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Fig. 6 
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METHOD FOR IMPROVINGA 
MANUFACTURING PROCESS 

RELATED APPLICATION(S) 
0001. This application is a continuation of U.S. patent 
application Ser. No. 1 1/624,574, filed Jan. 18, 2007, which is 
a continuation of US patent application Ser. No. 10/842,939, 
filed May 20, 2004, now abandoned, which is a continuation 
of U.S. patent application Ser. No. 10/775,313, filed Jan. 31, 
2001, now U.S. Pat. No. 6,748.279, all of which are incorpo 
rated herein by reference in their entireties. 

BACKGROUND OF THE INVENTION 

0002. In the improvement of manufacturing processes and 
products it is often necessary to employ empirical methods or 
techniques. In most basic terms, this typically involves 
observing the effects of variables in a product or process and 
using the information observed from those effects to adjust or 
manipulate the variables, resulting in an improved or satis 
factory product or process. However, where there are many 
variables with a multitude of possible effects on the processor 
product, arriving at improvements is more difficult. 
0003 Industrial methods of design and analysis of experi 
ments have been developed to assist in transforming data and 
improving manufacturing processes. However, in practical 
applications, field experience has shown that existing meth 
ods do not yield adequate solutions. There is a need for a 
simple and easy to use method that transforms experimental 
field data into more revealing and practical information that 
can be used to improve processes and products. 

SUMMARY OF THE INVENTION 

0004. The present invention provides a method of manu 
facturing or improving a manufacturing process. In addition, 
the method can be applied in the design of a manufacturing 
process or product. 
0005. In one embodiment described herein, a full factorial 
experiment is conducted with a plurality of process variables 
with each of the variables being tested at a plurality of set 
tings, in a plurality of combinations of settings. Measure 
ments of the response of the process for each combination of 
level settings are recorded. 
0006. The responses of the full factorial experiment are 
used to calculate individual contrasts for each process Vari 
able and each interaction among the process variables. The 
individual contrasts are each displayed at aparticular location 
in a document, or other form of display, corresponding to a 
particular notation. The notations indicate the level settings of 
the other of the process variables not involved in the particular 
COntraStS. 

0007. The individual contrasts of each process variable 
and each interaction are added to generate separate contrast 
Sums which are also displayed in the document. In addition, 
effects estimates for each of the contrast Sums are displayed. 
0008 Contrast sums are identified that are greater than at 
least one of the other contrast sums by a factor of about 2. If 
the contrast sum is that of an interaction effect between a 
plurality of process variables, the interaction is verified by 
referring to the document. The document provides informa 
tion as to whether both variables of the interaction must be set 
at the levels of the interaction to impart an effect substantially 
equal to the effect of the interaction. 
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0009. Furthermore, when at least two trials for the full 
factorial experiment are conducted, replicate effects can be 
generated. The document can be used to generate replicate 
effects wherein at least one hypothetical additional process 
variable is assumed and one set of the trail responses are 
substituted as responses for the hypothetical variable at one of 
two levels. Individual contrasts for the hypothetical variable 
are calculated, including the interaction contrasts thereof, to 
generate replicate effects. 
0010 Contrast sums are identified that are both greater 
than the next largest contrast Sum by a factor of 2, as well as 
greater than all replicate effects calculated. Of the identified 
contrast Sums, the significance of the contrasts, or associated 
effects, are tested using an end count method. Higher order 
effects are tested first. 

0011. In order to test the higher order effects, the lower 
order effects are temporarily removed. If an effect is found to 
be significant, it is permanently removed before testing the 
significance of remaining effects associated with identified 
COntrast SumS. 

0012. The raw information from the process is thus trans 
formed into information regarding the “significant effects” of 
level settings of the process variables. The level settings of the 
process can be adjusted to impart the “significant effects to 
the process, or to avoid them, depending on whether the 
effects shift the process in the direction of an improvement. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0013 FIG. 1 is a flow sheet showing the steps of an 
embodiment of the method. 

0014) 
0015 FIG.3 is the worksheet used to calculate and display 
individual contrasts as well as contrast Sums. 

(0016 FIG. 4 is the worksheet of FIG. 3 completed for 
Example #1. 
0017 FIG. 5 is a Pareto chart of the contrast sums calcu 
lated in FIG. 4. 

0018 FIG. 6 is a graph of the responses of cells (1), a, c. 
and ac of the response matrix of FIG. 2, for Example #1. 
(0019 FIG. 7 is the graph of FIG. 6 with the AC interaction 
effect removed from the ac response. 
0020 FIG. 8 is the worksheet of FIG. 4 recalculated after 
the AC interaction has been removed for Example #1. 

FIG. 2 is the response matrix for Example #1. 

0021 FIG.9 is a Pareto chart showing the contrast sums of 
FIG 8. 

0022 FIG. 10 is a response matrix for Example #2. 
(0023 FIG. 11 is a the worksheet of FIG. 3 completed for 
Example #2. 
0024 FIG. 12 shows how the variables in the Yates method 
table of FIG. 13 are calculated for Example #2. 
(0025 FIG. 13 is a table showing the results of the Yates 
method for Example #2. 
0026 FIG. 14 is a block diagram of a general purpose 
computer for use with the method. 
(0027 FIG. 15 is a representation of the “plane” discussed 
in Example #3. 
0028 FIG. 16 is a graph of the responses discussed in 
Example #3. 
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0029 FIG. 17 is FIG.16 with the AB interaction removed 
from the ab cell. 

DETAILED DESCRIPTION OF THE INVENTION 

0030 The present invention relates to a method of manu 
facturing or improving a manufacturing or fabrication pro 
cess, or a product or article. The various embodiments of the 
method provide a way of transforming raw information 
regarding key variables and the impacts thereof on the prod 
uct/process, into focused estimates of 'significant effects' 
that the input variables have on the key parameters of the 
process/product. Once the transformation of information 
takes place, the new information is used to adjust the input 
variables, resulting in an improved or satisfactory process or 
product. 
0031. As illustrated in FIG. 1, one embodiment of the 
method comprises the following steps: 1) determine the input 
variables of the process that may effect the process or product 
parameters of interest; 2) design the experiment and deter 
mine the passing end count required; 3) set levels of the 
variables in the process according to the design of the experi 
ment and measure the process or product parameter; 4) cal 
culate the estimated effects as individual contrasts and dis 
play the effects in a worksheet; 5) determine which group of 
effects to test for significance as well as the order in which the 
effects will be tested; 6) if the effect to be tested for signifi 
cance is an interaction, temporarily remove the estimates of 
any lower order effects from the responses; 7) test the effect 
for significance; 8) permanently remove the estimated effect 
if significant; 9) if the effect removed is an interaction then 
recalculate the worksheet; 10) determine if the largest 
remaining contrast Sum should be tested for significance; 11) 
iterate steps 6 through 10 above: 12) use the information 
transformed to adjust the input variables to impart an 
improvement in the process/product. 
0032. The first embodiment of the method is best illus 
trated by describing it in conjunction with a simplified 
example application. This is done in Example #1 below. 

Example #1 

0033. The following first example description is directed 
toward improving a manufacturing or fabrication process, 
specifically, improving quality of an article made by the 
manufacturing process. Improving product quality may typi 
cally entail meeting product specifications, exceeding prod 
uct specifications, or increasing the amount or percent of units 
of product that meet specifications. The steps of the method 
recited above are described in detail below and applied to the 
example. 
0034) For Step 1, it is determined that there are 3 manu 
facturing process input variables that are likely to have effects 
on product quality. The product quality is measured by an 
output response, or a product characteristic, with the mea 
Surement being a gage of the product quality improvement 
sought. It may be desired to target a range of values for the 
product characteristic, or a single value. The product charac 
teristic measured could be, for example, a measured tensile 
strength of the product or component of the product. Again, 
the product characteristic can be any parameter identified as 
important to the product. The input variables, or process 
variables, are physical or operating conditions of the manu 
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facturing process, process steps, or specifications of parts 
/materials used in the process Such as equipment or raw 
materials. 
0035. In this simplified example, each of the process vari 
ables will be tested at only 2 levels, conditions, or settings. 
For example, if one of the process variables is a temperature 
parameter, it may be tested at two temperatures, or if it is, for 
example, a specification on a part used in the process, it may 
be tested at both extremes of the current specification limit. 
0036 Step 2 is to design the experiment and determine the 
passing end count. The experimental design applied in this 
illustration is a traditional full factorial. Full factorial experi 
ments, with P number of factors, or input variables, each 
tested at X number of levels, or settings, will require X 
number of measurements of the output response to complete 
one full factorial experiment. In this example, there are P-3 
process input variables to be tested at X=2 levels, or settings, 
each. Thus, the output response must be measured 2-8 times 
per experiment, to complete the full factorial experiment, 
which results in every combination of factor and level settings 
being tested once. To acquire the relevant data, online (opera 
tional) changes are made to the process variables of interest 
during manufacturing. The intent of making the changes is to 
estimate the impact of the variables on the output response, or 
product characteristic, and to then make adjustments to the 
process variables to improve the response, or product quality 
based on information transformed into “significant effects' 
information by the method. Data is limited as it is desired to 
minimize disturbances to the manufacturing process, so that a 
minimal number of changes can be made to the variables for 
testing purposes. The data is thus generated according to the 
pre-designed full factorial experiment structure discussed 
above to maximize the information yielded by the data. The 
experiment in Example #1 is run twice to gather 16 output 
responses as to product characteristic. Thus there will be a 
first and second set of output responses, or repeat tests or 
trials, for each combination of level settings. 
0037. In accord with traditional notation used with analy 
sis of full factorial experiments to help simplify tracking and 
recordation of experimental results, each of the level settings 
for each process variable is represented by - or +. In addition, 
the process variables themselves are represented by A, B, or 
C. For example, A+ corresponds to the first of three process 
variables, set at the + level. 
0038 FIG. 2 is a response matrix and illustrates how the 
full factorial design of the experiment in Example #1 can be 
illustrated in matrix form using the notion described above. 
The response matrix of FIG. 2 is for a 2 full factorial experi 
ment for Example #1. The matrix is configured to reflect the 
design of the experiment and provide a convenient way to 
record the output responses (product characteristics). The 
cells are each labeled in a lower right hand corner ((1)., a, b, ab, 
c, ac, bc, and abc) in accordance with traditional or standard 
cell notation for ordering combinations, used with factorial 
experiments. Each cell represents a particular and unique 
combination of level settings for the process variables in the 
experiment. This can be seen directly from the structure of the 
table, and is reflected in the notation for the cell. For instance, 
the ab cell is positioned in the A+ column, the B+ row, and the 
C-half of the response matrix. The ab notation indicates that 
the A and B variables are set at the + level. 

0039. The passing end count must also be determined in 
Step 2. For Example #1, a confidence level of 95% is chosen 
and this will later be tested by the end count. The end count is 
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a way to verify the statistical significance of the effects cal 
culated from the experimental data. The mechanics of check 
ing end count are discussed in more detail in Step 8. 
0040 Step 3 requires changing the process variables in 
accord with the design of the experiment. During the experi 
mentation in Example #1, the process variables, or input 
variables, are each set according to the design of experiment 
reflected in FIG. 2. For the first cell in the upper left hand 
corner of the response matrix of FIG. 2, labeled "(1), all of 
the process variables are set to the - level since (1) does not 
correspond to any of the letters of the input variables. The 
tester measures the resulting product characteristic, and 
records the result in cell (1). This process is repeated for each 
of the cells. For example, for the last cell, labeled “abc' in the 
lower left corner of the table, all three of the process variables 
are set to the + level. The settings of the variables are repre 
sented by A+, B+, and C+. When all of the cells have been 
filled with the appropriate output response, or product char 
acteristic measurement, a full factorial experiment has been 
conducted. Pairs, or repeat tests, or trials, are conducted for 
each combination of level settings of the process variables, 
and the corresponding responses are recorded in pairs in the 
cells of FIG. 2. The product characteristic measured for each 
combination of level settings for the process variables for 
Example #1 are displayed in FIG. 2. 
0041 Step 4 is to calculate individual contrasts for each of 
the changes between levels in the variables, and effects of the 
variables on the product characteristic. This can be done in the 
form of the worksheet shown in FIG. 3. 

0042. The three leftmost columns of the worksheet are 
labeled “2-Factors, “3-Factors, and “4-Factors. Each of the 
cells in those columns are labeled to correspond to cells of a 
related response matrix. In the 3-Factor column, the cells are 
labeled with standard notation to represent the cells of a 
3-factor response matrix, such as in Example #1. The fourth 
column from the left in the worksheet, labeled “Y”, is for 
recording the output response of the process, in this case, the 
measurement of product characteristic. For Example #1, the 
product characteristic measurements for each cell of the 
response matrix of FIG. 1 are recorded in the “Y” column in 
the order indicated by the cell notation under the “3-Factors’ 
column. 
0043. The remaining cells of the worksheet display con 

trasts. The contrasts are estimates of the effects of changes in 
the level settings of factors, or process variables A, B, and C 
in Example #1. The contrasts have an equal number of + and 
- signs and are combinations of the responses, or product 
characteristics. Each of the columns displays contrasts for a 
particular factor or combinations of factors, as indicated at the 
top of each column by the factors, or process variables shown. 
For example, the first column is labeled the 'A' column to 
indicate that the column only displays single factor contrasts 
for variable A. Single factor contrasts are displayed for each 
factor in the worksheet, and estimate an effect of a change in 
the level of the factor with the other factors are set at either the 
- or + level during the change. Two factor interaction con 
trasts are also displayed that estimate the effect of changes of 
a factor on the effect of changes of another factor. Three factor 
interaction contrasts are also displayed that provide estimates 
of the effect of changes of a factor on a two factor interaction. 
0044) To better illustrate the physical meaning of con 

trasts, note that the contrast in cell B1, in the upper left corner 
of FIG.3, is represented by the notation b-(1), as indicated in 
the cell. This is equivalent to the difference between the 
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output response (product characteristic) with B set to the +, 
and the output response with B set to the - level, while the 
other factors are set at the - level. In addition, cell B2 in the 
worksheet, positioned just below cell B1, is represented by 
the notation ab-a, which is equivalent to the difference 
between the output response with B set at the +, and the output 
response with B set at the - level, with A at the + level and C 
at the - level. To illustrate the physical meaning of an inter 
action, or contrast involving two factors, note that cell AB 1 of 
the worksheet of FIG. 2 provides an estimate of the effect of 
a change in the level of A, on the estimated effects of changes 
in the level of B discussed above. Hence, cell AB1 is repre 
sented by B2-B1 which is equivalent to the difference 
between cell B2 and cell B1 of the worksheet. Each of the 
cells of the worksheet are calculated in this manner according 
to the notations in the worksheet cells. Contrasts are dis 
played for each single factor change, as well as for each 
interaction, including higher order interactions involving 3 
factors. 

0045. The worksheet in FIG. 3 is directed toward an 
experiment with 16 total output response data points and only 
2 to 4 factorial experiments. However, the worksheet can be 
expanded as needed. 
0046. The four rows at the bottom of the worksheet dis 
play: 1) the sum of contrasts for cells in that column (Contrast 
Sum); 2) the orthogonal estimate, or contrast Sum divided by 
half the number of output responses; 3) the number of indi 
vidual effects, or contrasts, in the column (it of Estimates); 
and 4) the “effect estimate, which is the average estimated 
effect, or contrast for the column. 
0047 FIG. 4 shows the worksheet completed for Example 
#1, using the measured product characteristics from the 
response matrix in FIG. 2. Note that since there are only 3 
process variables, the columns for contrasts involving 
changes in a D variable do not have physical meaning except 
for measuring "noise' or variation not associated with the 
effects being estimated. The contrasts calculated in those 
columns are called replicate effects. D is treated as a hypo 
thetical process variable, and the “noise' contrasts, or repli 
cates effects, involving changes in the level of Dare calcu 
lated by substituting the second of the repeat set of output 
responses, which begins with 10 under the “Y” column of the 
worksheet, for the hypothetical responses that would be gen 
erated by the D variable at the +level. This is illustrated for 
Example #1 by the D1 cell of the Worksheet, which is notated 
in FIG.3 as d-(1). That cell is calculated as (1)-(1), wherein 
pairs of responses (product characteristic measurement), 
recorded in cell (1) of the response matrix for the repeat tests, 
are subtracted from one another to reveal a measurement of 
variation not attributable to the effects being tests. 
0048 For Example #1, as can be seen in FIGS. 3 and 4, 
there is a first set, or column, of intra-cell replicate effects 
under column "D. that measures variation between the 
repeat tests, or the variation between output responses within 
the cells of the response matrix of FIG. 1. In addition, there 
are second set replicate effect, columns AD.” “BD, and 
“CD. that measure variation between the intra-cell replicate 
effects, the set being represented by interactions between the 
hypothetical D process variable and each of the A, B, and C 
process variables. Lastly, there are third sets of replicate 
effects that measure variation between the inter-cell replicate 
effects, represented by hypothetical interactions between D 
and two of the other three variables. For Example #1, FIG. 4 
shows all of the cells in the D columns calculated. All of those 
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numbers represent variation not attributable to the effects 
being tested and are replicate effects. Again, if a process 
variable D was being tested, these cells would be individual 
contrasts and not replicate effects. 
0049. The variation in contrast sums as well as in contrasts 

is inspected in the worksheet. A large variation in contrasts 
within a particular column of the worksheet can be an indi 
cator of an interaction. In FIG. 4 for Example #1, under 
column A, the range of estimated effects, or contrasts, for 
level changes in the process variable A vary from between -8 
to 16. This is indicative of an interaction between A and 
another variable. By cross referencing, or comparing, the 
contrasts in FIG. 4 to the notations in the worksheet of FIG.3, 
it can be seen that the interactions are between the A and B 
process variables. For example, in cells A1 and A2, in FIG.4, 
the estimated effect on the product characteristic is -8 and -7. 
whereas for cells A3 and A4, the estimated effects are 16 and 
16. In FIG. 4 it can be seen from the contrast notations for 
cells A1 and A2, a-(1) and ab-b, that the C variable is set at 
the - level for both contrasts. However, for cells A3 and A4, 
the contrast notations indicate that the C process variable is 
set at the + level. This is indicative that C should be set at the 
+ level while the setting of A is forced from the minus to the 
plus level. 
0050 Step 5 is to identify or determine which estimated 
effects of the process variables should be tested for signifi 
cance. The sum of contrasts displayed for Example #1 in FIG. 
4 are plotted on a Pareto Chart in FIG. 5 to assist in deciding 
which estimated effects to test, and which to exclude. Adja 
cent contrast Sums that drop by about a factor of two or more 
on the Pareto Chart are noted. Contrast sums on the high side 
of the drop are identified and tested for significance. Those on 
the low side of the drop may be excluded. Furthermore, for 2 
and 3 factor experiments, the contrast Sums of the replicate 
effects are compared with the contrast sums determined to be 
on the high side of the drop. If the replicate effects are 
approximately equal to the contrast Sums identified, those 
identified contrast Sums may be excluded from testing, since 
the background noise would appear to be as large as the 
effects. 

0051. As seen in FIG.4, for Example #1, the first drop off, 
or break, of about a factor of 2, is between the A contrast sum 
and the BC contrast sum. Thus the AC, C, and A contrasts will 
be tested for significance. In addition, the highest order con 
trasts are tested first. AC is the highest order in Example #1 
and should thus be tested for significance first. 
0052 Step 6 requires that before an interaction effect is 
tested for significance, the estimates of all lower order effects 
involved in the interaction are temporarily removed from the 
response matrix to isolate the effect of the interaction. For 
Example #1, the effects of process variables A and C must be 
removed to test for the significance of the contrasts for the AC 
interaction. When removing lower order effects, such as those 
of process variables A and C, the orthogonal estimates, cal 
culated and displayed at the bottom of the worksheet in FIG. 
4, are used. The orthogonal effects are removed by subtract 
ing the orthogonal estimate from product characteristics (out 
put responses) that correspond to the + level settings for the 
process variables A and B. This is illustrated in Table 1 below. 
The Y column of Table 1 displays the product characteristic 
measurements that correspond to the indicated cell of the 
response matrix of FIG. 2. The orthogonal estimates for pro 
cess variables A and Care 4.375 and 6.375, as shown in FIG. 
4 for Example #1. These are subtracted from the product 
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characteristic measurements as shown in Table 1, and as 
explained above, to arrive at the results in the last column, 
which shows the product characteristics with the orthogonal 
estimates removed. 

TABLE 1 

SUBTRACTING ORTHOGONALESTIMATES FORA AND 
BFROM THE PRODUCT CHARACTERISTICSY. 

Orth. Est. Orth. Est. Y with Orthogonal 
Cell Y A for A C for B Estimates Removed 

(1) 12 - 2 
8. 4 -- 4.38 -0.38 
b 12 2 
ab 5 -- 4.38 O.62 
C 6 -- 6.38 -0.38 
80 22 -- 4.38 -- 6.38 1.24 
bc 6 -- 6.38 -0.38 
abc 22 -- 4.38 -- 6.38 1.24 

(1) 10 - O 
8. 3 -- 4.38 -1.38 
b 11 1 
ab 4 -- 4.38 -0.38 
C 7 -- 6.38 O.62 
80 23 -- 4.38 -- 6.38 2.24 
bc 5 -- 6.38 -1.38 
abc 21 -- 4.38 -- 6.38 O.24 

0053 Step 7 is to test the estimated effect for significance, 
in this case, the interaction effect. The method used is an end 
count. To do this, the responses, or product characteristic 
measurements, are sorted in rank order (ascending order) and 
all associated cells in the Table 1 that are in the same row as 
the sorted response cell, are also shifted with the associated 
response cell. This is shown in Table 2 below. Table 2 has one 
more column than Table 1. The additional column is the 
rightmost column in the Table 2 and displays the product of 
the level settings for process variables A and C. AC is thus 
only positive when either both process variables A and Care 
positive, or both are negative. The significance of this is that 
it is indicative of whether the levels of the variables are set to 
permit an interaction. The separation between + and - signs in 
the AC column in Table 2 is indicative of the amount of 
overlap between the responses with potential AC interaction 
and those without potential AC interaction. As such, an end 
count is used to quickly gage the significance of the AC 
interaction. The end count is done by first counting - signs 
from the top of the AC column until a + sign is encountered. 
Next, + signs are counted Starting from the bottom of the 
column until a - sign is encountered. The two counts are 
added together to get an end count. Table 2 shows that the end 
count for AC for Example #1 is 16. Table 3 shows that an end 
count of 10 is required for a confidence level of 95%. The AC 
interaction is thus identified as significant. 

TABLE 2 

TABLE 1 SORTED IN RESPONSE RANK ORDER 

Y with 
Orthogonal 

Orth. Est. Orth. Est. Estimates 
Cell Y A. for A C for C Removed AC 

8. 3 -- 4.38 -1.38 
bc 5 -- 6.38 -1.38 
8. 4 -- 4.38 -0.38 
C 6 -- 6.38 -0.38 
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TABLE 2-continued 

TABLE 1 SORTED IN RESPONSE RANK ORDER 

Y with 
Orthogonal 

Orth. Est. Orth. Est. Estimates 
Cell Y A. for A C for C Removed AC 

bc 6 6.38 -0.38 
ab 4 -- 4.38 -0.38 
ab 5 -- 4.38 O.62 
C 7 -- 6.38 O.62 

(1) 10 - 10 -- 
abc 21 -- 4.38 -- 6.38 10.24 -- 
b 11 11 -- 
80 22 -- 4.38 -- 6.38 11.24 -- 
abc 22 -- 4.38 -- 6.38 11.24 -- 

(1) 12 - 12 -- 
b 12 - 12 -- 
ac 23 + 4.38 -- 6.38 12.24 -- 

EC = 16 

TABLE 3 

REQUIRED ENDCOUNT 

Required Endcount given the confidence listed below: 

#Factors 90% 95% 99% 99.9% 

2 8 9 11 14 
3 9 1O 12 16 
4 10 11 13 16 

0054 Step 8 is to permanently removed the estimated 
effect if significant. The estimated effect of the interaction of 
AC must be removed to test for significance of the remaining 
identified effects, process variables A and C. The original 
product characteristic measurements are used for this, from 
the response matrix in FIG. 2, that is, the lower order effects 
that were removed earlier must be replaced. The estimated 
effects of -AC can be mathematically removed by directly 
Subtracting or adding it to any cells in the ac matrix. However, 
the estimate should be removed to achieve the smallest 
remaining estimates for the lower order effects. For Example 
#1, agraph is created to aid in removing the estimate of the AC 
interaction to achieve the Smallest remaining estimates. This 
graph is illustrated in FIG. 6. The graph indicates that remov 
ing the AC interaction effect from cellac will leave the small 
est A and C effects. 

0055 FIG. 6 shows that there is not a perfect spike inter 
action between the A and C process variables in Example #1. 
A perfect spike interaction would have an estimated effect 
close to Zero at one of the levels of A and a large estimate at the 
other level of A. In this case, the C effect is -5 at the A-level 
and 20 at the A+ level. 

0056 FIG. 7 is the graph of FIG. 6 with the estimated 
effect for AC removed from the ac response. By doing so, the 
unequal sensitivity of the A factor when C is set at the + level 
rather than the -level, has been set to one of two levels. Now 
when the effect of A is estimated, it is estimated when C is set 
atthe-level. Also, when the effect of C is estimated, it is done 
with A set to the - level. 

0057 Factors involved in a removed interaction are set to 
either the + or - level. Examples of the possible settings are 
summarized in Table 4 below. 
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TABLE 4 

MAIN EFFECT SETTINGS IN THE MATRIX AFTER 
AN INTERACTION HAS BEEN REMOVED 

C effect is estimated Remove AC average A effect is estimated 
effect estimate from: with C setto: with A setto: 

(1) C+ A+ 
8. C+ A 
C C- A+ 
80 C- A 

TABLE 5 

RESPONSE TABLE FORY WITH THE ESTIMATE 
OFAC REMOVED FROM CELLAC (AND ABC 

Y without 
Original Estimate of the estimate 

Cell Y AC of AC 

-1 12 12 
8. 4 4 
b 12 12 
ab 5 5 
C 6 6 
80 22 23.25 -1.25 
bc 6 6 
abc 22 23.25 -1.25 
-1 10 10 
8. 3 3 
b 11 11 
ab 4 4 
C 7 7 
80 23 23.25 -O.25 
bc 5 5 
abc 21 23.25 -2.25 

0058. For Example #1, the AC interaction effect is now 
removed from the responses using the average estimated 
effect (not the orthogonal estimate), as shown in Table 5 
above. 

0059 Step 9 is to recalculate the worksheet if the effect 
removed is an interaction. Because the last estimate removed 
was for an interaction between process variables A and C, the 
worksheet is recalculated before proceeding to Step 11. When 
the removed estimate is a main effect, the worksheet is not 
recalculated. FIG. 8 is the worksheet, recalculated with the 
AC estimated effects removed from the product characteris 
tics measurements of the ac and abc cells of the response 
matrix of FIG. 1. 

0060 Step 10 is to determine if the largest remaining 
contrast Sum should be tested for significance. The contrast 
sums from FIG. 8 are again plotted on a Pareto Chart as shown 
in FIG. 9, and again checked for an adjacent drop between 
contrast Sums by a factor of 2 or more, as was previously done 
before the AC interaction was removed. The contrast sums on 
the high side represent effects that should be identified and 
tested for significance. At this point it is noted that if enough 
leverage has been identified to control the product character 
istic, the analysis may be discontinued. Also, if the factor to be 
checked for significance is a component of an interaction 
where the effect of the interaction will determine the setting 
of the factor to be checked, then the analysis may be discon 
tinued, since no degrees of freedom for the variable remains. 
For Example #1, analysis may be discontinued since the 
remaining variables that appear on the high side of the break 
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on the Pareto Chart in FIG. 9 are variables in the interaction 
AC. Assuming enough leverage has been identified with the 
interaction, then the results of this experiment may cause A 
and C to be both set at minus levels if it were desired to keep 
the process characteristic low. Nonetheless, for purposes of 
illustration, the analysis will continue. 
0061 Table 5 is reorganized in rank order response, shown 
in Table 6. This is done in the same manner as was previously 
done when the lower order effects of the A and C variable 
were removed, in Table 2. 

TABLE 6 

TABLES INRANK ORDER SHOWING ASETTINGLEVELS 

Ywo the 
Estimate 

Cell of AC A Level 

abc -2.25 -- 
80 -1.25 -- 

abc -1.25 -- 
80 -O.25 -- 

8. 3 -- 

8. 4 -- 

ab 4 -- 
ab 5 -- 
bc 5 
C 6 
bc 6 
C 7 
-1 10 
b 11 
-1 12 
b 12 

EC = 16 

0062. The end count is taken using Table 6. The end count 
is 16 since there is no overlap between the + and - signs of the 
A level column. This exceeds a required endcount of 10. A is 
thus found to be significant with 95% confidence. 
0063. The A process variable effect is then permanently 
removed by Subtracting the orthogonal estimates from the 
responses in FIG. 7. This is shown in Table 7 below. 
0064 Step 11 is to begin again at step 6. However, the 
worksheet does not need to be recalculated at this stage 
because the effect of the A process variable is a main effect 
and has been removed from the array orthogonally. This 
means that C effect is still the third largest contrast sum (-42) 
and should be the next one checked for significance. The 
endcount check for C is shown in Table 7 and Table 8 below. 

TABLE 7 

REMOVE THE EFFECT OF ATO 
CHECKEND COUNT FORC: 

Ywo AC effect or 
Cell Ywo AC effect A. Effect of A A effec(2) 

-1 12 12 
8. 4 -- -7.25 11.25 
b 12 12 
ab 5 -- -7.25 12.25 
C 6 6 
80 -1.25 -- -7.25 6 
bc 6 6 
abc -1.25 -- -7.25 6 
-1 10 10 
A. 3 -- -7.25 10.25 
B 11 11 
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TABLE 7-continued 

REMOVE THE EFFECT OF ATO 
CHECKEND COUNT FORC: 

Ywo AC effect or 
Cell Ywo AC effect A. Effect of A A effec(2) 

Ab 4 -- -7.25 11.25 
C 7 7 
Ac -O.25 -- -7.25 7 
Bc 5 5 
Abc -2.25 -- -7.25 5 

(2) indicates text missing or illegible when filed 

TABLE 8 

TABLE 7 SORTED INRANK ORDER 
WITH THE CLEVEL ADDED: 

Cell Ywo AC and AEffects C Level 

bc 5 -- 
abc 5 -- 
C 6 -- 

80 6 -- 

bc 6 -- 
abc 6 -- 
C 7 -- 

80 7 -- 

-1 10 
8. 10.25 

b 11 
8. 11.25 
ab 11.25 
-1 12 
b 12 
ab 12.25 

EC = 16 

0065. The endcount of 16 exceeds the required endcount 
of 10. C has been found to be significant with 95% confi 
dence. 

0066. The new and transformed information yielded is 
that the largest effect is AC with an estimated effect of 23.25. 
Setting both process variables A and C to the + levels causes 
an increase of about 23 in the product characteristic. Further 
more, when process variable C is set to the -level, the A effect 
is significant with an estimated effect of-7.25. Also, when the 
process variable A is set to the minus level the C effect is 
significant with an estimated effect of -5.25. Thus, in order to 
maximize the product characteristic, or output response, both 
A and C must be set to their plus levels. To minimize the 
product characteristic, either and or both A and C should be 
set at the minus level. 

0067 Step 12 is to use the information that has been trans 
formed from process data into information that can be used to 
directly control the process, to improve the product/article of 
manufacture, by setting the variables as a function of the 
“significant effects.” It should be determined whether any of 
the significant effects, estimated by the contrasts, will impart 
a shift in the product characteristic in the direction desired, or 
whether the effect is to be avoided. Also, it is noted that the 
desired product characteristic may be a range of values. If the 
estimated effects are indicative of level settings of the process 
variables that will improve the process as whole, taking into 
consideration costs and other factors associated with main 
taining the level settings, then the factors may be set at the 
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appropriate level settings to impart the estimated effects. For 
Example #1, if the product characteristic is, for example, 
percent impurity of Some component, and it is desired to 
derive a more pure product, both A and C will be set at minus 
levels if not cost prohibitive. In that way, even if one variable 
goes out of control, the other variable may remain at the 
minus level, preventing the interaction effect from occurring 
between the variables, causing a high level of impurity. On the 
other hand, if the product characteristic is, for example, ten 
sile strength, and it is desired to have a strong product with 
high tensile strength, both A and C may be set at their plus 
levels if it is not cost prohibitive. 

Example #2 
0068 Example #2 compares an embodiment of the 
method to the Yates analysis. Example #2 is also directed 
toward improvement of a fabrication process where a spike 
interaction is present between variables. Example #2, like 
Example #1, is an alternative embodiment of the method and 
is also merely one example application of the method. 
0069. In Example #2, for Step 1, two input variables are 
selected for testing at 2 levels each. Again, a product charac 
teristic is the measured response or output. 
0070 Step 2 is to design the experiment using a factorial 
design. In Example #2, there are 2 factors in the experiment 
with 2 levels each. A2 response matrix is thus required. Each 
combination of level settings for the variables is to be tested 
four times, to produce four repeat responses in each cell of the 
response matrix. 
0071. A passing end count is determined in accordance 
with Step 3 depending on the confidence required. 
0072 Step 4 is to set the levels of the variables and record 
the responses to complete the full factorial experiment with 
four repeat runs. The results of the experiment are shown in 
FIG 10. 
0073. Example #2 is a simplified example and FIG. 10 of 
the example shows that an interaction is occurring between 
process variables A and B, since the responses in the ab cell 
are larger than the responses in the other cells. 
0074 Step 5 is to calculate the estimated effects as indi 
vidual contrasts and display the effects in the worksheet. This 
is shown in FIG. 11. Evaluating the contrasts in the worksheet 
reveals that there is an interaction between A and B when both 
variable are set at + levels. First, the set of individual contrasts 
shown in the worksheet for A range from 1 to 10. The set of 
contrasts for B range from -1 to 7. Finally, the set of contrasts 
for the interaction between A and B is 6 to 8. The range of 
contrasts in the A and B process variables combined with 
steady AB contrasts of limited variance is one indication of an 
AB interaction effect. This can be verified by examining the 
leftmost column of the worksheet in FIG. 11 for the particular 
row in which each contrast is displayed, which provides a 
notation for the row that indicates the level setting of variables 
not involved in the particular contrast. This is best seen in the 
worksheet for Example #2 in FIG. 11, showing that the value 
of each contrast for process variable A is at the high end of the 
range in each 'ab' row, the 'ab' notation indicating that B is 
set at the + level. Furthermore, each value for the contrasts for 
process variable A is at a low end of the range in each “a row, 
the “a” notation indicating that B is at the- level. The AB 
interaction can be verified by examining the Blevel settings in 
the same manner. 
0075 An interaction can thus be predicted based only on 
the worksheet, and the level settings of process variables A 
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and B may be set to impart the AB interaction effect to the 
response, or to avoid it, depending on the target value of the 
response. 
0076 An application of the well known Yates analysis to 
Example #2 is shown in FIGS. 12 and 13. The column labeled 
“Effects” in these figures show the calculated effects for A, B, 
and the AB interaction, in that order from the top of the 
column. The A effect and B effect are calculated to be 5 and 
4, with the AB effect calculated to be only 3.5. As can be seen 
in this simple example in FIG.9, it is clear that the response 
for AB is the largest with all other responses approximately 
equivalent. It is thus clear that the Yates method is yielding the 
wrong result and the A effect is not the largest effect. 

Example #3 

0077. Example #3 provides further explanation of an 
embodiment of the method as applied to a spike interaction. 
Example #3 is again directed toward improvement of a manu 
facturing process, having process variable A, and B, with two 
level settings, and a measurable response indicative of 
improvement to the process. 
0078. As has been shown in the description of the embodi 
ment of the method in Example #2, a method is provided to 
analyze full factorial experiments to identify and quantify 
spike interactions. Spike interactions can be explained by 
viewing a 22 experimental matrix plotted as a plane. 
0079. To explain a spike interaction it is helpful to picture 
a plane created in space having 4 corners, as illustrated in 
FIG. 15. For Example #3, the x, y component of each corner 
are determined by the settings of process variables A, B. The 
Z component of each corner is set by the measurable response, 
which is equivalent to the height of each corner of the plane. 
0080. If the responses of all cells are approximately equal 
and are, for example, 2 units, the plane will float 2 units above 
the Zero plane and will be parallel to the Zero plane. For 
Example #3, there is an A main effect of 0 units, so corners (1) 
and a will be the same, in this case 4 units off the Zero plane. 
There is also a B main effect of 2 units, so cornerb will be 2 
units higher than corner (1). If there is no interaction cornerab 
will be equal to corner (1) plus both the A and B effects. In this 
case that would yield a corner ab at 6 (4+0+2). If there is no 
interaction the main effects are Superimposed upon each 
other, and the plane remains flat, but no longer parallel to the 
Zero plane. However, for Example #3, there is a spike inter 
action. This is shown in FIG. 16, wherein the response of the 
ab cell is 22. Thus, A and B are interacting, at one level, to 
display a higher response than simply Superimposing the A 
and B effects. The responses are (1)=4, a =4, b=6, and ab=22. 
I0081 Interactions impart a twist on the plane. Traditional 
interactions cause opposite cells to move as a pair. For 
example a traditional AB interaction will cause cells (1) and 
ab to both move in the same direction. Traditional interactions 
cause the plane to look like a saddle. Main effects superim 
posed over traditional interactions will cause the plane to look 
like a tilted saddle. The Yates analysis is based on the analysis 
of traditional interactions. 
I0082 Field experience has proven the existence of spike 
interactions. Spike interactions do not effect the response 
plane in the same manner as traditional interactions. Spike 
interactions cause one cell of the matrix (not two) to move 
independent of the other cells. For example, a positive ab 
spike interaction will cause the ab corner of the plane to 
'spike up' making it significantly higher than the other 3 
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corners of the matrix. The (1) corner which is traditionally 
paired with the ab corner is unmoved by the effect of the 
spike. 
0083. A perfect spike interaction yields contrast sums for 
both the interaction and the two associated main effects which 
are equal within measurement error. For example, a perfect 
AB spike will result in contrast sums of AB, B, and Aall being 
approximately equal. This is why higher order interactions 
are tested first. For the purposes of the embodiment of the 
method in Example #3, spike interactions include both per 
fect spike interactions and approximated spike interactions. 
0084. Recognizing a spike interaction is one reason why, 
in step 8 of the embodiment of the method shown in Example 
#1, the AC interaction effect was removed from only one 
response, the ac response. While the effect of the interaction 
can be mathematically subtracted from both cells (1) and ac 
using the orthogonal estimate instead of the effect estimate 
this does not accurately represent what is physically happen 
ing. When a spike interaction is subtracted from more cells 
than is physically warranted the remaining contrasts are arti 
ficially large. 
I0085 For the present Example #3, FIG.16 should be used 
to remove the AB interaction when permanently removing its 
effect. The AB effect is 16, and removing it from the ab cell 
will achieve the smallest remaining effects, which is in fact, 
the location of the where the spike interaction occurs. FIG. 17 
shows Example #3 with the AB effect removed from the ab 
cell. 
I0086. By removing the AB effect from the ab cell, the 
effect estimate of A is now made with B set to the minus level, 
and the effect estimate of B is now made with A set to the 
minus level. This yields useful information in that, since AB 
has been shown to be the interaction of interest, it will be most 
desirable to also know the effect of either variable alone with 
the other set So as not to interact in the spike interaction. Thus, 
by graphically representing the responses, and removing the 
interaction effect to achieve the Smallest remaining effects, 
useful information is obtained that can be directly used to 
determine settings for process variables. The same consider 
ations may be given to where to set the variables as was 
discussed in Step 12 of Example #1. 

Example #4 

0087. A full factorial experiment was run for a manufac 
turing process wherein electrical components were being 
manufactured. Finished parts were failing dielectric testing. 
Three variables were identified as possible contributors to the 
problem. The variables were tested using a three-factor full 
factorial experiment. The response was, arc-Volts, the Voltage 
at which the part failed. 
0088. The present method identified an AB spike interac 
tion when variables A and B were set at a low value (-). The 
spike interaction provided the needed response level. Given 
the consequences of building a weak part, and the cost of 
setting both A and B to the low level, it was decided to set both 
A and B to the low level. 
I0089. Examples #1, #2, #3, and #4, have been directed 
toward the improvement of a manufacturing process to yield 
improved product characteristic. Manufacturing processes 
can include but are certainly not limited to, manufacturing of 
vehicles parts, vehicles, general electronic apparatus and 
devices, computers, computer components, scientific appara 
tus, medical apparatus, chemicals, machinery, foods, con 
struction materials, tools, pharmaceuticals, paper goods and 
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printed matter, paint, rubber goods, leather goods, furniture, 
housewares, cordage and fibers, fabrics, clothing, fancy 
goods, toys and sporting goods, and beverages, cosmetics and 
cleaning preparations, lubricants and fuels/oil, general metal 
goods, jewelry, firearms, musical instruments, and even the 
processing of natural goods. However, as will be appreciated, 
the embodiments of the method have broad applicability. The 
output responses monitored can be any form of product or 
article characteristic as well as a characteristic of the fabrica 
tion or manufacturing process itself. Thus the improvement 
sought and achieved through application of any of the various 
embodiments of the method can include improvements not 
only to the product or article, but also to the manufacturing or 
fabrication process. Examples of measurable responses 
monitored to gage improvements to the process include pro 
duction rate of the process and any efficiency in the process. 
0090. In addition, embodiments of the method can also be 
used in the operation of a manufacturing process. Such as, for 
example, when a process has temporarily deviated from a 
target value required for an operating parameter of the pro 
cess, and it is desired to return the process to normal opera 
tion. The previous settings of variables may be unknown, and 
hence, an embodiment of the present method can be used to 
return the variables to the previous settings to attain the range 
sought for the operating parameter. The operating parameter 
may be related to, but are not limited to, production rates, 
manufacturing efficiency parameters, and product character 
istics of the products generated by the process. 
I0091. It will also be appreciated that embodiments of the 
method can be applied to the design of processes and prod 
ucts. Such applications of embodiments of the method may 
typically be in connection with bench scale models of a manu 
facturing or fabrication process or prototypes of a product or 
article. Experimentation can be done on the bench scale, or on 
the prototypes, and an embodiment of the method can be used 
to select the correct level settings for the variables. 
0092. One skilled in the art will also recognize that the 
present invention may be implemented through the use of a 
general purpose computer system. For example, the contents 
of the worksheet of FIG.3 may be calculated and stored in the 
computer in a variety of forms including a spreadsheet, or the 
iterative steps of the method as well as the graphical interpre 
tations may be done with the computer. An embodiment of the 
method may be implemented by a computer system, includ 
ing receiving and adjusting variables through the input/output 
devices 4, based on the information yielded by the method. In 
one alternative embodiment, an embodiment of the method is 
implemented in the computer and a signal is sent to a control 
lerto adjust the level settings of the process variables based on 
information transformed by the embodiment of the method. 
Any one of the embodiments of the method may also be 
stored on a computer readable medium, Such as a memory, 
which can then be used with a computer to perform the 
method. 
0093 FIG. 14 is a block diagram of a general purpose 
computer for practicing preferred embodiments of the present 
invention. The computer system 1 contains a central process 
ing unit (CPU) 2, a display Screen 3, input/output devices 4. 
and a computer memory (memory) 5. 
0094. As the embodiments of the method can be imple 
mented through the use of a general purpose computer sys 
tem, wherein the particular documents described previously 
are not necessary, so can the documents be modified and 
embodied in various forms of display. For example, the work 
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sheet of FIG.3 may be implemented in a variety of forms. A 
display could be generated in more tabular form with the 
fields of the table corresponding to similar notation, or per 
haps in graphical form. 
0095 From the foregoing it will be appreciated that, 
although specific embodiments of the invention have been 
described herein for purposes of illustration, various modifi 
cations may be made without deviating from the spirit and 
Scope of the invention. Accordingly, the invention is not lim 
ited except as by the appended claims. 
What is claimed is: 
1. A method for improving a manufacturing process 

wherein there are a plurality of process variables and a value 
of a measurable response of the manufacturing process is 
indicative of an improvement to the process, the method 
comprising: 

conducting a full factorial experiment by setting a plurality 
of the process variables at a plurality of settings in a 
plurality of combinations of settings and receiving at 
least one measurement of the response of the process for 
each combination of level settings; 

calculating individual contrasts for each process variable 
and each interaction among the process variables using 
the received responses of the full factorial experiment 
and displaying the individual contrasts for each variable 
and each interaction; 

verifying that both variables of an interaction contrast must 
be set at the levels of the interaction to impart an effect 
substantially equal to the effect of the interaction by 
evaluating the variance of the contrasts displayed; 

setting the process variables as a function of the effect of 
the verification; and 

operating the manufacturing process. 
2. A computer-implemented method of improving a manu 

facturing process wherein a target is determined for a mea 
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Surable response, the target being indicative of an improve 
ment in the process, the method comprising: 

conducting a full factorial experiment with at least two 
process variables being adjusted between at least two 
level settings with output responses being measure 
ments of the response for which the target is determined; 

receiving the responses of the full factorial experiment and 
using the responses to calculate individual contrasts for 
each process variable and each interaction among the 
process variables and displaying each of the contrasts in 
a document; 

adding the individual contrasts of each process variable 
and each interaction to generate separate contrast Sums; 

selecting at least one of the contrast Sums when it is greater 
than at least one of the other contrast Sums by a pre 
defined factor; and 

adjusting the level settings of the process variables as a 
function of an estimated effect associated with the 
Selected contrast Sum. 

3. A computer readable medium for instructing a computer 
to perform a method for improving a manufacturing process, 
comprising: 

receiving level settings and responses for a factorial experi 
ment; 

calculating individual contrasts for each process variable 
and each interaction among the process variables; and 

testing the significance of effects associated with the con 
trasts, wherein when an effect is found to be significant 
and is an interaction effect, it is removed before testing 
the significance of another affect, the removal being 
done to achieve the Smallest remaining estimates for the 
lower order effects. 


