US 20170315958A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0315958 A1

Nieuwenhuis

43) Pub. Date: Nov. 2, 2017

(54)

(71)

(72)

@
(22)

(63)

COMPUTER-IMPLEMENTED METHOD FOR
SOLVING SETS OF LINEAR ARITHMETIC
CONSTRAINTS MODELLING PHYSICAL
SYSTEMS

Applicant: BARCELOGIC SOLUTIONS S.L.,
Barcelona (ES)

Inventor: Reobert L. M. Nieuwenhuis, Barcelona

(ES)
Appl. No.: 15/651,122
Filed: Jul 17,2017

Related U.S. Application Data

Continuation-in-part of application No. 14/192,909,
filed on Feb. 28, 2014.

D

(52)

&7

Publication Classification

Int. Cl1.

GO6F 17/12 (2006.01)

GoO6r 17/10 (2006.01)

U.S. CL

CPC GO6F 17/12 (2013.01); GO6F 17/10

(2013.01)

ABSTRACT

A computer-implemented method for solving sets of linear
arithmetic constraints modelling physical systems by pro-
grammed execution of mathematical operations in a proces-
sor unit, wherein the programmed execution of mathemati-
cal operations decide, given a set of constraints S, whether
S has any solution, and if so, find one or more of them.

US 2017/0315958 Al

COMPUTER-IMPLEMENTED METHOD FOR
SOLVING SETS OF LINEAR ARITHMETIC
CONSTRAINTS MODELLING PHYSICAL
SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a Continuation-in-Part of U.S.
patent application Ser. No. 14/192,9009, filed Feb. 28, 2014,
the contents of such application being incorporated by
reference herein.

FIELD OF THE INVENTION

[0002] The invention relates to data processing generally,
and more particularly, to data processing under the guidance
of'a computer implemented method for search-based integer
linear programming (ILP), involving the programmed
execution of mathematical operations in a processor unit for
deciding, given a set of constraints S, whether S has any
solution, and if so, finding one or more of them.

Definitions

[0003] Along this description following notions/terms will
be used:

[0004] A constraint over a finite set of variables, X {x;
.. X} is an expression of the form a,x + . . . +a X, =<a,,
in which the coefficients a, . . . a,, are integer numbers.

[0005] A solution for a set S of constraints or integer
program (IP) over {x, ... x,} is a function Sol mapping
each variable x of {X; . . .x,,} to an integer value Sol(x)
such that all constraints are satisfied, that is, for each

constraint of the form a;x,+ . . . +a,X,<a,, the integer
number a,.Sol(x,)+ . . . +a,-Sol(x,) is smaller than or
equal to a,.

[0006] Optimization: maximizing (or minimizing) an
objective function (or a cost function), an expression of
the form a x;+ . . . +a,X,, that is, finding a solution Sol
such that a;.Sol(x,)+ . . . +a,-Sol(x,) is maximized
(minimized).

[0007] MIP: Solving Mixed IPs (MIPs): finding solu-
tions where some variables must take integer values
and others can be arbitrary rationales.

[0008] A lower bound for a variable x is an expression
of the form a=x, where a is an integer number, and an
upper bound for a variable x is an expression of the
form x=a, where a is an integer number and a bound is
an expression that is either a lower bound or an upper
bound.

[0009] The negation of a lower bound a<x is the upper
bound x=a-1 and the negation of an upper bound x=a
is the lower bound a+1=x.

[0010] A lower bound a,=<x and an upper bound x=a,
are called conflicting if a,>a,.

[0011] A lower bound a=x is called new in a given set
of bounds B if there is no lower bound a'=x in B with
a'za, and an upper bound x=a is called new in a given
set of bounds B if there is no upper bound x=<a' in B
with a'=a, and a variable x is called defined to the value
a in a given set of bounds B, if B contains the bounds
a=x, and x=a.

Nov. 2, 2017

[0012] A monomial is an expression of the form a x,
where a is an integer or a rational number and x is a
variable. It is called negative if a is negative and
positive otherwise.

[0013] Propagation:

[0014] If C is a linear arithmetic constraint of the form
a;X,;+ ... +a,x,<a, where:

[0015] the subset of positive monomials of {a,x;, . .
Sax,) s {ax, ¢ yy, ..o, Y1

[0016] the subset of negative monomials of {a,x, . .
cax,tis{dyz,, ..., dz};

[0017] R is a set of bounds {l,<y,, . ..

s Zg=u)

[0018] wu is the largest integer such that u=(a,—c,1,- .
.. =¢ l,=d;u,- ... -d,u,)/a, then C and R propagate
the upper bound x=u.

[0019] For example, if C is 2x+3y+3z=<13 and R is
{1=x, 2<y} then C and R propagate z=<1, since 1 is the
largest integer u such that u=(13-2-1-3-2)/3=(13-8)/
3=5/3.

[0020] For example, if C is 2x<13 and R is the empty
set, then C and R propagate x<6, since 6 is the largest
integer u such that u<13/2.

[0021] IfC is a linear arithmetic constraint of the form
a,X,+ ... +a,Xx,=<a, where:

[0022] the subset of positive monomials of {a,x;, . .

s L=y, z;=u,,

SaX, s {eyy, ., ek
[0023] the subset of negative monomials of {a;x,, . .
S ax,}is {ax, dyz), ..., dz.};
[0024] R isasetof bounds {I,=y,, ..., 1=y, 2 =u,,
o 2,=0,)
[0025] 11is the smallest integer such that 1=(a,—c,1,-
...=¢,l,~du,—...-d,u,)a, then C and R propagate

the lower bound 1=x.

[0026] For example, if C is 2x+3y-3z=13 and R is
{1=x, 2=y} then C and R propagate —1=z, since -1 is
the smallest integer 1 such that 1=(13-2-1-3-2)/-3=(13-
8)/-3=-5/3.

[0027] Conflicting Subset or CSS, is a data structure
storing a set of bounds.

[0028] Conflicting constraint or CC, is a data struc-
ture storing a linear arithmetic constraint.

[0029] Cut

[0030] If C, is a linear arithmetic constraint a,;X + . .
. +a,x,=a, and C, is a linear arithmetic constraint
b,x;+ ... +b,x, =b,, then a cut between C, and C, is
a linear arithmetic constraint ¢, X, + . . . +¢,X,,<C, such
that ¢ and d are positive natural numbers and ¢,=c-a,+
db, foreachiin O . .. n; and

[0031] Ifc,=0forsomejinl...n then thiscut is said
to eliminate the variable x,.

[0032] Learning a constraint
[0033] apropagation record is a triple (b, R, C) where

b is a bound C is a linear arithmetic constraint and R
is a set of bounds such that C and R propagate b, then
R being termed the reason set of b and C being
termed the reason constraint of b; in a special kind of
propagation record called a decision, the components
R and C are null,

[0034] a propagation stack is a data structure having
capabilities of a standard stack data structure whose
elements are propagation records, with standard
operations for pushing and popping elements and for

US 2017/0315958 Al

inspecting the topmost element and in addition the
nonstandard capability of inspecting non-topmost
elements;

[0035] abound b is said to be in a propagation stack
B if b is the first element of some propagation record
of B; similarly a set of bounds R is said to be in a
propagation stack B if R is a subset of the set of all
first elements of the propagation records of B,

[0036] a constraint C is said to be learned when it is
added to the set of linear arithmetic constraints S.

BACKGROUND OF THE INVENTION

[0037] Efficient ILP is crucial for many applications. For
example, to find a feasible or optimal schedule in a limited
period of time for a set of industrial tasks, where each task
has a given duration and requires certain amounts of differ-
ent limited resources (machines, trucks, employees). ILP (as
well as SAT, see below) is NP-complete: no efficient (poly-
nomial) algorithm for it has been found and the existence of
such a polynomial algorithm is considered unlikely.

[0038] The use of computer implemented ILP methods,
models or algorithms for automatically solving with the aid
of a processor unit, different integer problems expressed in
the form of a set S of constraints appears disclosed in the
following patents U.S. Pat. No. 7,653,561, U.S. Pat. No.
8,515,280, U.S. Pat. No. 8,402,396 and patent applications
US 2011/0153709 and US 2012/0250500 addressing differ-
ent technical fields.

[0039] Just about any discrete optimization problem is an
IP or a MIP: scheduling, routing, planning, configuration,
timetabling, etc.

[0040] One concrete physical application is the ‘knapsack’
problem that is following detailed.

[0041] For instance, a truck will be going from A to B.
There are n different types of items {1 . . . n} to be carried,
where each type of item 1 has a, units available, and each unit
of it weights w;, kg and brings a profit of p, per carried unit.

[0042] The problem is to decide how many units x, of each
item type i to carry, without exceeding the truck’s total
capacity of K kg, in order to make a total profit of at least
P$: the IP will consist of w x,+ .. . +w, x <K and p,x,+ . .
. +p,, X,,=zP, with initial bounds O<x=<a.

[0043] The corresponding optimization problem is,
instead of requiring the total profit p,x;+ . . . +p, X, to be at
least P $, to maximize it.

[0044] There are numerous extensions of this problem,
such as further constraints on, e.g., a maximal total number
of units carried of certain subclasses of items, more than one
truck, etc.

[0045] Most current ILP methods work by iteratively
solving LP relaxations, i.e., first finding rational (possibly
non-integer) solutions for the set of constraints. Additional
steps are then performed to progressively turn these solu-
tions into an integer one, for example by cutting-plane or
Branch-and-cut methods.

[0046] The method described in this patent application
performs no LP relaxations. It does a systematic search over
the set of possible integer solutions. It borrows ideas from
SAT solving, which can be seen as the special case of ILP
where the variables x, . . . x,, can only take the values 0 or
1 (as in 0/1 integer programming) and where constraints are
of'the form 1-x;+...+1x,-1y,—...-1y,=m-1, expressed

Nov. 2, 2017

as clauses {X;, ..., X,, Y1, - - - » Y.} 1.€., sets (disjunctions)
of literals, where a literal is a either variable x or a negated
variable X.

[0047] A basic SAT solving method is DPLL [1, 2] which
comprises the following steps maintaining a partial assign-
ment A, written here as a stack of literals that grows to the

right:
[0048] 1. start with an empty partial assignment A
[0049] 2. propagate while possible: extend A to A 1if

there is some clause {1}UC with all its variables
assigned in A except the one of 1, and ANC=0
[0050] 3. if there is some conflict, a clause C with all
variables assigned and ANC=#, then go to step 6
[0051] 4. if all variables are assigned and there is no
conflict, halt with solution A
[0052] 5. decide: take some unassigned variable x and
extend A to A X or to A X; here the literal x or X is called
a decision
[0053] 6. backtrack: if there is some conflict and A is of
the form A 1 A,, where 1 is the rightmost decision in A,
then replace A by A, T (where T is not a decision)
[0054] 7. if there is some conflict and A contains no
decisions, then halt with output ‘no solution’
[0055] 8. go to step 2.
[0056] It is rather obvious that this procedure performs an
exhaustive systematic search over all possible assignments.
The key issues are its efficient implementation, that is, a)
data structures and b) heuristics for guiding the search:
which variables to decide on first and how to prune the
search space.
[0057] Indeed, modern extensions of the DPLL method
include efficient data structures for propagation as disclosed
in U.S. Pat. No. 7,418,369 and for clause learning, at each
conflict, a new clause C can be added (learned), such that
instead of backtrack one can do a backjump step, replacing
A, 1A, by A, I' where C propagates I' from A,. A single
backjump step can undo several decisions as 1 needs not be
the rightmost decision in A.
[0058] Pioneering work on clause learning was given by
Marques-Silva and Sakallah in [3]. Analysis of the most
frequently used learning scheme, the 1-UIP one, was done
by Moskewicz, et. al. [4]. Propagations by 1-UIP learned
clauses prune the search space very effectively. Such SAT-
solving techniques are nowadays called conflict-driven
clause learning (CDCL).
[0059] There have been several attempts to carry over
CDCL from SAT to ILP. Then, clauses become constraints,
literals become bounds (constraints with a single variable,
that can be written as lower bounds a=x or upper bounds
x=a), and propagation becomes bound propagation.
[0060] An important problem for applying CDCL in ILP
is the following rounding problem. Assume having the two
constraints 1x+5y=<5 and 1x-5y=0 and taking the decision
1=x. Then from the first constraint y=4/5, can be inferred,
which is rounded, causing a bound propagation of the new
bound y=0, which, together with 1=x causes a conflict with
the second constraint. Now a cut inference, eliminating y
generates the new learned 1-UIP constraint 2x<5. But unfor-
tunately, unlike what happens in SAT, it is too weak to force
a backjump. This problem is due to the rounding that takes
place when propagating y.
[0061] In [5] the rounding problem is solved by limiting
the kind of decisions that are allowed. This makes it pos-
sible, at each conflict caused by propagations with rounding,

US 2017/0315958 Al

to compute so-called tightly propagating constraints that
justify the same propagations without rounding. Drawbacks
for performance are the complexity of computing the tightly
propagating constraints, the limited kind of decisions and
that the learned constraints are very different from the 1-UIP
ones.

[0062] This invention proposes another method to over-
come the rounding problem. It permits arbitrary decisions
and guide the search analogously to the 1-UIP approach in
SAT. Consider again the two constraints C,: 1x+5y=5 and
C,: 1x-5y=0. After taking the decision 1=x, the constraint
C, propagates 1<y and C, propagates y=0 (obtaining a
conflicting pair of bounds). Now along with each propagated
bound, it is not only remembered which constraint caused its
propagation, but also the set of bounds that caused it. For
example, the bound y=0 has the associated reason set {1=<x}
and reason constraint C,. Similarly, along with 1<y the
reason constraint C, and the reason set {1=x} is stored. If a
conflicting pair of bounds appears, a conflict analysis is
done.

[0063] First, the conflicting pair is stored in the so called
CSS (here, {1=y, y=0}). Along the process this CSS always
contains a set of bounds that is inconsistent together with the
constraints. Similarly to the CDCL SAT solvers’ conflict
analysis (but with bounds instead of literals) in the CSS the
most recently propagated bound it is repeatedly replaced by
its reason set. Here, after the first step, the CSS becomes
{1=x, y=0}. After a finite number of such replacements, one
always reaches a CSS that justifies a backjump. Here, after
the second replacement (replacing y=<0 by 1=x), the CSS
becomes {1=x}, inferring that 1=x alone is also conflicting,
so one can backjump to before the first decision and assert
the negation of 1=x, that is, x<0. In our method this conflict
analysis process in addition guides a sequence of cut infer-
ences between the reason constraints of the bounds that are
being replaced, and the finally resulting constraint can be
learned. This backjumping method can always be applied,
even if the learned constraint obtained using the cuts is too
weak, due to the rounding problem, to justify this backjump.
[0064] The idea of applying conflicting sets is remotely
reminiscent to the learning techniques with literals from
SAT Modulo Theories [6, 7]. A less related document, only
for rational arithmetic, is [8].

LIST OF CITED REFERENCES

[0065] [1] M. Davis and H. Putnam, ‘A Computing Pro-
cedure for Quantification Theory’, Journal of the ACM,
7:201-215, 1960.

[0066] [2] M. Davis, G. Logemann and D. Loveland, ‘A
Machine Program for Theorem-Proving’, Communica-
tions of the ACM, vol. 5, No. 7, pp. 394-397, 1962).

[0067] [3] Marques-Silva and Sakallah, ‘GRASP: A
Search Algorithm for Propositional Satisfiability’, IEEE
Transactions on Computers, 1063-6757, 220-227, 1996.

[0068] [4] Moskewicz, et. al. “‘Chaff: Engineering an Effi-
cient SAT Solver”, Jun. 18-22, 2001 DAC 2001 pp.
530-535.

[0069] [5] Jovanovic de Moura, ‘Cutting to the Chase—
Solving Linear Integer Arithmetic”, J. Autom. Reasoning
51(1): 79-108 (2013).

[0070] [6] Nieuwenhuis et. al. ‘Solving SAT and SAT
Modulo Theories: From an Abstract Davis-Putnam-Loge-
mann-Loveland Procedure to DPLL(T)’, Journal of the
ACM, 53(6), 937-977, 2006.

Nov. 2, 2017

[0071] [7] Moura and Bjorner, ‘Satisfiability Modulo
Theories: Introduction and Applications™ Commun.
ACM 54(9): 69-77 (2011).

[0072] [8] Korovin and Voronkov, ‘Solving Systems of
Linear Inequalities by Bound Propagation’, CADE 2011:
369-383.

[0073] [9] Robert Nieuwenhuis, ‘The IntSat Method for
Integer Linear Programming’, Springer International Pub-
lishing, LNCS 8656, pp. 574-589, 2014.

SUMMARY OF THE INVENTION

[0074] The invention proposes a computer-implemented
method for solving sets S of linear arithmetic constraints
modelling physical systems for deciding whether a given IP
has any solution, and in the positive case finding one or more
solutions. The invention comprises a number of data struc-
tures and algorithms, based on bound propagation and cuts
that make a backtracking-based search procedure efficient
and useful.

[0075] In a characteristic manner, the computer-imple-
mented method automatically performs the following steps
using a processor unit:

[0076] 1a) feeding the set of linear arithmetic con-
straints S to the processor unit;

[0077] 1b) creating a standard stack data structure B
that is initially empty; said data structure containing a
set of bounds and supporting the standard stack opera-
tions; said stack data structure B is stored in the
processor and is being modified by considering the set
of linear arithmetic constraints S by the subsequent
steps;

[0078] 1c) if there is a linear arithmetic constraint C in
S and a set of bounds R in B such that C and R
propagate a bound b that is new in B, then pushing b on
top of the stack B, and associating to b the set R as its
reason set and the linear constraint C as its reason
constraint; and iterating this pushing and associating
while possible;

[0079] 1d) treating four non-overlapping cases:

[0080] 1d1)ifthere is no conflicting pair of bounds in
Bandif, foralliin {i...n} the variable x, is defined
in B to a value a,, then halt outputting the solution
Sol such that Sol(x,)=a, for eachiini. .. n;

[0081] 1d2)ifthere is no conflicting pair of bounds in
B and at least one variable is not defined in B, then
a bound d is pushed on top of B such that d is new
in B and d is not conflicting with any other bound in
B, said bound d being called a decision;

[0082] 1d3) if there is at least one conflicting pair of
bounds b, and b, in B such that there is no decision
in B below b, nor below b, then halt outputting “no
solution”;

[0083] 1d4) if there is at least one conflicting pair of
bounds b, and b, in B such that there is at least one
decision located in B below b, or below b, then
perform a conflict analysis based on the current stack
B and as a consequence of which firstly a number of
topmost elements of the stack B are popped and after
that a new bound with an associated reason set and
reason constraint is pushed on top of the stack and a
new linear constraint is learned;

[0084] 1le) return to step lc).

US 2017/0315958 Al

[0085] In accordance with one embodiment, the conflict
analysis further uses following two data structures:

[0086] a Conflicting Subset and

[0087] a Conflicting Constraint,

and the proposed method includes the following automatic
actions:

[0088] 2a) if the conflicting pair of bounds is {b,, b,}
such that b, is located in the stack B above b,, then
initializing the CSS to {b;, b,} and initializing the CC
to the reason constraint of b,;

[0089] 2b)ifb is the bound in the CSS that is located in
the stack B closest to the top of B, then
[0090] 2b1) popping bounds from the top of stack B

until there are no decisions above b in B;

[0091] 2b2) removing b from the CSS and inserting
into the CSS the reason set associated with b; and
[0092] 2b3) performing a cut between the current CC

and the reason constraint of b, in such a way that the
variable of b is eliminated, thus obtaining a new CC;
and if no such a cut exists, then the CC remains
unchanged;

[0093] 2c) if after popping k bounds including at least
one decision from the stack B there is a set of bounds
R in B such that CC and R propagate a bound b that is
new in B, then popping k bounds from the stack B and
pushing b on top of B with associated reason set R and
reason constraint CC, and halting the conflict analysis;

[0094] 2d)ifthe CSS contains more than one bound that
is located in B up or above the topmost decision of B
then going to step 2b);

[0095] 2e) if the CSS contains exactly one bound b that
is located in B up or above the topmost decision of B,
then:

[0096] 2e1) if the CSS contains b as its unique
element, then popping bounds from the stack B until
B contains no decisions and after that pushing on the
stack a new bound being the negation of b with an
associated empty reason set and the final CC as its
reason constraint; then this CC is learned,
[0097] 2e2)ifthe CSS contains more than one bound,
then if b, is the bound of the CSS different from b
such that b, is located in the stack B closest to the top
of B, above exactly k decisions, then popping bounds
from the stack B until B contains exactly k decisions
and after that pushing on the stack a new bound
being the negation of b, having this new bound as its
associated reason set the result of removing b from
the CSS, and the final CC as its reason constraint,
and then learning this CC.
[0098] The step 2¢) is optional and can be omitted.
[0099] To be noted that, in particular, the first time step 2b)
is performed no such a cut exists since in that case CC and
the reason constraint of b are the same linear constraint.
[0100] In one embodiment in step 2d), even if the CSS
contains zero or one bound located in B up or above the
topmost decision of B, then also going to step 2b).
[0101] In another embodiment after each application of
step 2b), bounds of the form a=x are eliminated from the
CSS whenever a bound a'sx with a™a is in the CSS and
bounds of the form x=a are eliminated from the CSS
whenever a bound x<a' with a'<a is in the CSS.
[0102] In an alternative approach in step 2b) instead of the
reason set of b, a set of bounds R is computed and inserted

Nov. 2, 2017

in the CSS, with all elements of R being located below b in
B and the reason constraint of b and R also propagating b.
[0103] Inan alternative approach in the step 1c) the reason
set is not associated to b nor stored and in step 2b) a set of
bounds R is computed and inserted in the CSS, with all
elements of R being located below b in B and the reason
constraint of b and R also propagating b.

[0104] In accordance with an embodiment, in step 1c) the
linear arithmetic constraint C is not associated to b and in
step 1d4) the conflict analysis is performed omitting steps
2b3) and 2c¢) involving the CC, and no new constraint is
learnt.

[0105] In accordance with an embodiment, in step 1c) the
iteration is performed non-exhaustively.

[0106] In accordance with an embodiment, the linear
arithmetic constraints further include expressions of the
form a;x,+ . . . +a,X,2a,, or a;X;+ . . . +a,X,=a,, Or a,X;+
... +a,X>a,, or a;X; + . . . +a,X,<a, or combinations thereof,
where the coeflicients a, . . . a, can be arbitrary rational
numbers, sets of which are all expressible by sets S of linear
constraints of the form b,;x,+ . . . +b,X,<b,, with integer
coeflicients b, . . . b,, so that the resulting set of constraints
S has the same set of solutions.

[0107] Concerning the use for optimization of the method
detailed in the previous embodiment, in order to find a
solution Sol that minimizes the value of a,.Sol (x)+ . . .
+a,,.501 (x,) for a given expression a,X;+ . . . +a,X,,, in a first
iteration applying the method, and in successive iterations,
while new solutions are found, applying the method with an
additional constraint a;X,+ . . . +a,X,=<a, where a, is a,.Sol
(X)+ ... +a;.S0l (x,)-1 where Sol is the solution found in
the previous iteration.

[0108] Further in order to find a solution Sol that maxi-
mizes the value of a,.Sol (x,)+ . . . +a,/Sol (x,) for a given
expression a;X;+ . . . +a,X,,, applying the previous embodi-
ment minimizing —a; X+ . . . +-a,X,,.

[0109] According to another embodiment in step 2b)
instead of popping and replacing the topmost bound b from
the CSS another bound is popped and replaced by its reason
set.

[0110] According to another embodiment and in order to
solve Mixed Integer Programs (MIPs), that is, to find a
solution where a given subset I of the variables must take
integer values and the remaining variables can take arbitrary
rational values, it is proposed to use an arbitrary LP solver
for finding a solution RSol minimizing the value of an
expression a, X+ . . . +a,X,, where in RSol all variables are
allowed to take rational values, outputting RSol as a solution
and halting if RSol(x) is an integer for every variable x of I,
and if no such a solution RSol exists, generating an infea-
sible subset using the LP solver and taking as CSS the subset
of bounds of the infeasible subset, and taking as CC any
other constraint of the infeasible subset, and continuing the
conflict analysis with step 2b).

[0111] Finally, in yet another embodiment the coefficients
of the linear constraints are rational or floating point num-
bers. In this case, in step 1 d4) the conflict analysis is
performed using cuts where ¢ and d are positive rational or
floating point numbers.

EXAMPLES
Example 1

[0112] This example involves the embodiment without
reason constraints, without cuts and without learning new

US 2017/0315958 Al

constraints. In this example, and in the following one, when
a bound b in the stack B has exactly k decisions at or below
it in B then b is said to belong to decision level (dl) k

[0113] Consider the following two constraints:
1x+1y+3z=5
-1x-1y=-11
[0114] In addition, there are six one-variable constraints

stating that all three variables are between —10 and 10. Note
that these six constraints propagate the first six bounds with
empty reason sets. Below the stack is shown (depicted here
growing downwards) after propagating the initial con-
straints, and taking and propagating three decisions:

bound reason set
-10=x {}

x = 10 {}
-10sy {1

Y<10 {1
-10=z {}

z <10 {}

1=sx {y = 10}

lsy {x =10}

zs1 {l=x 1=y}

7=y decision

zs -1 {1=x 7=y}

x=5 decision
-l=z decision

xs1 {7=y,-1=sz}
0=y {x=1}

X< -2 {10y, -1=<z}

[0115] Now there is a conflict with initial CSS {1=x,
x=-2}.
[0116] In the first conflict analysis step, x=-2 is removed

from the CSS and its reason set {10sy, —1=z}, inserted
obtaining {1=x, —-1=z, 10=y}. Since this CSS contains more
than one bound of the highest decision level (dl 3), 10<y is
also replaced by its reason, getting {1=x, —1=z, x=<1)}. Since
there are still two bounds of dl 3, x<1 is also replaced getting
{1=x, 7=y, -1=z}. After this, the conflict analysis process
terminates, since this final CSS contains only one bound of
dl 3, which in this case is the last decision itself, —1<z.

[0117] The negation of —1<z is z=—2, which is added to dl
1 (the dl of 7<y) with reason set {1=x, 7<y}. Altogether, a
backjump is done to:

bound reason set
-10=x {}
x = 10 {}
-10sy {1
y=10 {1
-10=z {}
z <10 {}
1=sx {y = 10}
lsy {x =10}
zs1 {l=x 1=y}
7=y decision
zs -1 {1=x 7=y}
zs -2 {1=x 7=y}

Nov. 2, 2017

[0118] After one more propagation and two further deci-
sions and their propagations, the following stack is obtained:

bound reason set
-10=x {}
x = 10 {}
-10sy {1}
y=10 {1}
-10=z {}
z <10 {}
1=sx {y = 10}
lsy {x =10}
zs1 {l=x 1=y}
7=y decision
zs -1 {1=x 7=y}
zs -2 {1=x 7=y}
-2=sz decision
xs4 {7=y,-2=sz}
4=x decision
ys7 {4=x -2z}
zs -2 {4=x 7=y}

[0119] It gives the solution where x=4, y=7 and 7=-2,
since all variables are fully defined to these values.

Example 2
[0120]

Co+1x-3y-3z=1

Consider the following three constraints:

C:-2x+3y+2z=-2

Co+3x-3y+2z=-1

and the stack (depicted here growing downwards) with some
initial bounds coming from one-variable constraints, and
taking and propagating two decisions:

bound reason set reason constraint
-2=x {}

xs3 {}

lsy {3y

y=4 {3y

2=z {}

zs2 {}

1=sx {l=y,-2s2z} C,
ys2 {x=3,-2=<7z} C,
z<0 {x=3,1sy} C,
x=2 decision

zs -1 {x=2,1sy} C,
z<-2 decision

xs1 {y=2,z=<-2} Co
2=y {l =x,z=-2} Co
2=x {2=y,-2=s7z} C,

[0121] Now there is a conflict with initial CSS {x=1, 2=x}.
In the first conflict analysis step, 2<x is removed from the
CSS and its reason set {2=<y, 2=z} inserted, obtaining the
CSS {-2=z, x=<1, 2=y}, with two bounds of this decision
level (dl 2).

[0122] In the second conflict analysis step, 2<y is replaced
by its reason set {1=x, z<-2} obtaining the new CSS {-2=z,
1=x, z=-2, x=<1} which does not allow yet to backjump since
it still contains two bounds of dl 2. But now a cut is
attempted between the initial CC, which is C,, and the
reason constraint of 2<y, which is C,, in such a way that y
is eliminated. Here this cut exists, with c=d=1, and the new
constraint C;:

US 2017/0315958 Al

[0123] -1x-1z=-1 is obtained and learned. This new
constraint allows one to backjump to dl 1, since there it
propagates 2=<x. At that point, after three more propagations,

bound reason set reason constraint
-2=x {}

x=<3 {}

lsy {3y

y=4 {3y

2=z {}

zs2 {}

1=sx {l=y,-2s2z} C,
ys2 {x=3,-2=<7z} C,
z<0 {x=3,1svy} C,
x=2 decision

zs -1 {x=2,1svy} C,
2sx {z=-1} C,
-l=z {x =2} Cs
2sy {2=x,2z=-1} Co
2sx {2=y,-1=s2z} C,

another conflict exists with CSS {x<2, 3=x}, which after the
first step becomes {x=2, -1=z, 2s<y}, all three of this
decision level (dl 1). After the second step (replacing 2<y)
the CSS becomes {x=2, z=-1, 2=x, 1=z}, all in dl 1. As
before, the performed cut between C, and C, (the initial CC
and the reason constraint of 2<y) eliminates the variable y,
obtaining -1x-1z=-1.

[0124] After the third step (replacing -1<z), the CSS
becomes {x=2, z=-1, 2=x}, all in dl 1. The CC does not
change because no cut eliminating z exists with C,.
[0125] After the 4th step (replacing 2=<x), the CSS
becomes {x=2, z=-1}, both in dl 1. Again the CC does not
change because no cut eliminating z exists with C,.
[0126] After the Sth step (replacing z=-1), the CSS
becomes {lsy, x<2}, with only one literal of dl 1. The
backjump with this CSS can take us to the dl of 1<y (dl 0)
and add there the negation of x<2, which is 3=x.

[0127] The result of the cut on CC with C, eliminating z
gives us —4x+3 y=—4. The backjump with this cut can also
take us to the dl of 1<y (dl 0), propagating 2=<x. Since this
is weaker than the bound 3=x obtained from the CSS, here
the CSS one has been chosen. After two more propagations,
the procedure returns ‘no solution’ since the conflicting pair
of literals y<2 and 3<y appear at dl O:

bound reason set reason constraint
-2=x {}

x=3 {}

lsy {3y

ys4 {3y

2=z {}

zs2 {}

1=sx {l=y,-2s2z} C,
ys2 {x=3,-2=<7z} C,
z<0 {x=3,1svy} C,
3sx {1l =y} C,
-l=z {3=x,ys2} Co
3sy {3=x,-1=<z} Co

Data Structures and Algorithms

[0128] The method proposed in this invention heavily
relies on the efficiency of its implementation, for which new
data structures and algorithms are given.

Nov. 2, 2017

[0129] There is an array, the Bounds Array, indexed by
variable number, that can return in constant time the current
upper and lower bounds for that variable. Property 1: It
always stores, for each variable x,, the positions pl, and pu,
in the stack of its current (strongest) upper bound and lower
bound, respectively, with pl,=0 (pu,=0) if x, has no current
lower (upper) bound.

[0130] The data structure for the stack is another array
containing at each position three data fields: a bound, a
natural number pos, and an info field containing, among
other information, the reason set and the reason constraint.
Property 2: The value pos is always the position in the stack
of the previous bound of the same type (lower or upper) for
this variable, with pos=0 for initial bounds.

[0131] When pushing a new bound on the stack, and when
popping a bound from the stack (during backjumping), it is
easy to maintain properties 1 and 2 in constant time.

TABLE 1

Bounds array

Height in stack of
current bound

Lower: upper
X 1 2
Xo 0 0
X7 40 31
TABLE 2
Stack
1 0=x, 0 info
2 X <8 0 info
13 0=x; 0 info
14 X, 9 0 info
23 2= Xy 13 info
31 X< 6 14 info
40 5<%y 23 info

[0132] Another important data structure allows for effi-
cient bound propagation. For each variable x, there are two
occurs lists. The positive occurs list for x contains all pairs
(Ic @) s.t. C is a linear constraint where x occurs with
positive coefficient a. The negative occurs list contains the
same for occurrences with a negative coefficient a. Here I~
is an index to the constraint header of C in the array of

US 2017/0315958 Al

constraint headers. Each constraint header contains an inte-
ger F . called a filter, and a (pointer to) the constraint C itself.
The filter F . is maintained cheaply, in such a way that C can
only propagate if F >0, thus avoiding many useless (cache-)
expensive inspections of the actual constraint C. This is done
as follows.

[0133] Let C be a constraint of the form a;x;+ . . .
+a,x,,=<a,. Let 1,=x, and x,=u, be the current lower and upper
bounds (if any) for x,. Each expression a;x, in C can have a
minimal value m,, which is a,]; if a,>=0, and a,-u, otherwise.
[0134] Here m, is undefined if there is no such bound I, (or
u,). Initially, if some m; is undefined, then F. is set to a
special value undefined and otherwise to —ay+m;+ . . .
+m_+max,, {abs(a,(u,-,))} where max and abs denote the
maximum and absolute value functions, respectively. After
that, F . is said to be precise: the constraint C propagates if
and only if, undefined=F ->0. Property 3: At all timepoints,
F -~undefined or F - is an upper approximation of the precise
one.

[0135] To preserve property 3, these filters need to be
updated when new bounds are pushed onto the stack, and
need to be restored when backjumping.

[0136] Let a new lower bound k=x be pushed onto the
stack. Let the previous lower bound for x (if any) be k'=x.
For each pair (I, a) in the positive occurs list of x, using I,
access is done to the F . and increase it by abs (a-(k-k')). If
there was no previous lower bound, then F - was undefined
and is now set to 1. If F . becomes positive, the constraint C
is visited because it may propagate some new bound. After
each time a constraint C is visited, F is set to its precise
value.

[0137] Let a new upper bound x<k be pushed on the stack.
Then exactly the same is done, where x<k' is the previous
upper bound for x (if any), and using the negative occurs list.
In order to be able to restore the filters when backjumping,
each time an F. value is increased by an amount d, a pair
(Fe, d) is pushed onto a filter backtrack stack, and when it
is moved from undefined to 1 a pair (F., undefined) is
pushed.

[0138] For each decision that is taken, i.e., when pushing
the i+1th decision on the stack, in a separate data structure
a natural number h, is recorded, h, being the height of the
filter backtrack stack before taking decision i+1. Then, when
backjumping to a stack with k decisions, each pair (F, d) in
the filter backtrack stack above height h, is popped, and its
F . is decreased by d if d=undefined, and restored to unde-
fined if d=undefined.

[0139] Following a particular application case in which
the proposed method is applied will be explained.

[0140] A steel factory needs to plan its next week, 168
hours in which it has to carry out N tasks (orders).

[0141] Each task i in 1 . . . N has a duration of d,
consecutive (whole) hours and requires, during all its d,
hours of activity, the exclusive use of one or more units of
R different resources. For example, a certain task may
occupy two mechanics, one operator, three cranes and two
trucks. If during a certain hour several tasks are active
simultaneously, they cannot share the resources they use.
[0142] For each resource j and each hour hin 1 ... 168,
let the integer used,, denote the total number of units of
resource j used during hour h and let peak =max(used, |, . .
. used, | 43) be the (integer) peak usage of resource j during
the week. The problem is to schedule all tasks, i.e., for each
task 1 determine a starting time, while minimizing the total

Nov. 2, 2017

resource cost C=c,peak =, + ... +cypeaky, where each
¢; is a cost associated to resource j.

[0143] In practice the planned period of course needs not
be 168 time units, and typically there are many more
constraints, usually involving logical relationships, such as
precedences between (groups of) tasks, temporary unavail-
ability of resources, earliest or latest starting times for tasks,
storage capacities for intermediate products, etc.

[0144] This problem is well known to have a large impact
on costs and benefits in industry. Finding good solutions can
be extremely hard.

[0145] A standard notation for it uses two sets of N-168
binary variables starts,, (“task i starts on hour h”) and
isactive, ;, (“task i is active on hour h”) for all i and h.
[0146] It uses constraints expressing that starts, , implies
isactive,, (i.e., —starts,,+isactive,,=0) and also starts,
implies isactive,,,, etc., for its whole duration d,. Also,
each task i starts exactly once: starts, | + . . . +starts; | 5,=1. In
addition, for each resource j and hour h, we have used;
»=units_needed, -isactive, ,+ . . . +units_needed, —isac-
tivey;,, where units_needed, ; is the number of units of j
needed by task i. Finally, for each resource j there are 168
constraints peak zused;, . . . peakzused, 5.

[0147] A state-of-the-art methodology is the one used in
MIP solvers, by solving a collection of LP relaxations of the
given constraints, i.e., temporarily “forgetting” that certain
variables must take integer values. Rational (possibly non-
integer) solutions are sought for by means of (variants of)
simplex or interior point methods. Such “forgetful” or
“blind” intermediate non-integer solutions may be meaning-
less for our problem, since they may say, e.g., that a certain
binary variable active, ;, is 0.7, or that 3.54 units of resource
j are used during some hour h.

[0148] Additional steps are then performed to turn these
intermediate solutions into an integer one. For example,
branch-and-cut methods maintain a tree of subproblems
pending to be explored, with their rational solutions. Given
a leaf node with variable x getting a non-integer solution
3.54, one can branch, i.e., split the problem into two sub-
problems, one with x<3 and one with x=4, or compute and
add a new constraint (by a cut), precluding the non-integer
solution 3.54 for x.

[0149] Such MIP solvers are well known to perform
extremely poorly on pure SAT problems, where all variables
are binary and constraints are (purely logical) clauses, and
where conflict-driven clause-learning (CDCL) techniques
are vastly superior and hence the method of choice in
practice.

[0150] Here it is claimed a similar superiority of this
invention, also a SAT-like method, for this industrial sched-
uling problem, which also has many binary variables and
other relatively small-domain integer ones, as well as an
essentially logical constraint structure as in pure SAT.

[0151] The proposed method explores the search space as
CDCL does in SAT: by taking decisions (in our case each
decision, as stated in step 1d2, is a heuristically guided guess
of an upper or lower bound for a given variable) and
efficiently inferring and adding the implied information by
propagating these decisions. And, again as in CDCL, when
a conflict appears (i.e., two contradictory bounds), a conflict
analysis procedure allows one to backjump to an earlier
search state, enrich it by an additional bound and its propa-
gations, and possibly learning a new constraint.

US 2017/0315958 Al

[0152] Together with [5], the proposed method is the first
of this nature able to handle integer variables and con-
straints, but with the advantage over [5] that in the proposed
method arbitrary decisions can be taken. Indeed it performs
much better than [5], as revealed by the experiments of the
publication [9] (which also reports superiority over the main
commercial MIP solvers on other ILP problems from the
well-known standard MIPLIB).

[0153] As it happens in methods for SAT (cf. section
“Background of the invention™), it is rather obvious that the
proposed method performs a systematic search over the
possible solutions. This involves only trivial mathematics.
Again as for SAT, the key aspects of the proposed method
are the engineering of novel data structures (propagation
record, propagation stack, reason set, reason constraint) and
the novel heuristics for guiding the search and for learning
new constraints. Such techniques for SAT are disclosed in
U.S. Pat. No. 7,418,369.

[0154] Applied to the industrial scheduling problem, the
proposed method uses heuristics for taking good decisions
(typically, as in SAT, on variables involved in many recent
conflicts). For example, it will guess an upper bound on the
total resource cost C or on some of the individual variables
peak,. Meaningful new bounds will then be propagated
(unlike what happens in LP relaxations; present propagation
takes into account that variables must be integer). Similarly,
meaningful strong new constraints are quickly learned,
stating that certain combinations of tasks cannot take place
simultaneously, etc.

[0155] These newly learned constraints again strengthen
the propagation power and prevent future similar conflicts.

[0156] Being able to take arbitrary decisions is essential
(step 1d2 of claim 1) to the proposed method. In [5] one can
only decide a given variable to be equal to its current upper
bound or to its current lower bound; in practice, one needs
to guess it to belong to, say, the lower (or upper) halve of the
interval between its current upper and lower bounds, an idea
akin to binary search.

[0157] While preferred embodiments of the invention
have been shown and described herein, it will be understood
that such embodiments are provided by way of example
only. Numerous variations, changes and substitutions will
occur to those skilled in the art without departing from the
spirit of the invention. Accordingly, it is intended that the
appended claims cover all such variations as fall within the
spirit and scope of the invention.

1. A computer-implemented method for solving sets of
linear arithmetic constraints modelling physical systems, the
method comprising using a computer processor unit per-
forming a programmed execution of mathematical opera-
tions wherein, being {x, . ..x,} a set of variables, said linear
arithmetic constraints are expressions of the form a,;x + . .
. +a,X,=a,, in which the coefficients a, . . . a, are integer
numbers,

wherein a solution for a set of linear arithmetic constraints

S is an expression Sol mapping each variable x of {x,

. . X,} to an integer value Sol(x) such that all

constraints are satisfied, that is, for each constraint of

the form a;x,+ . . . +a,%X,<a, in S, the integer number

a;.Sol(x))+ . . . +a,So0l(x,,) is smaller than or equal to
405

Nov. 2, 2017

wherein the following notions/terms are used:

bound (constraint with a single variable x, that can be

written as lower bounds a=x or upper bounds x=a)
where a is an integer number

the negation of a lower bound a=<x is the upper bound
x=a-1 and the negation of an upper bound x=a is the
lower bound a+1=x;

alower bound a,<x and an upper bound x=a, are called
conflicting if a;>a,;

a lower bound a=x is called new in a given set of
bounds B if there is no lower bound a'sx in B with
a'za, and an upper bound x=a is called new in a given
set of bounds B if there is no upper bound x=<a' in B
with a'za, and a variable x is called defined to the
value a in a given set of bounds B, if B contains the
bounds asx, and x<a; and

a monomial is an expression of the form a x, where a
is an integer or a rational number and X is a variable;
it called negative if a is negative and positive oth-
erwise;

propagation:

If C is a linear arithmetic constraint of the form a,;x; +
... +a,X,<a, where:
the subset of positive monomials of {a;x+ . . .

+a,X,} is {ax, ¢y, . .., ¢y}

the subset of negative monomials of {a;x;+ . . .
+a,x,}is {d,z,, ..., d .z };

R is a set of bounds {1,=y,, . . .
L Z,=u,)

u is the largest integer such that us(a,—c,l,- . . .
-c,l,~du,~...-d,u,)a, then C and R propagate
the upper bound x=u;

If C is a linear arithmetic constraint of the form a,;x; +
... +a,X,<a, where:
the subset of positive monomials of a;x;+ . . . +a,X

s L=y, zi=uy, .

non
is {e,y,y, h
the subset of negative monomials of a,x,+ . . . +a,X%,,
is {ax, dyzy, .. ., d 7.}
R is a set of bounds {llsyl, C, lpsyp, Z;<Ug, . ..
L Z,=u,)

1 is the smallest integer such that 1=(a,-c,l;- . . .
-c,l,~du,~...-d,u,)a, then C and R propagate
the lower bound 1=x,

a propagation record is a triple (b, R, C) where b is a
bound C is a linear arithmetic constraint and R is a
set of bounds such that C and R propagate b, then R
being termed the reason set of b and C being termed
the reason constraint of b; in a special kind of
propagation record called a decision, the components
R and C are null,

a propagation stack is a data structure having capabili-
ties of a standard stack data structure whose elements
are propagation records, with standard operations for
pushing and popping elements and for inspecting the
topmost element and in addition the nonstandard
capability of inspecting non-topmost elements;

a bound b is said to be in a propagation stack B if b is
the first element of some propagation record of B;
similarly a set of bounds R is said to be in a
propagation stack B if R is a subset of the set of all
first elements of the propagation records of B,

a constraint C is said to be learned when it is added to the

set of linear arithmetic constraints S;

US 2017/0315958 Al

wherein said programmed execution of mathematical opera-
tions of the method being automatically performed, by the
following steps:
1a) receiving by the computer processor unit the set of
linear arithmetic constraints S;

1b) creating using the computer processor unit a propa-
gation stack B that is initially empty; being said propa-
gation stack B stored in the computer processor unit
and being automatically modified using the computer
processor unit by considering the set of linear arithme-
tic constraints S by implementing the subsequent steps;

1c) if there is a linear arithmetic constraint C in S and a

set of bounds R in B such that C and R propagate a
bound b that is new in B, then pushing the propagation
record (b, R, C) on top of the stack B; and iterating this
pushing while possible;

1d) treating four non-overlapping cases using the com-

puter processor unit:

1d1) if there is no conflicting pair of bounds in B and
if, foralliin {i...n} the variable x, is defined in
B to a value a,, then halt outputting the solution Sol
such that Sol(x,)=a, for eachiini. .. n;

1d2) if there is no conflicting pair of bounds in B and
at least one variable is not defined in B, then a
propagation record (d, —, —) is pushed on top of B
such that d is new in B and d is not conflicting with
any other bound in B, said bound d and the propa-
gation record (d, -, —) being termed a decision, and
then return to step 1c);

1d3) if there is at least one conflicting pair of bounds b,
and b, in B such that there is no decision in B below
b, nor below b, then halt outputting “no solution™;

1d4) if there is at least one conflicting pair of bounds b,
and b, in B such that there is at least one decision
located in B below b, or below b, then a conflict
analysis is performed based on the current propaga-
tion stack B and as a consequence of which firstly a
number of topmost elements of the propagation stack
B are popped and after that a new bound with an
associated reason set and reason constraint is pushed
on top of the stack and a new linear constraint C is
learned, and then return to step lc).

2. The method of claim 1 wherein said conflict analysis
further uses a data structure called the CSS, Conflicting
Subset, a set data structure storing a subset of the bounds of
B, and another data structure called the CC, Conflicting
Constraint, wherein the following notions are used:

if C, is a linear arithmetic constraint a,X,+ . . . +a,X,=a,,

and C, is a linear arithmetic constraint b, x,+ . . .
+b,x, <b,, then a cut between C, and C, is a linear
arithmetic constraint ¢,X, + . . . +¢,X,,<C, such that c and
d are positive natural numbers and c,=c-a,+db, for each
iin0...n;and

ifc=0forsomejin 1 ...n then this cutis said to eliminate

the variable x;, the method comprising the following

steps:

2a) if the conflicting pair of bounds is {b,, b, } such that
b, is located in the stack B above b, then initializing
the CSS to {b;, b,} and initializing the CC to the
reason constraint of b,;

2b) if b is the bound in the CSS that is located in the
stack B closest to the top of B, then
2b1) popping bounds from the top of stack B until

there are no decisions above b in B;

Nov. 2, 2017

2b2) removing b from the CSS and inserting into the
CSS the reason set associated with b;
2b3) performing a cut between the current CC and
the reason constraint of b, in such a way that the
variable of b is eliminated, thus obtaining a new
CC; and if no such a cut exists, then the CC
remains unchanged;
2c¢) if after popping k bounds including at least one
decision from the stack B there is a set of bounds R
in B such that CC and R propagate a bound b that is
new in B, then popping k bounds from the stack B
and pushing b on top of B with associated reason set
R and reason constraint CC, and halting the conflict
analysis;
2d) if the CSS contains more than one bound that is
located in B at the height of the topmost decision of
B or above then going to step 2b);
2e) if the CSS contains exactly one bound b that is
located in B at the height of the topmost decision of
B or above:
2el) if the CSS contains b as its unique element, then
popping bounds from the stack B until B contains
no decisions and after that pushing on the stack a
new bound being the negation of b with an asso-
ciated empty reason set and the final CC as its
reason constraint; then this CC is learned, and
2e2) if the CSS contains more than one bound, then
if b, is the bound of the CSS different from b such
that b, is located in the stack B closest to the top
of B, above exactly k decisions, then popping
bounds from the stack B until B contains exactly
k decisions and after that pushing on the stack a
new bound being the negation of b, having this
new bound as its associated reason set the result of
removing b from the CSS, and the final CC as its
reason constraint, and then learning this CC.

3. The method of claim 1 wherein said conflict analysis
further uses a data structure called the CSS, Conflicting
Subset, a set data structure storing a subset of the bounds of
B, and another data structure called the CC, Conflicting
Constraint, wherein the following notions are used:

if C, is a linear arithmetic constraint a X+ . . . +a,X,<a,,

and C, is a linear arithmetic constraint b x;+ . . .
+b, x,,<b,, then a cut between C, and C, is a linear
arithmetic constraint ¢, X, + . . . +¢,X,,<C, such that c and
d are positive natural numbers and c,=c-a,+d-b, for each
iin0...n;and

ifc=0forsomejin1...nthen this cutis said to eliminate

the variable x;, the method comprising the following

steps:

3a) if the conflicting pair of bounds is {b,, b,} such that
b, is located in the stack B above b, then initializing
the CSS to {b,, b,} and initializing the CC to the
reason constraint of b,;

3b) if b is the bound in the CSS that is located in the
stack B closest to the top of B, then
3b1) popping bounds from the top of stack B until

there are no decisions above b in B;

3b2) removing b from the CSS and inserting into the
CSS the reason set associated with b;

3b3) performing a cut between the current CC and
the reason constraint of b, in such a way that the

US 2017/0315958 Al

variable of b is eliminated, thus obtaining a new
CC; and if no such a cut exists, then the CC
remains unchanged;
3c) if the CSS contains more than one bound that is
located in B at the height of the topmost decision of
B or above then going to step 3b);
3d) if the CSS contains exactly one bound b that is

located in B at the height of the topmost decision of

B or above:

3d1) if the CSS contains b as its unique element, then
popping bounds from the stack B until B contains
no decisions and after that pushing on the stack a
new bound being the negation of b with an asso-
ciated empty reason set and the final CC as its
reason constraint; then this CC is learned, and

3d2) if the CSS contains more than one bound, then
if b, is the bound of the CSS different from b such
that b, is located in the stack B closest to the top
of B, above exactly k decisions, then popping
bounds from the stack B until B contains exactly
k decisions and after that pushing on the stack a
new bound being the negation of b, having this
new bound as its associated reason set the result of
removing b from the CSS, and the final CC as its
reason constraint, and then learning this CC.

4. The method of claim 2, wherein in step 2d), even if the
CSS contains zero or one bound located in B above a
decision, being the topmost decision of B, then going to step
2b).

5. The method of claim 2, wherein after each application
of step 2b) bounds of the form a=x are eliminated from the
CSS whenever a bound a'sx with a™a is in the CSS and
bounds of the form x=a are eliminated from the CSS
whenever a bound x<a' with a'<a is in the CSS.

6. The method of claim 2, wherein in step 2b) instead of
the reason set of b, a set of bounds R is computed and
inserted in the CSS, with all elements of R being located
below b in B and the reason constraint of b and R also
propagating b.

7. The method of claim 2 wherein in step 1c) the reason
set is not associated to b nor stored and in step 2b) a set of
bounds R is computed and inserted in the CSS, with all
elements of R being located below b in B and the reason
constraint of b and R also propagating b.

8. The method of claim 1 wherein in step 1c) the linear
constraint C is not associated to b and wherein in step 1d4)
the conflict analysis is performed omitting steps 2b3) and
2¢) involving the CC, and no new constraint is learnt.

9. The method of claim 1 wherein in step 1c) the iteration
is performed non-exhaustively.

10. The method of claim 1 wherein the linear arithmetic
constraints further include expressions of the form a;x,+ . .
. +a, X, za,, OF ;X + . . . +8,X,=2,, Or a,X,+ . . . +a,X >4,
or a,;X;+ ... +a,Xx,<a, or combinations thereof, where the
coefficients a, . . . a, can be arbitrary rational numbers, sets
of which are all expressible by sets S of linear constraints of
the form b, x;+ . . . +b,Xx,,<b,, with integer coefficients by .
. . b, so that the resulting set of constraints S has the same
set of solutions

11. The method of claim 10 further comprising in order to
find a solution Sol that minimizes the value of a,.Sol(x,)+ .
. . +a,7So0l(x,,) for a given expression a,X;+ . . . +a,X,, in a
first iteration applying steps 1a) to 1e) of the method, and in
successive iterations, while new solutions are found, apply-

Nov. 2, 2017

ing steps la) to le) of the method with an additional
constraint a,X;+ . . . +a,X,,<a, where a, is a;.Sol(x;)+ . . .
+a,-Sol(x,,)-1 and Sol is the solution found in the previous
iteration.

12. The method of claim 10 further comprising in order to
find a solution Sol that maximizes the value of a,.Sol (x,)+
... +a,Sol(x,) for a given expression a,X;+ . . . +a,X,, in
a first iteration applying steps 1a) to le) of the method, and
in successive iterations, while new solutions are found,
applying steps la) to le) of the method with an additional
constraint —a X, - . . . -a,X,=a, where a, is —a,.Sol (x,)- . .
. =a, /S0l (x,,)-1 where each time Sol is the solution found in
the previous iteration.

13. The method of claim 2, wherein in step 2b) instead of
popping and replacing the topmost bound b from the CSS
another bound is popped and replaced by its reason set.

14. The method of claim 2 wherein in order to solve
Mixed Integer Programs (MIPs), that is, to find a solution
where a given subset [of the variables must take integer
values and the remaining variables can take arbitrary ratio-
nal values, it is proposed to use an arbitrary LP solver for
finding a solution RSol minimizing the value of an expres-
siona,X;+...+a,X,, where in RSol all variables are allowed
to take rational values, outputting RSol as a solution and
halting if RSol(x) is an integer for every variable x of I, and
if no such a solution RSol exists, generating an infeasible
subset using the LP solver and starting a conflict analysis.

15. The method of claim 14, wherein to perform said
conflict analysis a data structure called the CSS, Conflicting
Subset, a set data structure storing a subset of the bounds of
B, and another data structure called the CC, Conflicting
Constraint are used, wherein the following notions are used:

if C, is a linear arithmetic constraint a X+ . . . +a,X,<a,,

and C, is a linear arithmetic constraint b x;+ . . .
+b,x,<b,, then a cut between C, and C, is a linear
arithmetic constraint ¢, X, + . . . +¢,X,,<C, such that c and
d are positive natural numbers and ci=c-a,+db, for each
iin0...n;and

ifc=0forsomejin1...nthen this cutis said to eliminate

the variable x,, the method comprising the following
steps:

15a) initializing the CSS to the subset of bounds of the

infeasible subset, and initializing the CC to any other
constraint of the infeasible subset;

15b) if b is the bound in the CSS that is located in the

stack B closest to the top of B, then

15b1) popping bounds from the top of stack B until
there are no decisions above b in B;

15b2) removing b from the CSS and inserting into the
CSS the reason set associated with b;

15b3) performing a cut between the current CC and the
reason constraint of b, in such a way that the variable
of b is eliminated, thus obtaining a new CC; and if
no such a cut exists, then the CC remains unchanged;

15¢) if after popping k bounds including at least one

decision from the stack B there is a set of bounds R in

B such that CC and R propagate a bound b that is new

in B, then popping k bounds including at least one

decision from the stack B and pushing b on top of B

with associated reason set R and reason constraint CC,

and halting the conflict analysis;

15d) if the CSS contains more than one bound that is

located in B up or above the topmost decision of B then
going to step 15b);

US 2017/0315958 Al

15e) if the CSS contains exactly one bound b that is

located in B up or above the topmost decision of B:

15e1) if the CSS contains b as its unique element, then
popping bounds from the stack B until B contains no
decisions and after that pushing on the stack a new
bound being the negation of b with an associated
empty reason set and the final CC as its reason
constraint; then this CC is learned, and

15e2) if the CSS contains more than one bound, then if
b, is the bound of the CSS different from b such that
b, is located in the stack B closest to the top of B,
above exactly k decisions, then popping bounds from
the stack B until B contains exactly k decisions and
after that pushing on the stack a new bound being the
negation of b, having this new bound as its associ-
ated reason set the result of removing b from the
CSS, and the final CC as its reason constraint, and
then learning this CC.

16. The method of claim 14, wherein to perform said
conflict analysis a data structure called the CSS, Conflicting
Subset, a set data structure storing a subset of the bounds of
B, and another data structure called the CC, Conflicting
Constraint are used, wherein the following notions are used:

if C, is a linear arithmetic constraint a,X,+ . . . +a,X,,<a,,

and C, is a linear arithmetic constraint b;x;+ . . .
+b, x,,<b,, then a cut between C, and C, is a linear
arithmetic constraint ¢,X, + . . . +¢,X,,<C, such that c and
d are positive natural numbers and ci=c-a,+d'b;; for
eachiin O ... n;and

ifc =0 forsomejin1...n then this cut is said to eliminate

the variable x;, the method comprising the following
steps:

16a) initializing the CSS to the subset of bounds of the
infeasible subset, and initializing the CC to any other
constraint of the infeasible subset;

16b) if b is the bound in the CSS that is located in the
stack B closest to the top of B, then

11

Nov. 2, 2017

16b1) popping bounds from the top of stack B until
there are no decisions above b in B;
16b2) removing b from the CSS and inserting into the
CSS the reason set associated with b;
16b3) performing a cut between the current CC and the
reason constraint of b, in such a way that the variable
of b is eliminated, thus obtaining a new CC; and if
no such a cut exists, then the CC remains unchanged;
16¢) if the CSS contains more than one bound that is
located in B up or above the topmost decision of B then
going to step 16b);
16d) if the CSS contains exactly one bound b that is
located in B up or above the topmost decision of B:

16d1) if the CSS contains b as its unique element, then
popping bounds from the stack B until B contains no
decisions and after that pushing on the stack a new
bound being the negation of b with an associated
empty reason set and the final CC as its reason
constraint; then this CC is learned, and

16d2) if the CSS contains more than one bound, then if
b, is the bound of the CSS different from b such that
b, is located in the stack B closest to the top of B,
above exactly k decisions, then popping bounds from
the stack B until B contains exactly k decisions and
after that pushing on the stack a new bound being the
negation of b, having this new bound as its associ-
ated reason set the result of removing b from the
CSS, and the final CC as its reason constraint, and
then learning this CC.

17. The method of claim 1 wherein the coeflicients of the

linear constraints are rational or floating point numbers and
wherein in step 1 d4) the conflict analysis is performed using
cuts where ¢ and d are positive rational or floating point
numbers.

