
THE MAIN TEA ETA AITOA MA TA AT MATATAN US 20170315958A1 
( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No . : US 2017 / 0315958 A1 

Nieuwenhuis ( 43 ) Pub . Date : Nov . 2 , 2017 

( 54 ) COMPUTER - IMPLEMENTED METHOD FOR 
SOLVING SETS OF LINEAR ARITHMETIC 
CONSTRAINTS MODELLING PHYSICAL 
SYSTEMS 

( 51 ) 
Publication Classification 

Int . Cl . 
G06F 17 / 12 ( 2006 . 01 ) 
G06F 1710 ( 2006 . 01 ) 
U . S . CI . 
CPC . . . . . . . . . . . . . . G06F 17 / 12 ( 2013 . 01 ) ; G06F 17 / 10 

( 2013 . 01 ) 

( 52 ) ( 71 ) Applicant : BARCELOGIC SOLUTIONS S . L . , 
Barcelona ( ES ) 

( 57 ) ABSTRACT 
( 72 ) Inventor : Robert L . M . Nieuwenhuis , Barcelona 

( ES ) 

( 21 ) Appl . No . : 15 / 651 , 122 
( 22 ) Filed : Jul . 17 , 2017 

A computer - implemented method for solving sets of linear 
arithmetic constraints modelling physical systems by pro 
grammed execution of mathematical operations in a proces 
sor unit , wherein the programmed execution of mathemati 
cal operations decide , given a set of constraints S , whether 
S has any solution , and if so , find one or more of them . 

Related U . S . Application Data 
Continuation - in - part of application No . 14 / 192 , 909 , 
filed on Feb . 28 , 2014 . 

( 63 ) 



US 2017 / 0315958 A1 Nov . 2 , 2017 

COMPUTER - IMPLEMENTED METHOD FOR 
SOLVING SETS OF LINEAR ARITHMETIC 
CONSTRAINTS MODELLING PHYSICAL 

SYSTEMS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a Continuation - in - Part of U . S . 
patent application Ser . No . 14 / 192 , 909 , filed Feb . 28 , 2014 , 
the contents of such application being incorporated by 
reference herein . 

FIELD OF THE INVENTION 

[ 0002 ] The invention relates to data processing generally , 
and more particularly , to data processing under the guidance 
of a computer implemented method for search - based integer 
linear programming ( ILP ) , involving the programmed 
execution of mathematical operations in a processor unit for 
deciding , given a set of constraints S , whether S has any 
solution , and if so , finding one or more of them . 

Definitions 

[ 0003 ] Along this description following notions / terms will 
be used : 

[ 0004 ] A constraint over a finite set of variables , X { x? 
. . Xn } is an expression of the form a Xi + . . . + a , x , sao , 

in which the coefficients ao . . . an are integer numbers . 
[ 0005 ] A solution for a set S of constraints or integer 

program ( IP ) over { x , . . . Xn } is a function Sol mapping 
each variable x of { x , . . . Xn } to an integer value Sol ( x ) 
such that all constraints are satisfied , that is , for each 
constraint of the form a , x , + . . . + a , x , sao , the integer 
number a , . Sol ( x , ) + . . . + a , Sol ( x , ) is smaller than or 
equal to ao . 

[ 0006 ] Optimization : maximizing ( or minimizing ) an 
objective function ( or a cost function ) , an expression of 
the form a X , + . . . + a , Xn , that is , finding a solution Sol 
such that a , . Sol ( x1 ) + . . . + a , Sol ( xn ) is maximized 
( minimized ) . 

[ 0007 ] MIP : Solving Mixed IPs ( MIPs ) : finding solu 
tions where some variables must take integer values 
and others can be arbitrary rationales . 

[ 0008 ] A lower bound for a variable x is an expression 
of the form asx , where a is an integer number , and an 
upper bound for a variable x is an expression of the 
form xsa , where a is an integer number and a bound is 
an expression that is either a lower bound or an upper 
bound . 

00091 The negation of a lower bound asx is the upper 
bound xsa - 1 and the negation of an upper bound xsa 
is the lower bound a + 1sx . 

[ 0010 ] A lower bound a sx and an upper bound xsaz 
are called conflicting if a , > az . 

[ 0011 ] A lower bound asx is called new in a given set 
of bounds B if there is no lower bound a ' sx in B with 
a ' za , and an upper bound xsa is called new in a given 
set of bounds B if there is no upper bound xsa ' in B 
with a ' sa , and a variable x is called defined to the value 
a in a given set of bounds B , if B contains the bounds 
asx , and xsa . 

[ 0012 ] A monomial is an expression of the form a x , 
where a is an integer or a rational number and x is a 
variable . It is called negative if a is negative and 
positive otherwise . 

[ 0013 ] Propagation : 
[ 0014 ] If C is a linear arithmetic constraint of the form 

a , X + . . . + a , X „ sa , where : 
[ 0015 ] the subset of positive monomials of { a _ X1 , . . 

. , , xn ) is { ax , c?y1 , . . . , CpYp } ; 
[ 0016 ] the subset of negative monomials of { a _ X? . . 

. 2 , Xn } is { d 21 , . . . , d 2q } ; 
[ 0017 ] R is a set of bounds { 1 , sy 1 , . . . , 1 , syp , Zi su , 

. . . , Z , su , } ; 
[ 0018 ] u is the largest integer such that us ( ao - c 11 - . 

. . - cp - dju , - . . . - du , ) / a , then C and R propagate 
the upper bound xsu . 

[ 0019 ] For example , if C is 2x + 3y + 3zs13 and R is 
{ 1sx , 2sy } then C and R propagate zs1 , since 1 is the 
largest integer u such that us ( 13 – 2 : 1 - 3 . 2 ) / 3 = ( 13 - 8 ) / 
3 = 5 / 3 . 

[ 0020 ] For example , if C is 2xs13 and R is the empty 
set , then C and R propagate Xs6 , since 6 is the largest 
integer u such that us13 / 2 . 

[ 0021 ] If C is a linear arithmetic constraint of the form 
a X1 + . . . + a , X , sa , where : 
[ 0022 ] the subset of positive monomials of { a X1 , . . 

. , , Xn } is { c?y1 , . . . , Cyp } ; 
[ 0023 ] the subset of negative monomials of { a X1 , . . 

. , , Xn } is { ax , d Z1 , . . . , d , 2 , } ; 
[ 0024 ] Ris a set of bounds { 1 , sy 1 , . . . , 1 , syp , Z , sun , 

. . . , Z , SU , } ; 
[ 0025 ] 1 is the smallest integer such that 12 ( ao - c?1 , 

. . . - cole - d , 41 - . . . - d , u , ) / a , then C and R propagate 
the lower bound lsx . 

[ 0026 ] For example , if C is 2x + 3y - 3zs13 and R is 
{ 1sx , 2sy } then C and R propagate - 1sz , since - 1 is 
the smallest integer 1 such that 12 ( 13 - 2 - 1 - 3 . 2 ) / - 3 = ( 13 – 
8 ) / - 3 = - 5 / 3 . 
[ 0027 ] Conflicting Subset or CSS , is a data structure 

storing a set of bounds . 
[ 0028 ] Conflicting constraint or CC , is a data struc 

ture storing a linear arithmetic constraint . 
[ 0029 ] Cut 
[ 0030 ] If C , is a linear arithmetic constraint a Xz + . . 

. + a , x , sa , and C , is a linear arithmetic constraint 
b , x , + . . . + b , x sbo , then a cut between C , and C2 is 
a linear arithmetic constraint cX , + . . . + 0 , X , sc , such 
that c and d are positive natural numbers and c ; = c•a ; + 
dib ; for each i in 0 . . . n ; and 

[ 0031 ] If c ; = 0 for some jin 1 . . . n then this cut is said 
to eliminate the variable x ; . 

[ 0032 ] Learning a constraint 
[ 0033 ] a propagation record is a triple ( b , R , C ) where 

b is a bound C is a linear arithmetic constraint and R 
is a set of bounds such that Cand R propagate b , then 
R being termed the reason set of b and C being 
termed the reason constraint of b ; in a special kind of 
propagation record called a decision , the components 
R and C are null , 

[ 0034 ] a propagation stack is a data structure having 
capabilities of a standard stack data structure whose 
elements are propagation records , with standard 
operations for pushing and popping elements and for 
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inspecting the topmost element and in addition the 
nonstandard capability of inspecting non - topmost 
elements ; 

[ 0035 ] a bound b is said to be in a propagation stack 
B if b is the first element of some propagation record 
of B ; similarly a set of bounds R is said to be in a 
propagation stack B if R is a subset of the set of all 
first elements of the propagation records of B , 

10036 ] a constraint C is said to be learned when it is 
added to the set of linear arithmetic constraints S . 

BACKGROUND OF THE INVENTION 

[ 0037 ] Efficient ILP is crucial for many applications . For 
example , to find a feasible or optimal schedule in a limited 
period of time for a set of industrial tasks , where each task 
has a given duration and requires certain amounts of differ 
ent limited resources ( machines , trucks , employees ) . ILP ( as 
well as SAT , see below ) is NP - complete : no efficient ( poly 
nomial ) algorithm for it has been found and the existence of 
such a polynomial algorithm is considered unlikely . 
[ 0038 ] The use of computer implemented ILP methods , 
models or algorithms for automatically solving with the aid 
of a processor unit , different integer problems expressed in 
the form of a set S of constraints appears disclosed in the 
following patents U . S . Pat . No . 7 , 653 , 561 , U . S . Pat . No . 
8 , 515 , 280 , U . S . Pat . No . 8 , 402 , 396 and patent applications 
US 2011 / 0153709 and US 2012 / 0250500 addressing differ 
ent technical fields . 
[ 0039 ] Just about any discrete optimization problem is an 
IP or a MIP : scheduling , routing , planning , configuration , 
timetabling , etc . 
[ 0040 ] One concrete physical application is the ‘ knapsack ’ 
problem that is following detailed . 
[ 0041 ] For instance , a truck will be going from A to B . 
There are n different types of items { 1 . . . n } to be carried , 
where each type of item i has a , units available , and each unit 
of it weights w ; kg and brings a profit of pi per carried unit . 
[ 0042 ] The problem is to decide how many units x ; of each 
item type i to carry , without exceeding the truck ' s total 
capacity of K kg , in order to make a total profit of at least 
P $ : the IP will consist of w . X + . . . + w , X , SK and p , X1 + . . 
. + p , , X , > P , with initial bounds Osxsa . 
[ 0043 ] The corresponding optimization problem is , 
instead of requiring the total profit p , x , + . . . + p , x , to be at 
least P $ , to maximize it . 
[ 0044 ] There are numerous extensions of this problem , 
such as further constraints on , e . g . , a maximal total number 
of units carried of certain subclasses of items , more than one 
truck , etc . 
[ 0045 ] Most current ILP methods work by iteratively 
solving LP relaxations , i . e . , first finding rational ( possibly 
non - integer ) solutions for the set of constraints . Additional 
steps are then performed to progressively turn these solu 
tions into an integer one , for example by cutting - plane or 
Branch - and - cut methods . 
[ 0046 ] The method described in this patent application 
performs no LP relaxations . It does a systematic search over 
the set of possible integer solutions . It borrows ideas from 
SAT solving , which can be seen as the special case of ILP 
where the variables X , . . . X , can only take the values O or 
1 ( as in 0 / 1 integer programming ) and where constraints are 
of the form 1 . X + . . . + 1 Xm - 1 . y? - . . . - 1 . y , sm - 1 , expressed 

as clauses { X , . . . , Xm , Y1 , . . . , yn } i . e . , sets ( disjunctions ) 
of literals , where a literal is a either variable x or a negated 
variable x . 
[ 0047 ] A basic SAT solving method is DPLL [ 1 , 2 ] which 
comprises the following steps maintaining a partial assign 
ment A , written here as a stack of literals that grows to the 
right : 

[ 0048 ] 1 . start with an empty partial assignment A 
0049 ] 2 . propagate while possible : extend A to A 1 if 
there is some clause { 1 } UC with all its variables 
assigned in A except the one of 1 , and ANC = 0 

[ 0050 ] 3 . if there is some conflict , a clause C with all 
variables assigned and ANC = 0 , then go to step 6 

[ 0051 ] 4 . if all variables are assigned and there is no 
conflict , halt with solution A 

[ 0052 ] 5 . decide : take some unassigned variable x and 
extend A to Axor to Ax ; here the literal x or x is called 
a decision 

[ 0053 ] 6 . backtrack : if there is some conflict and A is of 
the form A 1A2 , where l is the rightmost decision in A , 
then replace A by A I ( where I is not a decision ) 

[ 0054 ] 7 . if there is some conflict and A contains no 
decisions , then halt with output ‘ no solution ' 

[ 0055 ] 8 . go to step 2 . 
[ 0056 ] It is rather obvious that this procedure performs an 
exhaustive systematic search over all possible assignments . 
The key issues are its efficient implementation , that is , a ) 
data structures and b ) heuristics for guiding the search : 
which variables to decide on first and how to prune the 
search space . 
[ 0057 ] Indeed , modern extensions of the DPLL method 
include efficient data structures for propagation as disclosed 
in U . S . Pat . No . 7 , 418 , 369 and for clause learning , at each 
conflict , a new clause C can be added ( learned ) , such that 
instead of backtrack one can do a backjump step , replacing 
A , 1 A2 by A , l ' where C propagates 1 ' from Al . A single 
backjump step can undo several decisions as 1 needs not be 
the rightmost decision in A . 
10058 ] Pioneering work on clause learning was given by 
Marques - Silva and Sakallah in [ 3 ] . Analysis of the most 
frequently used learning scheme , the 1 - UIP one , was done 
by Moskewicz , et . al . [ 4 ] . Propagations by 1 - UIP learned 
clauses prune the search space very effectively . Such SAT 
solving techniques are nowadays called conflict - driven 
clause learning ( CDCL ) . 
[ 00591 . There have been several attempts to carry over 
CDCL from SAT to ILP . Then , clauses become constraints , 
literals become bounds ( constraints with a single variable , 
that can be written as lower bounds asx or upper bounds 
Xsa ) , and propagation becomes bound propagation . 
[ 0060 ] An important problem for applying CDCL in ILP 
is the following rounding problem . Assume having the two 
constraints 1x + 5ys5 and 1x - 5ys0 and taking the decision 
1sx . Then from the first constraint ys4 / 5 , can be inferred , 
which is rounded , causing a bound propagation of the new 
bound ys0 , which , together with 1sx causes a conflict with 
the second constraint . Now a cut inference , eliminating y 
generates the new learned 1 - UIP constraint 2x55 . But unfor 
tunately , unlike what happens in SAT , it is too weak to force 
a backjump . This problem is due to the rounding that takes 
place when propagating y . 
[ 0061 ] In [ 5 ] the rounding problem is solved by limiting 
the kind of decisions that are allowed . This makes it pos 
sible , at each conflict caused by propagations with rounding , 
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[ 0071 ] [ 7 ] Moura and Bjorner , “ Satisfiability Modulo 
Theories : Introduction and Applications ” : Commun . 
ACM 54 ( 9 ) : 69 - 77 ( 2011 ) . 

0072 ] [ 8 ] Korovin and Voronkov , “ Solving Systems of 
Linear Inequalities by Bound Propagation ’ , CADE 2011 : 
369 - 383 . 

10073 ] [ 9 ] Robert Nieuwenhuis , “ The IntSat Method for 
Integer Linear Programming ' , Springer International Pub 
lishing , LNCS 8656 , pp . 574 - 589 , 2014 . 

SUMMARY OF THE INVENTION 

to compute so - called tightly propagating constraints that 
justify the same propagations without rounding . Drawbacks 
for performance are the complexity of computing the tightly 
propagating constraints , the limited kind of decisions and 
that the learned constraints are very different from the 1 - UIP 
ones . 
[ 0062 ] This invention proposes another method to over 
come the rounding problem . It permits arbitrary decisions 
and guide the search analogously to the 1 - UIP approach in 
SAT . Consider again the two constraints Cz : 1x + 5ys5 and 
Cz : 1x - 5y < 0 . After taking the decision 1sx , the constraint 
C2 propagates 1sy and C , propagates ys0 ( obtaining a 
conflicting pair of bounds ) . Now along with each propagated 
bound , it is not only remembered which constraint caused its 
propagation , but also the set of bounds that caused it . For 
example , the bound ys0 has the associated reason set { 1sx } 
and reason constraint C1 . Similarly , along with lsy the 
reason constraint C , and the reason set { lsx is stored . If a 
conflicting pair of bounds appears , a conflict analysis is 
done . 
[ 0063 ] First , the conflicting pair is stored in the so called 
CSS ( here , { lsy , ys0 } ) . Along the process this CSS always 
contains a set of bounds that is inconsistent together with the 
constraints . Similarly to the CDCL SAT solvers ' conflict 
analysis ( but with bounds instead of literals ) in the CSS the 
most recently propagated bound it is repeatedly replaced by 
its reason set . Here , after the first step , the CSS becomes 
{ 1sx , ys0 } . After a finite number of such replacements , one 
always reaches a CSS that justifies a backjump . Here , after 
the second replacement ( replacing ys0 by lsx ) , the CSS 
becomes { 1sx } , inferring that 1sx alone is also conflicting , 
so one can backjump to before the first decision and assert 
the negation of 1sx , that is , x < 0 . In our method this conflict 
analysis process in addition guides a sequence of cut infer 
ences between the reason constraints of the bounds that are 
being replaced , and the finally resulting constraint can be 
learned . This backjumping method can always be applied , 
even if the learned constraint obtained using the cuts is too 
weak , due to the rounding problem , to justify this backjump . 
[ 0064 ] The idea of applying conflicting sets is remotely 
reminiscent to the learning techniques with literals from 
SAT Modulo Theories [ 6 , 7 ] . A less related document , only 
for rational arithmetic , is [ 8 ] . 

[ 0074 The invention proposes a computer - implemented 
method for solving sets S of linear arithmetic constraints 
modelling physical systems for deciding whether a given IP 
has any solution , and in the positive case finding one or more 
solutions . The invention comprises a number of data struc 
tures and algorithms , based on bound propagation and cuts 
that make a backtracking - based search procedure efficient 
and useful . 

[ 0075 ] In a characteristic manner , the computer - imple 
mented method automatically performs the following steps 
using a processor unit : 

[ 0076 ] 1a ) feeding the set of linear arithmetic con 
straints S to the processor unit ; 

[ 0077 ] 1b ) creating a standard stack data structure B 
that is initially empty ; said data structure containing a 
set of bounds and supporting the standard stack opera 
tions ; said stack data structure B is stored in the 
processor and is being modified by considering the set 
of linear arithmetic constraints S by the subsequent 
steps ; 

[ 0078 ] 1c ) if there is a linear arithmetic constraint C in 
S and a set of bounds R in B such that C and R 
propagate a bound b that is new in B , then pushing b on 
top of the stack B , and associating to b the set R as its 
reason set and the linear constraint C as its reason 
constraint ; and iterating this pushing and associating 
while possible ; 

[ 0079 ] 1d ) treating four non - overlapping cases : 
[ 0080 ] 1dl ) if there is no conflicting pair of bounds in 

B and if , for all i in { i . . . n } the variable x ; is defined 
in B to a value a , then halt outputting the solution 
Sol such that Sol ( x ; ) - a , for each i in i . . . n ; 

[ 0081 ] 142 ) if there is no conflicting pair of bounds in 
B and at least one variable is not defined in B , then 
a bound d is pushed on top of B such that d is new 
in B and d is not conflicting with any other bound in 
B , said bound d being called a decision ; 

[ 0082 ] 103 ) if there is at least one conflicting pair of 
bounds b , and b , in B such that there is no decision 
in B below b , nor below by then halt outputting “ no 
solution " ; 

[ 0083 ] 104 ) if there is at least one conflicting pair of 
bounds b , and b , in B such that there is at least one 
decision located in B below b , or below b then 
perform a conflict analysis based on the current stack 
B and as a consequence of which firstly a number of 
topmost elements of the stack B are popped and after 
that a new bound with an associated reason set and 
reason constraint is pushed on top of the stack and a 
new linear constraint is learned ; 

[ 0084 ] le ) return to step 1c ) . 
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[ 0085 ] In accordance with one embodiment , the conflict 
analysis further uses following two data structures : 

[ 0086 ] a Conflicting Subset and 
10087 ] a Conflicting Constraint , 

and the proposed method includes the following automatic 
actions : 

[ 0088 ] 2a ) if the conflicting pair of bounds is { b? , b2 } 
such that b2 is located in the stack B above b? , then 
initializing the CSS to { bi , b2 } and initializing the CC 
to the reason constraint of bz ; 

[ 0089 ] 2b ) if b is the bound in the CSS that is located in 
the stack B closest to the top of B , then 
[ 0090 ] 2b1 ) popping bounds from the top of stack B 

until there are no decisions above b in B ; 
[ 0091 ] 262 ) removing b from the CSS and inserting 

into the CSS the reason set associated with b ; and 
[ 0092 ] 2b3 ) performing a cut between the current CC 

and the reason constraint of b , in such a way that the 
variable of b is eliminated , thus obtaining a new CC ; 
and if no such a cut exists , then the CC remains 
unchanged ; 

[ 0093 ] 2c ) if after popping k bounds including at least 
one decision from the stack B there is a set of bounds 
Rin B such that CC and R propagate a bound b that is 
new in B , then popping k bounds from the stack B and 
pushing b on top of B with associated reason set R and 
reason constraint CC , and halting the conflict analysis ; 

[ 0094 ] 2d ) if the CSS contains more than one bound that 
is located in B up or above the topmost decision of B 
then going to step 2b ) ; 

[ 0095 2e ) if the CSS contains exactly one bound b that 
is located in B up or above the topmost decision of B , 
then : 
[ 0096 ] 2el ) if the CSS contains b as its unique 

element , then popping bounds from the stack B until 
B contains no decisions and after that pushing on the 
stack a new bound being the negation of b with an 
associated empty reason set and the final CC as its 
reason constraint ; then this CC is learned , 

[ 0097 ] 2e2 ) if the CSS contains more than one bound , 
then if b , is the bound of the CSS different from b 
such that b , is located in the stack B closest to the top 
of B , above exactly k decisions , then popping bounds 
from the stack B until B contains exactly k decisions 
and after that pushing on the stack a new bound 
being the negation of b , having this new bound as its 
associated reason set the result of removing b from 
the CSS , and the final CC as its reason constraint , 
and then learning this CC . 

[ 0098 ] The step 2c ) is optional and can be omitted . 
[ 0099 ] To be noted that , in particular , the first time step 2b ) 
is performed no such a cut exists since in that case CC and 
the reason constraint of b are the same linear constraint . 
[ 0100 ] In one embodiment in step 2d ) , even if the CSS 
contains zero or one bound located in B up or above the 
topmost decision of B , then also going to step 2b ) . 
[ 0101 ] In another embodiment after each application of 
step 2b ) , bounds of the form asx are eliminated from the 
CSS whenever a bound a ' sx with a ' > a is in the CSS and 
bounds of the form xsa are eliminated from the CSS 
whenever a bound xsa ' with a ' < a is in the CSS . 
[ 0102 ] In an alternative approach in step 2b ) instead of the 
reason set of b , a set of bounds R is computed and inserted 

in the CSS , with all elements of R being located below b in 
B and the reason constraint of b and R also propagating b . 
0103 ] In an alternative approach in the step 1c ) the reason 
set is not associated to b nor stored and in step 2b ) a set of 
bounds R is computed and inserted in the CSS , with all 
elements of R being located below b in B and the reason 
constraint of b and R also propagating b . 
10104 ] In accordance with an embodiment , in step 1c ) the 
linear arithmetic constraint C is not associated to b and in 
step 1d4 ) the conflict analysis is performed omitting steps 
263 ) and 2c ) involving the CC , and no new constraint is 
learnt . 
[ 0105 ] In accordance with an embodiment , in step 1c ) the 
iteration is performed non - exhaustively . 
[ 0106 ] In accordance with an embodiment , the linear 
arithmetic constraints further include expressions of the 
form a X + . . . + a , X zao , or a Xi + . . . + a , xn = ao , or a X + 
. . . + a , x > a , , or a X , + . . . + a , xn < a , or combinations thereof , 
where the coefficients ao . . . an can be arbitrary rational 
numbers , sets of which are all expressible by sets S of linear 
constraints of the form b , x , + . . . + b , x , sbo , with integer 
coefficients bo . . . by so that the resulting set of constraints 
S has the same set of solutions . 
10107 ] Concerning the use for optimization of the method 
detailed in the previous embodiment , in order to find a 
solution Sol that minimizes the value of a . Sol ( x1 ) + . . . 
+ am . Sol ( xn ) for a given expression a X1 + . . . + a , Xn , in a first 
iteration applying the method , and in successive iterations , 
while new solutions are found , applying the method with an 
additional constraint a , x , + . . . + a , x , sa , where a , is a , . Sol 
( x ) + . . . + a . Sol ( xn ) - 1 where Sol is the solution found in 
the previous iteration . 
[ 0108 ] Further in order to find a solution Sol that maxi 
mizes the value of a . Sol ( x1 ) + . . . + a , Sol ( xn ) for a given 
expression ax + . . . + a , Xm , applying the previous embodi 
ment minimizing - a , X , + . . . + - a , X , . 
[ 0109 ] According to another embodiment in step 2b ) 
instead of popping and replacing the topmost bound b from 
the CSS another bound is popped and replaced by its reason 
set . 
[ 0110 ] According to another embodiment and in order to 
solve Mixed Integer Programs ( MIPs ) , that is , to find a 
solution where a given subset I of the variables must take 
integer values and the remaining variables can take arbitrary 
rational values , it is proposed to use an arbitrary LP solver 
for finding a solution RSol minimizing the value of an 
expression a Xi + . . . + a , Xn , where in RSol all variables are 
allowed to take rational values , outputting RSol as a solution 
and halting if RSol ( x ) is an integer for every variable x of I , 
and if no such a solution RSol exists , generating an infea 
sible subset using the LP solver and taking as CSS the subset 
of bounds of the infeasible subset , and taking as CC any 
other constraint of the infeasible subset , and continuing the 
conflict analysis with step 2b ) . 
[ 0111 ] Finally , in yet another embodiment the coefficients 
of the linear constraints are rational or floating point num 
bers . In this case , in step 1 d4 ) the conflict analysis is 
performed using cuts where c and d are positive rational or 
floating point numbers . 

EXAMPLES 
Example 1 

[ 0112 ] This example involves the embodiment without 
reason constraints , without cuts and without learning new 
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( 0118 ] After one more propagation and two further deci 
sions and their propagations , the following stack is obtained : 

constraints . In this example , and in the following one , when 
a bound b in the stack B has exactly k decisions at or below 
it in B then b is said to belong to decision level ( dl ) k 
[ 0113 ] Consider the following two constraints : 

1x + 1y + 3zs5 
bound bound reason set reason set 

- 1x - lys - 11 
- 10 = x 
xs 10 

- 10 s y 
y s 10 

- 10 sz 
$ 10 I Sasassass ???????????? N 

[ 0114 ] In addition , there are six one - variable constraints 
stating that all three variables are between - 10 and 10 . Note 
that these six constraints propagate the first six bounds with 
empty reason sets . Below the stack is shown ( depicted here 
growing downwards ) after propagating the initial con 
straints , and taking and propagating three decisions : NYANN N N N ? ?? ? ?? ? ?? ? ? ? ? 

{ y < 10 } 
{ x s 10 } 

{ 1 < x , 1 s y } 
decision 

{ 1 s x , 7 sy } 
{ 1 < x , 7 5 y } 

decision 
{ 7 s y , - 2 sz } 

decision 
{ 4 s x , - 2 s z } 
{ 4 s x , 7 s y } 

bound bound reason set reason set 

- 10 sx 
xs 10 

- 10 sy 
Y s 10 

10 sz aaaaa ????? ?? ?? ?? ??? [ 0119 ] It gives the solution where x = 4 , y = 7 and z = - 2 , 
since all variables are fully defined to these values . 

pe o p = NUN ENOR 

? ?? ? ? ? ?? ? ? ? ? 

1 . NI DEN 

{ y s 10 } 
{ x < 10 } 

{ 1 s x , 1 s y } 
decision 

{ 1 < x , 7 sy } 
decision 
decision 

{ 7 s y , - 1 sz } 
{ x s 1 } 

{ 10 = y , - 1 sz } 

Example 2 
[ 0120 ] Consider the following three constraints : 

Co : + 1x - 3y = 3zs1 

C1 : – 2x + 3y + 2zs - 2 
10 sy 
XS - 2 C2 : + 3x - 3y + 2zs - 1 

and the stack ( depicted here growing downwards ) with some 
initial bounds coming from one - variable constraints , and 
taking and propagating two decisions : 

bound reason set reason constraint 
V mm V 

D 

V 

101151 Now there is a conflict with initial CSS { lsx , 
X < - 2 } . 
[ 0116 ] In the first conflict analysis step , xs - 2 is removed 
from the CSS and its reason set { 10sy , - 1sz } , inserted 
obtaining { 1sx , - 1sz , 10sy } . Since this CSS contains more 
than one bound of the highest decision level ( dl 3 ) , 10sy is 
also replaced by its reason , getting { 1sx , - 1sz , xs1 ) } . Since 
there are still two bounds of dl 3 , xsl is also replaced getting 
{ 1sx , 7sy , - 1sz } . After this , the conflict analysis process 
terminates , since this final CSS contains only one bound of 
di 3 , which in this case is the last decision itself , - 1sz . 
[ 0117 ] The negation of - 1sz is zs - 2 , which is added to dl 
1 ( the dl of 7sy ) with reason set { lsx , 7sy } . Altogether , a 
backjump is done to : 

sasasasasas V 

????? ?? ?? ?? ?? | | N 

N 

15 x N 

N 

V V V V V 

NNK NONITA 
V V V V 

N 

{ 1 s y , - 2 sz } 
{ x s 3 , - 2 sz } 
{ x s 3 , 1 sy } 

decision 
{ x < 2 , 1 s y } 

decision 
{ y s 2 , zs - 2 } 
{ 1 s x , zs - 2 } 
{ 2 s y , - 2 sz } 

Joo o 
zs - 1 
zs - 2 
V N 

2 sx 

bound reason set 

- 10 = x 
xs 10 

- 10 s y 
y s 10 

- 10 sz 
zs 10 
1sx 

???????????? 
NN NN NOK 

{ y s 10 } 
{ x s 10 } 

{ 1 < x , 1 = y } 
decision 

{ 1 < x , 7 sy } 
{ 1 < x , 7 s y } 

[ 0121 ] Now there is a conflict with initial CSS { xs1 , 2sx } . 
In the first conflict analysis step , 2sx is removed from the 
CSS and its reason set 2sy , - 2sz } inserted , obtaining the 
CSS - 2sz , xs1 , 2sy } , with two bounds of this decision 
level ( dl 2 ) . 
[ 0122 ] In the second conflict analysis step , 2 sy is replaced 
by its reason set { 1sx , zs - 2 } obtaining the new CSS { - 2sz , 
1sx , zs - 2 , xsl } which does not allow yet to backjump since 
it still contains two bounds of dl 2 . But now a cut is 
attempted between the initial CC , which is C1 , and the 
reason constraint of 2sy , which is Co , in such a way that y 
is eliminated . Here this cut exists , with c = d = 1 , and the new 
constraint Cz : 
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[ 0123 ] - 1x - lzs - 1 is obtained and learned . This new 
constraint allows one to backjump to dl 1 , since there it 
propagates 2sx . At that point , after three more propagations , 

bound reason set reason constraint 

N 

haaaaa ???????????? | 

[ 0129 ] There is an array , the Bounds Array , indexed by 
variable number , that can return in constant time the current 
upper and lower bounds for that variable . Property 1 : It 
always stores , for each variable x? , the positions pl , and pu , 
in the stack of its current ( strongest ) upper bound and lower 
bound , respectively , with pl = 0 ( pu ; = 0 ) if x , has no current 
lower ( upper ) bound . 
10130 ] The data structure for the stack is another array 
containing at each position three data fields : a bound , a 
natural number pos , and an info field containing , among 
other information , the reason set and the reason constraint . 
Property 2 : The value pos is always the position in the stack 
of the previous bound of the same type ( lower or upper ) for 
this variable , with pos = 0 for initial bounds . 
[ 0131 ] When pushing a new bound on the stack , and when 
popping a bound from the stack ( during backjumping ) , it is 
easy to maintain properties 1 and 2 in constant time . 

De m 

?? ? ? ?? ? ? ? ? ? ?? ? ?? 

NNV DOON IN NNNN N Y N NY 
{ 1 = y , - 2 sz } 

3 , - 2 
{ x s 3 , 1 s y } 

decision 
{ x s 2 , 1 s y } 

{ z 5 - 1 } 
{ x s 2 } 

{ 2 s x , zs - 1 } 
{ 2 s y , - 1 sz } 

??? ????? 
TABLE 1 
Bounds array 

Height in stack of 
current bound 

Lower : upper 
N 

O 

O 

· 

. . . · 

· 3 
· 

another conflict exists with CSS ( xs2 , 3sx } , which after the 
first step becomes { xs2 , - 1sz , 2sy ) , all three of this 
decision level ( dl 1 ) . After the second step ( replacing 2sy ) 
the CSS becomes { xs2 , zs - 1 , 2sx , - 1sz } , all in dl 1 . As 
before , the performed cut between C , and Co ( the initial CC 
and the reason constraint of 2sy ) eliminates the variable y , 
obtaining - 1x - 1zs - 1 . 
[ 0124 ] After the third step ( replacing - 1sz ) , the CSS 
becomes { xs2 , zs - 1 , 2sx } , all in dl 1 . The CC does not 
change because no cut eliminating z exists with Cz . 
[ 0125 ] After the 4th step ( replacing 2sx ) , the CSS 
becomes { xs2 , zs - 1 } , both in dl 1 . Again the CC does not 
change because no cut eliminating z exists with Cz . 
[ 0126 ] After the 5th step ( replacing zs - 1 ) , the CSS 
becomes { 1sy , xs2 } , with only one literal of dl 1 . The 
backjump with this CSS can take us to the dl of 1sy ( dl 0 ) 
and add there the negation of xs2 , which is 3sx . 
[ 0127 ] The result of the cut on CC with C , eliminating z 
gives us - 4x + 3 ys - 4 . The backjump with this cut can also 
take us to the dl of 1sy ( dl O ) , propagating 2sx . Since this 
is weaker than the bound 3sx obtained from the CSS , here 
the CSS one has been chosen . After two more propagations , 
the procedure returns ‘ no solution ' since the conflicting pair 
of literals ys2 and 3 sy appear at dl 0 : 

. . . · 

· 

TABLE 2 
Stack 

AN | 0 < x1 
X = 8 oo info 

info 

13 OS X7 Oo info 
info 14 X759 

bound bound reason set reason set reason constraint reason constraint 23 2 s X7 ? info 

x 3 
31 X75 6 Š info wFWNNNN ? ?? ? ? ? ?? ? ? ? ? 

ON ONNAY W pod v nasasasasas ???????????? 1 
5 S X7 D info { 1 s y , - 2 sz } 

{ x s 3 , - 2 sz } 
{ x s 3 , 1 s y } 

{ 1 sy } 
{ 3 < x , y s 2 } 
{ 3 s x , - 1 sz } JJJJ80 - 1 sz 

« N 

Data Structures and Algorithms 

[ 0132 ] Another important data structure allows for effi 
cient bound propagation . For each variable x , there are two 
occurs lists . The positive occurs list for x contains all pairs 
( Ic , a ) s . t . C is a linear constraint where x occurs with 
positive coefficient a . The negative occurs list contains the 
same for occurrences with a negative coefficient a . Here Ic 
is an index to the constraint header of C in the array of 

[ 0128 ] The method proposed in this invention heavily 
relies on the efficiency of its implementation , for which new 
data structures and algorithms are given . 
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constraint headers . Each constraint header contains an inte 
ger Fc called a filter , and a ( pointer to ) the constraint C itself . 
The filter Fc is maintained cheaply , in such a way that C can 
only propagate if Fc > 0 , thus avoiding many useless ( cache - ) 
expensive inspections of the actual constraint C . This is done 
as follows . 
[ 0133 ] Let C be a constraint of the form a , x , + . . . 
+ a , x , sao . Let lisx , and x ; su ; be the current lower and upper 
bounds ( if any ) for xz . Each expression ax , in C can have a 
minimal value m ; , which is a ; 1 ; if a ; > = 0 , and a ; u , otherwise . 
[ 0134 ] Here m , is undefined if there is no such bound l ; ( or 
u ; ) . Initially , if some mi is undefined , then Fc is set to a 
special value undefined and otherwise to - 3o + m2 + . . . 
+ m , , + max ; , { abs ( a ; : ( u : - 1 , ) ) } where max and abs denote the 
maximum and absolute value functions , respectively . After 
that , Fc is said to be precise : the constraint C propagates if 
and only if , undefined Fc > 0 . Property 3 : At all timepoints , 
Fc = undefined or F cis an upper approximation of the precise 
one . 
[ 0135 ] To preserve property 3 , these filters need to be 
updated when new bounds are pushed onto the stack , and 
need to be restored when backjumping . 
10136 ] Let a new lower bound ksx be pushed onto the 
stack . Let the previous lower bound for x ( if any ) be k ' sx . 
For each pair ( Ic , a ) in the positive occurs list of x , using Ic , 
access is done to the Fc and increase it by abs ( a : ( k - k ' ) ) . If 
there was no previous lower bound , then Fc was undefined 
and is now set to 1 . If Fc becomes positive , the constraint C 
is visited because it may propagate some new bound . After 
each time a constraint C is visited , Fr is set to its precise 
value . 
10137 ] Let a new upper bound xsk be pushed on the stack . 
Then exactly the same is done , where xsk ' is the previous 
upper bound for x ( if any ) , and using the negative occurs list . 
In order to be able to restore the filters when backjumping , 
each time an Fc value is increased by an amount d , a pair 
( Fc , d ) is pushed onto a filter backtrack stack , and when it 
is moved from undefined to 1 a pair ( Fc undefined ) is 
pushed . 
[ 0138 ] For each decision that is taken , i . e . , when pushing 
the i + 1th decision on the stack , in a separate data structure 
a natural number h ; is recorded , h , being the height of the 
filter backtrack stack before taking decision i + 1 . Then , when 
backjumping to a stack with k decisions , each pair ( Fc , d ) in 
the filter backtrack stack above height hz is popped , and its 
Fc is decreased by d if d = undefined , and restored to unde 
fined if d = undefined . 
[ 0139 ] Following a particular application case in which 
the proposed method is applied will be explained . 
[ 0140 ] A steel factory needs to plan its next week , 168 
hours in which it has to carry out N tasks ( orders ) . 
[ 0141 ] Each task i in 1 . . . N has a duration of di 
consecutive ( whole ) hours and requires , during all its d , 
hours of activity , the exclusive use of one or more units of 
R different resources . For example , a certain task may 
occupy two mechanics , one operator , three cranes and two 
trucks . If during a certain hour several tasks are active 
simultaneously , they cannot share the resources they use . 
10142 ] For each resource j and each hour h in 1 . . . 168 , 
let the integer used , n denote the total number of units of 
resource j used during hour h and let peak ; = max ( used ; , 1 , . . 
. used ; , 168 ) be the ( integer ) peak usage of resource j during 
the week . The problem is to schedule all tasks , i . e . , for each 
task i determine a starting time , while minimizing the total 

resource cost C = c? ' peak _ 15 , + . . . + Cr peakr , where each 
c ; is a cost associated to resource j . 
[ 0143 ] In practice the planned period of course needs not 
be 168 time units , and typically there are many more 
constraints , usually involving logical relationships , such as 
precedences between ( groups of ) tasks , temporary unavail 
ability of resources , earliest or latest starting times for tasks , 
storage capacities for intermediate products , etc . 
[ 0144 ] This problem is well known to have a large impact 
on costs and benefits in industry . Finding good solutions can 
be extremely hard . 
[ 0145 ] A standard notation for it uses two sets of N . 168 
binary variables starts , ( " task i starts on hour h ” ) and 
isactive ; n ( “ task i is active on hour h ” ) for all i and h . 
[ 014 ] It uses constraints expressing that startsi , h implies 
isactive ; ch ( i . e . , - starts ; , ntisactive ; , n20 ) and also startsich 
implies isactive ; , h + 1 , etc . , for its whole duration d? . Also , 
each task i starts exactly once : starts ; 1 + . . . + starts : 168 = 1 . In 
addition , for each resource j and hour h , we have used ; 
h - units _ needed , isactivei . n + . . . + units _ neededy . ; - isac 
tivench , where units _ needed , , , is the number of units of j 
needed by task i . Finally , for each resource j there are 168 
constraints peak zused , , 1 . . . peak , zused ; , 168 
[ 0147 ] A state - of - the - art methodology is the one used in 
MIP solvers , by solving a collection of LP relaxations of the 
given constraints , i . e . , temporarily “ forgetting ” that certain 
variables must take integer values . Rational ( possibly non 
integer ) solutions are sought for by means of ( variants of ) 
simplex or interior point methods . Such “ forgetful ” or 
“ blind ” intermediate non - integer solutions may be meaning 
less for our problem , since they may say , e . g . , that a certain 
binary variable active ; n is 0 . 7 , or that 3 . 54 units of resource 
j are used during some hour h . 
[ 0148 ] Additional steps are then performed to turn these 
intermediate solutions into an integer one . For example , 
branch - and - cut methods maintain a tree of subproblems 
pending to be explored , with their rational solutions . Given 
a leaf node with variable x getting a non - integer solution 
3 . 54 , one can branch , i . e . , split the problem into two sub 
problems , one with xs3 and one with xx4 , or compute and 
add a new constraint ( by a cut ) , precluding the non - integer 
solution 3 . 54 for x . 
10149 ] Such MIP solvers are well known to perform 
extremely poorly on pure SAT problems , where all variables 
are binary and constraints are ( purely logical ) clauses , and 
where conflict - driven clause - learning ( CDCL ) techniques 
are vastly superior and hence the method of choice in 
practice . 
( 0150 Here it is claimed a similar superiority of this 
invention , also a SAT - like method , for this industrial sched 
uling problem , which also has many binary variables and 
other relatively small - domain integer ones , as well as an 
essentially logical constraint structure as in pure SAT . 
[ 0151 ] The proposed method explores the search space as 
CDCL does in SAT : by taking decisions ( in our case each 
decision , as stated in step 1d2 , is a heuristically guided guess 
of an upper or lower bound for a given variable ) and 
efficiently inferring and adding the implied information by 
propagating these decisions . And , again as in CDCL , when 
a conflict appears ( i . e . , two contradictory bounds ) , a conflict 
analysis procedure allows one to backjump to an earlier 
search state , enrich it by an additional bound and its propa 
gations , and possibly learning a new constraint . 
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[ 0152 ] Together with [ 5 ] , the proposed method is the first 
of this nature able to handle integer variables and con 
straints , but with the advantage over [ 5 ] that in the proposed 
method arbitrary decisions can be taken . Indeed it performs 
much better than [ 5 ] , as revealed by the experiments of the 
publication [ 9 ] ( which also reports superiority over the main 
commercial MIP solvers on other ILP problems from the 
well - known standard MIPLIB ) . 
[ 0153 ] As it happens in methods for SAT ( cf . section 
“ Background of the invention ” ) , it is rather obvious that the 
proposed method performs a systematic search over the 
possible solutions . This involves only trivial mathematics . 
Again as for SAT , the key aspects of the proposed method 
are the engineering of novel data structures ( propagation 
record , propagation stack , reason set , reason constraint ) and 
the novel heuristics for guiding the search and for learning 
new constraints . Such techniques for SAT are disclosed in 
U . S . Pat . No . 7 , 418 , 369 . 
[ 0154 ] Applied to the industrial scheduling problem , the 
proposed method uses heuristics for taking good decisions 
( typically , as in SAT , on variables involved in many recent 
conflicts ) . For example , it will guess an upper bound on the 
total resource cost C or on some of the individual variables 
peakn . Meaningful new bounds will then be propagated 
( unlike what happens in LP relaxations ; present propagation 
takes into account that variables must be integer ) . Similarly , 
meaningful strong new constraints are quickly learned , 
stating that certain combinations of tasks cannot take place 
simultaneously , etc . 
[ 0155 ] These newly learned constraints again strengthen 
the propagation power and prevent future similar conflicts . 
10156 ) . Being able to take arbitrary decisions is essential 
( step 1d2 of claim 1 ) to the proposed method . In [ 5 ] one can 
only decide a given variable to be equal to its current upper 
bound or to its current lower bound ; in practice , one needs 
to guess it to belong to , say , the lower ( or upper ) halve of the 
interval between its current upper and lower bounds , an idea 
akin to binary search . 
101571 While preferred embodiments of the invention 
have been shown and described herein , it will be understood 
that such embodiments are provided by way of example 
only . Numerous variations , changes and substitutions will 
occur to those skilled in the art without departing from the 
spirit of the invention . Accordingly , it is intended that the 
appended claims cover all such variations as fall within the 
spirit and scope of the invention . 

1 . A computer - implemented method for solving sets of 
linear arithmetic constraints modelling physical systems , the 
method comprising using a computer processor unit per 
forming a programmed execution of mathematical opera 
tions wherein , being { x , . . . , } a set of variables , said linear 
arithmetic constraints are expressions of the form a , x , + . . 
· + a , x , say , in which the coefficients a , . . . an are integer 
numbers , 

wherein a solution for a set of linear arithmetic constraints 
S is an expression Sol mapping each variable x of { X1 
. . . Xn } to an integer value Sol ( x ) such that all 
constraints are satisfied , that is , for each constraint of 
the form a , x , + . . . + a , x , sa , in S , the integer number 
a . Sol ( x1 ) + . . . + a , Sol ( xn ) is smaller than or equal to 
ao ; 

wherein the following notions / terms are used : 
bound ( constraint with a single variable x , that can be 

written as lower bounds asx or upper bounds xsa ) 
where a is an integer number 

the negation of a lower bound asx is the upper bound 
xsa - 1 and the negation of an upper bound xsa is the 
lower bound a + lsx ; 

a lower bound a sx and an upper bound xsa , are called 
conflicting if a > az ; 

a lower bound asx is called new in a given set of 
bounds B if there is no lower bound a ' sx in B with 
a ' za , and an upper bound xsa is called new in a given 
set of bounds B if there is no upper bound xsa ' in B 
with a ' sa , and a variable x is called defined to the 
value a in a given set of bounds B , if B contains the 
bounds asx , and xsa ; and 

a monomial is an expression of the form a x , where a 
is an integer or a rational number and x is a variable ; 
it called negative if a is negative and positive oth 
erwise ; 

propagation : 
If C is a linear arithmetic constraint of the form a X7 + 

. . . + a , X „ sa , where : 
the subset of positive monomials of { a _ x + . . . 

+ a , xn } is { ax , C191 , . . . , Cpyp } ; 
the subset of negative monomials of { a _ x + . . . 

+ a , xn ) is { d , 21 , . . . , d . , zq } ; 
R is a set of bounds { 1 , sy1 , . . . , 1 , syp , Z1 su , . . . 

, z , su , } ; 
u is the largest integer such that us ( ao - c , 1 , - . . . 

- cplo - d , u , - . . . - d , u , ) / a , then C and R propagate 
the upper bound xsu ; 

If C is a linear arithmetic constraint of the form a X , + 
. . . + a , Xsa , where : 
the subset of positive monomials of a Xi + . . . + a , xn 

is { c?y1 , . . . , Cpyp } ; 
the subset of negative monomials of a X , + . . . + a , X , 

is { ax , 0 , 21 , . . . , d . , 2 , } ; 
R is a set of bounds { 1 , sy1 , . . . , l , syp , Z su1 , . . . 

, Z , su , } ; 
1 is the smallest integer such that 12 ( ao - c , 1 , - . . . 

- cple - d , u - . . . - d , u ) / a , then C and R propagate 
the lower bound lsx , 

a propagation record is a triple ( b , R , C ) where b is a 
bound C is a linear arithmetic constraint and R is a 
set of bounds such that C and R propagate b , then R 
being termed the reason set of b and C being termed 
the reason constraint of b ; in a special kind of 
propagation record called a decision , the components 
R and C are null , 

a propagation stack is a data structure having capabili 
ties of a standard stack data structure whose elements 
are propagation records , with standard operations for 
pushing and popping elements and for inspecting the 
topmost element and in addition the nonstandard 
capability of inspecting non - topmost elements ; 

a bound b is said to be in a propagation stack B if b is 
the first element of some propagation record of B ; 
similarly a set of bounds R is said to be in a 
propagation stack B if R is a subset of the set of all 
first elements of the propagation records of B , 

a constraint C is said to be learned when it is added to the 
set of linear arithmetic constraints S ; 

nu 
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wherein said programmed execution of mathematical opera 
tions of the method being automatically performed , by the 
following steps : 

la ) receiving by the computer processor unit the set of 
linear arithmetic constraints S ; 

1b ) creating using the computer processor unit a propa 
gation stack B that is initially empty ; being said propa 
gation stack B stored in the computer processor unit 
and being automatically modified using the computer 
processor unit by considering the set of linear arithme 
tic constraints S by implementing the subsequent steps ; 

1c ) if there is a linear arithmetic constraint C in S and a 
set of bounds R in B such that C and R propagate a 
bound b that is new in B , then pushing the propagation 
record ( b , R , C ) on top of the stack B ; and iterating this 
pushing while possible ; 

1d ) treating four non - overlapping cases using the com 
puter processor unit : 
1dl ) if there is no conflicting pair of bounds in B and 

if , for all i in { i . . . n } the variable x ; is defined in 
B to a value a , then halt outputting the solution Sol 
such that Sol ( x ; ) - a , for each i in i . . . n ; 

1d2 ) if there is no conflicting pair of bounds in B and 
at least one variable is not defined in B , then a 
propagation record ( d , - , - ) is pushed on top of B 
such that d is new in B and d is not conflicting with 
any other bound in B , said bound d and the propa 
gation record ( d , - , - ) being termed a decision , and 
then return to step 1c ) ; 

1d3 ) if there is at least one conflicting pair of bounds b , 
and b , in B such that there is no decision in B below 
b , nor below b , then halt outputting " no solution ” ; 

104 ) if there is at least one conflicting pair of bounds b , 
and b , in B such that there is at least one decision 
located in B below b , or below b , then a conflict 
analysis is performed based on the current propaga 
tion stack B and as a consequence of which firstly a 
number of topmost elements of the propagation stack 
B are popped and after that a new bound with an 
associated reason set and reason constraint is pushed 
on top of the stack and a new linear constraint C is 
learned , and then return to step 1c ) . 

2 . The method of claim 1 wherein said conflict analysis 
further uses a data structure called the CSS , Conflicting 
Subset , a set data structure storing a subset of the bounds of 
B , and another data structure called the CC , Conflicting 
Constraint , wherein the following notions are used : 

if C , is a linear arithmetic constraint a , x , + . . . + a , x , sao , 
and C2 is a linear arithmetic constraint byx + . . . 
+ b , x , sbo , then a cut between C , and C , is a linear 
arithmetic constraint c , X , + . . . + 0 , X , sc , such that c and 
d are positive natural numbers and c ; = c•a ; + d . b ; for each 
i in 0 . . . n ; and 

if c ; = 0 for some j in 1 . . . n then this cut is said to eliminate 
the variable x ; , the method comprising the following 
steps : 
2a ) if the conflicting pair of bounds is { b , , b , } such that 
by is located in the stack B above b? , then initializing 
the CSS to { b , b2 } and initializing the CC to the 
reason constraint of bzi 

2b ) if b is the bound in the CSS that is located in the 
stack B closest to the top of B , then 
2b1 ) popping bounds from the top of stack B until 

there are no decisions above b in B ; 

2b2 ) removing b from the CSS and inserting into the 
CSS the reason set associated with b ; 

263 ) performing a cut between the current CC and 
the reason constraint of b , in such a way that the 
variable of b is eliminated , thus obtaining a new 
CC ; and if no such a cut exists , then the CC 
remains unchanged ; 

2c ) if after popping k bounds including at least one 
decision from the stack B there is a set of bounds R 
in B such that CC and R propagate a bound b that is 
new in B , then popping k bounds from the stack B 
and pushing b on top of B with associated reason set 
R and reason constraint CC , and halting the conflict 
analysis ; 

2d ) if the CSS contains more than one bound that is 
located in B at the height of the topmost decision of 
B or above then going to step 2b ) ; 

2e ) if the CSS contains exactly one bound b that is 
located in B at the height of the topmost decision of 
B or above : 
2el ) if the CSS contains bas its unique element , then 
popping bounds from the stack B until B contains 
no decisions and after that pushing on the stack a 
new bound being the negation of b with an asso 
ciated empty reason set and the final CC as its 
reason constraint ; then this CC is learned , and 

2e2 ) if the CSS contains more than one bound , then 
if b , is the bound of the CSS different from b such 
that b , is located in the stack B closest to the top 
of B , above exactly k decisions , then popping 
bounds from the stack B until B contains exactly 
k decisions and after that pushing on the stack a 
new bound being the negation of b , having this 
new bound as its associated reason set the result of 
removing b from the CSS , and the final CC as its 
reason constraint , and then learning this CC . 

3 . The method of claim 1 wherein said conflict analysis 
further uses a data structure called the CSS , Conflicting 
Subset , a set data structure storing a subset of the bounds of 
B , and another data structure called the CC , Conflicting 
Constraint , wherein the following notions are used : 

if C , is a linear arithmetic constraint a , x , + . . . + a , x , sao , 
and C2 is a linear arithmetic constraint b?x? + . . . 
+ b , x , sbo , then a cut between C , and C , is a linear 
arithmetic constraint c X + . . . + 0 , X , 5c , such that c and 
d are positive natural numbers and c ; = c•a , + d . b ; for each 
i in 0 . . . n ; and 

if c ; = 0 for somej in 1 . . . n then this cut is said to eliminate 
the variable x ; , the method comprising the following 
steps : 
3a ) if the conflicting pair of bounds is { b1 , b2 } such that 

b , is located in the stack B above by , then initializing 
the CSS to { b? , bz } and initializing the CC to the 
reason constraint of bz ; 

3b ) if b is the bound in the CSS that is located in the 
stack B closest to the top of B , then 
3b1 ) popping bounds from the top of stack B until 

there are no decisions above b in B ; 
3b2 ) removing b from the CSS and inserting into the 
CSS the reason set associated with b ; 

3b3 ) performing a cut between the current CC and 
the reason constraint of b , in such a way that the 
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variable of b is eliminated , thus obtaining a new 
CC ; and if no such a cut exists , then the CC 
remains unchanged ; 

3c ) if the CSS contains more than one bound that is 
located in B at the height of the topmost decision of 
B or above then going to step 3b ) ; 

3d ) if the CSS contains exactly one bound b that is 
located in B at the height of the topmost decision of 
B or above : 
3d1 ) if the CSS contains b as its unique element , then 

popping bounds from the stack B until B contains 
no decisions and after that pushing on the stack a 
new bound being the negation of b with an asso 
ciated empty reason set and the final CC as its 
reason constraint ; then this CC is learned , and 

3d2 ) if the CSS contains more than one bound , then 
if b , is the bound of the CSS different from b such 
that b , is located in the stack B closest to the top 
of B , above exactly k decisions , then popping 
bounds from the stack B until B contains exactly 
k decisions and after that pushing on the stack a 
new bound being the negation of b , having this 
new bound as its associated reason set the result of 
removing b from the CSS , and the final CC as its 
reason constraint , and then learning this CC . 

4 . The method of claim 2 , wherein in step 2d ) , even if the 
CSS contains zero or one bound located in B above a 
decision , being the topmost decision of B , then going to step 
2b ) . 

5 . The method of claim 2 , wherein after each application 
of step 2b ) bounds of the form asx are eliminated from the 
CSS whenever a bound a ' sx with a ' > a is in the CSS and 
bounds of the form xsa are eliminated from the CSS 
whenever a bound xsa ' with a ' < a is in the CSS . 

6 . The method of claim 2 , wherein in step 2b ) instead of 
the reason set of b , a set of bounds R is computed and 
inserted in the CSS , with all elements of R being located 
below b in B and the reason constraint of b and R also 
propagating b . 

7 . The method of claim 2 wherein in step 1c ) the reason 
set is not associated to b nor stored and in step 2b ) a set of 
bounds R is computed and inserted in the CSS , with all 
elements of R being located below b in B and the reason 
constraint of b and R also propagating b . 

8 . The method of claim 1 wherein in step 1c ) the linear 
constraint C is not associated to b and wherein in step 184 ) 
the conflict analysis is performed omitting steps 263 ) and 
2c ) involving the CC , and no new constraint is learnt . 

9 . The method of claim 1 wherein in step 1c ) the iteration 
is performed non - exhaustively . 

10 . The method of claim 1 wherein the linear arithmetic 
constraints further include expressions of the form a , x , + . . 
. + a , , X , 220 , or a , x , + . . . + a , x = an , or a , x , + . . . + a , X , > a , , 
or a X , + . . . + a , x , < a , or combinations thereof , where the 
coefficients a , . . . an can be arbitrary rational numbers , sets 
of which are all expressible by sets S of linear constraints of 
the form b , x + . . . + b , X , sbo , with integer coefficients bo . 
. . b , so that the resulting set of constraints S has the same 
set of solutions 

11 . The method of claim 10 further comprising in order to 
find a solution Sol that minimizes the value of a . Sol ( x1 ) + . 
. . + a , , : Sol ( xn ) for a given expression a , x , + . . . + a , Xn , in a 
first iteration applying steps 1a ) to le ) of the method , and in 
successive iterations , while new solutions are found , apply 

ing steps la ) to le ) of the method with an additional 
constraint a Xi + . . . + a , x , , sa , where a , is a . Sol ( x1 ) + . . . 
+ a , Sol ( x ) - 1 and Sol is the solution found in the previous 
iteration . 

12 . The method of claim 10 further comprising in order to 
find a solution Sol that maximizes the value of a . Sol ( x , ) + 
. . . + a , Sol ( x ) for a given expression a , xi + . . . + a , Xn , in 
a first iteration applying steps la ) to le ) of the method , and 
in successive iterations , while new solutions are found , 
applying steps la ) to le ) of the method with an additional 
constraint - a , x , - . . . - a , x , sa , where a , is - a , . Sol ( x , ) - . . 
. - a , Sol ( x , ) - 1 where each time Sol is the solution found in 
the previous iteration . 

13 . The method of claim 2 , wherein in step 2b ) instead of 
popping and replacing the topmost bound b from the CSS 
another bound is popped and replaced by its reason set . 

14 . The method of claim 2 wherein in order to solve 
Mixed Integer Programs ( MIPs ) , that is , to find a solution 
where a given subset I of the variables must take integer 
values and the remaining variables can take arbitrary ratio 
nal values , it is proposed to use an arbitrary LP solver for 
finding a solution RSol minimizing the value of an expres 
sion a , x , + . . . + a , x , , where in RSol all variables are allowed 
to take rational values , outputting RSol as a solution and 
halting if RSol ( x ) is an integer for every variable x of I , and 
if no such a solution RSol exists , generating an infeasible 
subset using the LP solver and starting a conflict analysis . 

15 . The method of claim 14 , wherein to perform said 
conflict analysis a data structure called the CSS , Conflicting 
Subset , a set data structure storing a subset of the bounds of 
B , and another data structure called the CC , Conflicting 
Constraint are used , wherein the following notions are used : 

if C , is a linear arithmetic constraint a X , + . . . + a , x , sao , 
and C2 is a linear arithmetic constraint b , x + . . . 
+ b , x , sbo , then a cut between C , and C2 is a linear 
arithmetic constraint cyX + . . . + CX , 5c , such that c and 
d are positive natural numbers and ci = c•a ; + d . b , for each 
i in 0 . . . n ; and 

if c ; = 0 for somejin 1 . . . n then this cut is said to eliminate 
the variable x ; , the method comprising the following 
steps : 

15a ) initializing the CSS to the subset of bounds of the 
infeasible subset , and initializing the CC to any other 
constraint of the infeasible subset ; 

15b ) if b is the bound in the CSS that is located in the 
stack B closest to the top of B , then 
15b1 ) popping bounds from the top of stack B until 

there are no decisions above b in B ; 
15b2 ) removing b from the CSS and inserting into the 
CSS the reason set associated with b ; 

1563 ) performing a cut between the current CC and the 
reason constraint of b , in such a way that the variable 
of b is eliminated , thus obtaining a new CC ; and if 
no such a cut exists , then the CC remains unchanged ; 

15c ) if after popping k bounds including at least one 
decision from the stack B there is a set of bounds R in 
B such that CC and R propagate a bound b that is new 
in B , then popping k bounds including at least one 
decision from the stack B and pushing b on top of B 
with associated reason set R and reason constraint CC , 
and halting the conflict analysis ; 

15d ) if the CSS contains more than one bound that is 
located in B up or above the topmost decision of B then 
going to step 15b ) ; 
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15e ) if the CSS contains exactly one bound b that is 
located in B up or above the topmost decision of B : 
15el ) if the CSS contains b as its unique element , then 
popping bounds from the stack B until B contains no 
decisions and after that pushing on the stack a new 
bound being the negation of b with an associated 
empty reason set and the final CC as its reason 
constraint ; then this CC is learned , and 

15e2 ) if the CSS contains more than one bound , then if 
b , is the bound of the CSS different from b such that 
b , is located in the stack B closest to the top of B , 
above exactly k decisions , then popping bounds from 
the stack B until B contains exactly k decisions and 
after that pushing on the stack a new bound being the 
negation of b , having this new bound as its associ 
ated reason set the result of removing b from the 
CSS , and the final CC as its reason constraint , and 
then learning this CC . 

16 . The method of claim 14 , wherein to perform said 
conflict analysis a data structure called the CSS , Conflicting 
Subset , a set data structure storing a subset of the bounds of 
B , and another data structure called the CC , Conflicting 
Constraint are used , wherein the following notions are used : 

if C , is a linear arithmetic constraint a X , + . . . + a , x , sao , 
and C2 is a linear arithmetic constraint b , x7 + . . . 
+ byx , sbo , then a cut between C1 and C2 is a linear 
arithmetic constraint c X , + . . . + 0 , X , 5c , such that c and 
d are positive natural numbers and ci = c•a ; + d . b ; ; for 
each i in 0 . . . n ; and 

if c ; = 0 for somej in 1 . . . n then this cut is said to eliminate 
the variable x ; , the method comprising the following 
steps : 

16a ) initializing the CSS to the subset of bounds of the 
infeasible subset , and initializing the CC to any other 
constraint of the infeasible subset ; 

16b ) if b is the bound in the CSS that is located in the 
stack B closest to the top of B , then 

16b1 ) popping bounds from the top of stack B until 
there are no decisions above b in B ; 

16b2 ) removing b from the CSS and inserting into the 
CSS the reason set associated with b ; 

16b3 ) performing a cut between the current CC and the 
reason constraint of b , in such a way that the variable 
of b is eliminated , thus obtaining a new CC ; and if 
no such a cut exists , then the CC remains unchanged ; 

16c ) if the CSS contains more than one bound that is 
located in B up or above the topmost decision of B then 
going to step 16b ) ; 

16d ) if the CSS contains exactly one bound b that is 
located in B up or above the topmost decision of B : 
16d1 ) if the CSS contains b as its unique element , then 
popping bounds from the stack B until B contains no 
decisions and after that pushing on the stack a new 
bound being the negation of b with an associated 
empty reason set and the final CC as its reason 
constraint ; then this CC is learned , and 

1602 ) if the CSS contains more than one bound , then if 
b , is the bound of the CSS different from b such that 
b , is located in the stack B closest to the top of B , 
above exactly k decisions , then popping bounds from 
the stack B until B contains exactly k decisions and 
after that pushing on the stack a new bound being the 
negation of b , having this new bound as its associ 
ated reason set the result of removing b from the 
CSS , and the final CC as its reason constraint , and 
then learning this CC . 

17 . The method of claim 1 wherein the coefficients of the 
linear constraints are rational or floating point numbers and 
wherein in step 1 d4 ) the conflict analysis is performed using 
cuts where c and d are positive rational or floating point 
numbers . 

* * * * 


