
THE MAIN TEA ETA AITOA MA TA AT MATATAN US 20170315958A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2017 / 0315958 A1

Nieuwenhuis (43) Pub . Date : Nov . 2 , 2017

(54) COMPUTER - IMPLEMENTED METHOD FOR
SOLVING SETS OF LINEAR ARITHMETIC
CONSTRAINTS MODELLING PHYSICAL
SYSTEMS

(51)
Publication Classification

Int . Cl .
G06F 17 / 12 (2006 . 01)
G06F 1710 (2006 . 01)
U . S . CI .
CPC G06F 17 / 12 (2013 . 01) ; G06F 17 / 10

(2013 . 01)

(52) (71) Applicant : BARCELOGIC SOLUTIONS S . L . ,
Barcelona (ES)

(57) ABSTRACT
(72) Inventor : Robert L . M . Nieuwenhuis , Barcelona

(ES)

(21) Appl . No . : 15 / 651 , 122
(22) Filed : Jul . 17 , 2017

A computer - implemented method for solving sets of linear
arithmetic constraints modelling physical systems by pro
grammed execution of mathematical operations in a proces
sor unit , wherein the programmed execution of mathemati
cal operations decide , given a set of constraints S , whether
S has any solution , and if so , find one or more of them .

Related U . S . Application Data
Continuation - in - part of application No . 14 / 192 , 909 ,
filed on Feb . 28 , 2014 .

(63)

US 2017 / 0315958 A1 Nov . 2 , 2017

COMPUTER - IMPLEMENTED METHOD FOR
SOLVING SETS OF LINEAR ARITHMETIC
CONSTRAINTS MODELLING PHYSICAL

SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a Continuation - in - Part of U . S .
patent application Ser . No . 14 / 192 , 909 , filed Feb . 28 , 2014 ,
the contents of such application being incorporated by
reference herein .

FIELD OF THE INVENTION

[0002] The invention relates to data processing generally ,
and more particularly , to data processing under the guidance
of a computer implemented method for search - based integer
linear programming (ILP) , involving the programmed
execution of mathematical operations in a processor unit for
deciding , given a set of constraints S , whether S has any
solution , and if so , finding one or more of them .

Definitions

[0003] Along this description following notions / terms will
be used :

[0004] A constraint over a finite set of variables , X { x?
. . Xn } is an expression of the form a Xi + . . . + a , x , sao ,

in which the coefficients ao . . . an are integer numbers .
[0005] A solution for a set S of constraints or integer

program (IP) over { x , . . . Xn } is a function Sol mapping
each variable x of { x , . . . Xn } to an integer value Sol (x)
such that all constraints are satisfied , that is , for each
constraint of the form a , x , + . . . + a , x , sao , the integer
number a , . Sol (x ,) + . . . + a , Sol (x ,) is smaller than or
equal to ao .

[0006] Optimization : maximizing (or minimizing) an
objective function (or a cost function) , an expression of
the form a X , + . . . + a , Xn , that is , finding a solution Sol
such that a , . Sol (x1) + . . . + a , Sol (xn) is maximized
(minimized) .

[0007] MIP : Solving Mixed IPs (MIPs) : finding solu
tions where some variables must take integer values
and others can be arbitrary rationales .

[0008] A lower bound for a variable x is an expression
of the form asx , where a is an integer number , and an
upper bound for a variable x is an expression of the
form xsa , where a is an integer number and a bound is
an expression that is either a lower bound or an upper
bound .

00091 The negation of a lower bound asx is the upper
bound xsa - 1 and the negation of an upper bound xsa
is the lower bound a + 1sx .

[0010] A lower bound a sx and an upper bound xsaz
are called conflicting if a , > az .

[0011] A lower bound asx is called new in a given set
of bounds B if there is no lower bound a ' sx in B with
a ' za , and an upper bound xsa is called new in a given
set of bounds B if there is no upper bound xsa ' in B
with a ' sa , and a variable x is called defined to the value
a in a given set of bounds B , if B contains the bounds
asx , and xsa .

[0012] A monomial is an expression of the form a x ,
where a is an integer or a rational number and x is a
variable . It is called negative if a is negative and
positive otherwise .

[0013] Propagation :
[0014] If C is a linear arithmetic constraint of the form

a , X + . . . + a , X „ sa , where :
[0015] the subset of positive monomials of { a _ X1 , . .

. , , xn) is { ax , c?y1 , . . . , CpYp } ;
[0016] the subset of negative monomials of { a _ X? . .

. 2 , Xn } is { d 21 , . . . , d 2q } ;
[0017] R is a set of bounds { 1 , sy 1 , . . . , 1 , syp , Zi su ,

. . . , Z , su , } ;
[0018] u is the largest integer such that us (ao - c 11 - .

. . - cp - dju , - . . . - du ,) / a , then C and R propagate
the upper bound xsu .

[0019] For example , if C is 2x + 3y + 3zs13 and R is
{ 1sx , 2sy } then C and R propagate zs1 , since 1 is the
largest integer u such that us (13 – 2 : 1 - 3 . 2) / 3 = (13 - 8) /
3 = 5 / 3 .

[0020] For example , if C is 2xs13 and R is the empty
set , then C and R propagate Xs6 , since 6 is the largest
integer u such that us13 / 2 .

[0021] If C is a linear arithmetic constraint of the form
a X1 + . . . + a , X , sa , where :
[0022] the subset of positive monomials of { a X1 , . .

. , , Xn } is { c?y1 , . . . , Cyp } ;
[0023] the subset of negative monomials of { a X1 , . .

. , , Xn } is { ax , d Z1 , . . . , d , 2 , } ;
[0024] Ris a set of bounds { 1 , sy 1 , . . . , 1 , syp , Z , sun ,

. . . , Z , SU , } ;
[0025] 1 is the smallest integer such that 12 (ao - c?1 ,

. . . - cole - d , 41 - . . . - d , u ,) / a , then C and R propagate
the lower bound lsx .

[0026] For example , if C is 2x + 3y - 3zs13 and R is
{ 1sx , 2sy } then C and R propagate - 1sz , since - 1 is
the smallest integer 1 such that 12 (13 - 2 - 1 - 3 . 2) / - 3 = (13 –
8) / - 3 = - 5 / 3 .
[0027] Conflicting Subset or CSS , is a data structure

storing a set of bounds .
[0028] Conflicting constraint or CC , is a data struc

ture storing a linear arithmetic constraint .
[0029] Cut
[0030] If C , is a linear arithmetic constraint a Xz + . .

. + a , x , sa , and C , is a linear arithmetic constraint
b , x , + . . . + b , x sbo , then a cut between C , and C2 is
a linear arithmetic constraint cX , + . . . + 0 , X , sc , such
that c and d are positive natural numbers and c ; = c•a ; +
dib ; for each i in 0 . . . n ; and

[0031] If c ; = 0 for some jin 1 . . . n then this cut is said
to eliminate the variable x ; .

[0032] Learning a constraint
[0033] a propagation record is a triple (b , R , C) where

b is a bound C is a linear arithmetic constraint and R
is a set of bounds such that Cand R propagate b , then
R being termed the reason set of b and C being
termed the reason constraint of b ; in a special kind of
propagation record called a decision , the components
R and C are null ,

[0034] a propagation stack is a data structure having
capabilities of a standard stack data structure whose
elements are propagation records , with standard
operations for pushing and popping elements and for

US 2017 / 0315958 A1 Nov . 2 , 2017

inspecting the topmost element and in addition the
nonstandard capability of inspecting non - topmost
elements ;

[0035] a bound b is said to be in a propagation stack
B if b is the first element of some propagation record
of B ; similarly a set of bounds R is said to be in a
propagation stack B if R is a subset of the set of all
first elements of the propagation records of B ,

10036] a constraint C is said to be learned when it is
added to the set of linear arithmetic constraints S .

BACKGROUND OF THE INVENTION

[0037] Efficient ILP is crucial for many applications . For
example , to find a feasible or optimal schedule in a limited
period of time for a set of industrial tasks , where each task
has a given duration and requires certain amounts of differ
ent limited resources (machines , trucks , employees) . ILP (as
well as SAT , see below) is NP - complete : no efficient (poly
nomial) algorithm for it has been found and the existence of
such a polynomial algorithm is considered unlikely .
[0038] The use of computer implemented ILP methods ,
models or algorithms for automatically solving with the aid
of a processor unit , different integer problems expressed in
the form of a set S of constraints appears disclosed in the
following patents U . S . Pat . No . 7 , 653 , 561 , U . S . Pat . No .
8 , 515 , 280 , U . S . Pat . No . 8 , 402 , 396 and patent applications
US 2011 / 0153709 and US 2012 / 0250500 addressing differ
ent technical fields .
[0039] Just about any discrete optimization problem is an
IP or a MIP : scheduling , routing , planning , configuration ,
timetabling , etc .
[0040] One concrete physical application is the ‘ knapsack ’
problem that is following detailed .
[0041] For instance , a truck will be going from A to B .
There are n different types of items { 1 . . . n } to be carried ,
where each type of item i has a , units available , and each unit
of it weights w ; kg and brings a profit of pi per carried unit .
[0042] The problem is to decide how many units x ; of each
item type i to carry , without exceeding the truck ' s total
capacity of K kg , in order to make a total profit of at least
P $: the IP will consist of w . X + . . . + w , X , SK and p , X1 + . .
. + p , , X , > P , with initial bounds Osxsa .
[0043] The corresponding optimization problem is ,
instead of requiring the total profit p , x , + . . . + p , x , to be at
least P $, to maximize it .
[0044] There are numerous extensions of this problem ,
such as further constraints on , e . g . , a maximal total number
of units carried of certain subclasses of items , more than one
truck , etc .
[0045] Most current ILP methods work by iteratively
solving LP relaxations , i . e . , first finding rational (possibly
non - integer) solutions for the set of constraints . Additional
steps are then performed to progressively turn these solu
tions into an integer one , for example by cutting - plane or
Branch - and - cut methods .
[0046] The method described in this patent application
performs no LP relaxations . It does a systematic search over
the set of possible integer solutions . It borrows ideas from
SAT solving , which can be seen as the special case of ILP
where the variables X , . . . X , can only take the values O or
1 (as in 0 / 1 integer programming) and where constraints are
of the form 1 . X + . . . + 1 Xm - 1 . y? - . . . - 1 . y , sm - 1 , expressed

as clauses { X , . . . , Xm , Y1 , . . . , yn } i . e . , sets (disjunctions)
of literals , where a literal is a either variable x or a negated
variable x .
[0047] A basic SAT solving method is DPLL [1 , 2] which
comprises the following steps maintaining a partial assign
ment A , written here as a stack of literals that grows to the
right :

[0048] 1 . start with an empty partial assignment A
0049] 2 . propagate while possible : extend A to A 1 if
there is some clause { 1 } UC with all its variables
assigned in A except the one of 1 , and ANC = 0

[0050] 3 . if there is some conflict , a clause C with all
variables assigned and ANC = 0 , then go to step 6

[0051] 4 . if all variables are assigned and there is no
conflict , halt with solution A

[0052] 5 . decide : take some unassigned variable x and
extend A to Axor to Ax ; here the literal x or x is called
a decision

[0053] 6 . backtrack : if there is some conflict and A is of
the form A 1A2 , where l is the rightmost decision in A ,
then replace A by A I (where I is not a decision)

[0054] 7 . if there is some conflict and A contains no
decisions , then halt with output ‘ no solution '

[0055] 8 . go to step 2 .
[0056] It is rather obvious that this procedure performs an
exhaustive systematic search over all possible assignments .
The key issues are its efficient implementation , that is , a)
data structures and b) heuristics for guiding the search :
which variables to decide on first and how to prune the
search space .
[0057] Indeed , modern extensions of the DPLL method
include efficient data structures for propagation as disclosed
in U . S . Pat . No . 7 , 418 , 369 and for clause learning , at each
conflict , a new clause C can be added (learned) , such that
instead of backtrack one can do a backjump step , replacing
A , 1 A2 by A , l ' where C propagates 1 ' from Al . A single
backjump step can undo several decisions as 1 needs not be
the rightmost decision in A .
10058] Pioneering work on clause learning was given by
Marques - Silva and Sakallah in [3] . Analysis of the most
frequently used learning scheme , the 1 - UIP one , was done
by Moskewicz , et . al . [4] . Propagations by 1 - UIP learned
clauses prune the search space very effectively . Such SAT
solving techniques are nowadays called conflict - driven
clause learning (CDCL) .
[00591 . There have been several attempts to carry over
CDCL from SAT to ILP . Then , clauses become constraints ,
literals become bounds (constraints with a single variable ,
that can be written as lower bounds asx or upper bounds
Xsa) , and propagation becomes bound propagation .
[0060] An important problem for applying CDCL in ILP
is the following rounding problem . Assume having the two
constraints 1x + 5ys5 and 1x - 5ys0 and taking the decision
1sx . Then from the first constraint ys4 / 5 , can be inferred ,
which is rounded , causing a bound propagation of the new
bound ys0 , which , together with 1sx causes a conflict with
the second constraint . Now a cut inference , eliminating y
generates the new learned 1 - UIP constraint 2x55 . But unfor
tunately , unlike what happens in SAT , it is too weak to force
a backjump . This problem is due to the rounding that takes
place when propagating y .
[0061] In [5] the rounding problem is solved by limiting
the kind of decisions that are allowed . This makes it pos
sible , at each conflict caused by propagations with rounding ,

US 2017 / 0315958 A1 Nov . 2 , 2017

[0071] [7] Moura and Bjorner , “ Satisfiability Modulo
Theories : Introduction and Applications ” : Commun .
ACM 54 (9) : 69 - 77 (2011) .

0072] [8] Korovin and Voronkov , “ Solving Systems of
Linear Inequalities by Bound Propagation ’ , CADE 2011 :
369 - 383 .

10073] [9] Robert Nieuwenhuis , “ The IntSat Method for
Integer Linear Programming ' , Springer International Pub
lishing , LNCS 8656 , pp . 574 - 589 , 2014 .

SUMMARY OF THE INVENTION

to compute so - called tightly propagating constraints that
justify the same propagations without rounding . Drawbacks
for performance are the complexity of computing the tightly
propagating constraints , the limited kind of decisions and
that the learned constraints are very different from the 1 - UIP
ones .
[0062] This invention proposes another method to over
come the rounding problem . It permits arbitrary decisions
and guide the search analogously to the 1 - UIP approach in
SAT . Consider again the two constraints Cz : 1x + 5ys5 and
Cz : 1x - 5y < 0 . After taking the decision 1sx , the constraint
C2 propagates 1sy and C , propagates ys0 (obtaining a
conflicting pair of bounds) . Now along with each propagated
bound , it is not only remembered which constraint caused its
propagation , but also the set of bounds that caused it . For
example , the bound ys0 has the associated reason set { 1sx }
and reason constraint C1 . Similarly , along with lsy the
reason constraint C , and the reason set { lsx is stored . If a
conflicting pair of bounds appears , a conflict analysis is
done .
[0063] First , the conflicting pair is stored in the so called
CSS (here , { lsy , ys0 }) . Along the process this CSS always
contains a set of bounds that is inconsistent together with the
constraints . Similarly to the CDCL SAT solvers ' conflict
analysis (but with bounds instead of literals) in the CSS the
most recently propagated bound it is repeatedly replaced by
its reason set . Here , after the first step , the CSS becomes
{ 1sx , ys0 } . After a finite number of such replacements , one
always reaches a CSS that justifies a backjump . Here , after
the second replacement (replacing ys0 by lsx) , the CSS
becomes { 1sx } , inferring that 1sx alone is also conflicting ,
so one can backjump to before the first decision and assert
the negation of 1sx , that is , x < 0 . In our method this conflict
analysis process in addition guides a sequence of cut infer
ences between the reason constraints of the bounds that are
being replaced , and the finally resulting constraint can be
learned . This backjumping method can always be applied ,
even if the learned constraint obtained using the cuts is too
weak , due to the rounding problem , to justify this backjump .
[0064] The idea of applying conflicting sets is remotely
reminiscent to the learning techniques with literals from
SAT Modulo Theories [6 , 7] . A less related document , only
for rational arithmetic , is [8] .

[0074 The invention proposes a computer - implemented
method for solving sets S of linear arithmetic constraints
modelling physical systems for deciding whether a given IP
has any solution , and in the positive case finding one or more
solutions . The invention comprises a number of data struc
tures and algorithms , based on bound propagation and cuts
that make a backtracking - based search procedure efficient
and useful .

[0075] In a characteristic manner , the computer - imple
mented method automatically performs the following steps
using a processor unit :

[0076] 1a) feeding the set of linear arithmetic con
straints S to the processor unit ;

[0077] 1b) creating a standard stack data structure B
that is initially empty ; said data structure containing a
set of bounds and supporting the standard stack opera
tions ; said stack data structure B is stored in the
processor and is being modified by considering the set
of linear arithmetic constraints S by the subsequent
steps ;

[0078] 1c) if there is a linear arithmetic constraint C in
S and a set of bounds R in B such that C and R
propagate a bound b that is new in B , then pushing b on
top of the stack B , and associating to b the set R as its
reason set and the linear constraint C as its reason
constraint ; and iterating this pushing and associating
while possible ;

[0079] 1d) treating four non - overlapping cases :
[0080] 1dl) if there is no conflicting pair of bounds in

B and if , for all i in { i . . . n } the variable x ; is defined
in B to a value a , then halt outputting the solution
Sol such that Sol (x ;) - a , for each i in i . . . n ;

[0081] 142) if there is no conflicting pair of bounds in
B and at least one variable is not defined in B , then
a bound d is pushed on top of B such that d is new
in B and d is not conflicting with any other bound in
B , said bound d being called a decision ;

[0082] 103) if there is at least one conflicting pair of
bounds b , and b , in B such that there is no decision
in B below b , nor below by then halt outputting “ no
solution " ;

[0083] 104) if there is at least one conflicting pair of
bounds b , and b , in B such that there is at least one
decision located in B below b , or below b then
perform a conflict analysis based on the current stack
B and as a consequence of which firstly a number of
topmost elements of the stack B are popped and after
that a new bound with an associated reason set and
reason constraint is pushed on top of the stack and a
new linear constraint is learned ;

[0084] le) return to step 1c) .

LIST OF CITED REFERENCES
[0065] [1] M . Davis and H . Putnam , “ A Computing Pro

cedure for Quantification Theory ' , Journal of the ACM ,
7 : 201 - 215 , 1960 .

[0066] [2] M . Davis , G . Logemann and D . Loveland , ' A
Machine Program for Theorem - Proving ' , Communica
tions of the ACM , vol . 5 , No . 7 , pp . 394 - 397 , 1962) .

[0067] [3] Marques - Silva and Sakallah , “ GRASP : A
Search Algorithm for Propositional Satisfiability ' , IEEE
Transactions on Computers , 1063 - 6757 , 220 - 227 , 1996 .

[0068] [4] Moskewicz , et . al . ' Chaff : Engineering an Effi
cient SAT Solver ” , Jun . 18 - 22 , 2001 DAC 2001 pp .
530 - 535 .

[0069] [5] Jovanovic de Moura , ' Cutting to the Chase —
Solving Linear Integer Arithmetic ” , J . Autom . Reasoning
51 (1) : 79 - 108 (2013) .

[0070] [6] Nieuwenhuis et . al . “ Solving SAT and SAT
Modulo Theories : From an Abstract Davis - Putnam - Loge
mann - Loveland Procedure to DPLL (T) ' , Journal of the
ACM , 53 (6) , 937 - 977 , 2006 .

US 2017 / 0315958 A1 Nov . 2 , 2017

[0085] In accordance with one embodiment , the conflict
analysis further uses following two data structures :

[0086] a Conflicting Subset and
10087] a Conflicting Constraint ,

and the proposed method includes the following automatic
actions :

[0088] 2a) if the conflicting pair of bounds is { b? , b2 }
such that b2 is located in the stack B above b? , then
initializing the CSS to { bi , b2 } and initializing the CC
to the reason constraint of bz ;

[0089] 2b) if b is the bound in the CSS that is located in
the stack B closest to the top of B , then
[0090] 2b1) popping bounds from the top of stack B

until there are no decisions above b in B ;
[0091] 262) removing b from the CSS and inserting

into the CSS the reason set associated with b ; and
[0092] 2b3) performing a cut between the current CC

and the reason constraint of b , in such a way that the
variable of b is eliminated , thus obtaining a new CC ;
and if no such a cut exists , then the CC remains
unchanged ;

[0093] 2c) if after popping k bounds including at least
one decision from the stack B there is a set of bounds
Rin B such that CC and R propagate a bound b that is
new in B , then popping k bounds from the stack B and
pushing b on top of B with associated reason set R and
reason constraint CC , and halting the conflict analysis ;

[0094] 2d) if the CSS contains more than one bound that
is located in B up or above the topmost decision of B
then going to step 2b) ;

[0095 2e) if the CSS contains exactly one bound b that
is located in B up or above the topmost decision of B ,
then :
[0096] 2el) if the CSS contains b as its unique

element , then popping bounds from the stack B until
B contains no decisions and after that pushing on the
stack a new bound being the negation of b with an
associated empty reason set and the final CC as its
reason constraint ; then this CC is learned ,

[0097] 2e2) if the CSS contains more than one bound ,
then if b , is the bound of the CSS different from b
such that b , is located in the stack B closest to the top
of B , above exactly k decisions , then popping bounds
from the stack B until B contains exactly k decisions
and after that pushing on the stack a new bound
being the negation of b , having this new bound as its
associated reason set the result of removing b from
the CSS , and the final CC as its reason constraint ,
and then learning this CC .

[0098] The step 2c) is optional and can be omitted .
[0099] To be noted that , in particular , the first time step 2b)
is performed no such a cut exists since in that case CC and
the reason constraint of b are the same linear constraint .
[0100] In one embodiment in step 2d) , even if the CSS
contains zero or one bound located in B up or above the
topmost decision of B , then also going to step 2b) .
[0101] In another embodiment after each application of
step 2b) , bounds of the form asx are eliminated from the
CSS whenever a bound a ' sx with a ' > a is in the CSS and
bounds of the form xsa are eliminated from the CSS
whenever a bound xsa ' with a ' < a is in the CSS .
[0102] In an alternative approach in step 2b) instead of the
reason set of b , a set of bounds R is computed and inserted

in the CSS , with all elements of R being located below b in
B and the reason constraint of b and R also propagating b .
0103] In an alternative approach in the step 1c) the reason
set is not associated to b nor stored and in step 2b) a set of
bounds R is computed and inserted in the CSS , with all
elements of R being located below b in B and the reason
constraint of b and R also propagating b .
10104] In accordance with an embodiment , in step 1c) the
linear arithmetic constraint C is not associated to b and in
step 1d4) the conflict analysis is performed omitting steps
263) and 2c) involving the CC , and no new constraint is
learnt .
[0105] In accordance with an embodiment , in step 1c) the
iteration is performed non - exhaustively .
[0106] In accordance with an embodiment , the linear
arithmetic constraints further include expressions of the
form a X + . . . + a , X zao , or a Xi + . . . + a , xn = ao , or a X +
. . . + a , x > a , , or a X , + . . . + a , xn < a , or combinations thereof ,
where the coefficients ao . . . an can be arbitrary rational
numbers , sets of which are all expressible by sets S of linear
constraints of the form b , x , + . . . + b , x , sbo , with integer
coefficients bo . . . by so that the resulting set of constraints
S has the same set of solutions .
10107] Concerning the use for optimization of the method
detailed in the previous embodiment , in order to find a
solution Sol that minimizes the value of a . Sol (x1) + . . .
+ am . Sol (xn) for a given expression a X1 + . . . + a , Xn , in a first
iteration applying the method , and in successive iterations ,
while new solutions are found , applying the method with an
additional constraint a , x , + . . . + a , x , sa , where a , is a , . Sol
(x) + . . . + a . Sol (xn) - 1 where Sol is the solution found in
the previous iteration .
[0108] Further in order to find a solution Sol that maxi
mizes the value of a . Sol (x1) + . . . + a , Sol (xn) for a given
expression ax + . . . + a , Xm , applying the previous embodi
ment minimizing - a , X , + . . . + - a , X , .
[0109] According to another embodiment in step 2b)
instead of popping and replacing the topmost bound b from
the CSS another bound is popped and replaced by its reason
set .
[0110] According to another embodiment and in order to
solve Mixed Integer Programs (MIPs) , that is , to find a
solution where a given subset I of the variables must take
integer values and the remaining variables can take arbitrary
rational values , it is proposed to use an arbitrary LP solver
for finding a solution RSol minimizing the value of an
expression a Xi + . . . + a , Xn , where in RSol all variables are
allowed to take rational values , outputting RSol as a solution
and halting if RSol (x) is an integer for every variable x of I ,
and if no such a solution RSol exists , generating an infea
sible subset using the LP solver and taking as CSS the subset
of bounds of the infeasible subset , and taking as CC any
other constraint of the infeasible subset , and continuing the
conflict analysis with step 2b) .
[0111] Finally , in yet another embodiment the coefficients
of the linear constraints are rational or floating point num
bers . In this case , in step 1 d4) the conflict analysis is
performed using cuts where c and d are positive rational or
floating point numbers .

EXAMPLES
Example 1

[0112] This example involves the embodiment without
reason constraints , without cuts and without learning new

US 2017 / 0315958 A1 Nov . 2 , 2017

(0118] After one more propagation and two further deci
sions and their propagations , the following stack is obtained :

constraints . In this example , and in the following one , when
a bound b in the stack B has exactly k decisions at or below
it in B then b is said to belong to decision level (dl) k
[0113] Consider the following two constraints :

1x + 1y + 3zs5
bound bound reason set reason set

- 1x - lys - 11
- 10 = x
xs 10

- 10 s y
y s 10

- 10 sz
$ 10 I Sasassass ???????????? N

[0114] In addition , there are six one - variable constraints
stating that all three variables are between - 10 and 10 . Note
that these six constraints propagate the first six bounds with
empty reason sets . Below the stack is shown (depicted here
growing downwards) after propagating the initial con
straints , and taking and propagating three decisions : NYANN N N N ? ?? ? ?? ? ?? ? ? ? ?

{ y < 10 }
{ x s 10 }

{ 1 < x , 1 s y }
decision

{ 1 s x , 7 sy }
{ 1 < x , 7 5 y }

decision
{ 7 s y , - 2 sz }

decision
{ 4 s x , - 2 s z }
{ 4 s x , 7 s y }

bound bound reason set reason set

- 10 sx
xs 10

- 10 sy
Y s 10

10 sz aaaaa ????? ?? ?? ?? ??? [0119] It gives the solution where x = 4 , y = 7 and z = - 2 ,
since all variables are fully defined to these values .

pe o p = NUN ENOR

? ?? ? ? ? ?? ? ? ? ?

1 . NI DEN

{ y s 10 }
{ x < 10 }

{ 1 s x , 1 s y }
decision

{ 1 < x , 7 sy }
decision
decision

{ 7 s y , - 1 sz }
{ x s 1 }

{ 10 = y , - 1 sz }

Example 2
[0120] Consider the following three constraints :

Co : + 1x - 3y = 3zs1

C1 : – 2x + 3y + 2zs - 2
10 sy
XS - 2 C2 : + 3x - 3y + 2zs - 1

and the stack (depicted here growing downwards) with some
initial bounds coming from one - variable constraints , and
taking and propagating two decisions :

bound reason set reason constraint
V mm V

D

V

101151 Now there is a conflict with initial CSS { lsx ,
X < - 2 } .
[0116] In the first conflict analysis step , xs - 2 is removed
from the CSS and its reason set { 10sy , - 1sz } , inserted
obtaining { 1sx , - 1sz , 10sy } . Since this CSS contains more
than one bound of the highest decision level (dl 3) , 10sy is
also replaced by its reason , getting { 1sx , - 1sz , xs1) } . Since
there are still two bounds of dl 3 , xsl is also replaced getting
{ 1sx , 7sy , - 1sz } . After this , the conflict analysis process
terminates , since this final CSS contains only one bound of
di 3 , which in this case is the last decision itself , - 1sz .
[0117] The negation of - 1sz is zs - 2 , which is added to dl
1 (the dl of 7sy) with reason set { lsx , 7sy } . Altogether , a
backjump is done to :

sasasasasas V

????? ?? ?? ?? ?? | | N

N

15 x N

N

V V V V V

NNK NONITA
V V V V

N

{ 1 s y , - 2 sz }
{ x s 3 , - 2 sz }
{ x s 3 , 1 sy }

decision
{ x < 2 , 1 s y }

decision
{ y s 2 , zs - 2 }
{ 1 s x , zs - 2 }
{ 2 s y , - 2 sz }

Joo o
zs - 1
zs - 2
V N

2 sx

bound reason set

- 10 = x
xs 10

- 10 s y
y s 10

- 10 sz
zs 10
1sx

????????????
NN NN NOK

{ y s 10 }
{ x s 10 }

{ 1 < x , 1 = y }
decision

{ 1 < x , 7 sy }
{ 1 < x , 7 s y }

[0121] Now there is a conflict with initial CSS { xs1 , 2sx } .
In the first conflict analysis step , 2sx is removed from the
CSS and its reason set 2sy , - 2sz } inserted , obtaining the
CSS - 2sz , xs1 , 2sy } , with two bounds of this decision
level (dl 2) .
[0122] In the second conflict analysis step , 2 sy is replaced
by its reason set { 1sx , zs - 2 } obtaining the new CSS { - 2sz ,
1sx , zs - 2 , xsl } which does not allow yet to backjump since
it still contains two bounds of dl 2 . But now a cut is
attempted between the initial CC , which is C1 , and the
reason constraint of 2sy , which is Co , in such a way that y
is eliminated . Here this cut exists , with c = d = 1 , and the new
constraint Cz :

US 2017 / 0315958 A1 Nov . 2 , 2017

[0123] - 1x - lzs - 1 is obtained and learned . This new
constraint allows one to backjump to dl 1 , since there it
propagates 2sx . At that point , after three more propagations ,

bound reason set reason constraint

N

haaaaa ???????????? |

[0129] There is an array , the Bounds Array , indexed by
variable number , that can return in constant time the current
upper and lower bounds for that variable . Property 1 : It
always stores , for each variable x? , the positions pl , and pu ,
in the stack of its current (strongest) upper bound and lower
bound , respectively , with pl = 0 (pu ; = 0) if x , has no current
lower (upper) bound .
10130] The data structure for the stack is another array
containing at each position three data fields : a bound , a
natural number pos , and an info field containing , among
other information , the reason set and the reason constraint .
Property 2 : The value pos is always the position in the stack
of the previous bound of the same type (lower or upper) for
this variable , with pos = 0 for initial bounds .
[0131] When pushing a new bound on the stack , and when
popping a bound from the stack (during backjumping) , it is
easy to maintain properties 1 and 2 in constant time .

De m

?? ? ? ?? ? ? ? ? ? ?? ? ??

NNV DOON IN NNNN N Y N NY
{ 1 = y , - 2 sz }

3 , - 2
{ x s 3 , 1 s y }

decision
{ x s 2 , 1 s y }

{ z 5 - 1 }
{ x s 2 }

{ 2 s x , zs - 1 }
{ 2 s y , - 1 sz }

??? ?????
TABLE 1
Bounds array

Height in stack of
current bound

Lower : upper
N

O

O

·

. . . ·

· 3
·

another conflict exists with CSS (xs2 , 3sx } , which after the
first step becomes { xs2 , - 1sz , 2sy) , all three of this
decision level (dl 1) . After the second step (replacing 2sy)
the CSS becomes { xs2 , zs - 1 , 2sx , - 1sz } , all in dl 1 . As
before , the performed cut between C , and Co (the initial CC
and the reason constraint of 2sy) eliminates the variable y ,
obtaining - 1x - 1zs - 1 .
[0124] After the third step (replacing - 1sz) , the CSS
becomes { xs2 , zs - 1 , 2sx } , all in dl 1 . The CC does not
change because no cut eliminating z exists with Cz .
[0125] After the 4th step (replacing 2sx) , the CSS
becomes { xs2 , zs - 1 } , both in dl 1 . Again the CC does not
change because no cut eliminating z exists with Cz .
[0126] After the 5th step (replacing zs - 1) , the CSS
becomes { 1sy , xs2 } , with only one literal of dl 1 . The
backjump with this CSS can take us to the dl of 1sy (dl 0)
and add there the negation of xs2 , which is 3sx .
[0127] The result of the cut on CC with C , eliminating z
gives us - 4x + 3 ys - 4 . The backjump with this cut can also
take us to the dl of 1sy (dl O) , propagating 2sx . Since this
is weaker than the bound 3sx obtained from the CSS , here
the CSS one has been chosen . After two more propagations ,
the procedure returns ‘ no solution ' since the conflicting pair
of literals ys2 and 3 sy appear at dl 0 :

. . . ·

·

TABLE 2
Stack

AN | 0 < x1
X = 8 oo info

info

13 OS X7 Oo info
info 14 X759

bound bound reason set reason set reason constraint reason constraint 23 2 s X7 ? info

x 3
31 X75 6 Š info wFWNNNN ? ?? ? ? ? ?? ? ? ? ?

ON ONNAY W pod v nasasasasas ???????????? 1
5 S X7 D info { 1 s y , - 2 sz }

{ x s 3 , - 2 sz }
{ x s 3 , 1 s y }

{ 1 sy }
{ 3 < x , y s 2 }
{ 3 s x , - 1 sz } JJJJ80 - 1 sz

« N

Data Structures and Algorithms

[0132] Another important data structure allows for effi
cient bound propagation . For each variable x , there are two
occurs lists . The positive occurs list for x contains all pairs
(Ic , a) s . t . C is a linear constraint where x occurs with
positive coefficient a . The negative occurs list contains the
same for occurrences with a negative coefficient a . Here Ic
is an index to the constraint header of C in the array of

[0128] The method proposed in this invention heavily
relies on the efficiency of its implementation , for which new
data structures and algorithms are given .

US 2017 / 0315958 A1 Nov . 2 , 2017

constraint headers . Each constraint header contains an inte
ger Fc called a filter , and a (pointer to) the constraint C itself .
The filter Fc is maintained cheaply , in such a way that C can
only propagate if Fc > 0 , thus avoiding many useless (cache -)
expensive inspections of the actual constraint C . This is done
as follows .
[0133] Let C be a constraint of the form a , x , + . . .
+ a , x , sao . Let lisx , and x ; su ; be the current lower and upper
bounds (if any) for xz . Each expression ax , in C can have a
minimal value m ; , which is a ; 1 ; if a ; > = 0 , and a ; u , otherwise .
[0134] Here m , is undefined if there is no such bound l ; (or
u ;) . Initially , if some mi is undefined , then Fc is set to a
special value undefined and otherwise to - 3o + m2 + . . .
+ m , , + max ; , { abs (a ; : (u : - 1 ,)) } where max and abs denote the
maximum and absolute value functions , respectively . After
that , Fc is said to be precise : the constraint C propagates if
and only if , undefined Fc > 0 . Property 3 : At all timepoints ,
Fc = undefined or F cis an upper approximation of the precise
one .
[0135] To preserve property 3 , these filters need to be
updated when new bounds are pushed onto the stack , and
need to be restored when backjumping .
10136] Let a new lower bound ksx be pushed onto the
stack . Let the previous lower bound for x (if any) be k ' sx .
For each pair (Ic , a) in the positive occurs list of x , using Ic ,
access is done to the Fc and increase it by abs (a : (k - k ')) . If
there was no previous lower bound , then Fc was undefined
and is now set to 1 . If Fc becomes positive , the constraint C
is visited because it may propagate some new bound . After
each time a constraint C is visited , Fr is set to its precise
value .
10137] Let a new upper bound xsk be pushed on the stack .
Then exactly the same is done , where xsk ' is the previous
upper bound for x (if any) , and using the negative occurs list .
In order to be able to restore the filters when backjumping ,
each time an Fc value is increased by an amount d , a pair
(Fc , d) is pushed onto a filter backtrack stack , and when it
is moved from undefined to 1 a pair (Fc undefined) is
pushed .
[0138] For each decision that is taken , i . e . , when pushing
the i + 1th decision on the stack , in a separate data structure
a natural number h ; is recorded , h , being the height of the
filter backtrack stack before taking decision i + 1 . Then , when
backjumping to a stack with k decisions , each pair (Fc , d) in
the filter backtrack stack above height hz is popped , and its
Fc is decreased by d if d = undefined , and restored to unde
fined if d = undefined .
[0139] Following a particular application case in which
the proposed method is applied will be explained .
[0140] A steel factory needs to plan its next week , 168
hours in which it has to carry out N tasks (orders) .
[0141] Each task i in 1 . . . N has a duration of di
consecutive (whole) hours and requires , during all its d ,
hours of activity , the exclusive use of one or more units of
R different resources . For example , a certain task may
occupy two mechanics , one operator , three cranes and two
trucks . If during a certain hour several tasks are active
simultaneously , they cannot share the resources they use .
10142] For each resource j and each hour h in 1 . . . 168 ,
let the integer used , n denote the total number of units of
resource j used during hour h and let peak ; = max (used ; , 1 , . .
. used ; , 168) be the (integer) peak usage of resource j during
the week . The problem is to schedule all tasks , i . e . , for each
task i determine a starting time , while minimizing the total

resource cost C = c? ' peak _ 15 , + . . . + Cr peakr , where each
c ; is a cost associated to resource j .
[0143] In practice the planned period of course needs not
be 168 time units , and typically there are many more
constraints , usually involving logical relationships , such as
precedences between (groups of) tasks , temporary unavail
ability of resources , earliest or latest starting times for tasks ,
storage capacities for intermediate products , etc .
[0144] This problem is well known to have a large impact
on costs and benefits in industry . Finding good solutions can
be extremely hard .
[0145] A standard notation for it uses two sets of N . 168
binary variables starts , (" task i starts on hour h ”) and
isactive ; n (“ task i is active on hour h ”) for all i and h .
[014] It uses constraints expressing that startsi , h implies
isactive ; ch (i . e . , - starts ; , ntisactive ; , n20) and also startsich
implies isactive ; , h + 1 , etc . , for its whole duration d? . Also ,
each task i starts exactly once : starts ; 1 + . . . + starts : 168 = 1 . In
addition , for each resource j and hour h , we have used ;
h - units _ needed , isactivei . n + . . . + units _ neededy . ; - isac
tivench , where units _ needed , , , is the number of units of j
needed by task i . Finally , for each resource j there are 168
constraints peak zused , , 1 . . . peak , zused ; , 168
[0147] A state - of - the - art methodology is the one used in
MIP solvers , by solving a collection of LP relaxations of the
given constraints , i . e . , temporarily “ forgetting ” that certain
variables must take integer values . Rational (possibly non
integer) solutions are sought for by means of (variants of)
simplex or interior point methods . Such “ forgetful ” or
“ blind ” intermediate non - integer solutions may be meaning
less for our problem , since they may say , e . g . , that a certain
binary variable active ; n is 0 . 7 , or that 3 . 54 units of resource
j are used during some hour h .
[0148] Additional steps are then performed to turn these
intermediate solutions into an integer one . For example ,
branch - and - cut methods maintain a tree of subproblems
pending to be explored , with their rational solutions . Given
a leaf node with variable x getting a non - integer solution
3 . 54 , one can branch , i . e . , split the problem into two sub
problems , one with xs3 and one with xx4 , or compute and
add a new constraint (by a cut) , precluding the non - integer
solution 3 . 54 for x .
10149] Such MIP solvers are well known to perform
extremely poorly on pure SAT problems , where all variables
are binary and constraints are (purely logical) clauses , and
where conflict - driven clause - learning (CDCL) techniques
are vastly superior and hence the method of choice in
practice .
(0150 Here it is claimed a similar superiority of this
invention , also a SAT - like method , for this industrial sched
uling problem , which also has many binary variables and
other relatively small - domain integer ones , as well as an
essentially logical constraint structure as in pure SAT .
[0151] The proposed method explores the search space as
CDCL does in SAT : by taking decisions (in our case each
decision , as stated in step 1d2 , is a heuristically guided guess
of an upper or lower bound for a given variable) and
efficiently inferring and adding the implied information by
propagating these decisions . And , again as in CDCL , when
a conflict appears (i . e . , two contradictory bounds) , a conflict
analysis procedure allows one to backjump to an earlier
search state , enrich it by an additional bound and its propa
gations , and possibly learning a new constraint .

US 2017 / 0315958 A1 Nov . 2 , 2017

[0152] Together with [5] , the proposed method is the first
of this nature able to handle integer variables and con
straints , but with the advantage over [5] that in the proposed
method arbitrary decisions can be taken . Indeed it performs
much better than [5] , as revealed by the experiments of the
publication [9] (which also reports superiority over the main
commercial MIP solvers on other ILP problems from the
well - known standard MIPLIB) .
[0153] As it happens in methods for SAT (cf . section
“ Background of the invention ”) , it is rather obvious that the
proposed method performs a systematic search over the
possible solutions . This involves only trivial mathematics .
Again as for SAT , the key aspects of the proposed method
are the engineering of novel data structures (propagation
record , propagation stack , reason set , reason constraint) and
the novel heuristics for guiding the search and for learning
new constraints . Such techniques for SAT are disclosed in
U . S . Pat . No . 7 , 418 , 369 .
[0154] Applied to the industrial scheduling problem , the
proposed method uses heuristics for taking good decisions
(typically , as in SAT , on variables involved in many recent
conflicts) . For example , it will guess an upper bound on the
total resource cost C or on some of the individual variables
peakn . Meaningful new bounds will then be propagated
(unlike what happens in LP relaxations ; present propagation
takes into account that variables must be integer) . Similarly ,
meaningful strong new constraints are quickly learned ,
stating that certain combinations of tasks cannot take place
simultaneously , etc .
[0155] These newly learned constraints again strengthen
the propagation power and prevent future similar conflicts .
10156) . Being able to take arbitrary decisions is essential
(step 1d2 of claim 1) to the proposed method . In [5] one can
only decide a given variable to be equal to its current upper
bound or to its current lower bound ; in practice , one needs
to guess it to belong to , say , the lower (or upper) halve of the
interval between its current upper and lower bounds , an idea
akin to binary search .
101571 While preferred embodiments of the invention
have been shown and described herein , it will be understood
that such embodiments are provided by way of example
only . Numerous variations , changes and substitutions will
occur to those skilled in the art without departing from the
spirit of the invention . Accordingly , it is intended that the
appended claims cover all such variations as fall within the
spirit and scope of the invention .

1 . A computer - implemented method for solving sets of
linear arithmetic constraints modelling physical systems , the
method comprising using a computer processor unit per
forming a programmed execution of mathematical opera
tions wherein , being { x , . . . , } a set of variables , said linear
arithmetic constraints are expressions of the form a , x , + . .
· + a , x , say , in which the coefficients a , . . . an are integer
numbers ,

wherein a solution for a set of linear arithmetic constraints
S is an expression Sol mapping each variable x of { X1
. . . Xn } to an integer value Sol (x) such that all
constraints are satisfied , that is , for each constraint of
the form a , x , + . . . + a , x , sa , in S , the integer number
a . Sol (x1) + . . . + a , Sol (xn) is smaller than or equal to
ao ;

wherein the following notions / terms are used :
bound (constraint with a single variable x , that can be

written as lower bounds asx or upper bounds xsa)
where a is an integer number

the negation of a lower bound asx is the upper bound
xsa - 1 and the negation of an upper bound xsa is the
lower bound a + lsx ;

a lower bound a sx and an upper bound xsa , are called
conflicting if a > az ;

a lower bound asx is called new in a given set of
bounds B if there is no lower bound a ' sx in B with
a ' za , and an upper bound xsa is called new in a given
set of bounds B if there is no upper bound xsa ' in B
with a ' sa , and a variable x is called defined to the
value a in a given set of bounds B , if B contains the
bounds asx , and xsa ; and

a monomial is an expression of the form a x , where a
is an integer or a rational number and x is a variable ;
it called negative if a is negative and positive oth
erwise ;

propagation :
If C is a linear arithmetic constraint of the form a X7 +

. . . + a , X „ sa , where :
the subset of positive monomials of { a _ x + . . .

+ a , xn } is { ax , C191 , . . . , Cpyp } ;
the subset of negative monomials of { a _ x + . . .

+ a , xn) is { d , 21 , . . . , d . , zq } ;
R is a set of bounds { 1 , sy1 , . . . , 1 , syp , Z1 su , . . .

, z , su , } ;
u is the largest integer such that us (ao - c , 1 , - . . .

- cplo - d , u , - . . . - d , u ,) / a , then C and R propagate
the upper bound xsu ;

If C is a linear arithmetic constraint of the form a X , +
. . . + a , Xsa , where :
the subset of positive monomials of a Xi + . . . + a , xn

is { c?y1 , . . . , Cpyp } ;
the subset of negative monomials of a X , + . . . + a , X ,

is { ax , 0 , 21 , . . . , d . , 2 , } ;
R is a set of bounds { 1 , sy1 , . . . , l , syp , Z su1 , . . .

, Z , su , } ;
1 is the smallest integer such that 12 (ao - c , 1 , - . . .

- cple - d , u - . . . - d , u) / a , then C and R propagate
the lower bound lsx ,

a propagation record is a triple (b , R , C) where b is a
bound C is a linear arithmetic constraint and R is a
set of bounds such that C and R propagate b , then R
being termed the reason set of b and C being termed
the reason constraint of b ; in a special kind of
propagation record called a decision , the components
R and C are null ,

a propagation stack is a data structure having capabili
ties of a standard stack data structure whose elements
are propagation records , with standard operations for
pushing and popping elements and for inspecting the
topmost element and in addition the nonstandard
capability of inspecting non - topmost elements ;

a bound b is said to be in a propagation stack B if b is
the first element of some propagation record of B ;
similarly a set of bounds R is said to be in a
propagation stack B if R is a subset of the set of all
first elements of the propagation records of B ,

a constraint C is said to be learned when it is added to the
set of linear arithmetic constraints S ;

nu

US 2017 / 0315958 A1 Nov . 2 , 2017

wherein said programmed execution of mathematical opera
tions of the method being automatically performed , by the
following steps :

la) receiving by the computer processor unit the set of
linear arithmetic constraints S ;

1b) creating using the computer processor unit a propa
gation stack B that is initially empty ; being said propa
gation stack B stored in the computer processor unit
and being automatically modified using the computer
processor unit by considering the set of linear arithme
tic constraints S by implementing the subsequent steps ;

1c) if there is a linear arithmetic constraint C in S and a
set of bounds R in B such that C and R propagate a
bound b that is new in B , then pushing the propagation
record (b , R , C) on top of the stack B ; and iterating this
pushing while possible ;

1d) treating four non - overlapping cases using the com
puter processor unit :
1dl) if there is no conflicting pair of bounds in B and

if , for all i in { i . . . n } the variable x ; is defined in
B to a value a , then halt outputting the solution Sol
such that Sol (x ;) - a , for each i in i . . . n ;

1d2) if there is no conflicting pair of bounds in B and
at least one variable is not defined in B , then a
propagation record (d , - , -) is pushed on top of B
such that d is new in B and d is not conflicting with
any other bound in B , said bound d and the propa
gation record (d , - , -) being termed a decision , and
then return to step 1c) ;

1d3) if there is at least one conflicting pair of bounds b ,
and b , in B such that there is no decision in B below
b , nor below b , then halt outputting " no solution ” ;

104) if there is at least one conflicting pair of bounds b ,
and b , in B such that there is at least one decision
located in B below b , or below b , then a conflict
analysis is performed based on the current propaga
tion stack B and as a consequence of which firstly a
number of topmost elements of the propagation stack
B are popped and after that a new bound with an
associated reason set and reason constraint is pushed
on top of the stack and a new linear constraint C is
learned , and then return to step 1c) .

2 . The method of claim 1 wherein said conflict analysis
further uses a data structure called the CSS , Conflicting
Subset , a set data structure storing a subset of the bounds of
B , and another data structure called the CC , Conflicting
Constraint , wherein the following notions are used :

if C , is a linear arithmetic constraint a , x , + . . . + a , x , sao ,
and C2 is a linear arithmetic constraint byx + . . .
+ b , x , sbo , then a cut between C , and C , is a linear
arithmetic constraint c , X , + . . . + 0 , X , sc , such that c and
d are positive natural numbers and c ; = c•a ; + d . b ; for each
i in 0 . . . n ; and

if c ; = 0 for some j in 1 . . . n then this cut is said to eliminate
the variable x ; , the method comprising the following
steps :
2a) if the conflicting pair of bounds is { b , , b , } such that
by is located in the stack B above b? , then initializing
the CSS to { b , b2 } and initializing the CC to the
reason constraint of bzi

2b) if b is the bound in the CSS that is located in the
stack B closest to the top of B , then
2b1) popping bounds from the top of stack B until

there are no decisions above b in B ;

2b2) removing b from the CSS and inserting into the
CSS the reason set associated with b ;

263) performing a cut between the current CC and
the reason constraint of b , in such a way that the
variable of b is eliminated , thus obtaining a new
CC ; and if no such a cut exists , then the CC
remains unchanged ;

2c) if after popping k bounds including at least one
decision from the stack B there is a set of bounds R
in B such that CC and R propagate a bound b that is
new in B , then popping k bounds from the stack B
and pushing b on top of B with associated reason set
R and reason constraint CC , and halting the conflict
analysis ;

2d) if the CSS contains more than one bound that is
located in B at the height of the topmost decision of
B or above then going to step 2b) ;

2e) if the CSS contains exactly one bound b that is
located in B at the height of the topmost decision of
B or above :
2el) if the CSS contains bas its unique element , then
popping bounds from the stack B until B contains
no decisions and after that pushing on the stack a
new bound being the negation of b with an asso
ciated empty reason set and the final CC as its
reason constraint ; then this CC is learned , and

2e2) if the CSS contains more than one bound , then
if b , is the bound of the CSS different from b such
that b , is located in the stack B closest to the top
of B , above exactly k decisions , then popping
bounds from the stack B until B contains exactly
k decisions and after that pushing on the stack a
new bound being the negation of b , having this
new bound as its associated reason set the result of
removing b from the CSS , and the final CC as its
reason constraint , and then learning this CC .

3 . The method of claim 1 wherein said conflict analysis
further uses a data structure called the CSS , Conflicting
Subset , a set data structure storing a subset of the bounds of
B , and another data structure called the CC , Conflicting
Constraint , wherein the following notions are used :

if C , is a linear arithmetic constraint a , x , + . . . + a , x , sao ,
and C2 is a linear arithmetic constraint b?x? + . . .
+ b , x , sbo , then a cut between C , and C , is a linear
arithmetic constraint c X + . . . + 0 , X , 5c , such that c and
d are positive natural numbers and c ; = c•a , + d . b ; for each
i in 0 . . . n ; and

if c ; = 0 for somej in 1 . . . n then this cut is said to eliminate
the variable x ; , the method comprising the following
steps :
3a) if the conflicting pair of bounds is { b1 , b2 } such that

b , is located in the stack B above by , then initializing
the CSS to { b? , bz } and initializing the CC to the
reason constraint of bz ;

3b) if b is the bound in the CSS that is located in the
stack B closest to the top of B , then
3b1) popping bounds from the top of stack B until

there are no decisions above b in B ;
3b2) removing b from the CSS and inserting into the
CSS the reason set associated with b ;

3b3) performing a cut between the current CC and
the reason constraint of b , in such a way that the

US 2017 / 0315958 A1 Nov . 2 , 2017

variable of b is eliminated , thus obtaining a new
CC ; and if no such a cut exists , then the CC
remains unchanged ;

3c) if the CSS contains more than one bound that is
located in B at the height of the topmost decision of
B or above then going to step 3b) ;

3d) if the CSS contains exactly one bound b that is
located in B at the height of the topmost decision of
B or above :
3d1) if the CSS contains b as its unique element , then

popping bounds from the stack B until B contains
no decisions and after that pushing on the stack a
new bound being the negation of b with an asso
ciated empty reason set and the final CC as its
reason constraint ; then this CC is learned , and

3d2) if the CSS contains more than one bound , then
if b , is the bound of the CSS different from b such
that b , is located in the stack B closest to the top
of B , above exactly k decisions , then popping
bounds from the stack B until B contains exactly
k decisions and after that pushing on the stack a
new bound being the negation of b , having this
new bound as its associated reason set the result of
removing b from the CSS , and the final CC as its
reason constraint , and then learning this CC .

4 . The method of claim 2 , wherein in step 2d) , even if the
CSS contains zero or one bound located in B above a
decision , being the topmost decision of B , then going to step
2b) .

5 . The method of claim 2 , wherein after each application
of step 2b) bounds of the form asx are eliminated from the
CSS whenever a bound a ' sx with a ' > a is in the CSS and
bounds of the form xsa are eliminated from the CSS
whenever a bound xsa ' with a ' < a is in the CSS .

6 . The method of claim 2 , wherein in step 2b) instead of
the reason set of b , a set of bounds R is computed and
inserted in the CSS , with all elements of R being located
below b in B and the reason constraint of b and R also
propagating b .

7 . The method of claim 2 wherein in step 1c) the reason
set is not associated to b nor stored and in step 2b) a set of
bounds R is computed and inserted in the CSS , with all
elements of R being located below b in B and the reason
constraint of b and R also propagating b .

8 . The method of claim 1 wherein in step 1c) the linear
constraint C is not associated to b and wherein in step 184)
the conflict analysis is performed omitting steps 263) and
2c) involving the CC , and no new constraint is learnt .

9 . The method of claim 1 wherein in step 1c) the iteration
is performed non - exhaustively .

10 . The method of claim 1 wherein the linear arithmetic
constraints further include expressions of the form a , x , + . .
. + a , , X , 220 , or a , x , + . . . + a , x = an , or a , x , + . . . + a , X , > a , ,
or a X , + . . . + a , x , < a , or combinations thereof , where the
coefficients a , . . . an can be arbitrary rational numbers , sets
of which are all expressible by sets S of linear constraints of
the form b , x + . . . + b , X , sbo , with integer coefficients bo .
. . b , so that the resulting set of constraints S has the same
set of solutions

11 . The method of claim 10 further comprising in order to
find a solution Sol that minimizes the value of a . Sol (x1) + .
. . + a , , : Sol (xn) for a given expression a , x , + . . . + a , Xn , in a
first iteration applying steps 1a) to le) of the method , and in
successive iterations , while new solutions are found , apply

ing steps la) to le) of the method with an additional
constraint a Xi + . . . + a , x , , sa , where a , is a . Sol (x1) + . . .
+ a , Sol (x) - 1 and Sol is the solution found in the previous
iteration .

12 . The method of claim 10 further comprising in order to
find a solution Sol that maximizes the value of a . Sol (x ,) +
. . . + a , Sol (x) for a given expression a , xi + . . . + a , Xn , in
a first iteration applying steps la) to le) of the method , and
in successive iterations , while new solutions are found ,
applying steps la) to le) of the method with an additional
constraint - a , x , - . . . - a , x , sa , where a , is - a , . Sol (x ,) - . .
. - a , Sol (x ,) - 1 where each time Sol is the solution found in
the previous iteration .

13 . The method of claim 2 , wherein in step 2b) instead of
popping and replacing the topmost bound b from the CSS
another bound is popped and replaced by its reason set .

14 . The method of claim 2 wherein in order to solve
Mixed Integer Programs (MIPs) , that is , to find a solution
where a given subset I of the variables must take integer
values and the remaining variables can take arbitrary ratio
nal values , it is proposed to use an arbitrary LP solver for
finding a solution RSol minimizing the value of an expres
sion a , x , + . . . + a , x , , where in RSol all variables are allowed
to take rational values , outputting RSol as a solution and
halting if RSol (x) is an integer for every variable x of I , and
if no such a solution RSol exists , generating an infeasible
subset using the LP solver and starting a conflict analysis .

15 . The method of claim 14 , wherein to perform said
conflict analysis a data structure called the CSS , Conflicting
Subset , a set data structure storing a subset of the bounds of
B , and another data structure called the CC , Conflicting
Constraint are used , wherein the following notions are used :

if C , is a linear arithmetic constraint a X , + . . . + a , x , sao ,
and C2 is a linear arithmetic constraint b , x + . . .
+ b , x , sbo , then a cut between C , and C2 is a linear
arithmetic constraint cyX + . . . + CX , 5c , such that c and
d are positive natural numbers and ci = c•a ; + d . b , for each
i in 0 . . . n ; and

if c ; = 0 for somejin 1 . . . n then this cut is said to eliminate
the variable x ; , the method comprising the following
steps :

15a) initializing the CSS to the subset of bounds of the
infeasible subset , and initializing the CC to any other
constraint of the infeasible subset ;

15b) if b is the bound in the CSS that is located in the
stack B closest to the top of B , then
15b1) popping bounds from the top of stack B until

there are no decisions above b in B ;
15b2) removing b from the CSS and inserting into the
CSS the reason set associated with b ;

1563) performing a cut between the current CC and the
reason constraint of b , in such a way that the variable
of b is eliminated , thus obtaining a new CC ; and if
no such a cut exists , then the CC remains unchanged ;

15c) if after popping k bounds including at least one
decision from the stack B there is a set of bounds R in
B such that CC and R propagate a bound b that is new
in B , then popping k bounds including at least one
decision from the stack B and pushing b on top of B
with associated reason set R and reason constraint CC ,
and halting the conflict analysis ;

15d) if the CSS contains more than one bound that is
located in B up or above the topmost decision of B then
going to step 15b) ;

US 2017 / 0315958 A1 Nov . 2 , 2017

15e) if the CSS contains exactly one bound b that is
located in B up or above the topmost decision of B :
15el) if the CSS contains b as its unique element , then
popping bounds from the stack B until B contains no
decisions and after that pushing on the stack a new
bound being the negation of b with an associated
empty reason set and the final CC as its reason
constraint ; then this CC is learned , and

15e2) if the CSS contains more than one bound , then if
b , is the bound of the CSS different from b such that
b , is located in the stack B closest to the top of B ,
above exactly k decisions , then popping bounds from
the stack B until B contains exactly k decisions and
after that pushing on the stack a new bound being the
negation of b , having this new bound as its associ
ated reason set the result of removing b from the
CSS , and the final CC as its reason constraint , and
then learning this CC .

16 . The method of claim 14 , wherein to perform said
conflict analysis a data structure called the CSS , Conflicting
Subset , a set data structure storing a subset of the bounds of
B , and another data structure called the CC , Conflicting
Constraint are used , wherein the following notions are used :

if C , is a linear arithmetic constraint a X , + . . . + a , x , sao ,
and C2 is a linear arithmetic constraint b , x7 + . . .
+ byx , sbo , then a cut between C1 and C2 is a linear
arithmetic constraint c X , + . . . + 0 , X , 5c , such that c and
d are positive natural numbers and ci = c•a ; + d . b ; ; for
each i in 0 . . . n ; and

if c ; = 0 for somej in 1 . . . n then this cut is said to eliminate
the variable x ; , the method comprising the following
steps :

16a) initializing the CSS to the subset of bounds of the
infeasible subset , and initializing the CC to any other
constraint of the infeasible subset ;

16b) if b is the bound in the CSS that is located in the
stack B closest to the top of B , then

16b1) popping bounds from the top of stack B until
there are no decisions above b in B ;

16b2) removing b from the CSS and inserting into the
CSS the reason set associated with b ;

16b3) performing a cut between the current CC and the
reason constraint of b , in such a way that the variable
of b is eliminated , thus obtaining a new CC ; and if
no such a cut exists , then the CC remains unchanged ;

16c) if the CSS contains more than one bound that is
located in B up or above the topmost decision of B then
going to step 16b) ;

16d) if the CSS contains exactly one bound b that is
located in B up or above the topmost decision of B :
16d1) if the CSS contains b as its unique element , then
popping bounds from the stack B until B contains no
decisions and after that pushing on the stack a new
bound being the negation of b with an associated
empty reason set and the final CC as its reason
constraint ; then this CC is learned , and

1602) if the CSS contains more than one bound , then if
b , is the bound of the CSS different from b such that
b , is located in the stack B closest to the top of B ,
above exactly k decisions , then popping bounds from
the stack B until B contains exactly k decisions and
after that pushing on the stack a new bound being the
negation of b , having this new bound as its associ
ated reason set the result of removing b from the
CSS , and the final CC as its reason constraint , and
then learning this CC .

17 . The method of claim 1 wherein the coefficients of the
linear constraints are rational or floating point numbers and
wherein in step 1 d4) the conflict analysis is performed using
cuts where c and d are positive rational or floating point
numbers .

* * * *

