US 20160323313A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2016/0323313 A1

NARAIN et al.

(43) Pub. Date:

Nov. 3, 2016

(54)

(71)

(72)

(73)

@
(22)

(60)

MOVING-TARGET DEFENSE WITH
CONFIGURATION-SPACE
RANDOMIZATION

Applicant: TT GOVERNMENT SOLUTIONS,
INC., Basking Ridge, NJ (US)

Inventors: Sanjai NARAIN, Madison, NJ (US);

Dana CHEE, Maplewood, NJ (US)

TT GOVERNMENT SOLUTIONS,
INC., Basking Ridge, NJ (US)

Appl. No.: 14/291,974
Filed: May 30, 2014
Related U.S. Application Data

Provisional application No. 61/829,309, filed on May
31, 2013.

Assignee:

T

D

(52)

&7

Publication Classification

Int. Cl1.

HO4L 29/06 (2006.01)

U.S. CL

CPC ... HO4L 63/1475 (2013.01); HO4L 63/18

(2013.01); HO4L 63/029 (2013.01)

ABSTRACT

There is set forth herein in on embodiment a method wherein
configurations are changed. In one embodiment, configura-
tions are changed in such a way that end-to-end require-
ments continue to be satisfied, the change is at minimum
cost, and that at least one variable from a critical set of
variables is changed.

.

ESygtem Requirement Current Configuration

Critical Parameters

Visualizations
Root Causes
New Configurations

Patent Application Publication Nov. 3,2016 Sheet 1 of 10 US 2016/0323313 A1

'

%Svstem Requirement Current Configuration Critical Parameters

|

Visualizations
Root Causes
New Configurations

|

System Components

FIG. 1

Patent Application Publication Nov. 3,2016 Sheet 2 of 10 US 2016/0323313 A1

System Requirement Current Cdnfigurati‘on Critical Parameters

M\M\ - e

Root-cause +
Visualization +
Bottom-up diagnosis

ADC

i New Configuration

System Components
In Emulated or
Real Infrastructure

Figure 2: ADC System Architecture

FIG. 2

Patent Application Publication Nov. 3,2016 Sheet 3 of 10 US 2016/0323313 A1

1924681100
Seattie _:No?h

Adversary aniffs -
40040 - 1004
05 w“"ﬁﬁ
2!,.:}&,«
i
N LosAngeles P NewYork

*\d"

192.168.20.0

FIG. 3

Patent Application Publication Nov. 3, 2016 Sheet 4 of 10 US 2016/0323313 A1

ool
FaztEthernet/0 207.1,1.2 YES WRAM wp up

FaztEthernets1 192,168,1720,1 YES WVRAW up Up

FaztEthernetl 0 192, 168,80,23 YES WVRAM up L

FastEthernetl/1 unassigned YES unzet administratively down dow
FastEthernetZ unazzigned YES unzet administratively down dows
FaztEthernetZ 1 unassigned YES pnset adminiztratively down dows
FastEthernet3/0 wriazsioned YES unset administratively down dow
FastEtherneta 1 unassigned YES unset administratively down dow
FastEthernetd 0 nazeigne YES unset administratively down dows
FaztEthernetd 1 Ihassigne YES unset administratively doum dow

Tunne] 0 20,02 YES TFTF wp Lp

—Hore—-

FIG. 4

Patent Application Publication Nov. 3,2016 Sheet S of 10

nee to ahort,

te [WP Echos to 192,168,120.1, timeout iz 2 zeconds

ent (575}, round-trip minday

aMce Lo ahort,
byte ICHF Echos to 192,168,120.1, timeout i

ent (575, round-trip minfavgsmax = 16/

bigbe [CHF Echos to 192,168,120,1, tineout iz 2 sec

~ate iz 100 pereent (5/%), round~trip mindavg/

FIG. 5

US 2016/0323313 Al

Tunnell £

US 2016/0323313 Al

Nov. 3,2016 Sheet 6 of 10

Patent Application Publication

7

SRR

R
\\&

i

; \\\\\N‘,\ %2, Yl
Grd GEEL L e LT
o] \ bt ik
B k\\ T
vt s uiy
P \.\w Ty et

.

A

G

.

G

o

G
Gy T g g,
b = LY G

Bt st B Surth Wi

L

TR

N

L
N

0

e \i\\i\i\\é\é
.

SRR

TR
.
.

R

s

wpeeesty wereedls

\Q\\\

i

RN

g

Vet

V'

Pt
T
oA
A

[
B
e

Yty
P
P

2

et S

P

wnpeects

paes

g
rrenss
L2l

“zz
e

g
WL

Gorbler
e
Brdaiith

sprorey
o

-

L s
e

[N

FIG. 6

Patent Application Publication Nov. 3,2016 Sheet 7 of 10 US 2016/0323313 A1

14,0,0,1 40
1.0

93, MNbe 203,111 on Tunnel® Frao

FIG. 7

Patent Application Publication Nov. 3,2016 Sheet 8 of 10 US 2016/0323313 A1

4000 ¢

ospf

N B R
s c T 201001

ospf

y 16,060

B S

T 263112

ospf

20600

FIG. 8

Patent Application Publication Nov. 3,2016 Sheet 9 of 10 US 2016/0323313 A1

3001

ERER . i
- ‘ Lo
208:1,1.1 i 224005
i
]
Ay / Yo
v . . t P
- / 20083
‘\- b ’, -.
i R
256112 %
S NE0LT
: : o) [}.
. e
A o 30,008
e u‘,p:j///
asgf, (\' ,//‘
207.1.1.2
,,—“',os;:f l
720500)
207.1.1.1

FIG. 9

Patent Application Publication Nov. 3,2016 Sheet 10 of 10 US 2016/0323313 Al

2000123

b

10554

a7 URLES

. ‘(‘

20008

2000387

287112

o

FIG. 10

US 2016/0323313 Al

MOVING-TARGET DEFENSE WITH
CONFIGURATION-SPACE
RANDOMIZATION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Application No. 61/829,309 filed May 31, 2013 entitled
“Moving-Target Defense With Configuration-Space Ran-
domization.” The above application is incorporated by ref-
erence.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] The disclosed invention was made with govern-
ment support under contract No. FA8750-11-C-0012,
awarded by the United States Department of Defense. The
government has certain rights in the present invention.

BACKGROUND
[0003] 1. Field
[0004] Cyber security.
[0005] 2. Discussion of the Background Art
[0006] The configuration of cyber infrastructure is its

“DNA”. With even a partial knowledge of it, an adversary
can obtain a deep understanding of its logical structure and
hence of its structural vulnerabilities Such an understanding
can allow the adversary to plan devastating attacks. For
example, one can not only identify targets to attack but
high-value ones such as single points of failure. Thus, it is
critical to prevent or delay the acquisition of configuration
knowledge by the adversary.

[0007] The present disclosure also provides many addi-
tional advantages, which shall become apparent as described
below.

SUMMARY

[0008] Configuration-Space Randomization (CSR) proac-
tively, at random times, and at minimum change-cost,
changes values of critical configuration variables. The
change is accomplished in such a way that end-to-end
system requirements continue to be satisfied but the adver-
sary is forced to distinguish between current and obsolete
values of the critical configuration variables. He cannot
simply sniff messages in communication channels, read off
their values from the messages and assume that these are
current.

[0009] With each attack, one can associate a set of con-
figuration variables, whose values, if known by an adver-
sary, would enable him to launch an attack. This set of
variables is called “critical” for that attack, Given a set of
attacks and associated critical variables, CSR computes the
minimum set of variables whose values, if obscured, would
prevent the planning of all attacks.

[0010] CSR is implemented by specifying end-to-end sys-
tem requirements for both security and functionality as
constraints on component configurations, and then moving
the cyber infrastructure through different solutions to those
constraints. By definition, each solution satisfies the require-
ments. Each new solution must incur a minimum change
cost from the current one, CSR accomplishes minimum-cost
change by the use of a MaxSAT constraint solver.

Nov. 3, 2016

[0011] Further objects, features and advantages of the
present disclosure will be understood by reference to the
following drawings and detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a diagram showing an overview of an
Assured and Dynamic (ADC) system;

[0013] FIG. 2 is a diagram showing an ADC system
architecture;
[0014] FIG. 3 is a diagram showing the design of a

fault-tolerant virtual private network using office-automa-
tion;

[0015] FIG. 4 is a console showing active interface
addresses;

[0016] FIG. 5 is a console showing a successful ping;
[0017] FIG. 6 is a data output showing successful capture
of packets;

[0018] FIG. 7 is a data output showing trace routes;
[0019] FIG. 8 is a network diagram showing a network

view observable by an adversary;

[0020] FIG. 9 is a network diagram showing a network
view observable by an adversary after a first moving target
defense (MTD) cycle:

[0021] FIG. 10 is a network diagram showing a network
view observable by an adversary after a second MTD cycle.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0022] The present inventor has successfully evaluated the
technique of the present disclosure for two different types of
networks. The first is a fault-tolerant virtual private network.
The second is a Multipoint Generic Routing Encapsulation
(GRE) network. In both cases we change both physical and
logical network identifiers. In the second case we also
change the next-hop MGRE server identity.

[0023] CSR uniquely changes configurations in such a
way that end-to-end security and functionality requirements
continue to be satisfied, the change is at minimum cost, and
that at least one variable from the critical set of each attack
is changed. It is unique to the present disclosure to satisfy all
of these design requirements simultaneously.

[0024] Prior solutions do not satisfy any of the above three
design requirements that CSR does. They do not allow
changing arbitrary configuration variables. They are
restricted to changing definite ones such as IP addresses.
Even for the variable that they do change, they provide no
assurance that changes would continue to satisfy end-to-end
security and functionality requirements. For example, when
they change an IP address, they do not update firewall,
tunneling and routing configurations to maintain end-to-end
reachability and access-control requirements. They do not
even consider minimum-cost change. Neither do they con-
sider minimizing the set of configuration variables to change
because this set is tightly restricted and hence very small.
[0025] Configuration is the “glue” for logically integrating
components such as routers, switches, firewalls, servers and
end-hosts to satisfy end-to-end infrastructure requirements.
Configuration can be regarded as the “DNA” of infrastruc-
ture in that its analysis can provide a deep understanding of
its structure, behavior and vulnerabilities. Due to the large
gap between end-to-end requirements and detailed configu-
rations satisfying these, a large number of configuration
errors are made. It is well-documented that such errors are

US 2016/0323313 Al

responsible for 50%-80% of cyber attacks and downtime in
cyber infrastructure. Furthermore, knowledge of configura-
tion can allow an adversary to map out the infrastructure and
plan devastating attacks. He can identify not just targets but
high-value targets such as single points of failure or those
controlling physical systems. For example, such mapping
and planning was used by the Stuxnet worm to severely
damage Iran’s nuclear facilities.

[0026] Thus, it is critical to develop systems that (a)
eliminate configuration errors and (b) prevent, or drastically
reduce the ability of an adversary to gain knowledge of the
configuration. To achieve both these objectives. Applied
Communication Sciences (ACS) has built a prototype called
Assured and Dynamic Configuration or ADC, shown in FIG.
1. FIG. 1 shows an ADC system overview.

[0027] To achieve its first objective, ADC first provides a
conceptual understanding of the infrastructure by displaying
visualizations of logical structures and relationships latent in
the Current Configuration. These also highlight various
types of structural vulnerabilities. Then, ADC allows speci-
fication of a System Requirement on security and function-
ality in a new high-level language. Finally, ADC changes
configurations to bring them into compliance with the
requirements. If unable to do so, it outputs a concise root
cause.

[0028] To achieve its second objective, ADC first allows
specification of critical configuration parameters or vari-
ables. A parameter is critical if its knowledge would allow
an adversary to plan an effective attack. Then, ADC peri-
odically changes values of these parameters and propagates
changes to other parameters throughout the system in such
a way that System Requirement continues to be satisfied.
This technique is called configuration-space randomization.
[0029] ADC leverages the ConfigAssure technology. Con-
figAssure contains fundamental tools for eliminating con-
figuration errors. ConfigAssure provides tools for visualiza-
tion, specification, synthesis, debugging, verification and
reconfiguration planning. ConfigAssure exploits the power
of modern SAT-based constraint solvers that can solve
millions of constraint in millions of Boolean variables in
seconds.

[0030] ADC System Overview
[0031] As shown in FIG. 1, ADC will accept three inputs:
[0032] 1. A System Requirement on global connectivity,

security, performance and reliability
[0033] 2. The Current Configuration representing cur-
rent values of all configuration parameters
[0034] 3. A set of Critical Parameters derived from

knowledge about expected attacks.
[0035] ADC will then eliminate configuration errors and
randomly change values of Critical Parameters, and of any
other dependent ones, so that System Requirement holds and
the number of changes is minimized. These configurations
are then applied to the System Components.
[0036] To initially eliminate configuration errors, Critical
Parameters is set to be the empty set. Then, ADC will change
parameters in Current Configuration to their correct values
to enforce System Requirement. Once the system is in a
correct configuration, Critical Parameters is set to a non-
empty set. For each class of attack, we assume that a set of
Critical Parameters can be chosen so that randomly chang-
ing their values will (a) significantly invalidate the adver-
sary’s attempt at mapping and understanding the network
and (b) blunt the force of his attack. If ADC establishes that

Nov. 3, 2016

System Requirement itself is unsolvable, it outputs a concise
root-cause. ADC also presents a large number of visualiza-
tions of the logical structure latent in the configurations.
These promote system understanding and highlight any
structural vulnerabilities.

[0037] We now describe the architecture of ADC. Refer-
ence is made to FIG. 2 showing an ADC system architecture.
As shown in FIG. 2, the three ADC inputs are fed into a
Requirement Transformer. This transforms these into the
conjunction of different types of constraints on configuration
parameters. These constraints are input into a Requirement
Solver. This finds a configuration satisfying the constraints.
If it fails to do so, it outputs a root-cause of failure.
[0038] The new configuration is input to a Configuration
Applicator. This first transforms configurations into vendor-
specific formats, and then applies these to components. An
out-of-band network is assumed over which the new con-
figurations are transmitted to the components via a reliable
protocol such as FTP. ADC can also check whether these
configurations would be accepted by components. ADC is
now described in more detail.

1. System Requirement

[0039] The System Requirement specifies the overall con-
nectivity, security, performance and fault-tolerance architec-
ture. ADC formalizes the intuition that a system architecture
is a superposition of logical structures and relationships
associated with different protocols. ADC provides a
Requirement Library of such structures and relationships.
Superposition is formalized by composition with Boolean
operators, mainly AND but also NOT, OR, IMPLIES and
XOR.

[0040] Conventional configuration languages force the
administrator to pin down the exact value of each configu-
ration parameter satisfying System Requirement. In general,
System Requirement may be a complex one consisting of
many subsidiary requirements. A value that is correct for
implementing one requirement may be incorrect for another.
It is hard to pick the exact values that will satisfy all
requirements. An administrator spends an enormous amount
of time choosing values and then backtracking if choices
made to satisfy a requirement conflict with those made to
satisty an earlier one.

[0041] ADC eliminates such backtracking. It allows the
administrator to specify requirements as constraints on con-
figuration variables. A constraint is equivalent to a set of
values. ADC then uses a constraint solver to compute the
intersection of all these sets. This intersection then satisfies
all requirements.

[0042] An ADC requirement is a constraint. A constraint is
simply a relationship between configuration parameters.
Conventional configuration languages force the administra-
tor to pin down the exact value of each configuration
parameter. A value that is correct for implementing one
requirement may be incorrect for another. It is hard to pick
the exact values that will satisfy a typically large number of
requirements. By contrast, a constraint allows the adminis-
trator to specify a set of acceptable values. Thus, the chances
of finding a non-empty intersection of these sets are much
higher. This intersection is exactly what modern constraint
solvers efficiently compute. For example, Princeton’s
ZChaff solver can solve millions of Boolean constraints in
millions of Boolean variables in seconds. Constraint solvers
generalize the advantage of spreadsheets. In the latter,

US 2016/0323313 Al

constraints are only arithmetic and one way. With the
former, constraints can be symbolic and multi-way in that
there is no notion of dependent and independent variables.

[0043] However, Boolean logic is too low level to be
useful as a specification language for configuration. For
example, for networking, one would like variables whose
values are not Boolean but host names, interfaces, addresses.
One would like constraints between these to capture logical
structures such as subnets. IP Security (IPSec)/Multiproto-
col Label Switching (MPLS) tunnels and static routes.

[0044] A good constraint language for configuration is
called Equality with Uninterpreted Functions (EUF). It can
be regarded as Boolean logic with data structures. EUF
constraints can be efficiently solved by Satisfiability Modulo
Theories (SMT) solvers such as Yices. In fact, for this
language, they are faster than even SAT solvers.

[0045] A very important feature of EUF is that variables
names can be complex terms, not just structure-free atomic
ones. This means that the administrator will not have to find
a distinct atomic name for each variable. There can be
thousands of configuration variables in a large system.
Finding distinct names for these and relating these across
multiple components is hard, EUF allows one to define a
small number of semantically meaningful function symbols
and combine them in a large number of ways. Each com-
bination is a semantically meaningful variable. For example,
instead of inventing new variables for the IP address of each
interface, we define a function symbol “ip address” of two
arguments, a host and an interface. Now, for any host H and
interface 1, the term “ip address H I” represents the IP
address of I at H. Internally, this term is implemented as the
expression ip_address(H, I).

2. Current Configuration

[0046] The current configuration is the set of configuration
files of all system components. These are parsed into a large
constraint CDB of the form x1=clz,25 . . . z,25 xk=ck where
each xi is a variable occurring in the System Requirement
and ci is its value. The value is extracted from analyzing
component configuration files. Currently, ADC only ana-
lyzes Cisco IOS configuration files. The analysis is done in
two stages. First, the files are parsed into a Prolog database.
Then, the values of variables are extracted from this data-
base.

3. Critical Parameters

[0047] These are specified as a list of configuration vari-
ables. For each class of attack, we assume that a set of
Critical Parameters can be chosen so that randomly chang-
ing their values will significantly invalidate the adversary’s
attempt at mapping and understanding the network or blunt
the force of his attack. The choice of critical variables
depends on what configuration information we’d like the
adversary not to acquire, or what configuration information
is likely to assist the adversary plan an effective attack. For
example:

[0048] To make it harder for an adversary to identify
single points of path failure, we could change configu-
rations relating to topology such as network identifiers
for physical and logical links. We could also change
routing protocol configurations since such protocol
messages contain pieces of topology information.

Nov. 3, 2016

[0049] To make it harder for an adversary to identify
single points of component failure, we might change
the HSRP-relatcd addresses of an unreplicated compo-
nent so that an adversary would sniff HSRP messages
from multiple addresses and believe that the component
is replicated.

[0050] To make it harder to be detected by a scanning
adversary, we could change the IP addresses of hosts.
This defense is called Random Host Mutation

[0051] To make it harder for an adversary to reconstruct
application layer flow information, we could send parts
of that flow along multiple independent paths. This is
called Random Route Mutation.

4. Requirement Transformer

[0052] The Requirement Transformer accomplishes the
following tasks:
[0053] 1. Transform the Current Configuration into a
conjunction CDB of constraints of the form x=c where
X is a configuration variable in the System Requirement
and c is its value in the Current Configuration.
[0054] 2. Transform the System Requirement into a
NormalForm that can be submitted to an SMT solver
[0055] 3. Create MTDConstraint for changing some
variables in Critical Parameters.
[0056] We now sketch how these tasks are accomplished.
[0057] 4.1 Transforming Current Configuralion into a
Conjunction CDB of Constraints of the Form x=c

[0058] Section 2, above outlines how to accomplish this
task.

[0059] 4.2 Computing NormalForm

[0060] This task is accomplished by the Prolog predicate

eval(P, Q) where P is a system requirement and Q is a
constraint that can be submitted to an SMT solver. This
constraint is a Boolean combination of primitive constraints
mainly of the form T1=T2 where T1 and T2 are terms
representing configuration variables or constants. Other
primitive constraints are on bitvector and arithmetic opera-
tions. If P is a constraint in the Requirement Library, then
ADC rewrites it into a simpler constraint R, and recursively
calls eval on R. The rewrite rules are defined by the infix,
binary predicate=>whose first argument is a constraint and
the second argument is its simplified version. If P is a
Boolean combination of constraints then eval is recursively
called on the constituents, and the results combined. If
no=>rules apply, then eval returns the constraint itself.

[0061] An example of a=>rule for IPSec is:

[0062] ipsec_tunnel(HI, I1, H2, 12, IDI1, ID2)=>

[0063] and_each([ipsec_ea(H1, 11, H2, 12)=ipsec_ea(H2,
12, H1, 11),

[0064] ipsec_ha(H1, 11, H2, 12)=ipsec_ha(H2, 12, H1, I1),
[0065] ipsec_key(H1, 11, H2, I2)=ipsec_key(H2, 12, H1,
1n),

[0066] ipsec_remote(H1, 11, H2, 12)=ip_address(H2, 12),
[0067] ipsec_remote(H2, 12, H1, I1)=ip_address(H1, 11),
[0068] ipsec_local(H1, 11, H2, 12)=ip_address(H1, I1),
[0069] ipsec_local(H2, 12, H1, I1)=ip_address(H2, 12),
[0070] ipsec_acl id(H1, I1, H2, 12)=ID1,

[0071] ipsec_acl_id(H2, 12, H1, 11)=ID2]).

[0072] This encodes the requirement that in order for there

to be an IPSec tunnel between interface I1 of host H1 and
interface 12 of host H2, the IPSec keys and encryption and
hash algorithms must be identical, and the peer addresses
should be symmetric. Furthermore, the access-control list

US 2016/0323313 Al

identifiers at each end must be as specified, and_each returns
a conjunction of all constraints in its argument.

[0073] 4.3 Computing MTDConstraint

[0074] To create MTDConstraint, ADC randomly selects a
configuration variable x in Critical Parameters, find its value
¢ in Current Configuration and then lets MTDConstraint be
not(x=c). This forces a new value of x to be found, if
possible. If a new value cannot be found, for example, if x=c
were part of System Requirement, then no solution is
produced and the current configuration is unchanged. When
ADC recomputes a solution, a new critical variable could be
selected.

5. Requirement Solver

[0075] The Requirement Transformer sends the conjunc-
tion FinalReq=CDB A NormalFormz,25 MTDConstraint to
the Requirement Solver for solution. The Requirement
Solver further transforms FinalReq and all type declarations
into the concrete syntax of an SMT solver, calls that solver,
and parses the result back into Prolog. Currently, the Yices
SMT solver is used.

[0076] If the solution does not exist then the constraint
solver returns an “unsat-core”. This is a typically small
conjunction of unsolvable constraints whose solvability is a
necessary condition for that of FinalReq. If in this set there
is an equation x=c where x=c is also in CDB, then this
equation signifies a configuration error. Repair then means
finding a new value of x. This is accomplished by deleting
x=c from CDB and reattempting a solution to FinalReq.
Effectively, we let x “float”. This repair step is repeated till
either a solution is found or no more deletions are possible.
If the latter, then NormalFormz,25 MTDConstraint is
unsolvable and the resulting unsat-core is reported to the
user. Note that since CDB is finite, the repair algorithm will
terminate.

[0077] Effectively, the above plan repairs implementation
errors: CDB does not implement NormalFormz,25 MTD-
Constraint so it needs to be changed so that it does. The
above plan could also be used to repair NormalFormz,25
MTDConstraint itself. But, the unsolvability of that con-
straint represents a design error that requires human inter-
vention before it is changed.

6. Configuration Applicator

[0078] This nmodule translates a solution produced by the
Requirement Solver into vendor-specific configuration files
for all components. When these are applied to the compo-
nents, their configuration variables are set to values in the
solution. A solution is of the form xl=cl . . . , x=ck where
each xi is a variable and each ci is a constant. Intuitively, it
keeps a list of IOS block types it needs to generate for each
router. It goes through the solution and associates each
equation with one or more blocks for a given router. Then,
it processes the information in each block and generates the
10S block.

7. Optimal Critical Variable Selection and Changing Critical
Variables at Minimum Cost

[0079] The critical set of an attack is defined as the set of
variables whose values an adversary needs to know to
launch that attack. In each moving-target defense cycle.
ADC needs to change at least one variable in each set to
defend against all attacks. ADC must now solve two prob-

Nov. 3, 2016

lems. The first is finding the minimum set of variables whose
values, if changed, would defend against all attacks. This is
not, in general, the union of all the critical sets. For example,
let there be three attacks, A(1), A(2) and A(3) with the
following critical sets: X*(1)={x,, x,}, X*(2)={x,, %3},
X4(3)={x,, x,}. Even though there are four critical variables
in all, it is only necessary to change just two. In fact, three
solutions are possible: {x;, x5}, {X5, X3}, {X5, X4}

[0080] The second problem ADC must solve is ensuring
that values of variables in the minimum set must be change-
able from their current values. In other words, the constraint
that their values be different from their current ones should
not be inconsistent with System Requirement.

[0081] We now sketch how both these problems can be
addressed with a MaxSAT constraint solver. We model
finding a minimal set with minimizing variable value change
cost. MaxSAT allows one to associate weights with a set of
constraints. It then finds a solvable subset of this set with
maximum weight. The weight of a set of constraints is the
sum of weights of all constraints in that set.

[0082] ADC would now construct the MTDConstraint of
Section [0044] as follows: For every attack A, where the
critical set of A is {x1, . . ., xk)}, generate the disjunction
A X/~=C,V ... X,=c, where ¢, is the current value of x,, in
the configuration database CDB, and return a conjunction of
these. ADC would also generate a constraint called Change-
Cost that declares the cost of changing a variable’s value
from its current one. Finally, ADC would submit FinalReq
where:

FinalReq=CDBz,25 NormalFormz,25 MTDCon-
straintz,25 ChangeCost

to a MaxSAT constraint solver. Recall that NormalForm is a
normalized version of System Requirement. Obviously,
FinalReq is inconsistent because MTDConstraint forces all
variable values to be different from those in CDB. MaxSAT
will then drop some constraints in CDB so that the change
cost is a minimum. Thereby, at least one variable in each
attack’s critical set will be changed but at minimum cost and
be consistent with System Requirement.

8. IMustrating ADC and Configuration-Space
Randomization
[0083] 8.1 Designing Requirements for a Fault-Tolerant

Virtual Private Network

[0084] FIG. 3 shows the design of a fault-tolerant virtual
private network (“VPN”) for setting up a private community
of interest over a public backbone. This design is commonly
used in the government and industry. There are four sites that
need to privately share information. These sites route their
traffic out of their gateway routers, respectively, Seattle,
Miami, Dallas and Phoenix. Privacy is ensured by setting up
a ring of IPSec tunnels between these routers. Thus, video
from server North is forwarded to Seattle and routed to
Dallas along either side of the ring. Dallas decrypts the video
and forwards it on to the client South.

[0085] Reference is made to FIG. 3 showing the design of
a fault-tolerant virtual private network using office-automa-
tion.

[0086] Automatic rerouting over this ring can be accom-
plished by running a routing protocol such as Open Shortest
Path First (OSPF) over the four gateway routers. However,
OSPF does not recognize IPSec links. For OSPF to do so,
both link end points need to be on the same subnet. In

US 2016/0323313 Al

general, the end points of an IPSec tunnel are in different
subnets. To create the illusion that these end points are
directly connected, we need to use a new type of tunnel
called GRE. Thus, a GRE tunnel is set up under every IPSec
tunnel and OSPF is made to run over the GRE network.
Now, for example, if Miami should fail, video would be
automatically rerouted via Phoenix to Dallas.

[0087] The above VPN is supported by a wide-area net-
work (WAN), also set up as a ring over which the RIP
routing protocol is run. Each gateway router is connected to
its own wide-area network router.

[0088] All WAN and VPN routers are controlled over an
out-of-band network. Control interfaces of all routers are
connected to a switch in the middle.

[0089] The above design is refined into more concrete
requirements. These can be handed to a network adminis-
trator for implementation. The requirements are:

Video Client and Server Types, Connections and Default
Routing

[0090] North and South are both Linux machines
[0091] North is connected to Seattle

[0092] South is connected to Dallas

[0093] North forwards all traffic to Seattle/FastEther-

net0/1 whose address is 192.168.110.1
[0094] South forwards all packets to Dallas/FastEther-
net0/1 whose address is 192.168.120.1

VPN Connectivity

[0095] There is a ring of IPSec tunnels between gate-
way routers Seattle, Miami, Dallas and Phoenix

[0096] Every IPSec tunnel is supported by a GRE
tunnel numbered 1.0.0.0/24 through 4.0.0.0/24.

Routing in VPN
[0097] OSPF is run over the GRE tunnels

Backbone Network

[0098] The backbone network is a ring of core routers
Los Angeles, Boston, Chicago, New York

[0099] Every gateway router is connected to a core
router
[0100] The eight physical links are numbered 201.1.1.

0/24 through 208.1.1.0/24.

Routing in Backbone Network

[0101] RIP is run over the backbone network

Control Network

[0102] Every router is connected to the 192.168.80.0/24
back channel network

Routing Video Over VPN

[0103] All video traffic between client and server is
routed over the VPN. This is accomplished by includ-
ing the client and server subnets into the OSPF routing
domain.

[0104] 8.1.1 Specifying Requirements in ADC
[0105] These requirements are specified in ADC’s lan-
guage as in Table 1 in about 66 lines.

Nov. 3, 2016

TABLE 1

ADC specification of fault-tolerant VPN

Video client and server types, connections and default routing

component type North = linux

component type South = linux

subnet 192.168.110.0 24 North ethO Seattle FastEthernet0/1
subnet 192.168.120.0 24 South ethO Dallas FastEthernet0/1
next hop North 0.0.0.0 32 = ip address Seattle FastEthernet0/1
next hop South 0.0.0.0 32 = ip address Dallas FastEthernet0/1
ip address Seattle FastEthernet0/1 192.168.110.1 24

ip address Dallas FastEthernet0/1 192.168.120.1 24

VPN connectivity

gre ipsec tunnel 1.0.0.0 24
Seattle TunnelO FastEthernet0/0
Miami TunnelO FastEthernet0/0
gre ipsec tunnel 2.0.0.0 24
Miami Tunnell FastEthernet0/0
Dallas Tunnel0 FastEthernet0/0
gre ipsec tunnel 3.0.0.0 24
Dallas Tunnell FastEthernet0/0
Phoenix Tunnel0 FastEthernet0/0
gre ipsec tunnel 4.0.0.0 24
Phoenix Tunnell FastEthernet0/0
Seattle Tunnell FastEthernet0/0

Routing in VPN

ospf domain 0 1 5
Seattle Tunnel0 Miami TunnelO
Miami Tunnell Dallas TunnelO
Dallas Tunnell Phoenix Tunnel0
Phoenix Tunnell Seattle Tunnell

Backbone network

subnet 201.1.1.0 30 NewYork FastEthernet0/0 Boston FastEthernet0/0
subnet 202.1.1.0 30 NewYork FastFthernet0/1 Chicago FastEthernet0/0
subnet 203.1.1.0 30 NewYork FastEthernetl/1 Miami FastEthernet0/0
subnet 204.1.1.0 30 LosAngeles FastEthernet0/0 Boston FastEthernet0/1
subnet 205.1.1.0 30 LosAngeles FastEthernetO/1 Chicago FastEthernet0/1
subnet 206.1.1.0 30 LosAngeles FastEthernetl/1 Phoenix FastEthernet0/0
subnet 207.1.1.0 30 Boston FastEthernetl/1 Dallas FastEthernet0/0
subnet 208.1.1.0 30 Chicago FastEthernetl/1 Seattle FastEthernet0/0

Routing in backbone network

rip domain
NewYork FastEthernet0/0 Boston FastEthernet0/0
NewYork FastEthernet0/1 Chicago FastEthernet0/0
LosAngeles FastEthernet0/1 Chicago FastEthernet0/1
LosAngeles FastEthernet0/0 Boston FastEthernet0/1
NewYork FastEthernetl/1 Miami FastEthernet0/0
LosAngeles FastEthernetl/1 Phoenix FastEthernet0/0
Chicago FastEthernetl/1 Seattle FastEthernet0/0
Boston FastEthernetl/1 Dallas FastEthernet0/0

Routing video over VPN

redistribute Seattle ospf connected = true
redistribute Dallas ospf connected = true

Control network

ip address Boston FastEthernet1/0 192.168.80.21 24

ip address Chicago FastEthernet1/0 192.168.80.22 24

ip address Dallas FastEthernet1/0 192.168.80.23 24

ip address LosAngeles FastEthernetl/0 192.168.80.24 24
ip address Miami FastEthernetl/0 192.168.80.25 24

ip address NewYork FastEthernetl/0 192.168.80.26 24
ip address Phoenix FastEthernetl/0 192.168.80.27 24

ip address Seattle FastEthernetl/0 192.168.80.28 24

US 2016/0323313 Al

[0106] When this specification is uploaded to ADC, ADC
generated two Linux scripts and eight Cisco IOS files
totaling 450 lines. The script for North and configuration file
for Seattle are listed in Table 2 below.

TABLE 2

Configuration script for North and configuration file for Seattle

Script for North

ifconfig eth0 192.168.110.5 netmask 255.255.255.0 up
ip route add 0.0.0.0/32 via 192.168.110.1

Configuration file for Seattle

hostname Seattle

no ip domain-lookup

snmp-server community public rw
interface FastEthernet0/0

no shutdown

ip address 208.1.1.1 255.255.255.252
interface FastEthernet0/1

no shutdown

ip address 192.168.110.1 255.255.255.0
interface FastEthernetl/0

no shutdown

ip address 192.168.80.28 255.255.255.0
interface Tunnel0

no shutdown

ip address 1.0.0.5 255.255.255.0
ip ospf dead-interval 5

ip ospf hello-interval 1

tunnel source 208.1.1.1

tunnel destination 203.1.1.1
interface Tunnell

no shutdown

ip address 4.0.0.2 255.255.255.0
ip ospf dead-interval 5

ip ospf hello-interval 1

tunnel source 208.1.1.1

tunnel destination 206.1.1.1

router ospf 9999

redistribute connected

network 1.0.0.5 0.0.0.0 area 0
network 4.0.0.2 0.0.0.0 area 0
router rip

version 2

network 208.1.1.1

[0107]

[0108] The generated configurations were applied to emu-
lated routers in a GNS3 tested and a number of tests
performed to evaluate whether intended requirements were
satisfied.

[0109] 8.1.2.1 Testing Connectivity

[0110] Using GNS3, consoles to the Dallas and Seattle
routers were opened as shown in FIGS. 4 and 5. FIG. 4
shows that Dallas has an interface 192.168.120.1. FIG. 5
shows that this was successfully pinged from Seattle. This
test showed that connectivity was established between the
two routers. Referring to FIG. 4, FIG. 4 is a console for
Dallas showing active interface addresses. Referring to FIG.
5. FIG. 5 is a console for Seattle showing a successful ping
to Dallas.

[0111]

[0112] To test whether the pings are encrypted, we use
GNS3’s embedded Wireshark capability to capture packets
flowing in and out of Seattle. As shown in FIG. 6, we notice
that these are all ESP packets, signifying that they are

8.1.2 Testing Configurations

8.1.2.2 Testing Encryption

Nov. 3, 2016

encrypted. Referring to FIG. 6, FIG. 6 is a data output
showing a Wireshark capture of packets in and out of
Seattle.

[0113] 8.1.2.3 Testing Fault-Tolerance

[0114] To test that fault-tolerance has been correctly
implemented, we first do a trace route to 192.168.120.1 and
notice that there are two routes that packets take to travel
from Seattle to Dallas. One is via Miami and the other via
Phoenix. We then suspend Miami via the GNS3 GUI.
Another trace route reveals just one path to Dallas, via
Phoenix. Referring to FIG. 7, FIG. 7 is a data output
showing trace routes. FIG. 7 shows two routes to Dallas but
after suspension of Miami, shows just a single route.

9. Experimental Evaluation of ADC to Implement a
Moving-Target Defense

[0115] This section describes the experiment we ran to
assess the use of ADC to defend the fault-tolerant VPN
network of Section 8 against an attack where an adversary
infers network topology from sniffing routing protocol
updates. An adversary could use this information to identify
a single point of failure and concentrate his DoS resources
on bringing it down. Our moving-target defense periodically
changes the network identifiers of links (identified as critical
parameters or variables in ADC) so that the adversary is
forced to disambiguate between current and stale routing
protocol updates. If he does not, then his view of the network
becomes more and more distorted over time. However, as in
the previous section, trace route shows that end-to-end
connectivity continues to be maintained.

[0116] 9.1 Specifying Moving-Target Defense
[0117] The critical variables and their possible values are:
[0118] The network ID of the GRE tunnel between

Seattle and Miami: 1.0.0.0 or 10.0.0.0
[0119] The network ID of the GRE tunnel between
Miami and Dallas: 2.0.0.0 or 20.0.0.0
[0120] The network ID of the physical link between
New York and Boston. 201.1.1.0 or 201.10.1.0
[0121] These are encoded with the following lines in the
specification:
[0122] Declare Critical Variables
[0123] critical variables
[0124] network id Seattle TunnelQ
[0125] network id Miami Tunnell
[0126] network id NewYork FastEthernet0/0
[0127] Specify their choices
[0128] or network id Seattle Tunnel0=1.0.0.0
[0129] network id Seattle Tunnel0=10,0.0.0
[0130] or network id Miami Tunnel1=2.0.0.0
[0131] network id Miami Tunnel1=20.0.0.0
[0132] or network id NewYork FastEthernet0/0=201.1.1.0
[0133] network id NewYork FastEthernet0/0=201.10.
1.0
[0134] Replace network addresses with variables in GRE
tunnels and subnet
[0135] specifications. ADC will replace these with values
and then generate
[0136] actual addresses.
[0137] gre tunnel
[0138] network id Seattle TunnelQ 24
[0139] Seattle TunnelO FastEthernet0/0
[0140] Miami TunnelQ FastEthernet0/0

US 2016/0323313 Al

[0141] gre tunnel
[0142] network id Miami Tunnell 24
[0143] Miami Tunnell FastEthernet0/0
[0144] Dallas TunnelO FastEthernet0/0
[0145] subnet
[0146] network id NewYork FastEthernet0/0 30
[0147] NewYork FastEthernet0/0
[0148] Boston FastEthernet0/0
[0149] 9.2 Emulating Adversary Behavior
[0150] We used GNS3’s embedded Wireshark tool to sniff

OSPF packets on selected links and plot the topology latent
in these packets. Since OSPF packets convey link state
information, the entire topology of the OSPF domain can be
reconstructed from analysis of those packets. As shown in
FIG. 8, initially, the adversary is able to reconstruct the
correct view of the network. Referring to FIG. 8. FIG. 8 is
a network diagram showing an IP security network between
four gateway routers. It shows the GRE links numbered
10.0.0.0 through 40.0.0.0 and the physical routers that
support them. But as the configurations are changed with
ADC’s moving-target defense, his view becomes progres-
sively more distorted as shown in FIGS. 9 and 10. Referring
to FIG. 9. FIG. 9 is a network diagram illustrating that an
adversary’s view becomes distorted after one moving target
defense (MTD) cycle. Referring to FIG. 10, FIG. 10 is a
network diagram illustrating that an adversary’s view
becomes more distorted after a second MTD cycle. The
adversary begins to see two GRE tunnels between the
routers 207.1.1.2 and 203.1.1.1 and between 203.1.1.1 and
2081.1.1.

1. A method of defending a cyber infrastructure, the cyber
infrastructure comprising a first set of configuration vari-
ables and a second set of configuration variables, the first set
of configuration variables being a set of critical configura-
tion variables, the method comprising:

selecting a changed value for at least one critical con-

figuration variable of the set of critical configuration
variables; and

determining a configuration variable of the second set of

configuration variables, the configuration variable of
the second set of configuration variables being deter-
mined to maintain functionality of the cyber infrastruc-
ture.

2. The method of claim 1, wherein the configuration
variable of the second set of configuration variables is
determined to satisfy the changed value for the at least one
critical configuration variable.

3. The method of claim 1, further comprising analyzing an
attack to derive the set of critical configuration variables, the
set of critical configuration variables being variables which
if known by an adversary would allow the adversary to
launch an attack against the cyber infrastructure.

4. The method of claim 1, wherein the selecting comprises
randomly selecting the changed value for the at least one
critical configuration variable of the set of critical configu-
ration variables.

5. The method of claim 1, further comprising specifying
functionality requirements of the cyber infrastructure as
constraints on the first and second sets of configuration
variables of the cyber infrastructure, wherein the determin-
ing includes evaluating different solutions of the constraints.

6. The method of claim 1, further comprising specifying
functionality and security requirements of the cyber infra-
structure as constraints on the configuration of the cyber

Nov. 3, 2016

infrastructure, wherein the determining includes evaluating
different solutions of the constraints.

7. The method of claim 1, wherein the selecting includes
finding a minimum set of critical configuration variables to
defend against an attack.

8. The method of claim 1, wherein the selecting a changed
value includes computing the changed value.

9. The method of claim 1, further comprising minimizing
a cost of implementing changes to a configuration of the
cyber infrastructure.

10. The method of claim 1, wherein the selecting and
determining and are performed using a constraint solver so
that a number of changes to the cyber infrastructure is
minimized.

11. The method of claim 1, wherein the cyber infrastruc-
ture comprises multiple system components, and wherein
the method further comprises applying component configu-
ration variables to system components of the multiple sys-
tem components.

12. The method of claim 11, wherein the cyber infrastruc-
ture is connected by an out-of-band network, and the apply-
ing comprises transmitting, via the out-of-band network,
some of the first and second sets of configuration variables
of the cyber infrastructure.

13. The method of claim 1, wherein the at least one critical
configuration variable includes an IP address, and wherein
the configuration variable of the second set of configuration
variables is a configuration variable selected from the group
consisting of a firewall configuration variable, a tunneling
configuration variable, and a routing configuration variable.

14. A method of defending a cyber infrastructure, the
cyber infrastructure comprising a first set of configuration
variables and a second set of configuration variables, the
method comprising:

selecting a changed value for at least one first configura-

tion variable of the first set of configuration variables;
and

determining a configuration variable of the second set of

configuration variables, the configuration variable of
the second set of configuration variables being deter-
mined to maintain functionality of the cyber infrastruc-
ture; and

minimizing a cost of performing the selecting a changed

value for at least one first configuration variable of the
first set of configuration variables, and of determining
the configuration variable of the second set of configu-
ration variables.

15. The method of claim 14, wherein the configuration
variable of the second set of configuration variables is
determined to satisfy the changed value for the first set of
configuration variables.

16. The method of claim 14, further comprising specify-
ing functionality requirements of the cyber infrastructure as
constraints on the first and second configuration variables of
the cyber infrastructure, wherein the determining includes
evaluating different solutions of the constraints.

17. The method of claim 14, further comprising specify-
ing functionality and security requirements of the cyber
infrastructure as constraints on the configuration of the cyber
infrastructure, wherein the determining includes evaluating
different solutions of the constraints.

18. A method of defending a cyber infrastructure, the
cyber infrastructure comprising a first set of configuration
variables and a second set of configuration variables, the first

US 2016/0323313 Al

set of configuration variables being a set of critical configu-
ration variables, the set of critical configuration variables
including a first critical configuration variable and a second
critical configuration variable, the method comprising:
selecting a first changed value of the set of critical
configuration variables;
determining a configuration variable of the second set of
configuration variables, the determining including
maintaining functionality of the cyber infrastructure
and satisfying the first changed value;
selecting, after a period of time, a second changed value
of the set of critical configuration variables; and

determining another configuration variable of the second
set of configuration variables, the determining includ-
ing maintaining functionality of the cyber infrastruc-
ture and satisfying the second changed value.

19. The method of claim 18, wherein the first changed
value is of the first critical configuration variable, and
wherein the second changed value is of the second critical
configuration variable.

20. The method of claim 18, wherein the first changed
value is of the first critical configuration variable, and
wherein the second changed value is of the first critical
configuration variable.

21. (canceled)

22. (canceled)

23. (canceled)

24. (canceled)

25. (canceled)

Nov. 3, 2016

