnected processing ele 
ments to implement partial networks of the machine learning 
network according to an order in which partial networks 
having overlapping intermediate outputs are implemented 
consecutively . 

* * 


